1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BlockFrequencyInfo.h" 31 #include "llvm/Analysis/BranchProbabilityInfo.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/Loads.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/Analysis/ProfileSummaryInfo.h" 37 #include "llvm/Analysis/TargetLibraryInfo.h" 38 #include "llvm/Analysis/ValueTracking.h" 39 #include "llvm/Analysis/VectorUtils.h" 40 #include "llvm/CodeGen/Analysis.h" 41 #include "llvm/CodeGen/FunctionLoweringInfo.h" 42 #include "llvm/CodeGen/GCMetadata.h" 43 #include "llvm/CodeGen/ISDOpcodes.h" 44 #include "llvm/CodeGen/MachineBasicBlock.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBuilder.h" 49 #include "llvm/CodeGen/MachineJumpTableInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineOperand.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/RuntimeLibcalls.h" 55 #include "llvm/CodeGen/SelectionDAG.h" 56 #include "llvm/CodeGen/SelectionDAGNodes.h" 57 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 58 #include "llvm/CodeGen/StackMaps.h" 59 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 60 #include "llvm/CodeGen/TargetFrameLowering.h" 61 #include "llvm/CodeGen/TargetInstrInfo.h" 62 #include "llvm/CodeGen/TargetLowering.h" 63 #include "llvm/CodeGen/TargetOpcodes.h" 64 #include "llvm/CodeGen/TargetRegisterInfo.h" 65 #include "llvm/CodeGen/TargetSubtargetInfo.h" 66 #include "llvm/CodeGen/ValueTypes.h" 67 #include "llvm/CodeGen/WinEHFuncInfo.h" 68 #include "llvm/IR/Argument.h" 69 #include "llvm/IR/Attributes.h" 70 #include "llvm/IR/BasicBlock.h" 71 #include "llvm/IR/CFG.h" 72 #include "llvm/IR/CallSite.h" 73 #include "llvm/IR/CallingConv.h" 74 #include "llvm/IR/Constant.h" 75 #include "llvm/IR/ConstantRange.h" 76 #include "llvm/IR/Constants.h" 77 #include "llvm/IR/DataLayout.h" 78 #include "llvm/IR/DebugInfoMetadata.h" 79 #include "llvm/IR/DebugLoc.h" 80 #include "llvm/IR/DerivedTypes.h" 81 #include "llvm/IR/Function.h" 82 #include "llvm/IR/GetElementPtrTypeIterator.h" 83 #include "llvm/IR/InlineAsm.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/IntrinsicsAArch64.h" 90 #include "llvm/IR/IntrinsicsWebAssembly.h" 91 #include "llvm/IR/LLVMContext.h" 92 #include "llvm/IR/Metadata.h" 93 #include "llvm/IR/Module.h" 94 #include "llvm/IR/Operator.h" 95 #include "llvm/IR/PatternMatch.h" 96 #include "llvm/IR/Statepoint.h" 97 #include "llvm/IR/Type.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/MC/MCContext.h" 101 #include "llvm/MC/MCSymbol.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/BranchProbability.h" 104 #include "llvm/Support/Casting.h" 105 #include "llvm/Support/CodeGen.h" 106 #include "llvm/Support/CommandLine.h" 107 #include "llvm/Support/Compiler.h" 108 #include "llvm/Support/Debug.h" 109 #include "llvm/Support/ErrorHandling.h" 110 #include "llvm/Support/MachineValueType.h" 111 #include "llvm/Support/MathExtras.h" 112 #include "llvm/Support/raw_ostream.h" 113 #include "llvm/Target/TargetIntrinsicInfo.h" 114 #include "llvm/Target/TargetMachine.h" 115 #include "llvm/Target/TargetOptions.h" 116 #include "llvm/Transforms/Utils/Local.h" 117 #include <algorithm> 118 #include <cassert> 119 #include <cstddef> 120 #include <cstdint> 121 #include <cstring> 122 #include <iterator> 123 #include <limits> 124 #include <numeric> 125 #include <tuple> 126 #include <utility> 127 #include <vector> 128 129 using namespace llvm; 130 using namespace PatternMatch; 131 using namespace SwitchCG; 132 133 #define DEBUG_TYPE "isel" 134 135 /// LimitFloatPrecision - Generate low-precision inline sequences for 136 /// some float libcalls (6, 8 or 12 bits). 137 static unsigned LimitFloatPrecision; 138 139 static cl::opt<unsigned, true> 140 LimitFPPrecision("limit-float-precision", 141 cl::desc("Generate low-precision inline sequences " 142 "for some float libcalls"), 143 cl::location(LimitFloatPrecision), cl::Hidden, 144 cl::init(0)); 145 146 static cl::opt<unsigned> SwitchPeelThreshold( 147 "switch-peel-threshold", cl::Hidden, cl::init(66), 148 cl::desc("Set the case probability threshold for peeling the case from a " 149 "switch statement. A value greater than 100 will void this " 150 "optimization")); 151 152 // Limit the width of DAG chains. This is important in general to prevent 153 // DAG-based analysis from blowing up. For example, alias analysis and 154 // load clustering may not complete in reasonable time. It is difficult to 155 // recognize and avoid this situation within each individual analysis, and 156 // future analyses are likely to have the same behavior. Limiting DAG width is 157 // the safe approach and will be especially important with global DAGs. 158 // 159 // MaxParallelChains default is arbitrarily high to avoid affecting 160 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 161 // sequence over this should have been converted to llvm.memcpy by the 162 // frontend. It is easy to induce this behavior with .ll code such as: 163 // %buffer = alloca [4096 x i8] 164 // %data = load [4096 x i8]* %argPtr 165 // store [4096 x i8] %data, [4096 x i8]* %buffer 166 static const unsigned MaxParallelChains = 64; 167 168 // Return the calling convention if the Value passed requires ABI mangling as it 169 // is a parameter to a function or a return value from a function which is not 170 // an intrinsic. 171 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 172 if (auto *R = dyn_cast<ReturnInst>(V)) 173 return R->getParent()->getParent()->getCallingConv(); 174 175 if (auto *CI = dyn_cast<CallInst>(V)) { 176 const bool IsInlineAsm = CI->isInlineAsm(); 177 const bool IsIndirectFunctionCall = 178 !IsInlineAsm && !CI->getCalledFunction(); 179 180 // It is possible that the call instruction is an inline asm statement or an 181 // indirect function call in which case the return value of 182 // getCalledFunction() would be nullptr. 183 const bool IsInstrinsicCall = 184 !IsInlineAsm && !IsIndirectFunctionCall && 185 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 186 187 if (!IsInlineAsm && !IsInstrinsicCall) 188 return CI->getCallingConv(); 189 } 190 191 return None; 192 } 193 194 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 195 const SDValue *Parts, unsigned NumParts, 196 MVT PartVT, EVT ValueVT, const Value *V, 197 Optional<CallingConv::ID> CC); 198 199 /// getCopyFromParts - Create a value that contains the specified legal parts 200 /// combined into the value they represent. If the parts combine to a type 201 /// larger than ValueVT then AssertOp can be used to specify whether the extra 202 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 203 /// (ISD::AssertSext). 204 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 205 const SDValue *Parts, unsigned NumParts, 206 MVT PartVT, EVT ValueVT, const Value *V, 207 Optional<CallingConv::ID> CC = None, 208 Optional<ISD::NodeType> AssertOp = None) { 209 if (ValueVT.isVector()) 210 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 211 CC); 212 213 assert(NumParts > 0 && "No parts to assemble!"); 214 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 215 SDValue Val = Parts[0]; 216 217 if (NumParts > 1) { 218 // Assemble the value from multiple parts. 219 if (ValueVT.isInteger()) { 220 unsigned PartBits = PartVT.getSizeInBits(); 221 unsigned ValueBits = ValueVT.getSizeInBits(); 222 223 // Assemble the power of 2 part. 224 unsigned RoundParts = 225 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 226 unsigned RoundBits = PartBits * RoundParts; 227 EVT RoundVT = RoundBits == ValueBits ? 228 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 229 SDValue Lo, Hi; 230 231 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 232 233 if (RoundParts > 2) { 234 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 235 PartVT, HalfVT, V); 236 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 237 RoundParts / 2, PartVT, HalfVT, V); 238 } else { 239 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 240 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 241 } 242 243 if (DAG.getDataLayout().isBigEndian()) 244 std::swap(Lo, Hi); 245 246 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 247 248 if (RoundParts < NumParts) { 249 // Assemble the trailing non-power-of-2 part. 250 unsigned OddParts = NumParts - RoundParts; 251 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 252 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 253 OddVT, V, CC); 254 255 // Combine the round and odd parts. 256 Lo = Val; 257 if (DAG.getDataLayout().isBigEndian()) 258 std::swap(Lo, Hi); 259 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 260 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 261 Hi = 262 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 263 DAG.getConstant(Lo.getValueSizeInBits(), DL, 264 TLI.getPointerTy(DAG.getDataLayout()))); 265 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 266 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 267 } 268 } else if (PartVT.isFloatingPoint()) { 269 // FP split into multiple FP parts (for ppcf128) 270 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 271 "Unexpected split"); 272 SDValue Lo, Hi; 273 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 274 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 275 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 276 std::swap(Lo, Hi); 277 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 278 } else { 279 // FP split into integer parts (soft fp) 280 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 281 !PartVT.isVector() && "Unexpected split"); 282 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 283 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 284 } 285 } 286 287 // There is now one part, held in Val. Correct it to match ValueVT. 288 // PartEVT is the type of the register class that holds the value. 289 // ValueVT is the type of the inline asm operation. 290 EVT PartEVT = Val.getValueType(); 291 292 if (PartEVT == ValueVT) 293 return Val; 294 295 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 296 ValueVT.bitsLT(PartEVT)) { 297 // For an FP value in an integer part, we need to truncate to the right 298 // width first. 299 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 300 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 301 } 302 303 // Handle types that have the same size. 304 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 305 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 306 307 // Handle types with different sizes. 308 if (PartEVT.isInteger() && ValueVT.isInteger()) { 309 if (ValueVT.bitsLT(PartEVT)) { 310 // For a truncate, see if we have any information to 311 // indicate whether the truncated bits will always be 312 // zero or sign-extension. 313 if (AssertOp.hasValue()) 314 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 315 DAG.getValueType(ValueVT)); 316 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 317 } 318 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 319 } 320 321 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 322 // FP_ROUND's are always exact here. 323 if (ValueVT.bitsLT(Val.getValueType())) 324 return DAG.getNode( 325 ISD::FP_ROUND, DL, ValueVT, Val, 326 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 327 328 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 329 } 330 331 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 332 // then truncating. 333 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 334 ValueVT.bitsLT(PartEVT)) { 335 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 336 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 337 } 338 339 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 340 } 341 342 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 343 const Twine &ErrMsg) { 344 const Instruction *I = dyn_cast_or_null<Instruction>(V); 345 if (!V) 346 return Ctx.emitError(ErrMsg); 347 348 const char *AsmError = ", possible invalid constraint for vector type"; 349 if (const CallInst *CI = dyn_cast<CallInst>(I)) 350 if (isa<InlineAsm>(CI->getCalledValue())) 351 return Ctx.emitError(I, ErrMsg + AsmError); 352 353 return Ctx.emitError(I, ErrMsg); 354 } 355 356 /// getCopyFromPartsVector - Create a value that contains the specified legal 357 /// parts combined into the value they represent. If the parts combine to a 358 /// type larger than ValueVT then AssertOp can be used to specify whether the 359 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 360 /// ValueVT (ISD::AssertSext). 361 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 362 const SDValue *Parts, unsigned NumParts, 363 MVT PartVT, EVT ValueVT, const Value *V, 364 Optional<CallingConv::ID> CallConv) { 365 assert(ValueVT.isVector() && "Not a vector value"); 366 assert(NumParts > 0 && "No parts to assemble!"); 367 const bool IsABIRegCopy = CallConv.hasValue(); 368 369 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 370 SDValue Val = Parts[0]; 371 372 // Handle a multi-element vector. 373 if (NumParts > 1) { 374 EVT IntermediateVT; 375 MVT RegisterVT; 376 unsigned NumIntermediates; 377 unsigned NumRegs; 378 379 if (IsABIRegCopy) { 380 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 381 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 382 NumIntermediates, RegisterVT); 383 } else { 384 NumRegs = 385 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 386 NumIntermediates, RegisterVT); 387 } 388 389 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 390 NumParts = NumRegs; // Silence a compiler warning. 391 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 392 assert(RegisterVT.getSizeInBits() == 393 Parts[0].getSimpleValueType().getSizeInBits() && 394 "Part type sizes don't match!"); 395 396 // Assemble the parts into intermediate operands. 397 SmallVector<SDValue, 8> Ops(NumIntermediates); 398 if (NumIntermediates == NumParts) { 399 // If the register was not expanded, truncate or copy the value, 400 // as appropriate. 401 for (unsigned i = 0; i != NumParts; ++i) 402 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 403 PartVT, IntermediateVT, V); 404 } else if (NumParts > 0) { 405 // If the intermediate type was expanded, build the intermediate 406 // operands from the parts. 407 assert(NumParts % NumIntermediates == 0 && 408 "Must expand into a divisible number of parts!"); 409 unsigned Factor = NumParts / NumIntermediates; 410 for (unsigned i = 0; i != NumIntermediates; ++i) 411 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 412 PartVT, IntermediateVT, V); 413 } 414 415 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 416 // intermediate operands. 417 EVT BuiltVectorTy = 418 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 419 (IntermediateVT.isVector() 420 ? IntermediateVT.getVectorNumElements() * NumParts 421 : NumIntermediates)); 422 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 423 : ISD::BUILD_VECTOR, 424 DL, BuiltVectorTy, Ops); 425 } 426 427 // There is now one part, held in Val. Correct it to match ValueVT. 428 EVT PartEVT = Val.getValueType(); 429 430 if (PartEVT == ValueVT) 431 return Val; 432 433 if (PartEVT.isVector()) { 434 // If the element type of the source/dest vectors are the same, but the 435 // parts vector has more elements than the value vector, then we have a 436 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 437 // elements we want. 438 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 439 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 440 "Cannot narrow, it would be a lossy transformation"); 441 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 442 DAG.getVectorIdxConstant(0, DL)); 443 } 444 445 // Vector/Vector bitcast. 446 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 447 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 448 449 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 450 "Cannot handle this kind of promotion"); 451 // Promoted vector extract 452 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 453 454 } 455 456 // Trivial bitcast if the types are the same size and the destination 457 // vector type is legal. 458 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 459 TLI.isTypeLegal(ValueVT)) 460 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 461 462 if (ValueVT.getVectorNumElements() != 1) { 463 // Certain ABIs require that vectors are passed as integers. For vectors 464 // are the same size, this is an obvious bitcast. 465 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 466 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 467 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 468 // Bitcast Val back the original type and extract the corresponding 469 // vector we want. 470 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 471 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 472 ValueVT.getVectorElementType(), Elts); 473 Val = DAG.getBitcast(WiderVecType, Val); 474 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 475 DAG.getVectorIdxConstant(0, DL)); 476 } 477 478 diagnosePossiblyInvalidConstraint( 479 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 480 return DAG.getUNDEF(ValueVT); 481 } 482 483 // Handle cases such as i8 -> <1 x i1> 484 EVT ValueSVT = ValueVT.getVectorElementType(); 485 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 486 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 487 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 488 else 489 Val = ValueVT.isFloatingPoint() 490 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 491 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 492 } 493 494 return DAG.getBuildVector(ValueVT, DL, Val); 495 } 496 497 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 498 SDValue Val, SDValue *Parts, unsigned NumParts, 499 MVT PartVT, const Value *V, 500 Optional<CallingConv::ID> CallConv); 501 502 /// getCopyToParts - Create a series of nodes that contain the specified value 503 /// split into legal parts. If the parts contain more bits than Val, then, for 504 /// integers, ExtendKind can be used to specify how to generate the extra bits. 505 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 506 SDValue *Parts, unsigned NumParts, MVT PartVT, 507 const Value *V, 508 Optional<CallingConv::ID> CallConv = None, 509 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 510 EVT ValueVT = Val.getValueType(); 511 512 // Handle the vector case separately. 513 if (ValueVT.isVector()) 514 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 515 CallConv); 516 517 unsigned PartBits = PartVT.getSizeInBits(); 518 unsigned OrigNumParts = NumParts; 519 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 520 "Copying to an illegal type!"); 521 522 if (NumParts == 0) 523 return; 524 525 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 526 EVT PartEVT = PartVT; 527 if (PartEVT == ValueVT) { 528 assert(NumParts == 1 && "No-op copy with multiple parts!"); 529 Parts[0] = Val; 530 return; 531 } 532 533 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 534 // If the parts cover more bits than the value has, promote the value. 535 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 536 assert(NumParts == 1 && "Do not know what to promote to!"); 537 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 538 } else { 539 if (ValueVT.isFloatingPoint()) { 540 // FP values need to be bitcast, then extended if they are being put 541 // into a larger container. 542 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 543 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 544 } 545 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 546 ValueVT.isInteger() && 547 "Unknown mismatch!"); 548 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 549 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 550 if (PartVT == MVT::x86mmx) 551 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 552 } 553 } else if (PartBits == ValueVT.getSizeInBits()) { 554 // Different types of the same size. 555 assert(NumParts == 1 && PartEVT != ValueVT); 556 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 557 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 558 // If the parts cover less bits than value has, truncate the value. 559 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 560 ValueVT.isInteger() && 561 "Unknown mismatch!"); 562 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 563 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 564 if (PartVT == MVT::x86mmx) 565 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 566 } 567 568 // The value may have changed - recompute ValueVT. 569 ValueVT = Val.getValueType(); 570 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 571 "Failed to tile the value with PartVT!"); 572 573 if (NumParts == 1) { 574 if (PartEVT != ValueVT) { 575 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 576 "scalar-to-vector conversion failed"); 577 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 578 } 579 580 Parts[0] = Val; 581 return; 582 } 583 584 // Expand the value into multiple parts. 585 if (NumParts & (NumParts - 1)) { 586 // The number of parts is not a power of 2. Split off and copy the tail. 587 assert(PartVT.isInteger() && ValueVT.isInteger() && 588 "Do not know what to expand to!"); 589 unsigned RoundParts = 1 << Log2_32(NumParts); 590 unsigned RoundBits = RoundParts * PartBits; 591 unsigned OddParts = NumParts - RoundParts; 592 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 593 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 594 595 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 596 CallConv); 597 598 if (DAG.getDataLayout().isBigEndian()) 599 // The odd parts were reversed by getCopyToParts - unreverse them. 600 std::reverse(Parts + RoundParts, Parts + NumParts); 601 602 NumParts = RoundParts; 603 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 604 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 605 } 606 607 // The number of parts is a power of 2. Repeatedly bisect the value using 608 // EXTRACT_ELEMENT. 609 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 610 EVT::getIntegerVT(*DAG.getContext(), 611 ValueVT.getSizeInBits()), 612 Val); 613 614 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 615 for (unsigned i = 0; i < NumParts; i += StepSize) { 616 unsigned ThisBits = StepSize * PartBits / 2; 617 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 618 SDValue &Part0 = Parts[i]; 619 SDValue &Part1 = Parts[i+StepSize/2]; 620 621 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 622 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 623 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 624 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 625 626 if (ThisBits == PartBits && ThisVT != PartVT) { 627 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 628 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 629 } 630 } 631 } 632 633 if (DAG.getDataLayout().isBigEndian()) 634 std::reverse(Parts, Parts + OrigNumParts); 635 } 636 637 static SDValue widenVectorToPartType(SelectionDAG &DAG, 638 SDValue Val, const SDLoc &DL, EVT PartVT) { 639 if (!PartVT.isVector()) 640 return SDValue(); 641 642 EVT ValueVT = Val.getValueType(); 643 unsigned PartNumElts = PartVT.getVectorNumElements(); 644 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 645 if (PartNumElts > ValueNumElts && 646 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 647 EVT ElementVT = PartVT.getVectorElementType(); 648 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 649 // undef elements. 650 SmallVector<SDValue, 16> Ops; 651 DAG.ExtractVectorElements(Val, Ops); 652 SDValue EltUndef = DAG.getUNDEF(ElementVT); 653 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 654 Ops.push_back(EltUndef); 655 656 // FIXME: Use CONCAT for 2x -> 4x. 657 return DAG.getBuildVector(PartVT, DL, Ops); 658 } 659 660 return SDValue(); 661 } 662 663 /// getCopyToPartsVector - Create a series of nodes that contain the specified 664 /// value split into legal parts. 665 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 666 SDValue Val, SDValue *Parts, unsigned NumParts, 667 MVT PartVT, const Value *V, 668 Optional<CallingConv::ID> CallConv) { 669 EVT ValueVT = Val.getValueType(); 670 assert(ValueVT.isVector() && "Not a vector"); 671 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 672 const bool IsABIRegCopy = CallConv.hasValue(); 673 674 if (NumParts == 1) { 675 EVT PartEVT = PartVT; 676 if (PartEVT == ValueVT) { 677 // Nothing to do. 678 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 679 // Bitconvert vector->vector case. 680 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 681 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 682 Val = Widened; 683 } else if (PartVT.isVector() && 684 PartEVT.getVectorElementType().bitsGE( 685 ValueVT.getVectorElementType()) && 686 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 687 688 // Promoted vector extract 689 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 690 } else { 691 if (ValueVT.getVectorNumElements() == 1) { 692 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 693 DAG.getVectorIdxConstant(0, DL)); 694 } else { 695 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 696 "lossy conversion of vector to scalar type"); 697 EVT IntermediateType = 698 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 699 Val = DAG.getBitcast(IntermediateType, Val); 700 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 701 } 702 } 703 704 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 705 Parts[0] = Val; 706 return; 707 } 708 709 // Handle a multi-element vector. 710 EVT IntermediateVT; 711 MVT RegisterVT; 712 unsigned NumIntermediates; 713 unsigned NumRegs; 714 if (IsABIRegCopy) { 715 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 716 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 717 NumIntermediates, RegisterVT); 718 } else { 719 NumRegs = 720 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 721 NumIntermediates, RegisterVT); 722 } 723 724 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 725 NumParts = NumRegs; // Silence a compiler warning. 726 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 727 728 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 729 IntermediateVT.getVectorNumElements() : 1; 730 731 // Convert the vector to the appropriate type if necessary. 732 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 733 734 EVT BuiltVectorTy = EVT::getVectorVT( 735 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 736 if (ValueVT != BuiltVectorTy) { 737 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 738 Val = Widened; 739 740 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 741 } 742 743 // Split the vector into intermediate operands. 744 SmallVector<SDValue, 8> Ops(NumIntermediates); 745 for (unsigned i = 0; i != NumIntermediates; ++i) { 746 if (IntermediateVT.isVector()) { 747 Ops[i] = 748 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 749 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 750 } else { 751 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 752 DAG.getVectorIdxConstant(i, DL)); 753 } 754 } 755 756 // Split the intermediate operands into legal parts. 757 if (NumParts == NumIntermediates) { 758 // If the register was not expanded, promote or copy the value, 759 // as appropriate. 760 for (unsigned i = 0; i != NumParts; ++i) 761 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 762 } else if (NumParts > 0) { 763 // If the intermediate type was expanded, split each the value into 764 // legal parts. 765 assert(NumIntermediates != 0 && "division by zero"); 766 assert(NumParts % NumIntermediates == 0 && 767 "Must expand into a divisible number of parts!"); 768 unsigned Factor = NumParts / NumIntermediates; 769 for (unsigned i = 0; i != NumIntermediates; ++i) 770 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 771 CallConv); 772 } 773 } 774 775 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 776 EVT valuevt, Optional<CallingConv::ID> CC) 777 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 778 RegCount(1, regs.size()), CallConv(CC) {} 779 780 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 781 const DataLayout &DL, unsigned Reg, Type *Ty, 782 Optional<CallingConv::ID> CC) { 783 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 784 785 CallConv = CC; 786 787 for (EVT ValueVT : ValueVTs) { 788 unsigned NumRegs = 789 isABIMangled() 790 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 791 : TLI.getNumRegisters(Context, ValueVT); 792 MVT RegisterVT = 793 isABIMangled() 794 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 795 : TLI.getRegisterType(Context, ValueVT); 796 for (unsigned i = 0; i != NumRegs; ++i) 797 Regs.push_back(Reg + i); 798 RegVTs.push_back(RegisterVT); 799 RegCount.push_back(NumRegs); 800 Reg += NumRegs; 801 } 802 } 803 804 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 805 FunctionLoweringInfo &FuncInfo, 806 const SDLoc &dl, SDValue &Chain, 807 SDValue *Flag, const Value *V) const { 808 // A Value with type {} or [0 x %t] needs no registers. 809 if (ValueVTs.empty()) 810 return SDValue(); 811 812 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 813 814 // Assemble the legal parts into the final values. 815 SmallVector<SDValue, 4> Values(ValueVTs.size()); 816 SmallVector<SDValue, 8> Parts; 817 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 818 // Copy the legal parts from the registers. 819 EVT ValueVT = ValueVTs[Value]; 820 unsigned NumRegs = RegCount[Value]; 821 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 822 *DAG.getContext(), 823 CallConv.getValue(), RegVTs[Value]) 824 : RegVTs[Value]; 825 826 Parts.resize(NumRegs); 827 for (unsigned i = 0; i != NumRegs; ++i) { 828 SDValue P; 829 if (!Flag) { 830 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 831 } else { 832 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 833 *Flag = P.getValue(2); 834 } 835 836 Chain = P.getValue(1); 837 Parts[i] = P; 838 839 // If the source register was virtual and if we know something about it, 840 // add an assert node. 841 if (!Register::isVirtualRegister(Regs[Part + i]) || 842 !RegisterVT.isInteger()) 843 continue; 844 845 const FunctionLoweringInfo::LiveOutInfo *LOI = 846 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 847 if (!LOI) 848 continue; 849 850 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 851 unsigned NumSignBits = LOI->NumSignBits; 852 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 853 854 if (NumZeroBits == RegSize) { 855 // The current value is a zero. 856 // Explicitly express that as it would be easier for 857 // optimizations to kick in. 858 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 859 continue; 860 } 861 862 // FIXME: We capture more information than the dag can represent. For 863 // now, just use the tightest assertzext/assertsext possible. 864 bool isSExt; 865 EVT FromVT(MVT::Other); 866 if (NumZeroBits) { 867 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 868 isSExt = false; 869 } else if (NumSignBits > 1) { 870 FromVT = 871 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 872 isSExt = true; 873 } else { 874 continue; 875 } 876 // Add an assertion node. 877 assert(FromVT != MVT::Other); 878 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 879 RegisterVT, P, DAG.getValueType(FromVT)); 880 } 881 882 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 883 RegisterVT, ValueVT, V, CallConv); 884 Part += NumRegs; 885 Parts.clear(); 886 } 887 888 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 889 } 890 891 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 892 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 893 const Value *V, 894 ISD::NodeType PreferredExtendType) const { 895 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 896 ISD::NodeType ExtendKind = PreferredExtendType; 897 898 // Get the list of the values's legal parts. 899 unsigned NumRegs = Regs.size(); 900 SmallVector<SDValue, 8> Parts(NumRegs); 901 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 902 unsigned NumParts = RegCount[Value]; 903 904 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 905 *DAG.getContext(), 906 CallConv.getValue(), RegVTs[Value]) 907 : RegVTs[Value]; 908 909 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 910 ExtendKind = ISD::ZERO_EXTEND; 911 912 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 913 NumParts, RegisterVT, V, CallConv, ExtendKind); 914 Part += NumParts; 915 } 916 917 // Copy the parts into the registers. 918 SmallVector<SDValue, 8> Chains(NumRegs); 919 for (unsigned i = 0; i != NumRegs; ++i) { 920 SDValue Part; 921 if (!Flag) { 922 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 923 } else { 924 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 925 *Flag = Part.getValue(1); 926 } 927 928 Chains[i] = Part.getValue(0); 929 } 930 931 if (NumRegs == 1 || Flag) 932 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 933 // flagged to it. That is the CopyToReg nodes and the user are considered 934 // a single scheduling unit. If we create a TokenFactor and return it as 935 // chain, then the TokenFactor is both a predecessor (operand) of the 936 // user as well as a successor (the TF operands are flagged to the user). 937 // c1, f1 = CopyToReg 938 // c2, f2 = CopyToReg 939 // c3 = TokenFactor c1, c2 940 // ... 941 // = op c3, ..., f2 942 Chain = Chains[NumRegs-1]; 943 else 944 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 945 } 946 947 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 948 unsigned MatchingIdx, const SDLoc &dl, 949 SelectionDAG &DAG, 950 std::vector<SDValue> &Ops) const { 951 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 952 953 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 954 if (HasMatching) 955 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 956 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 957 // Put the register class of the virtual registers in the flag word. That 958 // way, later passes can recompute register class constraints for inline 959 // assembly as well as normal instructions. 960 // Don't do this for tied operands that can use the regclass information 961 // from the def. 962 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 963 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 964 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 965 } 966 967 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 968 Ops.push_back(Res); 969 970 if (Code == InlineAsm::Kind_Clobber) { 971 // Clobbers should always have a 1:1 mapping with registers, and may 972 // reference registers that have illegal (e.g. vector) types. Hence, we 973 // shouldn't try to apply any sort of splitting logic to them. 974 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 975 "No 1:1 mapping from clobbers to regs?"); 976 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 977 (void)SP; 978 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 979 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 980 assert( 981 (Regs[I] != SP || 982 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 983 "If we clobbered the stack pointer, MFI should know about it."); 984 } 985 return; 986 } 987 988 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 989 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 990 MVT RegisterVT = RegVTs[Value]; 991 for (unsigned i = 0; i != NumRegs; ++i) { 992 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 993 unsigned TheReg = Regs[Reg++]; 994 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 995 } 996 } 997 } 998 999 SmallVector<std::pair<unsigned, unsigned>, 4> 1000 RegsForValue::getRegsAndSizes() const { 1001 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 1002 unsigned I = 0; 1003 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1004 unsigned RegCount = std::get<0>(CountAndVT); 1005 MVT RegisterVT = std::get<1>(CountAndVT); 1006 unsigned RegisterSize = RegisterVT.getSizeInBits(); 1007 for (unsigned E = I + RegCount; I != E; ++I) 1008 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1009 } 1010 return OutVec; 1011 } 1012 1013 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1014 const TargetLibraryInfo *li) { 1015 AA = aa; 1016 GFI = gfi; 1017 LibInfo = li; 1018 DL = &DAG.getDataLayout(); 1019 Context = DAG.getContext(); 1020 LPadToCallSiteMap.clear(); 1021 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1022 } 1023 1024 void SelectionDAGBuilder::clear() { 1025 NodeMap.clear(); 1026 UnusedArgNodeMap.clear(); 1027 PendingLoads.clear(); 1028 PendingExports.clear(); 1029 PendingConstrainedFP.clear(); 1030 PendingConstrainedFPStrict.clear(); 1031 CurInst = nullptr; 1032 HasTailCall = false; 1033 SDNodeOrder = LowestSDNodeOrder; 1034 StatepointLowering.clear(); 1035 } 1036 1037 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1038 DanglingDebugInfoMap.clear(); 1039 } 1040 1041 // Update DAG root to include dependencies on Pending chains. 1042 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1043 SDValue Root = DAG.getRoot(); 1044 1045 if (Pending.empty()) 1046 return Root; 1047 1048 // Add current root to PendingChains, unless we already indirectly 1049 // depend on it. 1050 if (Root.getOpcode() != ISD::EntryToken) { 1051 unsigned i = 0, e = Pending.size(); 1052 for (; i != e; ++i) { 1053 assert(Pending[i].getNode()->getNumOperands() > 1); 1054 if (Pending[i].getNode()->getOperand(0) == Root) 1055 break; // Don't add the root if we already indirectly depend on it. 1056 } 1057 1058 if (i == e) 1059 Pending.push_back(Root); 1060 } 1061 1062 if (Pending.size() == 1) 1063 Root = Pending[0]; 1064 else 1065 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1066 1067 DAG.setRoot(Root); 1068 Pending.clear(); 1069 return Root; 1070 } 1071 1072 SDValue SelectionDAGBuilder::getMemoryRoot() { 1073 return updateRoot(PendingLoads); 1074 } 1075 1076 SDValue SelectionDAGBuilder::getRoot() { 1077 // Chain up all pending constrained intrinsics together with all 1078 // pending loads, by simply appending them to PendingLoads and 1079 // then calling getMemoryRoot(). 1080 PendingLoads.reserve(PendingLoads.size() + 1081 PendingConstrainedFP.size() + 1082 PendingConstrainedFPStrict.size()); 1083 PendingLoads.append(PendingConstrainedFP.begin(), 1084 PendingConstrainedFP.end()); 1085 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1086 PendingConstrainedFPStrict.end()); 1087 PendingConstrainedFP.clear(); 1088 PendingConstrainedFPStrict.clear(); 1089 return getMemoryRoot(); 1090 } 1091 1092 SDValue SelectionDAGBuilder::getControlRoot() { 1093 // We need to emit pending fpexcept.strict constrained intrinsics, 1094 // so append them to the PendingExports list. 1095 PendingExports.append(PendingConstrainedFPStrict.begin(), 1096 PendingConstrainedFPStrict.end()); 1097 PendingConstrainedFPStrict.clear(); 1098 return updateRoot(PendingExports); 1099 } 1100 1101 void SelectionDAGBuilder::visit(const Instruction &I) { 1102 // Set up outgoing PHI node register values before emitting the terminator. 1103 if (I.isTerminator()) { 1104 HandlePHINodesInSuccessorBlocks(I.getParent()); 1105 } 1106 1107 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1108 if (!isa<DbgInfoIntrinsic>(I)) 1109 ++SDNodeOrder; 1110 1111 CurInst = &I; 1112 1113 visit(I.getOpcode(), I); 1114 1115 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1116 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1117 // maps to this instruction. 1118 // TODO: We could handle all flags (nsw, etc) here. 1119 // TODO: If an IR instruction maps to >1 node, only the final node will have 1120 // flags set. 1121 if (SDNode *Node = getNodeForIRValue(&I)) { 1122 SDNodeFlags IncomingFlags; 1123 IncomingFlags.copyFMF(*FPMO); 1124 if (!Node->getFlags().isDefined()) 1125 Node->setFlags(IncomingFlags); 1126 else 1127 Node->intersectFlagsWith(IncomingFlags); 1128 } 1129 } 1130 // Constrained FP intrinsics with fpexcept.ignore should also get 1131 // the NoFPExcept flag. 1132 if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(&I)) 1133 if (FPI->getExceptionBehavior() == fp::ExceptionBehavior::ebIgnore) 1134 if (SDNode *Node = getNodeForIRValue(&I)) { 1135 SDNodeFlags Flags = Node->getFlags(); 1136 Flags.setNoFPExcept(true); 1137 Node->setFlags(Flags); 1138 } 1139 1140 if (!I.isTerminator() && !HasTailCall && 1141 !isStatepoint(&I)) // statepoints handle their exports internally 1142 CopyToExportRegsIfNeeded(&I); 1143 1144 CurInst = nullptr; 1145 } 1146 1147 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1148 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1149 } 1150 1151 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1152 // Note: this doesn't use InstVisitor, because it has to work with 1153 // ConstantExpr's in addition to instructions. 1154 switch (Opcode) { 1155 default: llvm_unreachable("Unknown instruction type encountered!"); 1156 // Build the switch statement using the Instruction.def file. 1157 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1158 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1159 #include "llvm/IR/Instruction.def" 1160 } 1161 } 1162 1163 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1164 const DIExpression *Expr) { 1165 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1166 const DbgValueInst *DI = DDI.getDI(); 1167 DIVariable *DanglingVariable = DI->getVariable(); 1168 DIExpression *DanglingExpr = DI->getExpression(); 1169 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1170 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1171 return true; 1172 } 1173 return false; 1174 }; 1175 1176 for (auto &DDIMI : DanglingDebugInfoMap) { 1177 DanglingDebugInfoVector &DDIV = DDIMI.second; 1178 1179 // If debug info is to be dropped, run it through final checks to see 1180 // whether it can be salvaged. 1181 for (auto &DDI : DDIV) 1182 if (isMatchingDbgValue(DDI)) 1183 salvageUnresolvedDbgValue(DDI); 1184 1185 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1186 } 1187 } 1188 1189 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1190 // generate the debug data structures now that we've seen its definition. 1191 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1192 SDValue Val) { 1193 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1194 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1195 return; 1196 1197 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1198 for (auto &DDI : DDIV) { 1199 const DbgValueInst *DI = DDI.getDI(); 1200 assert(DI && "Ill-formed DanglingDebugInfo"); 1201 DebugLoc dl = DDI.getdl(); 1202 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1203 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1204 DILocalVariable *Variable = DI->getVariable(); 1205 DIExpression *Expr = DI->getExpression(); 1206 assert(Variable->isValidLocationForIntrinsic(dl) && 1207 "Expected inlined-at fields to agree"); 1208 SDDbgValue *SDV; 1209 if (Val.getNode()) { 1210 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1211 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1212 // we couldn't resolve it directly when examining the DbgValue intrinsic 1213 // in the first place we should not be more successful here). Unless we 1214 // have some test case that prove this to be correct we should avoid 1215 // calling EmitFuncArgumentDbgValue here. 1216 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1217 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1218 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1219 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1220 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1221 // inserted after the definition of Val when emitting the instructions 1222 // after ISel. An alternative could be to teach 1223 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1224 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1225 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1226 << ValSDNodeOrder << "\n"); 1227 SDV = getDbgValue(Val, Variable, Expr, dl, 1228 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1229 DAG.AddDbgValue(SDV, Val.getNode(), false); 1230 } else 1231 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1232 << "in EmitFuncArgumentDbgValue\n"); 1233 } else { 1234 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1235 auto Undef = 1236 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1237 auto SDV = 1238 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1239 DAG.AddDbgValue(SDV, nullptr, false); 1240 } 1241 } 1242 DDIV.clear(); 1243 } 1244 1245 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1246 Value *V = DDI.getDI()->getValue(); 1247 DILocalVariable *Var = DDI.getDI()->getVariable(); 1248 DIExpression *Expr = DDI.getDI()->getExpression(); 1249 DebugLoc DL = DDI.getdl(); 1250 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1251 unsigned SDOrder = DDI.getSDNodeOrder(); 1252 1253 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1254 // that DW_OP_stack_value is desired. 1255 assert(isa<DbgValueInst>(DDI.getDI())); 1256 bool StackValue = true; 1257 1258 // Can this Value can be encoded without any further work? 1259 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1260 return; 1261 1262 // Attempt to salvage back through as many instructions as possible. Bail if 1263 // a non-instruction is seen, such as a constant expression or global 1264 // variable. FIXME: Further work could recover those too. 1265 while (isa<Instruction>(V)) { 1266 Instruction &VAsInst = *cast<Instruction>(V); 1267 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1268 1269 // If we cannot salvage any further, and haven't yet found a suitable debug 1270 // expression, bail out. 1271 if (!NewExpr) 1272 break; 1273 1274 // New value and expr now represent this debuginfo. 1275 V = VAsInst.getOperand(0); 1276 Expr = NewExpr; 1277 1278 // Some kind of simplification occurred: check whether the operand of the 1279 // salvaged debug expression can be encoded in this DAG. 1280 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1281 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1282 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1283 return; 1284 } 1285 } 1286 1287 // This was the final opportunity to salvage this debug information, and it 1288 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1289 // any earlier variable location. 1290 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1291 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1292 DAG.AddDbgValue(SDV, nullptr, false); 1293 1294 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1295 << "\n"); 1296 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1297 << "\n"); 1298 } 1299 1300 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1301 DIExpression *Expr, DebugLoc dl, 1302 DebugLoc InstDL, unsigned Order) { 1303 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1304 SDDbgValue *SDV; 1305 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1306 isa<ConstantPointerNull>(V)) { 1307 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1308 DAG.AddDbgValue(SDV, nullptr, false); 1309 return true; 1310 } 1311 1312 // If the Value is a frame index, we can create a FrameIndex debug value 1313 // without relying on the DAG at all. 1314 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1315 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1316 if (SI != FuncInfo.StaticAllocaMap.end()) { 1317 auto SDV = 1318 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1319 /*IsIndirect*/ false, dl, SDNodeOrder); 1320 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1321 // is still available even if the SDNode gets optimized out. 1322 DAG.AddDbgValue(SDV, nullptr, false); 1323 return true; 1324 } 1325 } 1326 1327 // Do not use getValue() in here; we don't want to generate code at 1328 // this point if it hasn't been done yet. 1329 SDValue N = NodeMap[V]; 1330 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1331 N = UnusedArgNodeMap[V]; 1332 if (N.getNode()) { 1333 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1334 return true; 1335 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1336 DAG.AddDbgValue(SDV, N.getNode(), false); 1337 return true; 1338 } 1339 1340 // Special rules apply for the first dbg.values of parameter variables in a 1341 // function. Identify them by the fact they reference Argument Values, that 1342 // they're parameters, and they are parameters of the current function. We 1343 // need to let them dangle until they get an SDNode. 1344 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1345 !InstDL.getInlinedAt(); 1346 if (!IsParamOfFunc) { 1347 // The value is not used in this block yet (or it would have an SDNode). 1348 // We still want the value to appear for the user if possible -- if it has 1349 // an associated VReg, we can refer to that instead. 1350 auto VMI = FuncInfo.ValueMap.find(V); 1351 if (VMI != FuncInfo.ValueMap.end()) { 1352 unsigned Reg = VMI->second; 1353 // If this is a PHI node, it may be split up into several MI PHI nodes 1354 // (in FunctionLoweringInfo::set). 1355 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1356 V->getType(), None); 1357 if (RFV.occupiesMultipleRegs()) { 1358 unsigned Offset = 0; 1359 unsigned BitsToDescribe = 0; 1360 if (auto VarSize = Var->getSizeInBits()) 1361 BitsToDescribe = *VarSize; 1362 if (auto Fragment = Expr->getFragmentInfo()) 1363 BitsToDescribe = Fragment->SizeInBits; 1364 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1365 unsigned RegisterSize = RegAndSize.second; 1366 // Bail out if all bits are described already. 1367 if (Offset >= BitsToDescribe) 1368 break; 1369 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1370 ? BitsToDescribe - Offset 1371 : RegisterSize; 1372 auto FragmentExpr = DIExpression::createFragmentExpression( 1373 Expr, Offset, FragmentSize); 1374 if (!FragmentExpr) 1375 continue; 1376 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1377 false, dl, SDNodeOrder); 1378 DAG.AddDbgValue(SDV, nullptr, false); 1379 Offset += RegisterSize; 1380 } 1381 } else { 1382 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1383 DAG.AddDbgValue(SDV, nullptr, false); 1384 } 1385 return true; 1386 } 1387 } 1388 1389 return false; 1390 } 1391 1392 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1393 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1394 for (auto &Pair : DanglingDebugInfoMap) 1395 for (auto &DDI : Pair.second) 1396 salvageUnresolvedDbgValue(DDI); 1397 clearDanglingDebugInfo(); 1398 } 1399 1400 /// getCopyFromRegs - If there was virtual register allocated for the value V 1401 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1402 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1403 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1404 SDValue Result; 1405 1406 if (It != FuncInfo.ValueMap.end()) { 1407 unsigned InReg = It->second; 1408 1409 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1410 DAG.getDataLayout(), InReg, Ty, 1411 None); // This is not an ABI copy. 1412 SDValue Chain = DAG.getEntryNode(); 1413 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1414 V); 1415 resolveDanglingDebugInfo(V, Result); 1416 } 1417 1418 return Result; 1419 } 1420 1421 /// getValue - Return an SDValue for the given Value. 1422 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1423 // If we already have an SDValue for this value, use it. It's important 1424 // to do this first, so that we don't create a CopyFromReg if we already 1425 // have a regular SDValue. 1426 SDValue &N = NodeMap[V]; 1427 if (N.getNode()) return N; 1428 1429 // If there's a virtual register allocated and initialized for this 1430 // value, use it. 1431 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1432 return copyFromReg; 1433 1434 // Otherwise create a new SDValue and remember it. 1435 SDValue Val = getValueImpl(V); 1436 NodeMap[V] = Val; 1437 resolveDanglingDebugInfo(V, Val); 1438 return Val; 1439 } 1440 1441 // Return true if SDValue exists for the given Value 1442 bool SelectionDAGBuilder::findValue(const Value *V) const { 1443 return (NodeMap.find(V) != NodeMap.end()) || 1444 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1445 } 1446 1447 /// getNonRegisterValue - Return an SDValue for the given Value, but 1448 /// don't look in FuncInfo.ValueMap for a virtual register. 1449 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1450 // If we already have an SDValue for this value, use it. 1451 SDValue &N = NodeMap[V]; 1452 if (N.getNode()) { 1453 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1454 // Remove the debug location from the node as the node is about to be used 1455 // in a location which may differ from the original debug location. This 1456 // is relevant to Constant and ConstantFP nodes because they can appear 1457 // as constant expressions inside PHI nodes. 1458 N->setDebugLoc(DebugLoc()); 1459 } 1460 return N; 1461 } 1462 1463 // Otherwise create a new SDValue and remember it. 1464 SDValue Val = getValueImpl(V); 1465 NodeMap[V] = Val; 1466 resolveDanglingDebugInfo(V, Val); 1467 return Val; 1468 } 1469 1470 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1471 /// Create an SDValue for the given value. 1472 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1473 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1474 1475 if (const Constant *C = dyn_cast<Constant>(V)) { 1476 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1477 1478 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1479 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1480 1481 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1482 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1483 1484 if (isa<ConstantPointerNull>(C)) { 1485 unsigned AS = V->getType()->getPointerAddressSpace(); 1486 return DAG.getConstant(0, getCurSDLoc(), 1487 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1488 } 1489 1490 if (match(C, m_VScale(DAG.getDataLayout()))) 1491 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1492 1493 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1494 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1495 1496 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1497 return DAG.getUNDEF(VT); 1498 1499 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1500 visit(CE->getOpcode(), *CE); 1501 SDValue N1 = NodeMap[V]; 1502 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1503 return N1; 1504 } 1505 1506 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1507 SmallVector<SDValue, 4> Constants; 1508 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1509 OI != OE; ++OI) { 1510 SDNode *Val = getValue(*OI).getNode(); 1511 // If the operand is an empty aggregate, there are no values. 1512 if (!Val) continue; 1513 // Add each leaf value from the operand to the Constants list 1514 // to form a flattened list of all the values. 1515 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1516 Constants.push_back(SDValue(Val, i)); 1517 } 1518 1519 return DAG.getMergeValues(Constants, getCurSDLoc()); 1520 } 1521 1522 if (const ConstantDataSequential *CDS = 1523 dyn_cast<ConstantDataSequential>(C)) { 1524 SmallVector<SDValue, 4> Ops; 1525 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1526 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1527 // Add each leaf value from the operand to the Constants list 1528 // to form a flattened list of all the values. 1529 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1530 Ops.push_back(SDValue(Val, i)); 1531 } 1532 1533 if (isa<ArrayType>(CDS->getType())) 1534 return DAG.getMergeValues(Ops, getCurSDLoc()); 1535 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1536 } 1537 1538 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1539 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1540 "Unknown struct or array constant!"); 1541 1542 SmallVector<EVT, 4> ValueVTs; 1543 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1544 unsigned NumElts = ValueVTs.size(); 1545 if (NumElts == 0) 1546 return SDValue(); // empty struct 1547 SmallVector<SDValue, 4> Constants(NumElts); 1548 for (unsigned i = 0; i != NumElts; ++i) { 1549 EVT EltVT = ValueVTs[i]; 1550 if (isa<UndefValue>(C)) 1551 Constants[i] = DAG.getUNDEF(EltVT); 1552 else if (EltVT.isFloatingPoint()) 1553 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1554 else 1555 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1556 } 1557 1558 return DAG.getMergeValues(Constants, getCurSDLoc()); 1559 } 1560 1561 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1562 return DAG.getBlockAddress(BA, VT); 1563 1564 VectorType *VecTy = cast<VectorType>(V->getType()); 1565 unsigned NumElements = VecTy->getNumElements(); 1566 1567 // Now that we know the number and type of the elements, get that number of 1568 // elements into the Ops array based on what kind of constant it is. 1569 SmallVector<SDValue, 16> Ops; 1570 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1571 for (unsigned i = 0; i != NumElements; ++i) 1572 Ops.push_back(getValue(CV->getOperand(i))); 1573 } else { 1574 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1575 EVT EltVT = 1576 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1577 1578 SDValue Op; 1579 if (EltVT.isFloatingPoint()) 1580 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1581 else 1582 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1583 Ops.assign(NumElements, Op); 1584 } 1585 1586 // Create a BUILD_VECTOR node. 1587 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1588 } 1589 1590 // If this is a static alloca, generate it as the frameindex instead of 1591 // computation. 1592 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1593 DenseMap<const AllocaInst*, int>::iterator SI = 1594 FuncInfo.StaticAllocaMap.find(AI); 1595 if (SI != FuncInfo.StaticAllocaMap.end()) 1596 return DAG.getFrameIndex(SI->second, 1597 TLI.getFrameIndexTy(DAG.getDataLayout())); 1598 } 1599 1600 // If this is an instruction which fast-isel has deferred, select it now. 1601 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1602 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1603 1604 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1605 Inst->getType(), getABIRegCopyCC(V)); 1606 SDValue Chain = DAG.getEntryNode(); 1607 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1608 } 1609 1610 llvm_unreachable("Can't get register for value!"); 1611 } 1612 1613 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1614 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1615 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1616 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1617 bool IsSEH = isAsynchronousEHPersonality(Pers); 1618 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; 1619 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1620 if (!IsSEH) 1621 CatchPadMBB->setIsEHScopeEntry(); 1622 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1623 if (IsMSVCCXX || IsCoreCLR) 1624 CatchPadMBB->setIsEHFuncletEntry(); 1625 // Wasm does not need catchpads anymore 1626 if (!IsWasmCXX) 1627 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, 1628 getControlRoot())); 1629 } 1630 1631 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1632 // Update machine-CFG edge. 1633 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1634 FuncInfo.MBB->addSuccessor(TargetMBB); 1635 1636 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1637 bool IsSEH = isAsynchronousEHPersonality(Pers); 1638 if (IsSEH) { 1639 // If this is not a fall-through branch or optimizations are switched off, 1640 // emit the branch. 1641 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1642 TM.getOptLevel() == CodeGenOpt::None) 1643 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1644 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1645 return; 1646 } 1647 1648 // Figure out the funclet membership for the catchret's successor. 1649 // This will be used by the FuncletLayout pass to determine how to order the 1650 // BB's. 1651 // A 'catchret' returns to the outer scope's color. 1652 Value *ParentPad = I.getCatchSwitchParentPad(); 1653 const BasicBlock *SuccessorColor; 1654 if (isa<ConstantTokenNone>(ParentPad)) 1655 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1656 else 1657 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1658 assert(SuccessorColor && "No parent funclet for catchret!"); 1659 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1660 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1661 1662 // Create the terminator node. 1663 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1664 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1665 DAG.getBasicBlock(SuccessorColorMBB)); 1666 DAG.setRoot(Ret); 1667 } 1668 1669 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1670 // Don't emit any special code for the cleanuppad instruction. It just marks 1671 // the start of an EH scope/funclet. 1672 FuncInfo.MBB->setIsEHScopeEntry(); 1673 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1674 if (Pers != EHPersonality::Wasm_CXX) { 1675 FuncInfo.MBB->setIsEHFuncletEntry(); 1676 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1677 } 1678 } 1679 1680 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1681 // the control flow always stops at the single catch pad, as it does for a 1682 // cleanup pad. In case the exception caught is not of the types the catch pad 1683 // catches, it will be rethrown by a rethrow. 1684 static void findWasmUnwindDestinations( 1685 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1686 BranchProbability Prob, 1687 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1688 &UnwindDests) { 1689 while (EHPadBB) { 1690 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1691 if (isa<CleanupPadInst>(Pad)) { 1692 // Stop on cleanup pads. 1693 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1694 UnwindDests.back().first->setIsEHScopeEntry(); 1695 break; 1696 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1697 // Add the catchpad handlers to the possible destinations. We don't 1698 // continue to the unwind destination of the catchswitch for wasm. 1699 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1700 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1701 UnwindDests.back().first->setIsEHScopeEntry(); 1702 } 1703 break; 1704 } else { 1705 continue; 1706 } 1707 } 1708 } 1709 1710 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1711 /// many places it could ultimately go. In the IR, we have a single unwind 1712 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1713 /// This function skips over imaginary basic blocks that hold catchswitch 1714 /// instructions, and finds all the "real" machine 1715 /// basic block destinations. As those destinations may not be successors of 1716 /// EHPadBB, here we also calculate the edge probability to those destinations. 1717 /// The passed-in Prob is the edge probability to EHPadBB. 1718 static void findUnwindDestinations( 1719 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1720 BranchProbability Prob, 1721 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1722 &UnwindDests) { 1723 EHPersonality Personality = 1724 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1725 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1726 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1727 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1728 bool IsSEH = isAsynchronousEHPersonality(Personality); 1729 1730 if (IsWasmCXX) { 1731 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1732 assert(UnwindDests.size() <= 1 && 1733 "There should be at most one unwind destination for wasm"); 1734 return; 1735 } 1736 1737 while (EHPadBB) { 1738 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1739 BasicBlock *NewEHPadBB = nullptr; 1740 if (isa<LandingPadInst>(Pad)) { 1741 // Stop on landingpads. They are not funclets. 1742 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1743 break; 1744 } else if (isa<CleanupPadInst>(Pad)) { 1745 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1746 // personalities. 1747 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1748 UnwindDests.back().first->setIsEHScopeEntry(); 1749 UnwindDests.back().first->setIsEHFuncletEntry(); 1750 break; 1751 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1752 // Add the catchpad handlers to the possible destinations. 1753 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1754 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1755 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1756 if (IsMSVCCXX || IsCoreCLR) 1757 UnwindDests.back().first->setIsEHFuncletEntry(); 1758 if (!IsSEH) 1759 UnwindDests.back().first->setIsEHScopeEntry(); 1760 } 1761 NewEHPadBB = CatchSwitch->getUnwindDest(); 1762 } else { 1763 continue; 1764 } 1765 1766 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1767 if (BPI && NewEHPadBB) 1768 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1769 EHPadBB = NewEHPadBB; 1770 } 1771 } 1772 1773 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1774 // Update successor info. 1775 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1776 auto UnwindDest = I.getUnwindDest(); 1777 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1778 BranchProbability UnwindDestProb = 1779 (BPI && UnwindDest) 1780 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1781 : BranchProbability::getZero(); 1782 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1783 for (auto &UnwindDest : UnwindDests) { 1784 UnwindDest.first->setIsEHPad(); 1785 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1786 } 1787 FuncInfo.MBB->normalizeSuccProbs(); 1788 1789 // Create the terminator node. 1790 SDValue Ret = 1791 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1792 DAG.setRoot(Ret); 1793 } 1794 1795 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1796 report_fatal_error("visitCatchSwitch not yet implemented!"); 1797 } 1798 1799 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1800 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1801 auto &DL = DAG.getDataLayout(); 1802 SDValue Chain = getControlRoot(); 1803 SmallVector<ISD::OutputArg, 8> Outs; 1804 SmallVector<SDValue, 8> OutVals; 1805 1806 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1807 // lower 1808 // 1809 // %val = call <ty> @llvm.experimental.deoptimize() 1810 // ret <ty> %val 1811 // 1812 // differently. 1813 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1814 LowerDeoptimizingReturn(); 1815 return; 1816 } 1817 1818 if (!FuncInfo.CanLowerReturn) { 1819 unsigned DemoteReg = FuncInfo.DemoteRegister; 1820 const Function *F = I.getParent()->getParent(); 1821 1822 // Emit a store of the return value through the virtual register. 1823 // Leave Outs empty so that LowerReturn won't try to load return 1824 // registers the usual way. 1825 SmallVector<EVT, 1> PtrValueVTs; 1826 ComputeValueVTs(TLI, DL, 1827 F->getReturnType()->getPointerTo( 1828 DAG.getDataLayout().getAllocaAddrSpace()), 1829 PtrValueVTs); 1830 1831 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1832 DemoteReg, PtrValueVTs[0]); 1833 SDValue RetOp = getValue(I.getOperand(0)); 1834 1835 SmallVector<EVT, 4> ValueVTs, MemVTs; 1836 SmallVector<uint64_t, 4> Offsets; 1837 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1838 &Offsets); 1839 unsigned NumValues = ValueVTs.size(); 1840 1841 SmallVector<SDValue, 4> Chains(NumValues); 1842 for (unsigned i = 0; i != NumValues; ++i) { 1843 // An aggregate return value cannot wrap around the address space, so 1844 // offsets to its parts don't wrap either. 1845 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1846 1847 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1848 if (MemVTs[i] != ValueVTs[i]) 1849 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1850 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val, 1851 // FIXME: better loc info would be nice. 1852 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1853 } 1854 1855 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1856 MVT::Other, Chains); 1857 } else if (I.getNumOperands() != 0) { 1858 SmallVector<EVT, 4> ValueVTs; 1859 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1860 unsigned NumValues = ValueVTs.size(); 1861 if (NumValues) { 1862 SDValue RetOp = getValue(I.getOperand(0)); 1863 1864 const Function *F = I.getParent()->getParent(); 1865 1866 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1867 I.getOperand(0)->getType(), F->getCallingConv(), 1868 /*IsVarArg*/ false); 1869 1870 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1871 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1872 Attribute::SExt)) 1873 ExtendKind = ISD::SIGN_EXTEND; 1874 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1875 Attribute::ZExt)) 1876 ExtendKind = ISD::ZERO_EXTEND; 1877 1878 LLVMContext &Context = F->getContext(); 1879 bool RetInReg = F->getAttributes().hasAttribute( 1880 AttributeList::ReturnIndex, Attribute::InReg); 1881 1882 for (unsigned j = 0; j != NumValues; ++j) { 1883 EVT VT = ValueVTs[j]; 1884 1885 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1886 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1887 1888 CallingConv::ID CC = F->getCallingConv(); 1889 1890 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1891 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1892 SmallVector<SDValue, 4> Parts(NumParts); 1893 getCopyToParts(DAG, getCurSDLoc(), 1894 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1895 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1896 1897 // 'inreg' on function refers to return value 1898 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1899 if (RetInReg) 1900 Flags.setInReg(); 1901 1902 if (I.getOperand(0)->getType()->isPointerTy()) { 1903 Flags.setPointer(); 1904 Flags.setPointerAddrSpace( 1905 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1906 } 1907 1908 if (NeedsRegBlock) { 1909 Flags.setInConsecutiveRegs(); 1910 if (j == NumValues - 1) 1911 Flags.setInConsecutiveRegsLast(); 1912 } 1913 1914 // Propagate extension type if any 1915 if (ExtendKind == ISD::SIGN_EXTEND) 1916 Flags.setSExt(); 1917 else if (ExtendKind == ISD::ZERO_EXTEND) 1918 Flags.setZExt(); 1919 1920 for (unsigned i = 0; i < NumParts; ++i) { 1921 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1922 VT, /*isfixed=*/true, 0, 0)); 1923 OutVals.push_back(Parts[i]); 1924 } 1925 } 1926 } 1927 } 1928 1929 // Push in swifterror virtual register as the last element of Outs. This makes 1930 // sure swifterror virtual register will be returned in the swifterror 1931 // physical register. 1932 const Function *F = I.getParent()->getParent(); 1933 if (TLI.supportSwiftError() && 1934 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1935 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1936 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1937 Flags.setSwiftError(); 1938 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1939 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1940 true /*isfixed*/, 1 /*origidx*/, 1941 0 /*partOffs*/)); 1942 // Create SDNode for the swifterror virtual register. 1943 OutVals.push_back( 1944 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1945 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1946 EVT(TLI.getPointerTy(DL)))); 1947 } 1948 1949 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1950 CallingConv::ID CallConv = 1951 DAG.getMachineFunction().getFunction().getCallingConv(); 1952 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1953 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1954 1955 // Verify that the target's LowerReturn behaved as expected. 1956 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1957 "LowerReturn didn't return a valid chain!"); 1958 1959 // Update the DAG with the new chain value resulting from return lowering. 1960 DAG.setRoot(Chain); 1961 } 1962 1963 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1964 /// created for it, emit nodes to copy the value into the virtual 1965 /// registers. 1966 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1967 // Skip empty types 1968 if (V->getType()->isEmptyTy()) 1969 return; 1970 1971 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1972 if (VMI != FuncInfo.ValueMap.end()) { 1973 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1974 CopyValueToVirtualRegister(V, VMI->second); 1975 } 1976 } 1977 1978 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1979 /// the current basic block, add it to ValueMap now so that we'll get a 1980 /// CopyTo/FromReg. 1981 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1982 // No need to export constants. 1983 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1984 1985 // Already exported? 1986 if (FuncInfo.isExportedInst(V)) return; 1987 1988 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1989 CopyValueToVirtualRegister(V, Reg); 1990 } 1991 1992 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1993 const BasicBlock *FromBB) { 1994 // The operands of the setcc have to be in this block. We don't know 1995 // how to export them from some other block. 1996 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1997 // Can export from current BB. 1998 if (VI->getParent() == FromBB) 1999 return true; 2000 2001 // Is already exported, noop. 2002 return FuncInfo.isExportedInst(V); 2003 } 2004 2005 // If this is an argument, we can export it if the BB is the entry block or 2006 // if it is already exported. 2007 if (isa<Argument>(V)) { 2008 if (FromBB == &FromBB->getParent()->getEntryBlock()) 2009 return true; 2010 2011 // Otherwise, can only export this if it is already exported. 2012 return FuncInfo.isExportedInst(V); 2013 } 2014 2015 // Otherwise, constants can always be exported. 2016 return true; 2017 } 2018 2019 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2020 BranchProbability 2021 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2022 const MachineBasicBlock *Dst) const { 2023 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2024 const BasicBlock *SrcBB = Src->getBasicBlock(); 2025 const BasicBlock *DstBB = Dst->getBasicBlock(); 2026 if (!BPI) { 2027 // If BPI is not available, set the default probability as 1 / N, where N is 2028 // the number of successors. 2029 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2030 return BranchProbability(1, SuccSize); 2031 } 2032 return BPI->getEdgeProbability(SrcBB, DstBB); 2033 } 2034 2035 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2036 MachineBasicBlock *Dst, 2037 BranchProbability Prob) { 2038 if (!FuncInfo.BPI) 2039 Src->addSuccessorWithoutProb(Dst); 2040 else { 2041 if (Prob.isUnknown()) 2042 Prob = getEdgeProbability(Src, Dst); 2043 Src->addSuccessor(Dst, Prob); 2044 } 2045 } 2046 2047 static bool InBlock(const Value *V, const BasicBlock *BB) { 2048 if (const Instruction *I = dyn_cast<Instruction>(V)) 2049 return I->getParent() == BB; 2050 return true; 2051 } 2052 2053 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2054 /// This function emits a branch and is used at the leaves of an OR or an 2055 /// AND operator tree. 2056 void 2057 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2058 MachineBasicBlock *TBB, 2059 MachineBasicBlock *FBB, 2060 MachineBasicBlock *CurBB, 2061 MachineBasicBlock *SwitchBB, 2062 BranchProbability TProb, 2063 BranchProbability FProb, 2064 bool InvertCond) { 2065 const BasicBlock *BB = CurBB->getBasicBlock(); 2066 2067 // If the leaf of the tree is a comparison, merge the condition into 2068 // the caseblock. 2069 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2070 // The operands of the cmp have to be in this block. We don't know 2071 // how to export them from some other block. If this is the first block 2072 // of the sequence, no exporting is needed. 2073 if (CurBB == SwitchBB || 2074 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2075 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2076 ISD::CondCode Condition; 2077 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2078 ICmpInst::Predicate Pred = 2079 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2080 Condition = getICmpCondCode(Pred); 2081 } else { 2082 const FCmpInst *FC = cast<FCmpInst>(Cond); 2083 FCmpInst::Predicate Pred = 2084 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2085 Condition = getFCmpCondCode(Pred); 2086 if (TM.Options.NoNaNsFPMath) 2087 Condition = getFCmpCodeWithoutNaN(Condition); 2088 } 2089 2090 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2091 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2092 SL->SwitchCases.push_back(CB); 2093 return; 2094 } 2095 } 2096 2097 // Create a CaseBlock record representing this branch. 2098 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2099 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2100 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2101 SL->SwitchCases.push_back(CB); 2102 } 2103 2104 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2105 MachineBasicBlock *TBB, 2106 MachineBasicBlock *FBB, 2107 MachineBasicBlock *CurBB, 2108 MachineBasicBlock *SwitchBB, 2109 Instruction::BinaryOps Opc, 2110 BranchProbability TProb, 2111 BranchProbability FProb, 2112 bool InvertCond) { 2113 // Skip over not part of the tree and remember to invert op and operands at 2114 // next level. 2115 Value *NotCond; 2116 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2117 InBlock(NotCond, CurBB->getBasicBlock())) { 2118 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2119 !InvertCond); 2120 return; 2121 } 2122 2123 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2124 // Compute the effective opcode for Cond, taking into account whether it needs 2125 // to be inverted, e.g. 2126 // and (not (or A, B)), C 2127 // gets lowered as 2128 // and (and (not A, not B), C) 2129 unsigned BOpc = 0; 2130 if (BOp) { 2131 BOpc = BOp->getOpcode(); 2132 if (InvertCond) { 2133 if (BOpc == Instruction::And) 2134 BOpc = Instruction::Or; 2135 else if (BOpc == Instruction::Or) 2136 BOpc = Instruction::And; 2137 } 2138 } 2139 2140 // If this node is not part of the or/and tree, emit it as a branch. 2141 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2142 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2143 BOp->getParent() != CurBB->getBasicBlock() || 2144 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2145 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2146 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2147 TProb, FProb, InvertCond); 2148 return; 2149 } 2150 2151 // Create TmpBB after CurBB. 2152 MachineFunction::iterator BBI(CurBB); 2153 MachineFunction &MF = DAG.getMachineFunction(); 2154 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2155 CurBB->getParent()->insert(++BBI, TmpBB); 2156 2157 if (Opc == Instruction::Or) { 2158 // Codegen X | Y as: 2159 // BB1: 2160 // jmp_if_X TBB 2161 // jmp TmpBB 2162 // TmpBB: 2163 // jmp_if_Y TBB 2164 // jmp FBB 2165 // 2166 2167 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2168 // The requirement is that 2169 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2170 // = TrueProb for original BB. 2171 // Assuming the original probabilities are A and B, one choice is to set 2172 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2173 // A/(1+B) and 2B/(1+B). This choice assumes that 2174 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2175 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2176 // TmpBB, but the math is more complicated. 2177 2178 auto NewTrueProb = TProb / 2; 2179 auto NewFalseProb = TProb / 2 + FProb; 2180 // Emit the LHS condition. 2181 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2182 NewTrueProb, NewFalseProb, InvertCond); 2183 2184 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2185 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2186 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2187 // Emit the RHS condition into TmpBB. 2188 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2189 Probs[0], Probs[1], InvertCond); 2190 } else { 2191 assert(Opc == Instruction::And && "Unknown merge op!"); 2192 // Codegen X & Y as: 2193 // BB1: 2194 // jmp_if_X TmpBB 2195 // jmp FBB 2196 // TmpBB: 2197 // jmp_if_Y TBB 2198 // jmp FBB 2199 // 2200 // This requires creation of TmpBB after CurBB. 2201 2202 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2203 // The requirement is that 2204 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2205 // = FalseProb for original BB. 2206 // Assuming the original probabilities are A and B, one choice is to set 2207 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2208 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2209 // TrueProb for BB1 * FalseProb for TmpBB. 2210 2211 auto NewTrueProb = TProb + FProb / 2; 2212 auto NewFalseProb = FProb / 2; 2213 // Emit the LHS condition. 2214 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2215 NewTrueProb, NewFalseProb, InvertCond); 2216 2217 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2218 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2219 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2220 // Emit the RHS condition into TmpBB. 2221 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2222 Probs[0], Probs[1], InvertCond); 2223 } 2224 } 2225 2226 /// If the set of cases should be emitted as a series of branches, return true. 2227 /// If we should emit this as a bunch of and/or'd together conditions, return 2228 /// false. 2229 bool 2230 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2231 if (Cases.size() != 2) return true; 2232 2233 // If this is two comparisons of the same values or'd or and'd together, they 2234 // will get folded into a single comparison, so don't emit two blocks. 2235 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2236 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2237 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2238 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2239 return false; 2240 } 2241 2242 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2243 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2244 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2245 Cases[0].CC == Cases[1].CC && 2246 isa<Constant>(Cases[0].CmpRHS) && 2247 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2248 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2249 return false; 2250 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2251 return false; 2252 } 2253 2254 return true; 2255 } 2256 2257 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2258 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2259 2260 // Update machine-CFG edges. 2261 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2262 2263 if (I.isUnconditional()) { 2264 // Update machine-CFG edges. 2265 BrMBB->addSuccessor(Succ0MBB); 2266 2267 // If this is not a fall-through branch or optimizations are switched off, 2268 // emit the branch. 2269 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2270 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2271 MVT::Other, getControlRoot(), 2272 DAG.getBasicBlock(Succ0MBB))); 2273 2274 return; 2275 } 2276 2277 // If this condition is one of the special cases we handle, do special stuff 2278 // now. 2279 const Value *CondVal = I.getCondition(); 2280 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2281 2282 // If this is a series of conditions that are or'd or and'd together, emit 2283 // this as a sequence of branches instead of setcc's with and/or operations. 2284 // As long as jumps are not expensive, this should improve performance. 2285 // For example, instead of something like: 2286 // cmp A, B 2287 // C = seteq 2288 // cmp D, E 2289 // F = setle 2290 // or C, F 2291 // jnz foo 2292 // Emit: 2293 // cmp A, B 2294 // je foo 2295 // cmp D, E 2296 // jle foo 2297 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2298 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2299 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2300 !I.hasMetadata(LLVMContext::MD_unpredictable) && 2301 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2302 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2303 Opcode, 2304 getEdgeProbability(BrMBB, Succ0MBB), 2305 getEdgeProbability(BrMBB, Succ1MBB), 2306 /*InvertCond=*/false); 2307 // If the compares in later blocks need to use values not currently 2308 // exported from this block, export them now. This block should always 2309 // be the first entry. 2310 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2311 2312 // Allow some cases to be rejected. 2313 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2314 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2315 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2316 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2317 } 2318 2319 // Emit the branch for this block. 2320 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2321 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2322 return; 2323 } 2324 2325 // Okay, we decided not to do this, remove any inserted MBB's and clear 2326 // SwitchCases. 2327 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2328 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2329 2330 SL->SwitchCases.clear(); 2331 } 2332 } 2333 2334 // Create a CaseBlock record representing this branch. 2335 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2336 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2337 2338 // Use visitSwitchCase to actually insert the fast branch sequence for this 2339 // cond branch. 2340 visitSwitchCase(CB, BrMBB); 2341 } 2342 2343 /// visitSwitchCase - Emits the necessary code to represent a single node in 2344 /// the binary search tree resulting from lowering a switch instruction. 2345 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2346 MachineBasicBlock *SwitchBB) { 2347 SDValue Cond; 2348 SDValue CondLHS = getValue(CB.CmpLHS); 2349 SDLoc dl = CB.DL; 2350 2351 if (CB.CC == ISD::SETTRUE) { 2352 // Branch or fall through to TrueBB. 2353 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2354 SwitchBB->normalizeSuccProbs(); 2355 if (CB.TrueBB != NextBlock(SwitchBB)) { 2356 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2357 DAG.getBasicBlock(CB.TrueBB))); 2358 } 2359 return; 2360 } 2361 2362 auto &TLI = DAG.getTargetLoweringInfo(); 2363 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2364 2365 // Build the setcc now. 2366 if (!CB.CmpMHS) { 2367 // Fold "(X == true)" to X and "(X == false)" to !X to 2368 // handle common cases produced by branch lowering. 2369 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2370 CB.CC == ISD::SETEQ) 2371 Cond = CondLHS; 2372 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2373 CB.CC == ISD::SETEQ) { 2374 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2375 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2376 } else { 2377 SDValue CondRHS = getValue(CB.CmpRHS); 2378 2379 // If a pointer's DAG type is larger than its memory type then the DAG 2380 // values are zero-extended. This breaks signed comparisons so truncate 2381 // back to the underlying type before doing the compare. 2382 if (CondLHS.getValueType() != MemVT) { 2383 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2384 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2385 } 2386 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2387 } 2388 } else { 2389 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2390 2391 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2392 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2393 2394 SDValue CmpOp = getValue(CB.CmpMHS); 2395 EVT VT = CmpOp.getValueType(); 2396 2397 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2398 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2399 ISD::SETLE); 2400 } else { 2401 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2402 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2403 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2404 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2405 } 2406 } 2407 2408 // Update successor info 2409 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2410 // TrueBB and FalseBB are always different unless the incoming IR is 2411 // degenerate. This only happens when running llc on weird IR. 2412 if (CB.TrueBB != CB.FalseBB) 2413 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2414 SwitchBB->normalizeSuccProbs(); 2415 2416 // If the lhs block is the next block, invert the condition so that we can 2417 // fall through to the lhs instead of the rhs block. 2418 if (CB.TrueBB == NextBlock(SwitchBB)) { 2419 std::swap(CB.TrueBB, CB.FalseBB); 2420 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2421 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2422 } 2423 2424 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2425 MVT::Other, getControlRoot(), Cond, 2426 DAG.getBasicBlock(CB.TrueBB)); 2427 2428 // Insert the false branch. Do this even if it's a fall through branch, 2429 // this makes it easier to do DAG optimizations which require inverting 2430 // the branch condition. 2431 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2432 DAG.getBasicBlock(CB.FalseBB)); 2433 2434 DAG.setRoot(BrCond); 2435 } 2436 2437 /// visitJumpTable - Emit JumpTable node in the current MBB 2438 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2439 // Emit the code for the jump table 2440 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2441 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2442 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2443 JT.Reg, PTy); 2444 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2445 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2446 MVT::Other, Index.getValue(1), 2447 Table, Index); 2448 DAG.setRoot(BrJumpTable); 2449 } 2450 2451 /// visitJumpTableHeader - This function emits necessary code to produce index 2452 /// in the JumpTable from switch case. 2453 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2454 JumpTableHeader &JTH, 2455 MachineBasicBlock *SwitchBB) { 2456 SDLoc dl = getCurSDLoc(); 2457 2458 // Subtract the lowest switch case value from the value being switched on. 2459 SDValue SwitchOp = getValue(JTH.SValue); 2460 EVT VT = SwitchOp.getValueType(); 2461 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2462 DAG.getConstant(JTH.First, dl, VT)); 2463 2464 // The SDNode we just created, which holds the value being switched on minus 2465 // the smallest case value, needs to be copied to a virtual register so it 2466 // can be used as an index into the jump table in a subsequent basic block. 2467 // This value may be smaller or larger than the target's pointer type, and 2468 // therefore require extension or truncating. 2469 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2470 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2471 2472 unsigned JumpTableReg = 2473 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2474 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2475 JumpTableReg, SwitchOp); 2476 JT.Reg = JumpTableReg; 2477 2478 if (!JTH.OmitRangeCheck) { 2479 // Emit the range check for the jump table, and branch to the default block 2480 // for the switch statement if the value being switched on exceeds the 2481 // largest case in the switch. 2482 SDValue CMP = DAG.getSetCC( 2483 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2484 Sub.getValueType()), 2485 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2486 2487 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2488 MVT::Other, CopyTo, CMP, 2489 DAG.getBasicBlock(JT.Default)); 2490 2491 // Avoid emitting unnecessary branches to the next block. 2492 if (JT.MBB != NextBlock(SwitchBB)) 2493 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2494 DAG.getBasicBlock(JT.MBB)); 2495 2496 DAG.setRoot(BrCond); 2497 } else { 2498 // Avoid emitting unnecessary branches to the next block. 2499 if (JT.MBB != NextBlock(SwitchBB)) 2500 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2501 DAG.getBasicBlock(JT.MBB))); 2502 else 2503 DAG.setRoot(CopyTo); 2504 } 2505 } 2506 2507 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2508 /// variable if there exists one. 2509 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2510 SDValue &Chain) { 2511 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2512 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2513 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2514 MachineFunction &MF = DAG.getMachineFunction(); 2515 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2516 MachineSDNode *Node = 2517 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2518 if (Global) { 2519 MachinePointerInfo MPInfo(Global); 2520 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2521 MachineMemOperand::MODereferenceable; 2522 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2523 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy)); 2524 DAG.setNodeMemRefs(Node, {MemRef}); 2525 } 2526 if (PtrTy != PtrMemTy) 2527 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2528 return SDValue(Node, 0); 2529 } 2530 2531 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2532 /// tail spliced into a stack protector check success bb. 2533 /// 2534 /// For a high level explanation of how this fits into the stack protector 2535 /// generation see the comment on the declaration of class 2536 /// StackProtectorDescriptor. 2537 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2538 MachineBasicBlock *ParentBB) { 2539 2540 // First create the loads to the guard/stack slot for the comparison. 2541 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2542 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2543 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2544 2545 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2546 int FI = MFI.getStackProtectorIndex(); 2547 2548 SDValue Guard; 2549 SDLoc dl = getCurSDLoc(); 2550 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2551 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2552 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2553 2554 // Generate code to load the content of the guard slot. 2555 SDValue GuardVal = DAG.getLoad( 2556 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2557 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2558 MachineMemOperand::MOVolatile); 2559 2560 if (TLI.useStackGuardXorFP()) 2561 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2562 2563 // Retrieve guard check function, nullptr if instrumentation is inlined. 2564 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2565 // The target provides a guard check function to validate the guard value. 2566 // Generate a call to that function with the content of the guard slot as 2567 // argument. 2568 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2569 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2570 2571 TargetLowering::ArgListTy Args; 2572 TargetLowering::ArgListEntry Entry; 2573 Entry.Node = GuardVal; 2574 Entry.Ty = FnTy->getParamType(0); 2575 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2576 Entry.IsInReg = true; 2577 Args.push_back(Entry); 2578 2579 TargetLowering::CallLoweringInfo CLI(DAG); 2580 CLI.setDebugLoc(getCurSDLoc()) 2581 .setChain(DAG.getEntryNode()) 2582 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2583 getValue(GuardCheckFn), std::move(Args)); 2584 2585 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2586 DAG.setRoot(Result.second); 2587 return; 2588 } 2589 2590 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2591 // Otherwise, emit a volatile load to retrieve the stack guard value. 2592 SDValue Chain = DAG.getEntryNode(); 2593 if (TLI.useLoadStackGuardNode()) { 2594 Guard = getLoadStackGuard(DAG, dl, Chain); 2595 } else { 2596 const Value *IRGuard = TLI.getSDagStackGuard(M); 2597 SDValue GuardPtr = getValue(IRGuard); 2598 2599 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2600 MachinePointerInfo(IRGuard, 0), Align, 2601 MachineMemOperand::MOVolatile); 2602 } 2603 2604 // Perform the comparison via a subtract/getsetcc. 2605 EVT VT = Guard.getValueType(); 2606 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2607 2608 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2609 *DAG.getContext(), 2610 Sub.getValueType()), 2611 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2612 2613 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2614 // branch to failure MBB. 2615 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2616 MVT::Other, GuardVal.getOperand(0), 2617 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2618 // Otherwise branch to success MBB. 2619 SDValue Br = DAG.getNode(ISD::BR, dl, 2620 MVT::Other, BrCond, 2621 DAG.getBasicBlock(SPD.getSuccessMBB())); 2622 2623 DAG.setRoot(Br); 2624 } 2625 2626 /// Codegen the failure basic block for a stack protector check. 2627 /// 2628 /// A failure stack protector machine basic block consists simply of a call to 2629 /// __stack_chk_fail(). 2630 /// 2631 /// For a high level explanation of how this fits into the stack protector 2632 /// generation see the comment on the declaration of class 2633 /// StackProtectorDescriptor. 2634 void 2635 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2636 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2637 TargetLowering::MakeLibCallOptions CallOptions; 2638 CallOptions.setDiscardResult(true); 2639 SDValue Chain = 2640 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2641 None, CallOptions, getCurSDLoc()).second; 2642 // On PS4, the "return address" must still be within the calling function, 2643 // even if it's at the very end, so emit an explicit TRAP here. 2644 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2645 if (TM.getTargetTriple().isPS4CPU()) 2646 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2647 2648 DAG.setRoot(Chain); 2649 } 2650 2651 /// visitBitTestHeader - This function emits necessary code to produce value 2652 /// suitable for "bit tests" 2653 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2654 MachineBasicBlock *SwitchBB) { 2655 SDLoc dl = getCurSDLoc(); 2656 2657 // Subtract the minimum value. 2658 SDValue SwitchOp = getValue(B.SValue); 2659 EVT VT = SwitchOp.getValueType(); 2660 SDValue RangeSub = 2661 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2662 2663 // Determine the type of the test operands. 2664 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2665 bool UsePtrType = false; 2666 if (!TLI.isTypeLegal(VT)) { 2667 UsePtrType = true; 2668 } else { 2669 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2670 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2671 // Switch table case range are encoded into series of masks. 2672 // Just use pointer type, it's guaranteed to fit. 2673 UsePtrType = true; 2674 break; 2675 } 2676 } 2677 SDValue Sub = RangeSub; 2678 if (UsePtrType) { 2679 VT = TLI.getPointerTy(DAG.getDataLayout()); 2680 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2681 } 2682 2683 B.RegVT = VT.getSimpleVT(); 2684 B.Reg = FuncInfo.CreateReg(B.RegVT); 2685 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2686 2687 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2688 2689 if (!B.OmitRangeCheck) 2690 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2691 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2692 SwitchBB->normalizeSuccProbs(); 2693 2694 SDValue Root = CopyTo; 2695 if (!B.OmitRangeCheck) { 2696 // Conditional branch to the default block. 2697 SDValue RangeCmp = DAG.getSetCC(dl, 2698 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2699 RangeSub.getValueType()), 2700 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2701 ISD::SETUGT); 2702 2703 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2704 DAG.getBasicBlock(B.Default)); 2705 } 2706 2707 // Avoid emitting unnecessary branches to the next block. 2708 if (MBB != NextBlock(SwitchBB)) 2709 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2710 2711 DAG.setRoot(Root); 2712 } 2713 2714 /// visitBitTestCase - this function produces one "bit test" 2715 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2716 MachineBasicBlock* NextMBB, 2717 BranchProbability BranchProbToNext, 2718 unsigned Reg, 2719 BitTestCase &B, 2720 MachineBasicBlock *SwitchBB) { 2721 SDLoc dl = getCurSDLoc(); 2722 MVT VT = BB.RegVT; 2723 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2724 SDValue Cmp; 2725 unsigned PopCount = countPopulation(B.Mask); 2726 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2727 if (PopCount == 1) { 2728 // Testing for a single bit; just compare the shift count with what it 2729 // would need to be to shift a 1 bit in that position. 2730 Cmp = DAG.getSetCC( 2731 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2732 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2733 ISD::SETEQ); 2734 } else if (PopCount == BB.Range) { 2735 // There is only one zero bit in the range, test for it directly. 2736 Cmp = DAG.getSetCC( 2737 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2738 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2739 ISD::SETNE); 2740 } else { 2741 // Make desired shift 2742 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2743 DAG.getConstant(1, dl, VT), ShiftOp); 2744 2745 // Emit bit tests and jumps 2746 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2747 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2748 Cmp = DAG.getSetCC( 2749 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2750 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2751 } 2752 2753 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2754 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2755 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2756 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2757 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2758 // one as they are relative probabilities (and thus work more like weights), 2759 // and hence we need to normalize them to let the sum of them become one. 2760 SwitchBB->normalizeSuccProbs(); 2761 2762 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2763 MVT::Other, getControlRoot(), 2764 Cmp, DAG.getBasicBlock(B.TargetBB)); 2765 2766 // Avoid emitting unnecessary branches to the next block. 2767 if (NextMBB != NextBlock(SwitchBB)) 2768 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2769 DAG.getBasicBlock(NextMBB)); 2770 2771 DAG.setRoot(BrAnd); 2772 } 2773 2774 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2775 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2776 2777 // Retrieve successors. Look through artificial IR level blocks like 2778 // catchswitch for successors. 2779 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2780 const BasicBlock *EHPadBB = I.getSuccessor(1); 2781 2782 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2783 // have to do anything here to lower funclet bundles. 2784 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 2785 LLVMContext::OB_funclet, 2786 LLVMContext::OB_cfguardtarget}) && 2787 "Cannot lower invokes with arbitrary operand bundles yet!"); 2788 2789 const Value *Callee(I.getCalledValue()); 2790 const Function *Fn = dyn_cast<Function>(Callee); 2791 if (isa<InlineAsm>(Callee)) 2792 visitInlineAsm(&I); 2793 else if (Fn && Fn->isIntrinsic()) { 2794 switch (Fn->getIntrinsicID()) { 2795 default: 2796 llvm_unreachable("Cannot invoke this intrinsic"); 2797 case Intrinsic::donothing: 2798 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2799 break; 2800 case Intrinsic::experimental_patchpoint_void: 2801 case Intrinsic::experimental_patchpoint_i64: 2802 visitPatchpoint(&I, EHPadBB); 2803 break; 2804 case Intrinsic::experimental_gc_statepoint: 2805 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2806 break; 2807 case Intrinsic::wasm_rethrow_in_catch: { 2808 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2809 // special because it can be invoked, so we manually lower it to a DAG 2810 // node here. 2811 SmallVector<SDValue, 8> Ops; 2812 Ops.push_back(getRoot()); // inchain 2813 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2814 Ops.push_back( 2815 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2816 TLI.getPointerTy(DAG.getDataLayout()))); 2817 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2818 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2819 break; 2820 } 2821 } 2822 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2823 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2824 // Eventually we will support lowering the @llvm.experimental.deoptimize 2825 // intrinsic, and right now there are no plans to support other intrinsics 2826 // with deopt state. 2827 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2828 } else { 2829 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2830 } 2831 2832 // If the value of the invoke is used outside of its defining block, make it 2833 // available as a virtual register. 2834 // We already took care of the exported value for the statepoint instruction 2835 // during call to the LowerStatepoint. 2836 if (!isStatepoint(I)) { 2837 CopyToExportRegsIfNeeded(&I); 2838 } 2839 2840 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2841 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2842 BranchProbability EHPadBBProb = 2843 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2844 : BranchProbability::getZero(); 2845 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2846 2847 // Update successor info. 2848 addSuccessorWithProb(InvokeMBB, Return); 2849 for (auto &UnwindDest : UnwindDests) { 2850 UnwindDest.first->setIsEHPad(); 2851 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2852 } 2853 InvokeMBB->normalizeSuccProbs(); 2854 2855 // Drop into normal successor. 2856 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2857 DAG.getBasicBlock(Return))); 2858 } 2859 2860 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2861 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2862 2863 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2864 // have to do anything here to lower funclet bundles. 2865 assert(!I.hasOperandBundlesOtherThan( 2866 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2867 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2868 2869 assert(isa<InlineAsm>(I.getCalledValue()) && 2870 "Only know how to handle inlineasm callbr"); 2871 visitInlineAsm(&I); 2872 2873 // Retrieve successors. 2874 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2875 2876 // Update successor info. 2877 addSuccessorWithProb(CallBrMBB, Return); 2878 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2879 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2880 addSuccessorWithProb(CallBrMBB, Target); 2881 } 2882 CallBrMBB->normalizeSuccProbs(); 2883 2884 // Drop into default successor. 2885 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2886 MVT::Other, getControlRoot(), 2887 DAG.getBasicBlock(Return))); 2888 } 2889 2890 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2891 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2892 } 2893 2894 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2895 assert(FuncInfo.MBB->isEHPad() && 2896 "Call to landingpad not in landing pad!"); 2897 2898 // If there aren't registers to copy the values into (e.g., during SjLj 2899 // exceptions), then don't bother to create these DAG nodes. 2900 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2901 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2902 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2903 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2904 return; 2905 2906 // If landingpad's return type is token type, we don't create DAG nodes 2907 // for its exception pointer and selector value. The extraction of exception 2908 // pointer or selector value from token type landingpads is not currently 2909 // supported. 2910 if (LP.getType()->isTokenTy()) 2911 return; 2912 2913 SmallVector<EVT, 2> ValueVTs; 2914 SDLoc dl = getCurSDLoc(); 2915 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2916 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2917 2918 // Get the two live-in registers as SDValues. The physregs have already been 2919 // copied into virtual registers. 2920 SDValue Ops[2]; 2921 if (FuncInfo.ExceptionPointerVirtReg) { 2922 Ops[0] = DAG.getZExtOrTrunc( 2923 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2924 FuncInfo.ExceptionPointerVirtReg, 2925 TLI.getPointerTy(DAG.getDataLayout())), 2926 dl, ValueVTs[0]); 2927 } else { 2928 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2929 } 2930 Ops[1] = DAG.getZExtOrTrunc( 2931 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2932 FuncInfo.ExceptionSelectorVirtReg, 2933 TLI.getPointerTy(DAG.getDataLayout())), 2934 dl, ValueVTs[1]); 2935 2936 // Merge into one. 2937 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2938 DAG.getVTList(ValueVTs), Ops); 2939 setValue(&LP, Res); 2940 } 2941 2942 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2943 MachineBasicBlock *Last) { 2944 // Update JTCases. 2945 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 2946 if (SL->JTCases[i].first.HeaderBB == First) 2947 SL->JTCases[i].first.HeaderBB = Last; 2948 2949 // Update BitTestCases. 2950 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 2951 if (SL->BitTestCases[i].Parent == First) 2952 SL->BitTestCases[i].Parent = Last; 2953 } 2954 2955 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2956 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2957 2958 // Update machine-CFG edges with unique successors. 2959 SmallSet<BasicBlock*, 32> Done; 2960 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2961 BasicBlock *BB = I.getSuccessor(i); 2962 bool Inserted = Done.insert(BB).second; 2963 if (!Inserted) 2964 continue; 2965 2966 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2967 addSuccessorWithProb(IndirectBrMBB, Succ); 2968 } 2969 IndirectBrMBB->normalizeSuccProbs(); 2970 2971 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2972 MVT::Other, getControlRoot(), 2973 getValue(I.getAddress()))); 2974 } 2975 2976 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2977 if (!DAG.getTarget().Options.TrapUnreachable) 2978 return; 2979 2980 // We may be able to ignore unreachable behind a noreturn call. 2981 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2982 const BasicBlock &BB = *I.getParent(); 2983 if (&I != &BB.front()) { 2984 BasicBlock::const_iterator PredI = 2985 std::prev(BasicBlock::const_iterator(&I)); 2986 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2987 if (Call->doesNotReturn()) 2988 return; 2989 } 2990 } 2991 } 2992 2993 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2994 } 2995 2996 void SelectionDAGBuilder::visitFSub(const User &I) { 2997 // -0.0 - X --> fneg 2998 Type *Ty = I.getType(); 2999 if (isa<Constant>(I.getOperand(0)) && 3000 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 3001 SDValue Op2 = getValue(I.getOperand(1)); 3002 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 3003 Op2.getValueType(), Op2)); 3004 return; 3005 } 3006 3007 visitBinary(I, ISD::FSUB); 3008 } 3009 3010 /// Checks if the given instruction performs a vector reduction, in which case 3011 /// we have the freedom to alter the elements in the result as long as the 3012 /// reduction of them stays unchanged. 3013 static bool isVectorReductionOp(const User *I) { 3014 const Instruction *Inst = dyn_cast<Instruction>(I); 3015 if (!Inst || !Inst->getType()->isVectorTy()) 3016 return false; 3017 3018 auto OpCode = Inst->getOpcode(); 3019 switch (OpCode) { 3020 case Instruction::Add: 3021 case Instruction::Mul: 3022 case Instruction::And: 3023 case Instruction::Or: 3024 case Instruction::Xor: 3025 break; 3026 case Instruction::FAdd: 3027 case Instruction::FMul: 3028 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 3029 if (FPOp->getFastMathFlags().isFast()) 3030 break; 3031 LLVM_FALLTHROUGH; 3032 default: 3033 return false; 3034 } 3035 3036 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 3037 // Ensure the reduction size is a power of 2. 3038 if (!isPowerOf2_32(ElemNum)) 3039 return false; 3040 3041 unsigned ElemNumToReduce = ElemNum; 3042 3043 // Do DFS search on the def-use chain from the given instruction. We only 3044 // allow four kinds of operations during the search until we reach the 3045 // instruction that extracts the first element from the vector: 3046 // 3047 // 1. The reduction operation of the same opcode as the given instruction. 3048 // 3049 // 2. PHI node. 3050 // 3051 // 3. ShuffleVector instruction together with a reduction operation that 3052 // does a partial reduction. 3053 // 3054 // 4. ExtractElement that extracts the first element from the vector, and we 3055 // stop searching the def-use chain here. 3056 // 3057 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 3058 // from 1-3 to the stack to continue the DFS. The given instruction is not 3059 // a reduction operation if we meet any other instructions other than those 3060 // listed above. 3061 3062 SmallVector<const User *, 16> UsersToVisit{Inst}; 3063 SmallPtrSet<const User *, 16> Visited; 3064 bool ReduxExtracted = false; 3065 3066 while (!UsersToVisit.empty()) { 3067 auto User = UsersToVisit.back(); 3068 UsersToVisit.pop_back(); 3069 if (!Visited.insert(User).second) 3070 continue; 3071 3072 for (const auto *U : User->users()) { 3073 auto Inst = dyn_cast<Instruction>(U); 3074 if (!Inst) 3075 return false; 3076 3077 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 3078 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 3079 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 3080 return false; 3081 UsersToVisit.push_back(U); 3082 } else if (const ShuffleVectorInst *ShufInst = 3083 dyn_cast<ShuffleVectorInst>(U)) { 3084 // Detect the following pattern: A ShuffleVector instruction together 3085 // with a reduction that do partial reduction on the first and second 3086 // ElemNumToReduce / 2 elements, and store the result in 3087 // ElemNumToReduce / 2 elements in another vector. 3088 3089 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 3090 if (ResultElements < ElemNum) 3091 return false; 3092 3093 if (ElemNumToReduce == 1) 3094 return false; 3095 if (!isa<UndefValue>(U->getOperand(1))) 3096 return false; 3097 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 3098 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 3099 return false; 3100 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 3101 if (ShufInst->getMaskValue(i) != -1) 3102 return false; 3103 3104 // There is only one user of this ShuffleVector instruction, which 3105 // must be a reduction operation. 3106 if (!U->hasOneUse()) 3107 return false; 3108 3109 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 3110 if (!U2 || U2->getOpcode() != OpCode) 3111 return false; 3112 3113 // Check operands of the reduction operation. 3114 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 3115 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 3116 UsersToVisit.push_back(U2); 3117 ElemNumToReduce /= 2; 3118 } else 3119 return false; 3120 } else if (isa<ExtractElementInst>(U)) { 3121 // At this moment we should have reduced all elements in the vector. 3122 if (ElemNumToReduce != 1) 3123 return false; 3124 3125 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 3126 if (!Val || !Val->isZero()) 3127 return false; 3128 3129 ReduxExtracted = true; 3130 } else 3131 return false; 3132 } 3133 } 3134 return ReduxExtracted; 3135 } 3136 3137 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3138 SDNodeFlags Flags; 3139 3140 SDValue Op = getValue(I.getOperand(0)); 3141 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3142 Op, Flags); 3143 setValue(&I, UnNodeValue); 3144 } 3145 3146 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3147 SDNodeFlags Flags; 3148 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3149 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3150 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3151 } 3152 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3153 Flags.setExact(ExactOp->isExact()); 3154 } 3155 if (isVectorReductionOp(&I)) { 3156 Flags.setVectorReduction(true); 3157 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 3158 3159 // If no flags are set we will propagate the incoming flags, if any flags 3160 // are set, we will intersect them with the incoming flag and so we need to 3161 // copy the FMF flags here. 3162 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) { 3163 Flags.copyFMF(*FPOp); 3164 } 3165 } 3166 3167 SDValue Op1 = getValue(I.getOperand(0)); 3168 SDValue Op2 = getValue(I.getOperand(1)); 3169 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3170 Op1, Op2, Flags); 3171 setValue(&I, BinNodeValue); 3172 } 3173 3174 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3175 SDValue Op1 = getValue(I.getOperand(0)); 3176 SDValue Op2 = getValue(I.getOperand(1)); 3177 3178 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3179 Op1.getValueType(), DAG.getDataLayout()); 3180 3181 // Coerce the shift amount to the right type if we can. 3182 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3183 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3184 unsigned Op2Size = Op2.getValueSizeInBits(); 3185 SDLoc DL = getCurSDLoc(); 3186 3187 // If the operand is smaller than the shift count type, promote it. 3188 if (ShiftSize > Op2Size) 3189 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3190 3191 // If the operand is larger than the shift count type but the shift 3192 // count type has enough bits to represent any shift value, truncate 3193 // it now. This is a common case and it exposes the truncate to 3194 // optimization early. 3195 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3196 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3197 // Otherwise we'll need to temporarily settle for some other convenient 3198 // type. Type legalization will make adjustments once the shiftee is split. 3199 else 3200 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3201 } 3202 3203 bool nuw = false; 3204 bool nsw = false; 3205 bool exact = false; 3206 3207 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3208 3209 if (const OverflowingBinaryOperator *OFBinOp = 3210 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3211 nuw = OFBinOp->hasNoUnsignedWrap(); 3212 nsw = OFBinOp->hasNoSignedWrap(); 3213 } 3214 if (const PossiblyExactOperator *ExactOp = 3215 dyn_cast<const PossiblyExactOperator>(&I)) 3216 exact = ExactOp->isExact(); 3217 } 3218 SDNodeFlags Flags; 3219 Flags.setExact(exact); 3220 Flags.setNoSignedWrap(nsw); 3221 Flags.setNoUnsignedWrap(nuw); 3222 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3223 Flags); 3224 setValue(&I, Res); 3225 } 3226 3227 void SelectionDAGBuilder::visitSDiv(const User &I) { 3228 SDValue Op1 = getValue(I.getOperand(0)); 3229 SDValue Op2 = getValue(I.getOperand(1)); 3230 3231 SDNodeFlags Flags; 3232 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3233 cast<PossiblyExactOperator>(&I)->isExact()); 3234 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3235 Op2, Flags)); 3236 } 3237 3238 void SelectionDAGBuilder::visitICmp(const User &I) { 3239 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3240 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3241 predicate = IC->getPredicate(); 3242 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3243 predicate = ICmpInst::Predicate(IC->getPredicate()); 3244 SDValue Op1 = getValue(I.getOperand(0)); 3245 SDValue Op2 = getValue(I.getOperand(1)); 3246 ISD::CondCode Opcode = getICmpCondCode(predicate); 3247 3248 auto &TLI = DAG.getTargetLoweringInfo(); 3249 EVT MemVT = 3250 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3251 3252 // If a pointer's DAG type is larger than its memory type then the DAG values 3253 // are zero-extended. This breaks signed comparisons so truncate back to the 3254 // underlying type before doing the compare. 3255 if (Op1.getValueType() != MemVT) { 3256 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3257 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3258 } 3259 3260 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3261 I.getType()); 3262 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3263 } 3264 3265 void SelectionDAGBuilder::visitFCmp(const User &I) { 3266 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3267 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3268 predicate = FC->getPredicate(); 3269 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3270 predicate = FCmpInst::Predicate(FC->getPredicate()); 3271 SDValue Op1 = getValue(I.getOperand(0)); 3272 SDValue Op2 = getValue(I.getOperand(1)); 3273 3274 ISD::CondCode Condition = getFCmpCondCode(predicate); 3275 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3276 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3277 Condition = getFCmpCodeWithoutNaN(Condition); 3278 3279 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3280 I.getType()); 3281 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3282 } 3283 3284 // Check if the condition of the select has one use or two users that are both 3285 // selects with the same condition. 3286 static bool hasOnlySelectUsers(const Value *Cond) { 3287 return llvm::all_of(Cond->users(), [](const Value *V) { 3288 return isa<SelectInst>(V); 3289 }); 3290 } 3291 3292 void SelectionDAGBuilder::visitSelect(const User &I) { 3293 SmallVector<EVT, 4> ValueVTs; 3294 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3295 ValueVTs); 3296 unsigned NumValues = ValueVTs.size(); 3297 if (NumValues == 0) return; 3298 3299 SmallVector<SDValue, 4> Values(NumValues); 3300 SDValue Cond = getValue(I.getOperand(0)); 3301 SDValue LHSVal = getValue(I.getOperand(1)); 3302 SDValue RHSVal = getValue(I.getOperand(2)); 3303 auto BaseOps = {Cond}; 3304 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 3305 ISD::VSELECT : ISD::SELECT; 3306 3307 bool IsUnaryAbs = false; 3308 3309 // Min/max matching is only viable if all output VTs are the same. 3310 if (is_splat(ValueVTs)) { 3311 EVT VT = ValueVTs[0]; 3312 LLVMContext &Ctx = *DAG.getContext(); 3313 auto &TLI = DAG.getTargetLoweringInfo(); 3314 3315 // We care about the legality of the operation after it has been type 3316 // legalized. 3317 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3318 VT = TLI.getTypeToTransformTo(Ctx, VT); 3319 3320 // If the vselect is legal, assume we want to leave this as a vector setcc + 3321 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3322 // min/max is legal on the scalar type. 3323 bool UseScalarMinMax = VT.isVector() && 3324 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3325 3326 Value *LHS, *RHS; 3327 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3328 ISD::NodeType Opc = ISD::DELETED_NODE; 3329 switch (SPR.Flavor) { 3330 case SPF_UMAX: Opc = ISD::UMAX; break; 3331 case SPF_UMIN: Opc = ISD::UMIN; break; 3332 case SPF_SMAX: Opc = ISD::SMAX; break; 3333 case SPF_SMIN: Opc = ISD::SMIN; break; 3334 case SPF_FMINNUM: 3335 switch (SPR.NaNBehavior) { 3336 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3337 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3338 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3339 case SPNB_RETURNS_ANY: { 3340 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3341 Opc = ISD::FMINNUM; 3342 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3343 Opc = ISD::FMINIMUM; 3344 else if (UseScalarMinMax) 3345 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3346 ISD::FMINNUM : ISD::FMINIMUM; 3347 break; 3348 } 3349 } 3350 break; 3351 case SPF_FMAXNUM: 3352 switch (SPR.NaNBehavior) { 3353 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3354 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3355 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3356 case SPNB_RETURNS_ANY: 3357 3358 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3359 Opc = ISD::FMAXNUM; 3360 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3361 Opc = ISD::FMAXIMUM; 3362 else if (UseScalarMinMax) 3363 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3364 ISD::FMAXNUM : ISD::FMAXIMUM; 3365 break; 3366 } 3367 break; 3368 case SPF_ABS: 3369 IsUnaryAbs = true; 3370 Opc = ISD::ABS; 3371 break; 3372 case SPF_NABS: 3373 // TODO: we need to produce sub(0, abs(X)). 3374 default: break; 3375 } 3376 3377 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3378 (TLI.isOperationLegalOrCustom(Opc, VT) || 3379 (UseScalarMinMax && 3380 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3381 // If the underlying comparison instruction is used by any other 3382 // instruction, the consumed instructions won't be destroyed, so it is 3383 // not profitable to convert to a min/max. 3384 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3385 OpCode = Opc; 3386 LHSVal = getValue(LHS); 3387 RHSVal = getValue(RHS); 3388 BaseOps = {}; 3389 } 3390 3391 if (IsUnaryAbs) { 3392 OpCode = Opc; 3393 LHSVal = getValue(LHS); 3394 BaseOps = {}; 3395 } 3396 } 3397 3398 if (IsUnaryAbs) { 3399 for (unsigned i = 0; i != NumValues; ++i) { 3400 Values[i] = 3401 DAG.getNode(OpCode, getCurSDLoc(), 3402 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3403 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3404 } 3405 } else { 3406 for (unsigned i = 0; i != NumValues; ++i) { 3407 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3408 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3409 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3410 Values[i] = DAG.getNode( 3411 OpCode, getCurSDLoc(), 3412 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); 3413 } 3414 } 3415 3416 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3417 DAG.getVTList(ValueVTs), Values)); 3418 } 3419 3420 void SelectionDAGBuilder::visitTrunc(const User &I) { 3421 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3422 SDValue N = getValue(I.getOperand(0)); 3423 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3424 I.getType()); 3425 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3426 } 3427 3428 void SelectionDAGBuilder::visitZExt(const User &I) { 3429 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3430 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3431 SDValue N = getValue(I.getOperand(0)); 3432 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3433 I.getType()); 3434 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3435 } 3436 3437 void SelectionDAGBuilder::visitSExt(const User &I) { 3438 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3439 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3440 SDValue N = getValue(I.getOperand(0)); 3441 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3442 I.getType()); 3443 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3444 } 3445 3446 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3447 // FPTrunc is never a no-op cast, no need to check 3448 SDValue N = getValue(I.getOperand(0)); 3449 SDLoc dl = getCurSDLoc(); 3450 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3451 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3452 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3453 DAG.getTargetConstant( 3454 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3455 } 3456 3457 void SelectionDAGBuilder::visitFPExt(const User &I) { 3458 // FPExt is never a no-op cast, no need to check 3459 SDValue N = getValue(I.getOperand(0)); 3460 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3461 I.getType()); 3462 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3463 } 3464 3465 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3466 // FPToUI is never a no-op cast, no need to check 3467 SDValue N = getValue(I.getOperand(0)); 3468 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3469 I.getType()); 3470 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3471 } 3472 3473 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3474 // FPToSI is never a no-op cast, no need to check 3475 SDValue N = getValue(I.getOperand(0)); 3476 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3477 I.getType()); 3478 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3479 } 3480 3481 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3482 // UIToFP is never a no-op cast, no need to check 3483 SDValue N = getValue(I.getOperand(0)); 3484 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3485 I.getType()); 3486 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3487 } 3488 3489 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3490 // SIToFP is never a no-op cast, no need to check 3491 SDValue N = getValue(I.getOperand(0)); 3492 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3493 I.getType()); 3494 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3495 } 3496 3497 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3498 // What to do depends on the size of the integer and the size of the pointer. 3499 // We can either truncate, zero extend, or no-op, accordingly. 3500 SDValue N = getValue(I.getOperand(0)); 3501 auto &TLI = DAG.getTargetLoweringInfo(); 3502 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3503 I.getType()); 3504 EVT PtrMemVT = 3505 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3506 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3507 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3508 setValue(&I, N); 3509 } 3510 3511 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3512 // What to do depends on the size of the integer and the size of the pointer. 3513 // We can either truncate, zero extend, or no-op, accordingly. 3514 SDValue N = getValue(I.getOperand(0)); 3515 auto &TLI = DAG.getTargetLoweringInfo(); 3516 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3517 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3518 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3519 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3520 setValue(&I, N); 3521 } 3522 3523 void SelectionDAGBuilder::visitBitCast(const User &I) { 3524 SDValue N = getValue(I.getOperand(0)); 3525 SDLoc dl = getCurSDLoc(); 3526 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3527 I.getType()); 3528 3529 // BitCast assures us that source and destination are the same size so this is 3530 // either a BITCAST or a no-op. 3531 if (DestVT != N.getValueType()) 3532 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3533 DestVT, N)); // convert types. 3534 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3535 // might fold any kind of constant expression to an integer constant and that 3536 // is not what we are looking for. Only recognize a bitcast of a genuine 3537 // constant integer as an opaque constant. 3538 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3539 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3540 /*isOpaque*/true)); 3541 else 3542 setValue(&I, N); // noop cast. 3543 } 3544 3545 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3546 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3547 const Value *SV = I.getOperand(0); 3548 SDValue N = getValue(SV); 3549 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3550 3551 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3552 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3553 3554 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3555 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3556 3557 setValue(&I, N); 3558 } 3559 3560 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3561 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3562 SDValue InVec = getValue(I.getOperand(0)); 3563 SDValue InVal = getValue(I.getOperand(1)); 3564 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3565 TLI.getVectorIdxTy(DAG.getDataLayout())); 3566 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3567 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3568 InVec, InVal, InIdx)); 3569 } 3570 3571 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3572 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3573 SDValue InVec = getValue(I.getOperand(0)); 3574 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3575 TLI.getVectorIdxTy(DAG.getDataLayout())); 3576 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3577 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3578 InVec, InIdx)); 3579 } 3580 3581 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3582 SDValue Src1 = getValue(I.getOperand(0)); 3583 SDValue Src2 = getValue(I.getOperand(1)); 3584 Constant *MaskV = cast<Constant>(I.getOperand(2)); 3585 SDLoc DL = getCurSDLoc(); 3586 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3587 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3588 EVT SrcVT = Src1.getValueType(); 3589 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3590 3591 if (MaskV->isNullValue() && VT.isScalableVector()) { 3592 // Canonical splat form of first element of first input vector. 3593 SDValue FirstElt = 3594 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3595 DAG.getVectorIdxConstant(0, DL)); 3596 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3597 return; 3598 } 3599 3600 // For now, we only handle splats for scalable vectors. 3601 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3602 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3603 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3604 3605 SmallVector<int, 8> Mask; 3606 ShuffleVectorInst::getShuffleMask(MaskV, Mask); 3607 unsigned MaskNumElts = Mask.size(); 3608 3609 if (SrcNumElts == MaskNumElts) { 3610 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3611 return; 3612 } 3613 3614 // Normalize the shuffle vector since mask and vector length don't match. 3615 if (SrcNumElts < MaskNumElts) { 3616 // Mask is longer than the source vectors. We can use concatenate vector to 3617 // make the mask and vectors lengths match. 3618 3619 if (MaskNumElts % SrcNumElts == 0) { 3620 // Mask length is a multiple of the source vector length. 3621 // Check if the shuffle is some kind of concatenation of the input 3622 // vectors. 3623 unsigned NumConcat = MaskNumElts / SrcNumElts; 3624 bool IsConcat = true; 3625 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3626 for (unsigned i = 0; i != MaskNumElts; ++i) { 3627 int Idx = Mask[i]; 3628 if (Idx < 0) 3629 continue; 3630 // Ensure the indices in each SrcVT sized piece are sequential and that 3631 // the same source is used for the whole piece. 3632 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3633 (ConcatSrcs[i / SrcNumElts] >= 0 && 3634 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3635 IsConcat = false; 3636 break; 3637 } 3638 // Remember which source this index came from. 3639 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3640 } 3641 3642 // The shuffle is concatenating multiple vectors together. Just emit 3643 // a CONCAT_VECTORS operation. 3644 if (IsConcat) { 3645 SmallVector<SDValue, 8> ConcatOps; 3646 for (auto Src : ConcatSrcs) { 3647 if (Src < 0) 3648 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3649 else if (Src == 0) 3650 ConcatOps.push_back(Src1); 3651 else 3652 ConcatOps.push_back(Src2); 3653 } 3654 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3655 return; 3656 } 3657 } 3658 3659 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3660 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3661 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3662 PaddedMaskNumElts); 3663 3664 // Pad both vectors with undefs to make them the same length as the mask. 3665 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3666 3667 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3668 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3669 MOps1[0] = Src1; 3670 MOps2[0] = Src2; 3671 3672 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3673 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3674 3675 // Readjust mask for new input vector length. 3676 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3677 for (unsigned i = 0; i != MaskNumElts; ++i) { 3678 int Idx = Mask[i]; 3679 if (Idx >= (int)SrcNumElts) 3680 Idx -= SrcNumElts - PaddedMaskNumElts; 3681 MappedOps[i] = Idx; 3682 } 3683 3684 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3685 3686 // If the concatenated vector was padded, extract a subvector with the 3687 // correct number of elements. 3688 if (MaskNumElts != PaddedMaskNumElts) 3689 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3690 DAG.getVectorIdxConstant(0, DL)); 3691 3692 setValue(&I, Result); 3693 return; 3694 } 3695 3696 if (SrcNumElts > MaskNumElts) { 3697 // Analyze the access pattern of the vector to see if we can extract 3698 // two subvectors and do the shuffle. 3699 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3700 bool CanExtract = true; 3701 for (int Idx : Mask) { 3702 unsigned Input = 0; 3703 if (Idx < 0) 3704 continue; 3705 3706 if (Idx >= (int)SrcNumElts) { 3707 Input = 1; 3708 Idx -= SrcNumElts; 3709 } 3710 3711 // If all the indices come from the same MaskNumElts sized portion of 3712 // the sources we can use extract. Also make sure the extract wouldn't 3713 // extract past the end of the source. 3714 int NewStartIdx = alignDown(Idx, MaskNumElts); 3715 if (NewStartIdx + MaskNumElts > SrcNumElts || 3716 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3717 CanExtract = false; 3718 // Make sure we always update StartIdx as we use it to track if all 3719 // elements are undef. 3720 StartIdx[Input] = NewStartIdx; 3721 } 3722 3723 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3724 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3725 return; 3726 } 3727 if (CanExtract) { 3728 // Extract appropriate subvector and generate a vector shuffle 3729 for (unsigned Input = 0; Input < 2; ++Input) { 3730 SDValue &Src = Input == 0 ? Src1 : Src2; 3731 if (StartIdx[Input] < 0) 3732 Src = DAG.getUNDEF(VT); 3733 else { 3734 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3735 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3736 } 3737 } 3738 3739 // Calculate new mask. 3740 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3741 for (int &Idx : MappedOps) { 3742 if (Idx >= (int)SrcNumElts) 3743 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3744 else if (Idx >= 0) 3745 Idx -= StartIdx[0]; 3746 } 3747 3748 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3749 return; 3750 } 3751 } 3752 3753 // We can't use either concat vectors or extract subvectors so fall back to 3754 // replacing the shuffle with extract and build vector. 3755 // to insert and build vector. 3756 EVT EltVT = VT.getVectorElementType(); 3757 SmallVector<SDValue,8> Ops; 3758 for (int Idx : Mask) { 3759 SDValue Res; 3760 3761 if (Idx < 0) { 3762 Res = DAG.getUNDEF(EltVT); 3763 } else { 3764 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3765 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3766 3767 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3768 DAG.getVectorIdxConstant(Idx, DL)); 3769 } 3770 3771 Ops.push_back(Res); 3772 } 3773 3774 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3775 } 3776 3777 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3778 ArrayRef<unsigned> Indices; 3779 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3780 Indices = IV->getIndices(); 3781 else 3782 Indices = cast<ConstantExpr>(&I)->getIndices(); 3783 3784 const Value *Op0 = I.getOperand(0); 3785 const Value *Op1 = I.getOperand(1); 3786 Type *AggTy = I.getType(); 3787 Type *ValTy = Op1->getType(); 3788 bool IntoUndef = isa<UndefValue>(Op0); 3789 bool FromUndef = isa<UndefValue>(Op1); 3790 3791 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3792 3793 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3794 SmallVector<EVT, 4> AggValueVTs; 3795 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3796 SmallVector<EVT, 4> ValValueVTs; 3797 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3798 3799 unsigned NumAggValues = AggValueVTs.size(); 3800 unsigned NumValValues = ValValueVTs.size(); 3801 SmallVector<SDValue, 4> Values(NumAggValues); 3802 3803 // Ignore an insertvalue that produces an empty object 3804 if (!NumAggValues) { 3805 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3806 return; 3807 } 3808 3809 SDValue Agg = getValue(Op0); 3810 unsigned i = 0; 3811 // Copy the beginning value(s) from the original aggregate. 3812 for (; i != LinearIndex; ++i) 3813 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3814 SDValue(Agg.getNode(), Agg.getResNo() + i); 3815 // Copy values from the inserted value(s). 3816 if (NumValValues) { 3817 SDValue Val = getValue(Op1); 3818 for (; i != LinearIndex + NumValValues; ++i) 3819 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3820 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3821 } 3822 // Copy remaining value(s) from the original aggregate. 3823 for (; i != NumAggValues; ++i) 3824 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3825 SDValue(Agg.getNode(), Agg.getResNo() + i); 3826 3827 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3828 DAG.getVTList(AggValueVTs), Values)); 3829 } 3830 3831 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3832 ArrayRef<unsigned> Indices; 3833 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3834 Indices = EV->getIndices(); 3835 else 3836 Indices = cast<ConstantExpr>(&I)->getIndices(); 3837 3838 const Value *Op0 = I.getOperand(0); 3839 Type *AggTy = Op0->getType(); 3840 Type *ValTy = I.getType(); 3841 bool OutOfUndef = isa<UndefValue>(Op0); 3842 3843 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3844 3845 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3846 SmallVector<EVT, 4> ValValueVTs; 3847 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3848 3849 unsigned NumValValues = ValValueVTs.size(); 3850 3851 // Ignore a extractvalue that produces an empty object 3852 if (!NumValValues) { 3853 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3854 return; 3855 } 3856 3857 SmallVector<SDValue, 4> Values(NumValValues); 3858 3859 SDValue Agg = getValue(Op0); 3860 // Copy out the selected value(s). 3861 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3862 Values[i - LinearIndex] = 3863 OutOfUndef ? 3864 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3865 SDValue(Agg.getNode(), Agg.getResNo() + i); 3866 3867 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3868 DAG.getVTList(ValValueVTs), Values)); 3869 } 3870 3871 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3872 Value *Op0 = I.getOperand(0); 3873 // Note that the pointer operand may be a vector of pointers. Take the scalar 3874 // element which holds a pointer. 3875 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3876 SDValue N = getValue(Op0); 3877 SDLoc dl = getCurSDLoc(); 3878 auto &TLI = DAG.getTargetLoweringInfo(); 3879 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3880 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3881 3882 // Normalize Vector GEP - all scalar operands should be converted to the 3883 // splat vector. 3884 unsigned VectorWidth = I.getType()->isVectorTy() ? 3885 I.getType()->getVectorNumElements() : 0; 3886 3887 if (VectorWidth && !N.getValueType().isVector()) { 3888 LLVMContext &Context = *DAG.getContext(); 3889 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3890 N = DAG.getSplatBuildVector(VT, dl, N); 3891 } 3892 3893 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3894 GTI != E; ++GTI) { 3895 const Value *Idx = GTI.getOperand(); 3896 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3897 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3898 if (Field) { 3899 // N = N + Offset 3900 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3901 3902 // In an inbounds GEP with an offset that is nonnegative even when 3903 // interpreted as signed, assume there is no unsigned overflow. 3904 SDNodeFlags Flags; 3905 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3906 Flags.setNoUnsignedWrap(true); 3907 3908 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3909 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3910 } 3911 } else { 3912 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3913 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3914 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3915 3916 // If this is a scalar constant or a splat vector of constants, 3917 // handle it quickly. 3918 const auto *C = dyn_cast<Constant>(Idx); 3919 if (C && isa<VectorType>(C->getType())) 3920 C = C->getSplatValue(); 3921 3922 if (const auto *CI = dyn_cast_or_null<ConstantInt>(C)) { 3923 if (CI->isZero()) 3924 continue; 3925 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3926 LLVMContext &Context = *DAG.getContext(); 3927 SDValue OffsVal = VectorWidth ? 3928 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3929 DAG.getConstant(Offs, dl, IdxTy); 3930 3931 // In an inbounds GEP with an offset that is nonnegative even when 3932 // interpreted as signed, assume there is no unsigned overflow. 3933 SDNodeFlags Flags; 3934 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3935 Flags.setNoUnsignedWrap(true); 3936 3937 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3938 3939 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3940 continue; 3941 } 3942 3943 // N = N + Idx * ElementSize; 3944 SDValue IdxN = getValue(Idx); 3945 3946 if (!IdxN.getValueType().isVector() && VectorWidth) { 3947 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3948 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3949 } 3950 3951 // If the index is smaller or larger than intptr_t, truncate or extend 3952 // it. 3953 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3954 3955 // If this is a multiply by a power of two, turn it into a shl 3956 // immediately. This is a very common case. 3957 if (ElementSize != 1) { 3958 if (ElementSize.isPowerOf2()) { 3959 unsigned Amt = ElementSize.logBase2(); 3960 IdxN = DAG.getNode(ISD::SHL, dl, 3961 N.getValueType(), IdxN, 3962 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3963 } else { 3964 SDValue Scale = DAG.getConstant(ElementSize.getZExtValue(), dl, 3965 IdxN.getValueType()); 3966 IdxN = DAG.getNode(ISD::MUL, dl, 3967 N.getValueType(), IdxN, Scale); 3968 } 3969 } 3970 3971 N = DAG.getNode(ISD::ADD, dl, 3972 N.getValueType(), N, IdxN); 3973 } 3974 } 3975 3976 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3977 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3978 3979 setValue(&I, N); 3980 } 3981 3982 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3983 // If this is a fixed sized alloca in the entry block of the function, 3984 // allocate it statically on the stack. 3985 if (FuncInfo.StaticAllocaMap.count(&I)) 3986 return; // getValue will auto-populate this. 3987 3988 SDLoc dl = getCurSDLoc(); 3989 Type *Ty = I.getAllocatedType(); 3990 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3991 auto &DL = DAG.getDataLayout(); 3992 uint64_t TySize = DL.getTypeAllocSize(Ty); 3993 unsigned Align = 3994 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3995 3996 SDValue AllocSize = getValue(I.getArraySize()); 3997 3998 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3999 if (AllocSize.getValueType() != IntPtr) 4000 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4001 4002 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 4003 AllocSize, 4004 DAG.getConstant(TySize, dl, IntPtr)); 4005 4006 // Handle alignment. If the requested alignment is less than or equal to 4007 // the stack alignment, ignore it. If the size is greater than or equal to 4008 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4009 unsigned StackAlign = 4010 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 4011 if (Align <= StackAlign) 4012 Align = 0; 4013 4014 // Round the size of the allocation up to the stack alignment size 4015 // by add SA-1 to the size. This doesn't overflow because we're computing 4016 // an address inside an alloca. 4017 SDNodeFlags Flags; 4018 Flags.setNoUnsignedWrap(true); 4019 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4020 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 4021 4022 // Mask out the low bits for alignment purposes. 4023 AllocSize = 4024 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4025 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 4026 4027 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 4028 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4029 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4030 setValue(&I, DSA); 4031 DAG.setRoot(DSA.getValue(1)); 4032 4033 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4034 } 4035 4036 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4037 if (I.isAtomic()) 4038 return visitAtomicLoad(I); 4039 4040 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4041 const Value *SV = I.getOperand(0); 4042 if (TLI.supportSwiftError()) { 4043 // Swifterror values can come from either a function parameter with 4044 // swifterror attribute or an alloca with swifterror attribute. 4045 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4046 if (Arg->hasSwiftErrorAttr()) 4047 return visitLoadFromSwiftError(I); 4048 } 4049 4050 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4051 if (Alloca->isSwiftError()) 4052 return visitLoadFromSwiftError(I); 4053 } 4054 } 4055 4056 SDValue Ptr = getValue(SV); 4057 4058 Type *Ty = I.getType(); 4059 unsigned Alignment = I.getAlignment(); 4060 4061 AAMDNodes AAInfo; 4062 I.getAAMetadata(AAInfo); 4063 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4064 4065 SmallVector<EVT, 4> ValueVTs, MemVTs; 4066 SmallVector<uint64_t, 4> Offsets; 4067 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4068 unsigned NumValues = ValueVTs.size(); 4069 if (NumValues == 0) 4070 return; 4071 4072 bool isVolatile = I.isVolatile(); 4073 4074 SDValue Root; 4075 bool ConstantMemory = false; 4076 if (isVolatile) 4077 // Serialize volatile loads with other side effects. 4078 Root = getRoot(); 4079 else if (NumValues > MaxParallelChains) 4080 Root = getMemoryRoot(); 4081 else if (AA && 4082 AA->pointsToConstantMemory(MemoryLocation( 4083 SV, 4084 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4085 AAInfo))) { 4086 // Do not serialize (non-volatile) loads of constant memory with anything. 4087 Root = DAG.getEntryNode(); 4088 ConstantMemory = true; 4089 } else { 4090 // Do not serialize non-volatile loads against each other. 4091 Root = DAG.getRoot(); 4092 } 4093 4094 SDLoc dl = getCurSDLoc(); 4095 4096 if (isVolatile) 4097 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4098 4099 // An aggregate load cannot wrap around the address space, so offsets to its 4100 // parts don't wrap either. 4101 SDNodeFlags Flags; 4102 Flags.setNoUnsignedWrap(true); 4103 4104 SmallVector<SDValue, 4> Values(NumValues); 4105 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4106 EVT PtrVT = Ptr.getValueType(); 4107 4108 MachineMemOperand::Flags MMOFlags 4109 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4110 4111 unsigned ChainI = 0; 4112 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4113 // Serializing loads here may result in excessive register pressure, and 4114 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4115 // could recover a bit by hoisting nodes upward in the chain by recognizing 4116 // they are side-effect free or do not alias. The optimizer should really 4117 // avoid this case by converting large object/array copies to llvm.memcpy 4118 // (MaxParallelChains should always remain as failsafe). 4119 if (ChainI == MaxParallelChains) { 4120 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4121 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4122 makeArrayRef(Chains.data(), ChainI)); 4123 Root = Chain; 4124 ChainI = 0; 4125 } 4126 SDValue A = DAG.getNode(ISD::ADD, dl, 4127 PtrVT, Ptr, 4128 DAG.getConstant(Offsets[i], dl, PtrVT), 4129 Flags); 4130 4131 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4132 MachinePointerInfo(SV, Offsets[i]), Alignment, 4133 MMOFlags, AAInfo, Ranges); 4134 Chains[ChainI] = L.getValue(1); 4135 4136 if (MemVTs[i] != ValueVTs[i]) 4137 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4138 4139 Values[i] = L; 4140 } 4141 4142 if (!ConstantMemory) { 4143 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4144 makeArrayRef(Chains.data(), ChainI)); 4145 if (isVolatile) 4146 DAG.setRoot(Chain); 4147 else 4148 PendingLoads.push_back(Chain); 4149 } 4150 4151 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4152 DAG.getVTList(ValueVTs), Values)); 4153 } 4154 4155 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4156 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4157 "call visitStoreToSwiftError when backend supports swifterror"); 4158 4159 SmallVector<EVT, 4> ValueVTs; 4160 SmallVector<uint64_t, 4> Offsets; 4161 const Value *SrcV = I.getOperand(0); 4162 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4163 SrcV->getType(), ValueVTs, &Offsets); 4164 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4165 "expect a single EVT for swifterror"); 4166 4167 SDValue Src = getValue(SrcV); 4168 // Create a virtual register, then update the virtual register. 4169 Register VReg = 4170 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4171 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4172 // Chain can be getRoot or getControlRoot. 4173 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4174 SDValue(Src.getNode(), Src.getResNo())); 4175 DAG.setRoot(CopyNode); 4176 } 4177 4178 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4179 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4180 "call visitLoadFromSwiftError when backend supports swifterror"); 4181 4182 assert(!I.isVolatile() && 4183 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4184 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4185 "Support volatile, non temporal, invariant for load_from_swift_error"); 4186 4187 const Value *SV = I.getOperand(0); 4188 Type *Ty = I.getType(); 4189 AAMDNodes AAInfo; 4190 I.getAAMetadata(AAInfo); 4191 assert( 4192 (!AA || 4193 !AA->pointsToConstantMemory(MemoryLocation( 4194 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4195 AAInfo))) && 4196 "load_from_swift_error should not be constant memory"); 4197 4198 SmallVector<EVT, 4> ValueVTs; 4199 SmallVector<uint64_t, 4> Offsets; 4200 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4201 ValueVTs, &Offsets); 4202 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4203 "expect a single EVT for swifterror"); 4204 4205 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4206 SDValue L = DAG.getCopyFromReg( 4207 getRoot(), getCurSDLoc(), 4208 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4209 4210 setValue(&I, L); 4211 } 4212 4213 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4214 if (I.isAtomic()) 4215 return visitAtomicStore(I); 4216 4217 const Value *SrcV = I.getOperand(0); 4218 const Value *PtrV = I.getOperand(1); 4219 4220 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4221 if (TLI.supportSwiftError()) { 4222 // Swifterror values can come from either a function parameter with 4223 // swifterror attribute or an alloca with swifterror attribute. 4224 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4225 if (Arg->hasSwiftErrorAttr()) 4226 return visitStoreToSwiftError(I); 4227 } 4228 4229 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4230 if (Alloca->isSwiftError()) 4231 return visitStoreToSwiftError(I); 4232 } 4233 } 4234 4235 SmallVector<EVT, 4> ValueVTs, MemVTs; 4236 SmallVector<uint64_t, 4> Offsets; 4237 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4238 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4239 unsigned NumValues = ValueVTs.size(); 4240 if (NumValues == 0) 4241 return; 4242 4243 // Get the lowered operands. Note that we do this after 4244 // checking if NumResults is zero, because with zero results 4245 // the operands won't have values in the map. 4246 SDValue Src = getValue(SrcV); 4247 SDValue Ptr = getValue(PtrV); 4248 4249 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4250 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4251 SDLoc dl = getCurSDLoc(); 4252 unsigned Alignment = I.getAlignment(); 4253 AAMDNodes AAInfo; 4254 I.getAAMetadata(AAInfo); 4255 4256 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4257 4258 // An aggregate load cannot wrap around the address space, so offsets to its 4259 // parts don't wrap either. 4260 SDNodeFlags Flags; 4261 Flags.setNoUnsignedWrap(true); 4262 4263 unsigned ChainI = 0; 4264 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4265 // See visitLoad comments. 4266 if (ChainI == MaxParallelChains) { 4267 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4268 makeArrayRef(Chains.data(), ChainI)); 4269 Root = Chain; 4270 ChainI = 0; 4271 } 4272 SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags); 4273 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4274 if (MemVTs[i] != ValueVTs[i]) 4275 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4276 SDValue St = 4277 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4278 Alignment, MMOFlags, AAInfo); 4279 Chains[ChainI] = St; 4280 } 4281 4282 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4283 makeArrayRef(Chains.data(), ChainI)); 4284 DAG.setRoot(StoreNode); 4285 } 4286 4287 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4288 bool IsCompressing) { 4289 SDLoc sdl = getCurSDLoc(); 4290 4291 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4292 unsigned& Alignment) { 4293 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4294 Src0 = I.getArgOperand(0); 4295 Ptr = I.getArgOperand(1); 4296 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 4297 Mask = I.getArgOperand(3); 4298 }; 4299 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4300 unsigned& Alignment) { 4301 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4302 Src0 = I.getArgOperand(0); 4303 Ptr = I.getArgOperand(1); 4304 Mask = I.getArgOperand(2); 4305 Alignment = 0; 4306 }; 4307 4308 Value *PtrOperand, *MaskOperand, *Src0Operand; 4309 unsigned Alignment; 4310 if (IsCompressing) 4311 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4312 else 4313 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4314 4315 SDValue Ptr = getValue(PtrOperand); 4316 SDValue Src0 = getValue(Src0Operand); 4317 SDValue Mask = getValue(MaskOperand); 4318 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4319 4320 EVT VT = Src0.getValueType(); 4321 if (!Alignment) 4322 Alignment = DAG.getEVTAlignment(VT); 4323 4324 AAMDNodes AAInfo; 4325 I.getAAMetadata(AAInfo); 4326 4327 MachineMemOperand *MMO = 4328 DAG.getMachineFunction(). 4329 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4330 MachineMemOperand::MOStore, 4331 // TODO: Make MachineMemOperands aware of scalable 4332 // vectors. 4333 VT.getStoreSize().getKnownMinSize(), 4334 Alignment, AAInfo); 4335 SDValue StoreNode = 4336 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4337 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4338 DAG.setRoot(StoreNode); 4339 setValue(&I, StoreNode); 4340 } 4341 4342 // Get a uniform base for the Gather/Scatter intrinsic. 4343 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4344 // We try to represent it as a base pointer + vector of indices. 4345 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4346 // The first operand of the GEP may be a single pointer or a vector of pointers 4347 // Example: 4348 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4349 // or 4350 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4351 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4352 // 4353 // When the first GEP operand is a single pointer - it is the uniform base we 4354 // are looking for. If first operand of the GEP is a splat vector - we 4355 // extract the splat value and use it as a uniform base. 4356 // In all other cases the function returns 'false'. 4357 static bool getUniformBase(const Value *&Ptr, SDValue &Base, SDValue &Index, 4358 ISD::MemIndexType &IndexType, SDValue &Scale, 4359 SelectionDAGBuilder *SDB) { 4360 SelectionDAG& DAG = SDB->DAG; 4361 LLVMContext &Context = *DAG.getContext(); 4362 4363 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4364 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4365 if (!GEP) 4366 return false; 4367 4368 const Value *GEPPtr = GEP->getPointerOperand(); 4369 if (!GEPPtr->getType()->isVectorTy()) 4370 Ptr = GEPPtr; 4371 else if (!(Ptr = getSplatValue(GEPPtr))) 4372 return false; 4373 4374 unsigned FinalIndex = GEP->getNumOperands() - 1; 4375 Value *IndexVal = GEP->getOperand(FinalIndex); 4376 gep_type_iterator GTI = gep_type_begin(*GEP); 4377 4378 // Ensure all the other indices are 0. 4379 for (unsigned i = 1; i < FinalIndex; ++i, ++GTI) { 4380 auto *C = dyn_cast<Constant>(GEP->getOperand(i)); 4381 if (!C) 4382 return false; 4383 if (isa<VectorType>(C->getType())) 4384 C = C->getSplatValue(); 4385 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4386 if (!CI || !CI->isZero()) 4387 return false; 4388 } 4389 4390 // The operands of the GEP may be defined in another basic block. 4391 // In this case we'll not find nodes for the operands. 4392 if (!SDB->findValue(Ptr)) 4393 return false; 4394 Constant *C = dyn_cast<Constant>(IndexVal); 4395 if (!C && !SDB->findValue(IndexVal)) 4396 return false; 4397 4398 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4399 const DataLayout &DL = DAG.getDataLayout(); 4400 StructType *STy = GTI.getStructTypeOrNull(); 4401 4402 if (STy) { 4403 const StructLayout *SL = DL.getStructLayout(STy); 4404 if (isa<VectorType>(C->getType())) { 4405 C = C->getSplatValue(); 4406 // FIXME: If getSplatValue may return nullptr for a structure? 4407 // If not, the following check can be removed. 4408 if (!C) 4409 return false; 4410 } 4411 auto *CI = cast<ConstantInt>(C); 4412 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4413 Index = DAG.getConstant(SL->getElementOffset(CI->getZExtValue()), 4414 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4415 } else { 4416 Scale = DAG.getTargetConstant( 4417 DL.getTypeAllocSize(GEP->getResultElementType()), 4418 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4419 Index = SDB->getValue(IndexVal); 4420 } 4421 Base = SDB->getValue(Ptr); 4422 IndexType = ISD::SIGNED_SCALED; 4423 4424 if (STy || !Index.getValueType().isVector()) { 4425 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 4426 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 4427 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 4428 } 4429 return true; 4430 } 4431 4432 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4433 SDLoc sdl = getCurSDLoc(); 4434 4435 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4436 const Value *Ptr = I.getArgOperand(1); 4437 SDValue Src0 = getValue(I.getArgOperand(0)); 4438 SDValue Mask = getValue(I.getArgOperand(3)); 4439 EVT VT = Src0.getValueType(); 4440 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 4441 if (!Alignment) 4442 Alignment = DAG.getEVTAlignment(VT); 4443 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4444 4445 AAMDNodes AAInfo; 4446 I.getAAMetadata(AAInfo); 4447 4448 SDValue Base; 4449 SDValue Index; 4450 ISD::MemIndexType IndexType; 4451 SDValue Scale; 4452 const Value *BasePtr = Ptr; 4453 bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale, 4454 this); 4455 4456 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 4457 MachineMemOperand *MMO = DAG.getMachineFunction(). 4458 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 4459 MachineMemOperand::MOStore, 4460 // TODO: Make MachineMemOperands aware of scalable 4461 // vectors. 4462 VT.getStoreSize().getKnownMinSize(), 4463 Alignment, AAInfo); 4464 if (!UniformBase) { 4465 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4466 Index = getValue(Ptr); 4467 IndexType = ISD::SIGNED_SCALED; 4468 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4469 } 4470 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4471 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4472 Ops, MMO, IndexType); 4473 DAG.setRoot(Scatter); 4474 setValue(&I, Scatter); 4475 } 4476 4477 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4478 SDLoc sdl = getCurSDLoc(); 4479 4480 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4481 unsigned& Alignment) { 4482 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4483 Ptr = I.getArgOperand(0); 4484 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4485 Mask = I.getArgOperand(2); 4486 Src0 = I.getArgOperand(3); 4487 }; 4488 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4489 unsigned& Alignment) { 4490 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4491 Ptr = I.getArgOperand(0); 4492 Alignment = 0; 4493 Mask = I.getArgOperand(1); 4494 Src0 = I.getArgOperand(2); 4495 }; 4496 4497 Value *PtrOperand, *MaskOperand, *Src0Operand; 4498 unsigned Alignment; 4499 if (IsExpanding) 4500 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4501 else 4502 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4503 4504 SDValue Ptr = getValue(PtrOperand); 4505 SDValue Src0 = getValue(Src0Operand); 4506 SDValue Mask = getValue(MaskOperand); 4507 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4508 4509 EVT VT = Src0.getValueType(); 4510 if (!Alignment) 4511 Alignment = DAG.getEVTAlignment(VT); 4512 4513 AAMDNodes AAInfo; 4514 I.getAAMetadata(AAInfo); 4515 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4516 4517 // Do not serialize masked loads of constant memory with anything. 4518 MemoryLocation ML; 4519 if (VT.isScalableVector()) 4520 ML = MemoryLocation(PtrOperand); 4521 else 4522 ML = MemoryLocation(PtrOperand, LocationSize::precise( 4523 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4524 AAInfo); 4525 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4526 4527 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4528 4529 MachineMemOperand *MMO = 4530 DAG.getMachineFunction(). 4531 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4532 MachineMemOperand::MOLoad, 4533 // TODO: Make MachineMemOperands aware of scalable 4534 // vectors. 4535 VT.getStoreSize().getKnownMinSize(), 4536 Alignment, AAInfo, Ranges); 4537 4538 SDValue Load = 4539 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4540 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4541 if (AddToChain) 4542 PendingLoads.push_back(Load.getValue(1)); 4543 setValue(&I, Load); 4544 } 4545 4546 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4547 SDLoc sdl = getCurSDLoc(); 4548 4549 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4550 const Value *Ptr = I.getArgOperand(0); 4551 SDValue Src0 = getValue(I.getArgOperand(3)); 4552 SDValue Mask = getValue(I.getArgOperand(2)); 4553 4554 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4555 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4556 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4557 if (!Alignment) 4558 Alignment = DAG.getEVTAlignment(VT); 4559 4560 AAMDNodes AAInfo; 4561 I.getAAMetadata(AAInfo); 4562 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4563 4564 SDValue Root = DAG.getRoot(); 4565 SDValue Base; 4566 SDValue Index; 4567 ISD::MemIndexType IndexType; 4568 SDValue Scale; 4569 const Value *BasePtr = Ptr; 4570 bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale, 4571 this); 4572 bool ConstantMemory = false; 4573 if (UniformBase && AA && 4574 AA->pointsToConstantMemory( 4575 MemoryLocation(BasePtr, 4576 LocationSize::precise( 4577 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4578 AAInfo))) { 4579 // Do not serialize (non-volatile) loads of constant memory with anything. 4580 Root = DAG.getEntryNode(); 4581 ConstantMemory = true; 4582 } 4583 4584 MachineMemOperand *MMO = 4585 DAG.getMachineFunction(). 4586 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4587 MachineMemOperand::MOLoad, 4588 // TODO: Make MachineMemOperands aware of scalable 4589 // vectors. 4590 VT.getStoreSize().getKnownMinSize(), 4591 Alignment, AAInfo, Ranges); 4592 4593 if (!UniformBase) { 4594 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4595 Index = getValue(Ptr); 4596 IndexType = ISD::SIGNED_SCALED; 4597 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4598 } 4599 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4600 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4601 Ops, MMO, IndexType); 4602 4603 SDValue OutChain = Gather.getValue(1); 4604 if (!ConstantMemory) 4605 PendingLoads.push_back(OutChain); 4606 setValue(&I, Gather); 4607 } 4608 4609 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4610 SDLoc dl = getCurSDLoc(); 4611 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4612 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4613 SyncScope::ID SSID = I.getSyncScopeID(); 4614 4615 SDValue InChain = getRoot(); 4616 4617 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4618 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4619 4620 auto Alignment = DAG.getEVTAlignment(MemVT); 4621 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4622 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4623 4624 MachineFunction &MF = DAG.getMachineFunction(); 4625 MachineMemOperand *MMO = 4626 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4627 Flags, MemVT.getStoreSize(), Alignment, 4628 AAMDNodes(), nullptr, SSID, SuccessOrdering, 4629 FailureOrdering); 4630 4631 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4632 dl, MemVT, VTs, InChain, 4633 getValue(I.getPointerOperand()), 4634 getValue(I.getCompareOperand()), 4635 getValue(I.getNewValOperand()), MMO); 4636 4637 SDValue OutChain = L.getValue(2); 4638 4639 setValue(&I, L); 4640 DAG.setRoot(OutChain); 4641 } 4642 4643 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4644 SDLoc dl = getCurSDLoc(); 4645 ISD::NodeType NT; 4646 switch (I.getOperation()) { 4647 default: llvm_unreachable("Unknown atomicrmw operation"); 4648 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4649 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4650 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4651 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4652 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4653 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4654 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4655 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4656 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4657 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4658 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4659 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4660 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4661 } 4662 AtomicOrdering Ordering = I.getOrdering(); 4663 SyncScope::ID SSID = I.getSyncScopeID(); 4664 4665 SDValue InChain = getRoot(); 4666 4667 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4668 auto Alignment = DAG.getEVTAlignment(MemVT); 4669 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4670 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4671 4672 MachineFunction &MF = DAG.getMachineFunction(); 4673 MachineMemOperand *MMO = 4674 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4675 MemVT.getStoreSize(), Alignment, AAMDNodes(), 4676 nullptr, SSID, Ordering); 4677 4678 SDValue L = 4679 DAG.getAtomic(NT, dl, MemVT, InChain, 4680 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4681 MMO); 4682 4683 SDValue OutChain = L.getValue(1); 4684 4685 setValue(&I, L); 4686 DAG.setRoot(OutChain); 4687 } 4688 4689 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4690 SDLoc dl = getCurSDLoc(); 4691 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4692 SDValue Ops[3]; 4693 Ops[0] = getRoot(); 4694 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4695 TLI.getFenceOperandTy(DAG.getDataLayout())); 4696 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4697 TLI.getFenceOperandTy(DAG.getDataLayout())); 4698 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4699 } 4700 4701 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4702 SDLoc dl = getCurSDLoc(); 4703 AtomicOrdering Order = I.getOrdering(); 4704 SyncScope::ID SSID = I.getSyncScopeID(); 4705 4706 SDValue InChain = getRoot(); 4707 4708 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4709 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4710 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4711 4712 if (!TLI.supportsUnalignedAtomics() && 4713 I.getAlignment() < MemVT.getSizeInBits() / 8) 4714 report_fatal_error("Cannot generate unaligned atomic load"); 4715 4716 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4717 4718 MachineMemOperand *MMO = 4719 DAG.getMachineFunction(). 4720 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4721 Flags, MemVT.getStoreSize(), 4722 I.getAlignment() ? I.getAlignment() : 4723 DAG.getEVTAlignment(MemVT), 4724 AAMDNodes(), nullptr, SSID, Order); 4725 4726 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4727 4728 SDValue Ptr = getValue(I.getPointerOperand()); 4729 4730 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4731 // TODO: Once this is better exercised by tests, it should be merged with 4732 // the normal path for loads to prevent future divergence. 4733 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4734 if (MemVT != VT) 4735 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4736 4737 setValue(&I, L); 4738 SDValue OutChain = L.getValue(1); 4739 if (!I.isUnordered()) 4740 DAG.setRoot(OutChain); 4741 else 4742 PendingLoads.push_back(OutChain); 4743 return; 4744 } 4745 4746 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4747 Ptr, MMO); 4748 4749 SDValue OutChain = L.getValue(1); 4750 if (MemVT != VT) 4751 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4752 4753 setValue(&I, L); 4754 DAG.setRoot(OutChain); 4755 } 4756 4757 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4758 SDLoc dl = getCurSDLoc(); 4759 4760 AtomicOrdering Ordering = I.getOrdering(); 4761 SyncScope::ID SSID = I.getSyncScopeID(); 4762 4763 SDValue InChain = getRoot(); 4764 4765 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4766 EVT MemVT = 4767 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4768 4769 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4770 report_fatal_error("Cannot generate unaligned atomic store"); 4771 4772 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4773 4774 MachineFunction &MF = DAG.getMachineFunction(); 4775 MachineMemOperand *MMO = 4776 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4777 MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(), 4778 nullptr, SSID, Ordering); 4779 4780 SDValue Val = getValue(I.getValueOperand()); 4781 if (Val.getValueType() != MemVT) 4782 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4783 SDValue Ptr = getValue(I.getPointerOperand()); 4784 4785 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4786 // TODO: Once this is better exercised by tests, it should be merged with 4787 // the normal path for stores to prevent future divergence. 4788 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4789 DAG.setRoot(S); 4790 return; 4791 } 4792 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4793 Ptr, Val, MMO); 4794 4795 4796 DAG.setRoot(OutChain); 4797 } 4798 4799 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4800 /// node. 4801 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4802 unsigned Intrinsic) { 4803 // Ignore the callsite's attributes. A specific call site may be marked with 4804 // readnone, but the lowering code will expect the chain based on the 4805 // definition. 4806 const Function *F = I.getCalledFunction(); 4807 bool HasChain = !F->doesNotAccessMemory(); 4808 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4809 4810 // Build the operand list. 4811 SmallVector<SDValue, 8> Ops; 4812 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4813 if (OnlyLoad) { 4814 // We don't need to serialize loads against other loads. 4815 Ops.push_back(DAG.getRoot()); 4816 } else { 4817 Ops.push_back(getRoot()); 4818 } 4819 } 4820 4821 // Info is set by getTgtMemInstrinsic 4822 TargetLowering::IntrinsicInfo Info; 4823 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4824 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4825 DAG.getMachineFunction(), 4826 Intrinsic); 4827 4828 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4829 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4830 Info.opc == ISD::INTRINSIC_W_CHAIN) 4831 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4832 TLI.getPointerTy(DAG.getDataLayout()))); 4833 4834 // Add all operands of the call to the operand list. 4835 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4836 const Value *Arg = I.getArgOperand(i); 4837 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4838 Ops.push_back(getValue(Arg)); 4839 continue; 4840 } 4841 4842 // Use TargetConstant instead of a regular constant for immarg. 4843 EVT VT = TLI.getValueType(*DL, Arg->getType(), true); 4844 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4845 assert(CI->getBitWidth() <= 64 && 4846 "large intrinsic immediates not handled"); 4847 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4848 } else { 4849 Ops.push_back( 4850 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4851 } 4852 } 4853 4854 SmallVector<EVT, 4> ValueVTs; 4855 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4856 4857 if (HasChain) 4858 ValueVTs.push_back(MVT::Other); 4859 4860 SDVTList VTs = DAG.getVTList(ValueVTs); 4861 4862 // Create the node. 4863 SDValue Result; 4864 if (IsTgtIntrinsic) { 4865 // This is target intrinsic that touches memory 4866 AAMDNodes AAInfo; 4867 I.getAAMetadata(AAInfo); 4868 Result = DAG.getMemIntrinsicNode( 4869 Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4870 MachinePointerInfo(Info.ptrVal, Info.offset), 4871 Info.align ? Info.align->value() : 0, Info.flags, Info.size, AAInfo); 4872 } else if (!HasChain) { 4873 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4874 } else if (!I.getType()->isVoidTy()) { 4875 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4876 } else { 4877 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4878 } 4879 4880 if (HasChain) { 4881 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4882 if (OnlyLoad) 4883 PendingLoads.push_back(Chain); 4884 else 4885 DAG.setRoot(Chain); 4886 } 4887 4888 if (!I.getType()->isVoidTy()) { 4889 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4890 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4891 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4892 } else 4893 Result = lowerRangeToAssertZExt(DAG, I, Result); 4894 4895 setValue(&I, Result); 4896 } 4897 } 4898 4899 /// GetSignificand - Get the significand and build it into a floating-point 4900 /// number with exponent of 1: 4901 /// 4902 /// Op = (Op & 0x007fffff) | 0x3f800000; 4903 /// 4904 /// where Op is the hexadecimal representation of floating point value. 4905 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4906 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4907 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4908 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4909 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4910 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4911 } 4912 4913 /// GetExponent - Get the exponent: 4914 /// 4915 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4916 /// 4917 /// where Op is the hexadecimal representation of floating point value. 4918 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4919 const TargetLowering &TLI, const SDLoc &dl) { 4920 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4921 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4922 SDValue t1 = DAG.getNode( 4923 ISD::SRL, dl, MVT::i32, t0, 4924 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4925 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4926 DAG.getConstant(127, dl, MVT::i32)); 4927 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4928 } 4929 4930 /// getF32Constant - Get 32-bit floating point constant. 4931 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4932 const SDLoc &dl) { 4933 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4934 MVT::f32); 4935 } 4936 4937 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4938 SelectionDAG &DAG) { 4939 // TODO: What fast-math-flags should be set on the floating-point nodes? 4940 4941 // IntegerPartOfX = ((int32_t)(t0); 4942 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4943 4944 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4945 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4946 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4947 4948 // IntegerPartOfX <<= 23; 4949 IntegerPartOfX = DAG.getNode( 4950 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4951 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4952 DAG.getDataLayout()))); 4953 4954 SDValue TwoToFractionalPartOfX; 4955 if (LimitFloatPrecision <= 6) { 4956 // For floating-point precision of 6: 4957 // 4958 // TwoToFractionalPartOfX = 4959 // 0.997535578f + 4960 // (0.735607626f + 0.252464424f * x) * x; 4961 // 4962 // error 0.0144103317, which is 6 bits 4963 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4964 getF32Constant(DAG, 0x3e814304, dl)); 4965 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4966 getF32Constant(DAG, 0x3f3c50c8, dl)); 4967 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4968 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4969 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4970 } else if (LimitFloatPrecision <= 12) { 4971 // For floating-point precision of 12: 4972 // 4973 // TwoToFractionalPartOfX = 4974 // 0.999892986f + 4975 // (0.696457318f + 4976 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4977 // 4978 // error 0.000107046256, which is 13 to 14 bits 4979 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4980 getF32Constant(DAG, 0x3da235e3, dl)); 4981 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4982 getF32Constant(DAG, 0x3e65b8f3, dl)); 4983 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4984 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4985 getF32Constant(DAG, 0x3f324b07, dl)); 4986 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4987 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4988 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4989 } else { // LimitFloatPrecision <= 18 4990 // For floating-point precision of 18: 4991 // 4992 // TwoToFractionalPartOfX = 4993 // 0.999999982f + 4994 // (0.693148872f + 4995 // (0.240227044f + 4996 // (0.554906021e-1f + 4997 // (0.961591928e-2f + 4998 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4999 // error 2.47208000*10^(-7), which is better than 18 bits 5000 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5001 getF32Constant(DAG, 0x3924b03e, dl)); 5002 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5003 getF32Constant(DAG, 0x3ab24b87, dl)); 5004 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5005 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5006 getF32Constant(DAG, 0x3c1d8c17, dl)); 5007 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5008 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5009 getF32Constant(DAG, 0x3d634a1d, dl)); 5010 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5011 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5012 getF32Constant(DAG, 0x3e75fe14, dl)); 5013 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5014 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5015 getF32Constant(DAG, 0x3f317234, dl)); 5016 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5017 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5018 getF32Constant(DAG, 0x3f800000, dl)); 5019 } 5020 5021 // Add the exponent into the result in integer domain. 5022 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5023 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5024 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5025 } 5026 5027 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5028 /// limited-precision mode. 5029 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5030 const TargetLowering &TLI) { 5031 if (Op.getValueType() == MVT::f32 && 5032 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5033 5034 // Put the exponent in the right bit position for later addition to the 5035 // final result: 5036 // 5037 // t0 = Op * log2(e) 5038 5039 // TODO: What fast-math-flags should be set here? 5040 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5041 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5042 return getLimitedPrecisionExp2(t0, dl, DAG); 5043 } 5044 5045 // No special expansion. 5046 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 5047 } 5048 5049 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5050 /// limited-precision mode. 5051 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5052 const TargetLowering &TLI) { 5053 // TODO: What fast-math-flags should be set on the floating-point nodes? 5054 5055 if (Op.getValueType() == MVT::f32 && 5056 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5057 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5058 5059 // Scale the exponent by log(2). 5060 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5061 SDValue LogOfExponent = 5062 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5063 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5064 5065 // Get the significand and build it into a floating-point number with 5066 // exponent of 1. 5067 SDValue X = GetSignificand(DAG, Op1, dl); 5068 5069 SDValue LogOfMantissa; 5070 if (LimitFloatPrecision <= 6) { 5071 // For floating-point precision of 6: 5072 // 5073 // LogofMantissa = 5074 // -1.1609546f + 5075 // (1.4034025f - 0.23903021f * x) * x; 5076 // 5077 // error 0.0034276066, which is better than 8 bits 5078 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5079 getF32Constant(DAG, 0xbe74c456, dl)); 5080 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5081 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5082 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5083 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5084 getF32Constant(DAG, 0x3f949a29, dl)); 5085 } else if (LimitFloatPrecision <= 12) { 5086 // For floating-point precision of 12: 5087 // 5088 // LogOfMantissa = 5089 // -1.7417939f + 5090 // (2.8212026f + 5091 // (-1.4699568f + 5092 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5093 // 5094 // error 0.000061011436, which is 14 bits 5095 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5096 getF32Constant(DAG, 0xbd67b6d6, dl)); 5097 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5098 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5099 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5100 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5101 getF32Constant(DAG, 0x3fbc278b, dl)); 5102 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5103 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5104 getF32Constant(DAG, 0x40348e95, dl)); 5105 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5106 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5107 getF32Constant(DAG, 0x3fdef31a, dl)); 5108 } else { // LimitFloatPrecision <= 18 5109 // For floating-point precision of 18: 5110 // 5111 // LogOfMantissa = 5112 // -2.1072184f + 5113 // (4.2372794f + 5114 // (-3.7029485f + 5115 // (2.2781945f + 5116 // (-0.87823314f + 5117 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5118 // 5119 // error 0.0000023660568, which is better than 18 bits 5120 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5121 getF32Constant(DAG, 0xbc91e5ac, dl)); 5122 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5123 getF32Constant(DAG, 0x3e4350aa, dl)); 5124 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5125 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5126 getF32Constant(DAG, 0x3f60d3e3, dl)); 5127 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5128 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5129 getF32Constant(DAG, 0x4011cdf0, dl)); 5130 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5131 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5132 getF32Constant(DAG, 0x406cfd1c, dl)); 5133 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5134 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5135 getF32Constant(DAG, 0x408797cb, dl)); 5136 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5137 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5138 getF32Constant(DAG, 0x4006dcab, dl)); 5139 } 5140 5141 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5142 } 5143 5144 // No special expansion. 5145 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 5146 } 5147 5148 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5149 /// limited-precision mode. 5150 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5151 const TargetLowering &TLI) { 5152 // TODO: What fast-math-flags should be set on the floating-point nodes? 5153 5154 if (Op.getValueType() == MVT::f32 && 5155 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5156 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5157 5158 // Get the exponent. 5159 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5160 5161 // Get the significand and build it into a floating-point number with 5162 // exponent of 1. 5163 SDValue X = GetSignificand(DAG, Op1, dl); 5164 5165 // Different possible minimax approximations of significand in 5166 // floating-point for various degrees of accuracy over [1,2]. 5167 SDValue Log2ofMantissa; 5168 if (LimitFloatPrecision <= 6) { 5169 // For floating-point precision of 6: 5170 // 5171 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5172 // 5173 // error 0.0049451742, which is more than 7 bits 5174 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5175 getF32Constant(DAG, 0xbeb08fe0, dl)); 5176 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5177 getF32Constant(DAG, 0x40019463, dl)); 5178 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5179 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5180 getF32Constant(DAG, 0x3fd6633d, dl)); 5181 } else if (LimitFloatPrecision <= 12) { 5182 // For floating-point precision of 12: 5183 // 5184 // Log2ofMantissa = 5185 // -2.51285454f + 5186 // (4.07009056f + 5187 // (-2.12067489f + 5188 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5189 // 5190 // error 0.0000876136000, which is better than 13 bits 5191 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5192 getF32Constant(DAG, 0xbda7262e, dl)); 5193 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5194 getF32Constant(DAG, 0x3f25280b, dl)); 5195 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5196 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5197 getF32Constant(DAG, 0x4007b923, dl)); 5198 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5199 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5200 getF32Constant(DAG, 0x40823e2f, dl)); 5201 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5202 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5203 getF32Constant(DAG, 0x4020d29c, dl)); 5204 } else { // LimitFloatPrecision <= 18 5205 // For floating-point precision of 18: 5206 // 5207 // Log2ofMantissa = 5208 // -3.0400495f + 5209 // (6.1129976f + 5210 // (-5.3420409f + 5211 // (3.2865683f + 5212 // (-1.2669343f + 5213 // (0.27515199f - 5214 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5215 // 5216 // error 0.0000018516, which is better than 18 bits 5217 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5218 getF32Constant(DAG, 0xbcd2769e, dl)); 5219 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5220 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5221 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5222 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5223 getF32Constant(DAG, 0x3fa22ae7, dl)); 5224 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5225 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5226 getF32Constant(DAG, 0x40525723, dl)); 5227 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5228 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5229 getF32Constant(DAG, 0x40aaf200, dl)); 5230 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5231 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5232 getF32Constant(DAG, 0x40c39dad, dl)); 5233 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5234 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5235 getF32Constant(DAG, 0x4042902c, dl)); 5236 } 5237 5238 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5239 } 5240 5241 // No special expansion. 5242 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5243 } 5244 5245 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5246 /// limited-precision mode. 5247 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5248 const TargetLowering &TLI) { 5249 // TODO: What fast-math-flags should be set on the floating-point nodes? 5250 5251 if (Op.getValueType() == MVT::f32 && 5252 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5253 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5254 5255 // Scale the exponent by log10(2) [0.30102999f]. 5256 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5257 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5258 getF32Constant(DAG, 0x3e9a209a, dl)); 5259 5260 // Get the significand and build it into a floating-point number with 5261 // exponent of 1. 5262 SDValue X = GetSignificand(DAG, Op1, dl); 5263 5264 SDValue Log10ofMantissa; 5265 if (LimitFloatPrecision <= 6) { 5266 // For floating-point precision of 6: 5267 // 5268 // Log10ofMantissa = 5269 // -0.50419619f + 5270 // (0.60948995f - 0.10380950f * x) * x; 5271 // 5272 // error 0.0014886165, which is 6 bits 5273 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5274 getF32Constant(DAG, 0xbdd49a13, dl)); 5275 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5276 getF32Constant(DAG, 0x3f1c0789, dl)); 5277 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5278 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5279 getF32Constant(DAG, 0x3f011300, dl)); 5280 } else if (LimitFloatPrecision <= 12) { 5281 // For floating-point precision of 12: 5282 // 5283 // Log10ofMantissa = 5284 // -0.64831180f + 5285 // (0.91751397f + 5286 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5287 // 5288 // error 0.00019228036, which is better than 12 bits 5289 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5290 getF32Constant(DAG, 0x3d431f31, dl)); 5291 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5292 getF32Constant(DAG, 0x3ea21fb2, dl)); 5293 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5294 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5295 getF32Constant(DAG, 0x3f6ae232, dl)); 5296 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5297 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5298 getF32Constant(DAG, 0x3f25f7c3, dl)); 5299 } else { // LimitFloatPrecision <= 18 5300 // For floating-point precision of 18: 5301 // 5302 // Log10ofMantissa = 5303 // -0.84299375f + 5304 // (1.5327582f + 5305 // (-1.0688956f + 5306 // (0.49102474f + 5307 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5308 // 5309 // error 0.0000037995730, which is better than 18 bits 5310 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5311 getF32Constant(DAG, 0x3c5d51ce, dl)); 5312 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5313 getF32Constant(DAG, 0x3e00685a, dl)); 5314 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5315 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5316 getF32Constant(DAG, 0x3efb6798, dl)); 5317 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5318 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5319 getF32Constant(DAG, 0x3f88d192, dl)); 5320 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5321 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5322 getF32Constant(DAG, 0x3fc4316c, dl)); 5323 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5324 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5325 getF32Constant(DAG, 0x3f57ce70, dl)); 5326 } 5327 5328 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5329 } 5330 5331 // No special expansion. 5332 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5333 } 5334 5335 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5336 /// limited-precision mode. 5337 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5338 const TargetLowering &TLI) { 5339 if (Op.getValueType() == MVT::f32 && 5340 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5341 return getLimitedPrecisionExp2(Op, dl, DAG); 5342 5343 // No special expansion. 5344 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5345 } 5346 5347 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5348 /// limited-precision mode with x == 10.0f. 5349 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5350 SelectionDAG &DAG, const TargetLowering &TLI) { 5351 bool IsExp10 = false; 5352 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5353 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5354 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5355 APFloat Ten(10.0f); 5356 IsExp10 = LHSC->isExactlyValue(Ten); 5357 } 5358 } 5359 5360 // TODO: What fast-math-flags should be set on the FMUL node? 5361 if (IsExp10) { 5362 // Put the exponent in the right bit position for later addition to the 5363 // final result: 5364 // 5365 // #define LOG2OF10 3.3219281f 5366 // t0 = Op * LOG2OF10; 5367 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5368 getF32Constant(DAG, 0x40549a78, dl)); 5369 return getLimitedPrecisionExp2(t0, dl, DAG); 5370 } 5371 5372 // No special expansion. 5373 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5374 } 5375 5376 /// ExpandPowI - Expand a llvm.powi intrinsic. 5377 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5378 SelectionDAG &DAG) { 5379 // If RHS is a constant, we can expand this out to a multiplication tree, 5380 // otherwise we end up lowering to a call to __powidf2 (for example). When 5381 // optimizing for size, we only want to do this if the expansion would produce 5382 // a small number of multiplies, otherwise we do the full expansion. 5383 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5384 // Get the exponent as a positive value. 5385 unsigned Val = RHSC->getSExtValue(); 5386 if ((int)Val < 0) Val = -Val; 5387 5388 // powi(x, 0) -> 1.0 5389 if (Val == 0) 5390 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5391 5392 bool OptForSize = DAG.shouldOptForSize(); 5393 if (!OptForSize || 5394 // If optimizing for size, don't insert too many multiplies. 5395 // This inserts up to 5 multiplies. 5396 countPopulation(Val) + Log2_32(Val) < 7) { 5397 // We use the simple binary decomposition method to generate the multiply 5398 // sequence. There are more optimal ways to do this (for example, 5399 // powi(x,15) generates one more multiply than it should), but this has 5400 // the benefit of being both really simple and much better than a libcall. 5401 SDValue Res; // Logically starts equal to 1.0 5402 SDValue CurSquare = LHS; 5403 // TODO: Intrinsics should have fast-math-flags that propagate to these 5404 // nodes. 5405 while (Val) { 5406 if (Val & 1) { 5407 if (Res.getNode()) 5408 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5409 else 5410 Res = CurSquare; // 1.0*CurSquare. 5411 } 5412 5413 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5414 CurSquare, CurSquare); 5415 Val >>= 1; 5416 } 5417 5418 // If the original was negative, invert the result, producing 1/(x*x*x). 5419 if (RHSC->getSExtValue() < 0) 5420 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5421 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5422 return Res; 5423 } 5424 } 5425 5426 // Otherwise, expand to a libcall. 5427 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5428 } 5429 5430 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5431 SDValue LHS, SDValue RHS, SDValue Scale, 5432 SelectionDAG &DAG, const TargetLowering &TLI) { 5433 EVT VT = LHS.getValueType(); 5434 bool Signed = Opcode == ISD::SDIVFIX; 5435 LLVMContext &Ctx = *DAG.getContext(); 5436 5437 // If the type is legal but the operation isn't, this node might survive all 5438 // the way to operation legalization. If we end up there and we do not have 5439 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5440 // node. 5441 5442 // Coax the legalizer into expanding the node during type legalization instead 5443 // by bumping the size by one bit. This will force it to Promote, enabling the 5444 // early expansion and avoiding the need to expand later. 5445 5446 // We don't have to do this if Scale is 0; that can always be expanded. 5447 5448 // FIXME: We wouldn't have to do this (or any of the early 5449 // expansion/promotion) if it was possible to expand a libcall of an 5450 // illegal type during operation legalization. But it's not, so things 5451 // get a bit hacky. 5452 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5453 if (ScaleInt > 0 && 5454 (TLI.isTypeLegal(VT) || 5455 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5456 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5457 Opcode, VT, ScaleInt); 5458 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5459 EVT PromVT; 5460 if (VT.isScalarInteger()) 5461 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5462 else if (VT.isVector()) { 5463 PromVT = VT.getVectorElementType(); 5464 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5465 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5466 } else 5467 llvm_unreachable("Wrong VT for DIVFIX?"); 5468 if (Signed) { 5469 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5470 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5471 } else { 5472 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5473 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5474 } 5475 // TODO: Saturation. 5476 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5477 return DAG.getZExtOrTrunc(Res, DL, VT); 5478 } 5479 } 5480 5481 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5482 } 5483 5484 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5485 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5486 static void 5487 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 5488 const SDValue &N) { 5489 switch (N.getOpcode()) { 5490 case ISD::CopyFromReg: { 5491 SDValue Op = N.getOperand(1); 5492 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5493 Op.getValueType().getSizeInBits()); 5494 return; 5495 } 5496 case ISD::BITCAST: 5497 case ISD::AssertZext: 5498 case ISD::AssertSext: 5499 case ISD::TRUNCATE: 5500 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5501 return; 5502 case ISD::BUILD_PAIR: 5503 case ISD::BUILD_VECTOR: 5504 case ISD::CONCAT_VECTORS: 5505 for (SDValue Op : N->op_values()) 5506 getUnderlyingArgRegs(Regs, Op); 5507 return; 5508 default: 5509 return; 5510 } 5511 } 5512 5513 /// If the DbgValueInst is a dbg_value of a function argument, create the 5514 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5515 /// instruction selection, they will be inserted to the entry BB. 5516 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5517 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5518 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5519 const Argument *Arg = dyn_cast<Argument>(V); 5520 if (!Arg) 5521 return false; 5522 5523 if (!IsDbgDeclare) { 5524 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5525 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5526 // the entry block. 5527 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5528 if (!IsInEntryBlock) 5529 return false; 5530 5531 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5532 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5533 // variable that also is a param. 5534 // 5535 // Although, if we are at the top of the entry block already, we can still 5536 // emit using ArgDbgValue. This might catch some situations when the 5537 // dbg.value refers to an argument that isn't used in the entry block, so 5538 // any CopyToReg node would be optimized out and the only way to express 5539 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5540 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5541 // we should only emit as ArgDbgValue if the Variable is an argument to the 5542 // current function, and the dbg.value intrinsic is found in the entry 5543 // block. 5544 bool VariableIsFunctionInputArg = Variable->isParameter() && 5545 !DL->getInlinedAt(); 5546 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5547 if (!IsInPrologue && !VariableIsFunctionInputArg) 5548 return false; 5549 5550 // Here we assume that a function argument on IR level only can be used to 5551 // describe one input parameter on source level. If we for example have 5552 // source code like this 5553 // 5554 // struct A { long x, y; }; 5555 // void foo(struct A a, long b) { 5556 // ... 5557 // b = a.x; 5558 // ... 5559 // } 5560 // 5561 // and IR like this 5562 // 5563 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5564 // entry: 5565 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5566 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5567 // call void @llvm.dbg.value(metadata i32 %b, "b", 5568 // ... 5569 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5570 // ... 5571 // 5572 // then the last dbg.value is describing a parameter "b" using a value that 5573 // is an argument. But since we already has used %a1 to describe a parameter 5574 // we should not handle that last dbg.value here (that would result in an 5575 // incorrect hoisting of the DBG_VALUE to the function entry). 5576 // Notice that we allow one dbg.value per IR level argument, to accommodate 5577 // for the situation with fragments above. 5578 if (VariableIsFunctionInputArg) { 5579 unsigned ArgNo = Arg->getArgNo(); 5580 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5581 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5582 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5583 return false; 5584 FuncInfo.DescribedArgs.set(ArgNo); 5585 } 5586 } 5587 5588 MachineFunction &MF = DAG.getMachineFunction(); 5589 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5590 5591 Optional<MachineOperand> Op; 5592 // Some arguments' frame index is recorded during argument lowering. 5593 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5594 if (FI != std::numeric_limits<int>::max()) 5595 Op = MachineOperand::CreateFI(FI); 5596 5597 SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes; 5598 if (!Op && N.getNode()) { 5599 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5600 Register Reg; 5601 if (ArgRegsAndSizes.size() == 1) 5602 Reg = ArgRegsAndSizes.front().first; 5603 5604 if (Reg && Reg.isVirtual()) { 5605 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5606 Register PR = RegInfo.getLiveInPhysReg(Reg); 5607 if (PR) 5608 Reg = PR; 5609 } 5610 if (Reg) { 5611 Op = MachineOperand::CreateReg(Reg, false); 5612 } 5613 } 5614 5615 if (!Op && N.getNode()) { 5616 // Check if frame index is available. 5617 SDValue LCandidate = peekThroughBitcasts(N); 5618 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5619 if (FrameIndexSDNode *FINode = 5620 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5621 Op = MachineOperand::CreateFI(FINode->getIndex()); 5622 } 5623 5624 if (!Op) { 5625 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5626 auto splitMultiRegDbgValue 5627 = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) { 5628 unsigned Offset = 0; 5629 for (auto RegAndSize : SplitRegs) { 5630 // If the expression is already a fragment, the current register 5631 // offset+size might extend beyond the fragment. In this case, only 5632 // the register bits that are inside the fragment are relevant. 5633 int RegFragmentSizeInBits = RegAndSize.second; 5634 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5635 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5636 // The register is entirely outside the expression fragment, 5637 // so is irrelevant for debug info. 5638 if (Offset >= ExprFragmentSizeInBits) 5639 break; 5640 // The register is partially outside the expression fragment, only 5641 // the low bits within the fragment are relevant for debug info. 5642 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5643 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5644 } 5645 } 5646 5647 auto FragmentExpr = DIExpression::createFragmentExpression( 5648 Expr, Offset, RegFragmentSizeInBits); 5649 Offset += RegAndSize.second; 5650 // If a valid fragment expression cannot be created, the variable's 5651 // correct value cannot be determined and so it is set as Undef. 5652 if (!FragmentExpr) { 5653 SDDbgValue *SDV = DAG.getConstantDbgValue( 5654 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5655 DAG.AddDbgValue(SDV, nullptr, false); 5656 continue; 5657 } 5658 assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?"); 5659 FuncInfo.ArgDbgValues.push_back( 5660 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), false, 5661 RegAndSize.first, Variable, *FragmentExpr)); 5662 } 5663 }; 5664 5665 // Check if ValueMap has reg number. 5666 DenseMap<const Value *, unsigned>::const_iterator 5667 VMI = FuncInfo.ValueMap.find(V); 5668 if (VMI != FuncInfo.ValueMap.end()) { 5669 const auto &TLI = DAG.getTargetLoweringInfo(); 5670 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5671 V->getType(), getABIRegCopyCC(V)); 5672 if (RFV.occupiesMultipleRegs()) { 5673 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5674 return true; 5675 } 5676 5677 Op = MachineOperand::CreateReg(VMI->second, false); 5678 } else if (ArgRegsAndSizes.size() > 1) { 5679 // This was split due to the calling convention, and no virtual register 5680 // mapping exists for the value. 5681 splitMultiRegDbgValue(ArgRegsAndSizes); 5682 return true; 5683 } 5684 } 5685 5686 if (!Op) 5687 return false; 5688 5689 assert(Variable->isValidLocationForIntrinsic(DL) && 5690 "Expected inlined-at fields to agree"); 5691 5692 // If the argument arrives in a stack slot, then what the IR thought was a 5693 // normal Value is actually in memory, and we must add a deref to load it. 5694 if (Op->isFI()) { 5695 int FI = Op->getIndex(); 5696 unsigned Size = DAG.getMachineFunction().getFrameInfo().getObjectSize(FI); 5697 if (Expr->isImplicit()) { 5698 SmallVector<uint64_t, 2> Ops = {dwarf::DW_OP_deref_size, Size}; 5699 Expr = DIExpression::prependOpcodes(Expr, Ops); 5700 } else { 5701 Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); 5702 } 5703 } 5704 5705 // If this location was specified with a dbg.declare, then it and its 5706 // expression calculate the address of the variable. Append a deref to 5707 // force it to be a memory location. 5708 if (IsDbgDeclare) 5709 Expr = DIExpression::append(Expr, {dwarf::DW_OP_deref}); 5710 5711 FuncInfo.ArgDbgValues.push_back( 5712 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), false, 5713 *Op, Variable, Expr)); 5714 5715 return true; 5716 } 5717 5718 /// Return the appropriate SDDbgValue based on N. 5719 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5720 DILocalVariable *Variable, 5721 DIExpression *Expr, 5722 const DebugLoc &dl, 5723 unsigned DbgSDNodeOrder) { 5724 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5725 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5726 // stack slot locations. 5727 // 5728 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5729 // debug values here after optimization: 5730 // 5731 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5732 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5733 // 5734 // Both describe the direct values of their associated variables. 5735 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5736 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5737 } 5738 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5739 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5740 } 5741 5742 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5743 switch (Intrinsic) { 5744 case Intrinsic::smul_fix: 5745 return ISD::SMULFIX; 5746 case Intrinsic::umul_fix: 5747 return ISD::UMULFIX; 5748 case Intrinsic::smul_fix_sat: 5749 return ISD::SMULFIXSAT; 5750 case Intrinsic::umul_fix_sat: 5751 return ISD::UMULFIXSAT; 5752 case Intrinsic::sdiv_fix: 5753 return ISD::SDIVFIX; 5754 case Intrinsic::udiv_fix: 5755 return ISD::UDIVFIX; 5756 default: 5757 llvm_unreachable("Unhandled fixed point intrinsic"); 5758 } 5759 } 5760 5761 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5762 const char *FunctionName) { 5763 assert(FunctionName && "FunctionName must not be nullptr"); 5764 SDValue Callee = DAG.getExternalSymbol( 5765 FunctionName, 5766 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5767 LowerCallTo(&I, Callee, I.isTailCall()); 5768 } 5769 5770 /// Lower the call to the specified intrinsic function. 5771 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5772 unsigned Intrinsic) { 5773 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5774 SDLoc sdl = getCurSDLoc(); 5775 DebugLoc dl = getCurDebugLoc(); 5776 SDValue Res; 5777 5778 switch (Intrinsic) { 5779 default: 5780 // By default, turn this into a target intrinsic node. 5781 visitTargetIntrinsic(I, Intrinsic); 5782 return; 5783 case Intrinsic::vscale: { 5784 match(&I, m_VScale(DAG.getDataLayout())); 5785 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5786 setValue(&I, 5787 DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1))); 5788 return; 5789 } 5790 case Intrinsic::vastart: visitVAStart(I); return; 5791 case Intrinsic::vaend: visitVAEnd(I); return; 5792 case Intrinsic::vacopy: visitVACopy(I); return; 5793 case Intrinsic::returnaddress: 5794 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5795 TLI.getPointerTy(DAG.getDataLayout()), 5796 getValue(I.getArgOperand(0)))); 5797 return; 5798 case Intrinsic::addressofreturnaddress: 5799 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5800 TLI.getPointerTy(DAG.getDataLayout()))); 5801 return; 5802 case Intrinsic::sponentry: 5803 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5804 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5805 return; 5806 case Intrinsic::frameaddress: 5807 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5808 TLI.getFrameIndexTy(DAG.getDataLayout()), 5809 getValue(I.getArgOperand(0)))); 5810 return; 5811 case Intrinsic::read_register: { 5812 Value *Reg = I.getArgOperand(0); 5813 SDValue Chain = getRoot(); 5814 SDValue RegName = 5815 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5816 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5817 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5818 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5819 setValue(&I, Res); 5820 DAG.setRoot(Res.getValue(1)); 5821 return; 5822 } 5823 case Intrinsic::write_register: { 5824 Value *Reg = I.getArgOperand(0); 5825 Value *RegValue = I.getArgOperand(1); 5826 SDValue Chain = getRoot(); 5827 SDValue RegName = 5828 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5829 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5830 RegName, getValue(RegValue))); 5831 return; 5832 } 5833 case Intrinsic::memcpy: { 5834 const auto &MCI = cast<MemCpyInst>(I); 5835 SDValue Op1 = getValue(I.getArgOperand(0)); 5836 SDValue Op2 = getValue(I.getArgOperand(1)); 5837 SDValue Op3 = getValue(I.getArgOperand(2)); 5838 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5839 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5840 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5841 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5842 bool isVol = MCI.isVolatile(); 5843 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5844 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5845 // node. 5846 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5847 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5848 /* AlwaysInline */ false, isTC, 5849 MachinePointerInfo(I.getArgOperand(0)), 5850 MachinePointerInfo(I.getArgOperand(1))); 5851 updateDAGForMaybeTailCall(MC); 5852 return; 5853 } 5854 case Intrinsic::memcpy_inline: { 5855 const auto &MCI = cast<MemCpyInlineInst>(I); 5856 SDValue Dst = getValue(I.getArgOperand(0)); 5857 SDValue Src = getValue(I.getArgOperand(1)); 5858 SDValue Size = getValue(I.getArgOperand(2)); 5859 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5860 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5861 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5862 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5863 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5864 bool isVol = MCI.isVolatile(); 5865 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5866 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5867 // node. 5868 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5869 /* AlwaysInline */ true, isTC, 5870 MachinePointerInfo(I.getArgOperand(0)), 5871 MachinePointerInfo(I.getArgOperand(1))); 5872 updateDAGForMaybeTailCall(MC); 5873 return; 5874 } 5875 case Intrinsic::memset: { 5876 const auto &MSI = cast<MemSetInst>(I); 5877 SDValue Op1 = getValue(I.getArgOperand(0)); 5878 SDValue Op2 = getValue(I.getArgOperand(1)); 5879 SDValue Op3 = getValue(I.getArgOperand(2)); 5880 // @llvm.memset defines 0 and 1 to both mean no alignment. 5881 Align Alignment = MSI.getDestAlign().valueOrOne(); 5882 bool isVol = MSI.isVolatile(); 5883 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5884 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5885 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC, 5886 MachinePointerInfo(I.getArgOperand(0))); 5887 updateDAGForMaybeTailCall(MS); 5888 return; 5889 } 5890 case Intrinsic::memmove: { 5891 const auto &MMI = cast<MemMoveInst>(I); 5892 SDValue Op1 = getValue(I.getArgOperand(0)); 5893 SDValue Op2 = getValue(I.getArgOperand(1)); 5894 SDValue Op3 = getValue(I.getArgOperand(2)); 5895 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5896 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5897 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5898 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5899 bool isVol = MMI.isVolatile(); 5900 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5901 // FIXME: Support passing different dest/src alignments to the memmove DAG 5902 // node. 5903 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5904 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5905 isTC, MachinePointerInfo(I.getArgOperand(0)), 5906 MachinePointerInfo(I.getArgOperand(1))); 5907 updateDAGForMaybeTailCall(MM); 5908 return; 5909 } 5910 case Intrinsic::memcpy_element_unordered_atomic: { 5911 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5912 SDValue Dst = getValue(MI.getRawDest()); 5913 SDValue Src = getValue(MI.getRawSource()); 5914 SDValue Length = getValue(MI.getLength()); 5915 5916 unsigned DstAlign = MI.getDestAlignment(); 5917 unsigned SrcAlign = MI.getSourceAlignment(); 5918 Type *LengthTy = MI.getLength()->getType(); 5919 unsigned ElemSz = MI.getElementSizeInBytes(); 5920 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5921 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5922 SrcAlign, Length, LengthTy, ElemSz, isTC, 5923 MachinePointerInfo(MI.getRawDest()), 5924 MachinePointerInfo(MI.getRawSource())); 5925 updateDAGForMaybeTailCall(MC); 5926 return; 5927 } 5928 case Intrinsic::memmove_element_unordered_atomic: { 5929 auto &MI = cast<AtomicMemMoveInst>(I); 5930 SDValue Dst = getValue(MI.getRawDest()); 5931 SDValue Src = getValue(MI.getRawSource()); 5932 SDValue Length = getValue(MI.getLength()); 5933 5934 unsigned DstAlign = MI.getDestAlignment(); 5935 unsigned SrcAlign = MI.getSourceAlignment(); 5936 Type *LengthTy = MI.getLength()->getType(); 5937 unsigned ElemSz = MI.getElementSizeInBytes(); 5938 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5939 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5940 SrcAlign, Length, LengthTy, ElemSz, isTC, 5941 MachinePointerInfo(MI.getRawDest()), 5942 MachinePointerInfo(MI.getRawSource())); 5943 updateDAGForMaybeTailCall(MC); 5944 return; 5945 } 5946 case Intrinsic::memset_element_unordered_atomic: { 5947 auto &MI = cast<AtomicMemSetInst>(I); 5948 SDValue Dst = getValue(MI.getRawDest()); 5949 SDValue Val = getValue(MI.getValue()); 5950 SDValue Length = getValue(MI.getLength()); 5951 5952 unsigned DstAlign = MI.getDestAlignment(); 5953 Type *LengthTy = MI.getLength()->getType(); 5954 unsigned ElemSz = MI.getElementSizeInBytes(); 5955 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5956 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5957 LengthTy, ElemSz, isTC, 5958 MachinePointerInfo(MI.getRawDest())); 5959 updateDAGForMaybeTailCall(MC); 5960 return; 5961 } 5962 case Intrinsic::dbg_addr: 5963 case Intrinsic::dbg_declare: { 5964 const auto &DI = cast<DbgVariableIntrinsic>(I); 5965 DILocalVariable *Variable = DI.getVariable(); 5966 DIExpression *Expression = DI.getExpression(); 5967 dropDanglingDebugInfo(Variable, Expression); 5968 assert(Variable && "Missing variable"); 5969 5970 // Check if address has undef value. 5971 const Value *Address = DI.getVariableLocation(); 5972 if (!Address || isa<UndefValue>(Address) || 5973 (Address->use_empty() && !isa<Argument>(Address))) { 5974 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5975 return; 5976 } 5977 5978 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5979 5980 // Check if this variable can be described by a frame index, typically 5981 // either as a static alloca or a byval parameter. 5982 int FI = std::numeric_limits<int>::max(); 5983 if (const auto *AI = 5984 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5985 if (AI->isStaticAlloca()) { 5986 auto I = FuncInfo.StaticAllocaMap.find(AI); 5987 if (I != FuncInfo.StaticAllocaMap.end()) 5988 FI = I->second; 5989 } 5990 } else if (const auto *Arg = dyn_cast<Argument>( 5991 Address->stripInBoundsConstantOffsets())) { 5992 FI = FuncInfo.getArgumentFrameIndex(Arg); 5993 } 5994 5995 // llvm.dbg.addr is control dependent and always generates indirect 5996 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5997 // the MachineFunction variable table. 5998 if (FI != std::numeric_limits<int>::max()) { 5999 if (Intrinsic == Intrinsic::dbg_addr) { 6000 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 6001 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 6002 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 6003 } 6004 return; 6005 } 6006 6007 SDValue &N = NodeMap[Address]; 6008 if (!N.getNode() && isa<Argument>(Address)) 6009 // Check unused arguments map. 6010 N = UnusedArgNodeMap[Address]; 6011 SDDbgValue *SDV; 6012 if (N.getNode()) { 6013 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6014 Address = BCI->getOperand(0); 6015 // Parameters are handled specially. 6016 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6017 if (isParameter && FINode) { 6018 // Byval parameter. We have a frame index at this point. 6019 SDV = 6020 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6021 /*IsIndirect*/ true, dl, SDNodeOrder); 6022 } else if (isa<Argument>(Address)) { 6023 // Address is an argument, so try to emit its dbg value using 6024 // virtual register info from the FuncInfo.ValueMap. 6025 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 6026 return; 6027 } else { 6028 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6029 true, dl, SDNodeOrder); 6030 } 6031 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 6032 } else { 6033 // If Address is an argument then try to emit its dbg value using 6034 // virtual register info from the FuncInfo.ValueMap. 6035 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 6036 N)) { 6037 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 6038 } 6039 } 6040 return; 6041 } 6042 case Intrinsic::dbg_label: { 6043 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6044 DILabel *Label = DI.getLabel(); 6045 assert(Label && "Missing label"); 6046 6047 SDDbgLabel *SDV; 6048 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6049 DAG.AddDbgLabel(SDV); 6050 return; 6051 } 6052 case Intrinsic::dbg_value: { 6053 const DbgValueInst &DI = cast<DbgValueInst>(I); 6054 assert(DI.getVariable() && "Missing variable"); 6055 6056 DILocalVariable *Variable = DI.getVariable(); 6057 DIExpression *Expression = DI.getExpression(); 6058 dropDanglingDebugInfo(Variable, Expression); 6059 const Value *V = DI.getValue(); 6060 if (!V) 6061 return; 6062 6063 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 6064 SDNodeOrder)) 6065 return; 6066 6067 // TODO: Dangling debug info will eventually either be resolved or produce 6068 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 6069 // between the original dbg.value location and its resolved DBG_VALUE, which 6070 // we should ideally fill with an extra Undef DBG_VALUE. 6071 6072 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 6073 return; 6074 } 6075 6076 case Intrinsic::eh_typeid_for: { 6077 // Find the type id for the given typeinfo. 6078 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6079 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6080 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6081 setValue(&I, Res); 6082 return; 6083 } 6084 6085 case Intrinsic::eh_return_i32: 6086 case Intrinsic::eh_return_i64: 6087 DAG.getMachineFunction().setCallsEHReturn(true); 6088 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6089 MVT::Other, 6090 getControlRoot(), 6091 getValue(I.getArgOperand(0)), 6092 getValue(I.getArgOperand(1)))); 6093 return; 6094 case Intrinsic::eh_unwind_init: 6095 DAG.getMachineFunction().setCallsUnwindInit(true); 6096 return; 6097 case Intrinsic::eh_dwarf_cfa: 6098 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6099 TLI.getPointerTy(DAG.getDataLayout()), 6100 getValue(I.getArgOperand(0)))); 6101 return; 6102 case Intrinsic::eh_sjlj_callsite: { 6103 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6104 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 6105 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 6106 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6107 6108 MMI.setCurrentCallSite(CI->getZExtValue()); 6109 return; 6110 } 6111 case Intrinsic::eh_sjlj_functioncontext: { 6112 // Get and store the index of the function context. 6113 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6114 AllocaInst *FnCtx = 6115 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6116 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6117 MFI.setFunctionContextIndex(FI); 6118 return; 6119 } 6120 case Intrinsic::eh_sjlj_setjmp: { 6121 SDValue Ops[2]; 6122 Ops[0] = getRoot(); 6123 Ops[1] = getValue(I.getArgOperand(0)); 6124 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6125 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6126 setValue(&I, Op.getValue(0)); 6127 DAG.setRoot(Op.getValue(1)); 6128 return; 6129 } 6130 case Intrinsic::eh_sjlj_longjmp: 6131 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6132 getRoot(), getValue(I.getArgOperand(0)))); 6133 return; 6134 case Intrinsic::eh_sjlj_setup_dispatch: 6135 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6136 getRoot())); 6137 return; 6138 case Intrinsic::masked_gather: 6139 visitMaskedGather(I); 6140 return; 6141 case Intrinsic::masked_load: 6142 visitMaskedLoad(I); 6143 return; 6144 case Intrinsic::masked_scatter: 6145 visitMaskedScatter(I); 6146 return; 6147 case Intrinsic::masked_store: 6148 visitMaskedStore(I); 6149 return; 6150 case Intrinsic::masked_expandload: 6151 visitMaskedLoad(I, true /* IsExpanding */); 6152 return; 6153 case Intrinsic::masked_compressstore: 6154 visitMaskedStore(I, true /* IsCompressing */); 6155 return; 6156 case Intrinsic::powi: 6157 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6158 getValue(I.getArgOperand(1)), DAG)); 6159 return; 6160 case Intrinsic::log: 6161 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6162 return; 6163 case Intrinsic::log2: 6164 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6165 return; 6166 case Intrinsic::log10: 6167 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6168 return; 6169 case Intrinsic::exp: 6170 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6171 return; 6172 case Intrinsic::exp2: 6173 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6174 return; 6175 case Intrinsic::pow: 6176 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6177 getValue(I.getArgOperand(1)), DAG, TLI)); 6178 return; 6179 case Intrinsic::sqrt: 6180 case Intrinsic::fabs: 6181 case Intrinsic::sin: 6182 case Intrinsic::cos: 6183 case Intrinsic::floor: 6184 case Intrinsic::ceil: 6185 case Intrinsic::trunc: 6186 case Intrinsic::rint: 6187 case Intrinsic::nearbyint: 6188 case Intrinsic::round: 6189 case Intrinsic::canonicalize: { 6190 unsigned Opcode; 6191 switch (Intrinsic) { 6192 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6193 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6194 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6195 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6196 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6197 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6198 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6199 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6200 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6201 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6202 case Intrinsic::round: Opcode = ISD::FROUND; break; 6203 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6204 } 6205 6206 setValue(&I, DAG.getNode(Opcode, sdl, 6207 getValue(I.getArgOperand(0)).getValueType(), 6208 getValue(I.getArgOperand(0)))); 6209 return; 6210 } 6211 case Intrinsic::lround: 6212 case Intrinsic::llround: 6213 case Intrinsic::lrint: 6214 case Intrinsic::llrint: { 6215 unsigned Opcode; 6216 switch (Intrinsic) { 6217 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6218 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6219 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6220 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6221 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6222 } 6223 6224 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6225 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6226 getValue(I.getArgOperand(0)))); 6227 return; 6228 } 6229 case Intrinsic::minnum: 6230 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6231 getValue(I.getArgOperand(0)).getValueType(), 6232 getValue(I.getArgOperand(0)), 6233 getValue(I.getArgOperand(1)))); 6234 return; 6235 case Intrinsic::maxnum: 6236 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6237 getValue(I.getArgOperand(0)).getValueType(), 6238 getValue(I.getArgOperand(0)), 6239 getValue(I.getArgOperand(1)))); 6240 return; 6241 case Intrinsic::minimum: 6242 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6243 getValue(I.getArgOperand(0)).getValueType(), 6244 getValue(I.getArgOperand(0)), 6245 getValue(I.getArgOperand(1)))); 6246 return; 6247 case Intrinsic::maximum: 6248 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6249 getValue(I.getArgOperand(0)).getValueType(), 6250 getValue(I.getArgOperand(0)), 6251 getValue(I.getArgOperand(1)))); 6252 return; 6253 case Intrinsic::copysign: 6254 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6255 getValue(I.getArgOperand(0)).getValueType(), 6256 getValue(I.getArgOperand(0)), 6257 getValue(I.getArgOperand(1)))); 6258 return; 6259 case Intrinsic::fma: 6260 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6261 getValue(I.getArgOperand(0)).getValueType(), 6262 getValue(I.getArgOperand(0)), 6263 getValue(I.getArgOperand(1)), 6264 getValue(I.getArgOperand(2)))); 6265 return; 6266 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6267 case Intrinsic::INTRINSIC: 6268 #include "llvm/IR/ConstrainedOps.def" 6269 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6270 return; 6271 case Intrinsic::fmuladd: { 6272 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6273 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6274 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6275 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6276 getValue(I.getArgOperand(0)).getValueType(), 6277 getValue(I.getArgOperand(0)), 6278 getValue(I.getArgOperand(1)), 6279 getValue(I.getArgOperand(2)))); 6280 } else { 6281 // TODO: Intrinsic calls should have fast-math-flags. 6282 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 6283 getValue(I.getArgOperand(0)).getValueType(), 6284 getValue(I.getArgOperand(0)), 6285 getValue(I.getArgOperand(1))); 6286 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6287 getValue(I.getArgOperand(0)).getValueType(), 6288 Mul, 6289 getValue(I.getArgOperand(2))); 6290 setValue(&I, Add); 6291 } 6292 return; 6293 } 6294 case Intrinsic::convert_to_fp16: 6295 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6296 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6297 getValue(I.getArgOperand(0)), 6298 DAG.getTargetConstant(0, sdl, 6299 MVT::i32)))); 6300 return; 6301 case Intrinsic::convert_from_fp16: 6302 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6303 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6304 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6305 getValue(I.getArgOperand(0))))); 6306 return; 6307 case Intrinsic::pcmarker: { 6308 SDValue Tmp = getValue(I.getArgOperand(0)); 6309 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6310 return; 6311 } 6312 case Intrinsic::readcyclecounter: { 6313 SDValue Op = getRoot(); 6314 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6315 DAG.getVTList(MVT::i64, MVT::Other), Op); 6316 setValue(&I, Res); 6317 DAG.setRoot(Res.getValue(1)); 6318 return; 6319 } 6320 case Intrinsic::bitreverse: 6321 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6322 getValue(I.getArgOperand(0)).getValueType(), 6323 getValue(I.getArgOperand(0)))); 6324 return; 6325 case Intrinsic::bswap: 6326 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6327 getValue(I.getArgOperand(0)).getValueType(), 6328 getValue(I.getArgOperand(0)))); 6329 return; 6330 case Intrinsic::cttz: { 6331 SDValue Arg = getValue(I.getArgOperand(0)); 6332 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6333 EVT Ty = Arg.getValueType(); 6334 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6335 sdl, Ty, Arg)); 6336 return; 6337 } 6338 case Intrinsic::ctlz: { 6339 SDValue Arg = getValue(I.getArgOperand(0)); 6340 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6341 EVT Ty = Arg.getValueType(); 6342 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6343 sdl, Ty, Arg)); 6344 return; 6345 } 6346 case Intrinsic::ctpop: { 6347 SDValue Arg = getValue(I.getArgOperand(0)); 6348 EVT Ty = Arg.getValueType(); 6349 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6350 return; 6351 } 6352 case Intrinsic::fshl: 6353 case Intrinsic::fshr: { 6354 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6355 SDValue X = getValue(I.getArgOperand(0)); 6356 SDValue Y = getValue(I.getArgOperand(1)); 6357 SDValue Z = getValue(I.getArgOperand(2)); 6358 EVT VT = X.getValueType(); 6359 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6360 SDValue Zero = DAG.getConstant(0, sdl, VT); 6361 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6362 6363 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6364 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6365 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6366 return; 6367 } 6368 6369 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6370 // avoid the select that is necessary in the general case to filter out 6371 // the 0-shift possibility that leads to UB. 6372 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6373 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6374 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6375 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6376 return; 6377 } 6378 6379 // Some targets only rotate one way. Try the opposite direction. 6380 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6381 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6382 // Negate the shift amount because it is safe to ignore the high bits. 6383 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6384 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6385 return; 6386 } 6387 6388 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6389 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6390 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6391 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6392 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6393 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6394 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6395 return; 6396 } 6397 6398 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6399 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6400 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6401 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6402 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6403 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6404 6405 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6406 // and that is undefined. We must compare and select to avoid UB. 6407 EVT CCVT = MVT::i1; 6408 if (VT.isVector()) 6409 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6410 6411 // For fshl, 0-shift returns the 1st arg (X). 6412 // For fshr, 0-shift returns the 2nd arg (Y). 6413 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6414 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6415 return; 6416 } 6417 case Intrinsic::sadd_sat: { 6418 SDValue Op1 = getValue(I.getArgOperand(0)); 6419 SDValue Op2 = getValue(I.getArgOperand(1)); 6420 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6421 return; 6422 } 6423 case Intrinsic::uadd_sat: { 6424 SDValue Op1 = getValue(I.getArgOperand(0)); 6425 SDValue Op2 = getValue(I.getArgOperand(1)); 6426 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6427 return; 6428 } 6429 case Intrinsic::ssub_sat: { 6430 SDValue Op1 = getValue(I.getArgOperand(0)); 6431 SDValue Op2 = getValue(I.getArgOperand(1)); 6432 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6433 return; 6434 } 6435 case Intrinsic::usub_sat: { 6436 SDValue Op1 = getValue(I.getArgOperand(0)); 6437 SDValue Op2 = getValue(I.getArgOperand(1)); 6438 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6439 return; 6440 } 6441 case Intrinsic::smul_fix: 6442 case Intrinsic::umul_fix: 6443 case Intrinsic::smul_fix_sat: 6444 case Intrinsic::umul_fix_sat: { 6445 SDValue Op1 = getValue(I.getArgOperand(0)); 6446 SDValue Op2 = getValue(I.getArgOperand(1)); 6447 SDValue Op3 = getValue(I.getArgOperand(2)); 6448 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6449 Op1.getValueType(), Op1, Op2, Op3)); 6450 return; 6451 } 6452 case Intrinsic::sdiv_fix: 6453 case Intrinsic::udiv_fix: { 6454 SDValue Op1 = getValue(I.getArgOperand(0)); 6455 SDValue Op2 = getValue(I.getArgOperand(1)); 6456 SDValue Op3 = getValue(I.getArgOperand(2)); 6457 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6458 Op1, Op2, Op3, DAG, TLI)); 6459 return; 6460 } 6461 case Intrinsic::stacksave: { 6462 SDValue Op = getRoot(); 6463 Res = DAG.getNode( 6464 ISD::STACKSAVE, sdl, 6465 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 6466 setValue(&I, Res); 6467 DAG.setRoot(Res.getValue(1)); 6468 return; 6469 } 6470 case Intrinsic::stackrestore: 6471 Res = getValue(I.getArgOperand(0)); 6472 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6473 return; 6474 case Intrinsic::get_dynamic_area_offset: { 6475 SDValue Op = getRoot(); 6476 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6477 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6478 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6479 // target. 6480 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) 6481 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6482 " intrinsic!"); 6483 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6484 Op); 6485 DAG.setRoot(Op); 6486 setValue(&I, Res); 6487 return; 6488 } 6489 case Intrinsic::stackguard: { 6490 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6491 MachineFunction &MF = DAG.getMachineFunction(); 6492 const Module &M = *MF.getFunction().getParent(); 6493 SDValue Chain = getRoot(); 6494 if (TLI.useLoadStackGuardNode()) { 6495 Res = getLoadStackGuard(DAG, sdl, Chain); 6496 } else { 6497 const Value *Global = TLI.getSDagStackGuard(M); 6498 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6499 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6500 MachinePointerInfo(Global, 0), Align, 6501 MachineMemOperand::MOVolatile); 6502 } 6503 if (TLI.useStackGuardXorFP()) 6504 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6505 DAG.setRoot(Chain); 6506 setValue(&I, Res); 6507 return; 6508 } 6509 case Intrinsic::stackprotector: { 6510 // Emit code into the DAG to store the stack guard onto the stack. 6511 MachineFunction &MF = DAG.getMachineFunction(); 6512 MachineFrameInfo &MFI = MF.getFrameInfo(); 6513 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6514 SDValue Src, Chain = getRoot(); 6515 6516 if (TLI.useLoadStackGuardNode()) 6517 Src = getLoadStackGuard(DAG, sdl, Chain); 6518 else 6519 Src = getValue(I.getArgOperand(0)); // The guard's value. 6520 6521 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6522 6523 int FI = FuncInfo.StaticAllocaMap[Slot]; 6524 MFI.setStackProtectorIndex(FI); 6525 6526 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6527 6528 // Store the stack protector onto the stack. 6529 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6530 DAG.getMachineFunction(), FI), 6531 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6532 setValue(&I, Res); 6533 DAG.setRoot(Res); 6534 return; 6535 } 6536 case Intrinsic::objectsize: 6537 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6538 6539 case Intrinsic::is_constant: 6540 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6541 6542 case Intrinsic::annotation: 6543 case Intrinsic::ptr_annotation: 6544 case Intrinsic::launder_invariant_group: 6545 case Intrinsic::strip_invariant_group: 6546 // Drop the intrinsic, but forward the value 6547 setValue(&I, getValue(I.getOperand(0))); 6548 return; 6549 case Intrinsic::assume: 6550 case Intrinsic::var_annotation: 6551 case Intrinsic::sideeffect: 6552 // Discard annotate attributes, assumptions, and artificial side-effects. 6553 return; 6554 6555 case Intrinsic::codeview_annotation: { 6556 // Emit a label associated with this metadata. 6557 MachineFunction &MF = DAG.getMachineFunction(); 6558 MCSymbol *Label = 6559 MF.getMMI().getContext().createTempSymbol("annotation", true); 6560 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6561 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6562 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6563 DAG.setRoot(Res); 6564 return; 6565 } 6566 6567 case Intrinsic::init_trampoline: { 6568 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6569 6570 SDValue Ops[6]; 6571 Ops[0] = getRoot(); 6572 Ops[1] = getValue(I.getArgOperand(0)); 6573 Ops[2] = getValue(I.getArgOperand(1)); 6574 Ops[3] = getValue(I.getArgOperand(2)); 6575 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6576 Ops[5] = DAG.getSrcValue(F); 6577 6578 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6579 6580 DAG.setRoot(Res); 6581 return; 6582 } 6583 case Intrinsic::adjust_trampoline: 6584 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6585 TLI.getPointerTy(DAG.getDataLayout()), 6586 getValue(I.getArgOperand(0)))); 6587 return; 6588 case Intrinsic::gcroot: { 6589 assert(DAG.getMachineFunction().getFunction().hasGC() && 6590 "only valid in functions with gc specified, enforced by Verifier"); 6591 assert(GFI && "implied by previous"); 6592 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6593 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6594 6595 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6596 GFI->addStackRoot(FI->getIndex(), TypeMap); 6597 return; 6598 } 6599 case Intrinsic::gcread: 6600 case Intrinsic::gcwrite: 6601 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6602 case Intrinsic::flt_rounds: 6603 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 6604 return; 6605 6606 case Intrinsic::expect: 6607 // Just replace __builtin_expect(exp, c) with EXP. 6608 setValue(&I, getValue(I.getArgOperand(0))); 6609 return; 6610 6611 case Intrinsic::debugtrap: 6612 case Intrinsic::trap: { 6613 StringRef TrapFuncName = 6614 I.getAttributes() 6615 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6616 .getValueAsString(); 6617 if (TrapFuncName.empty()) { 6618 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6619 ISD::TRAP : ISD::DEBUGTRAP; 6620 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6621 return; 6622 } 6623 TargetLowering::ArgListTy Args; 6624 6625 TargetLowering::CallLoweringInfo CLI(DAG); 6626 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6627 CallingConv::C, I.getType(), 6628 DAG.getExternalSymbol(TrapFuncName.data(), 6629 TLI.getPointerTy(DAG.getDataLayout())), 6630 std::move(Args)); 6631 6632 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6633 DAG.setRoot(Result.second); 6634 return; 6635 } 6636 6637 case Intrinsic::uadd_with_overflow: 6638 case Intrinsic::sadd_with_overflow: 6639 case Intrinsic::usub_with_overflow: 6640 case Intrinsic::ssub_with_overflow: 6641 case Intrinsic::umul_with_overflow: 6642 case Intrinsic::smul_with_overflow: { 6643 ISD::NodeType Op; 6644 switch (Intrinsic) { 6645 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6646 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6647 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6648 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6649 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6650 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6651 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6652 } 6653 SDValue Op1 = getValue(I.getArgOperand(0)); 6654 SDValue Op2 = getValue(I.getArgOperand(1)); 6655 6656 EVT ResultVT = Op1.getValueType(); 6657 EVT OverflowVT = MVT::i1; 6658 if (ResultVT.isVector()) 6659 OverflowVT = EVT::getVectorVT( 6660 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6661 6662 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6663 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6664 return; 6665 } 6666 case Intrinsic::prefetch: { 6667 SDValue Ops[5]; 6668 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6669 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6670 Ops[0] = DAG.getRoot(); 6671 Ops[1] = getValue(I.getArgOperand(0)); 6672 Ops[2] = getValue(I.getArgOperand(1)); 6673 Ops[3] = getValue(I.getArgOperand(2)); 6674 Ops[4] = getValue(I.getArgOperand(3)); 6675 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 6676 DAG.getVTList(MVT::Other), Ops, 6677 EVT::getIntegerVT(*Context, 8), 6678 MachinePointerInfo(I.getArgOperand(0)), 6679 0, /* align */ 6680 Flags); 6681 6682 // Chain the prefetch in parallell with any pending loads, to stay out of 6683 // the way of later optimizations. 6684 PendingLoads.push_back(Result); 6685 Result = getRoot(); 6686 DAG.setRoot(Result); 6687 return; 6688 } 6689 case Intrinsic::lifetime_start: 6690 case Intrinsic::lifetime_end: { 6691 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6692 // Stack coloring is not enabled in O0, discard region information. 6693 if (TM.getOptLevel() == CodeGenOpt::None) 6694 return; 6695 6696 const int64_t ObjectSize = 6697 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6698 Value *const ObjectPtr = I.getArgOperand(1); 6699 SmallVector<const Value *, 4> Allocas; 6700 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6701 6702 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6703 E = Allocas.end(); Object != E; ++Object) { 6704 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6705 6706 // Could not find an Alloca. 6707 if (!LifetimeObject) 6708 continue; 6709 6710 // First check that the Alloca is static, otherwise it won't have a 6711 // valid frame index. 6712 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6713 if (SI == FuncInfo.StaticAllocaMap.end()) 6714 return; 6715 6716 const int FrameIndex = SI->second; 6717 int64_t Offset; 6718 if (GetPointerBaseWithConstantOffset( 6719 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6720 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6721 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6722 Offset); 6723 DAG.setRoot(Res); 6724 } 6725 return; 6726 } 6727 case Intrinsic::invariant_start: 6728 // Discard region information. 6729 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6730 return; 6731 case Intrinsic::invariant_end: 6732 // Discard region information. 6733 return; 6734 case Intrinsic::clear_cache: 6735 /// FunctionName may be null. 6736 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6737 lowerCallToExternalSymbol(I, FunctionName); 6738 return; 6739 case Intrinsic::donothing: 6740 // ignore 6741 return; 6742 case Intrinsic::experimental_stackmap: 6743 visitStackmap(I); 6744 return; 6745 case Intrinsic::experimental_patchpoint_void: 6746 case Intrinsic::experimental_patchpoint_i64: 6747 visitPatchpoint(&I); 6748 return; 6749 case Intrinsic::experimental_gc_statepoint: 6750 LowerStatepoint(ImmutableStatepoint(&I)); 6751 return; 6752 case Intrinsic::experimental_gc_result: 6753 visitGCResult(cast<GCResultInst>(I)); 6754 return; 6755 case Intrinsic::experimental_gc_relocate: 6756 visitGCRelocate(cast<GCRelocateInst>(I)); 6757 return; 6758 case Intrinsic::instrprof_increment: 6759 llvm_unreachable("instrprof failed to lower an increment"); 6760 case Intrinsic::instrprof_value_profile: 6761 llvm_unreachable("instrprof failed to lower a value profiling call"); 6762 case Intrinsic::localescape: { 6763 MachineFunction &MF = DAG.getMachineFunction(); 6764 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6765 6766 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6767 // is the same on all targets. 6768 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6769 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6770 if (isa<ConstantPointerNull>(Arg)) 6771 continue; // Skip null pointers. They represent a hole in index space. 6772 AllocaInst *Slot = cast<AllocaInst>(Arg); 6773 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6774 "can only escape static allocas"); 6775 int FI = FuncInfo.StaticAllocaMap[Slot]; 6776 MCSymbol *FrameAllocSym = 6777 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6778 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6779 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6780 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6781 .addSym(FrameAllocSym) 6782 .addFrameIndex(FI); 6783 } 6784 6785 return; 6786 } 6787 6788 case Intrinsic::localrecover: { 6789 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6790 MachineFunction &MF = DAG.getMachineFunction(); 6791 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6792 6793 // Get the symbol that defines the frame offset. 6794 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6795 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6796 unsigned IdxVal = 6797 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6798 MCSymbol *FrameAllocSym = 6799 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6800 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6801 6802 // Create a MCSymbol for the label to avoid any target lowering 6803 // that would make this PC relative. 6804 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6805 SDValue OffsetVal = 6806 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6807 6808 // Add the offset to the FP. 6809 Value *FP = I.getArgOperand(1); 6810 SDValue FPVal = getValue(FP); 6811 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6812 setValue(&I, Add); 6813 6814 return; 6815 } 6816 6817 case Intrinsic::eh_exceptionpointer: 6818 case Intrinsic::eh_exceptioncode: { 6819 // Get the exception pointer vreg, copy from it, and resize it to fit. 6820 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6821 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6822 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6823 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6824 SDValue N = 6825 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6826 if (Intrinsic == Intrinsic::eh_exceptioncode) 6827 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6828 setValue(&I, N); 6829 return; 6830 } 6831 case Intrinsic::xray_customevent: { 6832 // Here we want to make sure that the intrinsic behaves as if it has a 6833 // specific calling convention, and only for x86_64. 6834 // FIXME: Support other platforms later. 6835 const auto &Triple = DAG.getTarget().getTargetTriple(); 6836 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6837 return; 6838 6839 SDLoc DL = getCurSDLoc(); 6840 SmallVector<SDValue, 8> Ops; 6841 6842 // We want to say that we always want the arguments in registers. 6843 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6844 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6845 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6846 SDValue Chain = getRoot(); 6847 Ops.push_back(LogEntryVal); 6848 Ops.push_back(StrSizeVal); 6849 Ops.push_back(Chain); 6850 6851 // We need to enforce the calling convention for the callsite, so that 6852 // argument ordering is enforced correctly, and that register allocation can 6853 // see that some registers may be assumed clobbered and have to preserve 6854 // them across calls to the intrinsic. 6855 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6856 DL, NodeTys, Ops); 6857 SDValue patchableNode = SDValue(MN, 0); 6858 DAG.setRoot(patchableNode); 6859 setValue(&I, patchableNode); 6860 return; 6861 } 6862 case Intrinsic::xray_typedevent: { 6863 // Here we want to make sure that the intrinsic behaves as if it has a 6864 // specific calling convention, and only for x86_64. 6865 // FIXME: Support other platforms later. 6866 const auto &Triple = DAG.getTarget().getTargetTriple(); 6867 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6868 return; 6869 6870 SDLoc DL = getCurSDLoc(); 6871 SmallVector<SDValue, 8> Ops; 6872 6873 // We want to say that we always want the arguments in registers. 6874 // It's unclear to me how manipulating the selection DAG here forces callers 6875 // to provide arguments in registers instead of on the stack. 6876 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6877 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6878 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6879 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6880 SDValue Chain = getRoot(); 6881 Ops.push_back(LogTypeId); 6882 Ops.push_back(LogEntryVal); 6883 Ops.push_back(StrSizeVal); 6884 Ops.push_back(Chain); 6885 6886 // We need to enforce the calling convention for the callsite, so that 6887 // argument ordering is enforced correctly, and that register allocation can 6888 // see that some registers may be assumed clobbered and have to preserve 6889 // them across calls to the intrinsic. 6890 MachineSDNode *MN = DAG.getMachineNode( 6891 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6892 SDValue patchableNode = SDValue(MN, 0); 6893 DAG.setRoot(patchableNode); 6894 setValue(&I, patchableNode); 6895 return; 6896 } 6897 case Intrinsic::experimental_deoptimize: 6898 LowerDeoptimizeCall(&I); 6899 return; 6900 6901 case Intrinsic::experimental_vector_reduce_v2_fadd: 6902 case Intrinsic::experimental_vector_reduce_v2_fmul: 6903 case Intrinsic::experimental_vector_reduce_add: 6904 case Intrinsic::experimental_vector_reduce_mul: 6905 case Intrinsic::experimental_vector_reduce_and: 6906 case Intrinsic::experimental_vector_reduce_or: 6907 case Intrinsic::experimental_vector_reduce_xor: 6908 case Intrinsic::experimental_vector_reduce_smax: 6909 case Intrinsic::experimental_vector_reduce_smin: 6910 case Intrinsic::experimental_vector_reduce_umax: 6911 case Intrinsic::experimental_vector_reduce_umin: 6912 case Intrinsic::experimental_vector_reduce_fmax: 6913 case Intrinsic::experimental_vector_reduce_fmin: 6914 visitVectorReduce(I, Intrinsic); 6915 return; 6916 6917 case Intrinsic::icall_branch_funnel: { 6918 SmallVector<SDValue, 16> Ops; 6919 Ops.push_back(getValue(I.getArgOperand(0))); 6920 6921 int64_t Offset; 6922 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6923 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6924 if (!Base) 6925 report_fatal_error( 6926 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6927 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6928 6929 struct BranchFunnelTarget { 6930 int64_t Offset; 6931 SDValue Target; 6932 }; 6933 SmallVector<BranchFunnelTarget, 8> Targets; 6934 6935 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6936 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6937 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6938 if (ElemBase != Base) 6939 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6940 "to the same GlobalValue"); 6941 6942 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6943 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6944 if (!GA) 6945 report_fatal_error( 6946 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6947 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6948 GA->getGlobal(), getCurSDLoc(), 6949 Val.getValueType(), GA->getOffset())}); 6950 } 6951 llvm::sort(Targets, 6952 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6953 return T1.Offset < T2.Offset; 6954 }); 6955 6956 for (auto &T : Targets) { 6957 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6958 Ops.push_back(T.Target); 6959 } 6960 6961 Ops.push_back(DAG.getRoot()); // Chain 6962 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6963 getCurSDLoc(), MVT::Other, Ops), 6964 0); 6965 DAG.setRoot(N); 6966 setValue(&I, N); 6967 HasTailCall = true; 6968 return; 6969 } 6970 6971 case Intrinsic::wasm_landingpad_index: 6972 // Information this intrinsic contained has been transferred to 6973 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6974 // delete it now. 6975 return; 6976 6977 case Intrinsic::aarch64_settag: 6978 case Intrinsic::aarch64_settag_zero: { 6979 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6980 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 6981 SDValue Val = TSI.EmitTargetCodeForSetTag( 6982 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 6983 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 6984 ZeroMemory); 6985 DAG.setRoot(Val); 6986 setValue(&I, Val); 6987 return; 6988 } 6989 case Intrinsic::ptrmask: { 6990 SDValue Ptr = getValue(I.getOperand(0)); 6991 SDValue Const = getValue(I.getOperand(1)); 6992 6993 EVT DestVT = 6994 EVT(DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6995 6996 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), DestVT, Ptr, 6997 DAG.getZExtOrTrunc(Const, getCurSDLoc(), DestVT))); 6998 return; 6999 } 7000 } 7001 } 7002 7003 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7004 const ConstrainedFPIntrinsic &FPI) { 7005 SDLoc sdl = getCurSDLoc(); 7006 7007 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7008 SmallVector<EVT, 4> ValueVTs; 7009 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 7010 ValueVTs.push_back(MVT::Other); // Out chain 7011 7012 // We do not need to serialize constrained FP intrinsics against 7013 // each other or against (nonvolatile) loads, so they can be 7014 // chained like loads. 7015 SDValue Chain = DAG.getRoot(); 7016 SmallVector<SDValue, 4> Opers; 7017 Opers.push_back(Chain); 7018 if (FPI.isUnaryOp()) { 7019 Opers.push_back(getValue(FPI.getArgOperand(0))); 7020 } else if (FPI.isTernaryOp()) { 7021 Opers.push_back(getValue(FPI.getArgOperand(0))); 7022 Opers.push_back(getValue(FPI.getArgOperand(1))); 7023 Opers.push_back(getValue(FPI.getArgOperand(2))); 7024 } else { 7025 Opers.push_back(getValue(FPI.getArgOperand(0))); 7026 Opers.push_back(getValue(FPI.getArgOperand(1))); 7027 } 7028 7029 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7030 assert(Result.getNode()->getNumValues() == 2); 7031 7032 // Push node to the appropriate list so that future instructions can be 7033 // chained up correctly. 7034 SDValue OutChain = Result.getValue(1); 7035 switch (EB) { 7036 case fp::ExceptionBehavior::ebIgnore: 7037 // The only reason why ebIgnore nodes still need to be chained is that 7038 // they might depend on the current rounding mode, and therefore must 7039 // not be moved across instruction that may change that mode. 7040 LLVM_FALLTHROUGH; 7041 case fp::ExceptionBehavior::ebMayTrap: 7042 // These must not be moved across calls or instructions that may change 7043 // floating-point exception masks. 7044 PendingConstrainedFP.push_back(OutChain); 7045 break; 7046 case fp::ExceptionBehavior::ebStrict: 7047 // These must not be moved across calls or instructions that may change 7048 // floating-point exception masks or read floating-point exception flags. 7049 // In addition, they cannot be optimized out even if unused. 7050 PendingConstrainedFPStrict.push_back(OutChain); 7051 break; 7052 } 7053 }; 7054 7055 SDVTList VTs = DAG.getVTList(ValueVTs); 7056 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 7057 7058 unsigned Opcode; 7059 switch (FPI.getIntrinsicID()) { 7060 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7061 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7062 case Intrinsic::INTRINSIC: \ 7063 Opcode = ISD::STRICT_##DAGN; \ 7064 break; 7065 #include "llvm/IR/ConstrainedOps.def" 7066 case Intrinsic::experimental_constrained_fmuladd: { 7067 Opcode = ISD::STRICT_FMA; 7068 // Break fmuladd into fmul and fadd. 7069 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7070 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 7071 ValueVTs[0])) { 7072 Opers.pop_back(); 7073 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers); 7074 pushOutChain(Mul, EB); 7075 Opcode = ISD::STRICT_FADD; 7076 Opers.clear(); 7077 Opers.push_back(Mul.getValue(1)); 7078 Opers.push_back(Mul.getValue(0)); 7079 Opers.push_back(getValue(FPI.getArgOperand(2))); 7080 } 7081 break; 7082 } 7083 } 7084 7085 // A few strict DAG nodes carry additional operands that are not 7086 // set up by the default code above. 7087 switch (Opcode) { 7088 default: break; 7089 case ISD::STRICT_FP_ROUND: 7090 Opers.push_back( 7091 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7092 break; 7093 case ISD::STRICT_FSETCC: 7094 case ISD::STRICT_FSETCCS: { 7095 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7096 Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate()))); 7097 break; 7098 } 7099 } 7100 7101 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers); 7102 pushOutChain(Result, EB); 7103 7104 SDValue FPResult = Result.getValue(0); 7105 setValue(&FPI, FPResult); 7106 } 7107 7108 std::pair<SDValue, SDValue> 7109 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7110 const BasicBlock *EHPadBB) { 7111 MachineFunction &MF = DAG.getMachineFunction(); 7112 MachineModuleInfo &MMI = MF.getMMI(); 7113 MCSymbol *BeginLabel = nullptr; 7114 7115 if (EHPadBB) { 7116 // Insert a label before the invoke call to mark the try range. This can be 7117 // used to detect deletion of the invoke via the MachineModuleInfo. 7118 BeginLabel = MMI.getContext().createTempSymbol(); 7119 7120 // For SjLj, keep track of which landing pads go with which invokes 7121 // so as to maintain the ordering of pads in the LSDA. 7122 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7123 if (CallSiteIndex) { 7124 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7125 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7126 7127 // Now that the call site is handled, stop tracking it. 7128 MMI.setCurrentCallSite(0); 7129 } 7130 7131 // Both PendingLoads and PendingExports must be flushed here; 7132 // this call might not return. 7133 (void)getRoot(); 7134 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 7135 7136 CLI.setChain(getRoot()); 7137 } 7138 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7139 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7140 7141 assert((CLI.IsTailCall || Result.second.getNode()) && 7142 "Non-null chain expected with non-tail call!"); 7143 assert((Result.second.getNode() || !Result.first.getNode()) && 7144 "Null value expected with tail call!"); 7145 7146 if (!Result.second.getNode()) { 7147 // As a special case, a null chain means that a tail call has been emitted 7148 // and the DAG root is already updated. 7149 HasTailCall = true; 7150 7151 // Since there's no actual continuation from this block, nothing can be 7152 // relying on us setting vregs for them. 7153 PendingExports.clear(); 7154 } else { 7155 DAG.setRoot(Result.second); 7156 } 7157 7158 if (EHPadBB) { 7159 // Insert a label at the end of the invoke call to mark the try range. This 7160 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7161 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7162 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7163 7164 // Inform MachineModuleInfo of range. 7165 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7166 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7167 // actually use outlined funclets and their LSDA info style. 7168 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7169 assert(CLI.CS); 7170 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7171 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 7172 BeginLabel, EndLabel); 7173 } else if (!isScopedEHPersonality(Pers)) { 7174 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7175 } 7176 } 7177 7178 return Result; 7179 } 7180 7181 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 7182 bool isTailCall, 7183 const BasicBlock *EHPadBB) { 7184 auto &DL = DAG.getDataLayout(); 7185 FunctionType *FTy = CS.getFunctionType(); 7186 Type *RetTy = CS.getType(); 7187 7188 TargetLowering::ArgListTy Args; 7189 Args.reserve(CS.arg_size()); 7190 7191 const Value *SwiftErrorVal = nullptr; 7192 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7193 7194 if (isTailCall) { 7195 // Avoid emitting tail calls in functions with the disable-tail-calls 7196 // attribute. 7197 auto *Caller = CS.getInstruction()->getParent()->getParent(); 7198 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7199 "true") 7200 isTailCall = false; 7201 7202 // We can't tail call inside a function with a swifterror argument. Lowering 7203 // does not support this yet. It would have to move into the swifterror 7204 // register before the call. 7205 if (TLI.supportSwiftError() && 7206 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7207 isTailCall = false; 7208 } 7209 7210 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 7211 i != e; ++i) { 7212 TargetLowering::ArgListEntry Entry; 7213 const Value *V = *i; 7214 7215 // Skip empty types 7216 if (V->getType()->isEmptyTy()) 7217 continue; 7218 7219 SDValue ArgNode = getValue(V); 7220 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7221 7222 Entry.setAttributes(&CS, i - CS.arg_begin()); 7223 7224 // Use swifterror virtual register as input to the call. 7225 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7226 SwiftErrorVal = V; 7227 // We find the virtual register for the actual swifterror argument. 7228 // Instead of using the Value, we use the virtual register instead. 7229 Entry.Node = DAG.getRegister( 7230 SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V), 7231 EVT(TLI.getPointerTy(DL))); 7232 } 7233 7234 Args.push_back(Entry); 7235 7236 // If we have an explicit sret argument that is an Instruction, (i.e., it 7237 // might point to function-local memory), we can't meaningfully tail-call. 7238 if (Entry.IsSRet && isa<Instruction>(V)) 7239 isTailCall = false; 7240 } 7241 7242 // If call site has a cfguardtarget operand bundle, create and add an 7243 // additional ArgListEntry. 7244 if (auto Bundle = CS.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7245 TargetLowering::ArgListEntry Entry; 7246 Value *V = Bundle->Inputs[0]; 7247 SDValue ArgNode = getValue(V); 7248 Entry.Node = ArgNode; 7249 Entry.Ty = V->getType(); 7250 Entry.IsCFGuardTarget = true; 7251 Args.push_back(Entry); 7252 } 7253 7254 // Check if target-independent constraints permit a tail call here. 7255 // Target-dependent constraints are checked within TLI->LowerCallTo. 7256 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 7257 isTailCall = false; 7258 7259 // Disable tail calls if there is an swifterror argument. Targets have not 7260 // been updated to support tail calls. 7261 if (TLI.supportSwiftError() && SwiftErrorVal) 7262 isTailCall = false; 7263 7264 TargetLowering::CallLoweringInfo CLI(DAG); 7265 CLI.setDebugLoc(getCurSDLoc()) 7266 .setChain(getRoot()) 7267 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 7268 .setTailCall(isTailCall) 7269 .setConvergent(CS.isConvergent()); 7270 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7271 7272 if (Result.first.getNode()) { 7273 const Instruction *Inst = CS.getInstruction(); 7274 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 7275 setValue(Inst, Result.first); 7276 } 7277 7278 // The last element of CLI.InVals has the SDValue for swifterror return. 7279 // Here we copy it to a virtual register and update SwiftErrorMap for 7280 // book-keeping. 7281 if (SwiftErrorVal && TLI.supportSwiftError()) { 7282 // Get the last element of InVals. 7283 SDValue Src = CLI.InVals.back(); 7284 Register VReg = SwiftError.getOrCreateVRegDefAt( 7285 CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal); 7286 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7287 DAG.setRoot(CopyNode); 7288 } 7289 } 7290 7291 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7292 SelectionDAGBuilder &Builder) { 7293 // Check to see if this load can be trivially constant folded, e.g. if the 7294 // input is from a string literal. 7295 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7296 // Cast pointer to the type we really want to load. 7297 Type *LoadTy = 7298 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7299 if (LoadVT.isVector()) 7300 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7301 7302 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7303 PointerType::getUnqual(LoadTy)); 7304 7305 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7306 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7307 return Builder.getValue(LoadCst); 7308 } 7309 7310 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7311 // still constant memory, the input chain can be the entry node. 7312 SDValue Root; 7313 bool ConstantMemory = false; 7314 7315 // Do not serialize (non-volatile) loads of constant memory with anything. 7316 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7317 Root = Builder.DAG.getEntryNode(); 7318 ConstantMemory = true; 7319 } else { 7320 // Do not serialize non-volatile loads against each other. 7321 Root = Builder.DAG.getRoot(); 7322 } 7323 7324 SDValue Ptr = Builder.getValue(PtrVal); 7325 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 7326 Ptr, MachinePointerInfo(PtrVal), 7327 /* Alignment = */ 1); 7328 7329 if (!ConstantMemory) 7330 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7331 return LoadVal; 7332 } 7333 7334 /// Record the value for an instruction that produces an integer result, 7335 /// converting the type where necessary. 7336 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7337 SDValue Value, 7338 bool IsSigned) { 7339 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7340 I.getType(), true); 7341 if (IsSigned) 7342 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7343 else 7344 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7345 setValue(&I, Value); 7346 } 7347 7348 /// See if we can lower a memcmp call into an optimized form. If so, return 7349 /// true and lower it. Otherwise return false, and it will be lowered like a 7350 /// normal call. 7351 /// The caller already checked that \p I calls the appropriate LibFunc with a 7352 /// correct prototype. 7353 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7354 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7355 const Value *Size = I.getArgOperand(2); 7356 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7357 if (CSize && CSize->getZExtValue() == 0) { 7358 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7359 I.getType(), true); 7360 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7361 return true; 7362 } 7363 7364 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7365 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7366 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7367 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7368 if (Res.first.getNode()) { 7369 processIntegerCallValue(I, Res.first, true); 7370 PendingLoads.push_back(Res.second); 7371 return true; 7372 } 7373 7374 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7375 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7376 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7377 return false; 7378 7379 // If the target has a fast compare for the given size, it will return a 7380 // preferred load type for that size. Require that the load VT is legal and 7381 // that the target supports unaligned loads of that type. Otherwise, return 7382 // INVALID. 7383 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7384 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7385 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7386 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7387 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7388 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7389 // TODO: Check alignment of src and dest ptrs. 7390 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7391 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7392 if (!TLI.isTypeLegal(LVT) || 7393 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7394 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7395 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7396 } 7397 7398 return LVT; 7399 }; 7400 7401 // This turns into unaligned loads. We only do this if the target natively 7402 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7403 // we'll only produce a small number of byte loads. 7404 MVT LoadVT; 7405 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7406 switch (NumBitsToCompare) { 7407 default: 7408 return false; 7409 case 16: 7410 LoadVT = MVT::i16; 7411 break; 7412 case 32: 7413 LoadVT = MVT::i32; 7414 break; 7415 case 64: 7416 case 128: 7417 case 256: 7418 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7419 break; 7420 } 7421 7422 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7423 return false; 7424 7425 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7426 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7427 7428 // Bitcast to a wide integer type if the loads are vectors. 7429 if (LoadVT.isVector()) { 7430 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7431 LoadL = DAG.getBitcast(CmpVT, LoadL); 7432 LoadR = DAG.getBitcast(CmpVT, LoadR); 7433 } 7434 7435 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7436 processIntegerCallValue(I, Cmp, false); 7437 return true; 7438 } 7439 7440 /// See if we can lower a memchr call into an optimized form. If so, return 7441 /// true and lower it. Otherwise return false, and it will be lowered like a 7442 /// normal call. 7443 /// The caller already checked that \p I calls the appropriate LibFunc with a 7444 /// correct prototype. 7445 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7446 const Value *Src = I.getArgOperand(0); 7447 const Value *Char = I.getArgOperand(1); 7448 const Value *Length = I.getArgOperand(2); 7449 7450 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7451 std::pair<SDValue, SDValue> Res = 7452 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7453 getValue(Src), getValue(Char), getValue(Length), 7454 MachinePointerInfo(Src)); 7455 if (Res.first.getNode()) { 7456 setValue(&I, Res.first); 7457 PendingLoads.push_back(Res.second); 7458 return true; 7459 } 7460 7461 return false; 7462 } 7463 7464 /// See if we can lower a mempcpy call into an optimized form. If so, return 7465 /// true and lower it. Otherwise return false, and it will be lowered like a 7466 /// normal call. 7467 /// The caller already checked that \p I calls the appropriate LibFunc with a 7468 /// correct prototype. 7469 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7470 SDValue Dst = getValue(I.getArgOperand(0)); 7471 SDValue Src = getValue(I.getArgOperand(1)); 7472 SDValue Size = getValue(I.getArgOperand(2)); 7473 7474 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 7475 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 7476 // DAG::getMemcpy needs Alignment to be defined. 7477 Align Alignment = assumeAligned(std::min(DstAlign, SrcAlign)); 7478 7479 bool isVol = false; 7480 SDLoc sdl = getCurSDLoc(); 7481 7482 // In the mempcpy context we need to pass in a false value for isTailCall 7483 // because the return pointer needs to be adjusted by the size of 7484 // the copied memory. 7485 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 7486 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 7487 /*isTailCall=*/false, 7488 MachinePointerInfo(I.getArgOperand(0)), 7489 MachinePointerInfo(I.getArgOperand(1))); 7490 assert(MC.getNode() != nullptr && 7491 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7492 DAG.setRoot(MC); 7493 7494 // Check if Size needs to be truncated or extended. 7495 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7496 7497 // Adjust return pointer to point just past the last dst byte. 7498 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7499 Dst, Size); 7500 setValue(&I, DstPlusSize); 7501 return true; 7502 } 7503 7504 /// See if we can lower a strcpy call into an optimized form. If so, return 7505 /// true and lower it, otherwise return false and it will be lowered like a 7506 /// normal call. 7507 /// The caller already checked that \p I calls the appropriate LibFunc with a 7508 /// correct prototype. 7509 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7510 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7511 7512 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7513 std::pair<SDValue, SDValue> Res = 7514 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7515 getValue(Arg0), getValue(Arg1), 7516 MachinePointerInfo(Arg0), 7517 MachinePointerInfo(Arg1), isStpcpy); 7518 if (Res.first.getNode()) { 7519 setValue(&I, Res.first); 7520 DAG.setRoot(Res.second); 7521 return true; 7522 } 7523 7524 return false; 7525 } 7526 7527 /// See if we can lower a strcmp call into an optimized form. If so, return 7528 /// true and lower it, otherwise return false and it will be lowered like a 7529 /// normal call. 7530 /// The caller already checked that \p I calls the appropriate LibFunc with a 7531 /// correct prototype. 7532 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7533 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7534 7535 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7536 std::pair<SDValue, SDValue> Res = 7537 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7538 getValue(Arg0), getValue(Arg1), 7539 MachinePointerInfo(Arg0), 7540 MachinePointerInfo(Arg1)); 7541 if (Res.first.getNode()) { 7542 processIntegerCallValue(I, Res.first, true); 7543 PendingLoads.push_back(Res.second); 7544 return true; 7545 } 7546 7547 return false; 7548 } 7549 7550 /// See if we can lower a strlen call into an optimized form. If so, return 7551 /// true and lower it, otherwise return false and it will be lowered like a 7552 /// normal call. 7553 /// The caller already checked that \p I calls the appropriate LibFunc with a 7554 /// correct prototype. 7555 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7556 const Value *Arg0 = I.getArgOperand(0); 7557 7558 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7559 std::pair<SDValue, SDValue> Res = 7560 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7561 getValue(Arg0), MachinePointerInfo(Arg0)); 7562 if (Res.first.getNode()) { 7563 processIntegerCallValue(I, Res.first, false); 7564 PendingLoads.push_back(Res.second); 7565 return true; 7566 } 7567 7568 return false; 7569 } 7570 7571 /// See if we can lower a strnlen call into an optimized form. If so, return 7572 /// true and lower it, otherwise return false and it will be lowered like a 7573 /// normal call. 7574 /// The caller already checked that \p I calls the appropriate LibFunc with a 7575 /// correct prototype. 7576 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7577 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7578 7579 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7580 std::pair<SDValue, SDValue> Res = 7581 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7582 getValue(Arg0), getValue(Arg1), 7583 MachinePointerInfo(Arg0)); 7584 if (Res.first.getNode()) { 7585 processIntegerCallValue(I, Res.first, false); 7586 PendingLoads.push_back(Res.second); 7587 return true; 7588 } 7589 7590 return false; 7591 } 7592 7593 /// See if we can lower a unary floating-point operation into an SDNode with 7594 /// the specified Opcode. If so, return true and lower it, otherwise return 7595 /// false and it will be lowered like a normal call. 7596 /// The caller already checked that \p I calls the appropriate LibFunc with a 7597 /// correct prototype. 7598 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7599 unsigned Opcode) { 7600 // We already checked this call's prototype; verify it doesn't modify errno. 7601 if (!I.onlyReadsMemory()) 7602 return false; 7603 7604 SDValue Tmp = getValue(I.getArgOperand(0)); 7605 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7606 return true; 7607 } 7608 7609 /// See if we can lower a binary floating-point operation into an SDNode with 7610 /// the specified Opcode. If so, return true and lower it. Otherwise return 7611 /// false, and it will be lowered like a normal call. 7612 /// The caller already checked that \p I calls the appropriate LibFunc with a 7613 /// correct prototype. 7614 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7615 unsigned Opcode) { 7616 // We already checked this call's prototype; verify it doesn't modify errno. 7617 if (!I.onlyReadsMemory()) 7618 return false; 7619 7620 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7621 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7622 EVT VT = Tmp0.getValueType(); 7623 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7624 return true; 7625 } 7626 7627 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7628 // Handle inline assembly differently. 7629 if (isa<InlineAsm>(I.getCalledValue())) { 7630 visitInlineAsm(&I); 7631 return; 7632 } 7633 7634 if (Function *F = I.getCalledFunction()) { 7635 if (F->isDeclaration()) { 7636 // Is this an LLVM intrinsic or a target-specific intrinsic? 7637 unsigned IID = F->getIntrinsicID(); 7638 if (!IID) 7639 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7640 IID = II->getIntrinsicID(F); 7641 7642 if (IID) { 7643 visitIntrinsicCall(I, IID); 7644 return; 7645 } 7646 } 7647 7648 // Check for well-known libc/libm calls. If the function is internal, it 7649 // can't be a library call. Don't do the check if marked as nobuiltin for 7650 // some reason or the call site requires strict floating point semantics. 7651 LibFunc Func; 7652 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7653 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7654 LibInfo->hasOptimizedCodeGen(Func)) { 7655 switch (Func) { 7656 default: break; 7657 case LibFunc_copysign: 7658 case LibFunc_copysignf: 7659 case LibFunc_copysignl: 7660 // We already checked this call's prototype; verify it doesn't modify 7661 // errno. 7662 if (I.onlyReadsMemory()) { 7663 SDValue LHS = getValue(I.getArgOperand(0)); 7664 SDValue RHS = getValue(I.getArgOperand(1)); 7665 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7666 LHS.getValueType(), LHS, RHS)); 7667 return; 7668 } 7669 break; 7670 case LibFunc_fabs: 7671 case LibFunc_fabsf: 7672 case LibFunc_fabsl: 7673 if (visitUnaryFloatCall(I, ISD::FABS)) 7674 return; 7675 break; 7676 case LibFunc_fmin: 7677 case LibFunc_fminf: 7678 case LibFunc_fminl: 7679 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7680 return; 7681 break; 7682 case LibFunc_fmax: 7683 case LibFunc_fmaxf: 7684 case LibFunc_fmaxl: 7685 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7686 return; 7687 break; 7688 case LibFunc_sin: 7689 case LibFunc_sinf: 7690 case LibFunc_sinl: 7691 if (visitUnaryFloatCall(I, ISD::FSIN)) 7692 return; 7693 break; 7694 case LibFunc_cos: 7695 case LibFunc_cosf: 7696 case LibFunc_cosl: 7697 if (visitUnaryFloatCall(I, ISD::FCOS)) 7698 return; 7699 break; 7700 case LibFunc_sqrt: 7701 case LibFunc_sqrtf: 7702 case LibFunc_sqrtl: 7703 case LibFunc_sqrt_finite: 7704 case LibFunc_sqrtf_finite: 7705 case LibFunc_sqrtl_finite: 7706 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7707 return; 7708 break; 7709 case LibFunc_floor: 7710 case LibFunc_floorf: 7711 case LibFunc_floorl: 7712 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7713 return; 7714 break; 7715 case LibFunc_nearbyint: 7716 case LibFunc_nearbyintf: 7717 case LibFunc_nearbyintl: 7718 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7719 return; 7720 break; 7721 case LibFunc_ceil: 7722 case LibFunc_ceilf: 7723 case LibFunc_ceill: 7724 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7725 return; 7726 break; 7727 case LibFunc_rint: 7728 case LibFunc_rintf: 7729 case LibFunc_rintl: 7730 if (visitUnaryFloatCall(I, ISD::FRINT)) 7731 return; 7732 break; 7733 case LibFunc_round: 7734 case LibFunc_roundf: 7735 case LibFunc_roundl: 7736 if (visitUnaryFloatCall(I, ISD::FROUND)) 7737 return; 7738 break; 7739 case LibFunc_trunc: 7740 case LibFunc_truncf: 7741 case LibFunc_truncl: 7742 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7743 return; 7744 break; 7745 case LibFunc_log2: 7746 case LibFunc_log2f: 7747 case LibFunc_log2l: 7748 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7749 return; 7750 break; 7751 case LibFunc_exp2: 7752 case LibFunc_exp2f: 7753 case LibFunc_exp2l: 7754 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7755 return; 7756 break; 7757 case LibFunc_memcmp: 7758 if (visitMemCmpCall(I)) 7759 return; 7760 break; 7761 case LibFunc_mempcpy: 7762 if (visitMemPCpyCall(I)) 7763 return; 7764 break; 7765 case LibFunc_memchr: 7766 if (visitMemChrCall(I)) 7767 return; 7768 break; 7769 case LibFunc_strcpy: 7770 if (visitStrCpyCall(I, false)) 7771 return; 7772 break; 7773 case LibFunc_stpcpy: 7774 if (visitStrCpyCall(I, true)) 7775 return; 7776 break; 7777 case LibFunc_strcmp: 7778 if (visitStrCmpCall(I)) 7779 return; 7780 break; 7781 case LibFunc_strlen: 7782 if (visitStrLenCall(I)) 7783 return; 7784 break; 7785 case LibFunc_strnlen: 7786 if (visitStrNLenCall(I)) 7787 return; 7788 break; 7789 } 7790 } 7791 } 7792 7793 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7794 // have to do anything here to lower funclet bundles. 7795 // CFGuardTarget bundles are lowered in LowerCallTo. 7796 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 7797 LLVMContext::OB_funclet, 7798 LLVMContext::OB_cfguardtarget}) && 7799 "Cannot lower calls with arbitrary operand bundles!"); 7800 7801 SDValue Callee = getValue(I.getCalledValue()); 7802 7803 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7804 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7805 else 7806 // Check if we can potentially perform a tail call. More detailed checking 7807 // is be done within LowerCallTo, after more information about the call is 7808 // known. 7809 LowerCallTo(&I, Callee, I.isTailCall()); 7810 } 7811 7812 namespace { 7813 7814 /// AsmOperandInfo - This contains information for each constraint that we are 7815 /// lowering. 7816 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7817 public: 7818 /// CallOperand - If this is the result output operand or a clobber 7819 /// this is null, otherwise it is the incoming operand to the CallInst. 7820 /// This gets modified as the asm is processed. 7821 SDValue CallOperand; 7822 7823 /// AssignedRegs - If this is a register or register class operand, this 7824 /// contains the set of register corresponding to the operand. 7825 RegsForValue AssignedRegs; 7826 7827 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7828 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7829 } 7830 7831 /// Whether or not this operand accesses memory 7832 bool hasMemory(const TargetLowering &TLI) const { 7833 // Indirect operand accesses access memory. 7834 if (isIndirect) 7835 return true; 7836 7837 for (const auto &Code : Codes) 7838 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7839 return true; 7840 7841 return false; 7842 } 7843 7844 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7845 /// corresponds to. If there is no Value* for this operand, it returns 7846 /// MVT::Other. 7847 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7848 const DataLayout &DL) const { 7849 if (!CallOperandVal) return MVT::Other; 7850 7851 if (isa<BasicBlock>(CallOperandVal)) 7852 return TLI.getPointerTy(DL); 7853 7854 llvm::Type *OpTy = CallOperandVal->getType(); 7855 7856 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7857 // If this is an indirect operand, the operand is a pointer to the 7858 // accessed type. 7859 if (isIndirect) { 7860 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7861 if (!PtrTy) 7862 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7863 OpTy = PtrTy->getElementType(); 7864 } 7865 7866 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7867 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7868 if (STy->getNumElements() == 1) 7869 OpTy = STy->getElementType(0); 7870 7871 // If OpTy is not a single value, it may be a struct/union that we 7872 // can tile with integers. 7873 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7874 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7875 switch (BitSize) { 7876 default: break; 7877 case 1: 7878 case 8: 7879 case 16: 7880 case 32: 7881 case 64: 7882 case 128: 7883 OpTy = IntegerType::get(Context, BitSize); 7884 break; 7885 } 7886 } 7887 7888 return TLI.getValueType(DL, OpTy, true); 7889 } 7890 }; 7891 7892 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7893 7894 } // end anonymous namespace 7895 7896 /// Make sure that the output operand \p OpInfo and its corresponding input 7897 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7898 /// out). 7899 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7900 SDISelAsmOperandInfo &MatchingOpInfo, 7901 SelectionDAG &DAG) { 7902 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7903 return; 7904 7905 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7906 const auto &TLI = DAG.getTargetLoweringInfo(); 7907 7908 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7909 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7910 OpInfo.ConstraintVT); 7911 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7912 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7913 MatchingOpInfo.ConstraintVT); 7914 if ((OpInfo.ConstraintVT.isInteger() != 7915 MatchingOpInfo.ConstraintVT.isInteger()) || 7916 (MatchRC.second != InputRC.second)) { 7917 // FIXME: error out in a more elegant fashion 7918 report_fatal_error("Unsupported asm: input constraint" 7919 " with a matching output constraint of" 7920 " incompatible type!"); 7921 } 7922 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7923 } 7924 7925 /// Get a direct memory input to behave well as an indirect operand. 7926 /// This may introduce stores, hence the need for a \p Chain. 7927 /// \return The (possibly updated) chain. 7928 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7929 SDISelAsmOperandInfo &OpInfo, 7930 SelectionDAG &DAG) { 7931 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7932 7933 // If we don't have an indirect input, put it in the constpool if we can, 7934 // otherwise spill it to a stack slot. 7935 // TODO: This isn't quite right. We need to handle these according to 7936 // the addressing mode that the constraint wants. Also, this may take 7937 // an additional register for the computation and we don't want that 7938 // either. 7939 7940 // If the operand is a float, integer, or vector constant, spill to a 7941 // constant pool entry to get its address. 7942 const Value *OpVal = OpInfo.CallOperandVal; 7943 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7944 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7945 OpInfo.CallOperand = DAG.getConstantPool( 7946 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7947 return Chain; 7948 } 7949 7950 // Otherwise, create a stack slot and emit a store to it before the asm. 7951 Type *Ty = OpVal->getType(); 7952 auto &DL = DAG.getDataLayout(); 7953 uint64_t TySize = DL.getTypeAllocSize(Ty); 7954 unsigned Align = DL.getPrefTypeAlignment(Ty); 7955 MachineFunction &MF = DAG.getMachineFunction(); 7956 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7957 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7958 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7959 MachinePointerInfo::getFixedStack(MF, SSFI), 7960 TLI.getMemValueType(DL, Ty)); 7961 OpInfo.CallOperand = StackSlot; 7962 7963 return Chain; 7964 } 7965 7966 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7967 /// specified operand. We prefer to assign virtual registers, to allow the 7968 /// register allocator to handle the assignment process. However, if the asm 7969 /// uses features that we can't model on machineinstrs, we have SDISel do the 7970 /// allocation. This produces generally horrible, but correct, code. 7971 /// 7972 /// OpInfo describes the operand 7973 /// RefOpInfo describes the matching operand if any, the operand otherwise 7974 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7975 SDISelAsmOperandInfo &OpInfo, 7976 SDISelAsmOperandInfo &RefOpInfo) { 7977 LLVMContext &Context = *DAG.getContext(); 7978 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7979 7980 MachineFunction &MF = DAG.getMachineFunction(); 7981 SmallVector<unsigned, 4> Regs; 7982 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7983 7984 // No work to do for memory operations. 7985 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7986 return; 7987 7988 // If this is a constraint for a single physreg, or a constraint for a 7989 // register class, find it. 7990 unsigned AssignedReg; 7991 const TargetRegisterClass *RC; 7992 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7993 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7994 // RC is unset only on failure. Return immediately. 7995 if (!RC) 7996 return; 7997 7998 // Get the actual register value type. This is important, because the user 7999 // may have asked for (e.g.) the AX register in i32 type. We need to 8000 // remember that AX is actually i16 to get the right extension. 8001 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 8002 8003 if (OpInfo.ConstraintVT != MVT::Other) { 8004 // If this is an FP operand in an integer register (or visa versa), or more 8005 // generally if the operand value disagrees with the register class we plan 8006 // to stick it in, fix the operand type. 8007 // 8008 // If this is an input value, the bitcast to the new type is done now. 8009 // Bitcast for output value is done at the end of visitInlineAsm(). 8010 if ((OpInfo.Type == InlineAsm::isOutput || 8011 OpInfo.Type == InlineAsm::isInput) && 8012 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 8013 // Try to convert to the first EVT that the reg class contains. If the 8014 // types are identical size, use a bitcast to convert (e.g. two differing 8015 // vector types). Note: output bitcast is done at the end of 8016 // visitInlineAsm(). 8017 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 8018 // Exclude indirect inputs while they are unsupported because the code 8019 // to perform the load is missing and thus OpInfo.CallOperand still 8020 // refers to the input address rather than the pointed-to value. 8021 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8022 OpInfo.CallOperand = 8023 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8024 OpInfo.ConstraintVT = RegVT; 8025 // If the operand is an FP value and we want it in integer registers, 8026 // use the corresponding integer type. This turns an f64 value into 8027 // i64, which can be passed with two i32 values on a 32-bit machine. 8028 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8029 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8030 if (OpInfo.Type == InlineAsm::isInput) 8031 OpInfo.CallOperand = 8032 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8033 OpInfo.ConstraintVT = VT; 8034 } 8035 } 8036 } 8037 8038 // No need to allocate a matching input constraint since the constraint it's 8039 // matching to has already been allocated. 8040 if (OpInfo.isMatchingInputConstraint()) 8041 return; 8042 8043 EVT ValueVT = OpInfo.ConstraintVT; 8044 if (OpInfo.ConstraintVT == MVT::Other) 8045 ValueVT = RegVT; 8046 8047 // Initialize NumRegs. 8048 unsigned NumRegs = 1; 8049 if (OpInfo.ConstraintVT != MVT::Other) 8050 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 8051 8052 // If this is a constraint for a specific physical register, like {r17}, 8053 // assign it now. 8054 8055 // If this associated to a specific register, initialize iterator to correct 8056 // place. If virtual, make sure we have enough registers 8057 8058 // Initialize iterator if necessary 8059 TargetRegisterClass::iterator I = RC->begin(); 8060 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8061 8062 // Do not check for single registers. 8063 if (AssignedReg) { 8064 for (; *I != AssignedReg; ++I) 8065 assert(I != RC->end() && "AssignedReg should be member of RC"); 8066 } 8067 8068 for (; NumRegs; --NumRegs, ++I) { 8069 assert(I != RC->end() && "Ran out of registers to allocate!"); 8070 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8071 Regs.push_back(R); 8072 } 8073 8074 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8075 } 8076 8077 static unsigned 8078 findMatchingInlineAsmOperand(unsigned OperandNo, 8079 const std::vector<SDValue> &AsmNodeOperands) { 8080 // Scan until we find the definition we already emitted of this operand. 8081 unsigned CurOp = InlineAsm::Op_FirstOperand; 8082 for (; OperandNo; --OperandNo) { 8083 // Advance to the next operand. 8084 unsigned OpFlag = 8085 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8086 assert((InlineAsm::isRegDefKind(OpFlag) || 8087 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8088 InlineAsm::isMemKind(OpFlag)) && 8089 "Skipped past definitions?"); 8090 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8091 } 8092 return CurOp; 8093 } 8094 8095 namespace { 8096 8097 class ExtraFlags { 8098 unsigned Flags = 0; 8099 8100 public: 8101 explicit ExtraFlags(ImmutableCallSite CS) { 8102 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 8103 if (IA->hasSideEffects()) 8104 Flags |= InlineAsm::Extra_HasSideEffects; 8105 if (IA->isAlignStack()) 8106 Flags |= InlineAsm::Extra_IsAlignStack; 8107 if (CS.isConvergent()) 8108 Flags |= InlineAsm::Extra_IsConvergent; 8109 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8110 } 8111 8112 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8113 // Ideally, we would only check against memory constraints. However, the 8114 // meaning of an Other constraint can be target-specific and we can't easily 8115 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8116 // for Other constraints as well. 8117 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8118 OpInfo.ConstraintType == TargetLowering::C_Other) { 8119 if (OpInfo.Type == InlineAsm::isInput) 8120 Flags |= InlineAsm::Extra_MayLoad; 8121 else if (OpInfo.Type == InlineAsm::isOutput) 8122 Flags |= InlineAsm::Extra_MayStore; 8123 else if (OpInfo.Type == InlineAsm::isClobber) 8124 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8125 } 8126 } 8127 8128 unsigned get() const { return Flags; } 8129 }; 8130 8131 } // end anonymous namespace 8132 8133 /// visitInlineAsm - Handle a call to an InlineAsm object. 8134 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 8135 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 8136 8137 /// ConstraintOperands - Information about all of the constraints. 8138 SDISelAsmOperandInfoVector ConstraintOperands; 8139 8140 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8141 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8142 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 8143 8144 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8145 // AsmDialect, MayLoad, MayStore). 8146 bool HasSideEffect = IA->hasSideEffects(); 8147 ExtraFlags ExtraInfo(CS); 8148 8149 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8150 unsigned ResNo = 0; // ResNo - The result number of the next output. 8151 for (auto &T : TargetConstraints) { 8152 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8153 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8154 8155 // Compute the value type for each operand. 8156 if (OpInfo.Type == InlineAsm::isInput || 8157 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8158 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 8159 8160 // Process the call argument. BasicBlocks are labels, currently appearing 8161 // only in asm's. 8162 const Instruction *I = CS.getInstruction(); 8163 if (isa<CallBrInst>(I) && 8164 (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() - 8165 cast<CallBrInst>(I)->getNumIndirectDests())) { 8166 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8167 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8168 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8169 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8170 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8171 } else { 8172 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8173 } 8174 8175 OpInfo.ConstraintVT = 8176 OpInfo 8177 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 8178 .getSimpleVT(); 8179 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8180 // The return value of the call is this value. As such, there is no 8181 // corresponding argument. 8182 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8183 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 8184 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8185 DAG.getDataLayout(), STy->getElementType(ResNo)); 8186 } else { 8187 assert(ResNo == 0 && "Asm only has one result!"); 8188 OpInfo.ConstraintVT = 8189 TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 8190 } 8191 ++ResNo; 8192 } else { 8193 OpInfo.ConstraintVT = MVT::Other; 8194 } 8195 8196 if (!HasSideEffect) 8197 HasSideEffect = OpInfo.hasMemory(TLI); 8198 8199 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8200 // FIXME: Could we compute this on OpInfo rather than T? 8201 8202 // Compute the constraint code and ConstraintType to use. 8203 TLI.ComputeConstraintToUse(T, SDValue()); 8204 8205 if (T.ConstraintType == TargetLowering::C_Immediate && 8206 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8207 // We've delayed emitting a diagnostic like the "n" constraint because 8208 // inlining could cause an integer showing up. 8209 return emitInlineAsmError( 8210 CS, "constraint '" + Twine(T.ConstraintCode) + "' expects an " 8211 "integer constant expression"); 8212 8213 ExtraInfo.update(T); 8214 } 8215 8216 8217 // We won't need to flush pending loads if this asm doesn't touch 8218 // memory and is nonvolatile. 8219 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8220 8221 bool IsCallBr = isa<CallBrInst>(CS.getInstruction()); 8222 if (IsCallBr) { 8223 // If this is a callbr we need to flush pending exports since inlineasm_br 8224 // is a terminator. We need to do this before nodes are glued to 8225 // the inlineasm_br node. 8226 Chain = getControlRoot(); 8227 } 8228 8229 // Second pass over the constraints: compute which constraint option to use. 8230 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8231 // If this is an output operand with a matching input operand, look up the 8232 // matching input. If their types mismatch, e.g. one is an integer, the 8233 // other is floating point, or their sizes are different, flag it as an 8234 // error. 8235 if (OpInfo.hasMatchingInput()) { 8236 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8237 patchMatchingInput(OpInfo, Input, DAG); 8238 } 8239 8240 // Compute the constraint code and ConstraintType to use. 8241 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8242 8243 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8244 OpInfo.Type == InlineAsm::isClobber) 8245 continue; 8246 8247 // If this is a memory input, and if the operand is not indirect, do what we 8248 // need to provide an address for the memory input. 8249 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8250 !OpInfo.isIndirect) { 8251 assert((OpInfo.isMultipleAlternative || 8252 (OpInfo.Type == InlineAsm::isInput)) && 8253 "Can only indirectify direct input operands!"); 8254 8255 // Memory operands really want the address of the value. 8256 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8257 8258 // There is no longer a Value* corresponding to this operand. 8259 OpInfo.CallOperandVal = nullptr; 8260 8261 // It is now an indirect operand. 8262 OpInfo.isIndirect = true; 8263 } 8264 8265 } 8266 8267 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8268 std::vector<SDValue> AsmNodeOperands; 8269 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8270 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8271 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 8272 8273 // If we have a !srcloc metadata node associated with it, we want to attach 8274 // this to the ultimately generated inline asm machineinstr. To do this, we 8275 // pass in the third operand as this (potentially null) inline asm MDNode. 8276 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 8277 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8278 8279 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8280 // bits as operand 3. 8281 AsmNodeOperands.push_back(DAG.getTargetConstant( 8282 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8283 8284 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8285 // this, assign virtual and physical registers for inputs and otput. 8286 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8287 // Assign Registers. 8288 SDISelAsmOperandInfo &RefOpInfo = 8289 OpInfo.isMatchingInputConstraint() 8290 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8291 : OpInfo; 8292 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8293 8294 switch (OpInfo.Type) { 8295 case InlineAsm::isOutput: 8296 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8297 unsigned ConstraintID = 8298 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8299 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8300 "Failed to convert memory constraint code to constraint id."); 8301 8302 // Add information to the INLINEASM node to know about this output. 8303 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8304 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8305 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8306 MVT::i32)); 8307 AsmNodeOperands.push_back(OpInfo.CallOperand); 8308 } else { 8309 // Otherwise, this outputs to a register (directly for C_Register / 8310 // C_RegisterClass, and a target-defined fashion for 8311 // C_Immediate/C_Other). Find a register that we can use. 8312 if (OpInfo.AssignedRegs.Regs.empty()) { 8313 emitInlineAsmError( 8314 CS, "couldn't allocate output register for constraint '" + 8315 Twine(OpInfo.ConstraintCode) + "'"); 8316 return; 8317 } 8318 8319 // Add information to the INLINEASM node to know that this register is 8320 // set. 8321 OpInfo.AssignedRegs.AddInlineAsmOperands( 8322 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8323 : InlineAsm::Kind_RegDef, 8324 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8325 } 8326 break; 8327 8328 case InlineAsm::isInput: { 8329 SDValue InOperandVal = OpInfo.CallOperand; 8330 8331 if (OpInfo.isMatchingInputConstraint()) { 8332 // If this is required to match an output register we have already set, 8333 // just use its register. 8334 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8335 AsmNodeOperands); 8336 unsigned OpFlag = 8337 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8338 if (InlineAsm::isRegDefKind(OpFlag) || 8339 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8340 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8341 if (OpInfo.isIndirect) { 8342 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8343 emitInlineAsmError(CS, "inline asm not supported yet:" 8344 " don't know how to handle tied " 8345 "indirect register inputs"); 8346 return; 8347 } 8348 8349 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8350 SmallVector<unsigned, 4> Regs; 8351 8352 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8353 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8354 MachineRegisterInfo &RegInfo = 8355 DAG.getMachineFunction().getRegInfo(); 8356 for (unsigned i = 0; i != NumRegs; ++i) 8357 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8358 } else { 8359 emitInlineAsmError(CS, "inline asm error: This value type register " 8360 "class is not natively supported!"); 8361 return; 8362 } 8363 8364 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8365 8366 SDLoc dl = getCurSDLoc(); 8367 // Use the produced MatchedRegs object to 8368 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8369 CS.getInstruction()); 8370 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8371 true, OpInfo.getMatchedOperand(), dl, 8372 DAG, AsmNodeOperands); 8373 break; 8374 } 8375 8376 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8377 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8378 "Unexpected number of operands"); 8379 // Add information to the INLINEASM node to know about this input. 8380 // See InlineAsm.h isUseOperandTiedToDef. 8381 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8382 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8383 OpInfo.getMatchedOperand()); 8384 AsmNodeOperands.push_back(DAG.getTargetConstant( 8385 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8386 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8387 break; 8388 } 8389 8390 // Treat indirect 'X' constraint as memory. 8391 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8392 OpInfo.isIndirect) 8393 OpInfo.ConstraintType = TargetLowering::C_Memory; 8394 8395 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8396 OpInfo.ConstraintType == TargetLowering::C_Other) { 8397 std::vector<SDValue> Ops; 8398 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8399 Ops, DAG); 8400 if (Ops.empty()) { 8401 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8402 if (isa<ConstantSDNode>(InOperandVal)) { 8403 emitInlineAsmError(CS, "value out of range for constraint '" + 8404 Twine(OpInfo.ConstraintCode) + "'"); 8405 return; 8406 } 8407 8408 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 8409 Twine(OpInfo.ConstraintCode) + "'"); 8410 return; 8411 } 8412 8413 // Add information to the INLINEASM node to know about this input. 8414 unsigned ResOpType = 8415 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8416 AsmNodeOperands.push_back(DAG.getTargetConstant( 8417 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8418 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8419 break; 8420 } 8421 8422 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8423 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8424 assert(InOperandVal.getValueType() == 8425 TLI.getPointerTy(DAG.getDataLayout()) && 8426 "Memory operands expect pointer values"); 8427 8428 unsigned ConstraintID = 8429 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8430 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8431 "Failed to convert memory constraint code to constraint id."); 8432 8433 // Add information to the INLINEASM node to know about this input. 8434 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8435 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8436 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8437 getCurSDLoc(), 8438 MVT::i32)); 8439 AsmNodeOperands.push_back(InOperandVal); 8440 break; 8441 } 8442 8443 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8444 OpInfo.ConstraintType == TargetLowering::C_Register) && 8445 "Unknown constraint type!"); 8446 8447 // TODO: Support this. 8448 if (OpInfo.isIndirect) { 8449 emitInlineAsmError( 8450 CS, "Don't know how to handle indirect register inputs yet " 8451 "for constraint '" + 8452 Twine(OpInfo.ConstraintCode) + "'"); 8453 return; 8454 } 8455 8456 // Copy the input into the appropriate registers. 8457 if (OpInfo.AssignedRegs.Regs.empty()) { 8458 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 8459 Twine(OpInfo.ConstraintCode) + "'"); 8460 return; 8461 } 8462 8463 SDLoc dl = getCurSDLoc(); 8464 8465 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 8466 Chain, &Flag, CS.getInstruction()); 8467 8468 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8469 dl, DAG, AsmNodeOperands); 8470 break; 8471 } 8472 case InlineAsm::isClobber: 8473 // Add the clobbered value to the operand list, so that the register 8474 // allocator is aware that the physreg got clobbered. 8475 if (!OpInfo.AssignedRegs.Regs.empty()) 8476 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8477 false, 0, getCurSDLoc(), DAG, 8478 AsmNodeOperands); 8479 break; 8480 } 8481 } 8482 8483 // Finish up input operands. Set the input chain and add the flag last. 8484 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8485 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8486 8487 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8488 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8489 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8490 Flag = Chain.getValue(1); 8491 8492 // Do additional work to generate outputs. 8493 8494 SmallVector<EVT, 1> ResultVTs; 8495 SmallVector<SDValue, 1> ResultValues; 8496 SmallVector<SDValue, 8> OutChains; 8497 8498 llvm::Type *CSResultType = CS.getType(); 8499 ArrayRef<Type *> ResultTypes; 8500 if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) 8501 ResultTypes = StructResult->elements(); 8502 else if (!CSResultType->isVoidTy()) 8503 ResultTypes = makeArrayRef(CSResultType); 8504 8505 auto CurResultType = ResultTypes.begin(); 8506 auto handleRegAssign = [&](SDValue V) { 8507 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8508 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8509 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8510 ++CurResultType; 8511 // If the type of the inline asm call site return value is different but has 8512 // same size as the type of the asm output bitcast it. One example of this 8513 // is for vectors with different width / number of elements. This can 8514 // happen for register classes that can contain multiple different value 8515 // types. The preg or vreg allocated may not have the same VT as was 8516 // expected. 8517 // 8518 // This can also happen for a return value that disagrees with the register 8519 // class it is put in, eg. a double in a general-purpose register on a 8520 // 32-bit machine. 8521 if (ResultVT != V.getValueType() && 8522 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8523 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8524 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8525 V.getValueType().isInteger()) { 8526 // If a result value was tied to an input value, the computed result 8527 // may have a wider width than the expected result. Extract the 8528 // relevant portion. 8529 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8530 } 8531 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8532 ResultVTs.push_back(ResultVT); 8533 ResultValues.push_back(V); 8534 }; 8535 8536 // Deal with output operands. 8537 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8538 if (OpInfo.Type == InlineAsm::isOutput) { 8539 SDValue Val; 8540 // Skip trivial output operands. 8541 if (OpInfo.AssignedRegs.Regs.empty()) 8542 continue; 8543 8544 switch (OpInfo.ConstraintType) { 8545 case TargetLowering::C_Register: 8546 case TargetLowering::C_RegisterClass: 8547 Val = OpInfo.AssignedRegs.getCopyFromRegs( 8548 DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); 8549 break; 8550 case TargetLowering::C_Immediate: 8551 case TargetLowering::C_Other: 8552 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8553 OpInfo, DAG); 8554 break; 8555 case TargetLowering::C_Memory: 8556 break; // Already handled. 8557 case TargetLowering::C_Unknown: 8558 assert(false && "Unexpected unknown constraint"); 8559 } 8560 8561 // Indirect output manifest as stores. Record output chains. 8562 if (OpInfo.isIndirect) { 8563 const Value *Ptr = OpInfo.CallOperandVal; 8564 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8565 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8566 MachinePointerInfo(Ptr)); 8567 OutChains.push_back(Store); 8568 } else { 8569 // generate CopyFromRegs to associated registers. 8570 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8571 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8572 for (const SDValue &V : Val->op_values()) 8573 handleRegAssign(V); 8574 } else 8575 handleRegAssign(Val); 8576 } 8577 } 8578 } 8579 8580 // Set results. 8581 if (!ResultValues.empty()) { 8582 assert(CurResultType == ResultTypes.end() && 8583 "Mismatch in number of ResultTypes"); 8584 assert(ResultValues.size() == ResultTypes.size() && 8585 "Mismatch in number of output operands in asm result"); 8586 8587 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8588 DAG.getVTList(ResultVTs), ResultValues); 8589 setValue(CS.getInstruction(), V); 8590 } 8591 8592 // Collect store chains. 8593 if (!OutChains.empty()) 8594 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8595 8596 // Only Update Root if inline assembly has a memory effect. 8597 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8598 DAG.setRoot(Chain); 8599 } 8600 8601 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 8602 const Twine &Message) { 8603 LLVMContext &Ctx = *DAG.getContext(); 8604 Ctx.emitError(CS.getInstruction(), Message); 8605 8606 // Make sure we leave the DAG in a valid state 8607 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8608 SmallVector<EVT, 1> ValueVTs; 8609 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8610 8611 if (ValueVTs.empty()) 8612 return; 8613 8614 SmallVector<SDValue, 1> Ops; 8615 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8616 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8617 8618 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 8619 } 8620 8621 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8622 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8623 MVT::Other, getRoot(), 8624 getValue(I.getArgOperand(0)), 8625 DAG.getSrcValue(I.getArgOperand(0)))); 8626 } 8627 8628 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8629 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8630 const DataLayout &DL = DAG.getDataLayout(); 8631 SDValue V = DAG.getVAArg( 8632 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8633 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8634 DL.getABITypeAlignment(I.getType())); 8635 DAG.setRoot(V.getValue(1)); 8636 8637 if (I.getType()->isPointerTy()) 8638 V = DAG.getPtrExtOrTrunc( 8639 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8640 setValue(&I, V); 8641 } 8642 8643 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8644 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8645 MVT::Other, getRoot(), 8646 getValue(I.getArgOperand(0)), 8647 DAG.getSrcValue(I.getArgOperand(0)))); 8648 } 8649 8650 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8651 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8652 MVT::Other, getRoot(), 8653 getValue(I.getArgOperand(0)), 8654 getValue(I.getArgOperand(1)), 8655 DAG.getSrcValue(I.getArgOperand(0)), 8656 DAG.getSrcValue(I.getArgOperand(1)))); 8657 } 8658 8659 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8660 const Instruction &I, 8661 SDValue Op) { 8662 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8663 if (!Range) 8664 return Op; 8665 8666 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8667 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8668 return Op; 8669 8670 APInt Lo = CR.getUnsignedMin(); 8671 if (!Lo.isMinValue()) 8672 return Op; 8673 8674 APInt Hi = CR.getUnsignedMax(); 8675 unsigned Bits = std::max(Hi.getActiveBits(), 8676 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8677 8678 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8679 8680 SDLoc SL = getCurSDLoc(); 8681 8682 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8683 DAG.getValueType(SmallVT)); 8684 unsigned NumVals = Op.getNode()->getNumValues(); 8685 if (NumVals == 1) 8686 return ZExt; 8687 8688 SmallVector<SDValue, 4> Ops; 8689 8690 Ops.push_back(ZExt); 8691 for (unsigned I = 1; I != NumVals; ++I) 8692 Ops.push_back(Op.getValue(I)); 8693 8694 return DAG.getMergeValues(Ops, SL); 8695 } 8696 8697 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8698 /// the call being lowered. 8699 /// 8700 /// This is a helper for lowering intrinsics that follow a target calling 8701 /// convention or require stack pointer adjustment. Only a subset of the 8702 /// intrinsic's operands need to participate in the calling convention. 8703 void SelectionDAGBuilder::populateCallLoweringInfo( 8704 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8705 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8706 bool IsPatchPoint) { 8707 TargetLowering::ArgListTy Args; 8708 Args.reserve(NumArgs); 8709 8710 // Populate the argument list. 8711 // Attributes for args start at offset 1, after the return attribute. 8712 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8713 ArgI != ArgE; ++ArgI) { 8714 const Value *V = Call->getOperand(ArgI); 8715 8716 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8717 8718 TargetLowering::ArgListEntry Entry; 8719 Entry.Node = getValue(V); 8720 Entry.Ty = V->getType(); 8721 Entry.setAttributes(Call, ArgI); 8722 Args.push_back(Entry); 8723 } 8724 8725 CLI.setDebugLoc(getCurSDLoc()) 8726 .setChain(getRoot()) 8727 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8728 .setDiscardResult(Call->use_empty()) 8729 .setIsPatchPoint(IsPatchPoint); 8730 } 8731 8732 /// Add a stack map intrinsic call's live variable operands to a stackmap 8733 /// or patchpoint target node's operand list. 8734 /// 8735 /// Constants are converted to TargetConstants purely as an optimization to 8736 /// avoid constant materialization and register allocation. 8737 /// 8738 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8739 /// generate addess computation nodes, and so FinalizeISel can convert the 8740 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8741 /// address materialization and register allocation, but may also be required 8742 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8743 /// alloca in the entry block, then the runtime may assume that the alloca's 8744 /// StackMap location can be read immediately after compilation and that the 8745 /// location is valid at any point during execution (this is similar to the 8746 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8747 /// only available in a register, then the runtime would need to trap when 8748 /// execution reaches the StackMap in order to read the alloca's location. 8749 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8750 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8751 SelectionDAGBuilder &Builder) { 8752 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8753 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8754 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8755 Ops.push_back( 8756 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8757 Ops.push_back( 8758 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8759 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8760 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8761 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8762 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8763 } else 8764 Ops.push_back(OpVal); 8765 } 8766 } 8767 8768 /// Lower llvm.experimental.stackmap directly to its target opcode. 8769 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8770 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8771 // [live variables...]) 8772 8773 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8774 8775 SDValue Chain, InFlag, Callee, NullPtr; 8776 SmallVector<SDValue, 32> Ops; 8777 8778 SDLoc DL = getCurSDLoc(); 8779 Callee = getValue(CI.getCalledValue()); 8780 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8781 8782 // The stackmap intrinsic only records the live variables (the arguments 8783 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8784 // intrinsic, this won't be lowered to a function call. This means we don't 8785 // have to worry about calling conventions and target specific lowering code. 8786 // Instead we perform the call lowering right here. 8787 // 8788 // chain, flag = CALLSEQ_START(chain, 0, 0) 8789 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8790 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8791 // 8792 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8793 InFlag = Chain.getValue(1); 8794 8795 // Add the <id> and <numBytes> constants. 8796 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8797 Ops.push_back(DAG.getTargetConstant( 8798 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8799 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8800 Ops.push_back(DAG.getTargetConstant( 8801 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8802 MVT::i32)); 8803 8804 // Push live variables for the stack map. 8805 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8806 8807 // We are not pushing any register mask info here on the operands list, 8808 // because the stackmap doesn't clobber anything. 8809 8810 // Push the chain and the glue flag. 8811 Ops.push_back(Chain); 8812 Ops.push_back(InFlag); 8813 8814 // Create the STACKMAP node. 8815 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8816 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8817 Chain = SDValue(SM, 0); 8818 InFlag = Chain.getValue(1); 8819 8820 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8821 8822 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8823 8824 // Set the root to the target-lowered call chain. 8825 DAG.setRoot(Chain); 8826 8827 // Inform the Frame Information that we have a stackmap in this function. 8828 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8829 } 8830 8831 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8832 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8833 const BasicBlock *EHPadBB) { 8834 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8835 // i32 <numBytes>, 8836 // i8* <target>, 8837 // i32 <numArgs>, 8838 // [Args...], 8839 // [live variables...]) 8840 8841 CallingConv::ID CC = CS.getCallingConv(); 8842 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8843 bool HasDef = !CS->getType()->isVoidTy(); 8844 SDLoc dl = getCurSDLoc(); 8845 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8846 8847 // Handle immediate and symbolic callees. 8848 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8849 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8850 /*isTarget=*/true); 8851 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8852 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8853 SDLoc(SymbolicCallee), 8854 SymbolicCallee->getValueType(0)); 8855 8856 // Get the real number of arguments participating in the call <numArgs> 8857 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8858 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8859 8860 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8861 // Intrinsics include all meta-operands up to but not including CC. 8862 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8863 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8864 "Not enough arguments provided to the patchpoint intrinsic"); 8865 8866 // For AnyRegCC the arguments are lowered later on manually. 8867 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8868 Type *ReturnTy = 8869 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8870 8871 TargetLowering::CallLoweringInfo CLI(DAG); 8872 populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()), 8873 NumMetaOpers, NumCallArgs, Callee, ReturnTy, true); 8874 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8875 8876 SDNode *CallEnd = Result.second.getNode(); 8877 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8878 CallEnd = CallEnd->getOperand(0).getNode(); 8879 8880 /// Get a call instruction from the call sequence chain. 8881 /// Tail calls are not allowed. 8882 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8883 "Expected a callseq node."); 8884 SDNode *Call = CallEnd->getOperand(0).getNode(); 8885 bool HasGlue = Call->getGluedNode(); 8886 8887 // Replace the target specific call node with the patchable intrinsic. 8888 SmallVector<SDValue, 8> Ops; 8889 8890 // Add the <id> and <numBytes> constants. 8891 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8892 Ops.push_back(DAG.getTargetConstant( 8893 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8894 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8895 Ops.push_back(DAG.getTargetConstant( 8896 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8897 MVT::i32)); 8898 8899 // Add the callee. 8900 Ops.push_back(Callee); 8901 8902 // Adjust <numArgs> to account for any arguments that have been passed on the 8903 // stack instead. 8904 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8905 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8906 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8907 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8908 8909 // Add the calling convention 8910 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8911 8912 // Add the arguments we omitted previously. The register allocator should 8913 // place these in any free register. 8914 if (IsAnyRegCC) 8915 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8916 Ops.push_back(getValue(CS.getArgument(i))); 8917 8918 // Push the arguments from the call instruction up to the register mask. 8919 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8920 Ops.append(Call->op_begin() + 2, e); 8921 8922 // Push live variables for the stack map. 8923 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8924 8925 // Push the register mask info. 8926 if (HasGlue) 8927 Ops.push_back(*(Call->op_end()-2)); 8928 else 8929 Ops.push_back(*(Call->op_end()-1)); 8930 8931 // Push the chain (this is originally the first operand of the call, but 8932 // becomes now the last or second to last operand). 8933 Ops.push_back(*(Call->op_begin())); 8934 8935 // Push the glue flag (last operand). 8936 if (HasGlue) 8937 Ops.push_back(*(Call->op_end()-1)); 8938 8939 SDVTList NodeTys; 8940 if (IsAnyRegCC && HasDef) { 8941 // Create the return types based on the intrinsic definition 8942 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8943 SmallVector<EVT, 3> ValueVTs; 8944 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8945 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8946 8947 // There is always a chain and a glue type at the end 8948 ValueVTs.push_back(MVT::Other); 8949 ValueVTs.push_back(MVT::Glue); 8950 NodeTys = DAG.getVTList(ValueVTs); 8951 } else 8952 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8953 8954 // Replace the target specific call node with a PATCHPOINT node. 8955 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8956 dl, NodeTys, Ops); 8957 8958 // Update the NodeMap. 8959 if (HasDef) { 8960 if (IsAnyRegCC) 8961 setValue(CS.getInstruction(), SDValue(MN, 0)); 8962 else 8963 setValue(CS.getInstruction(), Result.first); 8964 } 8965 8966 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8967 // call sequence. Furthermore the location of the chain and glue can change 8968 // when the AnyReg calling convention is used and the intrinsic returns a 8969 // value. 8970 if (IsAnyRegCC && HasDef) { 8971 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8972 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8973 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8974 } else 8975 DAG.ReplaceAllUsesWith(Call, MN); 8976 DAG.DeleteNode(Call); 8977 8978 // Inform the Frame Information that we have a patchpoint in this function. 8979 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8980 } 8981 8982 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8983 unsigned Intrinsic) { 8984 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8985 SDValue Op1 = getValue(I.getArgOperand(0)); 8986 SDValue Op2; 8987 if (I.getNumArgOperands() > 1) 8988 Op2 = getValue(I.getArgOperand(1)); 8989 SDLoc dl = getCurSDLoc(); 8990 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8991 SDValue Res; 8992 FastMathFlags FMF; 8993 if (isa<FPMathOperator>(I)) 8994 FMF = I.getFastMathFlags(); 8995 8996 switch (Intrinsic) { 8997 case Intrinsic::experimental_vector_reduce_v2_fadd: 8998 if (FMF.allowReassoc()) 8999 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 9000 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2)); 9001 else 9002 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 9003 break; 9004 case Intrinsic::experimental_vector_reduce_v2_fmul: 9005 if (FMF.allowReassoc()) 9006 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 9007 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2)); 9008 else 9009 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 9010 break; 9011 case Intrinsic::experimental_vector_reduce_add: 9012 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 9013 break; 9014 case Intrinsic::experimental_vector_reduce_mul: 9015 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 9016 break; 9017 case Intrinsic::experimental_vector_reduce_and: 9018 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 9019 break; 9020 case Intrinsic::experimental_vector_reduce_or: 9021 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 9022 break; 9023 case Intrinsic::experimental_vector_reduce_xor: 9024 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9025 break; 9026 case Intrinsic::experimental_vector_reduce_smax: 9027 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 9028 break; 9029 case Intrinsic::experimental_vector_reduce_smin: 9030 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 9031 break; 9032 case Intrinsic::experimental_vector_reduce_umax: 9033 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 9034 break; 9035 case Intrinsic::experimental_vector_reduce_umin: 9036 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 9037 break; 9038 case Intrinsic::experimental_vector_reduce_fmax: 9039 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 9040 break; 9041 case Intrinsic::experimental_vector_reduce_fmin: 9042 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 9043 break; 9044 default: 9045 llvm_unreachable("Unhandled vector reduce intrinsic"); 9046 } 9047 setValue(&I, Res); 9048 } 9049 9050 /// Returns an AttributeList representing the attributes applied to the return 9051 /// value of the given call. 9052 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9053 SmallVector<Attribute::AttrKind, 2> Attrs; 9054 if (CLI.RetSExt) 9055 Attrs.push_back(Attribute::SExt); 9056 if (CLI.RetZExt) 9057 Attrs.push_back(Attribute::ZExt); 9058 if (CLI.IsInReg) 9059 Attrs.push_back(Attribute::InReg); 9060 9061 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9062 Attrs); 9063 } 9064 9065 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9066 /// implementation, which just calls LowerCall. 9067 /// FIXME: When all targets are 9068 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9069 std::pair<SDValue, SDValue> 9070 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9071 // Handle the incoming return values from the call. 9072 CLI.Ins.clear(); 9073 Type *OrigRetTy = CLI.RetTy; 9074 SmallVector<EVT, 4> RetTys; 9075 SmallVector<uint64_t, 4> Offsets; 9076 auto &DL = CLI.DAG.getDataLayout(); 9077 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9078 9079 if (CLI.IsPostTypeLegalization) { 9080 // If we are lowering a libcall after legalization, split the return type. 9081 SmallVector<EVT, 4> OldRetTys; 9082 SmallVector<uint64_t, 4> OldOffsets; 9083 RetTys.swap(OldRetTys); 9084 Offsets.swap(OldOffsets); 9085 9086 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9087 EVT RetVT = OldRetTys[i]; 9088 uint64_t Offset = OldOffsets[i]; 9089 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9090 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9091 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9092 RetTys.append(NumRegs, RegisterVT); 9093 for (unsigned j = 0; j != NumRegs; ++j) 9094 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9095 } 9096 } 9097 9098 SmallVector<ISD::OutputArg, 4> Outs; 9099 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9100 9101 bool CanLowerReturn = 9102 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9103 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9104 9105 SDValue DemoteStackSlot; 9106 int DemoteStackIdx = -100; 9107 if (!CanLowerReturn) { 9108 // FIXME: equivalent assert? 9109 // assert(!CS.hasInAllocaArgument() && 9110 // "sret demotion is incompatible with inalloca"); 9111 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9112 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 9113 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9114 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 9115 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9116 DL.getAllocaAddrSpace()); 9117 9118 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9119 ArgListEntry Entry; 9120 Entry.Node = DemoteStackSlot; 9121 Entry.Ty = StackSlotPtrType; 9122 Entry.IsSExt = false; 9123 Entry.IsZExt = false; 9124 Entry.IsInReg = false; 9125 Entry.IsSRet = true; 9126 Entry.IsNest = false; 9127 Entry.IsByVal = false; 9128 Entry.IsReturned = false; 9129 Entry.IsSwiftSelf = false; 9130 Entry.IsSwiftError = false; 9131 Entry.IsCFGuardTarget = false; 9132 Entry.Alignment = Align; 9133 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9134 CLI.NumFixedArgs += 1; 9135 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9136 9137 // sret demotion isn't compatible with tail-calls, since the sret argument 9138 // points into the callers stack frame. 9139 CLI.IsTailCall = false; 9140 } else { 9141 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9142 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 9143 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9144 ISD::ArgFlagsTy Flags; 9145 if (NeedsRegBlock) { 9146 Flags.setInConsecutiveRegs(); 9147 if (I == RetTys.size() - 1) 9148 Flags.setInConsecutiveRegsLast(); 9149 } 9150 EVT VT = RetTys[I]; 9151 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9152 CLI.CallConv, VT); 9153 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9154 CLI.CallConv, VT); 9155 for (unsigned i = 0; i != NumRegs; ++i) { 9156 ISD::InputArg MyFlags; 9157 MyFlags.Flags = Flags; 9158 MyFlags.VT = RegisterVT; 9159 MyFlags.ArgVT = VT; 9160 MyFlags.Used = CLI.IsReturnValueUsed; 9161 if (CLI.RetTy->isPointerTy()) { 9162 MyFlags.Flags.setPointer(); 9163 MyFlags.Flags.setPointerAddrSpace( 9164 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9165 } 9166 if (CLI.RetSExt) 9167 MyFlags.Flags.setSExt(); 9168 if (CLI.RetZExt) 9169 MyFlags.Flags.setZExt(); 9170 if (CLI.IsInReg) 9171 MyFlags.Flags.setInReg(); 9172 CLI.Ins.push_back(MyFlags); 9173 } 9174 } 9175 } 9176 9177 // We push in swifterror return as the last element of CLI.Ins. 9178 ArgListTy &Args = CLI.getArgs(); 9179 if (supportSwiftError()) { 9180 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9181 if (Args[i].IsSwiftError) { 9182 ISD::InputArg MyFlags; 9183 MyFlags.VT = getPointerTy(DL); 9184 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9185 MyFlags.Flags.setSwiftError(); 9186 CLI.Ins.push_back(MyFlags); 9187 } 9188 } 9189 } 9190 9191 // Handle all of the outgoing arguments. 9192 CLI.Outs.clear(); 9193 CLI.OutVals.clear(); 9194 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9195 SmallVector<EVT, 4> ValueVTs; 9196 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9197 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9198 Type *FinalType = Args[i].Ty; 9199 if (Args[i].IsByVal) 9200 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9201 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9202 FinalType, CLI.CallConv, CLI.IsVarArg); 9203 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9204 ++Value) { 9205 EVT VT = ValueVTs[Value]; 9206 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9207 SDValue Op = SDValue(Args[i].Node.getNode(), 9208 Args[i].Node.getResNo() + Value); 9209 ISD::ArgFlagsTy Flags; 9210 9211 // Certain targets (such as MIPS), may have a different ABI alignment 9212 // for a type depending on the context. Give the target a chance to 9213 // specify the alignment it wants. 9214 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9215 9216 if (Args[i].Ty->isPointerTy()) { 9217 Flags.setPointer(); 9218 Flags.setPointerAddrSpace( 9219 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9220 } 9221 if (Args[i].IsZExt) 9222 Flags.setZExt(); 9223 if (Args[i].IsSExt) 9224 Flags.setSExt(); 9225 if (Args[i].IsInReg) { 9226 // If we are using vectorcall calling convention, a structure that is 9227 // passed InReg - is surely an HVA 9228 if (CLI.CallConv == CallingConv::X86_VectorCall && 9229 isa<StructType>(FinalType)) { 9230 // The first value of a structure is marked 9231 if (0 == Value) 9232 Flags.setHvaStart(); 9233 Flags.setHva(); 9234 } 9235 // Set InReg Flag 9236 Flags.setInReg(); 9237 } 9238 if (Args[i].IsSRet) 9239 Flags.setSRet(); 9240 if (Args[i].IsSwiftSelf) 9241 Flags.setSwiftSelf(); 9242 if (Args[i].IsSwiftError) 9243 Flags.setSwiftError(); 9244 if (Args[i].IsCFGuardTarget) 9245 Flags.setCFGuardTarget(); 9246 if (Args[i].IsByVal) 9247 Flags.setByVal(); 9248 if (Args[i].IsInAlloca) { 9249 Flags.setInAlloca(); 9250 // Set the byval flag for CCAssignFn callbacks that don't know about 9251 // inalloca. This way we can know how many bytes we should've allocated 9252 // and how many bytes a callee cleanup function will pop. If we port 9253 // inalloca to more targets, we'll have to add custom inalloca handling 9254 // in the various CC lowering callbacks. 9255 Flags.setByVal(); 9256 } 9257 if (Args[i].IsByVal || Args[i].IsInAlloca) { 9258 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9259 Type *ElementTy = Ty->getElementType(); 9260 9261 unsigned FrameSize = DL.getTypeAllocSize( 9262 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9263 Flags.setByValSize(FrameSize); 9264 9265 // info is not there but there are cases it cannot get right. 9266 unsigned FrameAlign; 9267 if (Args[i].Alignment) 9268 FrameAlign = Args[i].Alignment; 9269 else 9270 FrameAlign = getByValTypeAlignment(ElementTy, DL); 9271 Flags.setByValAlign(Align(FrameAlign)); 9272 } 9273 if (Args[i].IsNest) 9274 Flags.setNest(); 9275 if (NeedsRegBlock) 9276 Flags.setInConsecutiveRegs(); 9277 Flags.setOrigAlign(OriginalAlignment); 9278 9279 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9280 CLI.CallConv, VT); 9281 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9282 CLI.CallConv, VT); 9283 SmallVector<SDValue, 4> Parts(NumParts); 9284 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9285 9286 if (Args[i].IsSExt) 9287 ExtendKind = ISD::SIGN_EXTEND; 9288 else if (Args[i].IsZExt) 9289 ExtendKind = ISD::ZERO_EXTEND; 9290 9291 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9292 // for now. 9293 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9294 CanLowerReturn) { 9295 assert((CLI.RetTy == Args[i].Ty || 9296 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9297 CLI.RetTy->getPointerAddressSpace() == 9298 Args[i].Ty->getPointerAddressSpace())) && 9299 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9300 // Before passing 'returned' to the target lowering code, ensure that 9301 // either the register MVT and the actual EVT are the same size or that 9302 // the return value and argument are extended in the same way; in these 9303 // cases it's safe to pass the argument register value unchanged as the 9304 // return register value (although it's at the target's option whether 9305 // to do so) 9306 // TODO: allow code generation to take advantage of partially preserved 9307 // registers rather than clobbering the entire register when the 9308 // parameter extension method is not compatible with the return 9309 // extension method 9310 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9311 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9312 CLI.RetZExt == Args[i].IsZExt)) 9313 Flags.setReturned(); 9314 } 9315 9316 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 9317 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 9318 9319 for (unsigned j = 0; j != NumParts; ++j) { 9320 // if it isn't first piece, alignment must be 1 9321 // For scalable vectors the scalable part is currently handled 9322 // by individual targets, so we just use the known minimum size here. 9323 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9324 i < CLI.NumFixedArgs, i, 9325 j*Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9326 if (NumParts > 1 && j == 0) 9327 MyFlags.Flags.setSplit(); 9328 else if (j != 0) { 9329 MyFlags.Flags.setOrigAlign(Align(1)); 9330 if (j == NumParts - 1) 9331 MyFlags.Flags.setSplitEnd(); 9332 } 9333 9334 CLI.Outs.push_back(MyFlags); 9335 CLI.OutVals.push_back(Parts[j]); 9336 } 9337 9338 if (NeedsRegBlock && Value == NumValues - 1) 9339 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9340 } 9341 } 9342 9343 SmallVector<SDValue, 4> InVals; 9344 CLI.Chain = LowerCall(CLI, InVals); 9345 9346 // Update CLI.InVals to use outside of this function. 9347 CLI.InVals = InVals; 9348 9349 // Verify that the target's LowerCall behaved as expected. 9350 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9351 "LowerCall didn't return a valid chain!"); 9352 assert((!CLI.IsTailCall || InVals.empty()) && 9353 "LowerCall emitted a return value for a tail call!"); 9354 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9355 "LowerCall didn't emit the correct number of values!"); 9356 9357 // For a tail call, the return value is merely live-out and there aren't 9358 // any nodes in the DAG representing it. Return a special value to 9359 // indicate that a tail call has been emitted and no more Instructions 9360 // should be processed in the current block. 9361 if (CLI.IsTailCall) { 9362 CLI.DAG.setRoot(CLI.Chain); 9363 return std::make_pair(SDValue(), SDValue()); 9364 } 9365 9366 #ifndef NDEBUG 9367 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9368 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9369 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9370 "LowerCall emitted a value with the wrong type!"); 9371 } 9372 #endif 9373 9374 SmallVector<SDValue, 4> ReturnValues; 9375 if (!CanLowerReturn) { 9376 // The instruction result is the result of loading from the 9377 // hidden sret parameter. 9378 SmallVector<EVT, 1> PVTs; 9379 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9380 9381 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9382 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9383 EVT PtrVT = PVTs[0]; 9384 9385 unsigned NumValues = RetTys.size(); 9386 ReturnValues.resize(NumValues); 9387 SmallVector<SDValue, 4> Chains(NumValues); 9388 9389 // An aggregate return value cannot wrap around the address space, so 9390 // offsets to its parts don't wrap either. 9391 SDNodeFlags Flags; 9392 Flags.setNoUnsignedWrap(true); 9393 9394 for (unsigned i = 0; i < NumValues; ++i) { 9395 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9396 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9397 PtrVT), Flags); 9398 SDValue L = CLI.DAG.getLoad( 9399 RetTys[i], CLI.DL, CLI.Chain, Add, 9400 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9401 DemoteStackIdx, Offsets[i]), 9402 /* Alignment = */ 1); 9403 ReturnValues[i] = L; 9404 Chains[i] = L.getValue(1); 9405 } 9406 9407 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9408 } else { 9409 // Collect the legal value parts into potentially illegal values 9410 // that correspond to the original function's return values. 9411 Optional<ISD::NodeType> AssertOp; 9412 if (CLI.RetSExt) 9413 AssertOp = ISD::AssertSext; 9414 else if (CLI.RetZExt) 9415 AssertOp = ISD::AssertZext; 9416 unsigned CurReg = 0; 9417 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9418 EVT VT = RetTys[I]; 9419 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9420 CLI.CallConv, VT); 9421 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9422 CLI.CallConv, VT); 9423 9424 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9425 NumRegs, RegisterVT, VT, nullptr, 9426 CLI.CallConv, AssertOp)); 9427 CurReg += NumRegs; 9428 } 9429 9430 // For a function returning void, there is no return value. We can't create 9431 // such a node, so we just return a null return value in that case. In 9432 // that case, nothing will actually look at the value. 9433 if (ReturnValues.empty()) 9434 return std::make_pair(SDValue(), CLI.Chain); 9435 } 9436 9437 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9438 CLI.DAG.getVTList(RetTys), ReturnValues); 9439 return std::make_pair(Res, CLI.Chain); 9440 } 9441 9442 void TargetLowering::LowerOperationWrapper(SDNode *N, 9443 SmallVectorImpl<SDValue> &Results, 9444 SelectionDAG &DAG) const { 9445 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9446 Results.push_back(Res); 9447 } 9448 9449 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9450 llvm_unreachable("LowerOperation not implemented for this target!"); 9451 } 9452 9453 void 9454 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9455 SDValue Op = getNonRegisterValue(V); 9456 assert((Op.getOpcode() != ISD::CopyFromReg || 9457 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9458 "Copy from a reg to the same reg!"); 9459 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9460 9461 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9462 // If this is an InlineAsm we have to match the registers required, not the 9463 // notional registers required by the type. 9464 9465 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9466 None); // This is not an ABI copy. 9467 SDValue Chain = DAG.getEntryNode(); 9468 9469 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9470 FuncInfo.PreferredExtendType.end()) 9471 ? ISD::ANY_EXTEND 9472 : FuncInfo.PreferredExtendType[V]; 9473 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9474 PendingExports.push_back(Chain); 9475 } 9476 9477 #include "llvm/CodeGen/SelectionDAGISel.h" 9478 9479 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9480 /// entry block, return true. This includes arguments used by switches, since 9481 /// the switch may expand into multiple basic blocks. 9482 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9483 // With FastISel active, we may be splitting blocks, so force creation 9484 // of virtual registers for all non-dead arguments. 9485 if (FastISel) 9486 return A->use_empty(); 9487 9488 const BasicBlock &Entry = A->getParent()->front(); 9489 for (const User *U : A->users()) 9490 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9491 return false; // Use not in entry block. 9492 9493 return true; 9494 } 9495 9496 using ArgCopyElisionMapTy = 9497 DenseMap<const Argument *, 9498 std::pair<const AllocaInst *, const StoreInst *>>; 9499 9500 /// Scan the entry block of the function in FuncInfo for arguments that look 9501 /// like copies into a local alloca. Record any copied arguments in 9502 /// ArgCopyElisionCandidates. 9503 static void 9504 findArgumentCopyElisionCandidates(const DataLayout &DL, 9505 FunctionLoweringInfo *FuncInfo, 9506 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9507 // Record the state of every static alloca used in the entry block. Argument 9508 // allocas are all used in the entry block, so we need approximately as many 9509 // entries as we have arguments. 9510 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9511 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9512 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9513 StaticAllocas.reserve(NumArgs * 2); 9514 9515 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9516 if (!V) 9517 return nullptr; 9518 V = V->stripPointerCasts(); 9519 const auto *AI = dyn_cast<AllocaInst>(V); 9520 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9521 return nullptr; 9522 auto Iter = StaticAllocas.insert({AI, Unknown}); 9523 return &Iter.first->second; 9524 }; 9525 9526 // Look for stores of arguments to static allocas. Look through bitcasts and 9527 // GEPs to handle type coercions, as long as the alloca is fully initialized 9528 // by the store. Any non-store use of an alloca escapes it and any subsequent 9529 // unanalyzed store might write it. 9530 // FIXME: Handle structs initialized with multiple stores. 9531 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9532 // Look for stores, and handle non-store uses conservatively. 9533 const auto *SI = dyn_cast<StoreInst>(&I); 9534 if (!SI) { 9535 // We will look through cast uses, so ignore them completely. 9536 if (I.isCast()) 9537 continue; 9538 // Ignore debug info intrinsics, they don't escape or store to allocas. 9539 if (isa<DbgInfoIntrinsic>(I)) 9540 continue; 9541 // This is an unknown instruction. Assume it escapes or writes to all 9542 // static alloca operands. 9543 for (const Use &U : I.operands()) { 9544 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9545 *Info = StaticAllocaInfo::Clobbered; 9546 } 9547 continue; 9548 } 9549 9550 // If the stored value is a static alloca, mark it as escaped. 9551 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9552 *Info = StaticAllocaInfo::Clobbered; 9553 9554 // Check if the destination is a static alloca. 9555 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9556 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9557 if (!Info) 9558 continue; 9559 const AllocaInst *AI = cast<AllocaInst>(Dst); 9560 9561 // Skip allocas that have been initialized or clobbered. 9562 if (*Info != StaticAllocaInfo::Unknown) 9563 continue; 9564 9565 // Check if the stored value is an argument, and that this store fully 9566 // initializes the alloca. Don't elide copies from the same argument twice. 9567 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9568 const auto *Arg = dyn_cast<Argument>(Val); 9569 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 9570 Arg->getType()->isEmptyTy() || 9571 DL.getTypeStoreSize(Arg->getType()) != 9572 DL.getTypeAllocSize(AI->getAllocatedType()) || 9573 ArgCopyElisionCandidates.count(Arg)) { 9574 *Info = StaticAllocaInfo::Clobbered; 9575 continue; 9576 } 9577 9578 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9579 << '\n'); 9580 9581 // Mark this alloca and store for argument copy elision. 9582 *Info = StaticAllocaInfo::Elidable; 9583 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9584 9585 // Stop scanning if we've seen all arguments. This will happen early in -O0 9586 // builds, which is useful, because -O0 builds have large entry blocks and 9587 // many allocas. 9588 if (ArgCopyElisionCandidates.size() == NumArgs) 9589 break; 9590 } 9591 } 9592 9593 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9594 /// ArgVal is a load from a suitable fixed stack object. 9595 static void tryToElideArgumentCopy( 9596 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 9597 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9598 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9599 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9600 SDValue ArgVal, bool &ArgHasUses) { 9601 // Check if this is a load from a fixed stack object. 9602 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9603 if (!LNode) 9604 return; 9605 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9606 if (!FINode) 9607 return; 9608 9609 // Check that the fixed stack object is the right size and alignment. 9610 // Look at the alignment that the user wrote on the alloca instead of looking 9611 // at the stack object. 9612 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9613 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9614 const AllocaInst *AI = ArgCopyIter->second.first; 9615 int FixedIndex = FINode->getIndex(); 9616 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 9617 int OldIndex = AllocaIndex; 9618 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 9619 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9620 LLVM_DEBUG( 9621 dbgs() << " argument copy elision failed due to bad fixed stack " 9622 "object size\n"); 9623 return; 9624 } 9625 unsigned RequiredAlignment = AI->getAlignment(); 9626 if (!RequiredAlignment) { 9627 RequiredAlignment = FuncInfo.MF->getDataLayout().getABITypeAlignment( 9628 AI->getAllocatedType()); 9629 } 9630 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 9631 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9632 "greater than stack argument alignment (" 9633 << RequiredAlignment << " vs " 9634 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 9635 return; 9636 } 9637 9638 // Perform the elision. Delete the old stack object and replace its only use 9639 // in the variable info map. Mark the stack object as mutable. 9640 LLVM_DEBUG({ 9641 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9642 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9643 << '\n'; 9644 }); 9645 MFI.RemoveStackObject(OldIndex); 9646 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9647 AllocaIndex = FixedIndex; 9648 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9649 Chains.push_back(ArgVal.getValue(1)); 9650 9651 // Avoid emitting code for the store implementing the copy. 9652 const StoreInst *SI = ArgCopyIter->second.second; 9653 ElidedArgCopyInstrs.insert(SI); 9654 9655 // Check for uses of the argument again so that we can avoid exporting ArgVal 9656 // if it is't used by anything other than the store. 9657 for (const Value *U : Arg.users()) { 9658 if (U != SI) { 9659 ArgHasUses = true; 9660 break; 9661 } 9662 } 9663 } 9664 9665 void SelectionDAGISel::LowerArguments(const Function &F) { 9666 SelectionDAG &DAG = SDB->DAG; 9667 SDLoc dl = SDB->getCurSDLoc(); 9668 const DataLayout &DL = DAG.getDataLayout(); 9669 SmallVector<ISD::InputArg, 16> Ins; 9670 9671 if (!FuncInfo->CanLowerReturn) { 9672 // Put in an sret pointer parameter before all the other parameters. 9673 SmallVector<EVT, 1> ValueVTs; 9674 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9675 F.getReturnType()->getPointerTo( 9676 DAG.getDataLayout().getAllocaAddrSpace()), 9677 ValueVTs); 9678 9679 // NOTE: Assuming that a pointer will never break down to more than one VT 9680 // or one register. 9681 ISD::ArgFlagsTy Flags; 9682 Flags.setSRet(); 9683 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9684 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9685 ISD::InputArg::NoArgIndex, 0); 9686 Ins.push_back(RetArg); 9687 } 9688 9689 // Look for stores of arguments to static allocas. Mark such arguments with a 9690 // flag to ask the target to give us the memory location of that argument if 9691 // available. 9692 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9693 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 9694 ArgCopyElisionCandidates); 9695 9696 // Set up the incoming argument description vector. 9697 for (const Argument &Arg : F.args()) { 9698 unsigned ArgNo = Arg.getArgNo(); 9699 SmallVector<EVT, 4> ValueVTs; 9700 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9701 bool isArgValueUsed = !Arg.use_empty(); 9702 unsigned PartBase = 0; 9703 Type *FinalType = Arg.getType(); 9704 if (Arg.hasAttribute(Attribute::ByVal)) 9705 FinalType = Arg.getParamByValType(); 9706 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9707 FinalType, F.getCallingConv(), F.isVarArg()); 9708 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9709 Value != NumValues; ++Value) { 9710 EVT VT = ValueVTs[Value]; 9711 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9712 ISD::ArgFlagsTy Flags; 9713 9714 // Certain targets (such as MIPS), may have a different ABI alignment 9715 // for a type depending on the context. Give the target a chance to 9716 // specify the alignment it wants. 9717 const Align OriginalAlignment( 9718 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 9719 9720 if (Arg.getType()->isPointerTy()) { 9721 Flags.setPointer(); 9722 Flags.setPointerAddrSpace( 9723 cast<PointerType>(Arg.getType())->getAddressSpace()); 9724 } 9725 if (Arg.hasAttribute(Attribute::ZExt)) 9726 Flags.setZExt(); 9727 if (Arg.hasAttribute(Attribute::SExt)) 9728 Flags.setSExt(); 9729 if (Arg.hasAttribute(Attribute::InReg)) { 9730 // If we are using vectorcall calling convention, a structure that is 9731 // passed InReg - is surely an HVA 9732 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9733 isa<StructType>(Arg.getType())) { 9734 // The first value of a structure is marked 9735 if (0 == Value) 9736 Flags.setHvaStart(); 9737 Flags.setHva(); 9738 } 9739 // Set InReg Flag 9740 Flags.setInReg(); 9741 } 9742 if (Arg.hasAttribute(Attribute::StructRet)) 9743 Flags.setSRet(); 9744 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9745 Flags.setSwiftSelf(); 9746 if (Arg.hasAttribute(Attribute::SwiftError)) 9747 Flags.setSwiftError(); 9748 if (Arg.hasAttribute(Attribute::ByVal)) 9749 Flags.setByVal(); 9750 if (Arg.hasAttribute(Attribute::InAlloca)) { 9751 Flags.setInAlloca(); 9752 // Set the byval flag for CCAssignFn callbacks that don't know about 9753 // inalloca. This way we can know how many bytes we should've allocated 9754 // and how many bytes a callee cleanup function will pop. If we port 9755 // inalloca to more targets, we'll have to add custom inalloca handling 9756 // in the various CC lowering callbacks. 9757 Flags.setByVal(); 9758 } 9759 if (F.getCallingConv() == CallingConv::X86_INTR) { 9760 // IA Interrupt passes frame (1st parameter) by value in the stack. 9761 if (ArgNo == 0) 9762 Flags.setByVal(); 9763 } 9764 if (Flags.isByVal() || Flags.isInAlloca()) { 9765 Type *ElementTy = Arg.getParamByValType(); 9766 9767 // For ByVal, size and alignment should be passed from FE. BE will 9768 // guess if this info is not there but there are cases it cannot get 9769 // right. 9770 unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType()); 9771 Flags.setByValSize(FrameSize); 9772 9773 unsigned FrameAlign; 9774 if (Arg.getParamAlignment()) 9775 FrameAlign = Arg.getParamAlignment(); 9776 else 9777 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9778 Flags.setByValAlign(Align(FrameAlign)); 9779 } 9780 if (Arg.hasAttribute(Attribute::Nest)) 9781 Flags.setNest(); 9782 if (NeedsRegBlock) 9783 Flags.setInConsecutiveRegs(); 9784 Flags.setOrigAlign(OriginalAlignment); 9785 if (ArgCopyElisionCandidates.count(&Arg)) 9786 Flags.setCopyElisionCandidate(); 9787 if (Arg.hasAttribute(Attribute::Returned)) 9788 Flags.setReturned(); 9789 9790 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9791 *CurDAG->getContext(), F.getCallingConv(), VT); 9792 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9793 *CurDAG->getContext(), F.getCallingConv(), VT); 9794 for (unsigned i = 0; i != NumRegs; ++i) { 9795 // For scalable vectors, use the minimum size; individual targets 9796 // are responsible for handling scalable vector arguments and 9797 // return values. 9798 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9799 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 9800 if (NumRegs > 1 && i == 0) 9801 MyFlags.Flags.setSplit(); 9802 // if it isn't first piece, alignment must be 1 9803 else if (i > 0) { 9804 MyFlags.Flags.setOrigAlign(Align(1)); 9805 if (i == NumRegs - 1) 9806 MyFlags.Flags.setSplitEnd(); 9807 } 9808 Ins.push_back(MyFlags); 9809 } 9810 if (NeedsRegBlock && Value == NumValues - 1) 9811 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9812 PartBase += VT.getStoreSize().getKnownMinSize(); 9813 } 9814 } 9815 9816 // Call the target to set up the argument values. 9817 SmallVector<SDValue, 8> InVals; 9818 SDValue NewRoot = TLI->LowerFormalArguments( 9819 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9820 9821 // Verify that the target's LowerFormalArguments behaved as expected. 9822 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9823 "LowerFormalArguments didn't return a valid chain!"); 9824 assert(InVals.size() == Ins.size() && 9825 "LowerFormalArguments didn't emit the correct number of values!"); 9826 LLVM_DEBUG({ 9827 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9828 assert(InVals[i].getNode() && 9829 "LowerFormalArguments emitted a null value!"); 9830 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9831 "LowerFormalArguments emitted a value with the wrong type!"); 9832 } 9833 }); 9834 9835 // Update the DAG with the new chain value resulting from argument lowering. 9836 DAG.setRoot(NewRoot); 9837 9838 // Set up the argument values. 9839 unsigned i = 0; 9840 if (!FuncInfo->CanLowerReturn) { 9841 // Create a virtual register for the sret pointer, and put in a copy 9842 // from the sret argument into it. 9843 SmallVector<EVT, 1> ValueVTs; 9844 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9845 F.getReturnType()->getPointerTo( 9846 DAG.getDataLayout().getAllocaAddrSpace()), 9847 ValueVTs); 9848 MVT VT = ValueVTs[0].getSimpleVT(); 9849 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9850 Optional<ISD::NodeType> AssertOp = None; 9851 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9852 nullptr, F.getCallingConv(), AssertOp); 9853 9854 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9855 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9856 Register SRetReg = 9857 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9858 FuncInfo->DemoteRegister = SRetReg; 9859 NewRoot = 9860 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9861 DAG.setRoot(NewRoot); 9862 9863 // i indexes lowered arguments. Bump it past the hidden sret argument. 9864 ++i; 9865 } 9866 9867 SmallVector<SDValue, 4> Chains; 9868 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9869 for (const Argument &Arg : F.args()) { 9870 SmallVector<SDValue, 4> ArgValues; 9871 SmallVector<EVT, 4> ValueVTs; 9872 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9873 unsigned NumValues = ValueVTs.size(); 9874 if (NumValues == 0) 9875 continue; 9876 9877 bool ArgHasUses = !Arg.use_empty(); 9878 9879 // Elide the copying store if the target loaded this argument from a 9880 // suitable fixed stack object. 9881 if (Ins[i].Flags.isCopyElisionCandidate()) { 9882 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9883 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9884 InVals[i], ArgHasUses); 9885 } 9886 9887 // If this argument is unused then remember its value. It is used to generate 9888 // debugging information. 9889 bool isSwiftErrorArg = 9890 TLI->supportSwiftError() && 9891 Arg.hasAttribute(Attribute::SwiftError); 9892 if (!ArgHasUses && !isSwiftErrorArg) { 9893 SDB->setUnusedArgValue(&Arg, InVals[i]); 9894 9895 // Also remember any frame index for use in FastISel. 9896 if (FrameIndexSDNode *FI = 9897 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9898 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9899 } 9900 9901 for (unsigned Val = 0; Val != NumValues; ++Val) { 9902 EVT VT = ValueVTs[Val]; 9903 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9904 F.getCallingConv(), VT); 9905 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9906 *CurDAG->getContext(), F.getCallingConv(), VT); 9907 9908 // Even an apparent 'unused' swifterror argument needs to be returned. So 9909 // we do generate a copy for it that can be used on return from the 9910 // function. 9911 if (ArgHasUses || isSwiftErrorArg) { 9912 Optional<ISD::NodeType> AssertOp; 9913 if (Arg.hasAttribute(Attribute::SExt)) 9914 AssertOp = ISD::AssertSext; 9915 else if (Arg.hasAttribute(Attribute::ZExt)) 9916 AssertOp = ISD::AssertZext; 9917 9918 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9919 PartVT, VT, nullptr, 9920 F.getCallingConv(), AssertOp)); 9921 } 9922 9923 i += NumParts; 9924 } 9925 9926 // We don't need to do anything else for unused arguments. 9927 if (ArgValues.empty()) 9928 continue; 9929 9930 // Note down frame index. 9931 if (FrameIndexSDNode *FI = 9932 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9933 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9934 9935 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9936 SDB->getCurSDLoc()); 9937 9938 SDB->setValue(&Arg, Res); 9939 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9940 // We want to associate the argument with the frame index, among 9941 // involved operands, that correspond to the lowest address. The 9942 // getCopyFromParts function, called earlier, is swapping the order of 9943 // the operands to BUILD_PAIR depending on endianness. The result of 9944 // that swapping is that the least significant bits of the argument will 9945 // be in the first operand of the BUILD_PAIR node, and the most 9946 // significant bits will be in the second operand. 9947 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9948 if (LoadSDNode *LNode = 9949 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9950 if (FrameIndexSDNode *FI = 9951 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9952 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9953 } 9954 9955 // Analyses past this point are naive and don't expect an assertion. 9956 if (Res.getOpcode() == ISD::AssertZext) 9957 Res = Res.getOperand(0); 9958 9959 // Update the SwiftErrorVRegDefMap. 9960 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9961 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9962 if (Register::isVirtualRegister(Reg)) 9963 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 9964 Reg); 9965 } 9966 9967 // If this argument is live outside of the entry block, insert a copy from 9968 // wherever we got it to the vreg that other BB's will reference it as. 9969 if (Res.getOpcode() == ISD::CopyFromReg) { 9970 // If we can, though, try to skip creating an unnecessary vreg. 9971 // FIXME: This isn't very clean... it would be nice to make this more 9972 // general. 9973 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9974 if (Register::isVirtualRegister(Reg)) { 9975 FuncInfo->ValueMap[&Arg] = Reg; 9976 continue; 9977 } 9978 } 9979 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9980 FuncInfo->InitializeRegForValue(&Arg); 9981 SDB->CopyToExportRegsIfNeeded(&Arg); 9982 } 9983 } 9984 9985 if (!Chains.empty()) { 9986 Chains.push_back(NewRoot); 9987 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9988 } 9989 9990 DAG.setRoot(NewRoot); 9991 9992 assert(i == InVals.size() && "Argument register count mismatch!"); 9993 9994 // If any argument copy elisions occurred and we have debug info, update the 9995 // stale frame indices used in the dbg.declare variable info table. 9996 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9997 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9998 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9999 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 10000 if (I != ArgCopyElisionFrameIndexMap.end()) 10001 VI.Slot = I->second; 10002 } 10003 } 10004 10005 // Finally, if the target has anything special to do, allow it to do so. 10006 EmitFunctionEntryCode(); 10007 } 10008 10009 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 10010 /// ensure constants are generated when needed. Remember the virtual registers 10011 /// that need to be added to the Machine PHI nodes as input. We cannot just 10012 /// directly add them, because expansion might result in multiple MBB's for one 10013 /// BB. As such, the start of the BB might correspond to a different MBB than 10014 /// the end. 10015 void 10016 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10017 const Instruction *TI = LLVMBB->getTerminator(); 10018 10019 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10020 10021 // Check PHI nodes in successors that expect a value to be available from this 10022 // block. 10023 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 10024 const BasicBlock *SuccBB = TI->getSuccessor(succ); 10025 if (!isa<PHINode>(SuccBB->begin())) continue; 10026 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10027 10028 // If this terminator has multiple identical successors (common for 10029 // switches), only handle each succ once. 10030 if (!SuccsHandled.insert(SuccMBB).second) 10031 continue; 10032 10033 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10034 10035 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10036 // nodes and Machine PHI nodes, but the incoming operands have not been 10037 // emitted yet. 10038 for (const PHINode &PN : SuccBB->phis()) { 10039 // Ignore dead phi's. 10040 if (PN.use_empty()) 10041 continue; 10042 10043 // Skip empty types 10044 if (PN.getType()->isEmptyTy()) 10045 continue; 10046 10047 unsigned Reg; 10048 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10049 10050 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 10051 unsigned &RegOut = ConstantsOut[C]; 10052 if (RegOut == 0) { 10053 RegOut = FuncInfo.CreateRegs(C); 10054 CopyValueToVirtualRegister(C, RegOut); 10055 } 10056 Reg = RegOut; 10057 } else { 10058 DenseMap<const Value *, unsigned>::iterator I = 10059 FuncInfo.ValueMap.find(PHIOp); 10060 if (I != FuncInfo.ValueMap.end()) 10061 Reg = I->second; 10062 else { 10063 assert(isa<AllocaInst>(PHIOp) && 10064 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10065 "Didn't codegen value into a register!??"); 10066 Reg = FuncInfo.CreateRegs(PHIOp); 10067 CopyValueToVirtualRegister(PHIOp, Reg); 10068 } 10069 } 10070 10071 // Remember that this register needs to added to the machine PHI node as 10072 // the input for this MBB. 10073 SmallVector<EVT, 4> ValueVTs; 10074 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10075 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10076 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10077 EVT VT = ValueVTs[vti]; 10078 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10079 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10080 FuncInfo.PHINodesToUpdate.push_back( 10081 std::make_pair(&*MBBI++, Reg + i)); 10082 Reg += NumRegisters; 10083 } 10084 } 10085 } 10086 10087 ConstantsOut.clear(); 10088 } 10089 10090 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 10091 /// is 0. 10092 MachineBasicBlock * 10093 SelectionDAGBuilder::StackProtectorDescriptor:: 10094 AddSuccessorMBB(const BasicBlock *BB, 10095 MachineBasicBlock *ParentMBB, 10096 bool IsLikely, 10097 MachineBasicBlock *SuccMBB) { 10098 // If SuccBB has not been created yet, create it. 10099 if (!SuccMBB) { 10100 MachineFunction *MF = ParentMBB->getParent(); 10101 MachineFunction::iterator BBI(ParentMBB); 10102 SuccMBB = MF->CreateMachineBasicBlock(BB); 10103 MF->insert(++BBI, SuccMBB); 10104 } 10105 // Add it as a successor of ParentMBB. 10106 ParentMBB->addSuccessor( 10107 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 10108 return SuccMBB; 10109 } 10110 10111 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10112 MachineFunction::iterator I(MBB); 10113 if (++I == FuncInfo.MF->end()) 10114 return nullptr; 10115 return &*I; 10116 } 10117 10118 /// During lowering new call nodes can be created (such as memset, etc.). 10119 /// Those will become new roots of the current DAG, but complications arise 10120 /// when they are tail calls. In such cases, the call lowering will update 10121 /// the root, but the builder still needs to know that a tail call has been 10122 /// lowered in order to avoid generating an additional return. 10123 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10124 // If the node is null, we do have a tail call. 10125 if (MaybeTC.getNode() != nullptr) 10126 DAG.setRoot(MaybeTC); 10127 else 10128 HasTailCall = true; 10129 } 10130 10131 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10132 MachineBasicBlock *SwitchMBB, 10133 MachineBasicBlock *DefaultMBB) { 10134 MachineFunction *CurMF = FuncInfo.MF; 10135 MachineBasicBlock *NextMBB = nullptr; 10136 MachineFunction::iterator BBI(W.MBB); 10137 if (++BBI != FuncInfo.MF->end()) 10138 NextMBB = &*BBI; 10139 10140 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10141 10142 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10143 10144 if (Size == 2 && W.MBB == SwitchMBB) { 10145 // If any two of the cases has the same destination, and if one value 10146 // is the same as the other, but has one bit unset that the other has set, 10147 // use bit manipulation to do two compares at once. For example: 10148 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10149 // TODO: This could be extended to merge any 2 cases in switches with 3 10150 // cases. 10151 // TODO: Handle cases where W.CaseBB != SwitchBB. 10152 CaseCluster &Small = *W.FirstCluster; 10153 CaseCluster &Big = *W.LastCluster; 10154 10155 if (Small.Low == Small.High && Big.Low == Big.High && 10156 Small.MBB == Big.MBB) { 10157 const APInt &SmallValue = Small.Low->getValue(); 10158 const APInt &BigValue = Big.Low->getValue(); 10159 10160 // Check that there is only one bit different. 10161 APInt CommonBit = BigValue ^ SmallValue; 10162 if (CommonBit.isPowerOf2()) { 10163 SDValue CondLHS = getValue(Cond); 10164 EVT VT = CondLHS.getValueType(); 10165 SDLoc DL = getCurSDLoc(); 10166 10167 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10168 DAG.getConstant(CommonBit, DL, VT)); 10169 SDValue Cond = DAG.getSetCC( 10170 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10171 ISD::SETEQ); 10172 10173 // Update successor info. 10174 // Both Small and Big will jump to Small.BB, so we sum up the 10175 // probabilities. 10176 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10177 if (BPI) 10178 addSuccessorWithProb( 10179 SwitchMBB, DefaultMBB, 10180 // The default destination is the first successor in IR. 10181 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10182 else 10183 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10184 10185 // Insert the true branch. 10186 SDValue BrCond = 10187 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10188 DAG.getBasicBlock(Small.MBB)); 10189 // Insert the false branch. 10190 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10191 DAG.getBasicBlock(DefaultMBB)); 10192 10193 DAG.setRoot(BrCond); 10194 return; 10195 } 10196 } 10197 } 10198 10199 if (TM.getOptLevel() != CodeGenOpt::None) { 10200 // Here, we order cases by probability so the most likely case will be 10201 // checked first. However, two clusters can have the same probability in 10202 // which case their relative ordering is non-deterministic. So we use Low 10203 // as a tie-breaker as clusters are guaranteed to never overlap. 10204 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10205 [](const CaseCluster &a, const CaseCluster &b) { 10206 return a.Prob != b.Prob ? 10207 a.Prob > b.Prob : 10208 a.Low->getValue().slt(b.Low->getValue()); 10209 }); 10210 10211 // Rearrange the case blocks so that the last one falls through if possible 10212 // without changing the order of probabilities. 10213 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10214 --I; 10215 if (I->Prob > W.LastCluster->Prob) 10216 break; 10217 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10218 std::swap(*I, *W.LastCluster); 10219 break; 10220 } 10221 } 10222 } 10223 10224 // Compute total probability. 10225 BranchProbability DefaultProb = W.DefaultProb; 10226 BranchProbability UnhandledProbs = DefaultProb; 10227 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10228 UnhandledProbs += I->Prob; 10229 10230 MachineBasicBlock *CurMBB = W.MBB; 10231 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10232 bool FallthroughUnreachable = false; 10233 MachineBasicBlock *Fallthrough; 10234 if (I == W.LastCluster) { 10235 // For the last cluster, fall through to the default destination. 10236 Fallthrough = DefaultMBB; 10237 FallthroughUnreachable = isa<UnreachableInst>( 10238 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10239 } else { 10240 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10241 CurMF->insert(BBI, Fallthrough); 10242 // Put Cond in a virtual register to make it available from the new blocks. 10243 ExportFromCurrentBlock(Cond); 10244 } 10245 UnhandledProbs -= I->Prob; 10246 10247 switch (I->Kind) { 10248 case CC_JumpTable: { 10249 // FIXME: Optimize away range check based on pivot comparisons. 10250 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10251 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10252 10253 // The jump block hasn't been inserted yet; insert it here. 10254 MachineBasicBlock *JumpMBB = JT->MBB; 10255 CurMF->insert(BBI, JumpMBB); 10256 10257 auto JumpProb = I->Prob; 10258 auto FallthroughProb = UnhandledProbs; 10259 10260 // If the default statement is a target of the jump table, we evenly 10261 // distribute the default probability to successors of CurMBB. Also 10262 // update the probability on the edge from JumpMBB to Fallthrough. 10263 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10264 SE = JumpMBB->succ_end(); 10265 SI != SE; ++SI) { 10266 if (*SI == DefaultMBB) { 10267 JumpProb += DefaultProb / 2; 10268 FallthroughProb -= DefaultProb / 2; 10269 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10270 JumpMBB->normalizeSuccProbs(); 10271 break; 10272 } 10273 } 10274 10275 if (FallthroughUnreachable) { 10276 // Skip the range check if the fallthrough block is unreachable. 10277 JTH->OmitRangeCheck = true; 10278 } 10279 10280 if (!JTH->OmitRangeCheck) 10281 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10282 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10283 CurMBB->normalizeSuccProbs(); 10284 10285 // The jump table header will be inserted in our current block, do the 10286 // range check, and fall through to our fallthrough block. 10287 JTH->HeaderBB = CurMBB; 10288 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10289 10290 // If we're in the right place, emit the jump table header right now. 10291 if (CurMBB == SwitchMBB) { 10292 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10293 JTH->Emitted = true; 10294 } 10295 break; 10296 } 10297 case CC_BitTests: { 10298 // FIXME: Optimize away range check based on pivot comparisons. 10299 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10300 10301 // The bit test blocks haven't been inserted yet; insert them here. 10302 for (BitTestCase &BTC : BTB->Cases) 10303 CurMF->insert(BBI, BTC.ThisBB); 10304 10305 // Fill in fields of the BitTestBlock. 10306 BTB->Parent = CurMBB; 10307 BTB->Default = Fallthrough; 10308 10309 BTB->DefaultProb = UnhandledProbs; 10310 // If the cases in bit test don't form a contiguous range, we evenly 10311 // distribute the probability on the edge to Fallthrough to two 10312 // successors of CurMBB. 10313 if (!BTB->ContiguousRange) { 10314 BTB->Prob += DefaultProb / 2; 10315 BTB->DefaultProb -= DefaultProb / 2; 10316 } 10317 10318 if (FallthroughUnreachable) { 10319 // Skip the range check if the fallthrough block is unreachable. 10320 BTB->OmitRangeCheck = true; 10321 } 10322 10323 // If we're in the right place, emit the bit test header right now. 10324 if (CurMBB == SwitchMBB) { 10325 visitBitTestHeader(*BTB, SwitchMBB); 10326 BTB->Emitted = true; 10327 } 10328 break; 10329 } 10330 case CC_Range: { 10331 const Value *RHS, *LHS, *MHS; 10332 ISD::CondCode CC; 10333 if (I->Low == I->High) { 10334 // Check Cond == I->Low. 10335 CC = ISD::SETEQ; 10336 LHS = Cond; 10337 RHS=I->Low; 10338 MHS = nullptr; 10339 } else { 10340 // Check I->Low <= Cond <= I->High. 10341 CC = ISD::SETLE; 10342 LHS = I->Low; 10343 MHS = Cond; 10344 RHS = I->High; 10345 } 10346 10347 // If Fallthrough is unreachable, fold away the comparison. 10348 if (FallthroughUnreachable) 10349 CC = ISD::SETTRUE; 10350 10351 // The false probability is the sum of all unhandled cases. 10352 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10353 getCurSDLoc(), I->Prob, UnhandledProbs); 10354 10355 if (CurMBB == SwitchMBB) 10356 visitSwitchCase(CB, SwitchMBB); 10357 else 10358 SL->SwitchCases.push_back(CB); 10359 10360 break; 10361 } 10362 } 10363 CurMBB = Fallthrough; 10364 } 10365 } 10366 10367 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10368 CaseClusterIt First, 10369 CaseClusterIt Last) { 10370 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10371 if (X.Prob != CC.Prob) 10372 return X.Prob > CC.Prob; 10373 10374 // Ties are broken by comparing the case value. 10375 return X.Low->getValue().slt(CC.Low->getValue()); 10376 }); 10377 } 10378 10379 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10380 const SwitchWorkListItem &W, 10381 Value *Cond, 10382 MachineBasicBlock *SwitchMBB) { 10383 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10384 "Clusters not sorted?"); 10385 10386 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10387 10388 // Balance the tree based on branch probabilities to create a near-optimal (in 10389 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10390 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10391 CaseClusterIt LastLeft = W.FirstCluster; 10392 CaseClusterIt FirstRight = W.LastCluster; 10393 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10394 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10395 10396 // Move LastLeft and FirstRight towards each other from opposite directions to 10397 // find a partitioning of the clusters which balances the probability on both 10398 // sides. If LeftProb and RightProb are equal, alternate which side is 10399 // taken to ensure 0-probability nodes are distributed evenly. 10400 unsigned I = 0; 10401 while (LastLeft + 1 < FirstRight) { 10402 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10403 LeftProb += (++LastLeft)->Prob; 10404 else 10405 RightProb += (--FirstRight)->Prob; 10406 I++; 10407 } 10408 10409 while (true) { 10410 // Our binary search tree differs from a typical BST in that ours can have up 10411 // to three values in each leaf. The pivot selection above doesn't take that 10412 // into account, which means the tree might require more nodes and be less 10413 // efficient. We compensate for this here. 10414 10415 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10416 unsigned NumRight = W.LastCluster - FirstRight + 1; 10417 10418 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10419 // If one side has less than 3 clusters, and the other has more than 3, 10420 // consider taking a cluster from the other side. 10421 10422 if (NumLeft < NumRight) { 10423 // Consider moving the first cluster on the right to the left side. 10424 CaseCluster &CC = *FirstRight; 10425 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10426 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10427 if (LeftSideRank <= RightSideRank) { 10428 // Moving the cluster to the left does not demote it. 10429 ++LastLeft; 10430 ++FirstRight; 10431 continue; 10432 } 10433 } else { 10434 assert(NumRight < NumLeft); 10435 // Consider moving the last element on the left to the right side. 10436 CaseCluster &CC = *LastLeft; 10437 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10438 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10439 if (RightSideRank <= LeftSideRank) { 10440 // Moving the cluster to the right does not demot it. 10441 --LastLeft; 10442 --FirstRight; 10443 continue; 10444 } 10445 } 10446 } 10447 break; 10448 } 10449 10450 assert(LastLeft + 1 == FirstRight); 10451 assert(LastLeft >= W.FirstCluster); 10452 assert(FirstRight <= W.LastCluster); 10453 10454 // Use the first element on the right as pivot since we will make less-than 10455 // comparisons against it. 10456 CaseClusterIt PivotCluster = FirstRight; 10457 assert(PivotCluster > W.FirstCluster); 10458 assert(PivotCluster <= W.LastCluster); 10459 10460 CaseClusterIt FirstLeft = W.FirstCluster; 10461 CaseClusterIt LastRight = W.LastCluster; 10462 10463 const ConstantInt *Pivot = PivotCluster->Low; 10464 10465 // New blocks will be inserted immediately after the current one. 10466 MachineFunction::iterator BBI(W.MBB); 10467 ++BBI; 10468 10469 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10470 // we can branch to its destination directly if it's squeezed exactly in 10471 // between the known lower bound and Pivot - 1. 10472 MachineBasicBlock *LeftMBB; 10473 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10474 FirstLeft->Low == W.GE && 10475 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10476 LeftMBB = FirstLeft->MBB; 10477 } else { 10478 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10479 FuncInfo.MF->insert(BBI, LeftMBB); 10480 WorkList.push_back( 10481 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10482 // Put Cond in a virtual register to make it available from the new blocks. 10483 ExportFromCurrentBlock(Cond); 10484 } 10485 10486 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10487 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10488 // directly if RHS.High equals the current upper bound. 10489 MachineBasicBlock *RightMBB; 10490 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10491 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10492 RightMBB = FirstRight->MBB; 10493 } else { 10494 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10495 FuncInfo.MF->insert(BBI, RightMBB); 10496 WorkList.push_back( 10497 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10498 // Put Cond in a virtual register to make it available from the new blocks. 10499 ExportFromCurrentBlock(Cond); 10500 } 10501 10502 // Create the CaseBlock record that will be used to lower the branch. 10503 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10504 getCurSDLoc(), LeftProb, RightProb); 10505 10506 if (W.MBB == SwitchMBB) 10507 visitSwitchCase(CB, SwitchMBB); 10508 else 10509 SL->SwitchCases.push_back(CB); 10510 } 10511 10512 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10513 // from the swith statement. 10514 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10515 BranchProbability PeeledCaseProb) { 10516 if (PeeledCaseProb == BranchProbability::getOne()) 10517 return BranchProbability::getZero(); 10518 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10519 10520 uint32_t Numerator = CaseProb.getNumerator(); 10521 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10522 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10523 } 10524 10525 // Try to peel the top probability case if it exceeds the threshold. 10526 // Return current MachineBasicBlock for the switch statement if the peeling 10527 // does not occur. 10528 // If the peeling is performed, return the newly created MachineBasicBlock 10529 // for the peeled switch statement. Also update Clusters to remove the peeled 10530 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10531 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10532 const SwitchInst &SI, CaseClusterVector &Clusters, 10533 BranchProbability &PeeledCaseProb) { 10534 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10535 // Don't perform if there is only one cluster or optimizing for size. 10536 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10537 TM.getOptLevel() == CodeGenOpt::None || 10538 SwitchMBB->getParent()->getFunction().hasMinSize()) 10539 return SwitchMBB; 10540 10541 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10542 unsigned PeeledCaseIndex = 0; 10543 bool SwitchPeeled = false; 10544 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10545 CaseCluster &CC = Clusters[Index]; 10546 if (CC.Prob < TopCaseProb) 10547 continue; 10548 TopCaseProb = CC.Prob; 10549 PeeledCaseIndex = Index; 10550 SwitchPeeled = true; 10551 } 10552 if (!SwitchPeeled) 10553 return SwitchMBB; 10554 10555 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10556 << TopCaseProb << "\n"); 10557 10558 // Record the MBB for the peeled switch statement. 10559 MachineFunction::iterator BBI(SwitchMBB); 10560 ++BBI; 10561 MachineBasicBlock *PeeledSwitchMBB = 10562 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10563 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10564 10565 ExportFromCurrentBlock(SI.getCondition()); 10566 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10567 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10568 nullptr, nullptr, TopCaseProb.getCompl()}; 10569 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10570 10571 Clusters.erase(PeeledCaseIt); 10572 for (CaseCluster &CC : Clusters) { 10573 LLVM_DEBUG( 10574 dbgs() << "Scale the probablity for one cluster, before scaling: " 10575 << CC.Prob << "\n"); 10576 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10577 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10578 } 10579 PeeledCaseProb = TopCaseProb; 10580 return PeeledSwitchMBB; 10581 } 10582 10583 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10584 // Extract cases from the switch. 10585 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10586 CaseClusterVector Clusters; 10587 Clusters.reserve(SI.getNumCases()); 10588 for (auto I : SI.cases()) { 10589 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10590 const ConstantInt *CaseVal = I.getCaseValue(); 10591 BranchProbability Prob = 10592 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10593 : BranchProbability(1, SI.getNumCases() + 1); 10594 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10595 } 10596 10597 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10598 10599 // Cluster adjacent cases with the same destination. We do this at all 10600 // optimization levels because it's cheap to do and will make codegen faster 10601 // if there are many clusters. 10602 sortAndRangeify(Clusters); 10603 10604 // The branch probablity of the peeled case. 10605 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10606 MachineBasicBlock *PeeledSwitchMBB = 10607 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10608 10609 // If there is only the default destination, jump there directly. 10610 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10611 if (Clusters.empty()) { 10612 assert(PeeledSwitchMBB == SwitchMBB); 10613 SwitchMBB->addSuccessor(DefaultMBB); 10614 if (DefaultMBB != NextBlock(SwitchMBB)) { 10615 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10616 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10617 } 10618 return; 10619 } 10620 10621 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 10622 SL->findBitTestClusters(Clusters, &SI); 10623 10624 LLVM_DEBUG({ 10625 dbgs() << "Case clusters: "; 10626 for (const CaseCluster &C : Clusters) { 10627 if (C.Kind == CC_JumpTable) 10628 dbgs() << "JT:"; 10629 if (C.Kind == CC_BitTests) 10630 dbgs() << "BT:"; 10631 10632 C.Low->getValue().print(dbgs(), true); 10633 if (C.Low != C.High) { 10634 dbgs() << '-'; 10635 C.High->getValue().print(dbgs(), true); 10636 } 10637 dbgs() << ' '; 10638 } 10639 dbgs() << '\n'; 10640 }); 10641 10642 assert(!Clusters.empty()); 10643 SwitchWorkList WorkList; 10644 CaseClusterIt First = Clusters.begin(); 10645 CaseClusterIt Last = Clusters.end() - 1; 10646 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10647 // Scale the branchprobability for DefaultMBB if the peel occurs and 10648 // DefaultMBB is not replaced. 10649 if (PeeledCaseProb != BranchProbability::getZero() && 10650 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10651 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10652 WorkList.push_back( 10653 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10654 10655 while (!WorkList.empty()) { 10656 SwitchWorkListItem W = WorkList.back(); 10657 WorkList.pop_back(); 10658 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10659 10660 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10661 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10662 // For optimized builds, lower large range as a balanced binary tree. 10663 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10664 continue; 10665 } 10666 10667 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10668 } 10669 } 10670 10671 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 10672 SDValue N = getValue(I.getOperand(0)); 10673 setValue(&I, N); 10674 } 10675