xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 346dd7f1bd985f8bd599bc66f3f2855d09ef5d9c)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/Loads.h"
24 #include "llvm/Analysis/TargetLibraryInfo.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/VectorUtils.h"
27 #include "llvm/CodeGen/Analysis.h"
28 #include "llvm/CodeGen/FastISel.h"
29 #include "llvm/CodeGen/FunctionLoweringInfo.h"
30 #include "llvm/CodeGen/GCMetadata.h"
31 #include "llvm/CodeGen/GCStrategy.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineJumpTableInfo.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/SelectionDAG.h"
39 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
40 #include "llvm/CodeGen/StackMaps.h"
41 #include "llvm/CodeGen/WinEHFuncInfo.h"
42 #include "llvm/IR/CallingConv.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/DebugInfo.h"
46 #include "llvm/IR/DerivedTypes.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/IR/GetElementPtrTypeIterator.h"
49 #include "llvm/IR/GlobalVariable.h"
50 #include "llvm/IR/InlineAsm.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/IR/Statepoint.h"
57 #include "llvm/MC/MCSymbol.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/MathExtras.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Target/TargetFrameLowering.h"
64 #include "llvm/Target/TargetInstrInfo.h"
65 #include "llvm/Target/TargetIntrinsicInfo.h"
66 #include "llvm/Target/TargetLowering.h"
67 #include "llvm/Target/TargetOptions.h"
68 #include "llvm/Target/TargetSubtargetInfo.h"
69 #include <algorithm>
70 #include <utility>
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "isel"
74 
75 /// LimitFloatPrecision - Generate low-precision inline sequences for
76 /// some float libcalls (6, 8 or 12 bits).
77 static unsigned LimitFloatPrecision;
78 
79 static cl::opt<unsigned, true>
80 LimitFPPrecision("limit-float-precision",
81                  cl::desc("Generate low-precision inline sequences "
82                           "for some float libcalls"),
83                  cl::location(LimitFloatPrecision),
84                  cl::init(0));
85 
86 static cl::opt<bool>
87 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden,
88                 cl::desc("Enable fast-math-flags for DAG nodes"));
89 
90 /// Minimum jump table density for normal functions.
91 static cl::opt<unsigned>
92 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
93                  cl::desc("Minimum density for building a jump table in "
94                           "a normal function"));
95 
96 /// Minimum jump table density for -Os or -Oz functions.
97 static cl::opt<unsigned>
98 OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden,
99                         cl::desc("Minimum density for building a jump table in "
100                                  "an optsize function"));
101 
102 
103 // Limit the width of DAG chains. This is important in general to prevent
104 // DAG-based analysis from blowing up. For example, alias analysis and
105 // load clustering may not complete in reasonable time. It is difficult to
106 // recognize and avoid this situation within each individual analysis, and
107 // future analyses are likely to have the same behavior. Limiting DAG width is
108 // the safe approach and will be especially important with global DAGs.
109 //
110 // MaxParallelChains default is arbitrarily high to avoid affecting
111 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
112 // sequence over this should have been converted to llvm.memcpy by the
113 // frontend. It is easy to induce this behavior with .ll code such as:
114 // %buffer = alloca [4096 x i8]
115 // %data = load [4096 x i8]* %argPtr
116 // store [4096 x i8] %data, [4096 x i8]* %buffer
117 static const unsigned MaxParallelChains = 64;
118 
119 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
120                                       const SDValue *Parts, unsigned NumParts,
121                                       MVT PartVT, EVT ValueVT, const Value *V);
122 
123 /// getCopyFromParts - Create a value that contains the specified legal parts
124 /// combined into the value they represent.  If the parts combine to a type
125 /// larger than ValueVT then AssertOp can be used to specify whether the extra
126 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
127 /// (ISD::AssertSext).
128 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
129                                 const SDValue *Parts, unsigned NumParts,
130                                 MVT PartVT, EVT ValueVT, const Value *V,
131                                 Optional<ISD::NodeType> AssertOp = None) {
132   if (ValueVT.isVector())
133     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
134                                   PartVT, ValueVT, V);
135 
136   assert(NumParts > 0 && "No parts to assemble!");
137   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
138   SDValue Val = Parts[0];
139 
140   if (NumParts > 1) {
141     // Assemble the value from multiple parts.
142     if (ValueVT.isInteger()) {
143       unsigned PartBits = PartVT.getSizeInBits();
144       unsigned ValueBits = ValueVT.getSizeInBits();
145 
146       // Assemble the power of 2 part.
147       unsigned RoundParts = NumParts & (NumParts - 1) ?
148         1 << Log2_32(NumParts) : NumParts;
149       unsigned RoundBits = PartBits * RoundParts;
150       EVT RoundVT = RoundBits == ValueBits ?
151         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
152       SDValue Lo, Hi;
153 
154       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
155 
156       if (RoundParts > 2) {
157         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
158                               PartVT, HalfVT, V);
159         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
160                               RoundParts / 2, PartVT, HalfVT, V);
161       } else {
162         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
163         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
164       }
165 
166       if (DAG.getDataLayout().isBigEndian())
167         std::swap(Lo, Hi);
168 
169       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
170 
171       if (RoundParts < NumParts) {
172         // Assemble the trailing non-power-of-2 part.
173         unsigned OddParts = NumParts - RoundParts;
174         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
175         Hi = getCopyFromParts(DAG, DL,
176                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
177 
178         // Combine the round and odd parts.
179         Lo = Val;
180         if (DAG.getDataLayout().isBigEndian())
181           std::swap(Lo, Hi);
182         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
183         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
184         Hi =
185             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
186                         DAG.getConstant(Lo.getValueType().getSizeInBits(), DL,
187                                         TLI.getPointerTy(DAG.getDataLayout())));
188         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
189         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
190       }
191     } else if (PartVT.isFloatingPoint()) {
192       // FP split into multiple FP parts (for ppcf128)
193       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
194              "Unexpected split");
195       SDValue Lo, Hi;
196       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
197       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
198       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
199         std::swap(Lo, Hi);
200       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
201     } else {
202       // FP split into integer parts (soft fp)
203       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
204              !PartVT.isVector() && "Unexpected split");
205       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
206       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
207     }
208   }
209 
210   // There is now one part, held in Val.  Correct it to match ValueVT.
211   // PartEVT is the type of the register class that holds the value.
212   // ValueVT is the type of the inline asm operation.
213   EVT PartEVT = Val.getValueType();
214 
215   if (PartEVT == ValueVT)
216     return Val;
217 
218   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
219       ValueVT.bitsLT(PartEVT)) {
220     // For an FP value in an integer part, we need to truncate to the right
221     // width first.
222     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
223     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
224   }
225 
226   // Handle types that have the same size.
227   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
228     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
229 
230   // Handle types with different sizes.
231   if (PartEVT.isInteger() && ValueVT.isInteger()) {
232     if (ValueVT.bitsLT(PartEVT)) {
233       // For a truncate, see if we have any information to
234       // indicate whether the truncated bits will always be
235       // zero or sign-extension.
236       if (AssertOp.hasValue())
237         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
238                           DAG.getValueType(ValueVT));
239       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
240     }
241     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
242   }
243 
244   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
245     // FP_ROUND's are always exact here.
246     if (ValueVT.bitsLT(Val.getValueType()))
247       return DAG.getNode(
248           ISD::FP_ROUND, DL, ValueVT, Val,
249           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
250 
251     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
252   }
253 
254   llvm_unreachable("Unknown mismatch!");
255 }
256 
257 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
258                                               const Twine &ErrMsg) {
259   const Instruction *I = dyn_cast_or_null<Instruction>(V);
260   if (!V)
261     return Ctx.emitError(ErrMsg);
262 
263   const char *AsmError = ", possible invalid constraint for vector type";
264   if (const CallInst *CI = dyn_cast<CallInst>(I))
265     if (isa<InlineAsm>(CI->getCalledValue()))
266       return Ctx.emitError(I, ErrMsg + AsmError);
267 
268   return Ctx.emitError(I, ErrMsg);
269 }
270 
271 /// getCopyFromPartsVector - Create a value that contains the specified legal
272 /// parts combined into the value they represent.  If the parts combine to a
273 /// type larger than ValueVT then AssertOp can be used to specify whether the
274 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
275 /// ValueVT (ISD::AssertSext).
276 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
277                                       const SDValue *Parts, unsigned NumParts,
278                                       MVT PartVT, EVT ValueVT, const Value *V) {
279   assert(ValueVT.isVector() && "Not a vector value");
280   assert(NumParts > 0 && "No parts to assemble!");
281   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
282   SDValue Val = Parts[0];
283 
284   // Handle a multi-element vector.
285   if (NumParts > 1) {
286     EVT IntermediateVT;
287     MVT RegisterVT;
288     unsigned NumIntermediates;
289     unsigned NumRegs =
290     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
291                                NumIntermediates, RegisterVT);
292     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
293     NumParts = NumRegs; // Silence a compiler warning.
294     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
295     assert(RegisterVT.getSizeInBits() ==
296            Parts[0].getSimpleValueType().getSizeInBits() &&
297            "Part type sizes don't match!");
298 
299     // Assemble the parts into intermediate operands.
300     SmallVector<SDValue, 8> Ops(NumIntermediates);
301     if (NumIntermediates == NumParts) {
302       // If the register was not expanded, truncate or copy the value,
303       // as appropriate.
304       for (unsigned i = 0; i != NumParts; ++i)
305         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
306                                   PartVT, IntermediateVT, V);
307     } else if (NumParts > 0) {
308       // If the intermediate type was expanded, build the intermediate
309       // operands from the parts.
310       assert(NumParts % NumIntermediates == 0 &&
311              "Must expand into a divisible number of parts!");
312       unsigned Factor = NumParts / NumIntermediates;
313       for (unsigned i = 0; i != NumIntermediates; ++i)
314         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
315                                   PartVT, IntermediateVT, V);
316     }
317 
318     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
319     // intermediate operands.
320     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
321                                                 : ISD::BUILD_VECTOR,
322                       DL, ValueVT, Ops);
323   }
324 
325   // There is now one part, held in Val.  Correct it to match ValueVT.
326   EVT PartEVT = Val.getValueType();
327 
328   if (PartEVT == ValueVT)
329     return Val;
330 
331   if (PartEVT.isVector()) {
332     // If the element type of the source/dest vectors are the same, but the
333     // parts vector has more elements than the value vector, then we have a
334     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
335     // elements we want.
336     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
337       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
338              "Cannot narrow, it would be a lossy transformation");
339       return DAG.getNode(
340           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
341           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
342     }
343 
344     // Vector/Vector bitcast.
345     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
346       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
347 
348     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
349       "Cannot handle this kind of promotion");
350     // Promoted vector extract
351     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
352 
353   }
354 
355   // Trivial bitcast if the types are the same size and the destination
356   // vector type is legal.
357   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
358       TLI.isTypeLegal(ValueVT))
359     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
360 
361   // Handle cases such as i8 -> <1 x i1>
362   if (ValueVT.getVectorNumElements() != 1) {
363     diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
364                                       "non-trivial scalar-to-vector conversion");
365     return DAG.getUNDEF(ValueVT);
366   }
367 
368   if (ValueVT.getVectorNumElements() == 1 &&
369       ValueVT.getVectorElementType() != PartEVT)
370     Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType());
371 
372   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
373 }
374 
375 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
376                                  SDValue Val, SDValue *Parts, unsigned NumParts,
377                                  MVT PartVT, const Value *V);
378 
379 /// getCopyToParts - Create a series of nodes that contain the specified value
380 /// split into legal parts.  If the parts contain more bits than Val, then, for
381 /// integers, ExtendKind can be used to specify how to generate the extra bits.
382 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
383                            SDValue *Parts, unsigned NumParts, MVT PartVT,
384                            const Value *V,
385                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
386   EVT ValueVT = Val.getValueType();
387 
388   // Handle the vector case separately.
389   if (ValueVT.isVector())
390     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
391 
392   unsigned PartBits = PartVT.getSizeInBits();
393   unsigned OrigNumParts = NumParts;
394   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
395          "Copying to an illegal type!");
396 
397   if (NumParts == 0)
398     return;
399 
400   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
401   EVT PartEVT = PartVT;
402   if (PartEVT == ValueVT) {
403     assert(NumParts == 1 && "No-op copy with multiple parts!");
404     Parts[0] = Val;
405     return;
406   }
407 
408   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
409     // If the parts cover more bits than the value has, promote the value.
410     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
411       assert(NumParts == 1 && "Do not know what to promote to!");
412       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
413     } else {
414       if (ValueVT.isFloatingPoint()) {
415         // FP values need to be bitcast, then extended if they are being put
416         // into a larger container.
417         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
418         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
419       }
420       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
421              ValueVT.isInteger() &&
422              "Unknown mismatch!");
423       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
424       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
425       if (PartVT == MVT::x86mmx)
426         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
427     }
428   } else if (PartBits == ValueVT.getSizeInBits()) {
429     // Different types of the same size.
430     assert(NumParts == 1 && PartEVT != ValueVT);
431     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
432   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
433     // If the parts cover less bits than value has, truncate the value.
434     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
435            ValueVT.isInteger() &&
436            "Unknown mismatch!");
437     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
438     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
439     if (PartVT == MVT::x86mmx)
440       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
441   }
442 
443   // The value may have changed - recompute ValueVT.
444   ValueVT = Val.getValueType();
445   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
446          "Failed to tile the value with PartVT!");
447 
448   if (NumParts == 1) {
449     if (PartEVT != ValueVT) {
450       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
451                                         "scalar-to-vector conversion failed");
452       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
453     }
454 
455     Parts[0] = Val;
456     return;
457   }
458 
459   // Expand the value into multiple parts.
460   if (NumParts & (NumParts - 1)) {
461     // The number of parts is not a power of 2.  Split off and copy the tail.
462     assert(PartVT.isInteger() && ValueVT.isInteger() &&
463            "Do not know what to expand to!");
464     unsigned RoundParts = 1 << Log2_32(NumParts);
465     unsigned RoundBits = RoundParts * PartBits;
466     unsigned OddParts = NumParts - RoundParts;
467     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
468                                  DAG.getIntPtrConstant(RoundBits, DL));
469     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
470 
471     if (DAG.getDataLayout().isBigEndian())
472       // The odd parts were reversed by getCopyToParts - unreverse them.
473       std::reverse(Parts + RoundParts, Parts + NumParts);
474 
475     NumParts = RoundParts;
476     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
477     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
478   }
479 
480   // The number of parts is a power of 2.  Repeatedly bisect the value using
481   // EXTRACT_ELEMENT.
482   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
483                          EVT::getIntegerVT(*DAG.getContext(),
484                                            ValueVT.getSizeInBits()),
485                          Val);
486 
487   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
488     for (unsigned i = 0; i < NumParts; i += StepSize) {
489       unsigned ThisBits = StepSize * PartBits / 2;
490       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
491       SDValue &Part0 = Parts[i];
492       SDValue &Part1 = Parts[i+StepSize/2];
493 
494       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
495                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
496       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
497                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
498 
499       if (ThisBits == PartBits && ThisVT != PartVT) {
500         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
501         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
502       }
503     }
504   }
505 
506   if (DAG.getDataLayout().isBigEndian())
507     std::reverse(Parts, Parts + OrigNumParts);
508 }
509 
510 
511 /// getCopyToPartsVector - Create a series of nodes that contain the specified
512 /// value split into legal parts.
513 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
514                                  SDValue Val, SDValue *Parts, unsigned NumParts,
515                                  MVT PartVT, const Value *V) {
516   EVT ValueVT = Val.getValueType();
517   assert(ValueVT.isVector() && "Not a vector");
518   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
519 
520   if (NumParts == 1) {
521     EVT PartEVT = PartVT;
522     if (PartEVT == ValueVT) {
523       // Nothing to do.
524     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
525       // Bitconvert vector->vector case.
526       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
527     } else if (PartVT.isVector() &&
528                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
529                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
530       EVT ElementVT = PartVT.getVectorElementType();
531       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
532       // undef elements.
533       SmallVector<SDValue, 16> Ops;
534       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
535         Ops.push_back(DAG.getNode(
536             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
537             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
538 
539       for (unsigned i = ValueVT.getVectorNumElements(),
540            e = PartVT.getVectorNumElements(); i != e; ++i)
541         Ops.push_back(DAG.getUNDEF(ElementVT));
542 
543       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
544 
545       // FIXME: Use CONCAT for 2x -> 4x.
546 
547       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
548       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
549     } else if (PartVT.isVector() &&
550                PartEVT.getVectorElementType().bitsGE(
551                  ValueVT.getVectorElementType()) &&
552                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
553 
554       // Promoted vector extract
555       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
556     } else{
557       // Vector -> scalar conversion.
558       assert(ValueVT.getVectorNumElements() == 1 &&
559              "Only trivial vector-to-scalar conversions should get here!");
560       Val = DAG.getNode(
561           ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
562           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
563 
564       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
565     }
566 
567     Parts[0] = Val;
568     return;
569   }
570 
571   // Handle a multi-element vector.
572   EVT IntermediateVT;
573   MVT RegisterVT;
574   unsigned NumIntermediates;
575   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
576                                                 IntermediateVT,
577                                                 NumIntermediates, RegisterVT);
578   unsigned NumElements = ValueVT.getVectorNumElements();
579 
580   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
581   NumParts = NumRegs; // Silence a compiler warning.
582   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
583 
584   // Split the vector into intermediate operands.
585   SmallVector<SDValue, 8> Ops(NumIntermediates);
586   for (unsigned i = 0; i != NumIntermediates; ++i) {
587     if (IntermediateVT.isVector())
588       Ops[i] =
589           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
590                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
591                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
592     else
593       Ops[i] = DAG.getNode(
594           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
595           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
596   }
597 
598   // Split the intermediate operands into legal parts.
599   if (NumParts == NumIntermediates) {
600     // If the register was not expanded, promote or copy the value,
601     // as appropriate.
602     for (unsigned i = 0; i != NumParts; ++i)
603       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
604   } else if (NumParts > 0) {
605     // If the intermediate type was expanded, split each the value into
606     // legal parts.
607     assert(NumIntermediates != 0 && "division by zero");
608     assert(NumParts % NumIntermediates == 0 &&
609            "Must expand into a divisible number of parts!");
610     unsigned Factor = NumParts / NumIntermediates;
611     for (unsigned i = 0; i != NumIntermediates; ++i)
612       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
613   }
614 }
615 
616 RegsForValue::RegsForValue() {}
617 
618 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
619                            EVT valuevt)
620     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
621 
622 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
623                            const DataLayout &DL, unsigned Reg, Type *Ty) {
624   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
625 
626   for (EVT ValueVT : ValueVTs) {
627     unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT);
628     MVT RegisterVT = TLI.getRegisterType(Context, ValueVT);
629     for (unsigned i = 0; i != NumRegs; ++i)
630       Regs.push_back(Reg + i);
631     RegVTs.push_back(RegisterVT);
632     Reg += NumRegs;
633   }
634 }
635 
636 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
637 /// this value and returns the result as a ValueVT value.  This uses
638 /// Chain/Flag as the input and updates them for the output Chain/Flag.
639 /// If the Flag pointer is NULL, no flag is used.
640 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
641                                       FunctionLoweringInfo &FuncInfo,
642                                       const SDLoc &dl, SDValue &Chain,
643                                       SDValue *Flag, const Value *V) const {
644   // A Value with type {} or [0 x %t] needs no registers.
645   if (ValueVTs.empty())
646     return SDValue();
647 
648   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
649 
650   // Assemble the legal parts into the final values.
651   SmallVector<SDValue, 4> Values(ValueVTs.size());
652   SmallVector<SDValue, 8> Parts;
653   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
654     // Copy the legal parts from the registers.
655     EVT ValueVT = ValueVTs[Value];
656     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
657     MVT RegisterVT = RegVTs[Value];
658 
659     Parts.resize(NumRegs);
660     for (unsigned i = 0; i != NumRegs; ++i) {
661       SDValue P;
662       if (!Flag) {
663         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
664       } else {
665         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
666         *Flag = P.getValue(2);
667       }
668 
669       Chain = P.getValue(1);
670       Parts[i] = P;
671 
672       // If the source register was virtual and if we know something about it,
673       // add an assert node.
674       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
675           !RegisterVT.isInteger() || RegisterVT.isVector())
676         continue;
677 
678       const FunctionLoweringInfo::LiveOutInfo *LOI =
679         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
680       if (!LOI)
681         continue;
682 
683       unsigned RegSize = RegisterVT.getSizeInBits();
684       unsigned NumSignBits = LOI->NumSignBits;
685       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
686 
687       if (NumZeroBits == RegSize) {
688         // The current value is a zero.
689         // Explicitly express that as it would be easier for
690         // optimizations to kick in.
691         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
692         continue;
693       }
694 
695       // FIXME: We capture more information than the dag can represent.  For
696       // now, just use the tightest assertzext/assertsext possible.
697       bool isSExt = true;
698       EVT FromVT(MVT::Other);
699       if (NumSignBits == RegSize) {
700         isSExt = true;   // ASSERT SEXT 1
701         FromVT = MVT::i1;
702       } else if (NumZeroBits >= RegSize - 1) {
703         isSExt = false;  // ASSERT ZEXT 1
704         FromVT = MVT::i1;
705       } else if (NumSignBits > RegSize - 8) {
706         isSExt = true;   // ASSERT SEXT 8
707         FromVT = MVT::i8;
708       } else if (NumZeroBits >= RegSize - 8) {
709         isSExt = false;  // ASSERT ZEXT 8
710         FromVT = MVT::i8;
711       } else if (NumSignBits > RegSize - 16) {
712         isSExt = true;   // ASSERT SEXT 16
713         FromVT = MVT::i16;
714       } else if (NumZeroBits >= RegSize - 16) {
715         isSExt = false;  // ASSERT ZEXT 16
716         FromVT = MVT::i16;
717       } else if (NumSignBits > RegSize - 32) {
718         isSExt = true;   // ASSERT SEXT 32
719         FromVT = MVT::i32;
720       } else if (NumZeroBits >= RegSize - 32) {
721         isSExt = false;  // ASSERT ZEXT 32
722         FromVT = MVT::i32;
723       } else {
724         continue;
725       }
726       // Add an assertion node.
727       assert(FromVT != MVT::Other);
728       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
729                              RegisterVT, P, DAG.getValueType(FromVT));
730     }
731 
732     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
733                                      NumRegs, RegisterVT, ValueVT, V);
734     Part += NumRegs;
735     Parts.clear();
736   }
737 
738   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
739 }
740 
741 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
742 /// specified value into the registers specified by this object.  This uses
743 /// Chain/Flag as the input and updates them for the output Chain/Flag.
744 /// If the Flag pointer is NULL, no flag is used.
745 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
746                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
747                                  const Value *V,
748                                  ISD::NodeType PreferredExtendType) const {
749   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
750   ISD::NodeType ExtendKind = PreferredExtendType;
751 
752   // Get the list of the values's legal parts.
753   unsigned NumRegs = Regs.size();
754   SmallVector<SDValue, 8> Parts(NumRegs);
755   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
756     EVT ValueVT = ValueVTs[Value];
757     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
758     MVT RegisterVT = RegVTs[Value];
759 
760     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
761       ExtendKind = ISD::ZERO_EXTEND;
762 
763     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
764                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
765     Part += NumParts;
766   }
767 
768   // Copy the parts into the registers.
769   SmallVector<SDValue, 8> Chains(NumRegs);
770   for (unsigned i = 0; i != NumRegs; ++i) {
771     SDValue Part;
772     if (!Flag) {
773       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
774     } else {
775       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
776       *Flag = Part.getValue(1);
777     }
778 
779     Chains[i] = Part.getValue(0);
780   }
781 
782   if (NumRegs == 1 || Flag)
783     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
784     // flagged to it. That is the CopyToReg nodes and the user are considered
785     // a single scheduling unit. If we create a TokenFactor and return it as
786     // chain, then the TokenFactor is both a predecessor (operand) of the
787     // user as well as a successor (the TF operands are flagged to the user).
788     // c1, f1 = CopyToReg
789     // c2, f2 = CopyToReg
790     // c3     = TokenFactor c1, c2
791     // ...
792     //        = op c3, ..., f2
793     Chain = Chains[NumRegs-1];
794   else
795     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
796 }
797 
798 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
799 /// operand list.  This adds the code marker and includes the number of
800 /// values added into it.
801 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
802                                         unsigned MatchingIdx, const SDLoc &dl,
803                                         SelectionDAG &DAG,
804                                         std::vector<SDValue> &Ops) const {
805   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
806 
807   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
808   if (HasMatching)
809     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
810   else if (!Regs.empty() &&
811            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
812     // Put the register class of the virtual registers in the flag word.  That
813     // way, later passes can recompute register class constraints for inline
814     // assembly as well as normal instructions.
815     // Don't do this for tied operands that can use the regclass information
816     // from the def.
817     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
818     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
819     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
820   }
821 
822   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
823   Ops.push_back(Res);
824 
825   unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
826   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
827     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
828     MVT RegisterVT = RegVTs[Value];
829     for (unsigned i = 0; i != NumRegs; ++i) {
830       assert(Reg < Regs.size() && "Mismatch in # registers expected");
831       unsigned TheReg = Regs[Reg++];
832       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
833 
834       if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
835         // If we clobbered the stack pointer, MFI should know about it.
836         assert(DAG.getMachineFunction().getFrameInfo()->
837             hasOpaqueSPAdjustment());
838       }
839     }
840   }
841 }
842 
843 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
844                                const TargetLibraryInfo *li) {
845   AA = &aa;
846   GFI = gfi;
847   LibInfo = li;
848   DL = &DAG.getDataLayout();
849   Context = DAG.getContext();
850   LPadToCallSiteMap.clear();
851 }
852 
853 /// clear - Clear out the current SelectionDAG and the associated
854 /// state and prepare this SelectionDAGBuilder object to be used
855 /// for a new block. This doesn't clear out information about
856 /// additional blocks that are needed to complete switch lowering
857 /// or PHI node updating; that information is cleared out as it is
858 /// consumed.
859 void SelectionDAGBuilder::clear() {
860   NodeMap.clear();
861   UnusedArgNodeMap.clear();
862   PendingLoads.clear();
863   PendingExports.clear();
864   CurInst = nullptr;
865   HasTailCall = false;
866   SDNodeOrder = LowestSDNodeOrder;
867   StatepointLowering.clear();
868 }
869 
870 /// clearDanglingDebugInfo - Clear the dangling debug information
871 /// map. This function is separated from the clear so that debug
872 /// information that is dangling in a basic block can be properly
873 /// resolved in a different basic block. This allows the
874 /// SelectionDAG to resolve dangling debug information attached
875 /// to PHI nodes.
876 void SelectionDAGBuilder::clearDanglingDebugInfo() {
877   DanglingDebugInfoMap.clear();
878 }
879 
880 /// getRoot - Return the current virtual root of the Selection DAG,
881 /// flushing any PendingLoad items. This must be done before emitting
882 /// a store or any other node that may need to be ordered after any
883 /// prior load instructions.
884 ///
885 SDValue SelectionDAGBuilder::getRoot() {
886   if (PendingLoads.empty())
887     return DAG.getRoot();
888 
889   if (PendingLoads.size() == 1) {
890     SDValue Root = PendingLoads[0];
891     DAG.setRoot(Root);
892     PendingLoads.clear();
893     return Root;
894   }
895 
896   // Otherwise, we have to make a token factor node.
897   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
898                              PendingLoads);
899   PendingLoads.clear();
900   DAG.setRoot(Root);
901   return Root;
902 }
903 
904 /// getControlRoot - Similar to getRoot, but instead of flushing all the
905 /// PendingLoad items, flush all the PendingExports items. It is necessary
906 /// to do this before emitting a terminator instruction.
907 ///
908 SDValue SelectionDAGBuilder::getControlRoot() {
909   SDValue Root = DAG.getRoot();
910 
911   if (PendingExports.empty())
912     return Root;
913 
914   // Turn all of the CopyToReg chains into one factored node.
915   if (Root.getOpcode() != ISD::EntryToken) {
916     unsigned i = 0, e = PendingExports.size();
917     for (; i != e; ++i) {
918       assert(PendingExports[i].getNode()->getNumOperands() > 1);
919       if (PendingExports[i].getNode()->getOperand(0) == Root)
920         break;  // Don't add the root if we already indirectly depend on it.
921     }
922 
923     if (i == e)
924       PendingExports.push_back(Root);
925   }
926 
927   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
928                      PendingExports);
929   PendingExports.clear();
930   DAG.setRoot(Root);
931   return Root;
932 }
933 
934 /// Copy swift error to the final virtual register at end of a basic block, as
935 /// specified by SwiftErrorWorklist, if necessary.
936 static void copySwiftErrorsToFinalVRegs(SelectionDAGBuilder &SDB) {
937   const TargetLowering &TLI = SDB.DAG.getTargetLoweringInfo();
938   if (!TLI.supportSwiftError())
939     return;
940 
941   if (!SDB.FuncInfo.SwiftErrorWorklist.count(SDB.FuncInfo.MBB))
942     return;
943 
944   // Go through entries in SwiftErrorWorklist, and create copy as necessary.
945   FunctionLoweringInfo::SwiftErrorVRegs &WorklistEntry =
946       SDB.FuncInfo.SwiftErrorWorklist[SDB.FuncInfo.MBB];
947   FunctionLoweringInfo::SwiftErrorVRegs &MapEntry =
948       SDB.FuncInfo.SwiftErrorMap[SDB.FuncInfo.MBB];
949   for (unsigned I = 0, E = WorklistEntry.size(); I < E; I++) {
950     unsigned WorkReg = WorklistEntry[I];
951 
952     // Find the swifterror virtual register for the value in SwiftErrorMap.
953     unsigned MapReg = MapEntry[I];
954     assert(TargetRegisterInfo::isVirtualRegister(MapReg) &&
955            "Entries in SwiftErrorMap should be virtual registers");
956 
957     if (WorkReg == MapReg)
958       continue;
959 
960     // Create copy from SwiftErrorMap to SwiftWorklist.
961     auto &DL = SDB.DAG.getDataLayout();
962     SDValue CopyNode = SDB.DAG.getCopyToReg(
963         SDB.getRoot(), SDB.getCurSDLoc(), WorkReg,
964         SDB.DAG.getRegister(MapReg, EVT(TLI.getPointerTy(DL))));
965     MapEntry[I] = WorkReg;
966     SDB.DAG.setRoot(CopyNode);
967   }
968 }
969 
970 void SelectionDAGBuilder::visit(const Instruction &I) {
971   // Set up outgoing PHI node register values before emitting the terminator.
972   if (isa<TerminatorInst>(&I)) {
973     copySwiftErrorsToFinalVRegs(*this);
974     HandlePHINodesInSuccessorBlocks(I.getParent());
975   }
976 
977   ++SDNodeOrder;
978 
979   CurInst = &I;
980 
981   visit(I.getOpcode(), I);
982 
983   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
984       !isStatepoint(&I)) // statepoints handle their exports internally
985     CopyToExportRegsIfNeeded(&I);
986 
987   CurInst = nullptr;
988 }
989 
990 void SelectionDAGBuilder::visitPHI(const PHINode &) {
991   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
992 }
993 
994 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
995   // Note: this doesn't use InstVisitor, because it has to work with
996   // ConstantExpr's in addition to instructions.
997   switch (Opcode) {
998   default: llvm_unreachable("Unknown instruction type encountered!");
999     // Build the switch statement using the Instruction.def file.
1000 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1001     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1002 #include "llvm/IR/Instruction.def"
1003   }
1004 }
1005 
1006 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1007 // generate the debug data structures now that we've seen its definition.
1008 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1009                                                    SDValue Val) {
1010   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
1011   if (DDI.getDI()) {
1012     const DbgValueInst *DI = DDI.getDI();
1013     DebugLoc dl = DDI.getdl();
1014     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1015     DILocalVariable *Variable = DI->getVariable();
1016     DIExpression *Expr = DI->getExpression();
1017     assert(Variable->isValidLocationForIntrinsic(dl) &&
1018            "Expected inlined-at fields to agree");
1019     uint64_t Offset = DI->getOffset();
1020     SDDbgValue *SDV;
1021     if (Val.getNode()) {
1022       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false,
1023                                     Val)) {
1024         SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(),
1025                               false, Offset, dl, DbgSDNodeOrder);
1026         DAG.AddDbgValue(SDV, Val.getNode(), false);
1027       }
1028     } else
1029       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1030     DanglingDebugInfoMap[V] = DanglingDebugInfo();
1031   }
1032 }
1033 
1034 /// getCopyFromRegs - If there was virtual register allocated for the value V
1035 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1036 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1037   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1038   SDValue Result;
1039 
1040   if (It != FuncInfo.ValueMap.end()) {
1041     unsigned InReg = It->second;
1042     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1043                      DAG.getDataLayout(), InReg, Ty);
1044     SDValue Chain = DAG.getEntryNode();
1045     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1046     resolveDanglingDebugInfo(V, Result);
1047   }
1048 
1049   return Result;
1050 }
1051 
1052 /// getValue - Return an SDValue for the given Value.
1053 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1054   // If we already have an SDValue for this value, use it. It's important
1055   // to do this first, so that we don't create a CopyFromReg if we already
1056   // have a regular SDValue.
1057   SDValue &N = NodeMap[V];
1058   if (N.getNode()) return N;
1059 
1060   // If there's a virtual register allocated and initialized for this
1061   // value, use it.
1062   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1063     return copyFromReg;
1064 
1065   // Otherwise create a new SDValue and remember it.
1066   SDValue Val = getValueImpl(V);
1067   NodeMap[V] = Val;
1068   resolveDanglingDebugInfo(V, Val);
1069   return Val;
1070 }
1071 
1072 // Return true if SDValue exists for the given Value
1073 bool SelectionDAGBuilder::findValue(const Value *V) const {
1074   return (NodeMap.find(V) != NodeMap.end()) ||
1075     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1076 }
1077 
1078 /// getNonRegisterValue - Return an SDValue for the given Value, but
1079 /// don't look in FuncInfo.ValueMap for a virtual register.
1080 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1081   // If we already have an SDValue for this value, use it.
1082   SDValue &N = NodeMap[V];
1083   if (N.getNode()) {
1084     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1085       // Remove the debug location from the node as the node is about to be used
1086       // in a location which may differ from the original debug location.  This
1087       // is relevant to Constant and ConstantFP nodes because they can appear
1088       // as constant expressions inside PHI nodes.
1089       N->setDebugLoc(DebugLoc());
1090     }
1091     return N;
1092   }
1093 
1094   // Otherwise create a new SDValue and remember it.
1095   SDValue Val = getValueImpl(V);
1096   NodeMap[V] = Val;
1097   resolveDanglingDebugInfo(V, Val);
1098   return Val;
1099 }
1100 
1101 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1102 /// Create an SDValue for the given value.
1103 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1104   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1105 
1106   if (const Constant *C = dyn_cast<Constant>(V)) {
1107     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1108 
1109     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1110       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1111 
1112     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1113       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1114 
1115     if (isa<ConstantPointerNull>(C)) {
1116       unsigned AS = V->getType()->getPointerAddressSpace();
1117       return DAG.getConstant(0, getCurSDLoc(),
1118                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1119     }
1120 
1121     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1122       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1123 
1124     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1125       return DAG.getUNDEF(VT);
1126 
1127     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1128       visit(CE->getOpcode(), *CE);
1129       SDValue N1 = NodeMap[V];
1130       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1131       return N1;
1132     }
1133 
1134     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1135       SmallVector<SDValue, 4> Constants;
1136       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1137            OI != OE; ++OI) {
1138         SDNode *Val = getValue(*OI).getNode();
1139         // If the operand is an empty aggregate, there are no values.
1140         if (!Val) continue;
1141         // Add each leaf value from the operand to the Constants list
1142         // to form a flattened list of all the values.
1143         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1144           Constants.push_back(SDValue(Val, i));
1145       }
1146 
1147       return DAG.getMergeValues(Constants, getCurSDLoc());
1148     }
1149 
1150     if (const ConstantDataSequential *CDS =
1151           dyn_cast<ConstantDataSequential>(C)) {
1152       SmallVector<SDValue, 4> Ops;
1153       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1154         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1155         // Add each leaf value from the operand to the Constants list
1156         // to form a flattened list of all the values.
1157         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1158           Ops.push_back(SDValue(Val, i));
1159       }
1160 
1161       if (isa<ArrayType>(CDS->getType()))
1162         return DAG.getMergeValues(Ops, getCurSDLoc());
1163       return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1164                                       VT, Ops);
1165     }
1166 
1167     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1168       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1169              "Unknown struct or array constant!");
1170 
1171       SmallVector<EVT, 4> ValueVTs;
1172       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1173       unsigned NumElts = ValueVTs.size();
1174       if (NumElts == 0)
1175         return SDValue(); // empty struct
1176       SmallVector<SDValue, 4> Constants(NumElts);
1177       for (unsigned i = 0; i != NumElts; ++i) {
1178         EVT EltVT = ValueVTs[i];
1179         if (isa<UndefValue>(C))
1180           Constants[i] = DAG.getUNDEF(EltVT);
1181         else if (EltVT.isFloatingPoint())
1182           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1183         else
1184           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1185       }
1186 
1187       return DAG.getMergeValues(Constants, getCurSDLoc());
1188     }
1189 
1190     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1191       return DAG.getBlockAddress(BA, VT);
1192 
1193     VectorType *VecTy = cast<VectorType>(V->getType());
1194     unsigned NumElements = VecTy->getNumElements();
1195 
1196     // Now that we know the number and type of the elements, get that number of
1197     // elements into the Ops array based on what kind of constant it is.
1198     SmallVector<SDValue, 16> Ops;
1199     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1200       for (unsigned i = 0; i != NumElements; ++i)
1201         Ops.push_back(getValue(CV->getOperand(i)));
1202     } else {
1203       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1204       EVT EltVT =
1205           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1206 
1207       SDValue Op;
1208       if (EltVT.isFloatingPoint())
1209         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1210       else
1211         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1212       Ops.assign(NumElements, Op);
1213     }
1214 
1215     // Create a BUILD_VECTOR node.
1216     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
1217   }
1218 
1219   // If this is a static alloca, generate it as the frameindex instead of
1220   // computation.
1221   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1222     DenseMap<const AllocaInst*, int>::iterator SI =
1223       FuncInfo.StaticAllocaMap.find(AI);
1224     if (SI != FuncInfo.StaticAllocaMap.end())
1225       return DAG.getFrameIndex(SI->second,
1226                                TLI.getPointerTy(DAG.getDataLayout()));
1227   }
1228 
1229   // If this is an instruction which fast-isel has deferred, select it now.
1230   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1231     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1232     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1233                      Inst->getType());
1234     SDValue Chain = DAG.getEntryNode();
1235     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1236   }
1237 
1238   llvm_unreachable("Can't get register for value!");
1239 }
1240 
1241 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1242   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1243   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1244   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1245   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1246   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1247   if (IsMSVCCXX || IsCoreCLR)
1248     CatchPadMBB->setIsEHFuncletEntry();
1249 
1250   DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()));
1251 }
1252 
1253 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1254   // Update machine-CFG edge.
1255   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1256   FuncInfo.MBB->addSuccessor(TargetMBB);
1257 
1258   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1259   bool IsSEH = isAsynchronousEHPersonality(Pers);
1260   if (IsSEH) {
1261     // If this is not a fall-through branch or optimizations are switched off,
1262     // emit the branch.
1263     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1264         TM.getOptLevel() == CodeGenOpt::None)
1265       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1266                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1267     return;
1268   }
1269 
1270   // Figure out the funclet membership for the catchret's successor.
1271   // This will be used by the FuncletLayout pass to determine how to order the
1272   // BB's.
1273   // A 'catchret' returns to the outer scope's color.
1274   Value *ParentPad = I.getCatchSwitchParentPad();
1275   const BasicBlock *SuccessorColor;
1276   if (isa<ConstantTokenNone>(ParentPad))
1277     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1278   else
1279     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1280   assert(SuccessorColor && "No parent funclet for catchret!");
1281   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1282   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1283 
1284   // Create the terminator node.
1285   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1286                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1287                             DAG.getBasicBlock(SuccessorColorMBB));
1288   DAG.setRoot(Ret);
1289 }
1290 
1291 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1292   // Don't emit any special code for the cleanuppad instruction. It just marks
1293   // the start of a funclet.
1294   FuncInfo.MBB->setIsEHFuncletEntry();
1295   FuncInfo.MBB->setIsCleanupFuncletEntry();
1296 }
1297 
1298 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1299 /// many places it could ultimately go. In the IR, we have a single unwind
1300 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1301 /// This function skips over imaginary basic blocks that hold catchswitch
1302 /// instructions, and finds all the "real" machine
1303 /// basic block destinations. As those destinations may not be successors of
1304 /// EHPadBB, here we also calculate the edge probability to those destinations.
1305 /// The passed-in Prob is the edge probability to EHPadBB.
1306 static void findUnwindDestinations(
1307     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1308     BranchProbability Prob,
1309     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1310         &UnwindDests) {
1311   EHPersonality Personality =
1312     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1313   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1314   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1315 
1316   while (EHPadBB) {
1317     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1318     BasicBlock *NewEHPadBB = nullptr;
1319     if (isa<LandingPadInst>(Pad)) {
1320       // Stop on landingpads. They are not funclets.
1321       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1322       break;
1323     } else if (isa<CleanupPadInst>(Pad)) {
1324       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1325       // personalities.
1326       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1327       UnwindDests.back().first->setIsEHFuncletEntry();
1328       break;
1329     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1330       // Add the catchpad handlers to the possible destinations.
1331       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1332         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1333         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1334         if (IsMSVCCXX || IsCoreCLR)
1335           UnwindDests.back().first->setIsEHFuncletEntry();
1336       }
1337       NewEHPadBB = CatchSwitch->getUnwindDest();
1338     } else {
1339       continue;
1340     }
1341 
1342     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1343     if (BPI && NewEHPadBB)
1344       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1345     EHPadBB = NewEHPadBB;
1346   }
1347 }
1348 
1349 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1350   // Update successor info.
1351   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1352   auto UnwindDest = I.getUnwindDest();
1353   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1354   BranchProbability UnwindDestProb =
1355       (BPI && UnwindDest)
1356           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1357           : BranchProbability::getZero();
1358   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1359   for (auto &UnwindDest : UnwindDests) {
1360     UnwindDest.first->setIsEHPad();
1361     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1362   }
1363   FuncInfo.MBB->normalizeSuccProbs();
1364 
1365   // Create the terminator node.
1366   SDValue Ret =
1367       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1368   DAG.setRoot(Ret);
1369 }
1370 
1371 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1372   report_fatal_error("visitCatchSwitch not yet implemented!");
1373 }
1374 
1375 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1376   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1377   auto &DL = DAG.getDataLayout();
1378   SDValue Chain = getControlRoot();
1379   SmallVector<ISD::OutputArg, 8> Outs;
1380   SmallVector<SDValue, 8> OutVals;
1381 
1382   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1383   // lower
1384   //
1385   //   %val = call <ty> @llvm.experimental.deoptimize()
1386   //   ret <ty> %val
1387   //
1388   // differently.
1389   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1390     LowerDeoptimizingReturn();
1391     return;
1392   }
1393 
1394   if (!FuncInfo.CanLowerReturn) {
1395     unsigned DemoteReg = FuncInfo.DemoteRegister;
1396     const Function *F = I.getParent()->getParent();
1397 
1398     // Emit a store of the return value through the virtual register.
1399     // Leave Outs empty so that LowerReturn won't try to load return
1400     // registers the usual way.
1401     SmallVector<EVT, 1> PtrValueVTs;
1402     ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()),
1403                     PtrValueVTs);
1404 
1405     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1406                                         DemoteReg, PtrValueVTs[0]);
1407     SDValue RetOp = getValue(I.getOperand(0));
1408 
1409     SmallVector<EVT, 4> ValueVTs;
1410     SmallVector<uint64_t, 4> Offsets;
1411     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1412     unsigned NumValues = ValueVTs.size();
1413 
1414     // An aggregate return value cannot wrap around the address space, so
1415     // offsets to its parts don't wrap either.
1416     SDNodeFlags Flags;
1417     Flags.setNoUnsignedWrap(true);
1418 
1419     SmallVector<SDValue, 4> Chains(NumValues);
1420     for (unsigned i = 0; i != NumValues; ++i) {
1421       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1422                                 RetPtr.getValueType(), RetPtr,
1423                                 DAG.getIntPtrConstant(Offsets[i],
1424                                                       getCurSDLoc()),
1425                                 &Flags);
1426       Chains[i] =
1427         DAG.getStore(Chain, getCurSDLoc(),
1428                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1429                      // FIXME: better loc info would be nice.
1430                      Add, MachinePointerInfo(), false, false, 0);
1431     }
1432 
1433     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1434                         MVT::Other, Chains);
1435   } else if (I.getNumOperands() != 0) {
1436     SmallVector<EVT, 4> ValueVTs;
1437     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1438     unsigned NumValues = ValueVTs.size();
1439     if (NumValues) {
1440       SDValue RetOp = getValue(I.getOperand(0));
1441 
1442       const Function *F = I.getParent()->getParent();
1443 
1444       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1445       if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1446                                           Attribute::SExt))
1447         ExtendKind = ISD::SIGN_EXTEND;
1448       else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1449                                                Attribute::ZExt))
1450         ExtendKind = ISD::ZERO_EXTEND;
1451 
1452       LLVMContext &Context = F->getContext();
1453       bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1454                                                       Attribute::InReg);
1455 
1456       for (unsigned j = 0; j != NumValues; ++j) {
1457         EVT VT = ValueVTs[j];
1458 
1459         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1460           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1461 
1462         unsigned NumParts = TLI.getNumRegisters(Context, VT);
1463         MVT PartVT = TLI.getRegisterType(Context, VT);
1464         SmallVector<SDValue, 4> Parts(NumParts);
1465         getCopyToParts(DAG, getCurSDLoc(),
1466                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1467                        &Parts[0], NumParts, PartVT, &I, ExtendKind);
1468 
1469         // 'inreg' on function refers to return value
1470         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1471         if (RetInReg)
1472           Flags.setInReg();
1473 
1474         // Propagate extension type if any
1475         if (ExtendKind == ISD::SIGN_EXTEND)
1476           Flags.setSExt();
1477         else if (ExtendKind == ISD::ZERO_EXTEND)
1478           Flags.setZExt();
1479 
1480         for (unsigned i = 0; i < NumParts; ++i) {
1481           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1482                                         VT, /*isfixed=*/true, 0, 0));
1483           OutVals.push_back(Parts[i]);
1484         }
1485       }
1486     }
1487   }
1488 
1489   // Push in swifterror virtual register as the last element of Outs. This makes
1490   // sure swifterror virtual register will be returned in the swifterror
1491   // physical register.
1492   const Function *F = I.getParent()->getParent();
1493   if (TLI.supportSwiftError() &&
1494       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1495     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1496     Flags.setSwiftError();
1497     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1498                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1499                                   true /*isfixed*/, 1 /*origidx*/,
1500                                   0 /*partOffs*/));
1501     // Create SDNode for the swifterror virtual register.
1502     OutVals.push_back(DAG.getRegister(FuncInfo.SwiftErrorMap[FuncInfo.MBB][0],
1503                                       EVT(TLI.getPointerTy(DL))));
1504   }
1505 
1506   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1507   CallingConv::ID CallConv =
1508     DAG.getMachineFunction().getFunction()->getCallingConv();
1509   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1510       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1511 
1512   // Verify that the target's LowerReturn behaved as expected.
1513   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1514          "LowerReturn didn't return a valid chain!");
1515 
1516   // Update the DAG with the new chain value resulting from return lowering.
1517   DAG.setRoot(Chain);
1518 }
1519 
1520 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1521 /// created for it, emit nodes to copy the value into the virtual
1522 /// registers.
1523 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1524   // Skip empty types
1525   if (V->getType()->isEmptyTy())
1526     return;
1527 
1528   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1529   if (VMI != FuncInfo.ValueMap.end()) {
1530     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1531     CopyValueToVirtualRegister(V, VMI->second);
1532   }
1533 }
1534 
1535 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1536 /// the current basic block, add it to ValueMap now so that we'll get a
1537 /// CopyTo/FromReg.
1538 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1539   // No need to export constants.
1540   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1541 
1542   // Already exported?
1543   if (FuncInfo.isExportedInst(V)) return;
1544 
1545   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1546   CopyValueToVirtualRegister(V, Reg);
1547 }
1548 
1549 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1550                                                      const BasicBlock *FromBB) {
1551   // The operands of the setcc have to be in this block.  We don't know
1552   // how to export them from some other block.
1553   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1554     // Can export from current BB.
1555     if (VI->getParent() == FromBB)
1556       return true;
1557 
1558     // Is already exported, noop.
1559     return FuncInfo.isExportedInst(V);
1560   }
1561 
1562   // If this is an argument, we can export it if the BB is the entry block or
1563   // if it is already exported.
1564   if (isa<Argument>(V)) {
1565     if (FromBB == &FromBB->getParent()->getEntryBlock())
1566       return true;
1567 
1568     // Otherwise, can only export this if it is already exported.
1569     return FuncInfo.isExportedInst(V);
1570   }
1571 
1572   // Otherwise, constants can always be exported.
1573   return true;
1574 }
1575 
1576 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1577 BranchProbability
1578 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1579                                         const MachineBasicBlock *Dst) const {
1580   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1581   const BasicBlock *SrcBB = Src->getBasicBlock();
1582   const BasicBlock *DstBB = Dst->getBasicBlock();
1583   if (!BPI) {
1584     // If BPI is not available, set the default probability as 1 / N, where N is
1585     // the number of successors.
1586     auto SuccSize = std::max<uint32_t>(
1587         std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1);
1588     return BranchProbability(1, SuccSize);
1589   }
1590   return BPI->getEdgeProbability(SrcBB, DstBB);
1591 }
1592 
1593 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1594                                                MachineBasicBlock *Dst,
1595                                                BranchProbability Prob) {
1596   if (!FuncInfo.BPI)
1597     Src->addSuccessorWithoutProb(Dst);
1598   else {
1599     if (Prob.isUnknown())
1600       Prob = getEdgeProbability(Src, Dst);
1601     Src->addSuccessor(Dst, Prob);
1602   }
1603 }
1604 
1605 static bool InBlock(const Value *V, const BasicBlock *BB) {
1606   if (const Instruction *I = dyn_cast<Instruction>(V))
1607     return I->getParent() == BB;
1608   return true;
1609 }
1610 
1611 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1612 /// This function emits a branch and is used at the leaves of an OR or an
1613 /// AND operator tree.
1614 ///
1615 void
1616 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1617                                                   MachineBasicBlock *TBB,
1618                                                   MachineBasicBlock *FBB,
1619                                                   MachineBasicBlock *CurBB,
1620                                                   MachineBasicBlock *SwitchBB,
1621                                                   BranchProbability TProb,
1622                                                   BranchProbability FProb) {
1623   const BasicBlock *BB = CurBB->getBasicBlock();
1624 
1625   // If the leaf of the tree is a comparison, merge the condition into
1626   // the caseblock.
1627   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1628     // The operands of the cmp have to be in this block.  We don't know
1629     // how to export them from some other block.  If this is the first block
1630     // of the sequence, no exporting is needed.
1631     if (CurBB == SwitchBB ||
1632         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1633          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1634       ISD::CondCode Condition;
1635       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1636         Condition = getICmpCondCode(IC->getPredicate());
1637       } else {
1638         const FCmpInst *FC = cast<FCmpInst>(Cond);
1639         Condition = getFCmpCondCode(FC->getPredicate());
1640         if (TM.Options.NoNaNsFPMath)
1641           Condition = getFCmpCodeWithoutNaN(Condition);
1642       }
1643 
1644       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1645                    TBB, FBB, CurBB, TProb, FProb);
1646       SwitchCases.push_back(CB);
1647       return;
1648     }
1649   }
1650 
1651   // Create a CaseBlock record representing this branch.
1652   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1653                nullptr, TBB, FBB, CurBB, TProb, FProb);
1654   SwitchCases.push_back(CB);
1655 }
1656 
1657 /// FindMergedConditions - If Cond is an expression like
1658 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1659                                                MachineBasicBlock *TBB,
1660                                                MachineBasicBlock *FBB,
1661                                                MachineBasicBlock *CurBB,
1662                                                MachineBasicBlock *SwitchBB,
1663                                                Instruction::BinaryOps Opc,
1664                                                BranchProbability TProb,
1665                                                BranchProbability FProb) {
1666   // If this node is not part of the or/and tree, emit it as a branch.
1667   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1668   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1669       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1670       BOp->getParent() != CurBB->getBasicBlock() ||
1671       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1672       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1673     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1674                                  TProb, FProb);
1675     return;
1676   }
1677 
1678   //  Create TmpBB after CurBB.
1679   MachineFunction::iterator BBI(CurBB);
1680   MachineFunction &MF = DAG.getMachineFunction();
1681   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1682   CurBB->getParent()->insert(++BBI, TmpBB);
1683 
1684   if (Opc == Instruction::Or) {
1685     // Codegen X | Y as:
1686     // BB1:
1687     //   jmp_if_X TBB
1688     //   jmp TmpBB
1689     // TmpBB:
1690     //   jmp_if_Y TBB
1691     //   jmp FBB
1692     //
1693 
1694     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1695     // The requirement is that
1696     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1697     //     = TrueProb for original BB.
1698     // Assuming the original probabilities are A and B, one choice is to set
1699     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1700     // A/(1+B) and 2B/(1+B). This choice assumes that
1701     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1702     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1703     // TmpBB, but the math is more complicated.
1704 
1705     auto NewTrueProb = TProb / 2;
1706     auto NewFalseProb = TProb / 2 + FProb;
1707     // Emit the LHS condition.
1708     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1709                          NewTrueProb, NewFalseProb);
1710 
1711     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1712     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1713     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1714     // Emit the RHS condition into TmpBB.
1715     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1716                          Probs[0], Probs[1]);
1717   } else {
1718     assert(Opc == Instruction::And && "Unknown merge op!");
1719     // Codegen X & Y as:
1720     // BB1:
1721     //   jmp_if_X TmpBB
1722     //   jmp FBB
1723     // TmpBB:
1724     //   jmp_if_Y TBB
1725     //   jmp FBB
1726     //
1727     //  This requires creation of TmpBB after CurBB.
1728 
1729     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1730     // The requirement is that
1731     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1732     //     = FalseProb for original BB.
1733     // Assuming the original probabilities are A and B, one choice is to set
1734     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1735     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1736     // TrueProb for BB1 * FalseProb for TmpBB.
1737 
1738     auto NewTrueProb = TProb + FProb / 2;
1739     auto NewFalseProb = FProb / 2;
1740     // Emit the LHS condition.
1741     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1742                          NewTrueProb, NewFalseProb);
1743 
1744     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1745     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1746     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1747     // Emit the RHS condition into TmpBB.
1748     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1749                          Probs[0], Probs[1]);
1750   }
1751 }
1752 
1753 /// If the set of cases should be emitted as a series of branches, return true.
1754 /// If we should emit this as a bunch of and/or'd together conditions, return
1755 /// false.
1756 bool
1757 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1758   if (Cases.size() != 2) return true;
1759 
1760   // If this is two comparisons of the same values or'd or and'd together, they
1761   // will get folded into a single comparison, so don't emit two blocks.
1762   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1763        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1764       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1765        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1766     return false;
1767   }
1768 
1769   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1770   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1771   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1772       Cases[0].CC == Cases[1].CC &&
1773       isa<Constant>(Cases[0].CmpRHS) &&
1774       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1775     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1776       return false;
1777     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1778       return false;
1779   }
1780 
1781   return true;
1782 }
1783 
1784 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1785   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1786 
1787   // Update machine-CFG edges.
1788   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1789 
1790   if (I.isUnconditional()) {
1791     // Update machine-CFG edges.
1792     BrMBB->addSuccessor(Succ0MBB);
1793 
1794     // If this is not a fall-through branch or optimizations are switched off,
1795     // emit the branch.
1796     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1797       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1798                               MVT::Other, getControlRoot(),
1799                               DAG.getBasicBlock(Succ0MBB)));
1800 
1801     return;
1802   }
1803 
1804   // If this condition is one of the special cases we handle, do special stuff
1805   // now.
1806   const Value *CondVal = I.getCondition();
1807   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1808 
1809   // If this is a series of conditions that are or'd or and'd together, emit
1810   // this as a sequence of branches instead of setcc's with and/or operations.
1811   // As long as jumps are not expensive, this should improve performance.
1812   // For example, instead of something like:
1813   //     cmp A, B
1814   //     C = seteq
1815   //     cmp D, E
1816   //     F = setle
1817   //     or C, F
1818   //     jnz foo
1819   // Emit:
1820   //     cmp A, B
1821   //     je foo
1822   //     cmp D, E
1823   //     jle foo
1824   //
1825   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1826     Instruction::BinaryOps Opcode = BOp->getOpcode();
1827     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
1828         !I.getMetadata(LLVMContext::MD_unpredictable) &&
1829         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
1830       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1831                            Opcode,
1832                            getEdgeProbability(BrMBB, Succ0MBB),
1833                            getEdgeProbability(BrMBB, Succ1MBB));
1834       // If the compares in later blocks need to use values not currently
1835       // exported from this block, export them now.  This block should always
1836       // be the first entry.
1837       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1838 
1839       // Allow some cases to be rejected.
1840       if (ShouldEmitAsBranches(SwitchCases)) {
1841         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1842           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1843           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1844         }
1845 
1846         // Emit the branch for this block.
1847         visitSwitchCase(SwitchCases[0], BrMBB);
1848         SwitchCases.erase(SwitchCases.begin());
1849         return;
1850       }
1851 
1852       // Okay, we decided not to do this, remove any inserted MBB's and clear
1853       // SwitchCases.
1854       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1855         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1856 
1857       SwitchCases.clear();
1858     }
1859   }
1860 
1861   // Create a CaseBlock record representing this branch.
1862   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1863                nullptr, Succ0MBB, Succ1MBB, BrMBB);
1864 
1865   // Use visitSwitchCase to actually insert the fast branch sequence for this
1866   // cond branch.
1867   visitSwitchCase(CB, BrMBB);
1868 }
1869 
1870 /// visitSwitchCase - Emits the necessary code to represent a single node in
1871 /// the binary search tree resulting from lowering a switch instruction.
1872 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1873                                           MachineBasicBlock *SwitchBB) {
1874   SDValue Cond;
1875   SDValue CondLHS = getValue(CB.CmpLHS);
1876   SDLoc dl = getCurSDLoc();
1877 
1878   // Build the setcc now.
1879   if (!CB.CmpMHS) {
1880     // Fold "(X == true)" to X and "(X == false)" to !X to
1881     // handle common cases produced by branch lowering.
1882     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1883         CB.CC == ISD::SETEQ)
1884       Cond = CondLHS;
1885     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1886              CB.CC == ISD::SETEQ) {
1887       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
1888       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1889     } else
1890       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1891   } else {
1892     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1893 
1894     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1895     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1896 
1897     SDValue CmpOp = getValue(CB.CmpMHS);
1898     EVT VT = CmpOp.getValueType();
1899 
1900     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1901       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
1902                           ISD::SETLE);
1903     } else {
1904       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1905                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
1906       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1907                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
1908     }
1909   }
1910 
1911   // Update successor info
1912   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
1913   // TrueBB and FalseBB are always different unless the incoming IR is
1914   // degenerate. This only happens when running llc on weird IR.
1915   if (CB.TrueBB != CB.FalseBB)
1916     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
1917   SwitchBB->normalizeSuccProbs();
1918 
1919   // If the lhs block is the next block, invert the condition so that we can
1920   // fall through to the lhs instead of the rhs block.
1921   if (CB.TrueBB == NextBlock(SwitchBB)) {
1922     std::swap(CB.TrueBB, CB.FalseBB);
1923     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
1924     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1925   }
1926 
1927   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1928                                MVT::Other, getControlRoot(), Cond,
1929                                DAG.getBasicBlock(CB.TrueBB));
1930 
1931   // Insert the false branch. Do this even if it's a fall through branch,
1932   // this makes it easier to do DAG optimizations which require inverting
1933   // the branch condition.
1934   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1935                        DAG.getBasicBlock(CB.FalseBB));
1936 
1937   DAG.setRoot(BrCond);
1938 }
1939 
1940 /// visitJumpTable - Emit JumpTable node in the current MBB
1941 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1942   // Emit the code for the jump table
1943   assert(JT.Reg != -1U && "Should lower JT Header first!");
1944   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1945   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1946                                      JT.Reg, PTy);
1947   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1948   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1949                                     MVT::Other, Index.getValue(1),
1950                                     Table, Index);
1951   DAG.setRoot(BrJumpTable);
1952 }
1953 
1954 /// visitJumpTableHeader - This function emits necessary code to produce index
1955 /// in the JumpTable from switch case.
1956 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1957                                                JumpTableHeader &JTH,
1958                                                MachineBasicBlock *SwitchBB) {
1959   SDLoc dl = getCurSDLoc();
1960 
1961   // Subtract the lowest switch case value from the value being switched on and
1962   // conditional branch to default mbb if the result is greater than the
1963   // difference between smallest and largest cases.
1964   SDValue SwitchOp = getValue(JTH.SValue);
1965   EVT VT = SwitchOp.getValueType();
1966   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
1967                             DAG.getConstant(JTH.First, dl, VT));
1968 
1969   // The SDNode we just created, which holds the value being switched on minus
1970   // the smallest case value, needs to be copied to a virtual register so it
1971   // can be used as an index into the jump table in a subsequent basic block.
1972   // This value may be smaller or larger than the target's pointer type, and
1973   // therefore require extension or truncating.
1974   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1975   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
1976 
1977   unsigned JumpTableReg =
1978       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
1979   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
1980                                     JumpTableReg, SwitchOp);
1981   JT.Reg = JumpTableReg;
1982 
1983   // Emit the range check for the jump table, and branch to the default block
1984   // for the switch statement if the value being switched on exceeds the largest
1985   // case in the switch.
1986   SDValue CMP = DAG.getSetCC(
1987       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
1988                                  Sub.getValueType()),
1989       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
1990 
1991   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1992                                MVT::Other, CopyTo, CMP,
1993                                DAG.getBasicBlock(JT.Default));
1994 
1995   // Avoid emitting unnecessary branches to the next block.
1996   if (JT.MBB != NextBlock(SwitchBB))
1997     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1998                          DAG.getBasicBlock(JT.MBB));
1999 
2000   DAG.setRoot(BrCond);
2001 }
2002 
2003 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2004 /// variable if there exists one.
2005 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2006                                  SDValue &Chain) {
2007   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2008   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2009   MachineFunction &MF = DAG.getMachineFunction();
2010   Value *Global = TLI.getSDagStackGuard(*MF.getFunction()->getParent());
2011   MachineSDNode *Node =
2012       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2013   if (Global) {
2014     MachinePointerInfo MPInfo(Global);
2015     MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
2016     unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant;
2017     *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8,
2018                                        DAG.getEVTAlignment(PtrTy));
2019     Node->setMemRefs(MemRefs, MemRefs + 1);
2020   }
2021   return SDValue(Node, 0);
2022 }
2023 
2024 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2025 /// tail spliced into a stack protector check success bb.
2026 ///
2027 /// For a high level explanation of how this fits into the stack protector
2028 /// generation see the comment on the declaration of class
2029 /// StackProtectorDescriptor.
2030 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2031                                                   MachineBasicBlock *ParentBB) {
2032 
2033   // First create the loads to the guard/stack slot for the comparison.
2034   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2035   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2036 
2037   MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
2038   int FI = MFI->getStackProtectorIndex();
2039 
2040   SDValue Guard;
2041   SDLoc dl = getCurSDLoc();
2042   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2043   const Module &M = *ParentBB->getParent()->getFunction()->getParent();
2044   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2045 
2046   // Generate code to load the content of the guard slot.
2047   SDValue StackSlot = DAG.getLoad(
2048       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2049       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true,
2050       false, false, Align);
2051 
2052   // Retrieve guard check function, nullptr if instrumentation is inlined.
2053   if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) {
2054     // The target provides a guard check function to validate the guard value.
2055     // Generate a call to that function with the content of the guard slot as
2056     // argument.
2057     auto *Fn = cast<Function>(GuardCheck);
2058     FunctionType *FnTy = Fn->getFunctionType();
2059     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2060 
2061     TargetLowering::ArgListTy Args;
2062     TargetLowering::ArgListEntry Entry;
2063     Entry.Node = StackSlot;
2064     Entry.Ty = FnTy->getParamType(0);
2065     if (Fn->hasAttribute(1, Attribute::AttrKind::InReg))
2066       Entry.isInReg = true;
2067     Args.push_back(Entry);
2068 
2069     TargetLowering::CallLoweringInfo CLI(DAG);
2070     CLI.setDebugLoc(getCurSDLoc())
2071       .setChain(DAG.getEntryNode())
2072       .setCallee(Fn->getCallingConv(), FnTy->getReturnType(),
2073                  getValue(GuardCheck), std::move(Args));
2074 
2075     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2076     DAG.setRoot(Result.second);
2077     return;
2078   }
2079 
2080   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2081   // Otherwise, emit a volatile load to retrieve the stack guard value.
2082   SDValue Chain = DAG.getEntryNode();
2083   if (TLI.useLoadStackGuardNode()) {
2084     Guard = getLoadStackGuard(DAG, dl, Chain);
2085   } else {
2086     const Value *IRGuard = TLI.getSDagStackGuard(M);
2087     SDValue GuardPtr = getValue(IRGuard);
2088 
2089     Guard =
2090         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2091                     true, false, false, Align);
2092   }
2093 
2094   // Perform the comparison via a subtract/getsetcc.
2095   EVT VT = Guard.getValueType();
2096   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot);
2097 
2098   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2099                                                         *DAG.getContext(),
2100                                                         Sub.getValueType()),
2101                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2102 
2103   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2104   // branch to failure MBB.
2105   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2106                                MVT::Other, StackSlot.getOperand(0),
2107                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2108   // Otherwise branch to success MBB.
2109   SDValue Br = DAG.getNode(ISD::BR, dl,
2110                            MVT::Other, BrCond,
2111                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2112 
2113   DAG.setRoot(Br);
2114 }
2115 
2116 /// Codegen the failure basic block for a stack protector check.
2117 ///
2118 /// A failure stack protector machine basic block consists simply of a call to
2119 /// __stack_chk_fail().
2120 ///
2121 /// For a high level explanation of how this fits into the stack protector
2122 /// generation see the comment on the declaration of class
2123 /// StackProtectorDescriptor.
2124 void
2125 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2126   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2127   SDValue Chain =
2128       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2129                       None, false, getCurSDLoc(), false, false).second;
2130   DAG.setRoot(Chain);
2131 }
2132 
2133 /// visitBitTestHeader - This function emits necessary code to produce value
2134 /// suitable for "bit tests"
2135 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2136                                              MachineBasicBlock *SwitchBB) {
2137   SDLoc dl = getCurSDLoc();
2138 
2139   // Subtract the minimum value
2140   SDValue SwitchOp = getValue(B.SValue);
2141   EVT VT = SwitchOp.getValueType();
2142   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2143                             DAG.getConstant(B.First, dl, VT));
2144 
2145   // Check range
2146   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2147   SDValue RangeCmp = DAG.getSetCC(
2148       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2149                                  Sub.getValueType()),
2150       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2151 
2152   // Determine the type of the test operands.
2153   bool UsePtrType = false;
2154   if (!TLI.isTypeLegal(VT))
2155     UsePtrType = true;
2156   else {
2157     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2158       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2159         // Switch table case range are encoded into series of masks.
2160         // Just use pointer type, it's guaranteed to fit.
2161         UsePtrType = true;
2162         break;
2163       }
2164   }
2165   if (UsePtrType) {
2166     VT = TLI.getPointerTy(DAG.getDataLayout());
2167     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2168   }
2169 
2170   B.RegVT = VT.getSimpleVT();
2171   B.Reg = FuncInfo.CreateReg(B.RegVT);
2172   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2173 
2174   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2175 
2176   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2177   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2178   SwitchBB->normalizeSuccProbs();
2179 
2180   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2181                                 MVT::Other, CopyTo, RangeCmp,
2182                                 DAG.getBasicBlock(B.Default));
2183 
2184   // Avoid emitting unnecessary branches to the next block.
2185   if (MBB != NextBlock(SwitchBB))
2186     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2187                           DAG.getBasicBlock(MBB));
2188 
2189   DAG.setRoot(BrRange);
2190 }
2191 
2192 /// visitBitTestCase - this function produces one "bit test"
2193 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2194                                            MachineBasicBlock* NextMBB,
2195                                            BranchProbability BranchProbToNext,
2196                                            unsigned Reg,
2197                                            BitTestCase &B,
2198                                            MachineBasicBlock *SwitchBB) {
2199   SDLoc dl = getCurSDLoc();
2200   MVT VT = BB.RegVT;
2201   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2202   SDValue Cmp;
2203   unsigned PopCount = countPopulation(B.Mask);
2204   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2205   if (PopCount == 1) {
2206     // Testing for a single bit; just compare the shift count with what it
2207     // would need to be to shift a 1 bit in that position.
2208     Cmp = DAG.getSetCC(
2209         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2210         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2211         ISD::SETEQ);
2212   } else if (PopCount == BB.Range) {
2213     // There is only one zero bit in the range, test for it directly.
2214     Cmp = DAG.getSetCC(
2215         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2216         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2217         ISD::SETNE);
2218   } else {
2219     // Make desired shift
2220     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2221                                     DAG.getConstant(1, dl, VT), ShiftOp);
2222 
2223     // Emit bit tests and jumps
2224     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2225                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2226     Cmp = DAG.getSetCC(
2227         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2228         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2229   }
2230 
2231   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2232   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2233   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2234   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2235   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2236   // one as they are relative probabilities (and thus work more like weights),
2237   // and hence we need to normalize them to let the sum of them become one.
2238   SwitchBB->normalizeSuccProbs();
2239 
2240   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2241                               MVT::Other, getControlRoot(),
2242                               Cmp, DAG.getBasicBlock(B.TargetBB));
2243 
2244   // Avoid emitting unnecessary branches to the next block.
2245   if (NextMBB != NextBlock(SwitchBB))
2246     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2247                         DAG.getBasicBlock(NextMBB));
2248 
2249   DAG.setRoot(BrAnd);
2250 }
2251 
2252 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2253   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2254 
2255   // Retrieve successors. Look through artificial IR level blocks like
2256   // catchswitch for successors.
2257   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2258   const BasicBlock *EHPadBB = I.getSuccessor(1);
2259 
2260   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2261   // have to do anything here to lower funclet bundles.
2262   assert(!I.hasOperandBundlesOtherThan(
2263              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2264          "Cannot lower invokes with arbitrary operand bundles yet!");
2265 
2266   const Value *Callee(I.getCalledValue());
2267   const Function *Fn = dyn_cast<Function>(Callee);
2268   if (isa<InlineAsm>(Callee))
2269     visitInlineAsm(&I);
2270   else if (Fn && Fn->isIntrinsic()) {
2271     switch (Fn->getIntrinsicID()) {
2272     default:
2273       llvm_unreachable("Cannot invoke this intrinsic");
2274     case Intrinsic::donothing:
2275       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2276       break;
2277     case Intrinsic::experimental_patchpoint_void:
2278     case Intrinsic::experimental_patchpoint_i64:
2279       visitPatchpoint(&I, EHPadBB);
2280       break;
2281     case Intrinsic::experimental_gc_statepoint:
2282       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2283       break;
2284     }
2285   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2286     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2287     // Eventually we will support lowering the @llvm.experimental.deoptimize
2288     // intrinsic, and right now there are no plans to support other intrinsics
2289     // with deopt state.
2290     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2291   } else {
2292     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2293   }
2294 
2295   // If the value of the invoke is used outside of its defining block, make it
2296   // available as a virtual register.
2297   // We already took care of the exported value for the statepoint instruction
2298   // during call to the LowerStatepoint.
2299   if (!isStatepoint(I)) {
2300     CopyToExportRegsIfNeeded(&I);
2301   }
2302 
2303   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2304   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2305   BranchProbability EHPadBBProb =
2306       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2307           : BranchProbability::getZero();
2308   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2309 
2310   // Update successor info.
2311   addSuccessorWithProb(InvokeMBB, Return);
2312   for (auto &UnwindDest : UnwindDests) {
2313     UnwindDest.first->setIsEHPad();
2314     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2315   }
2316   InvokeMBB->normalizeSuccProbs();
2317 
2318   // Drop into normal successor.
2319   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2320                           MVT::Other, getControlRoot(),
2321                           DAG.getBasicBlock(Return)));
2322 }
2323 
2324 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2325   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2326 }
2327 
2328 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2329   assert(FuncInfo.MBB->isEHPad() &&
2330          "Call to landingpad not in landing pad!");
2331 
2332   MachineBasicBlock *MBB = FuncInfo.MBB;
2333   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
2334   AddLandingPadInfo(LP, MMI, MBB);
2335 
2336   // If there aren't registers to copy the values into (e.g., during SjLj
2337   // exceptions), then don't bother to create these DAG nodes.
2338   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2339   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2340   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2341       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2342     return;
2343 
2344   // If landingpad's return type is token type, we don't create DAG nodes
2345   // for its exception pointer and selector value. The extraction of exception
2346   // pointer or selector value from token type landingpads is not currently
2347   // supported.
2348   if (LP.getType()->isTokenTy())
2349     return;
2350 
2351   SmallVector<EVT, 2> ValueVTs;
2352   SDLoc dl = getCurSDLoc();
2353   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2354   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2355 
2356   // Get the two live-in registers as SDValues. The physregs have already been
2357   // copied into virtual registers.
2358   SDValue Ops[2];
2359   if (FuncInfo.ExceptionPointerVirtReg) {
2360     Ops[0] = DAG.getZExtOrTrunc(
2361         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2362                            FuncInfo.ExceptionPointerVirtReg,
2363                            TLI.getPointerTy(DAG.getDataLayout())),
2364         dl, ValueVTs[0]);
2365   } else {
2366     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2367   }
2368   Ops[1] = DAG.getZExtOrTrunc(
2369       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2370                          FuncInfo.ExceptionSelectorVirtReg,
2371                          TLI.getPointerTy(DAG.getDataLayout())),
2372       dl, ValueVTs[1]);
2373 
2374   // Merge into one.
2375   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2376                             DAG.getVTList(ValueVTs), Ops);
2377   setValue(&LP, Res);
2378 }
2379 
2380 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2381 #ifndef NDEBUG
2382   for (const CaseCluster &CC : Clusters)
2383     assert(CC.Low == CC.High && "Input clusters must be single-case");
2384 #endif
2385 
2386   std::sort(Clusters.begin(), Clusters.end(),
2387             [](const CaseCluster &a, const CaseCluster &b) {
2388     return a.Low->getValue().slt(b.Low->getValue());
2389   });
2390 
2391   // Merge adjacent clusters with the same destination.
2392   const unsigned N = Clusters.size();
2393   unsigned DstIndex = 0;
2394   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2395     CaseCluster &CC = Clusters[SrcIndex];
2396     const ConstantInt *CaseVal = CC.Low;
2397     MachineBasicBlock *Succ = CC.MBB;
2398 
2399     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2400         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2401       // If this case has the same successor and is a neighbour, merge it into
2402       // the previous cluster.
2403       Clusters[DstIndex - 1].High = CaseVal;
2404       Clusters[DstIndex - 1].Prob += CC.Prob;
2405     } else {
2406       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2407                    sizeof(Clusters[SrcIndex]));
2408     }
2409   }
2410   Clusters.resize(DstIndex);
2411 }
2412 
2413 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2414                                            MachineBasicBlock *Last) {
2415   // Update JTCases.
2416   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2417     if (JTCases[i].first.HeaderBB == First)
2418       JTCases[i].first.HeaderBB = Last;
2419 
2420   // Update BitTestCases.
2421   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2422     if (BitTestCases[i].Parent == First)
2423       BitTestCases[i].Parent = Last;
2424 }
2425 
2426 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2427   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2428 
2429   // Update machine-CFG edges with unique successors.
2430   SmallSet<BasicBlock*, 32> Done;
2431   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2432     BasicBlock *BB = I.getSuccessor(i);
2433     bool Inserted = Done.insert(BB).second;
2434     if (!Inserted)
2435         continue;
2436 
2437     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2438     addSuccessorWithProb(IndirectBrMBB, Succ);
2439   }
2440   IndirectBrMBB->normalizeSuccProbs();
2441 
2442   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2443                           MVT::Other, getControlRoot(),
2444                           getValue(I.getAddress())));
2445 }
2446 
2447 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2448   if (DAG.getTarget().Options.TrapUnreachable)
2449     DAG.setRoot(
2450         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2451 }
2452 
2453 void SelectionDAGBuilder::visitFSub(const User &I) {
2454   // -0.0 - X --> fneg
2455   Type *Ty = I.getType();
2456   if (isa<Constant>(I.getOperand(0)) &&
2457       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2458     SDValue Op2 = getValue(I.getOperand(1));
2459     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2460                              Op2.getValueType(), Op2));
2461     return;
2462   }
2463 
2464   visitBinary(I, ISD::FSUB);
2465 }
2466 
2467 /// Checks if the given instruction performs a vector reduction, in which case
2468 /// we have the freedom to alter the elements in the result as long as the
2469 /// reduction of them stays unchanged.
2470 static bool isVectorReductionOp(const User *I) {
2471   const Instruction *Inst = dyn_cast<Instruction>(I);
2472   if (!Inst || !Inst->getType()->isVectorTy())
2473     return false;
2474 
2475   auto OpCode = Inst->getOpcode();
2476   switch (OpCode) {
2477   case Instruction::Add:
2478   case Instruction::Mul:
2479   case Instruction::And:
2480   case Instruction::Or:
2481   case Instruction::Xor:
2482     break;
2483   case Instruction::FAdd:
2484   case Instruction::FMul:
2485     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2486       if (FPOp->getFastMathFlags().unsafeAlgebra())
2487         break;
2488     // Fall through.
2489   default:
2490     return false;
2491   }
2492 
2493   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2494   unsigned ElemNumToReduce = ElemNum;
2495 
2496   // Do DFS search on the def-use chain from the given instruction. We only
2497   // allow four kinds of operations during the search until we reach the
2498   // instruction that extracts the first element from the vector:
2499   //
2500   //   1. The reduction operation of the same opcode as the given instruction.
2501   //
2502   //   2. PHI node.
2503   //
2504   //   3. ShuffleVector instruction together with a reduction operation that
2505   //      does a partial reduction.
2506   //
2507   //   4. ExtractElement that extracts the first element from the vector, and we
2508   //      stop searching the def-use chain here.
2509   //
2510   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2511   // from 1-3 to the stack to continue the DFS. The given instruction is not
2512   // a reduction operation if we meet any other instructions other than those
2513   // listed above.
2514 
2515   SmallVector<const User *, 16> UsersToVisit{Inst};
2516   SmallPtrSet<const User *, 16> Visited;
2517   bool ReduxExtracted = false;
2518 
2519   while (!UsersToVisit.empty()) {
2520     auto User = UsersToVisit.back();
2521     UsersToVisit.pop_back();
2522     if (!Visited.insert(User).second)
2523       continue;
2524 
2525     for (const auto &U : User->users()) {
2526       auto Inst = dyn_cast<Instruction>(U);
2527       if (!Inst)
2528         return false;
2529 
2530       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2531         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2532           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra())
2533             return false;
2534         UsersToVisit.push_back(U);
2535       } else if (const ShuffleVectorInst *ShufInst =
2536                      dyn_cast<ShuffleVectorInst>(U)) {
2537         // Detect the following pattern: A ShuffleVector instruction together
2538         // with a reduction that do partial reduction on the first and second
2539         // ElemNumToReduce / 2 elements, and store the result in
2540         // ElemNumToReduce / 2 elements in another vector.
2541 
2542         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2543         if (ResultElements < ElemNum)
2544           return false;
2545 
2546         if (ElemNumToReduce == 1)
2547           return false;
2548         if (!isa<UndefValue>(U->getOperand(1)))
2549           return false;
2550         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2551           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2552             return false;
2553         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2554           if (ShufInst->getMaskValue(i) != -1)
2555             return false;
2556 
2557         // There is only one user of this ShuffleVector instruction, which
2558         // must be a reduction operation.
2559         if (!U->hasOneUse())
2560           return false;
2561 
2562         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2563         if (!U2 || U2->getOpcode() != OpCode)
2564           return false;
2565 
2566         // Check operands of the reduction operation.
2567         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2568             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2569           UsersToVisit.push_back(U2);
2570           ElemNumToReduce /= 2;
2571         } else
2572           return false;
2573       } else if (isa<ExtractElementInst>(U)) {
2574         // At this moment we should have reduced all elements in the vector.
2575         if (ElemNumToReduce != 1)
2576           return false;
2577 
2578         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2579         if (!Val || Val->getZExtValue() != 0)
2580           return false;
2581 
2582         ReduxExtracted = true;
2583       } else
2584         return false;
2585     }
2586   }
2587   return ReduxExtracted;
2588 }
2589 
2590 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2591   SDValue Op1 = getValue(I.getOperand(0));
2592   SDValue Op2 = getValue(I.getOperand(1));
2593 
2594   bool nuw = false;
2595   bool nsw = false;
2596   bool exact = false;
2597   bool vec_redux = false;
2598   FastMathFlags FMF;
2599 
2600   if (const OverflowingBinaryOperator *OFBinOp =
2601           dyn_cast<const OverflowingBinaryOperator>(&I)) {
2602     nuw = OFBinOp->hasNoUnsignedWrap();
2603     nsw = OFBinOp->hasNoSignedWrap();
2604   }
2605   if (const PossiblyExactOperator *ExactOp =
2606           dyn_cast<const PossiblyExactOperator>(&I))
2607     exact = ExactOp->isExact();
2608   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I))
2609     FMF = FPOp->getFastMathFlags();
2610 
2611   if (isVectorReductionOp(&I)) {
2612     vec_redux = true;
2613     DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2614   }
2615 
2616   SDNodeFlags Flags;
2617   Flags.setExact(exact);
2618   Flags.setNoSignedWrap(nsw);
2619   Flags.setNoUnsignedWrap(nuw);
2620   Flags.setVectorReduction(vec_redux);
2621   if (EnableFMFInDAG) {
2622     Flags.setAllowReciprocal(FMF.allowReciprocal());
2623     Flags.setNoInfs(FMF.noInfs());
2624     Flags.setNoNaNs(FMF.noNaNs());
2625     Flags.setNoSignedZeros(FMF.noSignedZeros());
2626     Flags.setUnsafeAlgebra(FMF.unsafeAlgebra());
2627   }
2628   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2629                                      Op1, Op2, &Flags);
2630   setValue(&I, BinNodeValue);
2631 }
2632 
2633 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2634   SDValue Op1 = getValue(I.getOperand(0));
2635   SDValue Op2 = getValue(I.getOperand(1));
2636 
2637   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2638       Op2.getValueType(), DAG.getDataLayout());
2639 
2640   // Coerce the shift amount to the right type if we can.
2641   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2642     unsigned ShiftSize = ShiftTy.getSizeInBits();
2643     unsigned Op2Size = Op2.getValueType().getSizeInBits();
2644     SDLoc DL = getCurSDLoc();
2645 
2646     // If the operand is smaller than the shift count type, promote it.
2647     if (ShiftSize > Op2Size)
2648       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2649 
2650     // If the operand is larger than the shift count type but the shift
2651     // count type has enough bits to represent any shift value, truncate
2652     // it now. This is a common case and it exposes the truncate to
2653     // optimization early.
2654     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2655       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2656     // Otherwise we'll need to temporarily settle for some other convenient
2657     // type.  Type legalization will make adjustments once the shiftee is split.
2658     else
2659       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2660   }
2661 
2662   bool nuw = false;
2663   bool nsw = false;
2664   bool exact = false;
2665 
2666   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2667 
2668     if (const OverflowingBinaryOperator *OFBinOp =
2669             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2670       nuw = OFBinOp->hasNoUnsignedWrap();
2671       nsw = OFBinOp->hasNoSignedWrap();
2672     }
2673     if (const PossiblyExactOperator *ExactOp =
2674             dyn_cast<const PossiblyExactOperator>(&I))
2675       exact = ExactOp->isExact();
2676   }
2677   SDNodeFlags Flags;
2678   Flags.setExact(exact);
2679   Flags.setNoSignedWrap(nsw);
2680   Flags.setNoUnsignedWrap(nuw);
2681   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2682                             &Flags);
2683   setValue(&I, Res);
2684 }
2685 
2686 void SelectionDAGBuilder::visitSDiv(const User &I) {
2687   SDValue Op1 = getValue(I.getOperand(0));
2688   SDValue Op2 = getValue(I.getOperand(1));
2689 
2690   SDNodeFlags Flags;
2691   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2692                  cast<PossiblyExactOperator>(&I)->isExact());
2693   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2694                            Op2, &Flags));
2695 }
2696 
2697 void SelectionDAGBuilder::visitICmp(const User &I) {
2698   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2699   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2700     predicate = IC->getPredicate();
2701   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2702     predicate = ICmpInst::Predicate(IC->getPredicate());
2703   SDValue Op1 = getValue(I.getOperand(0));
2704   SDValue Op2 = getValue(I.getOperand(1));
2705   ISD::CondCode Opcode = getICmpCondCode(predicate);
2706 
2707   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2708                                                         I.getType());
2709   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2710 }
2711 
2712 void SelectionDAGBuilder::visitFCmp(const User &I) {
2713   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2714   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2715     predicate = FC->getPredicate();
2716   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2717     predicate = FCmpInst::Predicate(FC->getPredicate());
2718   SDValue Op1 = getValue(I.getOperand(0));
2719   SDValue Op2 = getValue(I.getOperand(1));
2720   ISD::CondCode Condition = getFCmpCondCode(predicate);
2721 
2722   // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them.
2723   // FIXME: We should propagate the fast-math-flags to the DAG node itself for
2724   // further optimization, but currently FMF is only applicable to binary nodes.
2725   if (TM.Options.NoNaNsFPMath)
2726     Condition = getFCmpCodeWithoutNaN(Condition);
2727   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2728                                                         I.getType());
2729   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2730 }
2731 
2732 // Check if the condition of the select has one use or two users that are both
2733 // selects with the same condition.
2734 static bool hasOnlySelectUsers(const Value *Cond) {
2735   return std::all_of(Cond->user_begin(), Cond->user_end(), [](const Value *V) {
2736     return isa<SelectInst>(V);
2737   });
2738 }
2739 
2740 void SelectionDAGBuilder::visitSelect(const User &I) {
2741   SmallVector<EVT, 4> ValueVTs;
2742   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2743                   ValueVTs);
2744   unsigned NumValues = ValueVTs.size();
2745   if (NumValues == 0) return;
2746 
2747   SmallVector<SDValue, 4> Values(NumValues);
2748   SDValue Cond     = getValue(I.getOperand(0));
2749   SDValue LHSVal   = getValue(I.getOperand(1));
2750   SDValue RHSVal   = getValue(I.getOperand(2));
2751   auto BaseOps = {Cond};
2752   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2753     ISD::VSELECT : ISD::SELECT;
2754 
2755   // Min/max matching is only viable if all output VTs are the same.
2756   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2757     EVT VT = ValueVTs[0];
2758     LLVMContext &Ctx = *DAG.getContext();
2759     auto &TLI = DAG.getTargetLoweringInfo();
2760 
2761     // We care about the legality of the operation after it has been type
2762     // legalized.
2763     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2764            VT != TLI.getTypeToTransformTo(Ctx, VT))
2765       VT = TLI.getTypeToTransformTo(Ctx, VT);
2766 
2767     // If the vselect is legal, assume we want to leave this as a vector setcc +
2768     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2769     // min/max is legal on the scalar type.
2770     bool UseScalarMinMax = VT.isVector() &&
2771       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2772 
2773     Value *LHS, *RHS;
2774     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2775     ISD::NodeType Opc = ISD::DELETED_NODE;
2776     switch (SPR.Flavor) {
2777     case SPF_UMAX:    Opc = ISD::UMAX; break;
2778     case SPF_UMIN:    Opc = ISD::UMIN; break;
2779     case SPF_SMAX:    Opc = ISD::SMAX; break;
2780     case SPF_SMIN:    Opc = ISD::SMIN; break;
2781     case SPF_FMINNUM:
2782       switch (SPR.NaNBehavior) {
2783       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2784       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2785       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2786       case SPNB_RETURNS_ANY: {
2787         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2788           Opc = ISD::FMINNUM;
2789         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2790           Opc = ISD::FMINNAN;
2791         else if (UseScalarMinMax)
2792           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2793             ISD::FMINNUM : ISD::FMINNAN;
2794         break;
2795       }
2796       }
2797       break;
2798     case SPF_FMAXNUM:
2799       switch (SPR.NaNBehavior) {
2800       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2801       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2802       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2803       case SPNB_RETURNS_ANY:
2804 
2805         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2806           Opc = ISD::FMAXNUM;
2807         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2808           Opc = ISD::FMAXNAN;
2809         else if (UseScalarMinMax)
2810           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2811             ISD::FMAXNUM : ISD::FMAXNAN;
2812         break;
2813       }
2814       break;
2815     default: break;
2816     }
2817 
2818     if (Opc != ISD::DELETED_NODE &&
2819         (TLI.isOperationLegalOrCustom(Opc, VT) ||
2820          (UseScalarMinMax &&
2821           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
2822         // If the underlying comparison instruction is used by any other
2823         // instruction, the consumed instructions won't be destroyed, so it is
2824         // not profitable to convert to a min/max.
2825         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
2826       OpCode = Opc;
2827       LHSVal = getValue(LHS);
2828       RHSVal = getValue(RHS);
2829       BaseOps = {};
2830     }
2831   }
2832 
2833   for (unsigned i = 0; i != NumValues; ++i) {
2834     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2835     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2836     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2837     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2838                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2839                             Ops);
2840   }
2841 
2842   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2843                            DAG.getVTList(ValueVTs), Values));
2844 }
2845 
2846 void SelectionDAGBuilder::visitTrunc(const User &I) {
2847   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2848   SDValue N = getValue(I.getOperand(0));
2849   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2850                                                         I.getType());
2851   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2852 }
2853 
2854 void SelectionDAGBuilder::visitZExt(const User &I) {
2855   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2856   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2857   SDValue N = getValue(I.getOperand(0));
2858   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2859                                                         I.getType());
2860   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2861 }
2862 
2863 void SelectionDAGBuilder::visitSExt(const User &I) {
2864   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2865   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2866   SDValue N = getValue(I.getOperand(0));
2867   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2868                                                         I.getType());
2869   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2870 }
2871 
2872 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2873   // FPTrunc is never a no-op cast, no need to check
2874   SDValue N = getValue(I.getOperand(0));
2875   SDLoc dl = getCurSDLoc();
2876   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2877   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2878   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
2879                            DAG.getTargetConstant(
2880                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
2881 }
2882 
2883 void SelectionDAGBuilder::visitFPExt(const User &I) {
2884   // FPExt is never a no-op cast, no need to check
2885   SDValue N = getValue(I.getOperand(0));
2886   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2887                                                         I.getType());
2888   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2889 }
2890 
2891 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2892   // FPToUI is never a no-op cast, no need to check
2893   SDValue N = getValue(I.getOperand(0));
2894   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2895                                                         I.getType());
2896   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2897 }
2898 
2899 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2900   // FPToSI is never a no-op cast, no need to check
2901   SDValue N = getValue(I.getOperand(0));
2902   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2903                                                         I.getType());
2904   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2905 }
2906 
2907 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2908   // UIToFP is never a no-op cast, no need to check
2909   SDValue N = getValue(I.getOperand(0));
2910   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2911                                                         I.getType());
2912   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2913 }
2914 
2915 void SelectionDAGBuilder::visitSIToFP(const User &I) {
2916   // SIToFP is never a no-op cast, no need to check
2917   SDValue N = getValue(I.getOperand(0));
2918   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2919                                                         I.getType());
2920   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2921 }
2922 
2923 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2924   // What to do depends on the size of the integer and the size of the pointer.
2925   // We can either truncate, zero extend, or no-op, accordingly.
2926   SDValue N = getValue(I.getOperand(0));
2927   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2928                                                         I.getType());
2929   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2930 }
2931 
2932 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2933   // What to do depends on the size of the integer and the size of the pointer.
2934   // We can either truncate, zero extend, or no-op, accordingly.
2935   SDValue N = getValue(I.getOperand(0));
2936   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2937                                                         I.getType());
2938   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2939 }
2940 
2941 void SelectionDAGBuilder::visitBitCast(const User &I) {
2942   SDValue N = getValue(I.getOperand(0));
2943   SDLoc dl = getCurSDLoc();
2944   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2945                                                         I.getType());
2946 
2947   // BitCast assures us that source and destination are the same size so this is
2948   // either a BITCAST or a no-op.
2949   if (DestVT != N.getValueType())
2950     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
2951                              DestVT, N)); // convert types.
2952   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
2953   // might fold any kind of constant expression to an integer constant and that
2954   // is not what we are looking for. Only regcognize a bitcast of a genuine
2955   // constant integer as an opaque constant.
2956   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
2957     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
2958                                  /*isOpaque*/true));
2959   else
2960     setValue(&I, N);            // noop cast.
2961 }
2962 
2963 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
2964   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2965   const Value *SV = I.getOperand(0);
2966   SDValue N = getValue(SV);
2967   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2968 
2969   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
2970   unsigned DestAS = I.getType()->getPointerAddressSpace();
2971 
2972   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
2973     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
2974 
2975   setValue(&I, N);
2976 }
2977 
2978 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2979   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2980   SDValue InVec = getValue(I.getOperand(0));
2981   SDValue InVal = getValue(I.getOperand(1));
2982   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
2983                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2984   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2985                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2986                            InVec, InVal, InIdx));
2987 }
2988 
2989 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2990   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2991   SDValue InVec = getValue(I.getOperand(0));
2992   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
2993                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2994   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2995                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2996                            InVec, InIdx));
2997 }
2998 
2999 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3000   SDValue Src1 = getValue(I.getOperand(0));
3001   SDValue Src2 = getValue(I.getOperand(1));
3002 
3003   SmallVector<int, 8> Mask;
3004   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3005   unsigned MaskNumElts = Mask.size();
3006 
3007   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3008   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3009   EVT SrcVT = Src1.getValueType();
3010   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3011 
3012   if (SrcNumElts == MaskNumElts) {
3013     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, Mask));
3014     return;
3015   }
3016 
3017   // Normalize the shuffle vector since mask and vector length don't match.
3018   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
3019     // Mask is longer than the source vectors and is a multiple of the source
3020     // vectors.  We can use concatenate vector to make the mask and vectors
3021     // lengths match.
3022 
3023     unsigned NumConcat = MaskNumElts / SrcNumElts;
3024 
3025     // Check if the shuffle is some kind of concatenation of the input vectors.
3026     bool IsConcat = true;
3027     SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3028     for (unsigned i = 0; i != MaskNumElts; ++i) {
3029       int Idx = Mask[i];
3030       if (Idx < 0)
3031         continue;
3032       // Ensure the indices in each SrcVT sized piece are sequential and that
3033       // the same source is used for the whole piece.
3034       if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3035           (ConcatSrcs[i / SrcNumElts] >= 0 &&
3036            ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3037         IsConcat = false;
3038         break;
3039       }
3040       // Remember which source this index came from.
3041       ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3042     }
3043 
3044     // The shuffle is concatenating multiple vectors together. Just emit
3045     // a CONCAT_VECTORS operation.
3046     if (IsConcat) {
3047       SmallVector<SDValue, 8> ConcatOps;
3048       for (auto Src : ConcatSrcs) {
3049         if (Src < 0)
3050           ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3051         else if (Src == 0)
3052           ConcatOps.push_back(Src1);
3053         else
3054           ConcatOps.push_back(Src2);
3055       }
3056       setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3057                                VT, ConcatOps));
3058       return;
3059     }
3060 
3061     // Pad both vectors with undefs to make them the same length as the mask.
3062     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3063 
3064     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3065     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3066     MOps1[0] = Src1;
3067     MOps2[0] = Src2;
3068 
3069     Src1 = Src1.isUndef() ? DAG.getUNDEF(VT)
3070                           : DAG.getNode(ISD::CONCAT_VECTORS,
3071                                         getCurSDLoc(), VT, MOps1);
3072     Src2 = Src2.isUndef() ? DAG.getUNDEF(VT)
3073                           : DAG.getNode(ISD::CONCAT_VECTORS,
3074                                         getCurSDLoc(), VT, MOps2);
3075 
3076     // Readjust mask for new input vector length.
3077     SmallVector<int, 8> MappedOps;
3078     for (unsigned i = 0; i != MaskNumElts; ++i) {
3079       int Idx = Mask[i];
3080       if (Idx >= (int)SrcNumElts)
3081         Idx -= SrcNumElts - MaskNumElts;
3082       MappedOps.push_back(Idx);
3083     }
3084 
3085     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3086                                       MappedOps));
3087     return;
3088   }
3089 
3090   if (SrcNumElts > MaskNumElts) {
3091     // Analyze the access pattern of the vector to see if we can extract
3092     // two subvectors and do the shuffle. The analysis is done by calculating
3093     // the range of elements the mask access on both vectors.
3094     int MinRange[2] = { static_cast<int>(SrcNumElts),
3095                         static_cast<int>(SrcNumElts)};
3096     int MaxRange[2] = {-1, -1};
3097 
3098     for (unsigned i = 0; i != MaskNumElts; ++i) {
3099       int Idx = Mask[i];
3100       unsigned Input = 0;
3101       if (Idx < 0)
3102         continue;
3103 
3104       if (Idx >= (int)SrcNumElts) {
3105         Input = 1;
3106         Idx -= SrcNumElts;
3107       }
3108       if (Idx > MaxRange[Input])
3109         MaxRange[Input] = Idx;
3110       if (Idx < MinRange[Input])
3111         MinRange[Input] = Idx;
3112     }
3113 
3114     // Check if the access is smaller than the vector size and can we find
3115     // a reasonable extract index.
3116     int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
3117                                    // Extract.
3118     int StartIdx[2];  // StartIdx to extract from
3119     for (unsigned Input = 0; Input < 2; ++Input) {
3120       if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
3121         RangeUse[Input] = 0; // Unused
3122         StartIdx[Input] = 0;
3123         continue;
3124       }
3125 
3126       // Find a good start index that is a multiple of the mask length. Then
3127       // see if the rest of the elements are in range.
3128       StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
3129       if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
3130           StartIdx[Input] + MaskNumElts <= SrcNumElts)
3131         RangeUse[Input] = 1; // Extract from a multiple of the mask length.
3132     }
3133 
3134     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3135       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3136       return;
3137     }
3138     if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3139       // Extract appropriate subvector and generate a vector shuffle
3140       for (unsigned Input = 0; Input < 2; ++Input) {
3141         SDValue &Src = Input == 0 ? Src1 : Src2;
3142         if (RangeUse[Input] == 0)
3143           Src = DAG.getUNDEF(VT);
3144         else {
3145           SDLoc dl = getCurSDLoc();
3146           Src = DAG.getNode(
3147               ISD::EXTRACT_SUBVECTOR, dl, VT, Src,
3148               DAG.getConstant(StartIdx[Input], dl,
3149                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3150         }
3151       }
3152 
3153       // Calculate new mask.
3154       SmallVector<int, 8> MappedOps;
3155       for (unsigned i = 0; i != MaskNumElts; ++i) {
3156         int Idx = Mask[i];
3157         if (Idx >= 0) {
3158           if (Idx < (int)SrcNumElts)
3159             Idx -= StartIdx[0];
3160           else
3161             Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3162         }
3163         MappedOps.push_back(Idx);
3164       }
3165 
3166       setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3167                                         MappedOps));
3168       return;
3169     }
3170   }
3171 
3172   // We can't use either concat vectors or extract subvectors so fall back to
3173   // replacing the shuffle with extract and build vector.
3174   // to insert and build vector.
3175   EVT EltVT = VT.getVectorElementType();
3176   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3177   SDLoc dl = getCurSDLoc();
3178   SmallVector<SDValue,8> Ops;
3179   for (unsigned i = 0; i != MaskNumElts; ++i) {
3180     int Idx = Mask[i];
3181     SDValue Res;
3182 
3183     if (Idx < 0) {
3184       Res = DAG.getUNDEF(EltVT);
3185     } else {
3186       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3187       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3188 
3189       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3190                         EltVT, Src, DAG.getConstant(Idx, dl, IdxVT));
3191     }
3192 
3193     Ops.push_back(Res);
3194   }
3195 
3196   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops));
3197 }
3198 
3199 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3200   const Value *Op0 = I.getOperand(0);
3201   const Value *Op1 = I.getOperand(1);
3202   Type *AggTy = I.getType();
3203   Type *ValTy = Op1->getType();
3204   bool IntoUndef = isa<UndefValue>(Op0);
3205   bool FromUndef = isa<UndefValue>(Op1);
3206 
3207   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3208 
3209   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3210   SmallVector<EVT, 4> AggValueVTs;
3211   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3212   SmallVector<EVT, 4> ValValueVTs;
3213   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3214 
3215   unsigned NumAggValues = AggValueVTs.size();
3216   unsigned NumValValues = ValValueVTs.size();
3217   SmallVector<SDValue, 4> Values(NumAggValues);
3218 
3219   // Ignore an insertvalue that produces an empty object
3220   if (!NumAggValues) {
3221     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3222     return;
3223   }
3224 
3225   SDValue Agg = getValue(Op0);
3226   unsigned i = 0;
3227   // Copy the beginning value(s) from the original aggregate.
3228   for (; i != LinearIndex; ++i)
3229     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3230                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3231   // Copy values from the inserted value(s).
3232   if (NumValValues) {
3233     SDValue Val = getValue(Op1);
3234     for (; i != LinearIndex + NumValValues; ++i)
3235       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3236                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3237   }
3238   // Copy remaining value(s) from the original aggregate.
3239   for (; i != NumAggValues; ++i)
3240     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3241                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3242 
3243   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3244                            DAG.getVTList(AggValueVTs), Values));
3245 }
3246 
3247 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3248   const Value *Op0 = I.getOperand(0);
3249   Type *AggTy = Op0->getType();
3250   Type *ValTy = I.getType();
3251   bool OutOfUndef = isa<UndefValue>(Op0);
3252 
3253   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3254 
3255   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3256   SmallVector<EVT, 4> ValValueVTs;
3257   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3258 
3259   unsigned NumValValues = ValValueVTs.size();
3260 
3261   // Ignore a extractvalue that produces an empty object
3262   if (!NumValValues) {
3263     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3264     return;
3265   }
3266 
3267   SmallVector<SDValue, 4> Values(NumValValues);
3268 
3269   SDValue Agg = getValue(Op0);
3270   // Copy out the selected value(s).
3271   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3272     Values[i - LinearIndex] =
3273       OutOfUndef ?
3274         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3275         SDValue(Agg.getNode(), Agg.getResNo() + i);
3276 
3277   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3278                            DAG.getVTList(ValValueVTs), Values));
3279 }
3280 
3281 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3282   Value *Op0 = I.getOperand(0);
3283   // Note that the pointer operand may be a vector of pointers. Take the scalar
3284   // element which holds a pointer.
3285   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3286   SDValue N = getValue(Op0);
3287   SDLoc dl = getCurSDLoc();
3288 
3289   // Normalize Vector GEP - all scalar operands should be converted to the
3290   // splat vector.
3291   unsigned VectorWidth = I.getType()->isVectorTy() ?
3292     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3293 
3294   if (VectorWidth && !N.getValueType().isVector()) {
3295     LLVMContext &Context = *DAG.getContext();
3296     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3297     SmallVector<SDValue, 16> Ops(VectorWidth, N);
3298     N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3299   }
3300   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3301        GTI != E; ++GTI) {
3302     const Value *Idx = GTI.getOperand();
3303     if (StructType *StTy = dyn_cast<StructType>(*GTI)) {
3304       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3305       if (Field) {
3306         // N = N + Offset
3307         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3308 
3309         // In an inbouds GEP with an offset that is nonnegative even when
3310         // interpreted as signed, assume there is no unsigned overflow.
3311         SDNodeFlags Flags;
3312         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3313           Flags.setNoUnsignedWrap(true);
3314 
3315         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3316                         DAG.getConstant(Offset, dl, N.getValueType()), &Flags);
3317       }
3318     } else {
3319       MVT PtrTy =
3320           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS);
3321       unsigned PtrSize = PtrTy.getSizeInBits();
3322       APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3323 
3324       // If this is a scalar constant or a splat vector of constants,
3325       // handle it quickly.
3326       const auto *CI = dyn_cast<ConstantInt>(Idx);
3327       if (!CI && isa<ConstantDataVector>(Idx) &&
3328           cast<ConstantDataVector>(Idx)->getSplatValue())
3329         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3330 
3331       if (CI) {
3332         if (CI->isZero())
3333           continue;
3334         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
3335         SDValue OffsVal = VectorWidth ?
3336           DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) :
3337           DAG.getConstant(Offs, dl, PtrTy);
3338 
3339         // In an inbouds GEP with an offset that is nonnegative even when
3340         // interpreted as signed, assume there is no unsigned overflow.
3341         SDNodeFlags Flags;
3342         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3343           Flags.setNoUnsignedWrap(true);
3344 
3345         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags);
3346         continue;
3347       }
3348 
3349       // N = N + Idx * ElementSize;
3350       SDValue IdxN = getValue(Idx);
3351 
3352       if (!IdxN.getValueType().isVector() && VectorWidth) {
3353         MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth);
3354         SmallVector<SDValue, 16> Ops(VectorWidth, IdxN);
3355         IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3356       }
3357       // If the index is smaller or larger than intptr_t, truncate or extend
3358       // it.
3359       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3360 
3361       // If this is a multiply by a power of two, turn it into a shl
3362       // immediately.  This is a very common case.
3363       if (ElementSize != 1) {
3364         if (ElementSize.isPowerOf2()) {
3365           unsigned Amt = ElementSize.logBase2();
3366           IdxN = DAG.getNode(ISD::SHL, dl,
3367                              N.getValueType(), IdxN,
3368                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3369         } else {
3370           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3371           IdxN = DAG.getNode(ISD::MUL, dl,
3372                              N.getValueType(), IdxN, Scale);
3373         }
3374       }
3375 
3376       N = DAG.getNode(ISD::ADD, dl,
3377                       N.getValueType(), N, IdxN);
3378     }
3379   }
3380 
3381   setValue(&I, N);
3382 }
3383 
3384 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3385   // If this is a fixed sized alloca in the entry block of the function,
3386   // allocate it statically on the stack.
3387   if (FuncInfo.StaticAllocaMap.count(&I))
3388     return;   // getValue will auto-populate this.
3389 
3390   SDLoc dl = getCurSDLoc();
3391   Type *Ty = I.getAllocatedType();
3392   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3393   auto &DL = DAG.getDataLayout();
3394   uint64_t TySize = DL.getTypeAllocSize(Ty);
3395   unsigned Align =
3396       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3397 
3398   SDValue AllocSize = getValue(I.getArraySize());
3399 
3400   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
3401   if (AllocSize.getValueType() != IntPtr)
3402     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3403 
3404   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3405                           AllocSize,
3406                           DAG.getConstant(TySize, dl, IntPtr));
3407 
3408   // Handle alignment.  If the requested alignment is less than or equal to
3409   // the stack alignment, ignore it.  If the size is greater than or equal to
3410   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3411   unsigned StackAlign =
3412       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3413   if (Align <= StackAlign)
3414     Align = 0;
3415 
3416   // Round the size of the allocation up to the stack alignment size
3417   // by add SA-1 to the size. This doesn't overflow because we're computing
3418   // an address inside an alloca.
3419   SDNodeFlags Flags;
3420   Flags.setNoUnsignedWrap(true);
3421   AllocSize = DAG.getNode(ISD::ADD, dl,
3422                           AllocSize.getValueType(), AllocSize,
3423                           DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags);
3424 
3425   // Mask out the low bits for alignment purposes.
3426   AllocSize = DAG.getNode(ISD::AND, dl,
3427                           AllocSize.getValueType(), AllocSize,
3428                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1),
3429                                                 dl));
3430 
3431   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) };
3432   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3433   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3434   setValue(&I, DSA);
3435   DAG.setRoot(DSA.getValue(1));
3436 
3437   assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects());
3438 }
3439 
3440 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3441   if (I.isAtomic())
3442     return visitAtomicLoad(I);
3443 
3444   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3445   const Value *SV = I.getOperand(0);
3446   if (TLI.supportSwiftError()) {
3447     // Swifterror values can come from either a function parameter with
3448     // swifterror attribute or an alloca with swifterror attribute.
3449     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3450       if (Arg->hasSwiftErrorAttr())
3451         return visitLoadFromSwiftError(I);
3452     }
3453 
3454     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3455       if (Alloca->isSwiftError())
3456         return visitLoadFromSwiftError(I);
3457     }
3458   }
3459 
3460   SDValue Ptr = getValue(SV);
3461 
3462   Type *Ty = I.getType();
3463 
3464   bool isVolatile = I.isVolatile();
3465   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3466 
3467   // The IR notion of invariant_load only guarantees that all *non-faulting*
3468   // invariant loads result in the same value.  The MI notion of invariant load
3469   // guarantees that the load can be legally moved to any location within its
3470   // containing function.  The MI notion of invariant_load is stronger than the
3471   // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load
3472   // with a guarantee that the location being loaded from is dereferenceable
3473   // throughout the function's lifetime.
3474 
3475   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr &&
3476                      isDereferenceablePointer(SV, DAG.getDataLayout());
3477   unsigned Alignment = I.getAlignment();
3478 
3479   AAMDNodes AAInfo;
3480   I.getAAMetadata(AAInfo);
3481   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3482 
3483   SmallVector<EVT, 4> ValueVTs;
3484   SmallVector<uint64_t, 4> Offsets;
3485   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3486   unsigned NumValues = ValueVTs.size();
3487   if (NumValues == 0)
3488     return;
3489 
3490   SDValue Root;
3491   bool ConstantMemory = false;
3492   if (isVolatile || NumValues > MaxParallelChains)
3493     // Serialize volatile loads with other side effects.
3494     Root = getRoot();
3495   else if (AA->pointsToConstantMemory(MemoryLocation(
3496                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3497     // Do not serialize (non-volatile) loads of constant memory with anything.
3498     Root = DAG.getEntryNode();
3499     ConstantMemory = true;
3500   } else {
3501     // Do not serialize non-volatile loads against each other.
3502     Root = DAG.getRoot();
3503   }
3504 
3505   SDLoc dl = getCurSDLoc();
3506 
3507   if (isVolatile)
3508     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3509 
3510   // An aggregate load cannot wrap around the address space, so offsets to its
3511   // parts don't wrap either.
3512   SDNodeFlags Flags;
3513   Flags.setNoUnsignedWrap(true);
3514 
3515   SmallVector<SDValue, 4> Values(NumValues);
3516   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3517   EVT PtrVT = Ptr.getValueType();
3518   unsigned ChainI = 0;
3519   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3520     // Serializing loads here may result in excessive register pressure, and
3521     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3522     // could recover a bit by hoisting nodes upward in the chain by recognizing
3523     // they are side-effect free or do not alias. The optimizer should really
3524     // avoid this case by converting large object/array copies to llvm.memcpy
3525     // (MaxParallelChains should always remain as failsafe).
3526     if (ChainI == MaxParallelChains) {
3527       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3528       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3529                                   makeArrayRef(Chains.data(), ChainI));
3530       Root = Chain;
3531       ChainI = 0;
3532     }
3533     SDValue A = DAG.getNode(ISD::ADD, dl,
3534                             PtrVT, Ptr,
3535                             DAG.getConstant(Offsets[i], dl, PtrVT),
3536                             &Flags);
3537     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root,
3538                             A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3539                             isNonTemporal, isInvariant, Alignment, AAInfo,
3540                             Ranges);
3541 
3542     Values[i] = L;
3543     Chains[ChainI] = L.getValue(1);
3544   }
3545 
3546   if (!ConstantMemory) {
3547     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3548                                 makeArrayRef(Chains.data(), ChainI));
3549     if (isVolatile)
3550       DAG.setRoot(Chain);
3551     else
3552       PendingLoads.push_back(Chain);
3553   }
3554 
3555   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3556                            DAG.getVTList(ValueVTs), Values));
3557 }
3558 
3559 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3560   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3561   assert(TLI.supportSwiftError() &&
3562          "call visitStoreToSwiftError when backend supports swifterror");
3563 
3564   SmallVector<EVT, 4> ValueVTs;
3565   SmallVector<uint64_t, 4> Offsets;
3566   const Value *SrcV = I.getOperand(0);
3567   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3568                   SrcV->getType(), ValueVTs, &Offsets);
3569   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3570          "expect a single EVT for swifterror");
3571 
3572   SDValue Src = getValue(SrcV);
3573   // Create a virtual register, then update the virtual register.
3574   auto &DL = DAG.getDataLayout();
3575   const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
3576   unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
3577   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3578   // Chain can be getRoot or getControlRoot.
3579   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3580                                       SDValue(Src.getNode(), Src.getResNo()));
3581   DAG.setRoot(CopyNode);
3582   FuncInfo.setSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3583 }
3584 
3585 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3586   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3587          "call visitLoadFromSwiftError when backend supports swifterror");
3588 
3589   assert(!I.isVolatile() &&
3590          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3591          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3592          "Support volatile, non temporal, invariant for load_from_swift_error");
3593 
3594   const Value *SV = I.getOperand(0);
3595   Type *Ty = I.getType();
3596   AAMDNodes AAInfo;
3597   I.getAAMetadata(AAInfo);
3598   assert(!AA->pointsToConstantMemory(MemoryLocation(
3599              SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo)) &&
3600          "load_from_swift_error should not be constant memory");
3601 
3602   SmallVector<EVT, 4> ValueVTs;
3603   SmallVector<uint64_t, 4> Offsets;
3604   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3605                   ValueVTs, &Offsets);
3606   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3607          "expect a single EVT for swifterror");
3608 
3609   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3610   SDValue L = DAG.getCopyFromReg(getRoot(), getCurSDLoc(),
3611                                  FuncInfo.findSwiftErrorVReg(FuncInfo.MBB, SV),
3612                                  ValueVTs[0]);
3613 
3614   setValue(&I, L);
3615 }
3616 
3617 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3618   if (I.isAtomic())
3619     return visitAtomicStore(I);
3620 
3621   const Value *SrcV = I.getOperand(0);
3622   const Value *PtrV = I.getOperand(1);
3623 
3624   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3625   if (TLI.supportSwiftError()) {
3626     // Swifterror values can come from either a function parameter with
3627     // swifterror attribute or an alloca with swifterror attribute.
3628     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3629       if (Arg->hasSwiftErrorAttr())
3630         return visitStoreToSwiftError(I);
3631     }
3632 
3633     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3634       if (Alloca->isSwiftError())
3635         return visitStoreToSwiftError(I);
3636     }
3637   }
3638 
3639   SmallVector<EVT, 4> ValueVTs;
3640   SmallVector<uint64_t, 4> Offsets;
3641   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3642                   SrcV->getType(), ValueVTs, &Offsets);
3643   unsigned NumValues = ValueVTs.size();
3644   if (NumValues == 0)
3645     return;
3646 
3647   // Get the lowered operands. Note that we do this after
3648   // checking if NumResults is zero, because with zero results
3649   // the operands won't have values in the map.
3650   SDValue Src = getValue(SrcV);
3651   SDValue Ptr = getValue(PtrV);
3652 
3653   SDValue Root = getRoot();
3654   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3655   EVT PtrVT = Ptr.getValueType();
3656   bool isVolatile = I.isVolatile();
3657   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3658   unsigned Alignment = I.getAlignment();
3659   SDLoc dl = getCurSDLoc();
3660 
3661   AAMDNodes AAInfo;
3662   I.getAAMetadata(AAInfo);
3663 
3664   // An aggregate load cannot wrap around the address space, so offsets to its
3665   // parts don't wrap either.
3666   SDNodeFlags Flags;
3667   Flags.setNoUnsignedWrap(true);
3668 
3669   unsigned ChainI = 0;
3670   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3671     // See visitLoad comments.
3672     if (ChainI == MaxParallelChains) {
3673       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3674                                   makeArrayRef(Chains.data(), ChainI));
3675       Root = Chain;
3676       ChainI = 0;
3677     }
3678     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3679                               DAG.getConstant(Offsets[i], dl, PtrVT), &Flags);
3680     SDValue St = DAG.getStore(Root, dl,
3681                               SDValue(Src.getNode(), Src.getResNo() + i),
3682                               Add, MachinePointerInfo(PtrV, Offsets[i]),
3683                               isVolatile, isNonTemporal, Alignment, AAInfo);
3684     Chains[ChainI] = St;
3685   }
3686 
3687   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3688                                   makeArrayRef(Chains.data(), ChainI));
3689   DAG.setRoot(StoreNode);
3690 }
3691 
3692 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) {
3693   SDLoc sdl = getCurSDLoc();
3694 
3695   // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3696   Value  *PtrOperand = I.getArgOperand(1);
3697   SDValue Ptr = getValue(PtrOperand);
3698   SDValue Src0 = getValue(I.getArgOperand(0));
3699   SDValue Mask = getValue(I.getArgOperand(3));
3700   EVT VT = Src0.getValueType();
3701   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3702   if (!Alignment)
3703     Alignment = DAG.getEVTAlignment(VT);
3704 
3705   AAMDNodes AAInfo;
3706   I.getAAMetadata(AAInfo);
3707 
3708   MachineMemOperand *MMO =
3709     DAG.getMachineFunction().
3710     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3711                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3712                           Alignment, AAInfo);
3713   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3714                                          MMO, false);
3715   DAG.setRoot(StoreNode);
3716   setValue(&I, StoreNode);
3717 }
3718 
3719 // Get a uniform base for the Gather/Scatter intrinsic.
3720 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3721 // We try to represent it as a base pointer + vector of indices.
3722 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3723 // The first operand of the GEP may be a single pointer or a vector of pointers
3724 // Example:
3725 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3726 //  or
3727 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3728 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3729 //
3730 // When the first GEP operand is a single pointer - it is the uniform base we
3731 // are looking for. If first operand of the GEP is a splat vector - we
3732 // extract the spalt value and use it as a uniform base.
3733 // In all other cases the function returns 'false'.
3734 //
3735 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index,
3736                            SelectionDAGBuilder* SDB) {
3737 
3738   SelectionDAG& DAG = SDB->DAG;
3739   LLVMContext &Context = *DAG.getContext();
3740 
3741   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3742   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3743   if (!GEP || GEP->getNumOperands() > 2)
3744     return false;
3745 
3746   const Value *GEPPtr = GEP->getPointerOperand();
3747   if (!GEPPtr->getType()->isVectorTy())
3748     Ptr = GEPPtr;
3749   else if (!(Ptr = getSplatValue(GEPPtr)))
3750     return false;
3751 
3752   Value *IndexVal = GEP->getOperand(1);
3753 
3754   // The operands of the GEP may be defined in another basic block.
3755   // In this case we'll not find nodes for the operands.
3756   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3757     return false;
3758 
3759   Base = SDB->getValue(Ptr);
3760   Index = SDB->getValue(IndexVal);
3761 
3762   // Suppress sign extension.
3763   if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) {
3764     if (SDB->findValue(Sext->getOperand(0))) {
3765       IndexVal = Sext->getOperand(0);
3766       Index = SDB->getValue(IndexVal);
3767     }
3768   }
3769   if (!Index.getValueType().isVector()) {
3770     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3771     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3772     SmallVector<SDValue, 16> Ops(GEPWidth, Index);
3773     Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops);
3774   }
3775   return true;
3776 }
3777 
3778 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3779   SDLoc sdl = getCurSDLoc();
3780 
3781   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3782   const Value *Ptr = I.getArgOperand(1);
3783   SDValue Src0 = getValue(I.getArgOperand(0));
3784   SDValue Mask = getValue(I.getArgOperand(3));
3785   EVT VT = Src0.getValueType();
3786   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3787   if (!Alignment)
3788     Alignment = DAG.getEVTAlignment(VT);
3789   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3790 
3791   AAMDNodes AAInfo;
3792   I.getAAMetadata(AAInfo);
3793 
3794   SDValue Base;
3795   SDValue Index;
3796   const Value *BasePtr = Ptr;
3797   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3798 
3799   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3800   MachineMemOperand *MMO = DAG.getMachineFunction().
3801     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3802                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3803                          Alignment, AAInfo);
3804   if (!UniformBase) {
3805     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3806     Index = getValue(Ptr);
3807   }
3808   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index };
3809   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3810                                          Ops, MMO);
3811   DAG.setRoot(Scatter);
3812   setValue(&I, Scatter);
3813 }
3814 
3815 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) {
3816   SDLoc sdl = getCurSDLoc();
3817 
3818   // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3819   Value  *PtrOperand = I.getArgOperand(0);
3820   SDValue Ptr = getValue(PtrOperand);
3821   SDValue Src0 = getValue(I.getArgOperand(3));
3822   SDValue Mask = getValue(I.getArgOperand(2));
3823 
3824   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3825   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3826   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3827   if (!Alignment)
3828     Alignment = DAG.getEVTAlignment(VT);
3829 
3830   AAMDNodes AAInfo;
3831   I.getAAMetadata(AAInfo);
3832   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3833 
3834   SDValue InChain = DAG.getRoot();
3835   if (AA->pointsToConstantMemory(MemoryLocation(
3836           PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3837           AAInfo))) {
3838     // Do not serialize (non-volatile) loads of constant memory with anything.
3839     InChain = DAG.getEntryNode();
3840   }
3841 
3842   MachineMemOperand *MMO =
3843     DAG.getMachineFunction().
3844     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3845                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
3846                           Alignment, AAInfo, Ranges);
3847 
3848   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
3849                                    ISD::NON_EXTLOAD);
3850   SDValue OutChain = Load.getValue(1);
3851   DAG.setRoot(OutChain);
3852   setValue(&I, Load);
3853 }
3854 
3855 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
3856   SDLoc sdl = getCurSDLoc();
3857 
3858   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
3859   const Value *Ptr = I.getArgOperand(0);
3860   SDValue Src0 = getValue(I.getArgOperand(3));
3861   SDValue Mask = getValue(I.getArgOperand(2));
3862 
3863   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3864   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3865   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3866   if (!Alignment)
3867     Alignment = DAG.getEVTAlignment(VT);
3868 
3869   AAMDNodes AAInfo;
3870   I.getAAMetadata(AAInfo);
3871   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3872 
3873   SDValue Root = DAG.getRoot();
3874   SDValue Base;
3875   SDValue Index;
3876   const Value *BasePtr = Ptr;
3877   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3878   bool ConstantMemory = false;
3879   if (UniformBase &&
3880       AA->pointsToConstantMemory(MemoryLocation(
3881           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3882           AAInfo))) {
3883     // Do not serialize (non-volatile) loads of constant memory with anything.
3884     Root = DAG.getEntryNode();
3885     ConstantMemory = true;
3886   }
3887 
3888   MachineMemOperand *MMO =
3889     DAG.getMachineFunction().
3890     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
3891                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
3892                          Alignment, AAInfo, Ranges);
3893 
3894   if (!UniformBase) {
3895     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3896     Index = getValue(Ptr);
3897   }
3898   SDValue Ops[] = { Root, Src0, Mask, Base, Index };
3899   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
3900                                        Ops, MMO);
3901 
3902   SDValue OutChain = Gather.getValue(1);
3903   if (!ConstantMemory)
3904     PendingLoads.push_back(OutChain);
3905   setValue(&I, Gather);
3906 }
3907 
3908 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3909   SDLoc dl = getCurSDLoc();
3910   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3911   AtomicOrdering FailureOrder = I.getFailureOrdering();
3912   SynchronizationScope Scope = I.getSynchScope();
3913 
3914   SDValue InChain = getRoot();
3915 
3916   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
3917   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
3918   SDValue L = DAG.getAtomicCmpSwap(
3919       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
3920       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
3921       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
3922       /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope);
3923 
3924   SDValue OutChain = L.getValue(2);
3925 
3926   setValue(&I, L);
3927   DAG.setRoot(OutChain);
3928 }
3929 
3930 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3931   SDLoc dl = getCurSDLoc();
3932   ISD::NodeType NT;
3933   switch (I.getOperation()) {
3934   default: llvm_unreachable("Unknown atomicrmw operation");
3935   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3936   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3937   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3938   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3939   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3940   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3941   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3942   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3943   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3944   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3945   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3946   }
3947   AtomicOrdering Order = I.getOrdering();
3948   SynchronizationScope Scope = I.getSynchScope();
3949 
3950   SDValue InChain = getRoot();
3951 
3952   SDValue L =
3953     DAG.getAtomic(NT, dl,
3954                   getValue(I.getValOperand()).getSimpleValueType(),
3955                   InChain,
3956                   getValue(I.getPointerOperand()),
3957                   getValue(I.getValOperand()),
3958                   I.getPointerOperand(),
3959                   /* Alignment=*/ 0, Order, Scope);
3960 
3961   SDValue OutChain = L.getValue(1);
3962 
3963   setValue(&I, L);
3964   DAG.setRoot(OutChain);
3965 }
3966 
3967 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3968   SDLoc dl = getCurSDLoc();
3969   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3970   SDValue Ops[3];
3971   Ops[0] = getRoot();
3972   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
3973                            TLI.getPointerTy(DAG.getDataLayout()));
3974   Ops[2] = DAG.getConstant(I.getSynchScope(), dl,
3975                            TLI.getPointerTy(DAG.getDataLayout()));
3976   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
3977 }
3978 
3979 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3980   SDLoc dl = getCurSDLoc();
3981   AtomicOrdering Order = I.getOrdering();
3982   SynchronizationScope Scope = I.getSynchScope();
3983 
3984   SDValue InChain = getRoot();
3985 
3986   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3987   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3988 
3989   if (I.getAlignment() < VT.getSizeInBits() / 8)
3990     report_fatal_error("Cannot generate unaligned atomic load");
3991 
3992   MachineMemOperand *MMO =
3993       DAG.getMachineFunction().
3994       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
3995                            MachineMemOperand::MOVolatile |
3996                            MachineMemOperand::MOLoad,
3997                            VT.getStoreSize(),
3998                            I.getAlignment() ? I.getAlignment() :
3999                                               DAG.getEVTAlignment(VT));
4000 
4001   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4002   SDValue L =
4003       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4004                     getValue(I.getPointerOperand()), MMO,
4005                     Order, Scope);
4006 
4007   SDValue OutChain = L.getValue(1);
4008 
4009   setValue(&I, L);
4010   DAG.setRoot(OutChain);
4011 }
4012 
4013 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4014   SDLoc dl = getCurSDLoc();
4015 
4016   AtomicOrdering Order = I.getOrdering();
4017   SynchronizationScope Scope = I.getSynchScope();
4018 
4019   SDValue InChain = getRoot();
4020 
4021   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4022   EVT VT =
4023       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4024 
4025   if (I.getAlignment() < VT.getSizeInBits() / 8)
4026     report_fatal_error("Cannot generate unaligned atomic store");
4027 
4028   SDValue OutChain =
4029     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
4030                   InChain,
4031                   getValue(I.getPointerOperand()),
4032                   getValue(I.getValueOperand()),
4033                   I.getPointerOperand(), I.getAlignment(),
4034                   Order, Scope);
4035 
4036   DAG.setRoot(OutChain);
4037 }
4038 
4039 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4040 /// node.
4041 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4042                                                unsigned Intrinsic) {
4043   bool HasChain = !I.doesNotAccessMemory();
4044   bool OnlyLoad = HasChain && I.onlyReadsMemory();
4045 
4046   // Build the operand list.
4047   SmallVector<SDValue, 8> Ops;
4048   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4049     if (OnlyLoad) {
4050       // We don't need to serialize loads against other loads.
4051       Ops.push_back(DAG.getRoot());
4052     } else {
4053       Ops.push_back(getRoot());
4054     }
4055   }
4056 
4057   // Info is set by getTgtMemInstrinsic
4058   TargetLowering::IntrinsicInfo Info;
4059   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4060   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
4061 
4062   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4063   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4064       Info.opc == ISD::INTRINSIC_W_CHAIN)
4065     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4066                                         TLI.getPointerTy(DAG.getDataLayout())));
4067 
4068   // Add all operands of the call to the operand list.
4069   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4070     SDValue Op = getValue(I.getArgOperand(i));
4071     Ops.push_back(Op);
4072   }
4073 
4074   SmallVector<EVT, 4> ValueVTs;
4075   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4076 
4077   if (HasChain)
4078     ValueVTs.push_back(MVT::Other);
4079 
4080   SDVTList VTs = DAG.getVTList(ValueVTs);
4081 
4082   // Create the node.
4083   SDValue Result;
4084   if (IsTgtIntrinsic) {
4085     // This is target intrinsic that touches memory
4086     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
4087                                      VTs, Ops, Info.memVT,
4088                                    MachinePointerInfo(Info.ptrVal, Info.offset),
4089                                      Info.align, Info.vol,
4090                                      Info.readMem, Info.writeMem, Info.size);
4091   } else if (!HasChain) {
4092     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4093   } else if (!I.getType()->isVoidTy()) {
4094     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4095   } else {
4096     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4097   }
4098 
4099   if (HasChain) {
4100     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4101     if (OnlyLoad)
4102       PendingLoads.push_back(Chain);
4103     else
4104       DAG.setRoot(Chain);
4105   }
4106 
4107   if (!I.getType()->isVoidTy()) {
4108     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4109       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4110       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4111     } else
4112       Result = lowerRangeToAssertZExt(DAG, I, Result);
4113 
4114     setValue(&I, Result);
4115   }
4116 }
4117 
4118 /// GetSignificand - Get the significand and build it into a floating-point
4119 /// number with exponent of 1:
4120 ///
4121 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4122 ///
4123 /// where Op is the hexadecimal representation of floating point value.
4124 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4125   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4126                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4127   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4128                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4129   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4130 }
4131 
4132 /// GetExponent - Get the exponent:
4133 ///
4134 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4135 ///
4136 /// where Op is the hexadecimal representation of floating point value.
4137 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4138                            const TargetLowering &TLI, const SDLoc &dl) {
4139   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4140                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4141   SDValue t1 = DAG.getNode(
4142       ISD::SRL, dl, MVT::i32, t0,
4143       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4144   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4145                            DAG.getConstant(127, dl, MVT::i32));
4146   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4147 }
4148 
4149 /// getF32Constant - Get 32-bit floating point constant.
4150 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4151                               const SDLoc &dl) {
4152   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl,
4153                            MVT::f32);
4154 }
4155 
4156 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4157                                        SelectionDAG &DAG) {
4158   // TODO: What fast-math-flags should be set on the floating-point nodes?
4159 
4160   //   IntegerPartOfX = ((int32_t)(t0);
4161   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4162 
4163   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4164   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4165   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4166 
4167   //   IntegerPartOfX <<= 23;
4168   IntegerPartOfX = DAG.getNode(
4169       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4170       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4171                                   DAG.getDataLayout())));
4172 
4173   SDValue TwoToFractionalPartOfX;
4174   if (LimitFloatPrecision <= 6) {
4175     // For floating-point precision of 6:
4176     //
4177     //   TwoToFractionalPartOfX =
4178     //     0.997535578f +
4179     //       (0.735607626f + 0.252464424f * x) * x;
4180     //
4181     // error 0.0144103317, which is 6 bits
4182     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4183                              getF32Constant(DAG, 0x3e814304, dl));
4184     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4185                              getF32Constant(DAG, 0x3f3c50c8, dl));
4186     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4187     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4188                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4189   } else if (LimitFloatPrecision <= 12) {
4190     // For floating-point precision of 12:
4191     //
4192     //   TwoToFractionalPartOfX =
4193     //     0.999892986f +
4194     //       (0.696457318f +
4195     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4196     //
4197     // error 0.000107046256, which is 13 to 14 bits
4198     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4199                              getF32Constant(DAG, 0x3da235e3, dl));
4200     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4201                              getF32Constant(DAG, 0x3e65b8f3, dl));
4202     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4203     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4204                              getF32Constant(DAG, 0x3f324b07, dl));
4205     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4206     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4207                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4208   } else { // LimitFloatPrecision <= 18
4209     // For floating-point precision of 18:
4210     //
4211     //   TwoToFractionalPartOfX =
4212     //     0.999999982f +
4213     //       (0.693148872f +
4214     //         (0.240227044f +
4215     //           (0.554906021e-1f +
4216     //             (0.961591928e-2f +
4217     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4218     // error 2.47208000*10^(-7), which is better than 18 bits
4219     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4220                              getF32Constant(DAG, 0x3924b03e, dl));
4221     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4222                              getF32Constant(DAG, 0x3ab24b87, dl));
4223     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4224     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4225                              getF32Constant(DAG, 0x3c1d8c17, dl));
4226     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4227     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4228                              getF32Constant(DAG, 0x3d634a1d, dl));
4229     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4230     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4231                              getF32Constant(DAG, 0x3e75fe14, dl));
4232     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4233     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4234                               getF32Constant(DAG, 0x3f317234, dl));
4235     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4236     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4237                                          getF32Constant(DAG, 0x3f800000, dl));
4238   }
4239 
4240   // Add the exponent into the result in integer domain.
4241   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4242   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4243                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4244 }
4245 
4246 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4247 /// limited-precision mode.
4248 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4249                          const TargetLowering &TLI) {
4250   if (Op.getValueType() == MVT::f32 &&
4251       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4252 
4253     // Put the exponent in the right bit position for later addition to the
4254     // final result:
4255     //
4256     //   #define LOG2OFe 1.4426950f
4257     //   t0 = Op * LOG2OFe
4258 
4259     // TODO: What fast-math-flags should be set here?
4260     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4261                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4262     return getLimitedPrecisionExp2(t0, dl, DAG);
4263   }
4264 
4265   // No special expansion.
4266   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4267 }
4268 
4269 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4270 /// limited-precision mode.
4271 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4272                          const TargetLowering &TLI) {
4273 
4274   // TODO: What fast-math-flags should be set on the floating-point nodes?
4275 
4276   if (Op.getValueType() == MVT::f32 &&
4277       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4278     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4279 
4280     // Scale the exponent by log(2) [0.69314718f].
4281     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4282     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4283                                         getF32Constant(DAG, 0x3f317218, dl));
4284 
4285     // Get the significand and build it into a floating-point number with
4286     // exponent of 1.
4287     SDValue X = GetSignificand(DAG, Op1, dl);
4288 
4289     SDValue LogOfMantissa;
4290     if (LimitFloatPrecision <= 6) {
4291       // For floating-point precision of 6:
4292       //
4293       //   LogofMantissa =
4294       //     -1.1609546f +
4295       //       (1.4034025f - 0.23903021f * x) * x;
4296       //
4297       // error 0.0034276066, which is better than 8 bits
4298       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4299                                getF32Constant(DAG, 0xbe74c456, dl));
4300       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4301                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4302       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4303       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4304                                   getF32Constant(DAG, 0x3f949a29, dl));
4305     } else if (LimitFloatPrecision <= 12) {
4306       // For floating-point precision of 12:
4307       //
4308       //   LogOfMantissa =
4309       //     -1.7417939f +
4310       //       (2.8212026f +
4311       //         (-1.4699568f +
4312       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4313       //
4314       // error 0.000061011436, which is 14 bits
4315       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4316                                getF32Constant(DAG, 0xbd67b6d6, dl));
4317       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4318                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4319       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4320       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4321                                getF32Constant(DAG, 0x3fbc278b, dl));
4322       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4323       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4324                                getF32Constant(DAG, 0x40348e95, dl));
4325       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4326       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4327                                   getF32Constant(DAG, 0x3fdef31a, dl));
4328     } else { // LimitFloatPrecision <= 18
4329       // For floating-point precision of 18:
4330       //
4331       //   LogOfMantissa =
4332       //     -2.1072184f +
4333       //       (4.2372794f +
4334       //         (-3.7029485f +
4335       //           (2.2781945f +
4336       //             (-0.87823314f +
4337       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4338       //
4339       // error 0.0000023660568, which is better than 18 bits
4340       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4341                                getF32Constant(DAG, 0xbc91e5ac, dl));
4342       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4343                                getF32Constant(DAG, 0x3e4350aa, dl));
4344       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4345       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4346                                getF32Constant(DAG, 0x3f60d3e3, dl));
4347       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4348       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4349                                getF32Constant(DAG, 0x4011cdf0, dl));
4350       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4351       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4352                                getF32Constant(DAG, 0x406cfd1c, dl));
4353       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4354       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4355                                getF32Constant(DAG, 0x408797cb, dl));
4356       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4357       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4358                                   getF32Constant(DAG, 0x4006dcab, dl));
4359     }
4360 
4361     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4362   }
4363 
4364   // No special expansion.
4365   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4366 }
4367 
4368 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4369 /// limited-precision mode.
4370 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4371                           const TargetLowering &TLI) {
4372 
4373   // TODO: What fast-math-flags should be set on the floating-point nodes?
4374 
4375   if (Op.getValueType() == MVT::f32 &&
4376       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4377     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4378 
4379     // Get the exponent.
4380     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4381 
4382     // Get the significand and build it into a floating-point number with
4383     // exponent of 1.
4384     SDValue X = GetSignificand(DAG, Op1, dl);
4385 
4386     // Different possible minimax approximations of significand in
4387     // floating-point for various degrees of accuracy over [1,2].
4388     SDValue Log2ofMantissa;
4389     if (LimitFloatPrecision <= 6) {
4390       // For floating-point precision of 6:
4391       //
4392       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4393       //
4394       // error 0.0049451742, which is more than 7 bits
4395       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4396                                getF32Constant(DAG, 0xbeb08fe0, dl));
4397       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4398                                getF32Constant(DAG, 0x40019463, dl));
4399       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4400       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4401                                    getF32Constant(DAG, 0x3fd6633d, dl));
4402     } else if (LimitFloatPrecision <= 12) {
4403       // For floating-point precision of 12:
4404       //
4405       //   Log2ofMantissa =
4406       //     -2.51285454f +
4407       //       (4.07009056f +
4408       //         (-2.12067489f +
4409       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4410       //
4411       // error 0.0000876136000, which is better than 13 bits
4412       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4413                                getF32Constant(DAG, 0xbda7262e, dl));
4414       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4415                                getF32Constant(DAG, 0x3f25280b, dl));
4416       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4417       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4418                                getF32Constant(DAG, 0x4007b923, dl));
4419       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4420       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4421                                getF32Constant(DAG, 0x40823e2f, dl));
4422       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4423       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4424                                    getF32Constant(DAG, 0x4020d29c, dl));
4425     } else { // LimitFloatPrecision <= 18
4426       // For floating-point precision of 18:
4427       //
4428       //   Log2ofMantissa =
4429       //     -3.0400495f +
4430       //       (6.1129976f +
4431       //         (-5.3420409f +
4432       //           (3.2865683f +
4433       //             (-1.2669343f +
4434       //               (0.27515199f -
4435       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4436       //
4437       // error 0.0000018516, which is better than 18 bits
4438       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4439                                getF32Constant(DAG, 0xbcd2769e, dl));
4440       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4441                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4442       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4443       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4444                                getF32Constant(DAG, 0x3fa22ae7, dl));
4445       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4446       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4447                                getF32Constant(DAG, 0x40525723, dl));
4448       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4449       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4450                                getF32Constant(DAG, 0x40aaf200, dl));
4451       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4452       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4453                                getF32Constant(DAG, 0x40c39dad, dl));
4454       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4455       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4456                                    getF32Constant(DAG, 0x4042902c, dl));
4457     }
4458 
4459     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4460   }
4461 
4462   // No special expansion.
4463   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4464 }
4465 
4466 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4467 /// limited-precision mode.
4468 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4469                            const TargetLowering &TLI) {
4470 
4471   // TODO: What fast-math-flags should be set on the floating-point nodes?
4472 
4473   if (Op.getValueType() == MVT::f32 &&
4474       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4475     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4476 
4477     // Scale the exponent by log10(2) [0.30102999f].
4478     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4479     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4480                                         getF32Constant(DAG, 0x3e9a209a, dl));
4481 
4482     // Get the significand and build it into a floating-point number with
4483     // exponent of 1.
4484     SDValue X = GetSignificand(DAG, Op1, dl);
4485 
4486     SDValue Log10ofMantissa;
4487     if (LimitFloatPrecision <= 6) {
4488       // For floating-point precision of 6:
4489       //
4490       //   Log10ofMantissa =
4491       //     -0.50419619f +
4492       //       (0.60948995f - 0.10380950f * x) * x;
4493       //
4494       // error 0.0014886165, which is 6 bits
4495       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4496                                getF32Constant(DAG, 0xbdd49a13, dl));
4497       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4498                                getF32Constant(DAG, 0x3f1c0789, dl));
4499       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4500       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4501                                     getF32Constant(DAG, 0x3f011300, dl));
4502     } else if (LimitFloatPrecision <= 12) {
4503       // For floating-point precision of 12:
4504       //
4505       //   Log10ofMantissa =
4506       //     -0.64831180f +
4507       //       (0.91751397f +
4508       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4509       //
4510       // error 0.00019228036, which is better than 12 bits
4511       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4512                                getF32Constant(DAG, 0x3d431f31, dl));
4513       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4514                                getF32Constant(DAG, 0x3ea21fb2, dl));
4515       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4516       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4517                                getF32Constant(DAG, 0x3f6ae232, dl));
4518       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4519       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4520                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4521     } else { // LimitFloatPrecision <= 18
4522       // For floating-point precision of 18:
4523       //
4524       //   Log10ofMantissa =
4525       //     -0.84299375f +
4526       //       (1.5327582f +
4527       //         (-1.0688956f +
4528       //           (0.49102474f +
4529       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4530       //
4531       // error 0.0000037995730, which is better than 18 bits
4532       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4533                                getF32Constant(DAG, 0x3c5d51ce, dl));
4534       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4535                                getF32Constant(DAG, 0x3e00685a, dl));
4536       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4537       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4538                                getF32Constant(DAG, 0x3efb6798, dl));
4539       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4540       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4541                                getF32Constant(DAG, 0x3f88d192, dl));
4542       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4543       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4544                                getF32Constant(DAG, 0x3fc4316c, dl));
4545       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4546       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4547                                     getF32Constant(DAG, 0x3f57ce70, dl));
4548     }
4549 
4550     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4551   }
4552 
4553   // No special expansion.
4554   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4555 }
4556 
4557 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4558 /// limited-precision mode.
4559 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4560                           const TargetLowering &TLI) {
4561   if (Op.getValueType() == MVT::f32 &&
4562       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4563     return getLimitedPrecisionExp2(Op, dl, DAG);
4564 
4565   // No special expansion.
4566   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4567 }
4568 
4569 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4570 /// limited-precision mode with x == 10.0f.
4571 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
4572                          SelectionDAG &DAG, const TargetLowering &TLI) {
4573   bool IsExp10 = false;
4574   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4575       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4576     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4577       APFloat Ten(10.0f);
4578       IsExp10 = LHSC->isExactlyValue(Ten);
4579     }
4580   }
4581 
4582   // TODO: What fast-math-flags should be set on the FMUL node?
4583   if (IsExp10) {
4584     // Put the exponent in the right bit position for later addition to the
4585     // final result:
4586     //
4587     //   #define LOG2OF10 3.3219281f
4588     //   t0 = Op * LOG2OF10;
4589     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4590                              getF32Constant(DAG, 0x40549a78, dl));
4591     return getLimitedPrecisionExp2(t0, dl, DAG);
4592   }
4593 
4594   // No special expansion.
4595   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4596 }
4597 
4598 
4599 /// ExpandPowI - Expand a llvm.powi intrinsic.
4600 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
4601                           SelectionDAG &DAG) {
4602   // If RHS is a constant, we can expand this out to a multiplication tree,
4603   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4604   // optimizing for size, we only want to do this if the expansion would produce
4605   // a small number of multiplies, otherwise we do the full expansion.
4606   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4607     // Get the exponent as a positive value.
4608     unsigned Val = RHSC->getSExtValue();
4609     if ((int)Val < 0) Val = -Val;
4610 
4611     // powi(x, 0) -> 1.0
4612     if (Val == 0)
4613       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4614 
4615     const Function *F = DAG.getMachineFunction().getFunction();
4616     if (!F->optForSize() ||
4617         // If optimizing for size, don't insert too many multiplies.
4618         // This inserts up to 5 multiplies.
4619         countPopulation(Val) + Log2_32(Val) < 7) {
4620       // We use the simple binary decomposition method to generate the multiply
4621       // sequence.  There are more optimal ways to do this (for example,
4622       // powi(x,15) generates one more multiply than it should), but this has
4623       // the benefit of being both really simple and much better than a libcall.
4624       SDValue Res;  // Logically starts equal to 1.0
4625       SDValue CurSquare = LHS;
4626       // TODO: Intrinsics should have fast-math-flags that propagate to these
4627       // nodes.
4628       while (Val) {
4629         if (Val & 1) {
4630           if (Res.getNode())
4631             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4632           else
4633             Res = CurSquare;  // 1.0*CurSquare.
4634         }
4635 
4636         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4637                                 CurSquare, CurSquare);
4638         Val >>= 1;
4639       }
4640 
4641       // If the original was negative, invert the result, producing 1/(x*x*x).
4642       if (RHSC->getSExtValue() < 0)
4643         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4644                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4645       return Res;
4646     }
4647   }
4648 
4649   // Otherwise, expand to a libcall.
4650   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4651 }
4652 
4653 // getUnderlyingArgReg - Find underlying register used for a truncated or
4654 // bitcasted argument.
4655 static unsigned getUnderlyingArgReg(const SDValue &N) {
4656   switch (N.getOpcode()) {
4657   case ISD::CopyFromReg:
4658     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4659   case ISD::BITCAST:
4660   case ISD::AssertZext:
4661   case ISD::AssertSext:
4662   case ISD::TRUNCATE:
4663     return getUnderlyingArgReg(N.getOperand(0));
4664   default:
4665     return 0;
4666   }
4667 }
4668 
4669 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4670 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4671 /// At the end of instruction selection, they will be inserted to the entry BB.
4672 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4673     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4674     DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) {
4675   const Argument *Arg = dyn_cast<Argument>(V);
4676   if (!Arg)
4677     return false;
4678 
4679   MachineFunction &MF = DAG.getMachineFunction();
4680   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4681 
4682   // Ignore inlined function arguments here.
4683   //
4684   // FIXME: Should we be checking DL->inlinedAt() to determine this?
4685   if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction()))
4686     return false;
4687 
4688   Optional<MachineOperand> Op;
4689   // Some arguments' frame index is recorded during argument lowering.
4690   if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4691     Op = MachineOperand::CreateFI(FI);
4692 
4693   if (!Op && N.getNode()) {
4694     unsigned Reg = getUnderlyingArgReg(N);
4695     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4696       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4697       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4698       if (PR)
4699         Reg = PR;
4700     }
4701     if (Reg)
4702       Op = MachineOperand::CreateReg(Reg, false);
4703   }
4704 
4705   if (!Op) {
4706     // Check if ValueMap has reg number.
4707     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4708     if (VMI != FuncInfo.ValueMap.end())
4709       Op = MachineOperand::CreateReg(VMI->second, false);
4710   }
4711 
4712   if (!Op && N.getNode())
4713     // Check if frame index is available.
4714     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4715       if (FrameIndexSDNode *FINode =
4716           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4717         Op = MachineOperand::CreateFI(FINode->getIndex());
4718 
4719   if (!Op)
4720     return false;
4721 
4722   assert(Variable->isValidLocationForIntrinsic(DL) &&
4723          "Expected inlined-at fields to agree");
4724   if (Op->isReg())
4725     FuncInfo.ArgDbgValues.push_back(
4726         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4727                 Op->getReg(), Offset, Variable, Expr));
4728   else
4729     FuncInfo.ArgDbgValues.push_back(
4730         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
4731             .addOperand(*Op)
4732             .addImm(Offset)
4733             .addMetadata(Variable)
4734             .addMetadata(Expr));
4735 
4736   return true;
4737 }
4738 
4739 // VisualStudio defines setjmp as _setjmp
4740 #if defined(_MSC_VER) && defined(setjmp) && \
4741                          !defined(setjmp_undefined_for_msvc)
4742 #  pragma push_macro("setjmp")
4743 #  undef setjmp
4744 #  define setjmp_undefined_for_msvc
4745 #endif
4746 
4747 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4748 /// we want to emit this as a call to a named external function, return the name
4749 /// otherwise lower it and return null.
4750 const char *
4751 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4752   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4753   SDLoc sdl = getCurSDLoc();
4754   DebugLoc dl = getCurDebugLoc();
4755   SDValue Res;
4756 
4757   switch (Intrinsic) {
4758   default:
4759     // By default, turn this into a target intrinsic node.
4760     visitTargetIntrinsic(I, Intrinsic);
4761     return nullptr;
4762   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4763   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4764   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4765   case Intrinsic::returnaddress:
4766     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
4767                              TLI.getPointerTy(DAG.getDataLayout()),
4768                              getValue(I.getArgOperand(0))));
4769     return nullptr;
4770   case Intrinsic::frameaddress:
4771     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
4772                              TLI.getPointerTy(DAG.getDataLayout()),
4773                              getValue(I.getArgOperand(0))));
4774     return nullptr;
4775   case Intrinsic::read_register: {
4776     Value *Reg = I.getArgOperand(0);
4777     SDValue Chain = getRoot();
4778     SDValue RegName =
4779         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4780     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4781     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
4782       DAG.getVTList(VT, MVT::Other), Chain, RegName);
4783     setValue(&I, Res);
4784     DAG.setRoot(Res.getValue(1));
4785     return nullptr;
4786   }
4787   case Intrinsic::write_register: {
4788     Value *Reg = I.getArgOperand(0);
4789     Value *RegValue = I.getArgOperand(1);
4790     SDValue Chain = getRoot();
4791     SDValue RegName =
4792         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4793     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4794                             RegName, getValue(RegValue)));
4795     return nullptr;
4796   }
4797   case Intrinsic::setjmp:
4798     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4799   case Intrinsic::longjmp:
4800     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4801   case Intrinsic::memcpy: {
4802     SDValue Op1 = getValue(I.getArgOperand(0));
4803     SDValue Op2 = getValue(I.getArgOperand(1));
4804     SDValue Op3 = getValue(I.getArgOperand(2));
4805     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4806     if (!Align)
4807       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4808     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4809     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4810     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4811                                false, isTC,
4812                                MachinePointerInfo(I.getArgOperand(0)),
4813                                MachinePointerInfo(I.getArgOperand(1)));
4814     updateDAGForMaybeTailCall(MC);
4815     return nullptr;
4816   }
4817   case Intrinsic::memset: {
4818     SDValue Op1 = getValue(I.getArgOperand(0));
4819     SDValue Op2 = getValue(I.getArgOperand(1));
4820     SDValue Op3 = getValue(I.getArgOperand(2));
4821     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4822     if (!Align)
4823       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4824     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4825     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4826     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4827                                isTC, MachinePointerInfo(I.getArgOperand(0)));
4828     updateDAGForMaybeTailCall(MS);
4829     return nullptr;
4830   }
4831   case Intrinsic::memmove: {
4832     SDValue Op1 = getValue(I.getArgOperand(0));
4833     SDValue Op2 = getValue(I.getArgOperand(1));
4834     SDValue Op3 = getValue(I.getArgOperand(2));
4835     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4836     if (!Align)
4837       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4838     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4839     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4840     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4841                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
4842                                 MachinePointerInfo(I.getArgOperand(1)));
4843     updateDAGForMaybeTailCall(MM);
4844     return nullptr;
4845   }
4846   case Intrinsic::dbg_declare: {
4847     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4848     DILocalVariable *Variable = DI.getVariable();
4849     DIExpression *Expression = DI.getExpression();
4850     const Value *Address = DI.getAddress();
4851     assert(Variable && "Missing variable");
4852     if (!Address) {
4853       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4854       return nullptr;
4855     }
4856 
4857     // Check if address has undef value.
4858     if (isa<UndefValue>(Address) ||
4859         (Address->use_empty() && !isa<Argument>(Address))) {
4860       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4861       return nullptr;
4862     }
4863 
4864     SDValue &N = NodeMap[Address];
4865     if (!N.getNode() && isa<Argument>(Address))
4866       // Check unused arguments map.
4867       N = UnusedArgNodeMap[Address];
4868     SDDbgValue *SDV;
4869     if (N.getNode()) {
4870       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4871         Address = BCI->getOperand(0);
4872       // Parameters are handled specially.
4873       bool isParameter = Variable->isParameter() || isa<Argument>(Address);
4874       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4875       if (isParameter && FINode) {
4876         // Byval parameter. We have a frame index at this point.
4877         SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
4878                                         FINode->getIndex(), 0, dl, SDNodeOrder);
4879       } else if (isa<Argument>(Address)) {
4880         // Address is an argument, so try to emit its dbg value using
4881         // virtual register info from the FuncInfo.ValueMap.
4882         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4883                                  N);
4884         return nullptr;
4885       } else {
4886         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4887                               true, 0, dl, SDNodeOrder);
4888       }
4889       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4890     } else {
4891       // If Address is an argument then try to emit its dbg value using
4892       // virtual register info from the FuncInfo.ValueMap.
4893       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4894                                     N)) {
4895         // If variable is pinned by a alloca in dominating bb then
4896         // use StaticAllocaMap.
4897         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4898           if (AI->getParent() != DI.getParent()) {
4899             DenseMap<const AllocaInst*, int>::iterator SI =
4900               FuncInfo.StaticAllocaMap.find(AI);
4901             if (SI != FuncInfo.StaticAllocaMap.end()) {
4902               SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second,
4903                                               0, dl, SDNodeOrder);
4904               DAG.AddDbgValue(SDV, nullptr, false);
4905               return nullptr;
4906             }
4907           }
4908         }
4909         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4910       }
4911     }
4912     return nullptr;
4913   }
4914   case Intrinsic::dbg_value: {
4915     const DbgValueInst &DI = cast<DbgValueInst>(I);
4916     assert(DI.getVariable() && "Missing variable");
4917 
4918     DILocalVariable *Variable = DI.getVariable();
4919     DIExpression *Expression = DI.getExpression();
4920     uint64_t Offset = DI.getOffset();
4921     const Value *V = DI.getValue();
4922     if (!V)
4923       return nullptr;
4924 
4925     SDDbgValue *SDV;
4926     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4927       SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl,
4928                                     SDNodeOrder);
4929       DAG.AddDbgValue(SDV, nullptr, false);
4930     } else {
4931       // Do not use getValue() in here; we don't want to generate code at
4932       // this point if it hasn't been done yet.
4933       SDValue N = NodeMap[V];
4934       if (!N.getNode() && isa<Argument>(V))
4935         // Check unused arguments map.
4936         N = UnusedArgNodeMap[V];
4937       if (N.getNode()) {
4938         if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset,
4939                                       false, N)) {
4940           SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4941                                 false, Offset, dl, SDNodeOrder);
4942           DAG.AddDbgValue(SDV, N.getNode(), false);
4943         }
4944       } else if (!V->use_empty() ) {
4945         // Do not call getValue(V) yet, as we don't want to generate code.
4946         // Remember it for later.
4947         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4948         DanglingDebugInfoMap[V] = DDI;
4949       } else {
4950         // We may expand this to cover more cases.  One case where we have no
4951         // data available is an unreferenced parameter.
4952         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4953       }
4954     }
4955 
4956     // Build a debug info table entry.
4957     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4958       V = BCI->getOperand(0);
4959     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4960     // Don't handle byval struct arguments or VLAs, for example.
4961     if (!AI) {
4962       DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4963       DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4964       return nullptr;
4965     }
4966     DenseMap<const AllocaInst*, int>::iterator SI =
4967       FuncInfo.StaticAllocaMap.find(AI);
4968     if (SI == FuncInfo.StaticAllocaMap.end())
4969       return nullptr; // VLAs.
4970     return nullptr;
4971   }
4972 
4973   case Intrinsic::eh_typeid_for: {
4974     // Find the type id for the given typeinfo.
4975     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
4976     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4977     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
4978     setValue(&I, Res);
4979     return nullptr;
4980   }
4981 
4982   case Intrinsic::eh_return_i32:
4983   case Intrinsic::eh_return_i64:
4984     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4985     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4986                             MVT::Other,
4987                             getControlRoot(),
4988                             getValue(I.getArgOperand(0)),
4989                             getValue(I.getArgOperand(1))));
4990     return nullptr;
4991   case Intrinsic::eh_unwind_init:
4992     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4993     return nullptr;
4994   case Intrinsic::eh_dwarf_cfa: {
4995     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4996                                         TLI.getPointerTy(DAG.getDataLayout()));
4997     SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4998                                  CfaArg.getValueType(),
4999                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
5000                                              CfaArg.getValueType()),
5001                                  CfaArg);
5002     SDValue FA = DAG.getNode(
5003         ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()),
5004         DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
5005     setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
5006                              FA, Offset));
5007     return nullptr;
5008   }
5009   case Intrinsic::eh_sjlj_callsite: {
5010     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5011     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5012     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5013     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5014 
5015     MMI.setCurrentCallSite(CI->getZExtValue());
5016     return nullptr;
5017   }
5018   case Intrinsic::eh_sjlj_functioncontext: {
5019     // Get and store the index of the function context.
5020     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5021     AllocaInst *FnCtx =
5022       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5023     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5024     MFI->setFunctionContextIndex(FI);
5025     return nullptr;
5026   }
5027   case Intrinsic::eh_sjlj_setjmp: {
5028     SDValue Ops[2];
5029     Ops[0] = getRoot();
5030     Ops[1] = getValue(I.getArgOperand(0));
5031     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5032                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5033     setValue(&I, Op.getValue(0));
5034     DAG.setRoot(Op.getValue(1));
5035     return nullptr;
5036   }
5037   case Intrinsic::eh_sjlj_longjmp: {
5038     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5039                             getRoot(), getValue(I.getArgOperand(0))));
5040     return nullptr;
5041   }
5042   case Intrinsic::eh_sjlj_setup_dispatch: {
5043     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5044                             getRoot()));
5045     return nullptr;
5046   }
5047 
5048   case Intrinsic::masked_gather:
5049     visitMaskedGather(I);
5050     return nullptr;
5051   case Intrinsic::masked_load:
5052     visitMaskedLoad(I);
5053     return nullptr;
5054   case Intrinsic::masked_scatter:
5055     visitMaskedScatter(I);
5056     return nullptr;
5057   case Intrinsic::masked_store:
5058     visitMaskedStore(I);
5059     return nullptr;
5060   case Intrinsic::x86_mmx_pslli_w:
5061   case Intrinsic::x86_mmx_pslli_d:
5062   case Intrinsic::x86_mmx_pslli_q:
5063   case Intrinsic::x86_mmx_psrli_w:
5064   case Intrinsic::x86_mmx_psrli_d:
5065   case Intrinsic::x86_mmx_psrli_q:
5066   case Intrinsic::x86_mmx_psrai_w:
5067   case Intrinsic::x86_mmx_psrai_d: {
5068     SDValue ShAmt = getValue(I.getArgOperand(1));
5069     if (isa<ConstantSDNode>(ShAmt)) {
5070       visitTargetIntrinsic(I, Intrinsic);
5071       return nullptr;
5072     }
5073     unsigned NewIntrinsic = 0;
5074     EVT ShAmtVT = MVT::v2i32;
5075     switch (Intrinsic) {
5076     case Intrinsic::x86_mmx_pslli_w:
5077       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5078       break;
5079     case Intrinsic::x86_mmx_pslli_d:
5080       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5081       break;
5082     case Intrinsic::x86_mmx_pslli_q:
5083       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5084       break;
5085     case Intrinsic::x86_mmx_psrli_w:
5086       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5087       break;
5088     case Intrinsic::x86_mmx_psrli_d:
5089       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5090       break;
5091     case Intrinsic::x86_mmx_psrli_q:
5092       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5093       break;
5094     case Intrinsic::x86_mmx_psrai_w:
5095       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5096       break;
5097     case Intrinsic::x86_mmx_psrai_d:
5098       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5099       break;
5100     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5101     }
5102 
5103     // The vector shift intrinsics with scalars uses 32b shift amounts but
5104     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5105     // to be zero.
5106     // We must do this early because v2i32 is not a legal type.
5107     SDValue ShOps[2];
5108     ShOps[0] = ShAmt;
5109     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5110     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
5111     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5112     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5113     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5114                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5115                        getValue(I.getArgOperand(0)), ShAmt);
5116     setValue(&I, Res);
5117     return nullptr;
5118   }
5119   case Intrinsic::convertff:
5120   case Intrinsic::convertfsi:
5121   case Intrinsic::convertfui:
5122   case Intrinsic::convertsif:
5123   case Intrinsic::convertuif:
5124   case Intrinsic::convertss:
5125   case Intrinsic::convertsu:
5126   case Intrinsic::convertus:
5127   case Intrinsic::convertuu: {
5128     ISD::CvtCode Code = ISD::CVT_INVALID;
5129     switch (Intrinsic) {
5130     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5131     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
5132     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
5133     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
5134     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
5135     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
5136     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
5137     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
5138     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
5139     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
5140     }
5141     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5142     const Value *Op1 = I.getArgOperand(0);
5143     Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
5144                                DAG.getValueType(DestVT),
5145                                DAG.getValueType(getValue(Op1).getValueType()),
5146                                getValue(I.getArgOperand(1)),
5147                                getValue(I.getArgOperand(2)),
5148                                Code);
5149     setValue(&I, Res);
5150     return nullptr;
5151   }
5152   case Intrinsic::powi:
5153     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5154                             getValue(I.getArgOperand(1)), DAG));
5155     return nullptr;
5156   case Intrinsic::log:
5157     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5158     return nullptr;
5159   case Intrinsic::log2:
5160     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5161     return nullptr;
5162   case Intrinsic::log10:
5163     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5164     return nullptr;
5165   case Intrinsic::exp:
5166     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5167     return nullptr;
5168   case Intrinsic::exp2:
5169     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5170     return nullptr;
5171   case Intrinsic::pow:
5172     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5173                            getValue(I.getArgOperand(1)), DAG, TLI));
5174     return nullptr;
5175   case Intrinsic::sqrt:
5176   case Intrinsic::fabs:
5177   case Intrinsic::sin:
5178   case Intrinsic::cos:
5179   case Intrinsic::floor:
5180   case Intrinsic::ceil:
5181   case Intrinsic::trunc:
5182   case Intrinsic::rint:
5183   case Intrinsic::nearbyint:
5184   case Intrinsic::round:
5185   case Intrinsic::canonicalize: {
5186     unsigned Opcode;
5187     switch (Intrinsic) {
5188     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5189     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5190     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5191     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5192     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5193     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5194     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5195     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5196     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5197     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5198     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5199     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5200     }
5201 
5202     setValue(&I, DAG.getNode(Opcode, sdl,
5203                              getValue(I.getArgOperand(0)).getValueType(),
5204                              getValue(I.getArgOperand(0))));
5205     return nullptr;
5206   }
5207   case Intrinsic::minnum: {
5208     auto VT = getValue(I.getArgOperand(0)).getValueType();
5209     unsigned Opc =
5210         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)
5211             ? ISD::FMINNAN
5212             : ISD::FMINNUM;
5213     setValue(&I, DAG.getNode(Opc, sdl, VT,
5214                              getValue(I.getArgOperand(0)),
5215                              getValue(I.getArgOperand(1))));
5216     return nullptr;
5217   }
5218   case Intrinsic::maxnum: {
5219     auto VT = getValue(I.getArgOperand(0)).getValueType();
5220     unsigned Opc =
5221         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)
5222             ? ISD::FMAXNAN
5223             : ISD::FMAXNUM;
5224     setValue(&I, DAG.getNode(Opc, sdl, VT,
5225                              getValue(I.getArgOperand(0)),
5226                              getValue(I.getArgOperand(1))));
5227     return nullptr;
5228   }
5229   case Intrinsic::copysign:
5230     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5231                              getValue(I.getArgOperand(0)).getValueType(),
5232                              getValue(I.getArgOperand(0)),
5233                              getValue(I.getArgOperand(1))));
5234     return nullptr;
5235   case Intrinsic::fma:
5236     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5237                              getValue(I.getArgOperand(0)).getValueType(),
5238                              getValue(I.getArgOperand(0)),
5239                              getValue(I.getArgOperand(1)),
5240                              getValue(I.getArgOperand(2))));
5241     return nullptr;
5242   case Intrinsic::fmuladd: {
5243     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5244     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5245         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5246       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5247                                getValue(I.getArgOperand(0)).getValueType(),
5248                                getValue(I.getArgOperand(0)),
5249                                getValue(I.getArgOperand(1)),
5250                                getValue(I.getArgOperand(2))));
5251     } else {
5252       // TODO: Intrinsic calls should have fast-math-flags.
5253       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5254                                 getValue(I.getArgOperand(0)).getValueType(),
5255                                 getValue(I.getArgOperand(0)),
5256                                 getValue(I.getArgOperand(1)));
5257       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5258                                 getValue(I.getArgOperand(0)).getValueType(),
5259                                 Mul,
5260                                 getValue(I.getArgOperand(2)));
5261       setValue(&I, Add);
5262     }
5263     return nullptr;
5264   }
5265   case Intrinsic::convert_to_fp16:
5266     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5267                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5268                                          getValue(I.getArgOperand(0)),
5269                                          DAG.getTargetConstant(0, sdl,
5270                                                                MVT::i32))));
5271     return nullptr;
5272   case Intrinsic::convert_from_fp16:
5273     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5274                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5275                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5276                                          getValue(I.getArgOperand(0)))));
5277     return nullptr;
5278   case Intrinsic::pcmarker: {
5279     SDValue Tmp = getValue(I.getArgOperand(0));
5280     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5281     return nullptr;
5282   }
5283   case Intrinsic::readcyclecounter: {
5284     SDValue Op = getRoot();
5285     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5286                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5287     setValue(&I, Res);
5288     DAG.setRoot(Res.getValue(1));
5289     return nullptr;
5290   }
5291   case Intrinsic::bitreverse:
5292     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5293                              getValue(I.getArgOperand(0)).getValueType(),
5294                              getValue(I.getArgOperand(0))));
5295     return nullptr;
5296   case Intrinsic::bswap:
5297     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5298                              getValue(I.getArgOperand(0)).getValueType(),
5299                              getValue(I.getArgOperand(0))));
5300     return nullptr;
5301   case Intrinsic::cttz: {
5302     SDValue Arg = getValue(I.getArgOperand(0));
5303     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5304     EVT Ty = Arg.getValueType();
5305     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5306                              sdl, Ty, Arg));
5307     return nullptr;
5308   }
5309   case Intrinsic::ctlz: {
5310     SDValue Arg = getValue(I.getArgOperand(0));
5311     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5312     EVT Ty = Arg.getValueType();
5313     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5314                              sdl, Ty, Arg));
5315     return nullptr;
5316   }
5317   case Intrinsic::ctpop: {
5318     SDValue Arg = getValue(I.getArgOperand(0));
5319     EVT Ty = Arg.getValueType();
5320     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5321     return nullptr;
5322   }
5323   case Intrinsic::stacksave: {
5324     SDValue Op = getRoot();
5325     Res = DAG.getNode(
5326         ISD::STACKSAVE, sdl,
5327         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5328     setValue(&I, Res);
5329     DAG.setRoot(Res.getValue(1));
5330     return nullptr;
5331   }
5332   case Intrinsic::stackrestore: {
5333     Res = getValue(I.getArgOperand(0));
5334     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5335     return nullptr;
5336   }
5337   case Intrinsic::get_dynamic_area_offset: {
5338     SDValue Op = getRoot();
5339     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5340     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5341     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5342     // target.
5343     if (PtrTy != ResTy)
5344       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5345                          " intrinsic!");
5346     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5347                       Op);
5348     DAG.setRoot(Op);
5349     setValue(&I, Res);
5350     return nullptr;
5351   }
5352   case Intrinsic::stackguard: {
5353     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5354     MachineFunction &MF = DAG.getMachineFunction();
5355     const Module &M = *MF.getFunction()->getParent();
5356     SDValue Chain = getRoot();
5357     if (TLI.useLoadStackGuardNode()) {
5358       Res = getLoadStackGuard(DAG, sdl, Chain);
5359     } else {
5360       const Value *Global = TLI.getSDagStackGuard(M);
5361       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
5362       Res =
5363           DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
5364                       MachinePointerInfo(Global, 0), true, false, false, Align);
5365     }
5366     DAG.setRoot(Chain);
5367     setValue(&I, Res);
5368     return nullptr;
5369   }
5370   case Intrinsic::stackprotector: {
5371     // Emit code into the DAG to store the stack guard onto the stack.
5372     MachineFunction &MF = DAG.getMachineFunction();
5373     MachineFrameInfo *MFI = MF.getFrameInfo();
5374     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5375     SDValue Src, Chain = getRoot();
5376 
5377     if (TLI.useLoadStackGuardNode())
5378       Src = getLoadStackGuard(DAG, sdl, Chain);
5379     else
5380       Src = getValue(I.getArgOperand(0));   // The guard's value.
5381 
5382     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5383 
5384     int FI = FuncInfo.StaticAllocaMap[Slot];
5385     MFI->setStackProtectorIndex(FI);
5386 
5387     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5388 
5389     // Store the stack protector onto the stack.
5390     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5391                                                  DAG.getMachineFunction(), FI),
5392                        true, false, 0);
5393     setValue(&I, Res);
5394     DAG.setRoot(Res);
5395     return nullptr;
5396   }
5397   case Intrinsic::objectsize: {
5398     // If we don't know by now, we're never going to know.
5399     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5400 
5401     assert(CI && "Non-constant type in __builtin_object_size?");
5402 
5403     SDValue Arg = getValue(I.getCalledValue());
5404     EVT Ty = Arg.getValueType();
5405 
5406     if (CI->isZero())
5407       Res = DAG.getConstant(-1ULL, sdl, Ty);
5408     else
5409       Res = DAG.getConstant(0, sdl, Ty);
5410 
5411     setValue(&I, Res);
5412     return nullptr;
5413   }
5414   case Intrinsic::annotation:
5415   case Intrinsic::ptr_annotation:
5416     // Drop the intrinsic, but forward the value
5417     setValue(&I, getValue(I.getOperand(0)));
5418     return nullptr;
5419   case Intrinsic::assume:
5420   case Intrinsic::var_annotation:
5421     // Discard annotate attributes and assumptions
5422     return nullptr;
5423 
5424   case Intrinsic::init_trampoline: {
5425     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5426 
5427     SDValue Ops[6];
5428     Ops[0] = getRoot();
5429     Ops[1] = getValue(I.getArgOperand(0));
5430     Ops[2] = getValue(I.getArgOperand(1));
5431     Ops[3] = getValue(I.getArgOperand(2));
5432     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5433     Ops[5] = DAG.getSrcValue(F);
5434 
5435     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5436 
5437     DAG.setRoot(Res);
5438     return nullptr;
5439   }
5440   case Intrinsic::adjust_trampoline: {
5441     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5442                              TLI.getPointerTy(DAG.getDataLayout()),
5443                              getValue(I.getArgOperand(0))));
5444     return nullptr;
5445   }
5446   case Intrinsic::gcroot: {
5447     MachineFunction &MF = DAG.getMachineFunction();
5448     const Function *F = MF.getFunction();
5449     (void)F;
5450     assert(F->hasGC() &&
5451            "only valid in functions with gc specified, enforced by Verifier");
5452     assert(GFI && "implied by previous");
5453     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5454     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5455 
5456     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5457     GFI->addStackRoot(FI->getIndex(), TypeMap);
5458     return nullptr;
5459   }
5460   case Intrinsic::gcread:
5461   case Intrinsic::gcwrite:
5462     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5463   case Intrinsic::flt_rounds:
5464     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5465     return nullptr;
5466 
5467   case Intrinsic::expect: {
5468     // Just replace __builtin_expect(exp, c) with EXP.
5469     setValue(&I, getValue(I.getArgOperand(0)));
5470     return nullptr;
5471   }
5472 
5473   case Intrinsic::debugtrap:
5474   case Intrinsic::trap: {
5475     StringRef TrapFuncName =
5476         I.getAttributes()
5477             .getAttribute(AttributeSet::FunctionIndex, "trap-func-name")
5478             .getValueAsString();
5479     if (TrapFuncName.empty()) {
5480       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5481         ISD::TRAP : ISD::DEBUGTRAP;
5482       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5483       return nullptr;
5484     }
5485     TargetLowering::ArgListTy Args;
5486 
5487     TargetLowering::CallLoweringInfo CLI(DAG);
5488     CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee(
5489         CallingConv::C, I.getType(),
5490         DAG.getExternalSymbol(TrapFuncName.data(),
5491                               TLI.getPointerTy(DAG.getDataLayout())),
5492         std::move(Args));
5493 
5494     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5495     DAG.setRoot(Result.second);
5496     return nullptr;
5497   }
5498 
5499   case Intrinsic::uadd_with_overflow:
5500   case Intrinsic::sadd_with_overflow:
5501   case Intrinsic::usub_with_overflow:
5502   case Intrinsic::ssub_with_overflow:
5503   case Intrinsic::umul_with_overflow:
5504   case Intrinsic::smul_with_overflow: {
5505     ISD::NodeType Op;
5506     switch (Intrinsic) {
5507     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5508     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5509     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5510     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5511     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5512     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5513     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5514     }
5515     SDValue Op1 = getValue(I.getArgOperand(0));
5516     SDValue Op2 = getValue(I.getArgOperand(1));
5517 
5518     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5519     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5520     return nullptr;
5521   }
5522   case Intrinsic::prefetch: {
5523     SDValue Ops[5];
5524     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5525     Ops[0] = getRoot();
5526     Ops[1] = getValue(I.getArgOperand(0));
5527     Ops[2] = getValue(I.getArgOperand(1));
5528     Ops[3] = getValue(I.getArgOperand(2));
5529     Ops[4] = getValue(I.getArgOperand(3));
5530     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5531                                         DAG.getVTList(MVT::Other), Ops,
5532                                         EVT::getIntegerVT(*Context, 8),
5533                                         MachinePointerInfo(I.getArgOperand(0)),
5534                                         0, /* align */
5535                                         false, /* volatile */
5536                                         rw==0, /* read */
5537                                         rw==1)); /* write */
5538     return nullptr;
5539   }
5540   case Intrinsic::lifetime_start:
5541   case Intrinsic::lifetime_end: {
5542     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5543     // Stack coloring is not enabled in O0, discard region information.
5544     if (TM.getOptLevel() == CodeGenOpt::None)
5545       return nullptr;
5546 
5547     SmallVector<Value *, 4> Allocas;
5548     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5549 
5550     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5551            E = Allocas.end(); Object != E; ++Object) {
5552       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5553 
5554       // Could not find an Alloca.
5555       if (!LifetimeObject)
5556         continue;
5557 
5558       // First check that the Alloca is static, otherwise it won't have a
5559       // valid frame index.
5560       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5561       if (SI == FuncInfo.StaticAllocaMap.end())
5562         return nullptr;
5563 
5564       int FI = SI->second;
5565 
5566       SDValue Ops[2];
5567       Ops[0] = getRoot();
5568       Ops[1] =
5569           DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true);
5570       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5571 
5572       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5573       DAG.setRoot(Res);
5574     }
5575     return nullptr;
5576   }
5577   case Intrinsic::invariant_start:
5578     // Discard region information.
5579     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5580     return nullptr;
5581   case Intrinsic::invariant_end:
5582     // Discard region information.
5583     return nullptr;
5584   case Intrinsic::clear_cache:
5585     return TLI.getClearCacheBuiltinName();
5586   case Intrinsic::donothing:
5587     // ignore
5588     return nullptr;
5589   case Intrinsic::experimental_stackmap: {
5590     visitStackmap(I);
5591     return nullptr;
5592   }
5593   case Intrinsic::experimental_patchpoint_void:
5594   case Intrinsic::experimental_patchpoint_i64: {
5595     visitPatchpoint(&I);
5596     return nullptr;
5597   }
5598   case Intrinsic::experimental_gc_statepoint: {
5599     LowerStatepoint(ImmutableStatepoint(&I));
5600     return nullptr;
5601   }
5602   case Intrinsic::experimental_gc_result: {
5603     visitGCResult(cast<GCResultInst>(I));
5604     return nullptr;
5605   }
5606   case Intrinsic::experimental_gc_relocate: {
5607     visitGCRelocate(cast<GCRelocateInst>(I));
5608     return nullptr;
5609   }
5610   case Intrinsic::instrprof_increment:
5611     llvm_unreachable("instrprof failed to lower an increment");
5612   case Intrinsic::instrprof_value_profile:
5613     llvm_unreachable("instrprof failed to lower a value profiling call");
5614   case Intrinsic::localescape: {
5615     MachineFunction &MF = DAG.getMachineFunction();
5616     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5617 
5618     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
5619     // is the same on all targets.
5620     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5621       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5622       if (isa<ConstantPointerNull>(Arg))
5623         continue; // Skip null pointers. They represent a hole in index space.
5624       AllocaInst *Slot = cast<AllocaInst>(Arg);
5625       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5626              "can only escape static allocas");
5627       int FI = FuncInfo.StaticAllocaMap[Slot];
5628       MCSymbol *FrameAllocSym =
5629           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5630               GlobalValue::getRealLinkageName(MF.getName()), Idx);
5631       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5632               TII->get(TargetOpcode::LOCAL_ESCAPE))
5633           .addSym(FrameAllocSym)
5634           .addFrameIndex(FI);
5635     }
5636 
5637     return nullptr;
5638   }
5639 
5640   case Intrinsic::localrecover: {
5641     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
5642     MachineFunction &MF = DAG.getMachineFunction();
5643     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
5644 
5645     // Get the symbol that defines the frame offset.
5646     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5647     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
5648     unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX));
5649     MCSymbol *FrameAllocSym =
5650         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5651             GlobalValue::getRealLinkageName(Fn->getName()), IdxVal);
5652 
5653     // Create a MCSymbol for the label to avoid any target lowering
5654     // that would make this PC relative.
5655     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
5656     SDValue OffsetVal =
5657         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
5658 
5659     // Add the offset to the FP.
5660     Value *FP = I.getArgOperand(1);
5661     SDValue FPVal = getValue(FP);
5662     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
5663     setValue(&I, Add);
5664 
5665     return nullptr;
5666   }
5667 
5668   case Intrinsic::eh_exceptionpointer:
5669   case Intrinsic::eh_exceptioncode: {
5670     // Get the exception pointer vreg, copy from it, and resize it to fit.
5671     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
5672     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
5673     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
5674     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
5675     SDValue N =
5676         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
5677     if (Intrinsic == Intrinsic::eh_exceptioncode)
5678       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
5679     setValue(&I, N);
5680     return nullptr;
5681   }
5682 
5683   case Intrinsic::experimental_deoptimize:
5684     LowerDeoptimizeCall(&I);
5685     return nullptr;
5686   }
5687 }
5688 
5689 std::pair<SDValue, SDValue>
5690 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
5691                                     const BasicBlock *EHPadBB) {
5692   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5693   MCSymbol *BeginLabel = nullptr;
5694 
5695   if (EHPadBB) {
5696     // Insert a label before the invoke call to mark the try range.  This can be
5697     // used to detect deletion of the invoke via the MachineModuleInfo.
5698     BeginLabel = MMI.getContext().createTempSymbol();
5699 
5700     // For SjLj, keep track of which landing pads go with which invokes
5701     // so as to maintain the ordering of pads in the LSDA.
5702     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5703     if (CallSiteIndex) {
5704       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5705       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
5706 
5707       // Now that the call site is handled, stop tracking it.
5708       MMI.setCurrentCallSite(0);
5709     }
5710 
5711     // Both PendingLoads and PendingExports must be flushed here;
5712     // this call might not return.
5713     (void)getRoot();
5714     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5715 
5716     CLI.setChain(getRoot());
5717   }
5718   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5719   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5720 
5721   assert((CLI.IsTailCall || Result.second.getNode()) &&
5722          "Non-null chain expected with non-tail call!");
5723   assert((Result.second.getNode() || !Result.first.getNode()) &&
5724          "Null value expected with tail call!");
5725 
5726   if (!Result.second.getNode()) {
5727     // As a special case, a null chain means that a tail call has been emitted
5728     // and the DAG root is already updated.
5729     HasTailCall = true;
5730 
5731     // Since there's no actual continuation from this block, nothing can be
5732     // relying on us setting vregs for them.
5733     PendingExports.clear();
5734   } else {
5735     DAG.setRoot(Result.second);
5736   }
5737 
5738   if (EHPadBB) {
5739     // Insert a label at the end of the invoke call to mark the try range.  This
5740     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5741     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
5742     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5743 
5744     // Inform MachineModuleInfo of range.
5745     if (MMI.hasEHFunclets()) {
5746       assert(CLI.CS);
5747       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
5748       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()),
5749                                 BeginLabel, EndLabel);
5750     } else {
5751       MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
5752     }
5753   }
5754 
5755   return Result;
5756 }
5757 
5758 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5759                                       bool isTailCall,
5760                                       const BasicBlock *EHPadBB) {
5761   auto &DL = DAG.getDataLayout();
5762   FunctionType *FTy = CS.getFunctionType();
5763   Type *RetTy = CS.getType();
5764 
5765   TargetLowering::ArgListTy Args;
5766   TargetLowering::ArgListEntry Entry;
5767   Args.reserve(CS.arg_size());
5768 
5769   const Value *SwiftErrorVal = nullptr;
5770   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5771   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5772        i != e; ++i) {
5773     const Value *V = *i;
5774 
5775     // Skip empty types
5776     if (V->getType()->isEmptyTy())
5777       continue;
5778 
5779     SDValue ArgNode = getValue(V);
5780     Entry.Node = ArgNode; Entry.Ty = V->getType();
5781 
5782     // Skip the first return-type Attribute to get to params.
5783     Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
5784 
5785     // Use swifterror virtual register as input to the call.
5786     if (Entry.isSwiftError && TLI.supportSwiftError()) {
5787       SwiftErrorVal = V;
5788       // We find the virtual register for the actual swifterror argument.
5789       // Instead of using the Value, we use the virtual register instead.
5790       Entry.Node = DAG.getRegister(
5791           FuncInfo.findSwiftErrorVReg(FuncInfo.MBB, V),
5792           EVT(TLI.getPointerTy(DL)));
5793     }
5794 
5795     Args.push_back(Entry);
5796 
5797     // If we have an explicit sret argument that is an Instruction, (i.e., it
5798     // might point to function-local memory), we can't meaningfully tail-call.
5799     if (Entry.isSRet && isa<Instruction>(V))
5800       isTailCall = false;
5801   }
5802 
5803   // Check if target-independent constraints permit a tail call here.
5804   // Target-dependent constraints are checked within TLI->LowerCallTo.
5805   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
5806     isTailCall = false;
5807 
5808   TargetLowering::CallLoweringInfo CLI(DAG);
5809   CLI.setDebugLoc(getCurSDLoc())
5810       .setChain(getRoot())
5811       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
5812       .setTailCall(isTailCall)
5813       .setConvergent(CS.isConvergent());
5814   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
5815 
5816   if (Result.first.getNode()) {
5817     const Instruction *Inst = CS.getInstruction();
5818     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
5819     setValue(Inst, Result.first);
5820   }
5821 
5822   // The last element of CLI.InVals has the SDValue for swifterror return.
5823   // Here we copy it to a virtual register and update SwiftErrorMap for
5824   // book-keeping.
5825   if (SwiftErrorVal && TLI.supportSwiftError()) {
5826     // Get the last element of InVals.
5827     SDValue Src = CLI.InVals.back();
5828     const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
5829     unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
5830     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
5831     // We update the virtual register for the actual swifterror argument.
5832     FuncInfo.setSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
5833     DAG.setRoot(CopyNode);
5834   }
5835 }
5836 
5837 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5838 /// value is equal or not-equal to zero.
5839 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5840   for (const User *U : V->users()) {
5841     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
5842       if (IC->isEquality())
5843         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5844           if (C->isNullValue())
5845             continue;
5846     // Unknown instruction.
5847     return false;
5848   }
5849   return true;
5850 }
5851 
5852 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5853                              Type *LoadTy,
5854                              SelectionDAGBuilder &Builder) {
5855 
5856   // Check to see if this load can be trivially constant folded, e.g. if the
5857   // input is from a string literal.
5858   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5859     // Cast pointer to the type we really want to load.
5860     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5861                                          PointerType::getUnqual(LoadTy));
5862 
5863     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
5864             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
5865       return Builder.getValue(LoadCst);
5866   }
5867 
5868   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5869   // still constant memory, the input chain can be the entry node.
5870   SDValue Root;
5871   bool ConstantMemory = false;
5872 
5873   // Do not serialize (non-volatile) loads of constant memory with anything.
5874   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5875     Root = Builder.DAG.getEntryNode();
5876     ConstantMemory = true;
5877   } else {
5878     // Do not serialize non-volatile loads against each other.
5879     Root = Builder.DAG.getRoot();
5880   }
5881 
5882   SDValue Ptr = Builder.getValue(PtrVal);
5883   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5884                                         Ptr, MachinePointerInfo(PtrVal),
5885                                         false /*volatile*/,
5886                                         false /*nontemporal*/,
5887                                         false /*isinvariant*/, 1 /* align=1 */);
5888 
5889   if (!ConstantMemory)
5890     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5891   return LoadVal;
5892 }
5893 
5894 /// processIntegerCallValue - Record the value for an instruction that
5895 /// produces an integer result, converting the type where necessary.
5896 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5897                                                   SDValue Value,
5898                                                   bool IsSigned) {
5899   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5900                                                     I.getType(), true);
5901   if (IsSigned)
5902     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
5903   else
5904     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
5905   setValue(&I, Value);
5906 }
5907 
5908 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5909 /// If so, return true and lower it, otherwise return false and it will be
5910 /// lowered like a normal call.
5911 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5912   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5913   if (I.getNumArgOperands() != 3)
5914     return false;
5915 
5916   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5917   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5918       !I.getArgOperand(2)->getType()->isIntegerTy() ||
5919       !I.getType()->isIntegerTy())
5920     return false;
5921 
5922   const Value *Size = I.getArgOperand(2);
5923   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
5924   if (CSize && CSize->getZExtValue() == 0) {
5925     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5926                                                           I.getType(), true);
5927     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
5928     return true;
5929   }
5930 
5931   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5932   std::pair<SDValue, SDValue> Res =
5933     TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5934                                 getValue(LHS), getValue(RHS), getValue(Size),
5935                                 MachinePointerInfo(LHS),
5936                                 MachinePointerInfo(RHS));
5937   if (Res.first.getNode()) {
5938     processIntegerCallValue(I, Res.first, true);
5939     PendingLoads.push_back(Res.second);
5940     return true;
5941   }
5942 
5943   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5944   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5945   if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
5946     bool ActuallyDoIt = true;
5947     MVT LoadVT;
5948     Type *LoadTy;
5949     switch (CSize->getZExtValue()) {
5950     default:
5951       LoadVT = MVT::Other;
5952       LoadTy = nullptr;
5953       ActuallyDoIt = false;
5954       break;
5955     case 2:
5956       LoadVT = MVT::i16;
5957       LoadTy = Type::getInt16Ty(CSize->getContext());
5958       break;
5959     case 4:
5960       LoadVT = MVT::i32;
5961       LoadTy = Type::getInt32Ty(CSize->getContext());
5962       break;
5963     case 8:
5964       LoadVT = MVT::i64;
5965       LoadTy = Type::getInt64Ty(CSize->getContext());
5966       break;
5967         /*
5968     case 16:
5969       LoadVT = MVT::v4i32;
5970       LoadTy = Type::getInt32Ty(CSize->getContext());
5971       LoadTy = VectorType::get(LoadTy, 4);
5972       break;
5973          */
5974     }
5975 
5976     // This turns into unaligned loads.  We only do this if the target natively
5977     // supports the MVT we'll be loading or if it is small enough (<= 4) that
5978     // we'll only produce a small number of byte loads.
5979 
5980     // Require that we can find a legal MVT, and only do this if the target
5981     // supports unaligned loads of that type.  Expanding into byte loads would
5982     // bloat the code.
5983     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5984     if (ActuallyDoIt && CSize->getZExtValue() > 4) {
5985       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
5986       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
5987       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5988       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5989       // TODO: Check alignment of src and dest ptrs.
5990       if (!TLI.isTypeLegal(LoadVT) ||
5991           !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) ||
5992           !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS))
5993         ActuallyDoIt = false;
5994     }
5995 
5996     if (ActuallyDoIt) {
5997       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5998       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5999 
6000       SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
6001                                  ISD::SETNE);
6002       processIntegerCallValue(I, Res, false);
6003       return true;
6004     }
6005   }
6006 
6007 
6008   return false;
6009 }
6010 
6011 /// visitMemChrCall -- See if we can lower a memchr call into an optimized
6012 /// form.  If so, return true and lower it, otherwise return false and it
6013 /// will be lowered like a normal call.
6014 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
6015   // Verify that the prototype makes sense.  void *memchr(void *, int, size_t)
6016   if (I.getNumArgOperands() != 3)
6017     return false;
6018 
6019   const Value *Src = I.getArgOperand(0);
6020   const Value *Char = I.getArgOperand(1);
6021   const Value *Length = I.getArgOperand(2);
6022   if (!Src->getType()->isPointerTy() ||
6023       !Char->getType()->isIntegerTy() ||
6024       !Length->getType()->isIntegerTy() ||
6025       !I.getType()->isPointerTy())
6026     return false;
6027 
6028   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6029   std::pair<SDValue, SDValue> Res =
6030     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
6031                                 getValue(Src), getValue(Char), getValue(Length),
6032                                 MachinePointerInfo(Src));
6033   if (Res.first.getNode()) {
6034     setValue(&I, Res.first);
6035     PendingLoads.push_back(Res.second);
6036     return true;
6037   }
6038 
6039   return false;
6040 }
6041 
6042 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
6043 /// optimized form.  If so, return true and lower it, otherwise return false
6044 /// and it will be lowered like a normal call.
6045 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
6046   // Verify that the prototype makes sense.  char *strcpy(char *, char *)
6047   if (I.getNumArgOperands() != 2)
6048     return false;
6049 
6050   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6051   if (!Arg0->getType()->isPointerTy() ||
6052       !Arg1->getType()->isPointerTy() ||
6053       !I.getType()->isPointerTy())
6054     return false;
6055 
6056   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6057   std::pair<SDValue, SDValue> Res =
6058     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6059                                 getValue(Arg0), getValue(Arg1),
6060                                 MachinePointerInfo(Arg0),
6061                                 MachinePointerInfo(Arg1), isStpcpy);
6062   if (Res.first.getNode()) {
6063     setValue(&I, Res.first);
6064     DAG.setRoot(Res.second);
6065     return true;
6066   }
6067 
6068   return false;
6069 }
6070 
6071 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
6072 /// If so, return true and lower it, otherwise return false and it will be
6073 /// lowered like a normal call.
6074 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6075   // Verify that the prototype makes sense.  int strcmp(void*,void*)
6076   if (I.getNumArgOperands() != 2)
6077     return false;
6078 
6079   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6080   if (!Arg0->getType()->isPointerTy() ||
6081       !Arg1->getType()->isPointerTy() ||
6082       !I.getType()->isIntegerTy())
6083     return false;
6084 
6085   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6086   std::pair<SDValue, SDValue> Res =
6087     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6088                                 getValue(Arg0), getValue(Arg1),
6089                                 MachinePointerInfo(Arg0),
6090                                 MachinePointerInfo(Arg1));
6091   if (Res.first.getNode()) {
6092     processIntegerCallValue(I, Res.first, true);
6093     PendingLoads.push_back(Res.second);
6094     return true;
6095   }
6096 
6097   return false;
6098 }
6099 
6100 /// visitStrLenCall -- See if we can lower a strlen call into an optimized
6101 /// form.  If so, return true and lower it, otherwise return false and it
6102 /// will be lowered like a normal call.
6103 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6104   // Verify that the prototype makes sense.  size_t strlen(char *)
6105   if (I.getNumArgOperands() != 1)
6106     return false;
6107 
6108   const Value *Arg0 = I.getArgOperand(0);
6109   if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
6110     return false;
6111 
6112   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6113   std::pair<SDValue, SDValue> Res =
6114     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6115                                 getValue(Arg0), MachinePointerInfo(Arg0));
6116   if (Res.first.getNode()) {
6117     processIntegerCallValue(I, Res.first, false);
6118     PendingLoads.push_back(Res.second);
6119     return true;
6120   }
6121 
6122   return false;
6123 }
6124 
6125 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
6126 /// form.  If so, return true and lower it, otherwise return false and it
6127 /// will be lowered like a normal call.
6128 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6129   // Verify that the prototype makes sense.  size_t strnlen(char *, size_t)
6130   if (I.getNumArgOperands() != 2)
6131     return false;
6132 
6133   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6134   if (!Arg0->getType()->isPointerTy() ||
6135       !Arg1->getType()->isIntegerTy() ||
6136       !I.getType()->isIntegerTy())
6137     return false;
6138 
6139   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6140   std::pair<SDValue, SDValue> Res =
6141     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6142                                  getValue(Arg0), getValue(Arg1),
6143                                  MachinePointerInfo(Arg0));
6144   if (Res.first.getNode()) {
6145     processIntegerCallValue(I, Res.first, false);
6146     PendingLoads.push_back(Res.second);
6147     return true;
6148   }
6149 
6150   return false;
6151 }
6152 
6153 /// visitUnaryFloatCall - If a call instruction is a unary floating-point
6154 /// operation (as expected), translate it to an SDNode with the specified opcode
6155 /// and return true.
6156 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6157                                               unsigned Opcode) {
6158   // Sanity check that it really is a unary floating-point call.
6159   if (I.getNumArgOperands() != 1 ||
6160       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
6161       I.getType() != I.getArgOperand(0)->getType() ||
6162       !I.onlyReadsMemory())
6163     return false;
6164 
6165   SDValue Tmp = getValue(I.getArgOperand(0));
6166   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6167   return true;
6168 }
6169 
6170 /// visitBinaryFloatCall - If a call instruction is a binary floating-point
6171 /// operation (as expected), translate it to an SDNode with the specified opcode
6172 /// and return true.
6173 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6174                                                unsigned Opcode) {
6175   // Sanity check that it really is a binary floating-point call.
6176   if (I.getNumArgOperands() != 2 ||
6177       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
6178       I.getType() != I.getArgOperand(0)->getType() ||
6179       I.getType() != I.getArgOperand(1)->getType() ||
6180       !I.onlyReadsMemory())
6181     return false;
6182 
6183   SDValue Tmp0 = getValue(I.getArgOperand(0));
6184   SDValue Tmp1 = getValue(I.getArgOperand(1));
6185   EVT VT = Tmp0.getValueType();
6186   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6187   return true;
6188 }
6189 
6190 void SelectionDAGBuilder::visitCall(const CallInst &I) {
6191   // Handle inline assembly differently.
6192   if (isa<InlineAsm>(I.getCalledValue())) {
6193     visitInlineAsm(&I);
6194     return;
6195   }
6196 
6197   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6198   ComputeUsesVAFloatArgument(I, &MMI);
6199 
6200   const char *RenameFn = nullptr;
6201   if (Function *F = I.getCalledFunction()) {
6202     if (F->isDeclaration()) {
6203       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
6204         if (unsigned IID = II->getIntrinsicID(F)) {
6205           RenameFn = visitIntrinsicCall(I, IID);
6206           if (!RenameFn)
6207             return;
6208         }
6209       }
6210       if (Intrinsic::ID IID = F->getIntrinsicID()) {
6211         RenameFn = visitIntrinsicCall(I, IID);
6212         if (!RenameFn)
6213           return;
6214       }
6215     }
6216 
6217     // Check for well-known libc/libm calls.  If the function is internal, it
6218     // can't be a library call.  Don't do the check if marked as nobuiltin for
6219     // some reason.
6220     LibFunc::Func Func;
6221     if (!I.isNoBuiltin() && !F->hasLocalLinkage() && F->hasName() &&
6222         LibInfo->getLibFunc(F->getName(), Func) &&
6223         LibInfo->hasOptimizedCodeGen(Func)) {
6224       switch (Func) {
6225       default: break;
6226       case LibFunc::copysign:
6227       case LibFunc::copysignf:
6228       case LibFunc::copysignl:
6229         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
6230             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
6231             I.getType() == I.getArgOperand(0)->getType() &&
6232             I.getType() == I.getArgOperand(1)->getType() &&
6233             I.onlyReadsMemory()) {
6234           SDValue LHS = getValue(I.getArgOperand(0));
6235           SDValue RHS = getValue(I.getArgOperand(1));
6236           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
6237                                    LHS.getValueType(), LHS, RHS));
6238           return;
6239         }
6240         break;
6241       case LibFunc::fabs:
6242       case LibFunc::fabsf:
6243       case LibFunc::fabsl:
6244         if (visitUnaryFloatCall(I, ISD::FABS))
6245           return;
6246         break;
6247       case LibFunc::fmin:
6248       case LibFunc::fminf:
6249       case LibFunc::fminl:
6250         if (visitBinaryFloatCall(I, ISD::FMINNUM))
6251           return;
6252         break;
6253       case LibFunc::fmax:
6254       case LibFunc::fmaxf:
6255       case LibFunc::fmaxl:
6256         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
6257           return;
6258         break;
6259       case LibFunc::sin:
6260       case LibFunc::sinf:
6261       case LibFunc::sinl:
6262         if (visitUnaryFloatCall(I, ISD::FSIN))
6263           return;
6264         break;
6265       case LibFunc::cos:
6266       case LibFunc::cosf:
6267       case LibFunc::cosl:
6268         if (visitUnaryFloatCall(I, ISD::FCOS))
6269           return;
6270         break;
6271       case LibFunc::sqrt:
6272       case LibFunc::sqrtf:
6273       case LibFunc::sqrtl:
6274       case LibFunc::sqrt_finite:
6275       case LibFunc::sqrtf_finite:
6276       case LibFunc::sqrtl_finite:
6277         if (visitUnaryFloatCall(I, ISD::FSQRT))
6278           return;
6279         break;
6280       case LibFunc::floor:
6281       case LibFunc::floorf:
6282       case LibFunc::floorl:
6283         if (visitUnaryFloatCall(I, ISD::FFLOOR))
6284           return;
6285         break;
6286       case LibFunc::nearbyint:
6287       case LibFunc::nearbyintf:
6288       case LibFunc::nearbyintl:
6289         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6290           return;
6291         break;
6292       case LibFunc::ceil:
6293       case LibFunc::ceilf:
6294       case LibFunc::ceill:
6295         if (visitUnaryFloatCall(I, ISD::FCEIL))
6296           return;
6297         break;
6298       case LibFunc::rint:
6299       case LibFunc::rintf:
6300       case LibFunc::rintl:
6301         if (visitUnaryFloatCall(I, ISD::FRINT))
6302           return;
6303         break;
6304       case LibFunc::round:
6305       case LibFunc::roundf:
6306       case LibFunc::roundl:
6307         if (visitUnaryFloatCall(I, ISD::FROUND))
6308           return;
6309         break;
6310       case LibFunc::trunc:
6311       case LibFunc::truncf:
6312       case LibFunc::truncl:
6313         if (visitUnaryFloatCall(I, ISD::FTRUNC))
6314           return;
6315         break;
6316       case LibFunc::log2:
6317       case LibFunc::log2f:
6318       case LibFunc::log2l:
6319         if (visitUnaryFloatCall(I, ISD::FLOG2))
6320           return;
6321         break;
6322       case LibFunc::exp2:
6323       case LibFunc::exp2f:
6324       case LibFunc::exp2l:
6325         if (visitUnaryFloatCall(I, ISD::FEXP2))
6326           return;
6327         break;
6328       case LibFunc::memcmp:
6329         if (visitMemCmpCall(I))
6330           return;
6331         break;
6332       case LibFunc::memchr:
6333         if (visitMemChrCall(I))
6334           return;
6335         break;
6336       case LibFunc::strcpy:
6337         if (visitStrCpyCall(I, false))
6338           return;
6339         break;
6340       case LibFunc::stpcpy:
6341         if (visitStrCpyCall(I, true))
6342           return;
6343         break;
6344       case LibFunc::strcmp:
6345         if (visitStrCmpCall(I))
6346           return;
6347         break;
6348       case LibFunc::strlen:
6349         if (visitStrLenCall(I))
6350           return;
6351         break;
6352       case LibFunc::strnlen:
6353         if (visitStrNLenCall(I))
6354           return;
6355         break;
6356       }
6357     }
6358   }
6359 
6360   SDValue Callee;
6361   if (!RenameFn)
6362     Callee = getValue(I.getCalledValue());
6363   else
6364     Callee = DAG.getExternalSymbol(
6365         RenameFn,
6366         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6367 
6368   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
6369   // have to do anything here to lower funclet bundles.
6370   assert(!I.hasOperandBundlesOtherThan(
6371              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
6372          "Cannot lower calls with arbitrary operand bundles!");
6373 
6374   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
6375     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
6376   else
6377     // Check if we can potentially perform a tail call. More detailed checking
6378     // is be done within LowerCallTo, after more information about the call is
6379     // known.
6380     LowerCallTo(&I, Callee, I.isTailCall());
6381 }
6382 
6383 namespace {
6384 
6385 /// AsmOperandInfo - This contains information for each constraint that we are
6386 /// lowering.
6387 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6388 public:
6389   /// CallOperand - If this is the result output operand or a clobber
6390   /// this is null, otherwise it is the incoming operand to the CallInst.
6391   /// This gets modified as the asm is processed.
6392   SDValue CallOperand;
6393 
6394   /// AssignedRegs - If this is a register or register class operand, this
6395   /// contains the set of register corresponding to the operand.
6396   RegsForValue AssignedRegs;
6397 
6398   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6399     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
6400   }
6401 
6402   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6403   /// corresponds to.  If there is no Value* for this operand, it returns
6404   /// MVT::Other.
6405   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
6406                            const DataLayout &DL) const {
6407     if (!CallOperandVal) return MVT::Other;
6408 
6409     if (isa<BasicBlock>(CallOperandVal))
6410       return TLI.getPointerTy(DL);
6411 
6412     llvm::Type *OpTy = CallOperandVal->getType();
6413 
6414     // FIXME: code duplicated from TargetLowering::ParseConstraints().
6415     // If this is an indirect operand, the operand is a pointer to the
6416     // accessed type.
6417     if (isIndirect) {
6418       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6419       if (!PtrTy)
6420         report_fatal_error("Indirect operand for inline asm not a pointer!");
6421       OpTy = PtrTy->getElementType();
6422     }
6423 
6424     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6425     if (StructType *STy = dyn_cast<StructType>(OpTy))
6426       if (STy->getNumElements() == 1)
6427         OpTy = STy->getElementType(0);
6428 
6429     // If OpTy is not a single value, it may be a struct/union that we
6430     // can tile with integers.
6431     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6432       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
6433       switch (BitSize) {
6434       default: break;
6435       case 1:
6436       case 8:
6437       case 16:
6438       case 32:
6439       case 64:
6440       case 128:
6441         OpTy = IntegerType::get(Context, BitSize);
6442         break;
6443       }
6444     }
6445 
6446     return TLI.getValueType(DL, OpTy, true);
6447   }
6448 };
6449 
6450 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
6451 
6452 } // end anonymous namespace
6453 
6454 /// GetRegistersForValue - Assign registers (virtual or physical) for the
6455 /// specified operand.  We prefer to assign virtual registers, to allow the
6456 /// register allocator to handle the assignment process.  However, if the asm
6457 /// uses features that we can't model on machineinstrs, we have SDISel do the
6458 /// allocation.  This produces generally horrible, but correct, code.
6459 ///
6460 ///   OpInfo describes the operand.
6461 ///
6462 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI,
6463                                  const SDLoc &DL,
6464                                  SDISelAsmOperandInfo &OpInfo) {
6465   LLVMContext &Context = *DAG.getContext();
6466 
6467   MachineFunction &MF = DAG.getMachineFunction();
6468   SmallVector<unsigned, 4> Regs;
6469 
6470   // If this is a constraint for a single physreg, or a constraint for a
6471   // register class, find it.
6472   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
6473       TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(),
6474                                        OpInfo.ConstraintCode,
6475                                        OpInfo.ConstraintVT);
6476 
6477   unsigned NumRegs = 1;
6478   if (OpInfo.ConstraintVT != MVT::Other) {
6479     // If this is a FP input in an integer register (or visa versa) insert a bit
6480     // cast of the input value.  More generally, handle any case where the input
6481     // value disagrees with the register class we plan to stick this in.
6482     if (OpInfo.Type == InlineAsm::isInput &&
6483         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
6484       // Try to convert to the first EVT that the reg class contains.  If the
6485       // types are identical size, use a bitcast to convert (e.g. two differing
6486       // vector types).
6487       MVT RegVT = *PhysReg.second->vt_begin();
6488       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6489         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6490                                          RegVT, OpInfo.CallOperand);
6491         OpInfo.ConstraintVT = RegVT;
6492       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6493         // If the input is a FP value and we want it in FP registers, do a
6494         // bitcast to the corresponding integer type.  This turns an f64 value
6495         // into i64, which can be passed with two i32 values on a 32-bit
6496         // machine.
6497         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6498         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6499                                          RegVT, OpInfo.CallOperand);
6500         OpInfo.ConstraintVT = RegVT;
6501       }
6502     }
6503 
6504     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6505   }
6506 
6507   MVT RegVT;
6508   EVT ValueVT = OpInfo.ConstraintVT;
6509 
6510   // If this is a constraint for a specific physical register, like {r17},
6511   // assign it now.
6512   if (unsigned AssignedReg = PhysReg.first) {
6513     const TargetRegisterClass *RC = PhysReg.second;
6514     if (OpInfo.ConstraintVT == MVT::Other)
6515       ValueVT = *RC->vt_begin();
6516 
6517     // Get the actual register value type.  This is important, because the user
6518     // may have asked for (e.g.) the AX register in i32 type.  We need to
6519     // remember that AX is actually i16 to get the right extension.
6520     RegVT = *RC->vt_begin();
6521 
6522     // This is a explicit reference to a physical register.
6523     Regs.push_back(AssignedReg);
6524 
6525     // If this is an expanded reference, add the rest of the regs to Regs.
6526     if (NumRegs != 1) {
6527       TargetRegisterClass::iterator I = RC->begin();
6528       for (; *I != AssignedReg; ++I)
6529         assert(I != RC->end() && "Didn't find reg!");
6530 
6531       // Already added the first reg.
6532       --NumRegs; ++I;
6533       for (; NumRegs; --NumRegs, ++I) {
6534         assert(I != RC->end() && "Ran out of registers to allocate!");
6535         Regs.push_back(*I);
6536       }
6537     }
6538 
6539     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6540     return;
6541   }
6542 
6543   // Otherwise, if this was a reference to an LLVM register class, create vregs
6544   // for this reference.
6545   if (const TargetRegisterClass *RC = PhysReg.second) {
6546     RegVT = *RC->vt_begin();
6547     if (OpInfo.ConstraintVT == MVT::Other)
6548       ValueVT = RegVT;
6549 
6550     // Create the appropriate number of virtual registers.
6551     MachineRegisterInfo &RegInfo = MF.getRegInfo();
6552     for (; NumRegs; --NumRegs)
6553       Regs.push_back(RegInfo.createVirtualRegister(RC));
6554 
6555     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6556     return;
6557   }
6558 
6559   // Otherwise, we couldn't allocate enough registers for this.
6560 }
6561 
6562 /// visitInlineAsm - Handle a call to an InlineAsm object.
6563 ///
6564 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6565   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6566 
6567   /// ConstraintOperands - Information about all of the constraints.
6568   SDISelAsmOperandInfoVector ConstraintOperands;
6569 
6570   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6571   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
6572       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
6573 
6574   bool hasMemory = false;
6575 
6576   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
6577   unsigned ResNo = 0;   // ResNo - The result number of the next output.
6578   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6579     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6580     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6581 
6582     MVT OpVT = MVT::Other;
6583 
6584     // Compute the value type for each operand.
6585     switch (OpInfo.Type) {
6586     case InlineAsm::isOutput:
6587       // Indirect outputs just consume an argument.
6588       if (OpInfo.isIndirect) {
6589         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6590         break;
6591       }
6592 
6593       // The return value of the call is this value.  As such, there is no
6594       // corresponding argument.
6595       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6596       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6597         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
6598                                       STy->getElementType(ResNo));
6599       } else {
6600         assert(ResNo == 0 && "Asm only has one result!");
6601         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
6602       }
6603       ++ResNo;
6604       break;
6605     case InlineAsm::isInput:
6606       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6607       break;
6608     case InlineAsm::isClobber:
6609       // Nothing to do.
6610       break;
6611     }
6612 
6613     // If this is an input or an indirect output, process the call argument.
6614     // BasicBlocks are labels, currently appearing only in asm's.
6615     if (OpInfo.CallOperandVal) {
6616       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6617         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6618       } else {
6619         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6620       }
6621 
6622       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
6623                                          DAG.getDataLayout()).getSimpleVT();
6624     }
6625 
6626     OpInfo.ConstraintVT = OpVT;
6627 
6628     // Indirect operand accesses access memory.
6629     if (OpInfo.isIndirect)
6630       hasMemory = true;
6631     else {
6632       for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
6633         TargetLowering::ConstraintType
6634           CType = TLI.getConstraintType(OpInfo.Codes[j]);
6635         if (CType == TargetLowering::C_Memory) {
6636           hasMemory = true;
6637           break;
6638         }
6639       }
6640     }
6641   }
6642 
6643   SDValue Chain, Flag;
6644 
6645   // We won't need to flush pending loads if this asm doesn't touch
6646   // memory and is nonvolatile.
6647   if (hasMemory || IA->hasSideEffects())
6648     Chain = getRoot();
6649   else
6650     Chain = DAG.getRoot();
6651 
6652   // Second pass over the constraints: compute which constraint option to use
6653   // and assign registers to constraints that want a specific physreg.
6654   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6655     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6656 
6657     // If this is an output operand with a matching input operand, look up the
6658     // matching input. If their types mismatch, e.g. one is an integer, the
6659     // other is floating point, or their sizes are different, flag it as an
6660     // error.
6661     if (OpInfo.hasMatchingInput()) {
6662       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6663 
6664       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6665         const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
6666         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6667             TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
6668                                              OpInfo.ConstraintVT);
6669         std::pair<unsigned, const TargetRegisterClass *> InputRC =
6670             TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
6671                                              Input.ConstraintVT);
6672         if ((OpInfo.ConstraintVT.isInteger() !=
6673              Input.ConstraintVT.isInteger()) ||
6674             (MatchRC.second != InputRC.second)) {
6675           report_fatal_error("Unsupported asm: input constraint"
6676                              " with a matching output constraint of"
6677                              " incompatible type!");
6678         }
6679         Input.ConstraintVT = OpInfo.ConstraintVT;
6680       }
6681     }
6682 
6683     // Compute the constraint code and ConstraintType to use.
6684     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6685 
6686     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6687         OpInfo.Type == InlineAsm::isClobber)
6688       continue;
6689 
6690     // If this is a memory input, and if the operand is not indirect, do what we
6691     // need to to provide an address for the memory input.
6692     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6693         !OpInfo.isIndirect) {
6694       assert((OpInfo.isMultipleAlternative ||
6695               (OpInfo.Type == InlineAsm::isInput)) &&
6696              "Can only indirectify direct input operands!");
6697 
6698       // Memory operands really want the address of the value.  If we don't have
6699       // an indirect input, put it in the constpool if we can, otherwise spill
6700       // it to a stack slot.
6701       // TODO: This isn't quite right. We need to handle these according to
6702       // the addressing mode that the constraint wants. Also, this may take
6703       // an additional register for the computation and we don't want that
6704       // either.
6705 
6706       // If the operand is a float, integer, or vector constant, spill to a
6707       // constant pool entry to get its address.
6708       const Value *OpVal = OpInfo.CallOperandVal;
6709       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6710           isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6711         OpInfo.CallOperand = DAG.getConstantPool(
6712             cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
6713       } else {
6714         // Otherwise, create a stack slot and emit a store to it before the
6715         // asm.
6716         Type *Ty = OpVal->getType();
6717         auto &DL = DAG.getDataLayout();
6718         uint64_t TySize = DL.getTypeAllocSize(Ty);
6719         unsigned Align = DL.getPrefTypeAlignment(Ty);
6720         MachineFunction &MF = DAG.getMachineFunction();
6721         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6722         SDValue StackSlot =
6723             DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout()));
6724         Chain = DAG.getStore(
6725             Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot,
6726             MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
6727             false, false, 0);
6728         OpInfo.CallOperand = StackSlot;
6729       }
6730 
6731       // There is no longer a Value* corresponding to this operand.
6732       OpInfo.CallOperandVal = nullptr;
6733 
6734       // It is now an indirect operand.
6735       OpInfo.isIndirect = true;
6736     }
6737 
6738     // If this constraint is for a specific register, allocate it before
6739     // anything else.
6740     if (OpInfo.ConstraintType == TargetLowering::C_Register)
6741       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6742   }
6743 
6744   // Second pass - Loop over all of the operands, assigning virtual or physregs
6745   // to register class operands.
6746   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6747     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6748 
6749     // C_Register operands have already been allocated, Other/Memory don't need
6750     // to be.
6751     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6752       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6753   }
6754 
6755   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6756   std::vector<SDValue> AsmNodeOperands;
6757   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6758   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
6759       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
6760 
6761   // If we have a !srcloc metadata node associated with it, we want to attach
6762   // this to the ultimately generated inline asm machineinstr.  To do this, we
6763   // pass in the third operand as this (potentially null) inline asm MDNode.
6764   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6765   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6766 
6767   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6768   // bits as operand 3.
6769   unsigned ExtraInfo = 0;
6770   if (IA->hasSideEffects())
6771     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6772   if (IA->isAlignStack())
6773     ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6774   if (CS.isConvergent())
6775     ExtraInfo |= InlineAsm::Extra_IsConvergent;
6776   // Set the asm dialect.
6777   ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6778 
6779   // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6780   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6781     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6782 
6783     // Compute the constraint code and ConstraintType to use.
6784     TLI.ComputeConstraintToUse(OpInfo, SDValue());
6785 
6786     // Ideally, we would only check against memory constraints.  However, the
6787     // meaning of an other constraint can be target-specific and we can't easily
6788     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6789     // for other constriants as well.
6790     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6791         OpInfo.ConstraintType == TargetLowering::C_Other) {
6792       if (OpInfo.Type == InlineAsm::isInput)
6793         ExtraInfo |= InlineAsm::Extra_MayLoad;
6794       else if (OpInfo.Type == InlineAsm::isOutput)
6795         ExtraInfo |= InlineAsm::Extra_MayStore;
6796       else if (OpInfo.Type == InlineAsm::isClobber)
6797         ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6798     }
6799   }
6800 
6801   AsmNodeOperands.push_back(DAG.getTargetConstant(
6802       ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6803 
6804   // Loop over all of the inputs, copying the operand values into the
6805   // appropriate registers and processing the output regs.
6806   RegsForValue RetValRegs;
6807 
6808   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6809   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6810 
6811   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6812     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6813 
6814     switch (OpInfo.Type) {
6815     case InlineAsm::isOutput: {
6816       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6817           OpInfo.ConstraintType != TargetLowering::C_Register) {
6818         // Memory output, or 'other' output (e.g. 'X' constraint).
6819         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6820 
6821         unsigned ConstraintID =
6822             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6823         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6824                "Failed to convert memory constraint code to constraint id.");
6825 
6826         // Add information to the INLINEASM node to know about this output.
6827         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6828         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
6829         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
6830                                                         MVT::i32));
6831         AsmNodeOperands.push_back(OpInfo.CallOperand);
6832         break;
6833       }
6834 
6835       // Otherwise, this is a register or register class output.
6836 
6837       // Copy the output from the appropriate register.  Find a register that
6838       // we can use.
6839       if (OpInfo.AssignedRegs.Regs.empty()) {
6840         emitInlineAsmError(
6841             CS, "couldn't allocate output register for constraint '" +
6842                     Twine(OpInfo.ConstraintCode) + "'");
6843         return;
6844       }
6845 
6846       // If this is an indirect operand, store through the pointer after the
6847       // asm.
6848       if (OpInfo.isIndirect) {
6849         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6850                                                       OpInfo.CallOperandVal));
6851       } else {
6852         // This is the result value of the call.
6853         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6854         // Concatenate this output onto the outputs list.
6855         RetValRegs.append(OpInfo.AssignedRegs);
6856       }
6857 
6858       // Add information to the INLINEASM node to know that this register is
6859       // set.
6860       OpInfo.AssignedRegs
6861           .AddInlineAsmOperands(OpInfo.isEarlyClobber
6862                                     ? InlineAsm::Kind_RegDefEarlyClobber
6863                                     : InlineAsm::Kind_RegDef,
6864                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
6865       break;
6866     }
6867     case InlineAsm::isInput: {
6868       SDValue InOperandVal = OpInfo.CallOperand;
6869 
6870       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6871         // If this is required to match an output register we have already set,
6872         // just use its register.
6873         unsigned OperandNo = OpInfo.getMatchedOperand();
6874 
6875         // Scan until we find the definition we already emitted of this operand.
6876         // When we find it, create a RegsForValue operand.
6877         unsigned CurOp = InlineAsm::Op_FirstOperand;
6878         for (; OperandNo; --OperandNo) {
6879           // Advance to the next operand.
6880           unsigned OpFlag =
6881             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6882           assert((InlineAsm::isRegDefKind(OpFlag) ||
6883                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6884                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6885           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6886         }
6887 
6888         unsigned OpFlag =
6889           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6890         if (InlineAsm::isRegDefKind(OpFlag) ||
6891             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6892           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6893           if (OpInfo.isIndirect) {
6894             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6895             emitInlineAsmError(CS, "inline asm not supported yet:"
6896                                    " don't know how to handle tied "
6897                                    "indirect register inputs");
6898             return;
6899           }
6900 
6901           RegsForValue MatchedRegs;
6902           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6903           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6904           MatchedRegs.RegVTs.push_back(RegVT);
6905           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6906           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6907                i != e; ++i) {
6908             if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
6909               MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6910             else {
6911               emitInlineAsmError(
6912                   CS, "inline asm error: This value"
6913                       " type register class is not natively supported!");
6914               return;
6915             }
6916           }
6917           SDLoc dl = getCurSDLoc();
6918           // Use the produced MatchedRegs object to
6919           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl,
6920                                     Chain, &Flag, CS.getInstruction());
6921           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6922                                            true, OpInfo.getMatchedOperand(), dl,
6923                                            DAG, AsmNodeOperands);
6924           break;
6925         }
6926 
6927         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6928         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6929                "Unexpected number of operands");
6930         // Add information to the INLINEASM node to know about this input.
6931         // See InlineAsm.h isUseOperandTiedToDef.
6932         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
6933         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6934                                                     OpInfo.getMatchedOperand());
6935         AsmNodeOperands.push_back(DAG.getTargetConstant(
6936             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6937         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6938         break;
6939       }
6940 
6941       // Treat indirect 'X' constraint as memory.
6942       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6943           OpInfo.isIndirect)
6944         OpInfo.ConstraintType = TargetLowering::C_Memory;
6945 
6946       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6947         std::vector<SDValue> Ops;
6948         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6949                                           Ops, DAG);
6950         if (Ops.empty()) {
6951           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
6952                                      Twine(OpInfo.ConstraintCode) + "'");
6953           return;
6954         }
6955 
6956         // Add information to the INLINEASM node to know about this input.
6957         unsigned ResOpType =
6958           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6959         AsmNodeOperands.push_back(DAG.getTargetConstant(
6960             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6961         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6962         break;
6963       }
6964 
6965       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6966         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6967         assert(InOperandVal.getValueType() ==
6968                    TLI.getPointerTy(DAG.getDataLayout()) &&
6969                "Memory operands expect pointer values");
6970 
6971         unsigned ConstraintID =
6972             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6973         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6974                "Failed to convert memory constraint code to constraint id.");
6975 
6976         // Add information to the INLINEASM node to know about this input.
6977         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6978         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
6979         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6980                                                         getCurSDLoc(),
6981                                                         MVT::i32));
6982         AsmNodeOperands.push_back(InOperandVal);
6983         break;
6984       }
6985 
6986       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6987               OpInfo.ConstraintType == TargetLowering::C_Register) &&
6988              "Unknown constraint type!");
6989 
6990       // TODO: Support this.
6991       if (OpInfo.isIndirect) {
6992         emitInlineAsmError(
6993             CS, "Don't know how to handle indirect register inputs yet "
6994                 "for constraint '" +
6995                     Twine(OpInfo.ConstraintCode) + "'");
6996         return;
6997       }
6998 
6999       // Copy the input into the appropriate registers.
7000       if (OpInfo.AssignedRegs.Regs.empty()) {
7001         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
7002                                    Twine(OpInfo.ConstraintCode) + "'");
7003         return;
7004       }
7005 
7006       SDLoc dl = getCurSDLoc();
7007 
7008       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7009                                         Chain, &Flag, CS.getInstruction());
7010 
7011       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
7012                                                dl, DAG, AsmNodeOperands);
7013       break;
7014     }
7015     case InlineAsm::isClobber: {
7016       // Add the clobbered value to the operand list, so that the register
7017       // allocator is aware that the physreg got clobbered.
7018       if (!OpInfo.AssignedRegs.Regs.empty())
7019         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
7020                                                  false, 0, getCurSDLoc(), DAG,
7021                                                  AsmNodeOperands);
7022       break;
7023     }
7024     }
7025   }
7026 
7027   // Finish up input operands.  Set the input chain and add the flag last.
7028   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
7029   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
7030 
7031   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
7032                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
7033   Flag = Chain.getValue(1);
7034 
7035   // If this asm returns a register value, copy the result from that register
7036   // and set it as the value of the call.
7037   if (!RetValRegs.Regs.empty()) {
7038     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7039                                              Chain, &Flag, CS.getInstruction());
7040 
7041     // FIXME: Why don't we do this for inline asms with MRVs?
7042     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
7043       EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7044 
7045       // If any of the results of the inline asm is a vector, it may have the
7046       // wrong width/num elts.  This can happen for register classes that can
7047       // contain multiple different value types.  The preg or vreg allocated may
7048       // not have the same VT as was expected.  Convert it to the right type
7049       // with bit_convert.
7050       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
7051         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
7052                           ResultType, Val);
7053 
7054       } else if (ResultType != Val.getValueType() &&
7055                  ResultType.isInteger() && Val.getValueType().isInteger()) {
7056         // If a result value was tied to an input value, the computed result may
7057         // have a wider width than the expected result.  Extract the relevant
7058         // portion.
7059         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
7060       }
7061 
7062       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
7063     }
7064 
7065     setValue(CS.getInstruction(), Val);
7066     // Don't need to use this as a chain in this case.
7067     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
7068       return;
7069   }
7070 
7071   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
7072 
7073   // Process indirect outputs, first output all of the flagged copies out of
7074   // physregs.
7075   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
7076     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
7077     const Value *Ptr = IndirectStoresToEmit[i].second;
7078     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7079                                              Chain, &Flag, IA);
7080     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
7081   }
7082 
7083   // Emit the non-flagged stores from the physregs.
7084   SmallVector<SDValue, 8> OutChains;
7085   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
7086     SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
7087                                StoresToEmit[i].first,
7088                                getValue(StoresToEmit[i].second),
7089                                MachinePointerInfo(StoresToEmit[i].second),
7090                                false, false, 0);
7091     OutChains.push_back(Val);
7092   }
7093 
7094   if (!OutChains.empty())
7095     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
7096 
7097   DAG.setRoot(Chain);
7098 }
7099 
7100 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
7101                                              const Twine &Message) {
7102   LLVMContext &Ctx = *DAG.getContext();
7103   Ctx.emitError(CS.getInstruction(), Message);
7104 
7105   // Make sure we leave the DAG in a valid state
7106   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7107   auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7108   setValue(CS.getInstruction(), DAG.getUNDEF(VT));
7109 }
7110 
7111 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
7112   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
7113                           MVT::Other, getRoot(),
7114                           getValue(I.getArgOperand(0)),
7115                           DAG.getSrcValue(I.getArgOperand(0))));
7116 }
7117 
7118 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
7119   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7120   const DataLayout &DL = DAG.getDataLayout();
7121   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7122                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
7123                            DAG.getSrcValue(I.getOperand(0)),
7124                            DL.getABITypeAlignment(I.getType()));
7125   setValue(&I, V);
7126   DAG.setRoot(V.getValue(1));
7127 }
7128 
7129 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
7130   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
7131                           MVT::Other, getRoot(),
7132                           getValue(I.getArgOperand(0)),
7133                           DAG.getSrcValue(I.getArgOperand(0))));
7134 }
7135 
7136 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
7137   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
7138                           MVT::Other, getRoot(),
7139                           getValue(I.getArgOperand(0)),
7140                           getValue(I.getArgOperand(1)),
7141                           DAG.getSrcValue(I.getArgOperand(0)),
7142                           DAG.getSrcValue(I.getArgOperand(1))));
7143 }
7144 
7145 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
7146                                                     const Instruction &I,
7147                                                     SDValue Op) {
7148   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
7149   if (!Range)
7150     return Op;
7151 
7152   Constant *Lo = cast<ConstantAsMetadata>(Range->getOperand(0))->getValue();
7153   if (!Lo->isNullValue())
7154     return Op;
7155 
7156   Constant *Hi = cast<ConstantAsMetadata>(Range->getOperand(1))->getValue();
7157   unsigned Bits = cast<ConstantInt>(Hi)->getValue().logBase2();
7158 
7159   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
7160 
7161   SDLoc SL = getCurSDLoc();
7162 
7163   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(),
7164                              Op, DAG.getValueType(SmallVT));
7165   unsigned NumVals = Op.getNode()->getNumValues();
7166   if (NumVals == 1)
7167     return ZExt;
7168 
7169   SmallVector<SDValue, 4> Ops;
7170 
7171   Ops.push_back(ZExt);
7172   for (unsigned I = 1; I != NumVals; ++I)
7173     Ops.push_back(Op.getValue(I));
7174 
7175   return DAG.getMergeValues(Ops, SL);
7176 }
7177 
7178 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of
7179 /// the call being lowered.
7180 ///
7181 /// This is a helper for lowering intrinsics that follow a target calling
7182 /// convention or require stack pointer adjustment. Only a subset of the
7183 /// intrinsic's operands need to participate in the calling convention.
7184 void SelectionDAGBuilder::populateCallLoweringInfo(
7185     TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
7186     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
7187     bool IsPatchPoint) {
7188   TargetLowering::ArgListTy Args;
7189   Args.reserve(NumArgs);
7190 
7191   // Populate the argument list.
7192   // Attributes for args start at offset 1, after the return attribute.
7193   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
7194        ArgI != ArgE; ++ArgI) {
7195     const Value *V = CS->getOperand(ArgI);
7196 
7197     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
7198 
7199     TargetLowering::ArgListEntry Entry;
7200     Entry.Node = getValue(V);
7201     Entry.Ty = V->getType();
7202     Entry.setAttributes(&CS, AttrI);
7203     Args.push_back(Entry);
7204   }
7205 
7206   CLI.setDebugLoc(getCurSDLoc())
7207       .setChain(getRoot())
7208       .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args))
7209       .setDiscardResult(CS->use_empty())
7210       .setIsPatchPoint(IsPatchPoint);
7211 }
7212 
7213 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
7214 /// or patchpoint target node's operand list.
7215 ///
7216 /// Constants are converted to TargetConstants purely as an optimization to
7217 /// avoid constant materialization and register allocation.
7218 ///
7219 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
7220 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
7221 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
7222 /// address materialization and register allocation, but may also be required
7223 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
7224 /// alloca in the entry block, then the runtime may assume that the alloca's
7225 /// StackMap location can be read immediately after compilation and that the
7226 /// location is valid at any point during execution (this is similar to the
7227 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
7228 /// only available in a register, then the runtime would need to trap when
7229 /// execution reaches the StackMap in order to read the alloca's location.
7230 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
7231                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
7232                                 SelectionDAGBuilder &Builder) {
7233   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
7234     SDValue OpVal = Builder.getValue(CS.getArgument(i));
7235     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
7236       Ops.push_back(
7237         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
7238       Ops.push_back(
7239         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
7240     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
7241       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
7242       Ops.push_back(Builder.DAG.getTargetFrameIndex(
7243           FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout())));
7244     } else
7245       Ops.push_back(OpVal);
7246   }
7247 }
7248 
7249 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
7250 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
7251   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
7252   //                                  [live variables...])
7253 
7254   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
7255 
7256   SDValue Chain, InFlag, Callee, NullPtr;
7257   SmallVector<SDValue, 32> Ops;
7258 
7259   SDLoc DL = getCurSDLoc();
7260   Callee = getValue(CI.getCalledValue());
7261   NullPtr = DAG.getIntPtrConstant(0, DL, true);
7262 
7263   // The stackmap intrinsic only records the live variables (the arguemnts
7264   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
7265   // intrinsic, this won't be lowered to a function call. This means we don't
7266   // have to worry about calling conventions and target specific lowering code.
7267   // Instead we perform the call lowering right here.
7268   //
7269   // chain, flag = CALLSEQ_START(chain, 0)
7270   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
7271   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
7272   //
7273   Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
7274   InFlag = Chain.getValue(1);
7275 
7276   // Add the <id> and <numBytes> constants.
7277   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
7278   Ops.push_back(DAG.getTargetConstant(
7279                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
7280   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
7281   Ops.push_back(DAG.getTargetConstant(
7282                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
7283                   MVT::i32));
7284 
7285   // Push live variables for the stack map.
7286   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
7287 
7288   // We are not pushing any register mask info here on the operands list,
7289   // because the stackmap doesn't clobber anything.
7290 
7291   // Push the chain and the glue flag.
7292   Ops.push_back(Chain);
7293   Ops.push_back(InFlag);
7294 
7295   // Create the STACKMAP node.
7296   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7297   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
7298   Chain = SDValue(SM, 0);
7299   InFlag = Chain.getValue(1);
7300 
7301   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
7302 
7303   // Stackmaps don't generate values, so nothing goes into the NodeMap.
7304 
7305   // Set the root to the target-lowered call chain.
7306   DAG.setRoot(Chain);
7307 
7308   // Inform the Frame Information that we have a stackmap in this function.
7309   FuncInfo.MF->getFrameInfo()->setHasStackMap();
7310 }
7311 
7312 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
7313 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
7314                                           const BasicBlock *EHPadBB) {
7315   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
7316   //                                                 i32 <numBytes>,
7317   //                                                 i8* <target>,
7318   //                                                 i32 <numArgs>,
7319   //                                                 [Args...],
7320   //                                                 [live variables...])
7321 
7322   CallingConv::ID CC = CS.getCallingConv();
7323   bool IsAnyRegCC = CC == CallingConv::AnyReg;
7324   bool HasDef = !CS->getType()->isVoidTy();
7325   SDLoc dl = getCurSDLoc();
7326   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
7327 
7328   // Handle immediate and symbolic callees.
7329   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
7330     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
7331                                    /*isTarget=*/true);
7332   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
7333     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
7334                                          SDLoc(SymbolicCallee),
7335                                          SymbolicCallee->getValueType(0));
7336 
7337   // Get the real number of arguments participating in the call <numArgs>
7338   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
7339   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
7340 
7341   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
7342   // Intrinsics include all meta-operands up to but not including CC.
7343   unsigned NumMetaOpers = PatchPointOpers::CCPos;
7344   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
7345          "Not enough arguments provided to the patchpoint intrinsic");
7346 
7347   // For AnyRegCC the arguments are lowered later on manually.
7348   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
7349   Type *ReturnTy =
7350     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
7351 
7352   TargetLowering::CallLoweringInfo CLI(DAG);
7353   populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
7354                            true);
7355   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7356 
7357   SDNode *CallEnd = Result.second.getNode();
7358   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
7359     CallEnd = CallEnd->getOperand(0).getNode();
7360 
7361   /// Get a call instruction from the call sequence chain.
7362   /// Tail calls are not allowed.
7363   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
7364          "Expected a callseq node.");
7365   SDNode *Call = CallEnd->getOperand(0).getNode();
7366   bool HasGlue = Call->getGluedNode();
7367 
7368   // Replace the target specific call node with the patchable intrinsic.
7369   SmallVector<SDValue, 8> Ops;
7370 
7371   // Add the <id> and <numBytes> constants.
7372   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
7373   Ops.push_back(DAG.getTargetConstant(
7374                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
7375   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
7376   Ops.push_back(DAG.getTargetConstant(
7377                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
7378                   MVT::i32));
7379 
7380   // Add the callee.
7381   Ops.push_back(Callee);
7382 
7383   // Adjust <numArgs> to account for any arguments that have been passed on the
7384   // stack instead.
7385   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
7386   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
7387   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
7388   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
7389 
7390   // Add the calling convention
7391   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
7392 
7393   // Add the arguments we omitted previously. The register allocator should
7394   // place these in any free register.
7395   if (IsAnyRegCC)
7396     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
7397       Ops.push_back(getValue(CS.getArgument(i)));
7398 
7399   // Push the arguments from the call instruction up to the register mask.
7400   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
7401   Ops.append(Call->op_begin() + 2, e);
7402 
7403   // Push live variables for the stack map.
7404   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
7405 
7406   // Push the register mask info.
7407   if (HasGlue)
7408     Ops.push_back(*(Call->op_end()-2));
7409   else
7410     Ops.push_back(*(Call->op_end()-1));
7411 
7412   // Push the chain (this is originally the first operand of the call, but
7413   // becomes now the last or second to last operand).
7414   Ops.push_back(*(Call->op_begin()));
7415 
7416   // Push the glue flag (last operand).
7417   if (HasGlue)
7418     Ops.push_back(*(Call->op_end()-1));
7419 
7420   SDVTList NodeTys;
7421   if (IsAnyRegCC && HasDef) {
7422     // Create the return types based on the intrinsic definition
7423     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7424     SmallVector<EVT, 3> ValueVTs;
7425     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
7426     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
7427 
7428     // There is always a chain and a glue type at the end
7429     ValueVTs.push_back(MVT::Other);
7430     ValueVTs.push_back(MVT::Glue);
7431     NodeTys = DAG.getVTList(ValueVTs);
7432   } else
7433     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7434 
7435   // Replace the target specific call node with a PATCHPOINT node.
7436   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
7437                                          dl, NodeTys, Ops);
7438 
7439   // Update the NodeMap.
7440   if (HasDef) {
7441     if (IsAnyRegCC)
7442       setValue(CS.getInstruction(), SDValue(MN, 0));
7443     else
7444       setValue(CS.getInstruction(), Result.first);
7445   }
7446 
7447   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
7448   // call sequence. Furthermore the location of the chain and glue can change
7449   // when the AnyReg calling convention is used and the intrinsic returns a
7450   // value.
7451   if (IsAnyRegCC && HasDef) {
7452     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
7453     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
7454     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
7455   } else
7456     DAG.ReplaceAllUsesWith(Call, MN);
7457   DAG.DeleteNode(Call);
7458 
7459   // Inform the Frame Information that we have a patchpoint in this function.
7460   FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
7461 }
7462 
7463 /// Returns an AttributeSet representing the attributes applied to the return
7464 /// value of the given call.
7465 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
7466   SmallVector<Attribute::AttrKind, 2> Attrs;
7467   if (CLI.RetSExt)
7468     Attrs.push_back(Attribute::SExt);
7469   if (CLI.RetZExt)
7470     Attrs.push_back(Attribute::ZExt);
7471   if (CLI.IsInReg)
7472     Attrs.push_back(Attribute::InReg);
7473 
7474   return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
7475                            Attrs);
7476 }
7477 
7478 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
7479 /// implementation, which just calls LowerCall.
7480 /// FIXME: When all targets are
7481 /// migrated to using LowerCall, this hook should be integrated into SDISel.
7482 std::pair<SDValue, SDValue>
7483 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
7484   // Handle the incoming return values from the call.
7485   CLI.Ins.clear();
7486   Type *OrigRetTy = CLI.RetTy;
7487   SmallVector<EVT, 4> RetTys;
7488   SmallVector<uint64_t, 4> Offsets;
7489   auto &DL = CLI.DAG.getDataLayout();
7490   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
7491 
7492   SmallVector<ISD::OutputArg, 4> Outs;
7493   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
7494 
7495   bool CanLowerReturn =
7496       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
7497                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
7498 
7499   SDValue DemoteStackSlot;
7500   int DemoteStackIdx = -100;
7501   if (!CanLowerReturn) {
7502     // FIXME: equivalent assert?
7503     // assert(!CS.hasInAllocaArgument() &&
7504     //        "sret demotion is incompatible with inalloca");
7505     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
7506     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
7507     MachineFunction &MF = CLI.DAG.getMachineFunction();
7508     DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
7509     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
7510 
7511     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL));
7512     ArgListEntry Entry;
7513     Entry.Node = DemoteStackSlot;
7514     Entry.Ty = StackSlotPtrType;
7515     Entry.isSExt = false;
7516     Entry.isZExt = false;
7517     Entry.isInReg = false;
7518     Entry.isSRet = true;
7519     Entry.isNest = false;
7520     Entry.isByVal = false;
7521     Entry.isReturned = false;
7522     Entry.isSwiftSelf = false;
7523     Entry.isSwiftError = false;
7524     Entry.Alignment = Align;
7525     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
7526     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
7527 
7528     // sret demotion isn't compatible with tail-calls, since the sret argument
7529     // points into the callers stack frame.
7530     CLI.IsTailCall = false;
7531   } else {
7532     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7533       EVT VT = RetTys[I];
7534       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7535       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7536       for (unsigned i = 0; i != NumRegs; ++i) {
7537         ISD::InputArg MyFlags;
7538         MyFlags.VT = RegisterVT;
7539         MyFlags.ArgVT = VT;
7540         MyFlags.Used = CLI.IsReturnValueUsed;
7541         if (CLI.RetSExt)
7542           MyFlags.Flags.setSExt();
7543         if (CLI.RetZExt)
7544           MyFlags.Flags.setZExt();
7545         if (CLI.IsInReg)
7546           MyFlags.Flags.setInReg();
7547         CLI.Ins.push_back(MyFlags);
7548       }
7549     }
7550   }
7551 
7552   // We push in swifterror return as the last element of CLI.Ins.
7553   ArgListTy &Args = CLI.getArgs();
7554   if (supportSwiftError()) {
7555     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7556       if (Args[i].isSwiftError) {
7557         ISD::InputArg MyFlags;
7558         MyFlags.VT = getPointerTy(DL);
7559         MyFlags.ArgVT = EVT(getPointerTy(DL));
7560         MyFlags.Flags.setSwiftError();
7561         CLI.Ins.push_back(MyFlags);
7562       }
7563     }
7564   }
7565 
7566   // Handle all of the outgoing arguments.
7567   CLI.Outs.clear();
7568   CLI.OutVals.clear();
7569   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7570     SmallVector<EVT, 4> ValueVTs;
7571     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
7572     Type *FinalType = Args[i].Ty;
7573     if (Args[i].isByVal)
7574       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
7575     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
7576         FinalType, CLI.CallConv, CLI.IsVarArg);
7577     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
7578          ++Value) {
7579       EVT VT = ValueVTs[Value];
7580       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
7581       SDValue Op = SDValue(Args[i].Node.getNode(),
7582                            Args[i].Node.getResNo() + Value);
7583       ISD::ArgFlagsTy Flags;
7584       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7585 
7586       if (Args[i].isZExt)
7587         Flags.setZExt();
7588       if (Args[i].isSExt)
7589         Flags.setSExt();
7590       if (Args[i].isInReg)
7591         Flags.setInReg();
7592       if (Args[i].isSRet)
7593         Flags.setSRet();
7594       if (Args[i].isSwiftSelf)
7595         Flags.setSwiftSelf();
7596       if (Args[i].isSwiftError)
7597         Flags.setSwiftError();
7598       if (Args[i].isByVal)
7599         Flags.setByVal();
7600       if (Args[i].isInAlloca) {
7601         Flags.setInAlloca();
7602         // Set the byval flag for CCAssignFn callbacks that don't know about
7603         // inalloca.  This way we can know how many bytes we should've allocated
7604         // and how many bytes a callee cleanup function will pop.  If we port
7605         // inalloca to more targets, we'll have to add custom inalloca handling
7606         // in the various CC lowering callbacks.
7607         Flags.setByVal();
7608       }
7609       if (Args[i].isByVal || Args[i].isInAlloca) {
7610         PointerType *Ty = cast<PointerType>(Args[i].Ty);
7611         Type *ElementTy = Ty->getElementType();
7612         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7613         // For ByVal, alignment should come from FE.  BE will guess if this
7614         // info is not there but there are cases it cannot get right.
7615         unsigned FrameAlign;
7616         if (Args[i].Alignment)
7617           FrameAlign = Args[i].Alignment;
7618         else
7619           FrameAlign = getByValTypeAlignment(ElementTy, DL);
7620         Flags.setByValAlign(FrameAlign);
7621       }
7622       if (Args[i].isNest)
7623         Flags.setNest();
7624       if (NeedsRegBlock)
7625         Flags.setInConsecutiveRegs();
7626       Flags.setOrigAlign(OriginalAlignment);
7627 
7628       MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
7629       unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
7630       SmallVector<SDValue, 4> Parts(NumParts);
7631       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
7632 
7633       if (Args[i].isSExt)
7634         ExtendKind = ISD::SIGN_EXTEND;
7635       else if (Args[i].isZExt)
7636         ExtendKind = ISD::ZERO_EXTEND;
7637 
7638       // Conservatively only handle 'returned' on non-vectors for now
7639       if (Args[i].isReturned && !Op.getValueType().isVector()) {
7640         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
7641                "unexpected use of 'returned'");
7642         // Before passing 'returned' to the target lowering code, ensure that
7643         // either the register MVT and the actual EVT are the same size or that
7644         // the return value and argument are extended in the same way; in these
7645         // cases it's safe to pass the argument register value unchanged as the
7646         // return register value (although it's at the target's option whether
7647         // to do so)
7648         // TODO: allow code generation to take advantage of partially preserved
7649         // registers rather than clobbering the entire register when the
7650         // parameter extension method is not compatible with the return
7651         // extension method
7652         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
7653             (ExtendKind != ISD::ANY_EXTEND &&
7654              CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
7655         Flags.setReturned();
7656       }
7657 
7658       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
7659                      CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
7660 
7661       for (unsigned j = 0; j != NumParts; ++j) {
7662         // if it isn't first piece, alignment must be 1
7663         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
7664                                i < CLI.NumFixedArgs,
7665                                i, j*Parts[j].getValueType().getStoreSize());
7666         if (NumParts > 1 && j == 0)
7667           MyFlags.Flags.setSplit();
7668         else if (j != 0) {
7669           MyFlags.Flags.setOrigAlign(1);
7670           if (j == NumParts - 1)
7671             MyFlags.Flags.setSplitEnd();
7672         }
7673 
7674         CLI.Outs.push_back(MyFlags);
7675         CLI.OutVals.push_back(Parts[j]);
7676       }
7677 
7678       if (NeedsRegBlock && Value == NumValues - 1)
7679         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
7680     }
7681   }
7682 
7683   SmallVector<SDValue, 4> InVals;
7684   CLI.Chain = LowerCall(CLI, InVals);
7685 
7686   // Update CLI.InVals to use outside of this function.
7687   CLI.InVals = InVals;
7688 
7689   // Verify that the target's LowerCall behaved as expected.
7690   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
7691          "LowerCall didn't return a valid chain!");
7692   assert((!CLI.IsTailCall || InVals.empty()) &&
7693          "LowerCall emitted a return value for a tail call!");
7694   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
7695          "LowerCall didn't emit the correct number of values!");
7696 
7697   // For a tail call, the return value is merely live-out and there aren't
7698   // any nodes in the DAG representing it. Return a special value to
7699   // indicate that a tail call has been emitted and no more Instructions
7700   // should be processed in the current block.
7701   if (CLI.IsTailCall) {
7702     CLI.DAG.setRoot(CLI.Chain);
7703     return std::make_pair(SDValue(), SDValue());
7704   }
7705 
7706 #ifndef NDEBUG
7707   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
7708     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
7709     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
7710            "LowerCall emitted a value with the wrong type!");
7711   }
7712 #endif
7713 
7714   SmallVector<SDValue, 4> ReturnValues;
7715   if (!CanLowerReturn) {
7716     // The instruction result is the result of loading from the
7717     // hidden sret parameter.
7718     SmallVector<EVT, 1> PVTs;
7719     Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
7720 
7721     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
7722     assert(PVTs.size() == 1 && "Pointers should fit in one register");
7723     EVT PtrVT = PVTs[0];
7724 
7725     unsigned NumValues = RetTys.size();
7726     ReturnValues.resize(NumValues);
7727     SmallVector<SDValue, 4> Chains(NumValues);
7728 
7729     // An aggregate return value cannot wrap around the address space, so
7730     // offsets to its parts don't wrap either.
7731     SDNodeFlags Flags;
7732     Flags.setNoUnsignedWrap(true);
7733 
7734     for (unsigned i = 0; i < NumValues; ++i) {
7735       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
7736                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
7737                                                         PtrVT), &Flags);
7738       SDValue L = CLI.DAG.getLoad(
7739           RetTys[i], CLI.DL, CLI.Chain, Add,
7740           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
7741                                             DemoteStackIdx, Offsets[i]),
7742           false, false, false, 1);
7743       ReturnValues[i] = L;
7744       Chains[i] = L.getValue(1);
7745     }
7746 
7747     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
7748   } else {
7749     // Collect the legal value parts into potentially illegal values
7750     // that correspond to the original function's return values.
7751     Optional<ISD::NodeType> AssertOp;
7752     if (CLI.RetSExt)
7753       AssertOp = ISD::AssertSext;
7754     else if (CLI.RetZExt)
7755       AssertOp = ISD::AssertZext;
7756     unsigned CurReg = 0;
7757     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7758       EVT VT = RetTys[I];
7759       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7760       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7761 
7762       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
7763                                               NumRegs, RegisterVT, VT, nullptr,
7764                                               AssertOp));
7765       CurReg += NumRegs;
7766     }
7767 
7768     // For a function returning void, there is no return value. We can't create
7769     // such a node, so we just return a null return value in that case. In
7770     // that case, nothing will actually look at the value.
7771     if (ReturnValues.empty())
7772       return std::make_pair(SDValue(), CLI.Chain);
7773   }
7774 
7775   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
7776                                 CLI.DAG.getVTList(RetTys), ReturnValues);
7777   return std::make_pair(Res, CLI.Chain);
7778 }
7779 
7780 void TargetLowering::LowerOperationWrapper(SDNode *N,
7781                                            SmallVectorImpl<SDValue> &Results,
7782                                            SelectionDAG &DAG) const {
7783   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
7784     Results.push_back(Res);
7785 }
7786 
7787 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7788   llvm_unreachable("LowerOperation not implemented for this target!");
7789 }
7790 
7791 void
7792 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
7793   SDValue Op = getNonRegisterValue(V);
7794   assert((Op.getOpcode() != ISD::CopyFromReg ||
7795           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
7796          "Copy from a reg to the same reg!");
7797   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
7798 
7799   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7800   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
7801                    V->getType());
7802   SDValue Chain = DAG.getEntryNode();
7803 
7804   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
7805                               FuncInfo.PreferredExtendType.end())
7806                                  ? ISD::ANY_EXTEND
7807                                  : FuncInfo.PreferredExtendType[V];
7808   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
7809   PendingExports.push_back(Chain);
7810 }
7811 
7812 #include "llvm/CodeGen/SelectionDAGISel.h"
7813 
7814 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
7815 /// entry block, return true.  This includes arguments used by switches, since
7816 /// the switch may expand into multiple basic blocks.
7817 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
7818   // With FastISel active, we may be splitting blocks, so force creation
7819   // of virtual registers for all non-dead arguments.
7820   if (FastISel)
7821     return A->use_empty();
7822 
7823   const BasicBlock &Entry = A->getParent()->front();
7824   for (const User *U : A->users())
7825     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
7826       return false;  // Use not in entry block.
7827 
7828   return true;
7829 }
7830 
7831 void SelectionDAGISel::LowerArguments(const Function &F) {
7832   SelectionDAG &DAG = SDB->DAG;
7833   SDLoc dl = SDB->getCurSDLoc();
7834   const DataLayout &DL = DAG.getDataLayout();
7835   SmallVector<ISD::InputArg, 16> Ins;
7836 
7837   if (!FuncInfo->CanLowerReturn) {
7838     // Put in an sret pointer parameter before all the other parameters.
7839     SmallVector<EVT, 1> ValueVTs;
7840     ComputeValueVTs(*TLI, DAG.getDataLayout(),
7841                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
7842 
7843     // NOTE: Assuming that a pointer will never break down to more than one VT
7844     // or one register.
7845     ISD::ArgFlagsTy Flags;
7846     Flags.setSRet();
7847     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
7848     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
7849                          ISD::InputArg::NoArgIndex, 0);
7850     Ins.push_back(RetArg);
7851   }
7852 
7853   // Set up the incoming argument description vector.
7854   unsigned Idx = 1;
7855   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
7856        I != E; ++I, ++Idx) {
7857     SmallVector<EVT, 4> ValueVTs;
7858     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
7859     bool isArgValueUsed = !I->use_empty();
7860     unsigned PartBase = 0;
7861     Type *FinalType = I->getType();
7862     if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7863       FinalType = cast<PointerType>(FinalType)->getElementType();
7864     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
7865         FinalType, F.getCallingConv(), F.isVarArg());
7866     for (unsigned Value = 0, NumValues = ValueVTs.size();
7867          Value != NumValues; ++Value) {
7868       EVT VT = ValueVTs[Value];
7869       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
7870       ISD::ArgFlagsTy Flags;
7871       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7872 
7873       if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7874         Flags.setZExt();
7875       if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7876         Flags.setSExt();
7877       if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
7878         Flags.setInReg();
7879       if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
7880         Flags.setSRet();
7881       if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftSelf))
7882         Flags.setSwiftSelf();
7883       if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftError))
7884         Flags.setSwiftError();
7885       if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7886         Flags.setByVal();
7887       if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
7888         Flags.setInAlloca();
7889         // Set the byval flag for CCAssignFn callbacks that don't know about
7890         // inalloca.  This way we can know how many bytes we should've allocated
7891         // and how many bytes a callee cleanup function will pop.  If we port
7892         // inalloca to more targets, we'll have to add custom inalloca handling
7893         // in the various CC lowering callbacks.
7894         Flags.setByVal();
7895       }
7896       if (F.getCallingConv() == CallingConv::X86_INTR) {
7897         // IA Interrupt passes frame (1st parameter) by value in the stack.
7898         if (Idx == 1)
7899           Flags.setByVal();
7900       }
7901       if (Flags.isByVal() || Flags.isInAlloca()) {
7902         PointerType *Ty = cast<PointerType>(I->getType());
7903         Type *ElementTy = Ty->getElementType();
7904         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7905         // For ByVal, alignment should be passed from FE.  BE will guess if
7906         // this info is not there but there are cases it cannot get right.
7907         unsigned FrameAlign;
7908         if (F.getParamAlignment(Idx))
7909           FrameAlign = F.getParamAlignment(Idx);
7910         else
7911           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
7912         Flags.setByValAlign(FrameAlign);
7913       }
7914       if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
7915         Flags.setNest();
7916       if (NeedsRegBlock)
7917         Flags.setInConsecutiveRegs();
7918       Flags.setOrigAlign(OriginalAlignment);
7919 
7920       MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7921       unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7922       for (unsigned i = 0; i != NumRegs; ++i) {
7923         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
7924                               Idx-1, PartBase+i*RegisterVT.getStoreSize());
7925         if (NumRegs > 1 && i == 0)
7926           MyFlags.Flags.setSplit();
7927         // if it isn't first piece, alignment must be 1
7928         else if (i > 0) {
7929           MyFlags.Flags.setOrigAlign(1);
7930           if (i == NumRegs - 1)
7931             MyFlags.Flags.setSplitEnd();
7932         }
7933         Ins.push_back(MyFlags);
7934       }
7935       if (NeedsRegBlock && Value == NumValues - 1)
7936         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
7937       PartBase += VT.getStoreSize();
7938     }
7939   }
7940 
7941   // Call the target to set up the argument values.
7942   SmallVector<SDValue, 8> InVals;
7943   SDValue NewRoot = TLI->LowerFormalArguments(
7944       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
7945 
7946   // Verify that the target's LowerFormalArguments behaved as expected.
7947   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
7948          "LowerFormalArguments didn't return a valid chain!");
7949   assert(InVals.size() == Ins.size() &&
7950          "LowerFormalArguments didn't emit the correct number of values!");
7951   DEBUG({
7952       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
7953         assert(InVals[i].getNode() &&
7954                "LowerFormalArguments emitted a null value!");
7955         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
7956                "LowerFormalArguments emitted a value with the wrong type!");
7957       }
7958     });
7959 
7960   // Update the DAG with the new chain value resulting from argument lowering.
7961   DAG.setRoot(NewRoot);
7962 
7963   // Set up the argument values.
7964   unsigned i = 0;
7965   Idx = 1;
7966   if (!FuncInfo->CanLowerReturn) {
7967     // Create a virtual register for the sret pointer, and put in a copy
7968     // from the sret argument into it.
7969     SmallVector<EVT, 1> ValueVTs;
7970     ComputeValueVTs(*TLI, DAG.getDataLayout(),
7971                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
7972     MVT VT = ValueVTs[0].getSimpleVT();
7973     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7974     Optional<ISD::NodeType> AssertOp = None;
7975     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
7976                                         RegVT, VT, nullptr, AssertOp);
7977 
7978     MachineFunction& MF = SDB->DAG.getMachineFunction();
7979     MachineRegisterInfo& RegInfo = MF.getRegInfo();
7980     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
7981     FuncInfo->DemoteRegister = SRetReg;
7982     NewRoot =
7983         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
7984     DAG.setRoot(NewRoot);
7985 
7986     // i indexes lowered arguments.  Bump it past the hidden sret argument.
7987     // Idx indexes LLVM arguments.  Don't touch it.
7988     ++i;
7989   }
7990 
7991   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
7992       ++I, ++Idx) {
7993     SmallVector<SDValue, 4> ArgValues;
7994     SmallVector<EVT, 4> ValueVTs;
7995     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
7996     unsigned NumValues = ValueVTs.size();
7997 
7998     // If this argument is unused then remember its value. It is used to generate
7999     // debugging information.
8000     if (I->use_empty() && NumValues) {
8001       SDB->setUnusedArgValue(&*I, InVals[i]);
8002 
8003       // Also remember any frame index for use in FastISel.
8004       if (FrameIndexSDNode *FI =
8005           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
8006         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
8007     }
8008 
8009     for (unsigned Val = 0; Val != NumValues; ++Val) {
8010       EVT VT = ValueVTs[Val];
8011       MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8012       unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
8013 
8014       if (!I->use_empty()) {
8015         Optional<ISD::NodeType> AssertOp;
8016         if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
8017           AssertOp = ISD::AssertSext;
8018         else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
8019           AssertOp = ISD::AssertZext;
8020 
8021         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
8022                                              NumParts, PartVT, VT,
8023                                              nullptr, AssertOp));
8024       }
8025 
8026       i += NumParts;
8027     }
8028 
8029     // We don't need to do anything else for unused arguments.
8030     if (ArgValues.empty())
8031       continue;
8032 
8033     // Note down frame index.
8034     if (FrameIndexSDNode *FI =
8035         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
8036       FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
8037 
8038     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
8039                                      SDB->getCurSDLoc());
8040 
8041     SDB->setValue(&*I, Res);
8042     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
8043       if (LoadSDNode *LNode =
8044           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
8045         if (FrameIndexSDNode *FI =
8046             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
8047         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
8048     }
8049 
8050     // Update SwiftErrorMap.
8051     if (Res.getOpcode() == ISD::CopyFromReg && TLI->supportSwiftError() &&
8052         F.getAttributes().hasAttribute(Idx, Attribute::SwiftError)) {
8053       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8054       if (TargetRegisterInfo::isVirtualRegister(Reg))
8055         FuncInfo->SwiftErrorMap[FuncInfo->MBB][0] = Reg;
8056     }
8057 
8058     // If this argument is live outside of the entry block, insert a copy from
8059     // wherever we got it to the vreg that other BB's will reference it as.
8060     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
8061       // If we can, though, try to skip creating an unnecessary vreg.
8062       // FIXME: This isn't very clean... it would be nice to make this more
8063       // general.  It's also subtly incompatible with the hacks FastISel
8064       // uses with vregs.
8065       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8066       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
8067         FuncInfo->ValueMap[&*I] = Reg;
8068         continue;
8069       }
8070     }
8071     if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) {
8072       FuncInfo->InitializeRegForValue(&*I);
8073       SDB->CopyToExportRegsIfNeeded(&*I);
8074     }
8075   }
8076 
8077   assert(i == InVals.size() && "Argument register count mismatch!");
8078 
8079   // Finally, if the target has anything special to do, allow it to do so.
8080   EmitFunctionEntryCode();
8081 }
8082 
8083 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
8084 /// ensure constants are generated when needed.  Remember the virtual registers
8085 /// that need to be added to the Machine PHI nodes as input.  We cannot just
8086 /// directly add them, because expansion might result in multiple MBB's for one
8087 /// BB.  As such, the start of the BB might correspond to a different MBB than
8088 /// the end.
8089 ///
8090 void
8091 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
8092   const TerminatorInst *TI = LLVMBB->getTerminator();
8093 
8094   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
8095 
8096   // Check PHI nodes in successors that expect a value to be available from this
8097   // block.
8098   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
8099     const BasicBlock *SuccBB = TI->getSuccessor(succ);
8100     if (!isa<PHINode>(SuccBB->begin())) continue;
8101     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
8102 
8103     // If this terminator has multiple identical successors (common for
8104     // switches), only handle each succ once.
8105     if (!SuccsHandled.insert(SuccMBB).second)
8106       continue;
8107 
8108     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
8109 
8110     // At this point we know that there is a 1-1 correspondence between LLVM PHI
8111     // nodes and Machine PHI nodes, but the incoming operands have not been
8112     // emitted yet.
8113     for (BasicBlock::const_iterator I = SuccBB->begin();
8114          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
8115       // Ignore dead phi's.
8116       if (PN->use_empty()) continue;
8117 
8118       // Skip empty types
8119       if (PN->getType()->isEmptyTy())
8120         continue;
8121 
8122       unsigned Reg;
8123       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
8124 
8125       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
8126         unsigned &RegOut = ConstantsOut[C];
8127         if (RegOut == 0) {
8128           RegOut = FuncInfo.CreateRegs(C->getType());
8129           CopyValueToVirtualRegister(C, RegOut);
8130         }
8131         Reg = RegOut;
8132       } else {
8133         DenseMap<const Value *, unsigned>::iterator I =
8134           FuncInfo.ValueMap.find(PHIOp);
8135         if (I != FuncInfo.ValueMap.end())
8136           Reg = I->second;
8137         else {
8138           assert(isa<AllocaInst>(PHIOp) &&
8139                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
8140                  "Didn't codegen value into a register!??");
8141           Reg = FuncInfo.CreateRegs(PHIOp->getType());
8142           CopyValueToVirtualRegister(PHIOp, Reg);
8143         }
8144       }
8145 
8146       // Remember that this register needs to added to the machine PHI node as
8147       // the input for this MBB.
8148       SmallVector<EVT, 4> ValueVTs;
8149       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8150       ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs);
8151       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
8152         EVT VT = ValueVTs[vti];
8153         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
8154         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
8155           FuncInfo.PHINodesToUpdate.push_back(
8156               std::make_pair(&*MBBI++, Reg + i));
8157         Reg += NumRegisters;
8158       }
8159     }
8160   }
8161 
8162   ConstantsOut.clear();
8163 }
8164 
8165 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
8166 /// is 0.
8167 MachineBasicBlock *
8168 SelectionDAGBuilder::StackProtectorDescriptor::
8169 AddSuccessorMBB(const BasicBlock *BB,
8170                 MachineBasicBlock *ParentMBB,
8171                 bool IsLikely,
8172                 MachineBasicBlock *SuccMBB) {
8173   // If SuccBB has not been created yet, create it.
8174   if (!SuccMBB) {
8175     MachineFunction *MF = ParentMBB->getParent();
8176     MachineFunction::iterator BBI(ParentMBB);
8177     SuccMBB = MF->CreateMachineBasicBlock(BB);
8178     MF->insert(++BBI, SuccMBB);
8179   }
8180   // Add it as a successor of ParentMBB.
8181   ParentMBB->addSuccessor(
8182       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
8183   return SuccMBB;
8184 }
8185 
8186 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
8187   MachineFunction::iterator I(MBB);
8188   if (++I == FuncInfo.MF->end())
8189     return nullptr;
8190   return &*I;
8191 }
8192 
8193 /// During lowering new call nodes can be created (such as memset, etc.).
8194 /// Those will become new roots of the current DAG, but complications arise
8195 /// when they are tail calls. In such cases, the call lowering will update
8196 /// the root, but the builder still needs to know that a tail call has been
8197 /// lowered in order to avoid generating an additional return.
8198 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
8199   // If the node is null, we do have a tail call.
8200   if (MaybeTC.getNode() != nullptr)
8201     DAG.setRoot(MaybeTC);
8202   else
8203     HasTailCall = true;
8204 }
8205 
8206 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters,
8207                                   unsigned *TotalCases, unsigned First,
8208                                   unsigned Last,
8209                                   unsigned Density) {
8210   assert(Last >= First);
8211   assert(TotalCases[Last] >= TotalCases[First]);
8212 
8213   APInt LowCase = Clusters[First].Low->getValue();
8214   APInt HighCase = Clusters[Last].High->getValue();
8215   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
8216 
8217   // FIXME: A range of consecutive cases has 100% density, but only requires one
8218   // comparison to lower. We should discriminate against such consecutive ranges
8219   // in jump tables.
8220 
8221   uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100);
8222   uint64_t Range = Diff + 1;
8223 
8224   uint64_t NumCases =
8225       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
8226 
8227   assert(NumCases < UINT64_MAX / 100);
8228   assert(Range >= NumCases);
8229 
8230   return NumCases * 100 >= Range * Density;
8231 }
8232 
8233 static inline bool areJTsAllowed(const TargetLowering &TLI,
8234                                  const SwitchInst *SI) {
8235   const Function *Fn = SI->getParent()->getParent();
8236   if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
8237     return false;
8238 
8239   return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
8240          TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
8241 }
8242 
8243 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters,
8244                                          unsigned First, unsigned Last,
8245                                          const SwitchInst *SI,
8246                                          MachineBasicBlock *DefaultMBB,
8247                                          CaseCluster &JTCluster) {
8248   assert(First <= Last);
8249 
8250   auto Prob = BranchProbability::getZero();
8251   unsigned NumCmps = 0;
8252   std::vector<MachineBasicBlock*> Table;
8253   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
8254 
8255   // Initialize probabilities in JTProbs.
8256   for (unsigned I = First; I <= Last; ++I)
8257     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
8258 
8259   for (unsigned I = First; I <= Last; ++I) {
8260     assert(Clusters[I].Kind == CC_Range);
8261     Prob += Clusters[I].Prob;
8262     APInt Low = Clusters[I].Low->getValue();
8263     APInt High = Clusters[I].High->getValue();
8264     NumCmps += (Low == High) ? 1 : 2;
8265     if (I != First) {
8266       // Fill the gap between this and the previous cluster.
8267       APInt PreviousHigh = Clusters[I - 1].High->getValue();
8268       assert(PreviousHigh.slt(Low));
8269       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
8270       for (uint64_t J = 0; J < Gap; J++)
8271         Table.push_back(DefaultMBB);
8272     }
8273     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
8274     for (uint64_t J = 0; J < ClusterSize; ++J)
8275       Table.push_back(Clusters[I].MBB);
8276     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
8277   }
8278 
8279   unsigned NumDests = JTProbs.size();
8280   if (isSuitableForBitTests(NumDests, NumCmps,
8281                             Clusters[First].Low->getValue(),
8282                             Clusters[Last].High->getValue())) {
8283     // Clusters[First..Last] should be lowered as bit tests instead.
8284     return false;
8285   }
8286 
8287   // Create the MBB that will load from and jump through the table.
8288   // Note: We create it here, but it's not inserted into the function yet.
8289   MachineFunction *CurMF = FuncInfo.MF;
8290   MachineBasicBlock *JumpTableMBB =
8291       CurMF->CreateMachineBasicBlock(SI->getParent());
8292 
8293   // Add successors. Note: use table order for determinism.
8294   SmallPtrSet<MachineBasicBlock *, 8> Done;
8295   for (MachineBasicBlock *Succ : Table) {
8296     if (Done.count(Succ))
8297       continue;
8298     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
8299     Done.insert(Succ);
8300   }
8301   JumpTableMBB->normalizeSuccProbs();
8302 
8303   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8304   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
8305                      ->createJumpTableIndex(Table);
8306 
8307   // Set up the jump table info.
8308   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
8309   JumpTableHeader JTH(Clusters[First].Low->getValue(),
8310                       Clusters[Last].High->getValue(), SI->getCondition(),
8311                       nullptr, false);
8312   JTCases.emplace_back(std::move(JTH), std::move(JT));
8313 
8314   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
8315                                      JTCases.size() - 1, Prob);
8316   return true;
8317 }
8318 
8319 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
8320                                          const SwitchInst *SI,
8321                                          MachineBasicBlock *DefaultMBB) {
8322 #ifndef NDEBUG
8323   // Clusters must be non-empty, sorted, and only contain Range clusters.
8324   assert(!Clusters.empty());
8325   for (CaseCluster &C : Clusters)
8326     assert(C.Kind == CC_Range);
8327   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
8328     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
8329 #endif
8330 
8331   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8332   if (!areJTsAllowed(TLI, SI))
8333     return;
8334 
8335   const int64_t N = Clusters.size();
8336   const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries();
8337 
8338   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
8339   SmallVector<unsigned, 8> TotalCases(N);
8340 
8341   for (unsigned i = 0; i < N; ++i) {
8342     APInt Hi = Clusters[i].High->getValue();
8343     APInt Lo = Clusters[i].Low->getValue();
8344     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
8345     if (i != 0)
8346       TotalCases[i] += TotalCases[i - 1];
8347   }
8348 
8349   unsigned MinDensity = JumpTableDensity;
8350   if (DefaultMBB->getParent()->getFunction()->optForSize())
8351     MinDensity = OptsizeJumpTableDensity;
8352   if (N >= MinJumpTableSize
8353       && isDense(Clusters, &TotalCases[0], 0, N - 1, MinDensity)) {
8354     // Cheap case: the whole range might be suitable for jump table.
8355     CaseCluster JTCluster;
8356     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
8357       Clusters[0] = JTCluster;
8358       Clusters.resize(1);
8359       return;
8360     }
8361   }
8362 
8363   // The algorithm below is not suitable for -O0.
8364   if (TM.getOptLevel() == CodeGenOpt::None)
8365     return;
8366 
8367   // Split Clusters into minimum number of dense partitions. The algorithm uses
8368   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
8369   // for the Case Statement'" (1994), but builds the MinPartitions array in
8370   // reverse order to make it easier to reconstruct the partitions in ascending
8371   // order. In the choice between two optimal partitionings, it picks the one
8372   // which yields more jump tables.
8373 
8374   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8375   SmallVector<unsigned, 8> MinPartitions(N);
8376   // LastElement[i] is the last element of the partition starting at i.
8377   SmallVector<unsigned, 8> LastElement(N);
8378   // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1].
8379   SmallVector<unsigned, 8> NumTables(N);
8380 
8381   // Base case: There is only one way to partition Clusters[N-1].
8382   MinPartitions[N - 1] = 1;
8383   LastElement[N - 1] = N - 1;
8384   assert(MinJumpTableSize > 1);
8385   NumTables[N - 1] = 0;
8386 
8387   // Note: loop indexes are signed to avoid underflow.
8388   for (int64_t i = N - 2; i >= 0; i--) {
8389     // Find optimal partitioning of Clusters[i..N-1].
8390     // Baseline: Put Clusters[i] into a partition on its own.
8391     MinPartitions[i] = MinPartitions[i + 1] + 1;
8392     LastElement[i] = i;
8393     NumTables[i] = NumTables[i + 1];
8394 
8395     // Search for a solution that results in fewer partitions.
8396     for (int64_t j = N - 1; j > i; j--) {
8397       // Try building a partition from Clusters[i..j].
8398       if (isDense(Clusters, &TotalCases[0], i, j, MinDensity)) {
8399         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8400         bool IsTable = j - i + 1 >= MinJumpTableSize;
8401         unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]);
8402 
8403         // If this j leads to fewer partitions, or same number of partitions
8404         // with more lookup tables, it is a better partitioning.
8405         if (NumPartitions < MinPartitions[i] ||
8406             (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) {
8407           MinPartitions[i] = NumPartitions;
8408           LastElement[i] = j;
8409           NumTables[i] = Tables;
8410         }
8411       }
8412     }
8413   }
8414 
8415   // Iterate over the partitions, replacing some with jump tables in-place.
8416   unsigned DstIndex = 0;
8417   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8418     Last = LastElement[First];
8419     assert(Last >= First);
8420     assert(DstIndex <= First);
8421     unsigned NumClusters = Last - First + 1;
8422 
8423     CaseCluster JTCluster;
8424     if (NumClusters >= MinJumpTableSize &&
8425         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
8426       Clusters[DstIndex++] = JTCluster;
8427     } else {
8428       for (unsigned I = First; I <= Last; ++I)
8429         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
8430     }
8431   }
8432   Clusters.resize(DstIndex);
8433 }
8434 
8435 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) {
8436   // FIXME: Using the pointer type doesn't seem ideal.
8437   uint64_t BW = DAG.getDataLayout().getPointerSizeInBits();
8438   uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
8439   return Range <= BW;
8440 }
8441 
8442 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests,
8443                                                 unsigned NumCmps,
8444                                                 const APInt &Low,
8445                                                 const APInt &High) {
8446   // FIXME: I don't think NumCmps is the correct metric: a single case and a
8447   // range of cases both require only one branch to lower. Just looking at the
8448   // number of clusters and destinations should be enough to decide whether to
8449   // build bit tests.
8450 
8451   // To lower a range with bit tests, the range must fit the bitwidth of a
8452   // machine word.
8453   if (!rangeFitsInWord(Low, High))
8454     return false;
8455 
8456   // Decide whether it's profitable to lower this range with bit tests. Each
8457   // destination requires a bit test and branch, and there is an overall range
8458   // check branch. For a small number of clusters, separate comparisons might be
8459   // cheaper, and for many destinations, splitting the range might be better.
8460   return (NumDests == 1 && NumCmps >= 3) ||
8461          (NumDests == 2 && NumCmps >= 5) ||
8462          (NumDests == 3 && NumCmps >= 6);
8463 }
8464 
8465 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
8466                                         unsigned First, unsigned Last,
8467                                         const SwitchInst *SI,
8468                                         CaseCluster &BTCluster) {
8469   assert(First <= Last);
8470   if (First == Last)
8471     return false;
8472 
8473   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8474   unsigned NumCmps = 0;
8475   for (int64_t I = First; I <= Last; ++I) {
8476     assert(Clusters[I].Kind == CC_Range);
8477     Dests.set(Clusters[I].MBB->getNumber());
8478     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
8479   }
8480   unsigned NumDests = Dests.count();
8481 
8482   APInt Low = Clusters[First].Low->getValue();
8483   APInt High = Clusters[Last].High->getValue();
8484   assert(Low.slt(High));
8485 
8486   if (!isSuitableForBitTests(NumDests, NumCmps, Low, High))
8487     return false;
8488 
8489   APInt LowBound;
8490   APInt CmpRange;
8491 
8492   const int BitWidth = DAG.getTargetLoweringInfo()
8493                            .getPointerTy(DAG.getDataLayout())
8494                            .getSizeInBits();
8495   assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!");
8496 
8497   // Check if the clusters cover a contiguous range such that no value in the
8498   // range will jump to the default statement.
8499   bool ContiguousRange = true;
8500   for (int64_t I = First + 1; I <= Last; ++I) {
8501     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
8502       ContiguousRange = false;
8503       break;
8504     }
8505   }
8506 
8507   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
8508     // Optimize the case where all the case values fit in a word without having
8509     // to subtract minValue. In this case, we can optimize away the subtraction.
8510     LowBound = APInt::getNullValue(Low.getBitWidth());
8511     CmpRange = High;
8512     ContiguousRange = false;
8513   } else {
8514     LowBound = Low;
8515     CmpRange = High - Low;
8516   }
8517 
8518   CaseBitsVector CBV;
8519   auto TotalProb = BranchProbability::getZero();
8520   for (unsigned i = First; i <= Last; ++i) {
8521     // Find the CaseBits for this destination.
8522     unsigned j;
8523     for (j = 0; j < CBV.size(); ++j)
8524       if (CBV[j].BB == Clusters[i].MBB)
8525         break;
8526     if (j == CBV.size())
8527       CBV.push_back(
8528           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
8529     CaseBits *CB = &CBV[j];
8530 
8531     // Update Mask, Bits and ExtraProb.
8532     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
8533     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
8534     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
8535     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
8536     CB->Bits += Hi - Lo + 1;
8537     CB->ExtraProb += Clusters[i].Prob;
8538     TotalProb += Clusters[i].Prob;
8539   }
8540 
8541   BitTestInfo BTI;
8542   std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
8543     // Sort by probability first, number of bits second.
8544     if (a.ExtraProb != b.ExtraProb)
8545       return a.ExtraProb > b.ExtraProb;
8546     return a.Bits > b.Bits;
8547   });
8548 
8549   for (auto &CB : CBV) {
8550     MachineBasicBlock *BitTestBB =
8551         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
8552     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
8553   }
8554   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
8555                             SI->getCondition(), -1U, MVT::Other, false,
8556                             ContiguousRange, nullptr, nullptr, std::move(BTI),
8557                             TotalProb);
8558 
8559   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
8560                                     BitTestCases.size() - 1, TotalProb);
8561   return true;
8562 }
8563 
8564 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
8565                                               const SwitchInst *SI) {
8566 // Partition Clusters into as few subsets as possible, where each subset has a
8567 // range that fits in a machine word and has <= 3 unique destinations.
8568 
8569 #ifndef NDEBUG
8570   // Clusters must be sorted and contain Range or JumpTable clusters.
8571   assert(!Clusters.empty());
8572   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
8573   for (const CaseCluster &C : Clusters)
8574     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
8575   for (unsigned i = 1; i < Clusters.size(); ++i)
8576     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
8577 #endif
8578 
8579   // The algorithm below is not suitable for -O0.
8580   if (TM.getOptLevel() == CodeGenOpt::None)
8581     return;
8582 
8583   // If target does not have legal shift left, do not emit bit tests at all.
8584   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8585   EVT PTy = TLI.getPointerTy(DAG.getDataLayout());
8586   if (!TLI.isOperationLegal(ISD::SHL, PTy))
8587     return;
8588 
8589   int BitWidth = PTy.getSizeInBits();
8590   const int64_t N = Clusters.size();
8591 
8592   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8593   SmallVector<unsigned, 8> MinPartitions(N);
8594   // LastElement[i] is the last element of the partition starting at i.
8595   SmallVector<unsigned, 8> LastElement(N);
8596 
8597   // FIXME: This might not be the best algorithm for finding bit test clusters.
8598 
8599   // Base case: There is only one way to partition Clusters[N-1].
8600   MinPartitions[N - 1] = 1;
8601   LastElement[N - 1] = N - 1;
8602 
8603   // Note: loop indexes are signed to avoid underflow.
8604   for (int64_t i = N - 2; i >= 0; --i) {
8605     // Find optimal partitioning of Clusters[i..N-1].
8606     // Baseline: Put Clusters[i] into a partition on its own.
8607     MinPartitions[i] = MinPartitions[i + 1] + 1;
8608     LastElement[i] = i;
8609 
8610     // Search for a solution that results in fewer partitions.
8611     // Note: the search is limited by BitWidth, reducing time complexity.
8612     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
8613       // Try building a partition from Clusters[i..j].
8614 
8615       // Check the range.
8616       if (!rangeFitsInWord(Clusters[i].Low->getValue(),
8617                            Clusters[j].High->getValue()))
8618         continue;
8619 
8620       // Check nbr of destinations and cluster types.
8621       // FIXME: This works, but doesn't seem very efficient.
8622       bool RangesOnly = true;
8623       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8624       for (int64_t k = i; k <= j; k++) {
8625         if (Clusters[k].Kind != CC_Range) {
8626           RangesOnly = false;
8627           break;
8628         }
8629         Dests.set(Clusters[k].MBB->getNumber());
8630       }
8631       if (!RangesOnly || Dests.count() > 3)
8632         break;
8633 
8634       // Check if it's a better partition.
8635       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8636       if (NumPartitions < MinPartitions[i]) {
8637         // Found a better partition.
8638         MinPartitions[i] = NumPartitions;
8639         LastElement[i] = j;
8640       }
8641     }
8642   }
8643 
8644   // Iterate over the partitions, replacing with bit-test clusters in-place.
8645   unsigned DstIndex = 0;
8646   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8647     Last = LastElement[First];
8648     assert(First <= Last);
8649     assert(DstIndex <= First);
8650 
8651     CaseCluster BitTestCluster;
8652     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
8653       Clusters[DstIndex++] = BitTestCluster;
8654     } else {
8655       size_t NumClusters = Last - First + 1;
8656       std::memmove(&Clusters[DstIndex], &Clusters[First],
8657                    sizeof(Clusters[0]) * NumClusters);
8658       DstIndex += NumClusters;
8659     }
8660   }
8661   Clusters.resize(DstIndex);
8662 }
8663 
8664 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
8665                                         MachineBasicBlock *SwitchMBB,
8666                                         MachineBasicBlock *DefaultMBB) {
8667   MachineFunction *CurMF = FuncInfo.MF;
8668   MachineBasicBlock *NextMBB = nullptr;
8669   MachineFunction::iterator BBI(W.MBB);
8670   if (++BBI != FuncInfo.MF->end())
8671     NextMBB = &*BBI;
8672 
8673   unsigned Size = W.LastCluster - W.FirstCluster + 1;
8674 
8675   BranchProbabilityInfo *BPI = FuncInfo.BPI;
8676 
8677   if (Size == 2 && W.MBB == SwitchMBB) {
8678     // If any two of the cases has the same destination, and if one value
8679     // is the same as the other, but has one bit unset that the other has set,
8680     // use bit manipulation to do two compares at once.  For example:
8681     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
8682     // TODO: This could be extended to merge any 2 cases in switches with 3
8683     // cases.
8684     // TODO: Handle cases where W.CaseBB != SwitchBB.
8685     CaseCluster &Small = *W.FirstCluster;
8686     CaseCluster &Big = *W.LastCluster;
8687 
8688     if (Small.Low == Small.High && Big.Low == Big.High &&
8689         Small.MBB == Big.MBB) {
8690       const APInt &SmallValue = Small.Low->getValue();
8691       const APInt &BigValue = Big.Low->getValue();
8692 
8693       // Check that there is only one bit different.
8694       APInt CommonBit = BigValue ^ SmallValue;
8695       if (CommonBit.isPowerOf2()) {
8696         SDValue CondLHS = getValue(Cond);
8697         EVT VT = CondLHS.getValueType();
8698         SDLoc DL = getCurSDLoc();
8699 
8700         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
8701                                  DAG.getConstant(CommonBit, DL, VT));
8702         SDValue Cond = DAG.getSetCC(
8703             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
8704             ISD::SETEQ);
8705 
8706         // Update successor info.
8707         // Both Small and Big will jump to Small.BB, so we sum up the
8708         // probabilities.
8709         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
8710         if (BPI)
8711           addSuccessorWithProb(
8712               SwitchMBB, DefaultMBB,
8713               // The default destination is the first successor in IR.
8714               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
8715         else
8716           addSuccessorWithProb(SwitchMBB, DefaultMBB);
8717 
8718         // Insert the true branch.
8719         SDValue BrCond =
8720             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
8721                         DAG.getBasicBlock(Small.MBB));
8722         // Insert the false branch.
8723         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
8724                              DAG.getBasicBlock(DefaultMBB));
8725 
8726         DAG.setRoot(BrCond);
8727         return;
8728       }
8729     }
8730   }
8731 
8732   if (TM.getOptLevel() != CodeGenOpt::None) {
8733     // Order cases by probability so the most likely case will be checked first.
8734     std::sort(W.FirstCluster, W.LastCluster + 1,
8735               [](const CaseCluster &a, const CaseCluster &b) {
8736       return a.Prob > b.Prob;
8737     });
8738 
8739     // Rearrange the case blocks so that the last one falls through if possible
8740     // without without changing the order of probabilities.
8741     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
8742       --I;
8743       if (I->Prob > W.LastCluster->Prob)
8744         break;
8745       if (I->Kind == CC_Range && I->MBB == NextMBB) {
8746         std::swap(*I, *W.LastCluster);
8747         break;
8748       }
8749     }
8750   }
8751 
8752   // Compute total probability.
8753   BranchProbability DefaultProb = W.DefaultProb;
8754   BranchProbability UnhandledProbs = DefaultProb;
8755   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
8756     UnhandledProbs += I->Prob;
8757 
8758   MachineBasicBlock *CurMBB = W.MBB;
8759   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
8760     MachineBasicBlock *Fallthrough;
8761     if (I == W.LastCluster) {
8762       // For the last cluster, fall through to the default destination.
8763       Fallthrough = DefaultMBB;
8764     } else {
8765       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
8766       CurMF->insert(BBI, Fallthrough);
8767       // Put Cond in a virtual register to make it available from the new blocks.
8768       ExportFromCurrentBlock(Cond);
8769     }
8770     UnhandledProbs -= I->Prob;
8771 
8772     switch (I->Kind) {
8773       case CC_JumpTable: {
8774         // FIXME: Optimize away range check based on pivot comparisons.
8775         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
8776         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
8777 
8778         // The jump block hasn't been inserted yet; insert it here.
8779         MachineBasicBlock *JumpMBB = JT->MBB;
8780         CurMF->insert(BBI, JumpMBB);
8781 
8782         auto JumpProb = I->Prob;
8783         auto FallthroughProb = UnhandledProbs;
8784 
8785         // If the default statement is a target of the jump table, we evenly
8786         // distribute the default probability to successors of CurMBB. Also
8787         // update the probability on the edge from JumpMBB to Fallthrough.
8788         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
8789                                               SE = JumpMBB->succ_end();
8790              SI != SE; ++SI) {
8791           if (*SI == DefaultMBB) {
8792             JumpProb += DefaultProb / 2;
8793             FallthroughProb -= DefaultProb / 2;
8794             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
8795             JumpMBB->normalizeSuccProbs();
8796             break;
8797           }
8798         }
8799 
8800         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
8801         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
8802         CurMBB->normalizeSuccProbs();
8803 
8804         // The jump table header will be inserted in our current block, do the
8805         // range check, and fall through to our fallthrough block.
8806         JTH->HeaderBB = CurMBB;
8807         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
8808 
8809         // If we're in the right place, emit the jump table header right now.
8810         if (CurMBB == SwitchMBB) {
8811           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
8812           JTH->Emitted = true;
8813         }
8814         break;
8815       }
8816       case CC_BitTests: {
8817         // FIXME: Optimize away range check based on pivot comparisons.
8818         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
8819 
8820         // The bit test blocks haven't been inserted yet; insert them here.
8821         for (BitTestCase &BTC : BTB->Cases)
8822           CurMF->insert(BBI, BTC.ThisBB);
8823 
8824         // Fill in fields of the BitTestBlock.
8825         BTB->Parent = CurMBB;
8826         BTB->Default = Fallthrough;
8827 
8828         BTB->DefaultProb = UnhandledProbs;
8829         // If the cases in bit test don't form a contiguous range, we evenly
8830         // distribute the probability on the edge to Fallthrough to two
8831         // successors of CurMBB.
8832         if (!BTB->ContiguousRange) {
8833           BTB->Prob += DefaultProb / 2;
8834           BTB->DefaultProb -= DefaultProb / 2;
8835         }
8836 
8837         // If we're in the right place, emit the bit test header right now.
8838         if (CurMBB == SwitchMBB) {
8839           visitBitTestHeader(*BTB, SwitchMBB);
8840           BTB->Emitted = true;
8841         }
8842         break;
8843       }
8844       case CC_Range: {
8845         const Value *RHS, *LHS, *MHS;
8846         ISD::CondCode CC;
8847         if (I->Low == I->High) {
8848           // Check Cond == I->Low.
8849           CC = ISD::SETEQ;
8850           LHS = Cond;
8851           RHS=I->Low;
8852           MHS = nullptr;
8853         } else {
8854           // Check I->Low <= Cond <= I->High.
8855           CC = ISD::SETLE;
8856           LHS = I->Low;
8857           MHS = Cond;
8858           RHS = I->High;
8859         }
8860 
8861         // The false probability is the sum of all unhandled cases.
8862         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob,
8863                      UnhandledProbs);
8864 
8865         if (CurMBB == SwitchMBB)
8866           visitSwitchCase(CB, SwitchMBB);
8867         else
8868           SwitchCases.push_back(CB);
8869 
8870         break;
8871       }
8872     }
8873     CurMBB = Fallthrough;
8874   }
8875 }
8876 
8877 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
8878                                               CaseClusterIt First,
8879                                               CaseClusterIt Last) {
8880   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
8881     if (X.Prob != CC.Prob)
8882       return X.Prob > CC.Prob;
8883 
8884     // Ties are broken by comparing the case value.
8885     return X.Low->getValue().slt(CC.Low->getValue());
8886   });
8887 }
8888 
8889 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
8890                                         const SwitchWorkListItem &W,
8891                                         Value *Cond,
8892                                         MachineBasicBlock *SwitchMBB) {
8893   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
8894          "Clusters not sorted?");
8895 
8896   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
8897 
8898   // Balance the tree based on branch probabilities to create a near-optimal (in
8899   // terms of search time given key frequency) binary search tree. See e.g. Kurt
8900   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
8901   CaseClusterIt LastLeft = W.FirstCluster;
8902   CaseClusterIt FirstRight = W.LastCluster;
8903   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
8904   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
8905 
8906   // Move LastLeft and FirstRight towards each other from opposite directions to
8907   // find a partitioning of the clusters which balances the probability on both
8908   // sides. If LeftProb and RightProb are equal, alternate which side is
8909   // taken to ensure 0-probability nodes are distributed evenly.
8910   unsigned I = 0;
8911   while (LastLeft + 1 < FirstRight) {
8912     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
8913       LeftProb += (++LastLeft)->Prob;
8914     else
8915       RightProb += (--FirstRight)->Prob;
8916     I++;
8917   }
8918 
8919   for (;;) {
8920     // Our binary search tree differs from a typical BST in that ours can have up
8921     // to three values in each leaf. The pivot selection above doesn't take that
8922     // into account, which means the tree might require more nodes and be less
8923     // efficient. We compensate for this here.
8924 
8925     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
8926     unsigned NumRight = W.LastCluster - FirstRight + 1;
8927 
8928     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
8929       // If one side has less than 3 clusters, and the other has more than 3,
8930       // consider taking a cluster from the other side.
8931 
8932       if (NumLeft < NumRight) {
8933         // Consider moving the first cluster on the right to the left side.
8934         CaseCluster &CC = *FirstRight;
8935         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
8936         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
8937         if (LeftSideRank <= RightSideRank) {
8938           // Moving the cluster to the left does not demote it.
8939           ++LastLeft;
8940           ++FirstRight;
8941           continue;
8942         }
8943       } else {
8944         assert(NumRight < NumLeft);
8945         // Consider moving the last element on the left to the right side.
8946         CaseCluster &CC = *LastLeft;
8947         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
8948         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
8949         if (RightSideRank <= LeftSideRank) {
8950           // Moving the cluster to the right does not demot it.
8951           --LastLeft;
8952           --FirstRight;
8953           continue;
8954         }
8955       }
8956     }
8957     break;
8958   }
8959 
8960   assert(LastLeft + 1 == FirstRight);
8961   assert(LastLeft >= W.FirstCluster);
8962   assert(FirstRight <= W.LastCluster);
8963 
8964   // Use the first element on the right as pivot since we will make less-than
8965   // comparisons against it.
8966   CaseClusterIt PivotCluster = FirstRight;
8967   assert(PivotCluster > W.FirstCluster);
8968   assert(PivotCluster <= W.LastCluster);
8969 
8970   CaseClusterIt FirstLeft = W.FirstCluster;
8971   CaseClusterIt LastRight = W.LastCluster;
8972 
8973   const ConstantInt *Pivot = PivotCluster->Low;
8974 
8975   // New blocks will be inserted immediately after the current one.
8976   MachineFunction::iterator BBI(W.MBB);
8977   ++BBI;
8978 
8979   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
8980   // we can branch to its destination directly if it's squeezed exactly in
8981   // between the known lower bound and Pivot - 1.
8982   MachineBasicBlock *LeftMBB;
8983   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
8984       FirstLeft->Low == W.GE &&
8985       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
8986     LeftMBB = FirstLeft->MBB;
8987   } else {
8988     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
8989     FuncInfo.MF->insert(BBI, LeftMBB);
8990     WorkList.push_back(
8991         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
8992     // Put Cond in a virtual register to make it available from the new blocks.
8993     ExportFromCurrentBlock(Cond);
8994   }
8995 
8996   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
8997   // single cluster, RHS.Low == Pivot, and we can branch to its destination
8998   // directly if RHS.High equals the current upper bound.
8999   MachineBasicBlock *RightMBB;
9000   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
9001       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
9002     RightMBB = FirstRight->MBB;
9003   } else {
9004     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9005     FuncInfo.MF->insert(BBI, RightMBB);
9006     WorkList.push_back(
9007         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
9008     // Put Cond in a virtual register to make it available from the new blocks.
9009     ExportFromCurrentBlock(Cond);
9010   }
9011 
9012   // Create the CaseBlock record that will be used to lower the branch.
9013   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
9014                LeftProb, RightProb);
9015 
9016   if (W.MBB == SwitchMBB)
9017     visitSwitchCase(CB, SwitchMBB);
9018   else
9019     SwitchCases.push_back(CB);
9020 }
9021 
9022 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
9023   // Extract cases from the switch.
9024   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9025   CaseClusterVector Clusters;
9026   Clusters.reserve(SI.getNumCases());
9027   for (auto I : SI.cases()) {
9028     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
9029     const ConstantInt *CaseVal = I.getCaseValue();
9030     BranchProbability Prob =
9031         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
9032             : BranchProbability(1, SI.getNumCases() + 1);
9033     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
9034   }
9035 
9036   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
9037 
9038   // Cluster adjacent cases with the same destination. We do this at all
9039   // optimization levels because it's cheap to do and will make codegen faster
9040   // if there are many clusters.
9041   sortAndRangeify(Clusters);
9042 
9043   if (TM.getOptLevel() != CodeGenOpt::None) {
9044     // Replace an unreachable default with the most popular destination.
9045     // FIXME: Exploit unreachable default more aggressively.
9046     bool UnreachableDefault =
9047         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
9048     if (UnreachableDefault && !Clusters.empty()) {
9049       DenseMap<const BasicBlock *, unsigned> Popularity;
9050       unsigned MaxPop = 0;
9051       const BasicBlock *MaxBB = nullptr;
9052       for (auto I : SI.cases()) {
9053         const BasicBlock *BB = I.getCaseSuccessor();
9054         if (++Popularity[BB] > MaxPop) {
9055           MaxPop = Popularity[BB];
9056           MaxBB = BB;
9057         }
9058       }
9059       // Set new default.
9060       assert(MaxPop > 0 && MaxBB);
9061       DefaultMBB = FuncInfo.MBBMap[MaxBB];
9062 
9063       // Remove cases that were pointing to the destination that is now the
9064       // default.
9065       CaseClusterVector New;
9066       New.reserve(Clusters.size());
9067       for (CaseCluster &CC : Clusters) {
9068         if (CC.MBB != DefaultMBB)
9069           New.push_back(CC);
9070       }
9071       Clusters = std::move(New);
9072     }
9073   }
9074 
9075   // If there is only the default destination, jump there directly.
9076   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
9077   if (Clusters.empty()) {
9078     SwitchMBB->addSuccessor(DefaultMBB);
9079     if (DefaultMBB != NextBlock(SwitchMBB)) {
9080       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
9081                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
9082     }
9083     return;
9084   }
9085 
9086   findJumpTables(Clusters, &SI, DefaultMBB);
9087   findBitTestClusters(Clusters, &SI);
9088 
9089   DEBUG({
9090     dbgs() << "Case clusters: ";
9091     for (const CaseCluster &C : Clusters) {
9092       if (C.Kind == CC_JumpTable) dbgs() << "JT:";
9093       if (C.Kind == CC_BitTests) dbgs() << "BT:";
9094 
9095       C.Low->getValue().print(dbgs(), true);
9096       if (C.Low != C.High) {
9097         dbgs() << '-';
9098         C.High->getValue().print(dbgs(), true);
9099       }
9100       dbgs() << ' ';
9101     }
9102     dbgs() << '\n';
9103   });
9104 
9105   assert(!Clusters.empty());
9106   SwitchWorkList WorkList;
9107   CaseClusterIt First = Clusters.begin();
9108   CaseClusterIt Last = Clusters.end() - 1;
9109   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
9110   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
9111 
9112   while (!WorkList.empty()) {
9113     SwitchWorkListItem W = WorkList.back();
9114     WorkList.pop_back();
9115     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
9116 
9117     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) {
9118       // For optimized builds, lower large range as a balanced binary tree.
9119       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
9120       continue;
9121     }
9122 
9123     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
9124   }
9125 }
9126