xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 31c7a2fd5c9a5b980768bd06354517d99ac8fe87)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/BlockFrequencyInfo.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/Loads.h"
31 #include "llvm/Analysis/MemoryLocation.h"
32 #include "llvm/Analysis/ProfileSummaryInfo.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/Analysis/VectorUtils.h"
36 #include "llvm/CodeGen/Analysis.h"
37 #include "llvm/CodeGen/FunctionLoweringInfo.h"
38 #include "llvm/CodeGen/GCMetadata.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineMemOperand.h"
46 #include "llvm/CodeGen/MachineModuleInfo.h"
47 #include "llvm/CodeGen/MachineOperand.h"
48 #include "llvm/CodeGen/MachineRegisterInfo.h"
49 #include "llvm/CodeGen/RuntimeLibcalls.h"
50 #include "llvm/CodeGen/SelectionDAG.h"
51 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
52 #include "llvm/CodeGen/StackMaps.h"
53 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
54 #include "llvm/CodeGen/TargetFrameLowering.h"
55 #include "llvm/CodeGen/TargetInstrInfo.h"
56 #include "llvm/CodeGen/TargetOpcodes.h"
57 #include "llvm/CodeGen/TargetRegisterInfo.h"
58 #include "llvm/CodeGen/TargetSubtargetInfo.h"
59 #include "llvm/CodeGen/WinEHFuncInfo.h"
60 #include "llvm/IR/Argument.h"
61 #include "llvm/IR/Attributes.h"
62 #include "llvm/IR/BasicBlock.h"
63 #include "llvm/IR/CFG.h"
64 #include "llvm/IR/CallingConv.h"
65 #include "llvm/IR/Constant.h"
66 #include "llvm/IR/ConstantRange.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DebugInfoMetadata.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GetElementPtrTypeIterator.h"
73 #include "llvm/IR/InlineAsm.h"
74 #include "llvm/IR/InstrTypes.h"
75 #include "llvm/IR/Instructions.h"
76 #include "llvm/IR/IntrinsicInst.h"
77 #include "llvm/IR/Intrinsics.h"
78 #include "llvm/IR/IntrinsicsAArch64.h"
79 #include "llvm/IR/IntrinsicsWebAssembly.h"
80 #include "llvm/IR/LLVMContext.h"
81 #include "llvm/IR/Metadata.h"
82 #include "llvm/IR/Module.h"
83 #include "llvm/IR/Operator.h"
84 #include "llvm/IR/PatternMatch.h"
85 #include "llvm/IR/Type.h"
86 #include "llvm/IR/User.h"
87 #include "llvm/IR/Value.h"
88 #include "llvm/MC/MCContext.h"
89 #include "llvm/MC/MCSymbol.h"
90 #include "llvm/Support/AtomicOrdering.h"
91 #include "llvm/Support/Casting.h"
92 #include "llvm/Support/CommandLine.h"
93 #include "llvm/Support/Compiler.h"
94 #include "llvm/Support/Debug.h"
95 #include "llvm/Support/MathExtras.h"
96 #include "llvm/Support/raw_ostream.h"
97 #include "llvm/Target/TargetIntrinsicInfo.h"
98 #include "llvm/Target/TargetMachine.h"
99 #include "llvm/Target/TargetOptions.h"
100 #include "llvm/Transforms/Utils/Local.h"
101 #include <cstddef>
102 #include <cstring>
103 #include <iterator>
104 #include <limits>
105 #include <numeric>
106 #include <tuple>
107 
108 using namespace llvm;
109 using namespace PatternMatch;
110 using namespace SwitchCG;
111 
112 #define DEBUG_TYPE "isel"
113 
114 /// LimitFloatPrecision - Generate low-precision inline sequences for
115 /// some float libcalls (6, 8 or 12 bits).
116 static unsigned LimitFloatPrecision;
117 
118 static cl::opt<bool>
119     InsertAssertAlign("insert-assert-align", cl::init(true),
120                       cl::desc("Insert the experimental `assertalign` node."),
121                       cl::ReallyHidden);
122 
123 static cl::opt<unsigned, true>
124     LimitFPPrecision("limit-float-precision",
125                      cl::desc("Generate low-precision inline sequences "
126                               "for some float libcalls"),
127                      cl::location(LimitFloatPrecision), cl::Hidden,
128                      cl::init(0));
129 
130 static cl::opt<unsigned> SwitchPeelThreshold(
131     "switch-peel-threshold", cl::Hidden, cl::init(66),
132     cl::desc("Set the case probability threshold for peeling the case from a "
133              "switch statement. A value greater than 100 will void this "
134              "optimization"));
135 
136 // Limit the width of DAG chains. This is important in general to prevent
137 // DAG-based analysis from blowing up. For example, alias analysis and
138 // load clustering may not complete in reasonable time. It is difficult to
139 // recognize and avoid this situation within each individual analysis, and
140 // future analyses are likely to have the same behavior. Limiting DAG width is
141 // the safe approach and will be especially important with global DAGs.
142 //
143 // MaxParallelChains default is arbitrarily high to avoid affecting
144 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
145 // sequence over this should have been converted to llvm.memcpy by the
146 // frontend. It is easy to induce this behavior with .ll code such as:
147 // %buffer = alloca [4096 x i8]
148 // %data = load [4096 x i8]* %argPtr
149 // store [4096 x i8] %data, [4096 x i8]* %buffer
150 static const unsigned MaxParallelChains = 64;
151 
152 // Return the calling convention if the Value passed requires ABI mangling as it
153 // is a parameter to a function or a return value from a function which is not
154 // an intrinsic.
155 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
156   if (auto *R = dyn_cast<ReturnInst>(V))
157     return R->getParent()->getParent()->getCallingConv();
158 
159   if (auto *CI = dyn_cast<CallInst>(V)) {
160     const bool IsInlineAsm = CI->isInlineAsm();
161     const bool IsIndirectFunctionCall =
162         !IsInlineAsm && !CI->getCalledFunction();
163 
164     // It is possible that the call instruction is an inline asm statement or an
165     // indirect function call in which case the return value of
166     // getCalledFunction() would be nullptr.
167     const bool IsInstrinsicCall =
168         !IsInlineAsm && !IsIndirectFunctionCall &&
169         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
170 
171     if (!IsInlineAsm && !IsInstrinsicCall)
172       return CI->getCallingConv();
173   }
174 
175   return None;
176 }
177 
178 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
179                                       const SDValue *Parts, unsigned NumParts,
180                                       MVT PartVT, EVT ValueVT, const Value *V,
181                                       Optional<CallingConv::ID> CC);
182 
183 /// getCopyFromParts - Create a value that contains the specified legal parts
184 /// combined into the value they represent.  If the parts combine to a type
185 /// larger than ValueVT then AssertOp can be used to specify whether the extra
186 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
187 /// (ISD::AssertSext).
188 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
189                                 const SDValue *Parts, unsigned NumParts,
190                                 MVT PartVT, EVT ValueVT, const Value *V,
191                                 Optional<CallingConv::ID> CC = None,
192                                 Optional<ISD::NodeType> AssertOp = None) {
193   // Let the target assemble the parts if it wants to
194   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
195   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
196                                                    PartVT, ValueVT, CC))
197     return Val;
198 
199   if (ValueVT.isVector())
200     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
201                                   CC);
202 
203   assert(NumParts > 0 && "No parts to assemble!");
204   SDValue Val = Parts[0];
205 
206   if (NumParts > 1) {
207     // Assemble the value from multiple parts.
208     if (ValueVT.isInteger()) {
209       unsigned PartBits = PartVT.getSizeInBits();
210       unsigned ValueBits = ValueVT.getSizeInBits();
211 
212       // Assemble the power of 2 part.
213       unsigned RoundParts =
214           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
215       unsigned RoundBits = PartBits * RoundParts;
216       EVT RoundVT = RoundBits == ValueBits ?
217         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
218       SDValue Lo, Hi;
219 
220       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
221 
222       if (RoundParts > 2) {
223         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
224                               PartVT, HalfVT, V);
225         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
226                               RoundParts / 2, PartVT, HalfVT, V);
227       } else {
228         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
229         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
230       }
231 
232       if (DAG.getDataLayout().isBigEndian())
233         std::swap(Lo, Hi);
234 
235       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
236 
237       if (RoundParts < NumParts) {
238         // Assemble the trailing non-power-of-2 part.
239         unsigned OddParts = NumParts - RoundParts;
240         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
241         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
242                               OddVT, V, CC);
243 
244         // Combine the round and odd parts.
245         Lo = Val;
246         if (DAG.getDataLayout().isBigEndian())
247           std::swap(Lo, Hi);
248         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
249         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
250         Hi =
251             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
252                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
253                                         TLI.getPointerTy(DAG.getDataLayout())));
254         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
255         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
256       }
257     } else if (PartVT.isFloatingPoint()) {
258       // FP split into multiple FP parts (for ppcf128)
259       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
260              "Unexpected split");
261       SDValue Lo, Hi;
262       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
263       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
264       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
265         std::swap(Lo, Hi);
266       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
267     } else {
268       // FP split into integer parts (soft fp)
269       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
270              !PartVT.isVector() && "Unexpected split");
271       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
272       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
273     }
274   }
275 
276   // There is now one part, held in Val.  Correct it to match ValueVT.
277   // PartEVT is the type of the register class that holds the value.
278   // ValueVT is the type of the inline asm operation.
279   EVT PartEVT = Val.getValueType();
280 
281   if (PartEVT == ValueVT)
282     return Val;
283 
284   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
285       ValueVT.bitsLT(PartEVT)) {
286     // For an FP value in an integer part, we need to truncate to the right
287     // width first.
288     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
289     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
290   }
291 
292   // Handle types that have the same size.
293   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
294     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
295 
296   // Handle types with different sizes.
297   if (PartEVT.isInteger() && ValueVT.isInteger()) {
298     if (ValueVT.bitsLT(PartEVT)) {
299       // For a truncate, see if we have any information to
300       // indicate whether the truncated bits will always be
301       // zero or sign-extension.
302       if (AssertOp.hasValue())
303         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
304                           DAG.getValueType(ValueVT));
305       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
306     }
307     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
308   }
309 
310   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
311     // FP_ROUND's are always exact here.
312     if (ValueVT.bitsLT(Val.getValueType()))
313       return DAG.getNode(
314           ISD::FP_ROUND, DL, ValueVT, Val,
315           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
316 
317     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
318   }
319 
320   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
321   // then truncating.
322   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
323       ValueVT.bitsLT(PartEVT)) {
324     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
325     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
326   }
327 
328   report_fatal_error("Unknown mismatch in getCopyFromParts!");
329 }
330 
331 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
332                                               const Twine &ErrMsg) {
333   const Instruction *I = dyn_cast_or_null<Instruction>(V);
334   if (!V)
335     return Ctx.emitError(ErrMsg);
336 
337   const char *AsmError = ", possible invalid constraint for vector type";
338   if (const CallInst *CI = dyn_cast<CallInst>(I))
339     if (CI->isInlineAsm())
340       return Ctx.emitError(I, ErrMsg + AsmError);
341 
342   return Ctx.emitError(I, ErrMsg);
343 }
344 
345 /// getCopyFromPartsVector - Create a value that contains the specified legal
346 /// parts combined into the value they represent.  If the parts combine to a
347 /// type larger than ValueVT then AssertOp can be used to specify whether the
348 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
349 /// ValueVT (ISD::AssertSext).
350 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
351                                       const SDValue *Parts, unsigned NumParts,
352                                       MVT PartVT, EVT ValueVT, const Value *V,
353                                       Optional<CallingConv::ID> CallConv) {
354   assert(ValueVT.isVector() && "Not a vector value");
355   assert(NumParts > 0 && "No parts to assemble!");
356   const bool IsABIRegCopy = CallConv.hasValue();
357 
358   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
359   SDValue Val = Parts[0];
360 
361   // Handle a multi-element vector.
362   if (NumParts > 1) {
363     EVT IntermediateVT;
364     MVT RegisterVT;
365     unsigned NumIntermediates;
366     unsigned NumRegs;
367 
368     if (IsABIRegCopy) {
369       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
370           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
371           NumIntermediates, RegisterVT);
372     } else {
373       NumRegs =
374           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
375                                      NumIntermediates, RegisterVT);
376     }
377 
378     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
379     NumParts = NumRegs; // Silence a compiler warning.
380     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
381     assert(RegisterVT.getSizeInBits() ==
382            Parts[0].getSimpleValueType().getSizeInBits() &&
383            "Part type sizes don't match!");
384 
385     // Assemble the parts into intermediate operands.
386     SmallVector<SDValue, 8> Ops(NumIntermediates);
387     if (NumIntermediates == NumParts) {
388       // If the register was not expanded, truncate or copy the value,
389       // as appropriate.
390       for (unsigned i = 0; i != NumParts; ++i)
391         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
392                                   PartVT, IntermediateVT, V);
393     } else if (NumParts > 0) {
394       // If the intermediate type was expanded, build the intermediate
395       // operands from the parts.
396       assert(NumParts % NumIntermediates == 0 &&
397              "Must expand into a divisible number of parts!");
398       unsigned Factor = NumParts / NumIntermediates;
399       for (unsigned i = 0; i != NumIntermediates; ++i)
400         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
401                                   PartVT, IntermediateVT, V);
402     }
403 
404     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
405     // intermediate operands.
406     EVT BuiltVectorTy =
407         IntermediateVT.isVector()
408             ? EVT::getVectorVT(
409                   *DAG.getContext(), IntermediateVT.getScalarType(),
410                   IntermediateVT.getVectorElementCount() * NumParts)
411             : EVT::getVectorVT(*DAG.getContext(),
412                                IntermediateVT.getScalarType(),
413                                NumIntermediates);
414     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
415                                                 : ISD::BUILD_VECTOR,
416                       DL, BuiltVectorTy, Ops);
417   }
418 
419   // There is now one part, held in Val.  Correct it to match ValueVT.
420   EVT PartEVT = Val.getValueType();
421 
422   if (PartEVT == ValueVT)
423     return Val;
424 
425   if (PartEVT.isVector()) {
426     // If the element type of the source/dest vectors are the same, but the
427     // parts vector has more elements than the value vector, then we have a
428     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
429     // elements we want.
430     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
431       assert((PartEVT.getVectorElementCount().Min >
432               ValueVT.getVectorElementCount().Min) &&
433              (PartEVT.getVectorElementCount().Scalable ==
434               ValueVT.getVectorElementCount().Scalable) &&
435              "Cannot narrow, it would be a lossy transformation");
436       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
437                          DAG.getVectorIdxConstant(0, DL));
438     }
439 
440     // Vector/Vector bitcast.
441     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
442       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
443 
444     assert(PartEVT.getVectorElementCount() == ValueVT.getVectorElementCount() &&
445       "Cannot handle this kind of promotion");
446     // Promoted vector extract
447     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
448 
449   }
450 
451   // Trivial bitcast if the types are the same size and the destination
452   // vector type is legal.
453   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
454       TLI.isTypeLegal(ValueVT))
455     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
456 
457   if (ValueVT.getVectorNumElements() != 1) {
458      // Certain ABIs require that vectors are passed as integers. For vectors
459      // are the same size, this is an obvious bitcast.
460      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
461        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
462      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
463        // Bitcast Val back the original type and extract the corresponding
464        // vector we want.
465        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
466        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
467                                            ValueVT.getVectorElementType(), Elts);
468        Val = DAG.getBitcast(WiderVecType, Val);
469        return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
470                           DAG.getVectorIdxConstant(0, DL));
471      }
472 
473      diagnosePossiblyInvalidConstraint(
474          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
475      return DAG.getUNDEF(ValueVT);
476   }
477 
478   // Handle cases such as i8 -> <1 x i1>
479   EVT ValueSVT = ValueVT.getVectorElementType();
480   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
481     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
482       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
483     else
484       Val = ValueVT.isFloatingPoint()
485                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
486                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
487   }
488 
489   return DAG.getBuildVector(ValueVT, DL, Val);
490 }
491 
492 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
493                                  SDValue Val, SDValue *Parts, unsigned NumParts,
494                                  MVT PartVT, const Value *V,
495                                  Optional<CallingConv::ID> CallConv);
496 
497 /// getCopyToParts - Create a series of nodes that contain the specified value
498 /// split into legal parts.  If the parts contain more bits than Val, then, for
499 /// integers, ExtendKind can be used to specify how to generate the extra bits.
500 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
501                            SDValue *Parts, unsigned NumParts, MVT PartVT,
502                            const Value *V,
503                            Optional<CallingConv::ID> CallConv = None,
504                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
505   // Let the target split the parts if it wants to
506   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
507   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
508                                       CallConv))
509     return;
510   EVT ValueVT = Val.getValueType();
511 
512   // Handle the vector case separately.
513   if (ValueVT.isVector())
514     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
515                                 CallConv);
516 
517   unsigned PartBits = PartVT.getSizeInBits();
518   unsigned OrigNumParts = NumParts;
519   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
520          "Copying to an illegal type!");
521 
522   if (NumParts == 0)
523     return;
524 
525   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
526   EVT PartEVT = PartVT;
527   if (PartEVT == ValueVT) {
528     assert(NumParts == 1 && "No-op copy with multiple parts!");
529     Parts[0] = Val;
530     return;
531   }
532 
533   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
534     // If the parts cover more bits than the value has, promote the value.
535     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
536       assert(NumParts == 1 && "Do not know what to promote to!");
537       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
538     } else {
539       if (ValueVT.isFloatingPoint()) {
540         // FP values need to be bitcast, then extended if they are being put
541         // into a larger container.
542         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
543         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
544       }
545       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
546              ValueVT.isInteger() &&
547              "Unknown mismatch!");
548       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
549       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
550       if (PartVT == MVT::x86mmx)
551         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
552     }
553   } else if (PartBits == ValueVT.getSizeInBits()) {
554     // Different types of the same size.
555     assert(NumParts == 1 && PartEVT != ValueVT);
556     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
557   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
558     // If the parts cover less bits than value has, truncate the value.
559     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
560            ValueVT.isInteger() &&
561            "Unknown mismatch!");
562     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
563     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
564     if (PartVT == MVT::x86mmx)
565       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
566   }
567 
568   // The value may have changed - recompute ValueVT.
569   ValueVT = Val.getValueType();
570   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
571          "Failed to tile the value with PartVT!");
572 
573   if (NumParts == 1) {
574     if (PartEVT != ValueVT) {
575       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
576                                         "scalar-to-vector conversion failed");
577       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
578     }
579 
580     Parts[0] = Val;
581     return;
582   }
583 
584   // Expand the value into multiple parts.
585   if (NumParts & (NumParts - 1)) {
586     // The number of parts is not a power of 2.  Split off and copy the tail.
587     assert(PartVT.isInteger() && ValueVT.isInteger() &&
588            "Do not know what to expand to!");
589     unsigned RoundParts = 1 << Log2_32(NumParts);
590     unsigned RoundBits = RoundParts * PartBits;
591     unsigned OddParts = NumParts - RoundParts;
592     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
593       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
594 
595     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
596                    CallConv);
597 
598     if (DAG.getDataLayout().isBigEndian())
599       // The odd parts were reversed by getCopyToParts - unreverse them.
600       std::reverse(Parts + RoundParts, Parts + NumParts);
601 
602     NumParts = RoundParts;
603     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
604     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
605   }
606 
607   // The number of parts is a power of 2.  Repeatedly bisect the value using
608   // EXTRACT_ELEMENT.
609   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
610                          EVT::getIntegerVT(*DAG.getContext(),
611                                            ValueVT.getSizeInBits()),
612                          Val);
613 
614   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
615     for (unsigned i = 0; i < NumParts; i += StepSize) {
616       unsigned ThisBits = StepSize * PartBits / 2;
617       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
618       SDValue &Part0 = Parts[i];
619       SDValue &Part1 = Parts[i+StepSize/2];
620 
621       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
622                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
623       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
624                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
625 
626       if (ThisBits == PartBits && ThisVT != PartVT) {
627         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
628         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
629       }
630     }
631   }
632 
633   if (DAG.getDataLayout().isBigEndian())
634     std::reverse(Parts, Parts + OrigNumParts);
635 }
636 
637 static SDValue widenVectorToPartType(SelectionDAG &DAG,
638                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
639   if (!PartVT.isFixedLengthVector())
640     return SDValue();
641 
642   EVT ValueVT = Val.getValueType();
643   unsigned PartNumElts = PartVT.getVectorNumElements();
644   unsigned ValueNumElts = ValueVT.getVectorNumElements();
645   if (PartNumElts > ValueNumElts &&
646       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
647     EVT ElementVT = PartVT.getVectorElementType();
648     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
649     // undef elements.
650     SmallVector<SDValue, 16> Ops;
651     DAG.ExtractVectorElements(Val, Ops);
652     SDValue EltUndef = DAG.getUNDEF(ElementVT);
653     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
654       Ops.push_back(EltUndef);
655 
656     // FIXME: Use CONCAT for 2x -> 4x.
657     return DAG.getBuildVector(PartVT, DL, Ops);
658   }
659 
660   return SDValue();
661 }
662 
663 /// getCopyToPartsVector - Create a series of nodes that contain the specified
664 /// value split into legal parts.
665 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
666                                  SDValue Val, SDValue *Parts, unsigned NumParts,
667                                  MVT PartVT, const Value *V,
668                                  Optional<CallingConv::ID> CallConv) {
669   EVT ValueVT = Val.getValueType();
670   assert(ValueVT.isVector() && "Not a vector");
671   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
672   const bool IsABIRegCopy = CallConv.hasValue();
673 
674   if (NumParts == 1) {
675     EVT PartEVT = PartVT;
676     if (PartEVT == ValueVT) {
677       // Nothing to do.
678     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
679       // Bitconvert vector->vector case.
680       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
681     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
682       Val = Widened;
683     } else if (PartVT.isVector() &&
684                PartEVT.getVectorElementType().bitsGE(
685                    ValueVT.getVectorElementType()) &&
686                PartEVT.getVectorElementCount() ==
687                    ValueVT.getVectorElementCount()) {
688 
689       // Promoted vector extract
690       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
691     } else {
692       if (ValueVT.getVectorNumElements() == 1) {
693         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
694                           DAG.getVectorIdxConstant(0, DL));
695       } else {
696         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
697                "lossy conversion of vector to scalar type");
698         EVT IntermediateType =
699             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
700         Val = DAG.getBitcast(IntermediateType, Val);
701         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
702       }
703     }
704 
705     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
706     Parts[0] = Val;
707     return;
708   }
709 
710   // Handle a multi-element vector.
711   EVT IntermediateVT;
712   MVT RegisterVT;
713   unsigned NumIntermediates;
714   unsigned NumRegs;
715   if (IsABIRegCopy) {
716     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
717         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
718         NumIntermediates, RegisterVT);
719   } else {
720     NumRegs =
721         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
722                                    NumIntermediates, RegisterVT);
723   }
724 
725   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
726   NumParts = NumRegs; // Silence a compiler warning.
727   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
728 
729   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
730          "Mixing scalable and fixed vectors when copying in parts");
731 
732   ElementCount DestEltCnt;
733 
734   if (IntermediateVT.isVector())
735     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
736   else
737     DestEltCnt = ElementCount(NumIntermediates, false);
738 
739   EVT BuiltVectorTy = EVT::getVectorVT(
740       *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt);
741   if (ValueVT != BuiltVectorTy) {
742     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
743       Val = Widened;
744 
745     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
746   }
747 
748   // Split the vector into intermediate operands.
749   SmallVector<SDValue, 8> Ops(NumIntermediates);
750   for (unsigned i = 0; i != NumIntermediates; ++i) {
751     if (IntermediateVT.isVector()) {
752       // This does something sensible for scalable vectors - see the
753       // definition of EXTRACT_SUBVECTOR for further details.
754       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
755       Ops[i] =
756           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
757                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
758     } else {
759       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
760                            DAG.getVectorIdxConstant(i, DL));
761     }
762   }
763 
764   // Split the intermediate operands into legal parts.
765   if (NumParts == NumIntermediates) {
766     // If the register was not expanded, promote or copy the value,
767     // as appropriate.
768     for (unsigned i = 0; i != NumParts; ++i)
769       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
770   } else if (NumParts > 0) {
771     // If the intermediate type was expanded, split each the value into
772     // legal parts.
773     assert(NumIntermediates != 0 && "division by zero");
774     assert(NumParts % NumIntermediates == 0 &&
775            "Must expand into a divisible number of parts!");
776     unsigned Factor = NumParts / NumIntermediates;
777     for (unsigned i = 0; i != NumIntermediates; ++i)
778       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
779                      CallConv);
780   }
781 }
782 
783 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
784                            EVT valuevt, Optional<CallingConv::ID> CC)
785     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
786       RegCount(1, regs.size()), CallConv(CC) {}
787 
788 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
789                            const DataLayout &DL, unsigned Reg, Type *Ty,
790                            Optional<CallingConv::ID> CC) {
791   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
792 
793   CallConv = CC;
794 
795   for (EVT ValueVT : ValueVTs) {
796     unsigned NumRegs =
797         isABIMangled()
798             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
799             : TLI.getNumRegisters(Context, ValueVT);
800     MVT RegisterVT =
801         isABIMangled()
802             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
803             : TLI.getRegisterType(Context, ValueVT);
804     for (unsigned i = 0; i != NumRegs; ++i)
805       Regs.push_back(Reg + i);
806     RegVTs.push_back(RegisterVT);
807     RegCount.push_back(NumRegs);
808     Reg += NumRegs;
809   }
810 }
811 
812 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
813                                       FunctionLoweringInfo &FuncInfo,
814                                       const SDLoc &dl, SDValue &Chain,
815                                       SDValue *Flag, const Value *V) const {
816   // A Value with type {} or [0 x %t] needs no registers.
817   if (ValueVTs.empty())
818     return SDValue();
819 
820   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
821 
822   // Assemble the legal parts into the final values.
823   SmallVector<SDValue, 4> Values(ValueVTs.size());
824   SmallVector<SDValue, 8> Parts;
825   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
826     // Copy the legal parts from the registers.
827     EVT ValueVT = ValueVTs[Value];
828     unsigned NumRegs = RegCount[Value];
829     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
830                                           *DAG.getContext(),
831                                           CallConv.getValue(), RegVTs[Value])
832                                     : RegVTs[Value];
833 
834     Parts.resize(NumRegs);
835     for (unsigned i = 0; i != NumRegs; ++i) {
836       SDValue P;
837       if (!Flag) {
838         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
839       } else {
840         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
841         *Flag = P.getValue(2);
842       }
843 
844       Chain = P.getValue(1);
845       Parts[i] = P;
846 
847       // If the source register was virtual and if we know something about it,
848       // add an assert node.
849       if (!Register::isVirtualRegister(Regs[Part + i]) ||
850           !RegisterVT.isInteger())
851         continue;
852 
853       const FunctionLoweringInfo::LiveOutInfo *LOI =
854         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
855       if (!LOI)
856         continue;
857 
858       unsigned RegSize = RegisterVT.getScalarSizeInBits();
859       unsigned NumSignBits = LOI->NumSignBits;
860       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
861 
862       if (NumZeroBits == RegSize) {
863         // The current value is a zero.
864         // Explicitly express that as it would be easier for
865         // optimizations to kick in.
866         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
867         continue;
868       }
869 
870       // FIXME: We capture more information than the dag can represent.  For
871       // now, just use the tightest assertzext/assertsext possible.
872       bool isSExt;
873       EVT FromVT(MVT::Other);
874       if (NumZeroBits) {
875         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
876         isSExt = false;
877       } else if (NumSignBits > 1) {
878         FromVT =
879             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
880         isSExt = true;
881       } else {
882         continue;
883       }
884       // Add an assertion node.
885       assert(FromVT != MVT::Other);
886       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
887                              RegisterVT, P, DAG.getValueType(FromVT));
888     }
889 
890     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
891                                      RegisterVT, ValueVT, V, CallConv);
892     Part += NumRegs;
893     Parts.clear();
894   }
895 
896   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
897 }
898 
899 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
900                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
901                                  const Value *V,
902                                  ISD::NodeType PreferredExtendType) const {
903   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
904   ISD::NodeType ExtendKind = PreferredExtendType;
905 
906   // Get the list of the values's legal parts.
907   unsigned NumRegs = Regs.size();
908   SmallVector<SDValue, 8> Parts(NumRegs);
909   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
910     unsigned NumParts = RegCount[Value];
911 
912     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
913                                           *DAG.getContext(),
914                                           CallConv.getValue(), RegVTs[Value])
915                                     : RegVTs[Value];
916 
917     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
918       ExtendKind = ISD::ZERO_EXTEND;
919 
920     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
921                    NumParts, RegisterVT, V, CallConv, ExtendKind);
922     Part += NumParts;
923   }
924 
925   // Copy the parts into the registers.
926   SmallVector<SDValue, 8> Chains(NumRegs);
927   for (unsigned i = 0; i != NumRegs; ++i) {
928     SDValue Part;
929     if (!Flag) {
930       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
931     } else {
932       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
933       *Flag = Part.getValue(1);
934     }
935 
936     Chains[i] = Part.getValue(0);
937   }
938 
939   if (NumRegs == 1 || Flag)
940     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
941     // flagged to it. That is the CopyToReg nodes and the user are considered
942     // a single scheduling unit. If we create a TokenFactor and return it as
943     // chain, then the TokenFactor is both a predecessor (operand) of the
944     // user as well as a successor (the TF operands are flagged to the user).
945     // c1, f1 = CopyToReg
946     // c2, f2 = CopyToReg
947     // c3     = TokenFactor c1, c2
948     // ...
949     //        = op c3, ..., f2
950     Chain = Chains[NumRegs-1];
951   else
952     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
953 }
954 
955 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
956                                         unsigned MatchingIdx, const SDLoc &dl,
957                                         SelectionDAG &DAG,
958                                         std::vector<SDValue> &Ops) const {
959   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
960 
961   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
962   if (HasMatching)
963     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
964   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
965     // Put the register class of the virtual registers in the flag word.  That
966     // way, later passes can recompute register class constraints for inline
967     // assembly as well as normal instructions.
968     // Don't do this for tied operands that can use the regclass information
969     // from the def.
970     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
971     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
972     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
973   }
974 
975   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
976   Ops.push_back(Res);
977 
978   if (Code == InlineAsm::Kind_Clobber) {
979     // Clobbers should always have a 1:1 mapping with registers, and may
980     // reference registers that have illegal (e.g. vector) types. Hence, we
981     // shouldn't try to apply any sort of splitting logic to them.
982     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
983            "No 1:1 mapping from clobbers to regs?");
984     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
985     (void)SP;
986     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
987       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
988       assert(
989           (Regs[I] != SP ||
990            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
991           "If we clobbered the stack pointer, MFI should know about it.");
992     }
993     return;
994   }
995 
996   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
997     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
998     MVT RegisterVT = RegVTs[Value];
999     for (unsigned i = 0; i != NumRegs; ++i) {
1000       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1001       unsigned TheReg = Regs[Reg++];
1002       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1003     }
1004   }
1005 }
1006 
1007 SmallVector<std::pair<unsigned, unsigned>, 4>
1008 RegsForValue::getRegsAndSizes() const {
1009   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
1010   unsigned I = 0;
1011   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1012     unsigned RegCount = std::get<0>(CountAndVT);
1013     MVT RegisterVT = std::get<1>(CountAndVT);
1014     unsigned RegisterSize = RegisterVT.getSizeInBits();
1015     for (unsigned E = I + RegCount; I != E; ++I)
1016       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1017   }
1018   return OutVec;
1019 }
1020 
1021 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1022                                const TargetLibraryInfo *li) {
1023   AA = aa;
1024   GFI = gfi;
1025   LibInfo = li;
1026   DL = &DAG.getDataLayout();
1027   Context = DAG.getContext();
1028   LPadToCallSiteMap.clear();
1029   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1030 }
1031 
1032 void SelectionDAGBuilder::clear() {
1033   NodeMap.clear();
1034   UnusedArgNodeMap.clear();
1035   PendingLoads.clear();
1036   PendingExports.clear();
1037   PendingConstrainedFP.clear();
1038   PendingConstrainedFPStrict.clear();
1039   CurInst = nullptr;
1040   HasTailCall = false;
1041   SDNodeOrder = LowestSDNodeOrder;
1042   StatepointLowering.clear();
1043 }
1044 
1045 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1046   DanglingDebugInfoMap.clear();
1047 }
1048 
1049 // Update DAG root to include dependencies on Pending chains.
1050 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1051   SDValue Root = DAG.getRoot();
1052 
1053   if (Pending.empty())
1054     return Root;
1055 
1056   // Add current root to PendingChains, unless we already indirectly
1057   // depend on it.
1058   if (Root.getOpcode() != ISD::EntryToken) {
1059     unsigned i = 0, e = Pending.size();
1060     for (; i != e; ++i) {
1061       assert(Pending[i].getNode()->getNumOperands() > 1);
1062       if (Pending[i].getNode()->getOperand(0) == Root)
1063         break;  // Don't add the root if we already indirectly depend on it.
1064     }
1065 
1066     if (i == e)
1067       Pending.push_back(Root);
1068   }
1069 
1070   if (Pending.size() == 1)
1071     Root = Pending[0];
1072   else
1073     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1074 
1075   DAG.setRoot(Root);
1076   Pending.clear();
1077   return Root;
1078 }
1079 
1080 SDValue SelectionDAGBuilder::getMemoryRoot() {
1081   return updateRoot(PendingLoads);
1082 }
1083 
1084 SDValue SelectionDAGBuilder::getRoot() {
1085   // Chain up all pending constrained intrinsics together with all
1086   // pending loads, by simply appending them to PendingLoads and
1087   // then calling getMemoryRoot().
1088   PendingLoads.reserve(PendingLoads.size() +
1089                        PendingConstrainedFP.size() +
1090                        PendingConstrainedFPStrict.size());
1091   PendingLoads.append(PendingConstrainedFP.begin(),
1092                       PendingConstrainedFP.end());
1093   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1094                       PendingConstrainedFPStrict.end());
1095   PendingConstrainedFP.clear();
1096   PendingConstrainedFPStrict.clear();
1097   return getMemoryRoot();
1098 }
1099 
1100 SDValue SelectionDAGBuilder::getControlRoot() {
1101   // We need to emit pending fpexcept.strict constrained intrinsics,
1102   // so append them to the PendingExports list.
1103   PendingExports.append(PendingConstrainedFPStrict.begin(),
1104                         PendingConstrainedFPStrict.end());
1105   PendingConstrainedFPStrict.clear();
1106   return updateRoot(PendingExports);
1107 }
1108 
1109 void SelectionDAGBuilder::visit(const Instruction &I) {
1110   // Set up outgoing PHI node register values before emitting the terminator.
1111   if (I.isTerminator()) {
1112     HandlePHINodesInSuccessorBlocks(I.getParent());
1113   }
1114 
1115   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1116   if (!isa<DbgInfoIntrinsic>(I))
1117     ++SDNodeOrder;
1118 
1119   CurInst = &I;
1120 
1121   visit(I.getOpcode(), I);
1122 
1123   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1124     // ConstrainedFPIntrinsics handle their own FMF.
1125     if (!isa<ConstrainedFPIntrinsic>(&I)) {
1126       // Propagate the fast-math-flags of this IR instruction to the DAG node that
1127       // maps to this instruction.
1128       // TODO: We could handle all flags (nsw, etc) here.
1129       // TODO: If an IR instruction maps to >1 node, only the final node will have
1130       //       flags set.
1131       if (SDNode *Node = getNodeForIRValue(&I)) {
1132         SDNodeFlags IncomingFlags;
1133         IncomingFlags.copyFMF(*FPMO);
1134         if (!Node->getFlags().isDefined())
1135           Node->setFlags(IncomingFlags);
1136         else
1137           Node->intersectFlagsWith(IncomingFlags);
1138       }
1139     }
1140   }
1141 
1142   if (!I.isTerminator() && !HasTailCall &&
1143       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1144     CopyToExportRegsIfNeeded(&I);
1145 
1146   CurInst = nullptr;
1147 }
1148 
1149 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1150   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1151 }
1152 
1153 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1154   // Note: this doesn't use InstVisitor, because it has to work with
1155   // ConstantExpr's in addition to instructions.
1156   switch (Opcode) {
1157   default: llvm_unreachable("Unknown instruction type encountered!");
1158     // Build the switch statement using the Instruction.def file.
1159 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1160     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1161 #include "llvm/IR/Instruction.def"
1162   }
1163 }
1164 
1165 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1166                                                 const DIExpression *Expr) {
1167   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1168     const DbgValueInst *DI = DDI.getDI();
1169     DIVariable *DanglingVariable = DI->getVariable();
1170     DIExpression *DanglingExpr = DI->getExpression();
1171     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1172       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1173       return true;
1174     }
1175     return false;
1176   };
1177 
1178   for (auto &DDIMI : DanglingDebugInfoMap) {
1179     DanglingDebugInfoVector &DDIV = DDIMI.second;
1180 
1181     // If debug info is to be dropped, run it through final checks to see
1182     // whether it can be salvaged.
1183     for (auto &DDI : DDIV)
1184       if (isMatchingDbgValue(DDI))
1185         salvageUnresolvedDbgValue(DDI);
1186 
1187     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1188   }
1189 }
1190 
1191 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1192 // generate the debug data structures now that we've seen its definition.
1193 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1194                                                    SDValue Val) {
1195   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1196   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1197     return;
1198 
1199   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1200   for (auto &DDI : DDIV) {
1201     const DbgValueInst *DI = DDI.getDI();
1202     assert(DI && "Ill-formed DanglingDebugInfo");
1203     DebugLoc dl = DDI.getdl();
1204     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1205     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1206     DILocalVariable *Variable = DI->getVariable();
1207     DIExpression *Expr = DI->getExpression();
1208     assert(Variable->isValidLocationForIntrinsic(dl) &&
1209            "Expected inlined-at fields to agree");
1210     SDDbgValue *SDV;
1211     if (Val.getNode()) {
1212       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1213       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1214       // we couldn't resolve it directly when examining the DbgValue intrinsic
1215       // in the first place we should not be more successful here). Unless we
1216       // have some test case that prove this to be correct we should avoid
1217       // calling EmitFuncArgumentDbgValue here.
1218       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1219         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1220                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1221         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1222         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1223         // inserted after the definition of Val when emitting the instructions
1224         // after ISel. An alternative could be to teach
1225         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1226         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1227                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1228                    << ValSDNodeOrder << "\n");
1229         SDV = getDbgValue(Val, Variable, Expr, dl,
1230                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1231         DAG.AddDbgValue(SDV, Val.getNode(), false);
1232       } else
1233         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1234                           << "in EmitFuncArgumentDbgValue\n");
1235     } else {
1236       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1237       auto Undef =
1238           UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1239       auto SDV =
1240           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1241       DAG.AddDbgValue(SDV, nullptr, false);
1242     }
1243   }
1244   DDIV.clear();
1245 }
1246 
1247 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1248   Value *V = DDI.getDI()->getValue();
1249   DILocalVariable *Var = DDI.getDI()->getVariable();
1250   DIExpression *Expr = DDI.getDI()->getExpression();
1251   DebugLoc DL = DDI.getdl();
1252   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1253   unsigned SDOrder = DDI.getSDNodeOrder();
1254 
1255   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1256   // that DW_OP_stack_value is desired.
1257   assert(isa<DbgValueInst>(DDI.getDI()));
1258   bool StackValue = true;
1259 
1260   // Can this Value can be encoded without any further work?
1261   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1262     return;
1263 
1264   // Attempt to salvage back through as many instructions as possible. Bail if
1265   // a non-instruction is seen, such as a constant expression or global
1266   // variable. FIXME: Further work could recover those too.
1267   while (isa<Instruction>(V)) {
1268     Instruction &VAsInst = *cast<Instruction>(V);
1269     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1270 
1271     // If we cannot salvage any further, and haven't yet found a suitable debug
1272     // expression, bail out.
1273     if (!NewExpr)
1274       break;
1275 
1276     // New value and expr now represent this debuginfo.
1277     V = VAsInst.getOperand(0);
1278     Expr = NewExpr;
1279 
1280     // Some kind of simplification occurred: check whether the operand of the
1281     // salvaged debug expression can be encoded in this DAG.
1282     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1283       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1284                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1285       return;
1286     }
1287   }
1288 
1289   // This was the final opportunity to salvage this debug information, and it
1290   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1291   // any earlier variable location.
1292   auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1293   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1294   DAG.AddDbgValue(SDV, nullptr, false);
1295 
1296   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1297                     << "\n");
1298   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1299                     << "\n");
1300 }
1301 
1302 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1303                                            DIExpression *Expr, DebugLoc dl,
1304                                            DebugLoc InstDL, unsigned Order) {
1305   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1306   SDDbgValue *SDV;
1307   if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1308       isa<ConstantPointerNull>(V)) {
1309     SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1310     DAG.AddDbgValue(SDV, nullptr, false);
1311     return true;
1312   }
1313 
1314   // If the Value is a frame index, we can create a FrameIndex debug value
1315   // without relying on the DAG at all.
1316   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1317     auto SI = FuncInfo.StaticAllocaMap.find(AI);
1318     if (SI != FuncInfo.StaticAllocaMap.end()) {
1319       auto SDV =
1320           DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1321                                     /*IsIndirect*/ false, dl, SDNodeOrder);
1322       // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1323       // is still available even if the SDNode gets optimized out.
1324       DAG.AddDbgValue(SDV, nullptr, false);
1325       return true;
1326     }
1327   }
1328 
1329   // Do not use getValue() in here; we don't want to generate code at
1330   // this point if it hasn't been done yet.
1331   SDValue N = NodeMap[V];
1332   if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1333     N = UnusedArgNodeMap[V];
1334   if (N.getNode()) {
1335     if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1336       return true;
1337     SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1338     DAG.AddDbgValue(SDV, N.getNode(), false);
1339     return true;
1340   }
1341 
1342   // Special rules apply for the first dbg.values of parameter variables in a
1343   // function. Identify them by the fact they reference Argument Values, that
1344   // they're parameters, and they are parameters of the current function. We
1345   // need to let them dangle until they get an SDNode.
1346   bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1347                        !InstDL.getInlinedAt();
1348   if (!IsParamOfFunc) {
1349     // The value is not used in this block yet (or it would have an SDNode).
1350     // We still want the value to appear for the user if possible -- if it has
1351     // an associated VReg, we can refer to that instead.
1352     auto VMI = FuncInfo.ValueMap.find(V);
1353     if (VMI != FuncInfo.ValueMap.end()) {
1354       unsigned Reg = VMI->second;
1355       // If this is a PHI node, it may be split up into several MI PHI nodes
1356       // (in FunctionLoweringInfo::set).
1357       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1358                        V->getType(), None);
1359       if (RFV.occupiesMultipleRegs()) {
1360         unsigned Offset = 0;
1361         unsigned BitsToDescribe = 0;
1362         if (auto VarSize = Var->getSizeInBits())
1363           BitsToDescribe = *VarSize;
1364         if (auto Fragment = Expr->getFragmentInfo())
1365           BitsToDescribe = Fragment->SizeInBits;
1366         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1367           unsigned RegisterSize = RegAndSize.second;
1368           // Bail out if all bits are described already.
1369           if (Offset >= BitsToDescribe)
1370             break;
1371           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1372               ? BitsToDescribe - Offset
1373               : RegisterSize;
1374           auto FragmentExpr = DIExpression::createFragmentExpression(
1375               Expr, Offset, FragmentSize);
1376           if (!FragmentExpr)
1377               continue;
1378           SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1379                                     false, dl, SDNodeOrder);
1380           DAG.AddDbgValue(SDV, nullptr, false);
1381           Offset += RegisterSize;
1382         }
1383       } else {
1384         SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1385         DAG.AddDbgValue(SDV, nullptr, false);
1386       }
1387       return true;
1388     }
1389   }
1390 
1391   return false;
1392 }
1393 
1394 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1395   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1396   for (auto &Pair : DanglingDebugInfoMap)
1397     for (auto &DDI : Pair.second)
1398       salvageUnresolvedDbgValue(DDI);
1399   clearDanglingDebugInfo();
1400 }
1401 
1402 /// getCopyFromRegs - If there was virtual register allocated for the value V
1403 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1404 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1405   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1406   SDValue Result;
1407 
1408   if (It != FuncInfo.ValueMap.end()) {
1409     Register InReg = It->second;
1410 
1411     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1412                      DAG.getDataLayout(), InReg, Ty,
1413                      None); // This is not an ABI copy.
1414     SDValue Chain = DAG.getEntryNode();
1415     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1416                                  V);
1417     resolveDanglingDebugInfo(V, Result);
1418   }
1419 
1420   return Result;
1421 }
1422 
1423 /// getValue - Return an SDValue for the given Value.
1424 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1425   // If we already have an SDValue for this value, use it. It's important
1426   // to do this first, so that we don't create a CopyFromReg if we already
1427   // have a regular SDValue.
1428   SDValue &N = NodeMap[V];
1429   if (N.getNode()) return N;
1430 
1431   // If there's a virtual register allocated and initialized for this
1432   // value, use it.
1433   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1434     return copyFromReg;
1435 
1436   // Otherwise create a new SDValue and remember it.
1437   SDValue Val = getValueImpl(V);
1438   NodeMap[V] = Val;
1439   resolveDanglingDebugInfo(V, Val);
1440   return Val;
1441 }
1442 
1443 /// getNonRegisterValue - Return an SDValue for the given Value, but
1444 /// don't look in FuncInfo.ValueMap for a virtual register.
1445 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1446   // If we already have an SDValue for this value, use it.
1447   SDValue &N = NodeMap[V];
1448   if (N.getNode()) {
1449     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1450       // Remove the debug location from the node as the node is about to be used
1451       // in a location which may differ from the original debug location.  This
1452       // is relevant to Constant and ConstantFP nodes because they can appear
1453       // as constant expressions inside PHI nodes.
1454       N->setDebugLoc(DebugLoc());
1455     }
1456     return N;
1457   }
1458 
1459   // Otherwise create a new SDValue and remember it.
1460   SDValue Val = getValueImpl(V);
1461   NodeMap[V] = Val;
1462   resolveDanglingDebugInfo(V, Val);
1463   return Val;
1464 }
1465 
1466 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1467 /// Create an SDValue for the given value.
1468 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1469   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1470 
1471   if (const Constant *C = dyn_cast<Constant>(V)) {
1472     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1473 
1474     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1475       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1476 
1477     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1478       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1479 
1480     if (isa<ConstantPointerNull>(C)) {
1481       unsigned AS = V->getType()->getPointerAddressSpace();
1482       return DAG.getConstant(0, getCurSDLoc(),
1483                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1484     }
1485 
1486     if (match(C, m_VScale(DAG.getDataLayout())))
1487       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1488 
1489     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1490       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1491 
1492     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1493       return DAG.getUNDEF(VT);
1494 
1495     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1496       visit(CE->getOpcode(), *CE);
1497       SDValue N1 = NodeMap[V];
1498       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1499       return N1;
1500     }
1501 
1502     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1503       SmallVector<SDValue, 4> Constants;
1504       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1505            OI != OE; ++OI) {
1506         SDNode *Val = getValue(*OI).getNode();
1507         // If the operand is an empty aggregate, there are no values.
1508         if (!Val) continue;
1509         // Add each leaf value from the operand to the Constants list
1510         // to form a flattened list of all the values.
1511         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1512           Constants.push_back(SDValue(Val, i));
1513       }
1514 
1515       return DAG.getMergeValues(Constants, getCurSDLoc());
1516     }
1517 
1518     if (const ConstantDataSequential *CDS =
1519           dyn_cast<ConstantDataSequential>(C)) {
1520       SmallVector<SDValue, 4> Ops;
1521       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1522         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1523         // Add each leaf value from the operand to the Constants list
1524         // to form a flattened list of all the values.
1525         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1526           Ops.push_back(SDValue(Val, i));
1527       }
1528 
1529       if (isa<ArrayType>(CDS->getType()))
1530         return DAG.getMergeValues(Ops, getCurSDLoc());
1531       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1532     }
1533 
1534     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1535       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1536              "Unknown struct or array constant!");
1537 
1538       SmallVector<EVT, 4> ValueVTs;
1539       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1540       unsigned NumElts = ValueVTs.size();
1541       if (NumElts == 0)
1542         return SDValue(); // empty struct
1543       SmallVector<SDValue, 4> Constants(NumElts);
1544       for (unsigned i = 0; i != NumElts; ++i) {
1545         EVT EltVT = ValueVTs[i];
1546         if (isa<UndefValue>(C))
1547           Constants[i] = DAG.getUNDEF(EltVT);
1548         else if (EltVT.isFloatingPoint())
1549           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1550         else
1551           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1552       }
1553 
1554       return DAG.getMergeValues(Constants, getCurSDLoc());
1555     }
1556 
1557     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1558       return DAG.getBlockAddress(BA, VT);
1559 
1560     VectorType *VecTy = cast<VectorType>(V->getType());
1561 
1562     // Now that we know the number and type of the elements, get that number of
1563     // elements into the Ops array based on what kind of constant it is.
1564     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1565       SmallVector<SDValue, 16> Ops;
1566       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1567       for (unsigned i = 0; i != NumElements; ++i)
1568         Ops.push_back(getValue(CV->getOperand(i)));
1569 
1570       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1571     } else if (isa<ConstantAggregateZero>(C)) {
1572       EVT EltVT =
1573           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1574 
1575       SDValue Op;
1576       if (EltVT.isFloatingPoint())
1577         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1578       else
1579         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1580 
1581       if (isa<ScalableVectorType>(VecTy))
1582         return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op);
1583       else {
1584         SmallVector<SDValue, 16> Ops;
1585         Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op);
1586         return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1587       }
1588     }
1589     llvm_unreachable("Unknown vector constant");
1590   }
1591 
1592   // If this is a static alloca, generate it as the frameindex instead of
1593   // computation.
1594   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1595     DenseMap<const AllocaInst*, int>::iterator SI =
1596       FuncInfo.StaticAllocaMap.find(AI);
1597     if (SI != FuncInfo.StaticAllocaMap.end())
1598       return DAG.getFrameIndex(SI->second,
1599                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1600   }
1601 
1602   // If this is an instruction which fast-isel has deferred, select it now.
1603   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1604     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1605 
1606     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1607                      Inst->getType(), getABIRegCopyCC(V));
1608     SDValue Chain = DAG.getEntryNode();
1609     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1610   }
1611 
1612   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) {
1613     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1614   }
1615   llvm_unreachable("Can't get register for value!");
1616 }
1617 
1618 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1619   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1620   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1621   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1622   bool IsSEH = isAsynchronousEHPersonality(Pers);
1623   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1624   if (!IsSEH)
1625     CatchPadMBB->setIsEHScopeEntry();
1626   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1627   if (IsMSVCCXX || IsCoreCLR)
1628     CatchPadMBB->setIsEHFuncletEntry();
1629 }
1630 
1631 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1632   // Update machine-CFG edge.
1633   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1634   FuncInfo.MBB->addSuccessor(TargetMBB);
1635 
1636   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1637   bool IsSEH = isAsynchronousEHPersonality(Pers);
1638   if (IsSEH) {
1639     // If this is not a fall-through branch or optimizations are switched off,
1640     // emit the branch.
1641     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1642         TM.getOptLevel() == CodeGenOpt::None)
1643       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1644                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1645     return;
1646   }
1647 
1648   // Figure out the funclet membership for the catchret's successor.
1649   // This will be used by the FuncletLayout pass to determine how to order the
1650   // BB's.
1651   // A 'catchret' returns to the outer scope's color.
1652   Value *ParentPad = I.getCatchSwitchParentPad();
1653   const BasicBlock *SuccessorColor;
1654   if (isa<ConstantTokenNone>(ParentPad))
1655     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1656   else
1657     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1658   assert(SuccessorColor && "No parent funclet for catchret!");
1659   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1660   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1661 
1662   // Create the terminator node.
1663   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1664                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1665                             DAG.getBasicBlock(SuccessorColorMBB));
1666   DAG.setRoot(Ret);
1667 }
1668 
1669 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1670   // Don't emit any special code for the cleanuppad instruction. It just marks
1671   // the start of an EH scope/funclet.
1672   FuncInfo.MBB->setIsEHScopeEntry();
1673   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1674   if (Pers != EHPersonality::Wasm_CXX) {
1675     FuncInfo.MBB->setIsEHFuncletEntry();
1676     FuncInfo.MBB->setIsCleanupFuncletEntry();
1677   }
1678 }
1679 
1680 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1681 // the control flow always stops at the single catch pad, as it does for a
1682 // cleanup pad. In case the exception caught is not of the types the catch pad
1683 // catches, it will be rethrown by a rethrow.
1684 static void findWasmUnwindDestinations(
1685     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1686     BranchProbability Prob,
1687     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1688         &UnwindDests) {
1689   while (EHPadBB) {
1690     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1691     if (isa<CleanupPadInst>(Pad)) {
1692       // Stop on cleanup pads.
1693       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1694       UnwindDests.back().first->setIsEHScopeEntry();
1695       break;
1696     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1697       // Add the catchpad handlers to the possible destinations. We don't
1698       // continue to the unwind destination of the catchswitch for wasm.
1699       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1700         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1701         UnwindDests.back().first->setIsEHScopeEntry();
1702       }
1703       break;
1704     } else {
1705       continue;
1706     }
1707   }
1708 }
1709 
1710 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1711 /// many places it could ultimately go. In the IR, we have a single unwind
1712 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1713 /// This function skips over imaginary basic blocks that hold catchswitch
1714 /// instructions, and finds all the "real" machine
1715 /// basic block destinations. As those destinations may not be successors of
1716 /// EHPadBB, here we also calculate the edge probability to those destinations.
1717 /// The passed-in Prob is the edge probability to EHPadBB.
1718 static void findUnwindDestinations(
1719     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1720     BranchProbability Prob,
1721     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1722         &UnwindDests) {
1723   EHPersonality Personality =
1724     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1725   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1726   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1727   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1728   bool IsSEH = isAsynchronousEHPersonality(Personality);
1729 
1730   if (IsWasmCXX) {
1731     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1732     assert(UnwindDests.size() <= 1 &&
1733            "There should be at most one unwind destination for wasm");
1734     return;
1735   }
1736 
1737   while (EHPadBB) {
1738     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1739     BasicBlock *NewEHPadBB = nullptr;
1740     if (isa<LandingPadInst>(Pad)) {
1741       // Stop on landingpads. They are not funclets.
1742       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1743       break;
1744     } else if (isa<CleanupPadInst>(Pad)) {
1745       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1746       // personalities.
1747       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1748       UnwindDests.back().first->setIsEHScopeEntry();
1749       UnwindDests.back().first->setIsEHFuncletEntry();
1750       break;
1751     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1752       // Add the catchpad handlers to the possible destinations.
1753       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1754         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1755         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1756         if (IsMSVCCXX || IsCoreCLR)
1757           UnwindDests.back().first->setIsEHFuncletEntry();
1758         if (!IsSEH)
1759           UnwindDests.back().first->setIsEHScopeEntry();
1760       }
1761       NewEHPadBB = CatchSwitch->getUnwindDest();
1762     } else {
1763       continue;
1764     }
1765 
1766     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1767     if (BPI && NewEHPadBB)
1768       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1769     EHPadBB = NewEHPadBB;
1770   }
1771 }
1772 
1773 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1774   // Update successor info.
1775   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1776   auto UnwindDest = I.getUnwindDest();
1777   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1778   BranchProbability UnwindDestProb =
1779       (BPI && UnwindDest)
1780           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1781           : BranchProbability::getZero();
1782   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1783   for (auto &UnwindDest : UnwindDests) {
1784     UnwindDest.first->setIsEHPad();
1785     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1786   }
1787   FuncInfo.MBB->normalizeSuccProbs();
1788 
1789   // Create the terminator node.
1790   SDValue Ret =
1791       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1792   DAG.setRoot(Ret);
1793 }
1794 
1795 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1796   report_fatal_error("visitCatchSwitch not yet implemented!");
1797 }
1798 
1799 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1800   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1801   auto &DL = DAG.getDataLayout();
1802   SDValue Chain = getControlRoot();
1803   SmallVector<ISD::OutputArg, 8> Outs;
1804   SmallVector<SDValue, 8> OutVals;
1805 
1806   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1807   // lower
1808   //
1809   //   %val = call <ty> @llvm.experimental.deoptimize()
1810   //   ret <ty> %val
1811   //
1812   // differently.
1813   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1814     LowerDeoptimizingReturn();
1815     return;
1816   }
1817 
1818   if (!FuncInfo.CanLowerReturn) {
1819     unsigned DemoteReg = FuncInfo.DemoteRegister;
1820     const Function *F = I.getParent()->getParent();
1821 
1822     // Emit a store of the return value through the virtual register.
1823     // Leave Outs empty so that LowerReturn won't try to load return
1824     // registers the usual way.
1825     SmallVector<EVT, 1> PtrValueVTs;
1826     ComputeValueVTs(TLI, DL,
1827                     F->getReturnType()->getPointerTo(
1828                         DAG.getDataLayout().getAllocaAddrSpace()),
1829                     PtrValueVTs);
1830 
1831     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1832                                         DemoteReg, PtrValueVTs[0]);
1833     SDValue RetOp = getValue(I.getOperand(0));
1834 
1835     SmallVector<EVT, 4> ValueVTs, MemVTs;
1836     SmallVector<uint64_t, 4> Offsets;
1837     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1838                     &Offsets);
1839     unsigned NumValues = ValueVTs.size();
1840 
1841     SmallVector<SDValue, 4> Chains(NumValues);
1842     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1843     for (unsigned i = 0; i != NumValues; ++i) {
1844       // An aggregate return value cannot wrap around the address space, so
1845       // offsets to its parts don't wrap either.
1846       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1847 
1848       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1849       if (MemVTs[i] != ValueVTs[i])
1850         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1851       Chains[i] = DAG.getStore(
1852           Chain, getCurSDLoc(), Val,
1853           // FIXME: better loc info would be nice.
1854           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
1855           commonAlignment(BaseAlign, Offsets[i]));
1856     }
1857 
1858     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1859                         MVT::Other, Chains);
1860   } else if (I.getNumOperands() != 0) {
1861     SmallVector<EVT, 4> ValueVTs;
1862     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1863     unsigned NumValues = ValueVTs.size();
1864     if (NumValues) {
1865       SDValue RetOp = getValue(I.getOperand(0));
1866 
1867       const Function *F = I.getParent()->getParent();
1868 
1869       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1870           I.getOperand(0)->getType(), F->getCallingConv(),
1871           /*IsVarArg*/ false);
1872 
1873       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1874       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1875                                           Attribute::SExt))
1876         ExtendKind = ISD::SIGN_EXTEND;
1877       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1878                                                Attribute::ZExt))
1879         ExtendKind = ISD::ZERO_EXTEND;
1880 
1881       LLVMContext &Context = F->getContext();
1882       bool RetInReg = F->getAttributes().hasAttribute(
1883           AttributeList::ReturnIndex, Attribute::InReg);
1884 
1885       for (unsigned j = 0; j != NumValues; ++j) {
1886         EVT VT = ValueVTs[j];
1887 
1888         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1889           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1890 
1891         CallingConv::ID CC = F->getCallingConv();
1892 
1893         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1894         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1895         SmallVector<SDValue, 4> Parts(NumParts);
1896         getCopyToParts(DAG, getCurSDLoc(),
1897                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1898                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1899 
1900         // 'inreg' on function refers to return value
1901         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1902         if (RetInReg)
1903           Flags.setInReg();
1904 
1905         if (I.getOperand(0)->getType()->isPointerTy()) {
1906           Flags.setPointer();
1907           Flags.setPointerAddrSpace(
1908               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1909         }
1910 
1911         if (NeedsRegBlock) {
1912           Flags.setInConsecutiveRegs();
1913           if (j == NumValues - 1)
1914             Flags.setInConsecutiveRegsLast();
1915         }
1916 
1917         // Propagate extension type if any
1918         if (ExtendKind == ISD::SIGN_EXTEND)
1919           Flags.setSExt();
1920         else if (ExtendKind == ISD::ZERO_EXTEND)
1921           Flags.setZExt();
1922 
1923         for (unsigned i = 0; i < NumParts; ++i) {
1924           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1925                                         VT, /*isfixed=*/true, 0, 0));
1926           OutVals.push_back(Parts[i]);
1927         }
1928       }
1929     }
1930   }
1931 
1932   // Push in swifterror virtual register as the last element of Outs. This makes
1933   // sure swifterror virtual register will be returned in the swifterror
1934   // physical register.
1935   const Function *F = I.getParent()->getParent();
1936   if (TLI.supportSwiftError() &&
1937       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1938     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
1939     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1940     Flags.setSwiftError();
1941     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1942                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1943                                   true /*isfixed*/, 1 /*origidx*/,
1944                                   0 /*partOffs*/));
1945     // Create SDNode for the swifterror virtual register.
1946     OutVals.push_back(
1947         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
1948                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
1949                         EVT(TLI.getPointerTy(DL))));
1950   }
1951 
1952   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1953   CallingConv::ID CallConv =
1954     DAG.getMachineFunction().getFunction().getCallingConv();
1955   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1956       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1957 
1958   // Verify that the target's LowerReturn behaved as expected.
1959   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1960          "LowerReturn didn't return a valid chain!");
1961 
1962   // Update the DAG with the new chain value resulting from return lowering.
1963   DAG.setRoot(Chain);
1964 }
1965 
1966 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1967 /// created for it, emit nodes to copy the value into the virtual
1968 /// registers.
1969 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1970   // Skip empty types
1971   if (V->getType()->isEmptyTy())
1972     return;
1973 
1974   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
1975   if (VMI != FuncInfo.ValueMap.end()) {
1976     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1977     CopyValueToVirtualRegister(V, VMI->second);
1978   }
1979 }
1980 
1981 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1982 /// the current basic block, add it to ValueMap now so that we'll get a
1983 /// CopyTo/FromReg.
1984 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1985   // No need to export constants.
1986   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1987 
1988   // Already exported?
1989   if (FuncInfo.isExportedInst(V)) return;
1990 
1991   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1992   CopyValueToVirtualRegister(V, Reg);
1993 }
1994 
1995 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1996                                                      const BasicBlock *FromBB) {
1997   // The operands of the setcc have to be in this block.  We don't know
1998   // how to export them from some other block.
1999   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2000     // Can export from current BB.
2001     if (VI->getParent() == FromBB)
2002       return true;
2003 
2004     // Is already exported, noop.
2005     return FuncInfo.isExportedInst(V);
2006   }
2007 
2008   // If this is an argument, we can export it if the BB is the entry block or
2009   // if it is already exported.
2010   if (isa<Argument>(V)) {
2011     if (FromBB == &FromBB->getParent()->getEntryBlock())
2012       return true;
2013 
2014     // Otherwise, can only export this if it is already exported.
2015     return FuncInfo.isExportedInst(V);
2016   }
2017 
2018   // Otherwise, constants can always be exported.
2019   return true;
2020 }
2021 
2022 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2023 BranchProbability
2024 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2025                                         const MachineBasicBlock *Dst) const {
2026   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2027   const BasicBlock *SrcBB = Src->getBasicBlock();
2028   const BasicBlock *DstBB = Dst->getBasicBlock();
2029   if (!BPI) {
2030     // If BPI is not available, set the default probability as 1 / N, where N is
2031     // the number of successors.
2032     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2033     return BranchProbability(1, SuccSize);
2034   }
2035   return BPI->getEdgeProbability(SrcBB, DstBB);
2036 }
2037 
2038 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2039                                                MachineBasicBlock *Dst,
2040                                                BranchProbability Prob) {
2041   if (!FuncInfo.BPI)
2042     Src->addSuccessorWithoutProb(Dst);
2043   else {
2044     if (Prob.isUnknown())
2045       Prob = getEdgeProbability(Src, Dst);
2046     Src->addSuccessor(Dst, Prob);
2047   }
2048 }
2049 
2050 static bool InBlock(const Value *V, const BasicBlock *BB) {
2051   if (const Instruction *I = dyn_cast<Instruction>(V))
2052     return I->getParent() == BB;
2053   return true;
2054 }
2055 
2056 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2057 /// This function emits a branch and is used at the leaves of an OR or an
2058 /// AND operator tree.
2059 void
2060 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2061                                                   MachineBasicBlock *TBB,
2062                                                   MachineBasicBlock *FBB,
2063                                                   MachineBasicBlock *CurBB,
2064                                                   MachineBasicBlock *SwitchBB,
2065                                                   BranchProbability TProb,
2066                                                   BranchProbability FProb,
2067                                                   bool InvertCond) {
2068   const BasicBlock *BB = CurBB->getBasicBlock();
2069 
2070   // If the leaf of the tree is a comparison, merge the condition into
2071   // the caseblock.
2072   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2073     // The operands of the cmp have to be in this block.  We don't know
2074     // how to export them from some other block.  If this is the first block
2075     // of the sequence, no exporting is needed.
2076     if (CurBB == SwitchBB ||
2077         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2078          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2079       ISD::CondCode Condition;
2080       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2081         ICmpInst::Predicate Pred =
2082             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2083         Condition = getICmpCondCode(Pred);
2084       } else {
2085         const FCmpInst *FC = cast<FCmpInst>(Cond);
2086         FCmpInst::Predicate Pred =
2087             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2088         Condition = getFCmpCondCode(Pred);
2089         if (TM.Options.NoNaNsFPMath)
2090           Condition = getFCmpCodeWithoutNaN(Condition);
2091       }
2092 
2093       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2094                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2095       SL->SwitchCases.push_back(CB);
2096       return;
2097     }
2098   }
2099 
2100   // Create a CaseBlock record representing this branch.
2101   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2102   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2103                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2104   SL->SwitchCases.push_back(CB);
2105 }
2106 
2107 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2108                                                MachineBasicBlock *TBB,
2109                                                MachineBasicBlock *FBB,
2110                                                MachineBasicBlock *CurBB,
2111                                                MachineBasicBlock *SwitchBB,
2112                                                Instruction::BinaryOps Opc,
2113                                                BranchProbability TProb,
2114                                                BranchProbability FProb,
2115                                                bool InvertCond) {
2116   // Skip over not part of the tree and remember to invert op and operands at
2117   // next level.
2118   Value *NotCond;
2119   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2120       InBlock(NotCond, CurBB->getBasicBlock())) {
2121     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2122                          !InvertCond);
2123     return;
2124   }
2125 
2126   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2127   // Compute the effective opcode for Cond, taking into account whether it needs
2128   // to be inverted, e.g.
2129   //   and (not (or A, B)), C
2130   // gets lowered as
2131   //   and (and (not A, not B), C)
2132   unsigned BOpc = 0;
2133   if (BOp) {
2134     BOpc = BOp->getOpcode();
2135     if (InvertCond) {
2136       if (BOpc == Instruction::And)
2137         BOpc = Instruction::Or;
2138       else if (BOpc == Instruction::Or)
2139         BOpc = Instruction::And;
2140     }
2141   }
2142 
2143   // If this node is not part of the or/and tree, emit it as a branch.
2144   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2145       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2146       BOp->getParent() != CurBB->getBasicBlock() ||
2147       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2148       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2149     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2150                                  TProb, FProb, InvertCond);
2151     return;
2152   }
2153 
2154   //  Create TmpBB after CurBB.
2155   MachineFunction::iterator BBI(CurBB);
2156   MachineFunction &MF = DAG.getMachineFunction();
2157   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2158   CurBB->getParent()->insert(++BBI, TmpBB);
2159 
2160   if (Opc == Instruction::Or) {
2161     // Codegen X | Y as:
2162     // BB1:
2163     //   jmp_if_X TBB
2164     //   jmp TmpBB
2165     // TmpBB:
2166     //   jmp_if_Y TBB
2167     //   jmp FBB
2168     //
2169 
2170     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2171     // The requirement is that
2172     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2173     //     = TrueProb for original BB.
2174     // Assuming the original probabilities are A and B, one choice is to set
2175     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2176     // A/(1+B) and 2B/(1+B). This choice assumes that
2177     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2178     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2179     // TmpBB, but the math is more complicated.
2180 
2181     auto NewTrueProb = TProb / 2;
2182     auto NewFalseProb = TProb / 2 + FProb;
2183     // Emit the LHS condition.
2184     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2185                          NewTrueProb, NewFalseProb, InvertCond);
2186 
2187     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2188     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2189     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2190     // Emit the RHS condition into TmpBB.
2191     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2192                          Probs[0], Probs[1], InvertCond);
2193   } else {
2194     assert(Opc == Instruction::And && "Unknown merge op!");
2195     // Codegen X & Y as:
2196     // BB1:
2197     //   jmp_if_X TmpBB
2198     //   jmp FBB
2199     // TmpBB:
2200     //   jmp_if_Y TBB
2201     //   jmp FBB
2202     //
2203     //  This requires creation of TmpBB after CurBB.
2204 
2205     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2206     // The requirement is that
2207     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2208     //     = FalseProb for original BB.
2209     // Assuming the original probabilities are A and B, one choice is to set
2210     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2211     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2212     // TrueProb for BB1 * FalseProb for TmpBB.
2213 
2214     auto NewTrueProb = TProb + FProb / 2;
2215     auto NewFalseProb = FProb / 2;
2216     // Emit the LHS condition.
2217     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2218                          NewTrueProb, NewFalseProb, InvertCond);
2219 
2220     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2221     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2222     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2223     // Emit the RHS condition into TmpBB.
2224     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2225                          Probs[0], Probs[1], InvertCond);
2226   }
2227 }
2228 
2229 /// If the set of cases should be emitted as a series of branches, return true.
2230 /// If we should emit this as a bunch of and/or'd together conditions, return
2231 /// false.
2232 bool
2233 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2234   if (Cases.size() != 2) return true;
2235 
2236   // If this is two comparisons of the same values or'd or and'd together, they
2237   // will get folded into a single comparison, so don't emit two blocks.
2238   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2239        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2240       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2241        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2242     return false;
2243   }
2244 
2245   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2246   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2247   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2248       Cases[0].CC == Cases[1].CC &&
2249       isa<Constant>(Cases[0].CmpRHS) &&
2250       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2251     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2252       return false;
2253     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2254       return false;
2255   }
2256 
2257   return true;
2258 }
2259 
2260 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2261   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2262 
2263   // Update machine-CFG edges.
2264   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2265 
2266   if (I.isUnconditional()) {
2267     // Update machine-CFG edges.
2268     BrMBB->addSuccessor(Succ0MBB);
2269 
2270     // If this is not a fall-through branch or optimizations are switched off,
2271     // emit the branch.
2272     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2273       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2274                               MVT::Other, getControlRoot(),
2275                               DAG.getBasicBlock(Succ0MBB)));
2276 
2277     return;
2278   }
2279 
2280   // If this condition is one of the special cases we handle, do special stuff
2281   // now.
2282   const Value *CondVal = I.getCondition();
2283   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2284 
2285   // If this is a series of conditions that are or'd or and'd together, emit
2286   // this as a sequence of branches instead of setcc's with and/or operations.
2287   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2288   // unpredictable branches, and vector extracts because those jumps are likely
2289   // expensive for any target), this should improve performance.
2290   // For example, instead of something like:
2291   //     cmp A, B
2292   //     C = seteq
2293   //     cmp D, E
2294   //     F = setle
2295   //     or C, F
2296   //     jnz foo
2297   // Emit:
2298   //     cmp A, B
2299   //     je foo
2300   //     cmp D, E
2301   //     jle foo
2302   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2303     Instruction::BinaryOps Opcode = BOp->getOpcode();
2304     Value *Vec, *BOp0 = BOp->getOperand(0), *BOp1 = BOp->getOperand(1);
2305     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2306         !I.hasMetadata(LLVMContext::MD_unpredictable) &&
2307         (Opcode == Instruction::And || Opcode == Instruction::Or) &&
2308         !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2309           match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2310       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2311                            Opcode,
2312                            getEdgeProbability(BrMBB, Succ0MBB),
2313                            getEdgeProbability(BrMBB, Succ1MBB),
2314                            /*InvertCond=*/false);
2315       // If the compares in later blocks need to use values not currently
2316       // exported from this block, export them now.  This block should always
2317       // be the first entry.
2318       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2319 
2320       // Allow some cases to be rejected.
2321       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2322         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2323           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2324           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2325         }
2326 
2327         // Emit the branch for this block.
2328         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2329         SL->SwitchCases.erase(SL->SwitchCases.begin());
2330         return;
2331       }
2332 
2333       // Okay, we decided not to do this, remove any inserted MBB's and clear
2334       // SwitchCases.
2335       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2336         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2337 
2338       SL->SwitchCases.clear();
2339     }
2340   }
2341 
2342   // Create a CaseBlock record representing this branch.
2343   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2344                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2345 
2346   // Use visitSwitchCase to actually insert the fast branch sequence for this
2347   // cond branch.
2348   visitSwitchCase(CB, BrMBB);
2349 }
2350 
2351 /// visitSwitchCase - Emits the necessary code to represent a single node in
2352 /// the binary search tree resulting from lowering a switch instruction.
2353 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2354                                           MachineBasicBlock *SwitchBB) {
2355   SDValue Cond;
2356   SDValue CondLHS = getValue(CB.CmpLHS);
2357   SDLoc dl = CB.DL;
2358 
2359   if (CB.CC == ISD::SETTRUE) {
2360     // Branch or fall through to TrueBB.
2361     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2362     SwitchBB->normalizeSuccProbs();
2363     if (CB.TrueBB != NextBlock(SwitchBB)) {
2364       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2365                               DAG.getBasicBlock(CB.TrueBB)));
2366     }
2367     return;
2368   }
2369 
2370   auto &TLI = DAG.getTargetLoweringInfo();
2371   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2372 
2373   // Build the setcc now.
2374   if (!CB.CmpMHS) {
2375     // Fold "(X == true)" to X and "(X == false)" to !X to
2376     // handle common cases produced by branch lowering.
2377     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2378         CB.CC == ISD::SETEQ)
2379       Cond = CondLHS;
2380     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2381              CB.CC == ISD::SETEQ) {
2382       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2383       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2384     } else {
2385       SDValue CondRHS = getValue(CB.CmpRHS);
2386 
2387       // If a pointer's DAG type is larger than its memory type then the DAG
2388       // values are zero-extended. This breaks signed comparisons so truncate
2389       // back to the underlying type before doing the compare.
2390       if (CondLHS.getValueType() != MemVT) {
2391         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2392         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2393       }
2394       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2395     }
2396   } else {
2397     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2398 
2399     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2400     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2401 
2402     SDValue CmpOp = getValue(CB.CmpMHS);
2403     EVT VT = CmpOp.getValueType();
2404 
2405     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2406       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2407                           ISD::SETLE);
2408     } else {
2409       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2410                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2411       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2412                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2413     }
2414   }
2415 
2416   // Update successor info
2417   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2418   // TrueBB and FalseBB are always different unless the incoming IR is
2419   // degenerate. This only happens when running llc on weird IR.
2420   if (CB.TrueBB != CB.FalseBB)
2421     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2422   SwitchBB->normalizeSuccProbs();
2423 
2424   // If the lhs block is the next block, invert the condition so that we can
2425   // fall through to the lhs instead of the rhs block.
2426   if (CB.TrueBB == NextBlock(SwitchBB)) {
2427     std::swap(CB.TrueBB, CB.FalseBB);
2428     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2429     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2430   }
2431 
2432   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2433                                MVT::Other, getControlRoot(), Cond,
2434                                DAG.getBasicBlock(CB.TrueBB));
2435 
2436   // Insert the false branch. Do this even if it's a fall through branch,
2437   // this makes it easier to do DAG optimizations which require inverting
2438   // the branch condition.
2439   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2440                        DAG.getBasicBlock(CB.FalseBB));
2441 
2442   DAG.setRoot(BrCond);
2443 }
2444 
2445 /// visitJumpTable - Emit JumpTable node in the current MBB
2446 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2447   // Emit the code for the jump table
2448   assert(JT.Reg != -1U && "Should lower JT Header first!");
2449   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2450   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2451                                      JT.Reg, PTy);
2452   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2453   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2454                                     MVT::Other, Index.getValue(1),
2455                                     Table, Index);
2456   DAG.setRoot(BrJumpTable);
2457 }
2458 
2459 /// visitJumpTableHeader - This function emits necessary code to produce index
2460 /// in the JumpTable from switch case.
2461 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2462                                                JumpTableHeader &JTH,
2463                                                MachineBasicBlock *SwitchBB) {
2464   SDLoc dl = getCurSDLoc();
2465 
2466   // Subtract the lowest switch case value from the value being switched on.
2467   SDValue SwitchOp = getValue(JTH.SValue);
2468   EVT VT = SwitchOp.getValueType();
2469   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2470                             DAG.getConstant(JTH.First, dl, VT));
2471 
2472   // The SDNode we just created, which holds the value being switched on minus
2473   // the smallest case value, needs to be copied to a virtual register so it
2474   // can be used as an index into the jump table in a subsequent basic block.
2475   // This value may be smaller or larger than the target's pointer type, and
2476   // therefore require extension or truncating.
2477   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2478   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2479 
2480   unsigned JumpTableReg =
2481       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2482   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2483                                     JumpTableReg, SwitchOp);
2484   JT.Reg = JumpTableReg;
2485 
2486   if (!JTH.OmitRangeCheck) {
2487     // Emit the range check for the jump table, and branch to the default block
2488     // for the switch statement if the value being switched on exceeds the
2489     // largest case in the switch.
2490     SDValue CMP = DAG.getSetCC(
2491         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2492                                    Sub.getValueType()),
2493         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2494 
2495     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2496                                  MVT::Other, CopyTo, CMP,
2497                                  DAG.getBasicBlock(JT.Default));
2498 
2499     // Avoid emitting unnecessary branches to the next block.
2500     if (JT.MBB != NextBlock(SwitchBB))
2501       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2502                            DAG.getBasicBlock(JT.MBB));
2503 
2504     DAG.setRoot(BrCond);
2505   } else {
2506     // Avoid emitting unnecessary branches to the next block.
2507     if (JT.MBB != NextBlock(SwitchBB))
2508       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2509                               DAG.getBasicBlock(JT.MBB)));
2510     else
2511       DAG.setRoot(CopyTo);
2512   }
2513 }
2514 
2515 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2516 /// variable if there exists one.
2517 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2518                                  SDValue &Chain) {
2519   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2520   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2521   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2522   MachineFunction &MF = DAG.getMachineFunction();
2523   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2524   MachineSDNode *Node =
2525       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2526   if (Global) {
2527     MachinePointerInfo MPInfo(Global);
2528     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2529                  MachineMemOperand::MODereferenceable;
2530     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2531         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2532     DAG.setNodeMemRefs(Node, {MemRef});
2533   }
2534   if (PtrTy != PtrMemTy)
2535     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2536   return SDValue(Node, 0);
2537 }
2538 
2539 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2540 /// tail spliced into a stack protector check success bb.
2541 ///
2542 /// For a high level explanation of how this fits into the stack protector
2543 /// generation see the comment on the declaration of class
2544 /// StackProtectorDescriptor.
2545 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2546                                                   MachineBasicBlock *ParentBB) {
2547 
2548   // First create the loads to the guard/stack slot for the comparison.
2549   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2550   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2551   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2552 
2553   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2554   int FI = MFI.getStackProtectorIndex();
2555 
2556   SDValue Guard;
2557   SDLoc dl = getCurSDLoc();
2558   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2559   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2560   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2561 
2562   // Generate code to load the content of the guard slot.
2563   SDValue GuardVal = DAG.getLoad(
2564       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2565       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2566       MachineMemOperand::MOVolatile);
2567 
2568   if (TLI.useStackGuardXorFP())
2569     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2570 
2571   // Retrieve guard check function, nullptr if instrumentation is inlined.
2572   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2573     // The target provides a guard check function to validate the guard value.
2574     // Generate a call to that function with the content of the guard slot as
2575     // argument.
2576     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2577     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2578 
2579     TargetLowering::ArgListTy Args;
2580     TargetLowering::ArgListEntry Entry;
2581     Entry.Node = GuardVal;
2582     Entry.Ty = FnTy->getParamType(0);
2583     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2584       Entry.IsInReg = true;
2585     Args.push_back(Entry);
2586 
2587     TargetLowering::CallLoweringInfo CLI(DAG);
2588     CLI.setDebugLoc(getCurSDLoc())
2589         .setChain(DAG.getEntryNode())
2590         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2591                    getValue(GuardCheckFn), std::move(Args));
2592 
2593     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2594     DAG.setRoot(Result.second);
2595     return;
2596   }
2597 
2598   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2599   // Otherwise, emit a volatile load to retrieve the stack guard value.
2600   SDValue Chain = DAG.getEntryNode();
2601   if (TLI.useLoadStackGuardNode()) {
2602     Guard = getLoadStackGuard(DAG, dl, Chain);
2603   } else {
2604     const Value *IRGuard = TLI.getSDagStackGuard(M);
2605     SDValue GuardPtr = getValue(IRGuard);
2606 
2607     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2608                         MachinePointerInfo(IRGuard, 0), Align,
2609                         MachineMemOperand::MOVolatile);
2610   }
2611 
2612   // Perform the comparison via a getsetcc.
2613   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2614                                                         *DAG.getContext(),
2615                                                         Guard.getValueType()),
2616                              Guard, GuardVal, ISD::SETNE);
2617 
2618   // If the guard/stackslot do not equal, branch to failure MBB.
2619   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2620                                MVT::Other, GuardVal.getOperand(0),
2621                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2622   // Otherwise branch to success MBB.
2623   SDValue Br = DAG.getNode(ISD::BR, dl,
2624                            MVT::Other, BrCond,
2625                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2626 
2627   DAG.setRoot(Br);
2628 }
2629 
2630 /// Codegen the failure basic block for a stack protector check.
2631 ///
2632 /// A failure stack protector machine basic block consists simply of a call to
2633 /// __stack_chk_fail().
2634 ///
2635 /// For a high level explanation of how this fits into the stack protector
2636 /// generation see the comment on the declaration of class
2637 /// StackProtectorDescriptor.
2638 void
2639 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2640   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2641   TargetLowering::MakeLibCallOptions CallOptions;
2642   CallOptions.setDiscardResult(true);
2643   SDValue Chain =
2644       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2645                       None, CallOptions, getCurSDLoc()).second;
2646   // On PS4, the "return address" must still be within the calling function,
2647   // even if it's at the very end, so emit an explicit TRAP here.
2648   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2649   if (TM.getTargetTriple().isPS4CPU())
2650     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2651   // WebAssembly needs an unreachable instruction after a non-returning call,
2652   // because the function return type can be different from __stack_chk_fail's
2653   // return type (void).
2654   if (TM.getTargetTriple().isWasm())
2655     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2656 
2657   DAG.setRoot(Chain);
2658 }
2659 
2660 /// visitBitTestHeader - This function emits necessary code to produce value
2661 /// suitable for "bit tests"
2662 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2663                                              MachineBasicBlock *SwitchBB) {
2664   SDLoc dl = getCurSDLoc();
2665 
2666   // Subtract the minimum value.
2667   SDValue SwitchOp = getValue(B.SValue);
2668   EVT VT = SwitchOp.getValueType();
2669   SDValue RangeSub =
2670       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2671 
2672   // Determine the type of the test operands.
2673   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2674   bool UsePtrType = false;
2675   if (!TLI.isTypeLegal(VT)) {
2676     UsePtrType = true;
2677   } else {
2678     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2679       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2680         // Switch table case range are encoded into series of masks.
2681         // Just use pointer type, it's guaranteed to fit.
2682         UsePtrType = true;
2683         break;
2684       }
2685   }
2686   SDValue Sub = RangeSub;
2687   if (UsePtrType) {
2688     VT = TLI.getPointerTy(DAG.getDataLayout());
2689     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2690   }
2691 
2692   B.RegVT = VT.getSimpleVT();
2693   B.Reg = FuncInfo.CreateReg(B.RegVT);
2694   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2695 
2696   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2697 
2698   if (!B.OmitRangeCheck)
2699     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2700   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2701   SwitchBB->normalizeSuccProbs();
2702 
2703   SDValue Root = CopyTo;
2704   if (!B.OmitRangeCheck) {
2705     // Conditional branch to the default block.
2706     SDValue RangeCmp = DAG.getSetCC(dl,
2707         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2708                                RangeSub.getValueType()),
2709         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2710         ISD::SETUGT);
2711 
2712     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2713                        DAG.getBasicBlock(B.Default));
2714   }
2715 
2716   // Avoid emitting unnecessary branches to the next block.
2717   if (MBB != NextBlock(SwitchBB))
2718     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2719 
2720   DAG.setRoot(Root);
2721 }
2722 
2723 /// visitBitTestCase - this function produces one "bit test"
2724 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2725                                            MachineBasicBlock* NextMBB,
2726                                            BranchProbability BranchProbToNext,
2727                                            unsigned Reg,
2728                                            BitTestCase &B,
2729                                            MachineBasicBlock *SwitchBB) {
2730   SDLoc dl = getCurSDLoc();
2731   MVT VT = BB.RegVT;
2732   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2733   SDValue Cmp;
2734   unsigned PopCount = countPopulation(B.Mask);
2735   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2736   if (PopCount == 1) {
2737     // Testing for a single bit; just compare the shift count with what it
2738     // would need to be to shift a 1 bit in that position.
2739     Cmp = DAG.getSetCC(
2740         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2741         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2742         ISD::SETEQ);
2743   } else if (PopCount == BB.Range) {
2744     // There is only one zero bit in the range, test for it directly.
2745     Cmp = DAG.getSetCC(
2746         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2747         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2748         ISD::SETNE);
2749   } else {
2750     // Make desired shift
2751     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2752                                     DAG.getConstant(1, dl, VT), ShiftOp);
2753 
2754     // Emit bit tests and jumps
2755     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2756                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2757     Cmp = DAG.getSetCC(
2758         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2759         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2760   }
2761 
2762   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2763   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2764   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2765   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2766   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2767   // one as they are relative probabilities (and thus work more like weights),
2768   // and hence we need to normalize them to let the sum of them become one.
2769   SwitchBB->normalizeSuccProbs();
2770 
2771   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2772                               MVT::Other, getControlRoot(),
2773                               Cmp, DAG.getBasicBlock(B.TargetBB));
2774 
2775   // Avoid emitting unnecessary branches to the next block.
2776   if (NextMBB != NextBlock(SwitchBB))
2777     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2778                         DAG.getBasicBlock(NextMBB));
2779 
2780   DAG.setRoot(BrAnd);
2781 }
2782 
2783 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2784   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2785 
2786   // Retrieve successors. Look through artificial IR level blocks like
2787   // catchswitch for successors.
2788   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2789   const BasicBlock *EHPadBB = I.getSuccessor(1);
2790 
2791   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2792   // have to do anything here to lower funclet bundles.
2793   assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt,
2794                                         LLVMContext::OB_gc_transition,
2795                                         LLVMContext::OB_gc_live,
2796                                         LLVMContext::OB_funclet,
2797                                         LLVMContext::OB_cfguardtarget}) &&
2798          "Cannot lower invokes with arbitrary operand bundles yet!");
2799 
2800   const Value *Callee(I.getCalledOperand());
2801   const Function *Fn = dyn_cast<Function>(Callee);
2802   if (isa<InlineAsm>(Callee))
2803     visitInlineAsm(I);
2804   else if (Fn && Fn->isIntrinsic()) {
2805     switch (Fn->getIntrinsicID()) {
2806     default:
2807       llvm_unreachable("Cannot invoke this intrinsic");
2808     case Intrinsic::donothing:
2809       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2810       break;
2811     case Intrinsic::experimental_patchpoint_void:
2812     case Intrinsic::experimental_patchpoint_i64:
2813       visitPatchpoint(I, EHPadBB);
2814       break;
2815     case Intrinsic::experimental_gc_statepoint:
2816       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2817       break;
2818     case Intrinsic::wasm_rethrow_in_catch: {
2819       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2820       // special because it can be invoked, so we manually lower it to a DAG
2821       // node here.
2822       SmallVector<SDValue, 8> Ops;
2823       Ops.push_back(getRoot()); // inchain
2824       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2825       Ops.push_back(
2826           DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(),
2827                                 TLI.getPointerTy(DAG.getDataLayout())));
2828       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2829       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2830       break;
2831     }
2832     }
2833   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2834     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2835     // Eventually we will support lowering the @llvm.experimental.deoptimize
2836     // intrinsic, and right now there are no plans to support other intrinsics
2837     // with deopt state.
2838     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2839   } else {
2840     LowerCallTo(I, getValue(Callee), false, EHPadBB);
2841   }
2842 
2843   // If the value of the invoke is used outside of its defining block, make it
2844   // available as a virtual register.
2845   // We already took care of the exported value for the statepoint instruction
2846   // during call to the LowerStatepoint.
2847   if (!isa<GCStatepointInst>(I)) {
2848     CopyToExportRegsIfNeeded(&I);
2849   }
2850 
2851   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2852   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2853   BranchProbability EHPadBBProb =
2854       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2855           : BranchProbability::getZero();
2856   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2857 
2858   // Update successor info.
2859   addSuccessorWithProb(InvokeMBB, Return);
2860   for (auto &UnwindDest : UnwindDests) {
2861     UnwindDest.first->setIsEHPad();
2862     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2863   }
2864   InvokeMBB->normalizeSuccProbs();
2865 
2866   // Drop into normal successor.
2867   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2868                           DAG.getBasicBlock(Return)));
2869 }
2870 
2871 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2872   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2873 
2874   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2875   // have to do anything here to lower funclet bundles.
2876   assert(!I.hasOperandBundlesOtherThan(
2877              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2878          "Cannot lower callbrs with arbitrary operand bundles yet!");
2879 
2880   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
2881   visitInlineAsm(I);
2882   CopyToExportRegsIfNeeded(&I);
2883 
2884   // Retrieve successors.
2885   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2886 
2887   // Update successor info.
2888   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
2889   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2890     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2891     addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
2892     Target->setIsInlineAsmBrIndirectTarget();
2893   }
2894   CallBrMBB->normalizeSuccProbs();
2895 
2896   // Drop into default successor.
2897   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2898                           MVT::Other, getControlRoot(),
2899                           DAG.getBasicBlock(Return)));
2900 }
2901 
2902 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2903   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2904 }
2905 
2906 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2907   assert(FuncInfo.MBB->isEHPad() &&
2908          "Call to landingpad not in landing pad!");
2909 
2910   // If there aren't registers to copy the values into (e.g., during SjLj
2911   // exceptions), then don't bother to create these DAG nodes.
2912   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2913   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2914   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2915       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2916     return;
2917 
2918   // If landingpad's return type is token type, we don't create DAG nodes
2919   // for its exception pointer and selector value. The extraction of exception
2920   // pointer or selector value from token type landingpads is not currently
2921   // supported.
2922   if (LP.getType()->isTokenTy())
2923     return;
2924 
2925   SmallVector<EVT, 2> ValueVTs;
2926   SDLoc dl = getCurSDLoc();
2927   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2928   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2929 
2930   // Get the two live-in registers as SDValues. The physregs have already been
2931   // copied into virtual registers.
2932   SDValue Ops[2];
2933   if (FuncInfo.ExceptionPointerVirtReg) {
2934     Ops[0] = DAG.getZExtOrTrunc(
2935         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2936                            FuncInfo.ExceptionPointerVirtReg,
2937                            TLI.getPointerTy(DAG.getDataLayout())),
2938         dl, ValueVTs[0]);
2939   } else {
2940     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2941   }
2942   Ops[1] = DAG.getZExtOrTrunc(
2943       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2944                          FuncInfo.ExceptionSelectorVirtReg,
2945                          TLI.getPointerTy(DAG.getDataLayout())),
2946       dl, ValueVTs[1]);
2947 
2948   // Merge into one.
2949   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2950                             DAG.getVTList(ValueVTs), Ops);
2951   setValue(&LP, Res);
2952 }
2953 
2954 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2955                                            MachineBasicBlock *Last) {
2956   // Update JTCases.
2957   for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
2958     if (SL->JTCases[i].first.HeaderBB == First)
2959       SL->JTCases[i].first.HeaderBB = Last;
2960 
2961   // Update BitTestCases.
2962   for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
2963     if (SL->BitTestCases[i].Parent == First)
2964       SL->BitTestCases[i].Parent = Last;
2965 }
2966 
2967 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2968   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2969 
2970   // Update machine-CFG edges with unique successors.
2971   SmallSet<BasicBlock*, 32> Done;
2972   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2973     BasicBlock *BB = I.getSuccessor(i);
2974     bool Inserted = Done.insert(BB).second;
2975     if (!Inserted)
2976         continue;
2977 
2978     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2979     addSuccessorWithProb(IndirectBrMBB, Succ);
2980   }
2981   IndirectBrMBB->normalizeSuccProbs();
2982 
2983   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2984                           MVT::Other, getControlRoot(),
2985                           getValue(I.getAddress())));
2986 }
2987 
2988 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2989   if (!DAG.getTarget().Options.TrapUnreachable)
2990     return;
2991 
2992   // We may be able to ignore unreachable behind a noreturn call.
2993   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2994     const BasicBlock &BB = *I.getParent();
2995     if (&I != &BB.front()) {
2996       BasicBlock::const_iterator PredI =
2997         std::prev(BasicBlock::const_iterator(&I));
2998       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2999         if (Call->doesNotReturn())
3000           return;
3001       }
3002     }
3003   }
3004 
3005   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3006 }
3007 
3008 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3009   SDNodeFlags Flags;
3010 
3011   SDValue Op = getValue(I.getOperand(0));
3012   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3013                                     Op, Flags);
3014   setValue(&I, UnNodeValue);
3015 }
3016 
3017 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3018   SDNodeFlags Flags;
3019   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3020     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3021     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3022   }
3023   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
3024     Flags.setExact(ExactOp->isExact());
3025   }
3026 
3027   SDValue Op1 = getValue(I.getOperand(0));
3028   SDValue Op2 = getValue(I.getOperand(1));
3029   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3030                                      Op1, Op2, Flags);
3031   setValue(&I, BinNodeValue);
3032 }
3033 
3034 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3035   SDValue Op1 = getValue(I.getOperand(0));
3036   SDValue Op2 = getValue(I.getOperand(1));
3037 
3038   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3039       Op1.getValueType(), DAG.getDataLayout());
3040 
3041   // Coerce the shift amount to the right type if we can.
3042   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3043     unsigned ShiftSize = ShiftTy.getSizeInBits();
3044     unsigned Op2Size = Op2.getValueSizeInBits();
3045     SDLoc DL = getCurSDLoc();
3046 
3047     // If the operand is smaller than the shift count type, promote it.
3048     if (ShiftSize > Op2Size)
3049       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3050 
3051     // If the operand is larger than the shift count type but the shift
3052     // count type has enough bits to represent any shift value, truncate
3053     // it now. This is a common case and it exposes the truncate to
3054     // optimization early.
3055     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3056       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3057     // Otherwise we'll need to temporarily settle for some other convenient
3058     // type.  Type legalization will make adjustments once the shiftee is split.
3059     else
3060       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3061   }
3062 
3063   bool nuw = false;
3064   bool nsw = false;
3065   bool exact = false;
3066 
3067   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3068 
3069     if (const OverflowingBinaryOperator *OFBinOp =
3070             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3071       nuw = OFBinOp->hasNoUnsignedWrap();
3072       nsw = OFBinOp->hasNoSignedWrap();
3073     }
3074     if (const PossiblyExactOperator *ExactOp =
3075             dyn_cast<const PossiblyExactOperator>(&I))
3076       exact = ExactOp->isExact();
3077   }
3078   SDNodeFlags Flags;
3079   Flags.setExact(exact);
3080   Flags.setNoSignedWrap(nsw);
3081   Flags.setNoUnsignedWrap(nuw);
3082   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3083                             Flags);
3084   setValue(&I, Res);
3085 }
3086 
3087 void SelectionDAGBuilder::visitSDiv(const User &I) {
3088   SDValue Op1 = getValue(I.getOperand(0));
3089   SDValue Op2 = getValue(I.getOperand(1));
3090 
3091   SDNodeFlags Flags;
3092   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3093                  cast<PossiblyExactOperator>(&I)->isExact());
3094   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3095                            Op2, Flags));
3096 }
3097 
3098 void SelectionDAGBuilder::visitICmp(const User &I) {
3099   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3100   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3101     predicate = IC->getPredicate();
3102   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3103     predicate = ICmpInst::Predicate(IC->getPredicate());
3104   SDValue Op1 = getValue(I.getOperand(0));
3105   SDValue Op2 = getValue(I.getOperand(1));
3106   ISD::CondCode Opcode = getICmpCondCode(predicate);
3107 
3108   auto &TLI = DAG.getTargetLoweringInfo();
3109   EVT MemVT =
3110       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3111 
3112   // If a pointer's DAG type is larger than its memory type then the DAG values
3113   // are zero-extended. This breaks signed comparisons so truncate back to the
3114   // underlying type before doing the compare.
3115   if (Op1.getValueType() != MemVT) {
3116     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3117     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3118   }
3119 
3120   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3121                                                         I.getType());
3122   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3123 }
3124 
3125 void SelectionDAGBuilder::visitFCmp(const User &I) {
3126   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3127   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3128     predicate = FC->getPredicate();
3129   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3130     predicate = FCmpInst::Predicate(FC->getPredicate());
3131   SDValue Op1 = getValue(I.getOperand(0));
3132   SDValue Op2 = getValue(I.getOperand(1));
3133 
3134   ISD::CondCode Condition = getFCmpCondCode(predicate);
3135   auto *FPMO = dyn_cast<FPMathOperator>(&I);
3136   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
3137     Condition = getFCmpCodeWithoutNaN(Condition);
3138 
3139   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3140                                                         I.getType());
3141   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3142 }
3143 
3144 // Check if the condition of the select has one use or two users that are both
3145 // selects with the same condition.
3146 static bool hasOnlySelectUsers(const Value *Cond) {
3147   return llvm::all_of(Cond->users(), [](const Value *V) {
3148     return isa<SelectInst>(V);
3149   });
3150 }
3151 
3152 void SelectionDAGBuilder::visitSelect(const User &I) {
3153   SmallVector<EVT, 4> ValueVTs;
3154   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3155                   ValueVTs);
3156   unsigned NumValues = ValueVTs.size();
3157   if (NumValues == 0) return;
3158 
3159   SmallVector<SDValue, 4> Values(NumValues);
3160   SDValue Cond     = getValue(I.getOperand(0));
3161   SDValue LHSVal   = getValue(I.getOperand(1));
3162   SDValue RHSVal   = getValue(I.getOperand(2));
3163   SmallVector<SDValue, 1> BaseOps(1, Cond);
3164   ISD::NodeType OpCode =
3165       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3166 
3167   bool IsUnaryAbs = false;
3168 
3169   // Min/max matching is only viable if all output VTs are the same.
3170   if (is_splat(ValueVTs)) {
3171     EVT VT = ValueVTs[0];
3172     LLVMContext &Ctx = *DAG.getContext();
3173     auto &TLI = DAG.getTargetLoweringInfo();
3174 
3175     // We care about the legality of the operation after it has been type
3176     // legalized.
3177     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3178       VT = TLI.getTypeToTransformTo(Ctx, VT);
3179 
3180     // If the vselect is legal, assume we want to leave this as a vector setcc +
3181     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3182     // min/max is legal on the scalar type.
3183     bool UseScalarMinMax = VT.isVector() &&
3184       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3185 
3186     Value *LHS, *RHS;
3187     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3188     ISD::NodeType Opc = ISD::DELETED_NODE;
3189     switch (SPR.Flavor) {
3190     case SPF_UMAX:    Opc = ISD::UMAX; break;
3191     case SPF_UMIN:    Opc = ISD::UMIN; break;
3192     case SPF_SMAX:    Opc = ISD::SMAX; break;
3193     case SPF_SMIN:    Opc = ISD::SMIN; break;
3194     case SPF_FMINNUM:
3195       switch (SPR.NaNBehavior) {
3196       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3197       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3198       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3199       case SPNB_RETURNS_ANY: {
3200         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3201           Opc = ISD::FMINNUM;
3202         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3203           Opc = ISD::FMINIMUM;
3204         else if (UseScalarMinMax)
3205           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3206             ISD::FMINNUM : ISD::FMINIMUM;
3207         break;
3208       }
3209       }
3210       break;
3211     case SPF_FMAXNUM:
3212       switch (SPR.NaNBehavior) {
3213       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3214       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3215       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3216       case SPNB_RETURNS_ANY:
3217 
3218         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3219           Opc = ISD::FMAXNUM;
3220         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3221           Opc = ISD::FMAXIMUM;
3222         else if (UseScalarMinMax)
3223           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3224             ISD::FMAXNUM : ISD::FMAXIMUM;
3225         break;
3226       }
3227       break;
3228     case SPF_ABS:
3229       IsUnaryAbs = true;
3230       Opc = ISD::ABS;
3231       break;
3232     case SPF_NABS:
3233       // TODO: we need to produce sub(0, abs(X)).
3234     default: break;
3235     }
3236 
3237     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3238         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3239          (UseScalarMinMax &&
3240           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3241         // If the underlying comparison instruction is used by any other
3242         // instruction, the consumed instructions won't be destroyed, so it is
3243         // not profitable to convert to a min/max.
3244         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3245       OpCode = Opc;
3246       LHSVal = getValue(LHS);
3247       RHSVal = getValue(RHS);
3248       BaseOps.clear();
3249     }
3250 
3251     if (IsUnaryAbs) {
3252       OpCode = Opc;
3253       LHSVal = getValue(LHS);
3254       BaseOps.clear();
3255     }
3256   }
3257 
3258   if (IsUnaryAbs) {
3259     for (unsigned i = 0; i != NumValues; ++i) {
3260       Values[i] =
3261           DAG.getNode(OpCode, getCurSDLoc(),
3262                       LHSVal.getNode()->getValueType(LHSVal.getResNo() + i),
3263                       SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3264     }
3265   } else {
3266     for (unsigned i = 0; i != NumValues; ++i) {
3267       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3268       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3269       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3270       Values[i] = DAG.getNode(
3271           OpCode, getCurSDLoc(),
3272           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops);
3273     }
3274   }
3275 
3276   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3277                            DAG.getVTList(ValueVTs), Values));
3278 }
3279 
3280 void SelectionDAGBuilder::visitTrunc(const User &I) {
3281   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3282   SDValue N = getValue(I.getOperand(0));
3283   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3284                                                         I.getType());
3285   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3286 }
3287 
3288 void SelectionDAGBuilder::visitZExt(const User &I) {
3289   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3290   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3291   SDValue N = getValue(I.getOperand(0));
3292   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3293                                                         I.getType());
3294   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3295 }
3296 
3297 void SelectionDAGBuilder::visitSExt(const User &I) {
3298   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3299   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3300   SDValue N = getValue(I.getOperand(0));
3301   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3302                                                         I.getType());
3303   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3304 }
3305 
3306 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3307   // FPTrunc is never a no-op cast, no need to check
3308   SDValue N = getValue(I.getOperand(0));
3309   SDLoc dl = getCurSDLoc();
3310   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3311   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3312   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3313                            DAG.getTargetConstant(
3314                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3315 }
3316 
3317 void SelectionDAGBuilder::visitFPExt(const User &I) {
3318   // FPExt is never a no-op cast, no need to check
3319   SDValue N = getValue(I.getOperand(0));
3320   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3321                                                         I.getType());
3322   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3323 }
3324 
3325 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3326   // FPToUI is never a no-op cast, no need to check
3327   SDValue N = getValue(I.getOperand(0));
3328   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3329                                                         I.getType());
3330   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3331 }
3332 
3333 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3334   // FPToSI is never a no-op cast, no need to check
3335   SDValue N = getValue(I.getOperand(0));
3336   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3337                                                         I.getType());
3338   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3339 }
3340 
3341 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3342   // UIToFP is never a no-op cast, no need to check
3343   SDValue N = getValue(I.getOperand(0));
3344   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3345                                                         I.getType());
3346   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3347 }
3348 
3349 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3350   // SIToFP is never a no-op cast, no need to check
3351   SDValue N = getValue(I.getOperand(0));
3352   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3353                                                         I.getType());
3354   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3355 }
3356 
3357 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3358   // What to do depends on the size of the integer and the size of the pointer.
3359   // We can either truncate, zero extend, or no-op, accordingly.
3360   SDValue N = getValue(I.getOperand(0));
3361   auto &TLI = DAG.getTargetLoweringInfo();
3362   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3363                                                         I.getType());
3364   EVT PtrMemVT =
3365       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3366   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3367   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3368   setValue(&I, N);
3369 }
3370 
3371 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3372   // What to do depends on the size of the integer and the size of the pointer.
3373   // We can either truncate, zero extend, or no-op, accordingly.
3374   SDValue N = getValue(I.getOperand(0));
3375   auto &TLI = DAG.getTargetLoweringInfo();
3376   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3377   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3378   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3379   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3380   setValue(&I, N);
3381 }
3382 
3383 void SelectionDAGBuilder::visitBitCast(const User &I) {
3384   SDValue N = getValue(I.getOperand(0));
3385   SDLoc dl = getCurSDLoc();
3386   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3387                                                         I.getType());
3388 
3389   // BitCast assures us that source and destination are the same size so this is
3390   // either a BITCAST or a no-op.
3391   if (DestVT != N.getValueType())
3392     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3393                              DestVT, N)); // convert types.
3394   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3395   // might fold any kind of constant expression to an integer constant and that
3396   // is not what we are looking for. Only recognize a bitcast of a genuine
3397   // constant integer as an opaque constant.
3398   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3399     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3400                                  /*isOpaque*/true));
3401   else
3402     setValue(&I, N);            // noop cast.
3403 }
3404 
3405 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3406   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3407   const Value *SV = I.getOperand(0);
3408   SDValue N = getValue(SV);
3409   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3410 
3411   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3412   unsigned DestAS = I.getType()->getPointerAddressSpace();
3413 
3414   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3415     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3416 
3417   setValue(&I, N);
3418 }
3419 
3420 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3421   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3422   SDValue InVec = getValue(I.getOperand(0));
3423   SDValue InVal = getValue(I.getOperand(1));
3424   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3425                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3426   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3427                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3428                            InVec, InVal, InIdx));
3429 }
3430 
3431 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3432   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3433   SDValue InVec = getValue(I.getOperand(0));
3434   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3435                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3436   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3437                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3438                            InVec, InIdx));
3439 }
3440 
3441 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3442   SDValue Src1 = getValue(I.getOperand(0));
3443   SDValue Src2 = getValue(I.getOperand(1));
3444   ArrayRef<int> Mask;
3445   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3446     Mask = SVI->getShuffleMask();
3447   else
3448     Mask = cast<ConstantExpr>(I).getShuffleMask();
3449   SDLoc DL = getCurSDLoc();
3450   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3451   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3452   EVT SrcVT = Src1.getValueType();
3453 
3454   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3455       VT.isScalableVector()) {
3456     // Canonical splat form of first element of first input vector.
3457     SDValue FirstElt =
3458         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3459                     DAG.getVectorIdxConstant(0, DL));
3460     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3461     return;
3462   }
3463 
3464   // For now, we only handle splats for scalable vectors.
3465   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3466   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3467   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3468 
3469   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3470   unsigned MaskNumElts = Mask.size();
3471 
3472   if (SrcNumElts == MaskNumElts) {
3473     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3474     return;
3475   }
3476 
3477   // Normalize the shuffle vector since mask and vector length don't match.
3478   if (SrcNumElts < MaskNumElts) {
3479     // Mask is longer than the source vectors. We can use concatenate vector to
3480     // make the mask and vectors lengths match.
3481 
3482     if (MaskNumElts % SrcNumElts == 0) {
3483       // Mask length is a multiple of the source vector length.
3484       // Check if the shuffle is some kind of concatenation of the input
3485       // vectors.
3486       unsigned NumConcat = MaskNumElts / SrcNumElts;
3487       bool IsConcat = true;
3488       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3489       for (unsigned i = 0; i != MaskNumElts; ++i) {
3490         int Idx = Mask[i];
3491         if (Idx < 0)
3492           continue;
3493         // Ensure the indices in each SrcVT sized piece are sequential and that
3494         // the same source is used for the whole piece.
3495         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3496             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3497              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3498           IsConcat = false;
3499           break;
3500         }
3501         // Remember which source this index came from.
3502         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3503       }
3504 
3505       // The shuffle is concatenating multiple vectors together. Just emit
3506       // a CONCAT_VECTORS operation.
3507       if (IsConcat) {
3508         SmallVector<SDValue, 8> ConcatOps;
3509         for (auto Src : ConcatSrcs) {
3510           if (Src < 0)
3511             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3512           else if (Src == 0)
3513             ConcatOps.push_back(Src1);
3514           else
3515             ConcatOps.push_back(Src2);
3516         }
3517         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3518         return;
3519       }
3520     }
3521 
3522     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3523     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3524     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3525                                     PaddedMaskNumElts);
3526 
3527     // Pad both vectors with undefs to make them the same length as the mask.
3528     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3529 
3530     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3531     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3532     MOps1[0] = Src1;
3533     MOps2[0] = Src2;
3534 
3535     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3536     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3537 
3538     // Readjust mask for new input vector length.
3539     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3540     for (unsigned i = 0; i != MaskNumElts; ++i) {
3541       int Idx = Mask[i];
3542       if (Idx >= (int)SrcNumElts)
3543         Idx -= SrcNumElts - PaddedMaskNumElts;
3544       MappedOps[i] = Idx;
3545     }
3546 
3547     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3548 
3549     // If the concatenated vector was padded, extract a subvector with the
3550     // correct number of elements.
3551     if (MaskNumElts != PaddedMaskNumElts)
3552       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3553                            DAG.getVectorIdxConstant(0, DL));
3554 
3555     setValue(&I, Result);
3556     return;
3557   }
3558 
3559   if (SrcNumElts > MaskNumElts) {
3560     // Analyze the access pattern of the vector to see if we can extract
3561     // two subvectors and do the shuffle.
3562     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3563     bool CanExtract = true;
3564     for (int Idx : Mask) {
3565       unsigned Input = 0;
3566       if (Idx < 0)
3567         continue;
3568 
3569       if (Idx >= (int)SrcNumElts) {
3570         Input = 1;
3571         Idx -= SrcNumElts;
3572       }
3573 
3574       // If all the indices come from the same MaskNumElts sized portion of
3575       // the sources we can use extract. Also make sure the extract wouldn't
3576       // extract past the end of the source.
3577       int NewStartIdx = alignDown(Idx, MaskNumElts);
3578       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3579           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3580         CanExtract = false;
3581       // Make sure we always update StartIdx as we use it to track if all
3582       // elements are undef.
3583       StartIdx[Input] = NewStartIdx;
3584     }
3585 
3586     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3587       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3588       return;
3589     }
3590     if (CanExtract) {
3591       // Extract appropriate subvector and generate a vector shuffle
3592       for (unsigned Input = 0; Input < 2; ++Input) {
3593         SDValue &Src = Input == 0 ? Src1 : Src2;
3594         if (StartIdx[Input] < 0)
3595           Src = DAG.getUNDEF(VT);
3596         else {
3597           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3598                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3599         }
3600       }
3601 
3602       // Calculate new mask.
3603       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3604       for (int &Idx : MappedOps) {
3605         if (Idx >= (int)SrcNumElts)
3606           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3607         else if (Idx >= 0)
3608           Idx -= StartIdx[0];
3609       }
3610 
3611       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3612       return;
3613     }
3614   }
3615 
3616   // We can't use either concat vectors or extract subvectors so fall back to
3617   // replacing the shuffle with extract and build vector.
3618   // to insert and build vector.
3619   EVT EltVT = VT.getVectorElementType();
3620   SmallVector<SDValue,8> Ops;
3621   for (int Idx : Mask) {
3622     SDValue Res;
3623 
3624     if (Idx < 0) {
3625       Res = DAG.getUNDEF(EltVT);
3626     } else {
3627       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3628       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3629 
3630       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3631                         DAG.getVectorIdxConstant(Idx, DL));
3632     }
3633 
3634     Ops.push_back(Res);
3635   }
3636 
3637   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3638 }
3639 
3640 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3641   ArrayRef<unsigned> Indices;
3642   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3643     Indices = IV->getIndices();
3644   else
3645     Indices = cast<ConstantExpr>(&I)->getIndices();
3646 
3647   const Value *Op0 = I.getOperand(0);
3648   const Value *Op1 = I.getOperand(1);
3649   Type *AggTy = I.getType();
3650   Type *ValTy = Op1->getType();
3651   bool IntoUndef = isa<UndefValue>(Op0);
3652   bool FromUndef = isa<UndefValue>(Op1);
3653 
3654   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3655 
3656   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3657   SmallVector<EVT, 4> AggValueVTs;
3658   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3659   SmallVector<EVT, 4> ValValueVTs;
3660   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3661 
3662   unsigned NumAggValues = AggValueVTs.size();
3663   unsigned NumValValues = ValValueVTs.size();
3664   SmallVector<SDValue, 4> Values(NumAggValues);
3665 
3666   // Ignore an insertvalue that produces an empty object
3667   if (!NumAggValues) {
3668     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3669     return;
3670   }
3671 
3672   SDValue Agg = getValue(Op0);
3673   unsigned i = 0;
3674   // Copy the beginning value(s) from the original aggregate.
3675   for (; i != LinearIndex; ++i)
3676     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3677                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3678   // Copy values from the inserted value(s).
3679   if (NumValValues) {
3680     SDValue Val = getValue(Op1);
3681     for (; i != LinearIndex + NumValValues; ++i)
3682       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3683                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3684   }
3685   // Copy remaining value(s) from the original aggregate.
3686   for (; i != NumAggValues; ++i)
3687     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3688                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3689 
3690   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3691                            DAG.getVTList(AggValueVTs), Values));
3692 }
3693 
3694 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3695   ArrayRef<unsigned> Indices;
3696   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3697     Indices = EV->getIndices();
3698   else
3699     Indices = cast<ConstantExpr>(&I)->getIndices();
3700 
3701   const Value *Op0 = I.getOperand(0);
3702   Type *AggTy = Op0->getType();
3703   Type *ValTy = I.getType();
3704   bool OutOfUndef = isa<UndefValue>(Op0);
3705 
3706   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3707 
3708   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3709   SmallVector<EVT, 4> ValValueVTs;
3710   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3711 
3712   unsigned NumValValues = ValValueVTs.size();
3713 
3714   // Ignore a extractvalue that produces an empty object
3715   if (!NumValValues) {
3716     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3717     return;
3718   }
3719 
3720   SmallVector<SDValue, 4> Values(NumValValues);
3721 
3722   SDValue Agg = getValue(Op0);
3723   // Copy out the selected value(s).
3724   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3725     Values[i - LinearIndex] =
3726       OutOfUndef ?
3727         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3728         SDValue(Agg.getNode(), Agg.getResNo() + i);
3729 
3730   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3731                            DAG.getVTList(ValValueVTs), Values));
3732 }
3733 
3734 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3735   Value *Op0 = I.getOperand(0);
3736   // Note that the pointer operand may be a vector of pointers. Take the scalar
3737   // element which holds a pointer.
3738   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3739   SDValue N = getValue(Op0);
3740   SDLoc dl = getCurSDLoc();
3741   auto &TLI = DAG.getTargetLoweringInfo();
3742 
3743   // Normalize Vector GEP - all scalar operands should be converted to the
3744   // splat vector.
3745   bool IsVectorGEP = I.getType()->isVectorTy();
3746   ElementCount VectorElementCount =
3747       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3748                   : ElementCount(0, false);
3749 
3750   if (IsVectorGEP && !N.getValueType().isVector()) {
3751     LLVMContext &Context = *DAG.getContext();
3752     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3753     if (VectorElementCount.Scalable)
3754       N = DAG.getSplatVector(VT, dl, N);
3755     else
3756       N = DAG.getSplatBuildVector(VT, dl, N);
3757   }
3758 
3759   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3760        GTI != E; ++GTI) {
3761     const Value *Idx = GTI.getOperand();
3762     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3763       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3764       if (Field) {
3765         // N = N + Offset
3766         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3767 
3768         // In an inbounds GEP with an offset that is nonnegative even when
3769         // interpreted as signed, assume there is no unsigned overflow.
3770         SDNodeFlags Flags;
3771         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3772           Flags.setNoUnsignedWrap(true);
3773 
3774         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3775                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3776       }
3777     } else {
3778       // IdxSize is the width of the arithmetic according to IR semantics.
3779       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3780       // (and fix up the result later).
3781       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3782       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3783       TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
3784       // We intentionally mask away the high bits here; ElementSize may not
3785       // fit in IdxTy.
3786       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3787       bool ElementScalable = ElementSize.isScalable();
3788 
3789       // If this is a scalar constant or a splat vector of constants,
3790       // handle it quickly.
3791       const auto *C = dyn_cast<Constant>(Idx);
3792       if (C && isa<VectorType>(C->getType()))
3793         C = C->getSplatValue();
3794 
3795       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3796       if (CI && CI->isZero())
3797         continue;
3798       if (CI && !ElementScalable) {
3799         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3800         LLVMContext &Context = *DAG.getContext();
3801         SDValue OffsVal;
3802         if (IsVectorGEP)
3803           OffsVal = DAG.getConstant(
3804               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3805         else
3806           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3807 
3808         // In an inbounds GEP with an offset that is nonnegative even when
3809         // interpreted as signed, assume there is no unsigned overflow.
3810         SDNodeFlags Flags;
3811         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3812           Flags.setNoUnsignedWrap(true);
3813 
3814         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3815 
3816         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3817         continue;
3818       }
3819 
3820       // N = N + Idx * ElementMul;
3821       SDValue IdxN = getValue(Idx);
3822 
3823       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3824         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3825                                   VectorElementCount);
3826         if (VectorElementCount.Scalable)
3827           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3828         else
3829           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3830       }
3831 
3832       // If the index is smaller or larger than intptr_t, truncate or extend
3833       // it.
3834       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3835 
3836       if (ElementScalable) {
3837         EVT VScaleTy = N.getValueType().getScalarType();
3838         SDValue VScale = DAG.getNode(
3839             ISD::VSCALE, dl, VScaleTy,
3840             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3841         if (IsVectorGEP)
3842           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3843         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3844       } else {
3845         // If this is a multiply by a power of two, turn it into a shl
3846         // immediately.  This is a very common case.
3847         if (ElementMul != 1) {
3848           if (ElementMul.isPowerOf2()) {
3849             unsigned Amt = ElementMul.logBase2();
3850             IdxN = DAG.getNode(ISD::SHL, dl,
3851                                N.getValueType(), IdxN,
3852                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3853           } else {
3854             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3855                                             IdxN.getValueType());
3856             IdxN = DAG.getNode(ISD::MUL, dl,
3857                                N.getValueType(), IdxN, Scale);
3858           }
3859         }
3860       }
3861 
3862       N = DAG.getNode(ISD::ADD, dl,
3863                       N.getValueType(), N, IdxN);
3864     }
3865   }
3866 
3867   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3868   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3869   if (IsVectorGEP) {
3870     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
3871     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
3872   }
3873 
3874   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3875     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3876 
3877   setValue(&I, N);
3878 }
3879 
3880 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3881   // If this is a fixed sized alloca in the entry block of the function,
3882   // allocate it statically on the stack.
3883   if (FuncInfo.StaticAllocaMap.count(&I))
3884     return;   // getValue will auto-populate this.
3885 
3886   SDLoc dl = getCurSDLoc();
3887   Type *Ty = I.getAllocatedType();
3888   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3889   auto &DL = DAG.getDataLayout();
3890   uint64_t TySize = DL.getTypeAllocSize(Ty);
3891   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
3892 
3893   SDValue AllocSize = getValue(I.getArraySize());
3894 
3895   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3896   if (AllocSize.getValueType() != IntPtr)
3897     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3898 
3899   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3900                           AllocSize,
3901                           DAG.getConstant(TySize, dl, IntPtr));
3902 
3903   // Handle alignment.  If the requested alignment is less than or equal to
3904   // the stack alignment, ignore it.  If the size is greater than or equal to
3905   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3906   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
3907   if (*Alignment <= StackAlign)
3908     Alignment = None;
3909 
3910   const uint64_t StackAlignMask = StackAlign.value() - 1U;
3911   // Round the size of the allocation up to the stack alignment size
3912   // by add SA-1 to the size. This doesn't overflow because we're computing
3913   // an address inside an alloca.
3914   SDNodeFlags Flags;
3915   Flags.setNoUnsignedWrap(true);
3916   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3917                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
3918 
3919   // Mask out the low bits for alignment purposes.
3920   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3921                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
3922 
3923   SDValue Ops[] = {
3924       getRoot(), AllocSize,
3925       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
3926   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3927   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3928   setValue(&I, DSA);
3929   DAG.setRoot(DSA.getValue(1));
3930 
3931   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3932 }
3933 
3934 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3935   if (I.isAtomic())
3936     return visitAtomicLoad(I);
3937 
3938   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3939   const Value *SV = I.getOperand(0);
3940   if (TLI.supportSwiftError()) {
3941     // Swifterror values can come from either a function parameter with
3942     // swifterror attribute or an alloca with swifterror attribute.
3943     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3944       if (Arg->hasSwiftErrorAttr())
3945         return visitLoadFromSwiftError(I);
3946     }
3947 
3948     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3949       if (Alloca->isSwiftError())
3950         return visitLoadFromSwiftError(I);
3951     }
3952   }
3953 
3954   SDValue Ptr = getValue(SV);
3955 
3956   Type *Ty = I.getType();
3957   Align Alignment = I.getAlign();
3958 
3959   AAMDNodes AAInfo;
3960   I.getAAMetadata(AAInfo);
3961   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3962 
3963   SmallVector<EVT, 4> ValueVTs, MemVTs;
3964   SmallVector<uint64_t, 4> Offsets;
3965   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
3966   unsigned NumValues = ValueVTs.size();
3967   if (NumValues == 0)
3968     return;
3969 
3970   bool isVolatile = I.isVolatile();
3971 
3972   SDValue Root;
3973   bool ConstantMemory = false;
3974   if (isVolatile)
3975     // Serialize volatile loads with other side effects.
3976     Root = getRoot();
3977   else if (NumValues > MaxParallelChains)
3978     Root = getMemoryRoot();
3979   else if (AA &&
3980            AA->pointsToConstantMemory(MemoryLocation(
3981                SV,
3982                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
3983                AAInfo))) {
3984     // Do not serialize (non-volatile) loads of constant memory with anything.
3985     Root = DAG.getEntryNode();
3986     ConstantMemory = true;
3987   } else {
3988     // Do not serialize non-volatile loads against each other.
3989     Root = DAG.getRoot();
3990   }
3991 
3992   SDLoc dl = getCurSDLoc();
3993 
3994   if (isVolatile)
3995     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3996 
3997   // An aggregate load cannot wrap around the address space, so offsets to its
3998   // parts don't wrap either.
3999   SDNodeFlags Flags;
4000   Flags.setNoUnsignedWrap(true);
4001 
4002   SmallVector<SDValue, 4> Values(NumValues);
4003   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4004   EVT PtrVT = Ptr.getValueType();
4005 
4006   MachineMemOperand::Flags MMOFlags
4007     = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4008 
4009   unsigned ChainI = 0;
4010   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4011     // Serializing loads here may result in excessive register pressure, and
4012     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4013     // could recover a bit by hoisting nodes upward in the chain by recognizing
4014     // they are side-effect free or do not alias. The optimizer should really
4015     // avoid this case by converting large object/array copies to llvm.memcpy
4016     // (MaxParallelChains should always remain as failsafe).
4017     if (ChainI == MaxParallelChains) {
4018       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4019       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4020                                   makeArrayRef(Chains.data(), ChainI));
4021       Root = Chain;
4022       ChainI = 0;
4023     }
4024     SDValue A = DAG.getNode(ISD::ADD, dl,
4025                             PtrVT, Ptr,
4026                             DAG.getConstant(Offsets[i], dl, PtrVT),
4027                             Flags);
4028 
4029     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4030                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4031                             MMOFlags, AAInfo, Ranges);
4032     Chains[ChainI] = L.getValue(1);
4033 
4034     if (MemVTs[i] != ValueVTs[i])
4035       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4036 
4037     Values[i] = L;
4038   }
4039 
4040   if (!ConstantMemory) {
4041     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4042                                 makeArrayRef(Chains.data(), ChainI));
4043     if (isVolatile)
4044       DAG.setRoot(Chain);
4045     else
4046       PendingLoads.push_back(Chain);
4047   }
4048 
4049   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4050                            DAG.getVTList(ValueVTs), Values));
4051 }
4052 
4053 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4054   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4055          "call visitStoreToSwiftError when backend supports swifterror");
4056 
4057   SmallVector<EVT, 4> ValueVTs;
4058   SmallVector<uint64_t, 4> Offsets;
4059   const Value *SrcV = I.getOperand(0);
4060   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4061                   SrcV->getType(), ValueVTs, &Offsets);
4062   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4063          "expect a single EVT for swifterror");
4064 
4065   SDValue Src = getValue(SrcV);
4066   // Create a virtual register, then update the virtual register.
4067   Register VReg =
4068       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4069   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4070   // Chain can be getRoot or getControlRoot.
4071   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4072                                       SDValue(Src.getNode(), Src.getResNo()));
4073   DAG.setRoot(CopyNode);
4074 }
4075 
4076 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4077   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4078          "call visitLoadFromSwiftError when backend supports swifterror");
4079 
4080   assert(!I.isVolatile() &&
4081          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4082          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4083          "Support volatile, non temporal, invariant for load_from_swift_error");
4084 
4085   const Value *SV = I.getOperand(0);
4086   Type *Ty = I.getType();
4087   AAMDNodes AAInfo;
4088   I.getAAMetadata(AAInfo);
4089   assert(
4090       (!AA ||
4091        !AA->pointsToConstantMemory(MemoryLocation(
4092            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4093            AAInfo))) &&
4094       "load_from_swift_error should not be constant memory");
4095 
4096   SmallVector<EVT, 4> ValueVTs;
4097   SmallVector<uint64_t, 4> Offsets;
4098   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4099                   ValueVTs, &Offsets);
4100   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4101          "expect a single EVT for swifterror");
4102 
4103   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4104   SDValue L = DAG.getCopyFromReg(
4105       getRoot(), getCurSDLoc(),
4106       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4107 
4108   setValue(&I, L);
4109 }
4110 
4111 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4112   if (I.isAtomic())
4113     return visitAtomicStore(I);
4114 
4115   const Value *SrcV = I.getOperand(0);
4116   const Value *PtrV = I.getOperand(1);
4117 
4118   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4119   if (TLI.supportSwiftError()) {
4120     // Swifterror values can come from either a function parameter with
4121     // swifterror attribute or an alloca with swifterror attribute.
4122     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4123       if (Arg->hasSwiftErrorAttr())
4124         return visitStoreToSwiftError(I);
4125     }
4126 
4127     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4128       if (Alloca->isSwiftError())
4129         return visitStoreToSwiftError(I);
4130     }
4131   }
4132 
4133   SmallVector<EVT, 4> ValueVTs, MemVTs;
4134   SmallVector<uint64_t, 4> Offsets;
4135   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4136                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4137   unsigned NumValues = ValueVTs.size();
4138   if (NumValues == 0)
4139     return;
4140 
4141   // Get the lowered operands. Note that we do this after
4142   // checking if NumResults is zero, because with zero results
4143   // the operands won't have values in the map.
4144   SDValue Src = getValue(SrcV);
4145   SDValue Ptr = getValue(PtrV);
4146 
4147   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4148   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4149   SDLoc dl = getCurSDLoc();
4150   Align Alignment = I.getAlign();
4151   AAMDNodes AAInfo;
4152   I.getAAMetadata(AAInfo);
4153 
4154   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4155 
4156   // An aggregate load cannot wrap around the address space, so offsets to its
4157   // parts don't wrap either.
4158   SDNodeFlags Flags;
4159   Flags.setNoUnsignedWrap(true);
4160 
4161   unsigned ChainI = 0;
4162   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4163     // See visitLoad comments.
4164     if (ChainI == MaxParallelChains) {
4165       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4166                                   makeArrayRef(Chains.data(), ChainI));
4167       Root = Chain;
4168       ChainI = 0;
4169     }
4170     SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags);
4171     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4172     if (MemVTs[i] != ValueVTs[i])
4173       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4174     SDValue St =
4175         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4176                      Alignment, MMOFlags, AAInfo);
4177     Chains[ChainI] = St;
4178   }
4179 
4180   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4181                                   makeArrayRef(Chains.data(), ChainI));
4182   DAG.setRoot(StoreNode);
4183 }
4184 
4185 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4186                                            bool IsCompressing) {
4187   SDLoc sdl = getCurSDLoc();
4188 
4189   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4190                                MaybeAlign &Alignment) {
4191     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4192     Src0 = I.getArgOperand(0);
4193     Ptr = I.getArgOperand(1);
4194     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4195     Mask = I.getArgOperand(3);
4196   };
4197   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4198                                     MaybeAlign &Alignment) {
4199     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4200     Src0 = I.getArgOperand(0);
4201     Ptr = I.getArgOperand(1);
4202     Mask = I.getArgOperand(2);
4203     Alignment = None;
4204   };
4205 
4206   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4207   MaybeAlign Alignment;
4208   if (IsCompressing)
4209     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4210   else
4211     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4212 
4213   SDValue Ptr = getValue(PtrOperand);
4214   SDValue Src0 = getValue(Src0Operand);
4215   SDValue Mask = getValue(MaskOperand);
4216   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4217 
4218   EVT VT = Src0.getValueType();
4219   if (!Alignment)
4220     Alignment = DAG.getEVTAlign(VT);
4221 
4222   AAMDNodes AAInfo;
4223   I.getAAMetadata(AAInfo);
4224 
4225   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4226       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4227       // TODO: Make MachineMemOperands aware of scalable
4228       // vectors.
4229       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo);
4230   SDValue StoreNode =
4231       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4232                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4233   DAG.setRoot(StoreNode);
4234   setValue(&I, StoreNode);
4235 }
4236 
4237 // Get a uniform base for the Gather/Scatter intrinsic.
4238 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4239 // We try to represent it as a base pointer + vector of indices.
4240 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4241 // The first operand of the GEP may be a single pointer or a vector of pointers
4242 // Example:
4243 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4244 //  or
4245 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4246 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4247 //
4248 // When the first GEP operand is a single pointer - it is the uniform base we
4249 // are looking for. If first operand of the GEP is a splat vector - we
4250 // extract the splat value and use it as a uniform base.
4251 // In all other cases the function returns 'false'.
4252 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4253                            ISD::MemIndexType &IndexType, SDValue &Scale,
4254                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB) {
4255   SelectionDAG& DAG = SDB->DAG;
4256   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4257   const DataLayout &DL = DAG.getDataLayout();
4258 
4259   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4260 
4261   // Handle splat constant pointer.
4262   if (auto *C = dyn_cast<Constant>(Ptr)) {
4263     C = C->getSplatValue();
4264     if (!C)
4265       return false;
4266 
4267     Base = SDB->getValue(C);
4268 
4269     unsigned NumElts = cast<FixedVectorType>(Ptr->getType())->getNumElements();
4270     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4271     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4272     IndexType = ISD::SIGNED_SCALED;
4273     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4274     return true;
4275   }
4276 
4277   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4278   if (!GEP || GEP->getParent() != CurBB)
4279     return false;
4280 
4281   if (GEP->getNumOperands() != 2)
4282     return false;
4283 
4284   const Value *BasePtr = GEP->getPointerOperand();
4285   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4286 
4287   // Make sure the base is scalar and the index is a vector.
4288   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4289     return false;
4290 
4291   Base = SDB->getValue(BasePtr);
4292   Index = SDB->getValue(IndexVal);
4293   IndexType = ISD::SIGNED_SCALED;
4294   Scale = DAG.getTargetConstant(
4295               DL.getTypeAllocSize(GEP->getResultElementType()),
4296               SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4297   return true;
4298 }
4299 
4300 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4301   SDLoc sdl = getCurSDLoc();
4302 
4303   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4304   const Value *Ptr = I.getArgOperand(1);
4305   SDValue Src0 = getValue(I.getArgOperand(0));
4306   SDValue Mask = getValue(I.getArgOperand(3));
4307   EVT VT = Src0.getValueType();
4308   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4309                         ->getMaybeAlignValue()
4310                         .getValueOr(DAG.getEVTAlign(VT));
4311   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4312 
4313   AAMDNodes AAInfo;
4314   I.getAAMetadata(AAInfo);
4315 
4316   SDValue Base;
4317   SDValue Index;
4318   ISD::MemIndexType IndexType;
4319   SDValue Scale;
4320   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4321                                     I.getParent());
4322 
4323   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4324   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4325       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4326       // TODO: Make MachineMemOperands aware of scalable
4327       // vectors.
4328       MemoryLocation::UnknownSize, Alignment, AAInfo);
4329   if (!UniformBase) {
4330     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4331     Index = getValue(Ptr);
4332     IndexType = ISD::SIGNED_SCALED;
4333     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4334   }
4335   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4336   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4337                                          Ops, MMO, IndexType);
4338   DAG.setRoot(Scatter);
4339   setValue(&I, Scatter);
4340 }
4341 
4342 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4343   SDLoc sdl = getCurSDLoc();
4344 
4345   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4346                               MaybeAlign &Alignment) {
4347     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4348     Ptr = I.getArgOperand(0);
4349     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4350     Mask = I.getArgOperand(2);
4351     Src0 = I.getArgOperand(3);
4352   };
4353   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4354                                  MaybeAlign &Alignment) {
4355     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4356     Ptr = I.getArgOperand(0);
4357     Alignment = None;
4358     Mask = I.getArgOperand(1);
4359     Src0 = I.getArgOperand(2);
4360   };
4361 
4362   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4363   MaybeAlign Alignment;
4364   if (IsExpanding)
4365     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4366   else
4367     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4368 
4369   SDValue Ptr = getValue(PtrOperand);
4370   SDValue Src0 = getValue(Src0Operand);
4371   SDValue Mask = getValue(MaskOperand);
4372   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4373 
4374   EVT VT = Src0.getValueType();
4375   if (!Alignment)
4376     Alignment = DAG.getEVTAlign(VT);
4377 
4378   AAMDNodes AAInfo;
4379   I.getAAMetadata(AAInfo);
4380   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4381 
4382   // Do not serialize masked loads of constant memory with anything.
4383   MemoryLocation ML;
4384   if (VT.isScalableVector())
4385     ML = MemoryLocation(PtrOperand);
4386   else
4387     ML = MemoryLocation(PtrOperand, LocationSize::precise(
4388                            DAG.getDataLayout().getTypeStoreSize(I.getType())),
4389                            AAInfo);
4390   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4391 
4392   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4393 
4394   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4395       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4396       // TODO: Make MachineMemOperands aware of scalable
4397       // vectors.
4398       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges);
4399 
4400   SDValue Load =
4401       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4402                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4403   if (AddToChain)
4404     PendingLoads.push_back(Load.getValue(1));
4405   setValue(&I, Load);
4406 }
4407 
4408 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4409   SDLoc sdl = getCurSDLoc();
4410 
4411   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4412   const Value *Ptr = I.getArgOperand(0);
4413   SDValue Src0 = getValue(I.getArgOperand(3));
4414   SDValue Mask = getValue(I.getArgOperand(2));
4415 
4416   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4417   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4418   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4419                         ->getMaybeAlignValue()
4420                         .getValueOr(DAG.getEVTAlign(VT));
4421 
4422   AAMDNodes AAInfo;
4423   I.getAAMetadata(AAInfo);
4424   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4425 
4426   SDValue Root = DAG.getRoot();
4427   SDValue Base;
4428   SDValue Index;
4429   ISD::MemIndexType IndexType;
4430   SDValue Scale;
4431   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4432                                     I.getParent());
4433   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4434   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4435       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4436       // TODO: Make MachineMemOperands aware of scalable
4437       // vectors.
4438       MemoryLocation::UnknownSize, Alignment, AAInfo, Ranges);
4439 
4440   if (!UniformBase) {
4441     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4442     Index = getValue(Ptr);
4443     IndexType = ISD::SIGNED_SCALED;
4444     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4445   }
4446   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4447   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4448                                        Ops, MMO, IndexType);
4449 
4450   PendingLoads.push_back(Gather.getValue(1));
4451   setValue(&I, Gather);
4452 }
4453 
4454 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4455   SDLoc dl = getCurSDLoc();
4456   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4457   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4458   SyncScope::ID SSID = I.getSyncScopeID();
4459 
4460   SDValue InChain = getRoot();
4461 
4462   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4463   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4464 
4465   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4466   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4467 
4468   MachineFunction &MF = DAG.getMachineFunction();
4469   MachineMemOperand *MMO = MF.getMachineMemOperand(
4470       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4471       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4472       FailureOrdering);
4473 
4474   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4475                                    dl, MemVT, VTs, InChain,
4476                                    getValue(I.getPointerOperand()),
4477                                    getValue(I.getCompareOperand()),
4478                                    getValue(I.getNewValOperand()), MMO);
4479 
4480   SDValue OutChain = L.getValue(2);
4481 
4482   setValue(&I, L);
4483   DAG.setRoot(OutChain);
4484 }
4485 
4486 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4487   SDLoc dl = getCurSDLoc();
4488   ISD::NodeType NT;
4489   switch (I.getOperation()) {
4490   default: llvm_unreachable("Unknown atomicrmw operation");
4491   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4492   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4493   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4494   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4495   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4496   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4497   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4498   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4499   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4500   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4501   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4502   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4503   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4504   }
4505   AtomicOrdering Ordering = I.getOrdering();
4506   SyncScope::ID SSID = I.getSyncScopeID();
4507 
4508   SDValue InChain = getRoot();
4509 
4510   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4511   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4512   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4513 
4514   MachineFunction &MF = DAG.getMachineFunction();
4515   MachineMemOperand *MMO = MF.getMachineMemOperand(
4516       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4517       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4518 
4519   SDValue L =
4520     DAG.getAtomic(NT, dl, MemVT, InChain,
4521                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4522                   MMO);
4523 
4524   SDValue OutChain = L.getValue(1);
4525 
4526   setValue(&I, L);
4527   DAG.setRoot(OutChain);
4528 }
4529 
4530 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4531   SDLoc dl = getCurSDLoc();
4532   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4533   SDValue Ops[3];
4534   Ops[0] = getRoot();
4535   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4536                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4537   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4538                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4539   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4540 }
4541 
4542 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4543   SDLoc dl = getCurSDLoc();
4544   AtomicOrdering Order = I.getOrdering();
4545   SyncScope::ID SSID = I.getSyncScopeID();
4546 
4547   SDValue InChain = getRoot();
4548 
4549   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4550   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4551   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4552 
4553   if (!TLI.supportsUnalignedAtomics() &&
4554       I.getAlignment() < MemVT.getSizeInBits() / 8)
4555     report_fatal_error("Cannot generate unaligned atomic load");
4556 
4557   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4558 
4559   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4560       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4561       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4562 
4563   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4564 
4565   SDValue Ptr = getValue(I.getPointerOperand());
4566 
4567   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4568     // TODO: Once this is better exercised by tests, it should be merged with
4569     // the normal path for loads to prevent future divergence.
4570     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4571     if (MemVT != VT)
4572       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4573 
4574     setValue(&I, L);
4575     SDValue OutChain = L.getValue(1);
4576     if (!I.isUnordered())
4577       DAG.setRoot(OutChain);
4578     else
4579       PendingLoads.push_back(OutChain);
4580     return;
4581   }
4582 
4583   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4584                             Ptr, MMO);
4585 
4586   SDValue OutChain = L.getValue(1);
4587   if (MemVT != VT)
4588     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4589 
4590   setValue(&I, L);
4591   DAG.setRoot(OutChain);
4592 }
4593 
4594 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4595   SDLoc dl = getCurSDLoc();
4596 
4597   AtomicOrdering Ordering = I.getOrdering();
4598   SyncScope::ID SSID = I.getSyncScopeID();
4599 
4600   SDValue InChain = getRoot();
4601 
4602   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4603   EVT MemVT =
4604       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4605 
4606   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4607     report_fatal_error("Cannot generate unaligned atomic store");
4608 
4609   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4610 
4611   MachineFunction &MF = DAG.getMachineFunction();
4612   MachineMemOperand *MMO = MF.getMachineMemOperand(
4613       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4614       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4615 
4616   SDValue Val = getValue(I.getValueOperand());
4617   if (Val.getValueType() != MemVT)
4618     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4619   SDValue Ptr = getValue(I.getPointerOperand());
4620 
4621   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4622     // TODO: Once this is better exercised by tests, it should be merged with
4623     // the normal path for stores to prevent future divergence.
4624     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4625     DAG.setRoot(S);
4626     return;
4627   }
4628   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4629                                    Ptr, Val, MMO);
4630 
4631 
4632   DAG.setRoot(OutChain);
4633 }
4634 
4635 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4636 /// node.
4637 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4638                                                unsigned Intrinsic) {
4639   // Ignore the callsite's attributes. A specific call site may be marked with
4640   // readnone, but the lowering code will expect the chain based on the
4641   // definition.
4642   const Function *F = I.getCalledFunction();
4643   bool HasChain = !F->doesNotAccessMemory();
4644   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4645 
4646   // Build the operand list.
4647   SmallVector<SDValue, 8> Ops;
4648   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4649     if (OnlyLoad) {
4650       // We don't need to serialize loads against other loads.
4651       Ops.push_back(DAG.getRoot());
4652     } else {
4653       Ops.push_back(getRoot());
4654     }
4655   }
4656 
4657   // Info is set by getTgtMemInstrinsic
4658   TargetLowering::IntrinsicInfo Info;
4659   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4660   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4661                                                DAG.getMachineFunction(),
4662                                                Intrinsic);
4663 
4664   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4665   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4666       Info.opc == ISD::INTRINSIC_W_CHAIN)
4667     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4668                                         TLI.getPointerTy(DAG.getDataLayout())));
4669 
4670   // Add all operands of the call to the operand list.
4671   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4672     const Value *Arg = I.getArgOperand(i);
4673     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4674       Ops.push_back(getValue(Arg));
4675       continue;
4676     }
4677 
4678     // Use TargetConstant instead of a regular constant for immarg.
4679     EVT VT = TLI.getValueType(*DL, Arg->getType(), true);
4680     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4681       assert(CI->getBitWidth() <= 64 &&
4682              "large intrinsic immediates not handled");
4683       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4684     } else {
4685       Ops.push_back(
4686           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4687     }
4688   }
4689 
4690   SmallVector<EVT, 4> ValueVTs;
4691   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4692 
4693   if (HasChain)
4694     ValueVTs.push_back(MVT::Other);
4695 
4696   SDVTList VTs = DAG.getVTList(ValueVTs);
4697 
4698   // Create the node.
4699   SDValue Result;
4700   if (IsTgtIntrinsic) {
4701     // This is target intrinsic that touches memory
4702     AAMDNodes AAInfo;
4703     I.getAAMetadata(AAInfo);
4704     Result =
4705         DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4706                                 MachinePointerInfo(Info.ptrVal, Info.offset),
4707                                 Info.align, Info.flags, Info.size, AAInfo);
4708   } else if (!HasChain) {
4709     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4710   } else if (!I.getType()->isVoidTy()) {
4711     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4712   } else {
4713     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4714   }
4715 
4716   if (HasChain) {
4717     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4718     if (OnlyLoad)
4719       PendingLoads.push_back(Chain);
4720     else
4721       DAG.setRoot(Chain);
4722   }
4723 
4724   if (!I.getType()->isVoidTy()) {
4725     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4726       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4727       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4728     } else
4729       Result = lowerRangeToAssertZExt(DAG, I, Result);
4730 
4731     MaybeAlign Alignment = I.getRetAlign();
4732     if (!Alignment)
4733       Alignment = F->getAttributes().getRetAlignment();
4734     // Insert `assertalign` node if there's an alignment.
4735     if (InsertAssertAlign && Alignment) {
4736       Result =
4737           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4738     }
4739 
4740     setValue(&I, Result);
4741   }
4742 }
4743 
4744 /// GetSignificand - Get the significand and build it into a floating-point
4745 /// number with exponent of 1:
4746 ///
4747 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4748 ///
4749 /// where Op is the hexadecimal representation of floating point value.
4750 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4751   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4752                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4753   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4754                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4755   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4756 }
4757 
4758 /// GetExponent - Get the exponent:
4759 ///
4760 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4761 ///
4762 /// where Op is the hexadecimal representation of floating point value.
4763 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4764                            const TargetLowering &TLI, const SDLoc &dl) {
4765   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4766                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4767   SDValue t1 = DAG.getNode(
4768       ISD::SRL, dl, MVT::i32, t0,
4769       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4770   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4771                            DAG.getConstant(127, dl, MVT::i32));
4772   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4773 }
4774 
4775 /// getF32Constant - Get 32-bit floating point constant.
4776 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4777                               const SDLoc &dl) {
4778   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4779                            MVT::f32);
4780 }
4781 
4782 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4783                                        SelectionDAG &DAG) {
4784   // TODO: What fast-math-flags should be set on the floating-point nodes?
4785 
4786   //   IntegerPartOfX = ((int32_t)(t0);
4787   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4788 
4789   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4790   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4791   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4792 
4793   //   IntegerPartOfX <<= 23;
4794   IntegerPartOfX = DAG.getNode(
4795       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4796       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4797                                   DAG.getDataLayout())));
4798 
4799   SDValue TwoToFractionalPartOfX;
4800   if (LimitFloatPrecision <= 6) {
4801     // For floating-point precision of 6:
4802     //
4803     //   TwoToFractionalPartOfX =
4804     //     0.997535578f +
4805     //       (0.735607626f + 0.252464424f * x) * x;
4806     //
4807     // error 0.0144103317, which is 6 bits
4808     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4809                              getF32Constant(DAG, 0x3e814304, dl));
4810     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4811                              getF32Constant(DAG, 0x3f3c50c8, dl));
4812     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4813     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4814                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4815   } else if (LimitFloatPrecision <= 12) {
4816     // For floating-point precision of 12:
4817     //
4818     //   TwoToFractionalPartOfX =
4819     //     0.999892986f +
4820     //       (0.696457318f +
4821     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4822     //
4823     // error 0.000107046256, which is 13 to 14 bits
4824     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4825                              getF32Constant(DAG, 0x3da235e3, dl));
4826     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4827                              getF32Constant(DAG, 0x3e65b8f3, dl));
4828     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4829     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4830                              getF32Constant(DAG, 0x3f324b07, dl));
4831     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4832     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4833                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4834   } else { // LimitFloatPrecision <= 18
4835     // For floating-point precision of 18:
4836     //
4837     //   TwoToFractionalPartOfX =
4838     //     0.999999982f +
4839     //       (0.693148872f +
4840     //         (0.240227044f +
4841     //           (0.554906021e-1f +
4842     //             (0.961591928e-2f +
4843     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4844     // error 2.47208000*10^(-7), which is better than 18 bits
4845     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4846                              getF32Constant(DAG, 0x3924b03e, dl));
4847     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4848                              getF32Constant(DAG, 0x3ab24b87, dl));
4849     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4850     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4851                              getF32Constant(DAG, 0x3c1d8c17, dl));
4852     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4853     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4854                              getF32Constant(DAG, 0x3d634a1d, dl));
4855     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4856     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4857                              getF32Constant(DAG, 0x3e75fe14, dl));
4858     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4859     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4860                               getF32Constant(DAG, 0x3f317234, dl));
4861     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4862     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4863                                          getF32Constant(DAG, 0x3f800000, dl));
4864   }
4865 
4866   // Add the exponent into the result in integer domain.
4867   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4868   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4869                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4870 }
4871 
4872 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4873 /// limited-precision mode.
4874 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4875                          const TargetLowering &TLI) {
4876   if (Op.getValueType() == MVT::f32 &&
4877       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4878 
4879     // Put the exponent in the right bit position for later addition to the
4880     // final result:
4881     //
4882     // t0 = Op * log2(e)
4883 
4884     // TODO: What fast-math-flags should be set here?
4885     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4886                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
4887     return getLimitedPrecisionExp2(t0, dl, DAG);
4888   }
4889 
4890   // No special expansion.
4891   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4892 }
4893 
4894 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4895 /// limited-precision mode.
4896 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4897                          const TargetLowering &TLI) {
4898   // TODO: What fast-math-flags should be set on the floating-point nodes?
4899 
4900   if (Op.getValueType() == MVT::f32 &&
4901       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4902     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4903 
4904     // Scale the exponent by log(2).
4905     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4906     SDValue LogOfExponent =
4907         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4908                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
4909 
4910     // Get the significand and build it into a floating-point number with
4911     // exponent of 1.
4912     SDValue X = GetSignificand(DAG, Op1, dl);
4913 
4914     SDValue LogOfMantissa;
4915     if (LimitFloatPrecision <= 6) {
4916       // For floating-point precision of 6:
4917       //
4918       //   LogofMantissa =
4919       //     -1.1609546f +
4920       //       (1.4034025f - 0.23903021f * x) * x;
4921       //
4922       // error 0.0034276066, which is better than 8 bits
4923       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4924                                getF32Constant(DAG, 0xbe74c456, dl));
4925       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4926                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4927       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4928       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4929                                   getF32Constant(DAG, 0x3f949a29, dl));
4930     } else if (LimitFloatPrecision <= 12) {
4931       // For floating-point precision of 12:
4932       //
4933       //   LogOfMantissa =
4934       //     -1.7417939f +
4935       //       (2.8212026f +
4936       //         (-1.4699568f +
4937       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4938       //
4939       // error 0.000061011436, which is 14 bits
4940       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4941                                getF32Constant(DAG, 0xbd67b6d6, dl));
4942       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4943                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4944       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4945       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4946                                getF32Constant(DAG, 0x3fbc278b, dl));
4947       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4948       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4949                                getF32Constant(DAG, 0x40348e95, dl));
4950       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4951       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4952                                   getF32Constant(DAG, 0x3fdef31a, dl));
4953     } else { // LimitFloatPrecision <= 18
4954       // For floating-point precision of 18:
4955       //
4956       //   LogOfMantissa =
4957       //     -2.1072184f +
4958       //       (4.2372794f +
4959       //         (-3.7029485f +
4960       //           (2.2781945f +
4961       //             (-0.87823314f +
4962       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4963       //
4964       // error 0.0000023660568, which is better than 18 bits
4965       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4966                                getF32Constant(DAG, 0xbc91e5ac, dl));
4967       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4968                                getF32Constant(DAG, 0x3e4350aa, dl));
4969       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4970       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4971                                getF32Constant(DAG, 0x3f60d3e3, dl));
4972       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4973       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4974                                getF32Constant(DAG, 0x4011cdf0, dl));
4975       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4976       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4977                                getF32Constant(DAG, 0x406cfd1c, dl));
4978       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4979       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4980                                getF32Constant(DAG, 0x408797cb, dl));
4981       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4982       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4983                                   getF32Constant(DAG, 0x4006dcab, dl));
4984     }
4985 
4986     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4987   }
4988 
4989   // No special expansion.
4990   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4991 }
4992 
4993 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4994 /// limited-precision mode.
4995 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4996                           const TargetLowering &TLI) {
4997   // TODO: What fast-math-flags should be set on the floating-point nodes?
4998 
4999   if (Op.getValueType() == MVT::f32 &&
5000       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5001     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5002 
5003     // Get the exponent.
5004     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5005 
5006     // Get the significand and build it into a floating-point number with
5007     // exponent of 1.
5008     SDValue X = GetSignificand(DAG, Op1, dl);
5009 
5010     // Different possible minimax approximations of significand in
5011     // floating-point for various degrees of accuracy over [1,2].
5012     SDValue Log2ofMantissa;
5013     if (LimitFloatPrecision <= 6) {
5014       // For floating-point precision of 6:
5015       //
5016       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5017       //
5018       // error 0.0049451742, which is more than 7 bits
5019       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5020                                getF32Constant(DAG, 0xbeb08fe0, dl));
5021       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5022                                getF32Constant(DAG, 0x40019463, dl));
5023       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5024       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5025                                    getF32Constant(DAG, 0x3fd6633d, dl));
5026     } else if (LimitFloatPrecision <= 12) {
5027       // For floating-point precision of 12:
5028       //
5029       //   Log2ofMantissa =
5030       //     -2.51285454f +
5031       //       (4.07009056f +
5032       //         (-2.12067489f +
5033       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5034       //
5035       // error 0.0000876136000, which is better than 13 bits
5036       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5037                                getF32Constant(DAG, 0xbda7262e, dl));
5038       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5039                                getF32Constant(DAG, 0x3f25280b, dl));
5040       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5041       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5042                                getF32Constant(DAG, 0x4007b923, dl));
5043       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5044       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5045                                getF32Constant(DAG, 0x40823e2f, dl));
5046       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5047       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5048                                    getF32Constant(DAG, 0x4020d29c, dl));
5049     } else { // LimitFloatPrecision <= 18
5050       // For floating-point precision of 18:
5051       //
5052       //   Log2ofMantissa =
5053       //     -3.0400495f +
5054       //       (6.1129976f +
5055       //         (-5.3420409f +
5056       //           (3.2865683f +
5057       //             (-1.2669343f +
5058       //               (0.27515199f -
5059       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5060       //
5061       // error 0.0000018516, which is better than 18 bits
5062       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5063                                getF32Constant(DAG, 0xbcd2769e, dl));
5064       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5065                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5066       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5067       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5068                                getF32Constant(DAG, 0x3fa22ae7, dl));
5069       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5070       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5071                                getF32Constant(DAG, 0x40525723, dl));
5072       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5073       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5074                                getF32Constant(DAG, 0x40aaf200, dl));
5075       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5076       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5077                                getF32Constant(DAG, 0x40c39dad, dl));
5078       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5079       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5080                                    getF32Constant(DAG, 0x4042902c, dl));
5081     }
5082 
5083     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5084   }
5085 
5086   // No special expansion.
5087   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
5088 }
5089 
5090 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5091 /// limited-precision mode.
5092 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5093                            const TargetLowering &TLI) {
5094   // TODO: What fast-math-flags should be set on the floating-point nodes?
5095 
5096   if (Op.getValueType() == MVT::f32 &&
5097       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5098     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5099 
5100     // Scale the exponent by log10(2) [0.30102999f].
5101     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5102     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5103                                         getF32Constant(DAG, 0x3e9a209a, dl));
5104 
5105     // Get the significand and build it into a floating-point number with
5106     // exponent of 1.
5107     SDValue X = GetSignificand(DAG, Op1, dl);
5108 
5109     SDValue Log10ofMantissa;
5110     if (LimitFloatPrecision <= 6) {
5111       // For floating-point precision of 6:
5112       //
5113       //   Log10ofMantissa =
5114       //     -0.50419619f +
5115       //       (0.60948995f - 0.10380950f * x) * x;
5116       //
5117       // error 0.0014886165, which is 6 bits
5118       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5119                                getF32Constant(DAG, 0xbdd49a13, dl));
5120       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5121                                getF32Constant(DAG, 0x3f1c0789, dl));
5122       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5123       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5124                                     getF32Constant(DAG, 0x3f011300, dl));
5125     } else if (LimitFloatPrecision <= 12) {
5126       // For floating-point precision of 12:
5127       //
5128       //   Log10ofMantissa =
5129       //     -0.64831180f +
5130       //       (0.91751397f +
5131       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5132       //
5133       // error 0.00019228036, which is better than 12 bits
5134       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5135                                getF32Constant(DAG, 0x3d431f31, dl));
5136       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5137                                getF32Constant(DAG, 0x3ea21fb2, dl));
5138       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5139       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5140                                getF32Constant(DAG, 0x3f6ae232, dl));
5141       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5142       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5143                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5144     } else { // LimitFloatPrecision <= 18
5145       // For floating-point precision of 18:
5146       //
5147       //   Log10ofMantissa =
5148       //     -0.84299375f +
5149       //       (1.5327582f +
5150       //         (-1.0688956f +
5151       //           (0.49102474f +
5152       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5153       //
5154       // error 0.0000037995730, which is better than 18 bits
5155       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5156                                getF32Constant(DAG, 0x3c5d51ce, dl));
5157       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5158                                getF32Constant(DAG, 0x3e00685a, dl));
5159       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5160       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5161                                getF32Constant(DAG, 0x3efb6798, dl));
5162       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5163       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5164                                getF32Constant(DAG, 0x3f88d192, dl));
5165       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5166       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5167                                getF32Constant(DAG, 0x3fc4316c, dl));
5168       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5169       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5170                                     getF32Constant(DAG, 0x3f57ce70, dl));
5171     }
5172 
5173     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5174   }
5175 
5176   // No special expansion.
5177   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
5178 }
5179 
5180 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5181 /// limited-precision mode.
5182 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5183                           const TargetLowering &TLI) {
5184   if (Op.getValueType() == MVT::f32 &&
5185       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5186     return getLimitedPrecisionExp2(Op, dl, DAG);
5187 
5188   // No special expansion.
5189   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
5190 }
5191 
5192 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5193 /// limited-precision mode with x == 10.0f.
5194 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5195                          SelectionDAG &DAG, const TargetLowering &TLI) {
5196   bool IsExp10 = false;
5197   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5198       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5199     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5200       APFloat Ten(10.0f);
5201       IsExp10 = LHSC->isExactlyValue(Ten);
5202     }
5203   }
5204 
5205   // TODO: What fast-math-flags should be set on the FMUL node?
5206   if (IsExp10) {
5207     // Put the exponent in the right bit position for later addition to the
5208     // final result:
5209     //
5210     //   #define LOG2OF10 3.3219281f
5211     //   t0 = Op * LOG2OF10;
5212     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5213                              getF32Constant(DAG, 0x40549a78, dl));
5214     return getLimitedPrecisionExp2(t0, dl, DAG);
5215   }
5216 
5217   // No special expansion.
5218   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
5219 }
5220 
5221 /// ExpandPowI - Expand a llvm.powi intrinsic.
5222 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5223                           SelectionDAG &DAG) {
5224   // If RHS is a constant, we can expand this out to a multiplication tree,
5225   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5226   // optimizing for size, we only want to do this if the expansion would produce
5227   // a small number of multiplies, otherwise we do the full expansion.
5228   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5229     // Get the exponent as a positive value.
5230     unsigned Val = RHSC->getSExtValue();
5231     if ((int)Val < 0) Val = -Val;
5232 
5233     // powi(x, 0) -> 1.0
5234     if (Val == 0)
5235       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5236 
5237     bool OptForSize = DAG.shouldOptForSize();
5238     if (!OptForSize ||
5239         // If optimizing for size, don't insert too many multiplies.
5240         // This inserts up to 5 multiplies.
5241         countPopulation(Val) + Log2_32(Val) < 7) {
5242       // We use the simple binary decomposition method to generate the multiply
5243       // sequence.  There are more optimal ways to do this (for example,
5244       // powi(x,15) generates one more multiply than it should), but this has
5245       // the benefit of being both really simple and much better than a libcall.
5246       SDValue Res;  // Logically starts equal to 1.0
5247       SDValue CurSquare = LHS;
5248       // TODO: Intrinsics should have fast-math-flags that propagate to these
5249       // nodes.
5250       while (Val) {
5251         if (Val & 1) {
5252           if (Res.getNode())
5253             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5254           else
5255             Res = CurSquare;  // 1.0*CurSquare.
5256         }
5257 
5258         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5259                                 CurSquare, CurSquare);
5260         Val >>= 1;
5261       }
5262 
5263       // If the original was negative, invert the result, producing 1/(x*x*x).
5264       if (RHSC->getSExtValue() < 0)
5265         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5266                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5267       return Res;
5268     }
5269   }
5270 
5271   // Otherwise, expand to a libcall.
5272   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5273 }
5274 
5275 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5276                             SDValue LHS, SDValue RHS, SDValue Scale,
5277                             SelectionDAG &DAG, const TargetLowering &TLI) {
5278   EVT VT = LHS.getValueType();
5279   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5280   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5281   LLVMContext &Ctx = *DAG.getContext();
5282 
5283   // If the type is legal but the operation isn't, this node might survive all
5284   // the way to operation legalization. If we end up there and we do not have
5285   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5286   // node.
5287 
5288   // Coax the legalizer into expanding the node during type legalization instead
5289   // by bumping the size by one bit. This will force it to Promote, enabling the
5290   // early expansion and avoiding the need to expand later.
5291 
5292   // We don't have to do this if Scale is 0; that can always be expanded, unless
5293   // it's a saturating signed operation. Those can experience true integer
5294   // division overflow, a case which we must avoid.
5295 
5296   // FIXME: We wouldn't have to do this (or any of the early
5297   // expansion/promotion) if it was possible to expand a libcall of an
5298   // illegal type during operation legalization. But it's not, so things
5299   // get a bit hacky.
5300   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5301   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5302       (TLI.isTypeLegal(VT) ||
5303        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5304     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5305         Opcode, VT, ScaleInt);
5306     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5307       EVT PromVT;
5308       if (VT.isScalarInteger())
5309         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5310       else if (VT.isVector()) {
5311         PromVT = VT.getVectorElementType();
5312         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5313         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5314       } else
5315         llvm_unreachable("Wrong VT for DIVFIX?");
5316       if (Signed) {
5317         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5318         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5319       } else {
5320         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5321         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5322       }
5323       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5324       // For saturating operations, we need to shift up the LHS to get the
5325       // proper saturation width, and then shift down again afterwards.
5326       if (Saturating)
5327         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5328                           DAG.getConstant(1, DL, ShiftTy));
5329       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5330       if (Saturating)
5331         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5332                           DAG.getConstant(1, DL, ShiftTy));
5333       return DAG.getZExtOrTrunc(Res, DL, VT);
5334     }
5335   }
5336 
5337   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5338 }
5339 
5340 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5341 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5342 static void
5343 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
5344                      const SDValue &N) {
5345   switch (N.getOpcode()) {
5346   case ISD::CopyFromReg: {
5347     SDValue Op = N.getOperand(1);
5348     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5349                       Op.getValueType().getSizeInBits());
5350     return;
5351   }
5352   case ISD::BITCAST:
5353   case ISD::AssertZext:
5354   case ISD::AssertSext:
5355   case ISD::TRUNCATE:
5356     getUnderlyingArgRegs(Regs, N.getOperand(0));
5357     return;
5358   case ISD::BUILD_PAIR:
5359   case ISD::BUILD_VECTOR:
5360   case ISD::CONCAT_VECTORS:
5361     for (SDValue Op : N->op_values())
5362       getUnderlyingArgRegs(Regs, Op);
5363     return;
5364   default:
5365     return;
5366   }
5367 }
5368 
5369 /// If the DbgValueInst is a dbg_value of a function argument, create the
5370 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5371 /// instruction selection, they will be inserted to the entry BB.
5372 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5373     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5374     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5375   const Argument *Arg = dyn_cast<Argument>(V);
5376   if (!Arg)
5377     return false;
5378 
5379   if (!IsDbgDeclare) {
5380     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5381     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5382     // the entry block.
5383     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5384     if (!IsInEntryBlock)
5385       return false;
5386 
5387     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5388     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5389     // variable that also is a param.
5390     //
5391     // Although, if we are at the top of the entry block already, we can still
5392     // emit using ArgDbgValue. This might catch some situations when the
5393     // dbg.value refers to an argument that isn't used in the entry block, so
5394     // any CopyToReg node would be optimized out and the only way to express
5395     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5396     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5397     // we should only emit as ArgDbgValue if the Variable is an argument to the
5398     // current function, and the dbg.value intrinsic is found in the entry
5399     // block.
5400     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5401         !DL->getInlinedAt();
5402     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5403     if (!IsInPrologue && !VariableIsFunctionInputArg)
5404       return false;
5405 
5406     // Here we assume that a function argument on IR level only can be used to
5407     // describe one input parameter on source level. If we for example have
5408     // source code like this
5409     //
5410     //    struct A { long x, y; };
5411     //    void foo(struct A a, long b) {
5412     //      ...
5413     //      b = a.x;
5414     //      ...
5415     //    }
5416     //
5417     // and IR like this
5418     //
5419     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5420     //  entry:
5421     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5422     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5423     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5424     //    ...
5425     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5426     //    ...
5427     //
5428     // then the last dbg.value is describing a parameter "b" using a value that
5429     // is an argument. But since we already has used %a1 to describe a parameter
5430     // we should not handle that last dbg.value here (that would result in an
5431     // incorrect hoisting of the DBG_VALUE to the function entry).
5432     // Notice that we allow one dbg.value per IR level argument, to accommodate
5433     // for the situation with fragments above.
5434     if (VariableIsFunctionInputArg) {
5435       unsigned ArgNo = Arg->getArgNo();
5436       if (ArgNo >= FuncInfo.DescribedArgs.size())
5437         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5438       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5439         return false;
5440       FuncInfo.DescribedArgs.set(ArgNo);
5441     }
5442   }
5443 
5444   MachineFunction &MF = DAG.getMachineFunction();
5445   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5446 
5447   bool IsIndirect = false;
5448   Optional<MachineOperand> Op;
5449   // Some arguments' frame index is recorded during argument lowering.
5450   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5451   if (FI != std::numeric_limits<int>::max())
5452     Op = MachineOperand::CreateFI(FI);
5453 
5454   SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes;
5455   if (!Op && N.getNode()) {
5456     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5457     Register Reg;
5458     if (ArgRegsAndSizes.size() == 1)
5459       Reg = ArgRegsAndSizes.front().first;
5460 
5461     if (Reg && Reg.isVirtual()) {
5462       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5463       Register PR = RegInfo.getLiveInPhysReg(Reg);
5464       if (PR)
5465         Reg = PR;
5466     }
5467     if (Reg) {
5468       Op = MachineOperand::CreateReg(Reg, false);
5469       IsIndirect = IsDbgDeclare;
5470     }
5471   }
5472 
5473   if (!Op && N.getNode()) {
5474     // Check if frame index is available.
5475     SDValue LCandidate = peekThroughBitcasts(N);
5476     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5477       if (FrameIndexSDNode *FINode =
5478           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5479         Op = MachineOperand::CreateFI(FINode->getIndex());
5480   }
5481 
5482   if (!Op) {
5483     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5484     auto splitMultiRegDbgValue
5485       = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) {
5486       unsigned Offset = 0;
5487       for (auto RegAndSize : SplitRegs) {
5488         // If the expression is already a fragment, the current register
5489         // offset+size might extend beyond the fragment. In this case, only
5490         // the register bits that are inside the fragment are relevant.
5491         int RegFragmentSizeInBits = RegAndSize.second;
5492         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5493           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5494           // The register is entirely outside the expression fragment,
5495           // so is irrelevant for debug info.
5496           if (Offset >= ExprFragmentSizeInBits)
5497             break;
5498           // The register is partially outside the expression fragment, only
5499           // the low bits within the fragment are relevant for debug info.
5500           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5501             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5502           }
5503         }
5504 
5505         auto FragmentExpr = DIExpression::createFragmentExpression(
5506             Expr, Offset, RegFragmentSizeInBits);
5507         Offset += RegAndSize.second;
5508         // If a valid fragment expression cannot be created, the variable's
5509         // correct value cannot be determined and so it is set as Undef.
5510         if (!FragmentExpr) {
5511           SDDbgValue *SDV = DAG.getConstantDbgValue(
5512               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5513           DAG.AddDbgValue(SDV, nullptr, false);
5514           continue;
5515         }
5516         assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?");
5517         FuncInfo.ArgDbgValues.push_back(
5518           BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5519                   RegAndSize.first, Variable, *FragmentExpr));
5520       }
5521     };
5522 
5523     // Check if ValueMap has reg number.
5524     DenseMap<const Value *, Register>::const_iterator
5525       VMI = FuncInfo.ValueMap.find(V);
5526     if (VMI != FuncInfo.ValueMap.end()) {
5527       const auto &TLI = DAG.getTargetLoweringInfo();
5528       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5529                        V->getType(), getABIRegCopyCC(V));
5530       if (RFV.occupiesMultipleRegs()) {
5531         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5532         return true;
5533       }
5534 
5535       Op = MachineOperand::CreateReg(VMI->second, false);
5536       IsIndirect = IsDbgDeclare;
5537     } else if (ArgRegsAndSizes.size() > 1) {
5538       // This was split due to the calling convention, and no virtual register
5539       // mapping exists for the value.
5540       splitMultiRegDbgValue(ArgRegsAndSizes);
5541       return true;
5542     }
5543   }
5544 
5545   if (!Op)
5546     return false;
5547 
5548   assert(Variable->isValidLocationForIntrinsic(DL) &&
5549          "Expected inlined-at fields to agree");
5550   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5551   FuncInfo.ArgDbgValues.push_back(
5552       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5553               *Op, Variable, Expr));
5554 
5555   return true;
5556 }
5557 
5558 /// Return the appropriate SDDbgValue based on N.
5559 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5560                                              DILocalVariable *Variable,
5561                                              DIExpression *Expr,
5562                                              const DebugLoc &dl,
5563                                              unsigned DbgSDNodeOrder) {
5564   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5565     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5566     // stack slot locations.
5567     //
5568     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5569     // debug values here after optimization:
5570     //
5571     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5572     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5573     //
5574     // Both describe the direct values of their associated variables.
5575     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5576                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5577   }
5578   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5579                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5580 }
5581 
5582 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5583   switch (Intrinsic) {
5584   case Intrinsic::smul_fix:
5585     return ISD::SMULFIX;
5586   case Intrinsic::umul_fix:
5587     return ISD::UMULFIX;
5588   case Intrinsic::smul_fix_sat:
5589     return ISD::SMULFIXSAT;
5590   case Intrinsic::umul_fix_sat:
5591     return ISD::UMULFIXSAT;
5592   case Intrinsic::sdiv_fix:
5593     return ISD::SDIVFIX;
5594   case Intrinsic::udiv_fix:
5595     return ISD::UDIVFIX;
5596   case Intrinsic::sdiv_fix_sat:
5597     return ISD::SDIVFIXSAT;
5598   case Intrinsic::udiv_fix_sat:
5599     return ISD::UDIVFIXSAT;
5600   default:
5601     llvm_unreachable("Unhandled fixed point intrinsic");
5602   }
5603 }
5604 
5605 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5606                                            const char *FunctionName) {
5607   assert(FunctionName && "FunctionName must not be nullptr");
5608   SDValue Callee = DAG.getExternalSymbol(
5609       FunctionName,
5610       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5611   LowerCallTo(I, Callee, I.isTailCall());
5612 }
5613 
5614 /// Given a @llvm.call.preallocated.setup, return the corresponding
5615 /// preallocated call.
5616 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5617   assert(cast<CallBase>(PreallocatedSetup)
5618                  ->getCalledFunction()
5619                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5620          "expected call_preallocated_setup Value");
5621   for (auto *U : PreallocatedSetup->users()) {
5622     auto *UseCall = cast<CallBase>(U);
5623     const Function *Fn = UseCall->getCalledFunction();
5624     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5625       return UseCall;
5626     }
5627   }
5628   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5629 }
5630 
5631 /// Lower the call to the specified intrinsic function.
5632 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5633                                              unsigned Intrinsic) {
5634   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5635   SDLoc sdl = getCurSDLoc();
5636   DebugLoc dl = getCurDebugLoc();
5637   SDValue Res;
5638 
5639   switch (Intrinsic) {
5640   default:
5641     // By default, turn this into a target intrinsic node.
5642     visitTargetIntrinsic(I, Intrinsic);
5643     return;
5644   case Intrinsic::vscale: {
5645     match(&I, m_VScale(DAG.getDataLayout()));
5646     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5647     setValue(&I,
5648              DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)));
5649     return;
5650   }
5651   case Intrinsic::vastart:  visitVAStart(I); return;
5652   case Intrinsic::vaend:    visitVAEnd(I); return;
5653   case Intrinsic::vacopy:   visitVACopy(I); return;
5654   case Intrinsic::returnaddress:
5655     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5656                              TLI.getPointerTy(DAG.getDataLayout()),
5657                              getValue(I.getArgOperand(0))));
5658     return;
5659   case Intrinsic::addressofreturnaddress:
5660     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5661                              TLI.getPointerTy(DAG.getDataLayout())));
5662     return;
5663   case Intrinsic::sponentry:
5664     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5665                              TLI.getFrameIndexTy(DAG.getDataLayout())));
5666     return;
5667   case Intrinsic::frameaddress:
5668     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5669                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5670                              getValue(I.getArgOperand(0))));
5671     return;
5672   case Intrinsic::read_volatile_register:
5673   case Intrinsic::read_register: {
5674     Value *Reg = I.getArgOperand(0);
5675     SDValue Chain = getRoot();
5676     SDValue RegName =
5677         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5678     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5679     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5680       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5681     setValue(&I, Res);
5682     DAG.setRoot(Res.getValue(1));
5683     return;
5684   }
5685   case Intrinsic::write_register: {
5686     Value *Reg = I.getArgOperand(0);
5687     Value *RegValue = I.getArgOperand(1);
5688     SDValue Chain = getRoot();
5689     SDValue RegName =
5690         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5691     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5692                             RegName, getValue(RegValue)));
5693     return;
5694   }
5695   case Intrinsic::memcpy: {
5696     const auto &MCI = cast<MemCpyInst>(I);
5697     SDValue Op1 = getValue(I.getArgOperand(0));
5698     SDValue Op2 = getValue(I.getArgOperand(1));
5699     SDValue Op3 = getValue(I.getArgOperand(2));
5700     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5701     Align DstAlign = MCI.getDestAlign().valueOrOne();
5702     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5703     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5704     bool isVol = MCI.isVolatile();
5705     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5706     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5707     // node.
5708     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5709     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5710                                /* AlwaysInline */ false, isTC,
5711                                MachinePointerInfo(I.getArgOperand(0)),
5712                                MachinePointerInfo(I.getArgOperand(1)));
5713     updateDAGForMaybeTailCall(MC);
5714     return;
5715   }
5716   case Intrinsic::memcpy_inline: {
5717     const auto &MCI = cast<MemCpyInlineInst>(I);
5718     SDValue Dst = getValue(I.getArgOperand(0));
5719     SDValue Src = getValue(I.getArgOperand(1));
5720     SDValue Size = getValue(I.getArgOperand(2));
5721     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5722     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5723     Align DstAlign = MCI.getDestAlign().valueOrOne();
5724     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5725     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5726     bool isVol = MCI.isVolatile();
5727     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5728     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5729     // node.
5730     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5731                                /* AlwaysInline */ true, isTC,
5732                                MachinePointerInfo(I.getArgOperand(0)),
5733                                MachinePointerInfo(I.getArgOperand(1)));
5734     updateDAGForMaybeTailCall(MC);
5735     return;
5736   }
5737   case Intrinsic::memset: {
5738     const auto &MSI = cast<MemSetInst>(I);
5739     SDValue Op1 = getValue(I.getArgOperand(0));
5740     SDValue Op2 = getValue(I.getArgOperand(1));
5741     SDValue Op3 = getValue(I.getArgOperand(2));
5742     // @llvm.memset defines 0 and 1 to both mean no alignment.
5743     Align Alignment = MSI.getDestAlign().valueOrOne();
5744     bool isVol = MSI.isVolatile();
5745     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5746     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5747     SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC,
5748                                MachinePointerInfo(I.getArgOperand(0)));
5749     updateDAGForMaybeTailCall(MS);
5750     return;
5751   }
5752   case Intrinsic::memmove: {
5753     const auto &MMI = cast<MemMoveInst>(I);
5754     SDValue Op1 = getValue(I.getArgOperand(0));
5755     SDValue Op2 = getValue(I.getArgOperand(1));
5756     SDValue Op3 = getValue(I.getArgOperand(2));
5757     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5758     Align DstAlign = MMI.getDestAlign().valueOrOne();
5759     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5760     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5761     bool isVol = MMI.isVolatile();
5762     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5763     // FIXME: Support passing different dest/src alignments to the memmove DAG
5764     // node.
5765     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5766     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5767                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5768                                 MachinePointerInfo(I.getArgOperand(1)));
5769     updateDAGForMaybeTailCall(MM);
5770     return;
5771   }
5772   case Intrinsic::memcpy_element_unordered_atomic: {
5773     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5774     SDValue Dst = getValue(MI.getRawDest());
5775     SDValue Src = getValue(MI.getRawSource());
5776     SDValue Length = getValue(MI.getLength());
5777 
5778     unsigned DstAlign = MI.getDestAlignment();
5779     unsigned SrcAlign = MI.getSourceAlignment();
5780     Type *LengthTy = MI.getLength()->getType();
5781     unsigned ElemSz = MI.getElementSizeInBytes();
5782     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5783     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5784                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5785                                      MachinePointerInfo(MI.getRawDest()),
5786                                      MachinePointerInfo(MI.getRawSource()));
5787     updateDAGForMaybeTailCall(MC);
5788     return;
5789   }
5790   case Intrinsic::memmove_element_unordered_atomic: {
5791     auto &MI = cast<AtomicMemMoveInst>(I);
5792     SDValue Dst = getValue(MI.getRawDest());
5793     SDValue Src = getValue(MI.getRawSource());
5794     SDValue Length = getValue(MI.getLength());
5795 
5796     unsigned DstAlign = MI.getDestAlignment();
5797     unsigned SrcAlign = MI.getSourceAlignment();
5798     Type *LengthTy = MI.getLength()->getType();
5799     unsigned ElemSz = MI.getElementSizeInBytes();
5800     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5801     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5802                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5803                                       MachinePointerInfo(MI.getRawDest()),
5804                                       MachinePointerInfo(MI.getRawSource()));
5805     updateDAGForMaybeTailCall(MC);
5806     return;
5807   }
5808   case Intrinsic::memset_element_unordered_atomic: {
5809     auto &MI = cast<AtomicMemSetInst>(I);
5810     SDValue Dst = getValue(MI.getRawDest());
5811     SDValue Val = getValue(MI.getValue());
5812     SDValue Length = getValue(MI.getLength());
5813 
5814     unsigned DstAlign = MI.getDestAlignment();
5815     Type *LengthTy = MI.getLength()->getType();
5816     unsigned ElemSz = MI.getElementSizeInBytes();
5817     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5818     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5819                                      LengthTy, ElemSz, isTC,
5820                                      MachinePointerInfo(MI.getRawDest()));
5821     updateDAGForMaybeTailCall(MC);
5822     return;
5823   }
5824   case Intrinsic::call_preallocated_setup: {
5825     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
5826     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5827     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
5828                               getRoot(), SrcValue);
5829     setValue(&I, Res);
5830     DAG.setRoot(Res);
5831     return;
5832   }
5833   case Intrinsic::call_preallocated_arg: {
5834     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
5835     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5836     SDValue Ops[3];
5837     Ops[0] = getRoot();
5838     Ops[1] = SrcValue;
5839     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
5840                                    MVT::i32); // arg index
5841     SDValue Res = DAG.getNode(
5842         ISD::PREALLOCATED_ARG, sdl,
5843         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
5844     setValue(&I, Res);
5845     DAG.setRoot(Res.getValue(1));
5846     return;
5847   }
5848   case Intrinsic::dbg_addr:
5849   case Intrinsic::dbg_declare: {
5850     const auto &DI = cast<DbgVariableIntrinsic>(I);
5851     DILocalVariable *Variable = DI.getVariable();
5852     DIExpression *Expression = DI.getExpression();
5853     dropDanglingDebugInfo(Variable, Expression);
5854     assert(Variable && "Missing variable");
5855     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
5856                       << "\n");
5857     // Check if address has undef value.
5858     const Value *Address = DI.getVariableLocation();
5859     if (!Address || isa<UndefValue>(Address) ||
5860         (Address->use_empty() && !isa<Argument>(Address))) {
5861       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5862                         << " (bad/undef/unused-arg address)\n");
5863       return;
5864     }
5865 
5866     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5867 
5868     // Check if this variable can be described by a frame index, typically
5869     // either as a static alloca or a byval parameter.
5870     int FI = std::numeric_limits<int>::max();
5871     if (const auto *AI =
5872             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5873       if (AI->isStaticAlloca()) {
5874         auto I = FuncInfo.StaticAllocaMap.find(AI);
5875         if (I != FuncInfo.StaticAllocaMap.end())
5876           FI = I->second;
5877       }
5878     } else if (const auto *Arg = dyn_cast<Argument>(
5879                    Address->stripInBoundsConstantOffsets())) {
5880       FI = FuncInfo.getArgumentFrameIndex(Arg);
5881     }
5882 
5883     // llvm.dbg.addr is control dependent and always generates indirect
5884     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5885     // the MachineFunction variable table.
5886     if (FI != std::numeric_limits<int>::max()) {
5887       if (Intrinsic == Intrinsic::dbg_addr) {
5888         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5889             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5890         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5891       } else {
5892         LLVM_DEBUG(dbgs() << "Skipping " << DI
5893                           << " (variable info stashed in MF side table)\n");
5894       }
5895       return;
5896     }
5897 
5898     SDValue &N = NodeMap[Address];
5899     if (!N.getNode() && isa<Argument>(Address))
5900       // Check unused arguments map.
5901       N = UnusedArgNodeMap[Address];
5902     SDDbgValue *SDV;
5903     if (N.getNode()) {
5904       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5905         Address = BCI->getOperand(0);
5906       // Parameters are handled specially.
5907       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5908       if (isParameter && FINode) {
5909         // Byval parameter. We have a frame index at this point.
5910         SDV =
5911             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5912                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5913       } else if (isa<Argument>(Address)) {
5914         // Address is an argument, so try to emit its dbg value using
5915         // virtual register info from the FuncInfo.ValueMap.
5916         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5917         return;
5918       } else {
5919         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5920                               true, dl, SDNodeOrder);
5921       }
5922       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5923     } else {
5924       // If Address is an argument then try to emit its dbg value using
5925       // virtual register info from the FuncInfo.ValueMap.
5926       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5927                                     N)) {
5928         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5929                           << " (could not emit func-arg dbg_value)\n");
5930       }
5931     }
5932     return;
5933   }
5934   case Intrinsic::dbg_label: {
5935     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5936     DILabel *Label = DI.getLabel();
5937     assert(Label && "Missing label");
5938 
5939     SDDbgLabel *SDV;
5940     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5941     DAG.AddDbgLabel(SDV);
5942     return;
5943   }
5944   case Intrinsic::dbg_value: {
5945     const DbgValueInst &DI = cast<DbgValueInst>(I);
5946     assert(DI.getVariable() && "Missing variable");
5947 
5948     DILocalVariable *Variable = DI.getVariable();
5949     DIExpression *Expression = DI.getExpression();
5950     dropDanglingDebugInfo(Variable, Expression);
5951     const Value *V = DI.getValue();
5952     if (!V)
5953       return;
5954 
5955     if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
5956         SDNodeOrder))
5957       return;
5958 
5959     // TODO: Dangling debug info will eventually either be resolved or produce
5960     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5961     // between the original dbg.value location and its resolved DBG_VALUE, which
5962     // we should ideally fill with an extra Undef DBG_VALUE.
5963 
5964     DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5965     return;
5966   }
5967 
5968   case Intrinsic::eh_typeid_for: {
5969     // Find the type id for the given typeinfo.
5970     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5971     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5972     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5973     setValue(&I, Res);
5974     return;
5975   }
5976 
5977   case Intrinsic::eh_return_i32:
5978   case Intrinsic::eh_return_i64:
5979     DAG.getMachineFunction().setCallsEHReturn(true);
5980     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5981                             MVT::Other,
5982                             getControlRoot(),
5983                             getValue(I.getArgOperand(0)),
5984                             getValue(I.getArgOperand(1))));
5985     return;
5986   case Intrinsic::eh_unwind_init:
5987     DAG.getMachineFunction().setCallsUnwindInit(true);
5988     return;
5989   case Intrinsic::eh_dwarf_cfa:
5990     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5991                              TLI.getPointerTy(DAG.getDataLayout()),
5992                              getValue(I.getArgOperand(0))));
5993     return;
5994   case Intrinsic::eh_sjlj_callsite: {
5995     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5996     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5997     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5998     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5999 
6000     MMI.setCurrentCallSite(CI->getZExtValue());
6001     return;
6002   }
6003   case Intrinsic::eh_sjlj_functioncontext: {
6004     // Get and store the index of the function context.
6005     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6006     AllocaInst *FnCtx =
6007       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6008     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6009     MFI.setFunctionContextIndex(FI);
6010     return;
6011   }
6012   case Intrinsic::eh_sjlj_setjmp: {
6013     SDValue Ops[2];
6014     Ops[0] = getRoot();
6015     Ops[1] = getValue(I.getArgOperand(0));
6016     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6017                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6018     setValue(&I, Op.getValue(0));
6019     DAG.setRoot(Op.getValue(1));
6020     return;
6021   }
6022   case Intrinsic::eh_sjlj_longjmp:
6023     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6024                             getRoot(), getValue(I.getArgOperand(0))));
6025     return;
6026   case Intrinsic::eh_sjlj_setup_dispatch:
6027     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6028                             getRoot()));
6029     return;
6030   case Intrinsic::masked_gather:
6031     visitMaskedGather(I);
6032     return;
6033   case Intrinsic::masked_load:
6034     visitMaskedLoad(I);
6035     return;
6036   case Intrinsic::masked_scatter:
6037     visitMaskedScatter(I);
6038     return;
6039   case Intrinsic::masked_store:
6040     visitMaskedStore(I);
6041     return;
6042   case Intrinsic::masked_expandload:
6043     visitMaskedLoad(I, true /* IsExpanding */);
6044     return;
6045   case Intrinsic::masked_compressstore:
6046     visitMaskedStore(I, true /* IsCompressing */);
6047     return;
6048   case Intrinsic::powi:
6049     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6050                             getValue(I.getArgOperand(1)), DAG));
6051     return;
6052   case Intrinsic::log:
6053     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6054     return;
6055   case Intrinsic::log2:
6056     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6057     return;
6058   case Intrinsic::log10:
6059     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6060     return;
6061   case Intrinsic::exp:
6062     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6063     return;
6064   case Intrinsic::exp2:
6065     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6066     return;
6067   case Intrinsic::pow:
6068     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6069                            getValue(I.getArgOperand(1)), DAG, TLI));
6070     return;
6071   case Intrinsic::sqrt:
6072   case Intrinsic::fabs:
6073   case Intrinsic::sin:
6074   case Intrinsic::cos:
6075   case Intrinsic::floor:
6076   case Intrinsic::ceil:
6077   case Intrinsic::trunc:
6078   case Intrinsic::rint:
6079   case Intrinsic::nearbyint:
6080   case Intrinsic::round:
6081   case Intrinsic::roundeven:
6082   case Intrinsic::canonicalize: {
6083     unsigned Opcode;
6084     switch (Intrinsic) {
6085     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6086     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6087     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6088     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6089     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6090     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6091     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6092     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6093     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6094     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6095     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6096     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6097     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6098     }
6099 
6100     setValue(&I, DAG.getNode(Opcode, sdl,
6101                              getValue(I.getArgOperand(0)).getValueType(),
6102                              getValue(I.getArgOperand(0))));
6103     return;
6104   }
6105   case Intrinsic::lround:
6106   case Intrinsic::llround:
6107   case Intrinsic::lrint:
6108   case Intrinsic::llrint: {
6109     unsigned Opcode;
6110     switch (Intrinsic) {
6111     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6112     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6113     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6114     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6115     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6116     }
6117 
6118     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6119     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6120                              getValue(I.getArgOperand(0))));
6121     return;
6122   }
6123   case Intrinsic::minnum:
6124     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6125                              getValue(I.getArgOperand(0)).getValueType(),
6126                              getValue(I.getArgOperand(0)),
6127                              getValue(I.getArgOperand(1))));
6128     return;
6129   case Intrinsic::maxnum:
6130     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6131                              getValue(I.getArgOperand(0)).getValueType(),
6132                              getValue(I.getArgOperand(0)),
6133                              getValue(I.getArgOperand(1))));
6134     return;
6135   case Intrinsic::minimum:
6136     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6137                              getValue(I.getArgOperand(0)).getValueType(),
6138                              getValue(I.getArgOperand(0)),
6139                              getValue(I.getArgOperand(1))));
6140     return;
6141   case Intrinsic::maximum:
6142     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6143                              getValue(I.getArgOperand(0)).getValueType(),
6144                              getValue(I.getArgOperand(0)),
6145                              getValue(I.getArgOperand(1))));
6146     return;
6147   case Intrinsic::copysign:
6148     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6149                              getValue(I.getArgOperand(0)).getValueType(),
6150                              getValue(I.getArgOperand(0)),
6151                              getValue(I.getArgOperand(1))));
6152     return;
6153   case Intrinsic::fma:
6154     setValue(&I, DAG.getNode(ISD::FMA, sdl,
6155                              getValue(I.getArgOperand(0)).getValueType(),
6156                              getValue(I.getArgOperand(0)),
6157                              getValue(I.getArgOperand(1)),
6158                              getValue(I.getArgOperand(2))));
6159     return;
6160 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6161   case Intrinsic::INTRINSIC:
6162 #include "llvm/IR/ConstrainedOps.def"
6163     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6164     return;
6165   case Intrinsic::fmuladd: {
6166     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6167     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6168         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6169       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6170                                getValue(I.getArgOperand(0)).getValueType(),
6171                                getValue(I.getArgOperand(0)),
6172                                getValue(I.getArgOperand(1)),
6173                                getValue(I.getArgOperand(2))));
6174     } else {
6175       // TODO: Intrinsic calls should have fast-math-flags.
6176       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
6177                                 getValue(I.getArgOperand(0)).getValueType(),
6178                                 getValue(I.getArgOperand(0)),
6179                                 getValue(I.getArgOperand(1)));
6180       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6181                                 getValue(I.getArgOperand(0)).getValueType(),
6182                                 Mul,
6183                                 getValue(I.getArgOperand(2)));
6184       setValue(&I, Add);
6185     }
6186     return;
6187   }
6188   case Intrinsic::convert_to_fp16:
6189     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6190                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6191                                          getValue(I.getArgOperand(0)),
6192                                          DAG.getTargetConstant(0, sdl,
6193                                                                MVT::i32))));
6194     return;
6195   case Intrinsic::convert_from_fp16:
6196     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6197                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6198                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6199                                          getValue(I.getArgOperand(0)))));
6200     return;
6201   case Intrinsic::pcmarker: {
6202     SDValue Tmp = getValue(I.getArgOperand(0));
6203     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6204     return;
6205   }
6206   case Intrinsic::readcyclecounter: {
6207     SDValue Op = getRoot();
6208     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6209                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6210     setValue(&I, Res);
6211     DAG.setRoot(Res.getValue(1));
6212     return;
6213   }
6214   case Intrinsic::bitreverse:
6215     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6216                              getValue(I.getArgOperand(0)).getValueType(),
6217                              getValue(I.getArgOperand(0))));
6218     return;
6219   case Intrinsic::bswap:
6220     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6221                              getValue(I.getArgOperand(0)).getValueType(),
6222                              getValue(I.getArgOperand(0))));
6223     return;
6224   case Intrinsic::cttz: {
6225     SDValue Arg = getValue(I.getArgOperand(0));
6226     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6227     EVT Ty = Arg.getValueType();
6228     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6229                              sdl, Ty, Arg));
6230     return;
6231   }
6232   case Intrinsic::ctlz: {
6233     SDValue Arg = getValue(I.getArgOperand(0));
6234     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6235     EVT Ty = Arg.getValueType();
6236     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6237                              sdl, Ty, Arg));
6238     return;
6239   }
6240   case Intrinsic::ctpop: {
6241     SDValue Arg = getValue(I.getArgOperand(0));
6242     EVT Ty = Arg.getValueType();
6243     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6244     return;
6245   }
6246   case Intrinsic::fshl:
6247   case Intrinsic::fshr: {
6248     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6249     SDValue X = getValue(I.getArgOperand(0));
6250     SDValue Y = getValue(I.getArgOperand(1));
6251     SDValue Z = getValue(I.getArgOperand(2));
6252     EVT VT = X.getValueType();
6253     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
6254     SDValue Zero = DAG.getConstant(0, sdl, VT);
6255     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
6256 
6257     auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6258     if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
6259       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6260       return;
6261     }
6262 
6263     // When X == Y, this is rotate. If the data type has a power-of-2 size, we
6264     // avoid the select that is necessary in the general case to filter out
6265     // the 0-shift possibility that leads to UB.
6266     if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
6267       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6268       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6269         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6270         return;
6271       }
6272 
6273       // Some targets only rotate one way. Try the opposite direction.
6274       RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
6275       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6276         // Negate the shift amount because it is safe to ignore the high bits.
6277         SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6278         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
6279         return;
6280       }
6281 
6282       // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
6283       // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
6284       SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6285       SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
6286       SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
6287       SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
6288       setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
6289       return;
6290     }
6291 
6292     // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6293     // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6294     SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
6295     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
6296     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6297     SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
6298 
6299     // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6300     // and that is undefined. We must compare and select to avoid UB.
6301     EVT CCVT = MVT::i1;
6302     if (VT.isVector())
6303       CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
6304 
6305     // For fshl, 0-shift returns the 1st arg (X).
6306     // For fshr, 0-shift returns the 2nd arg (Y).
6307     SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
6308     setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
6309     return;
6310   }
6311   case Intrinsic::sadd_sat: {
6312     SDValue Op1 = getValue(I.getArgOperand(0));
6313     SDValue Op2 = getValue(I.getArgOperand(1));
6314     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6315     return;
6316   }
6317   case Intrinsic::uadd_sat: {
6318     SDValue Op1 = getValue(I.getArgOperand(0));
6319     SDValue Op2 = getValue(I.getArgOperand(1));
6320     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6321     return;
6322   }
6323   case Intrinsic::ssub_sat: {
6324     SDValue Op1 = getValue(I.getArgOperand(0));
6325     SDValue Op2 = getValue(I.getArgOperand(1));
6326     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6327     return;
6328   }
6329   case Intrinsic::usub_sat: {
6330     SDValue Op1 = getValue(I.getArgOperand(0));
6331     SDValue Op2 = getValue(I.getArgOperand(1));
6332     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6333     return;
6334   }
6335   case Intrinsic::smul_fix:
6336   case Intrinsic::umul_fix:
6337   case Intrinsic::smul_fix_sat:
6338   case Intrinsic::umul_fix_sat: {
6339     SDValue Op1 = getValue(I.getArgOperand(0));
6340     SDValue Op2 = getValue(I.getArgOperand(1));
6341     SDValue Op3 = getValue(I.getArgOperand(2));
6342     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6343                              Op1.getValueType(), Op1, Op2, Op3));
6344     return;
6345   }
6346   case Intrinsic::sdiv_fix:
6347   case Intrinsic::udiv_fix:
6348   case Intrinsic::sdiv_fix_sat:
6349   case Intrinsic::udiv_fix_sat: {
6350     SDValue Op1 = getValue(I.getArgOperand(0));
6351     SDValue Op2 = getValue(I.getArgOperand(1));
6352     SDValue Op3 = getValue(I.getArgOperand(2));
6353     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6354                               Op1, Op2, Op3, DAG, TLI));
6355     return;
6356   }
6357   case Intrinsic::smax: {
6358     SDValue Op1 = getValue(I.getArgOperand(0));
6359     SDValue Op2 = getValue(I.getArgOperand(1));
6360     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6361     return;
6362   }
6363   case Intrinsic::smin: {
6364     SDValue Op1 = getValue(I.getArgOperand(0));
6365     SDValue Op2 = getValue(I.getArgOperand(1));
6366     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6367     return;
6368   }
6369   case Intrinsic::umax: {
6370     SDValue Op1 = getValue(I.getArgOperand(0));
6371     SDValue Op2 = getValue(I.getArgOperand(1));
6372     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6373     return;
6374   }
6375   case Intrinsic::umin: {
6376     SDValue Op1 = getValue(I.getArgOperand(0));
6377     SDValue Op2 = getValue(I.getArgOperand(1));
6378     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6379     return;
6380   }
6381   case Intrinsic::abs: {
6382     // TODO: Preserve "int min is poison" arg in SDAG?
6383     SDValue Op1 = getValue(I.getArgOperand(0));
6384     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6385     return;
6386   }
6387   case Intrinsic::stacksave: {
6388     SDValue Op = getRoot();
6389     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6390     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6391     setValue(&I, Res);
6392     DAG.setRoot(Res.getValue(1));
6393     return;
6394   }
6395   case Intrinsic::stackrestore:
6396     Res = getValue(I.getArgOperand(0));
6397     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6398     return;
6399   case Intrinsic::get_dynamic_area_offset: {
6400     SDValue Op = getRoot();
6401     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6402     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6403     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6404     // target.
6405     if (PtrTy.getSizeInBits() < ResTy.getSizeInBits())
6406       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6407                          " intrinsic!");
6408     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6409                       Op);
6410     DAG.setRoot(Op);
6411     setValue(&I, Res);
6412     return;
6413   }
6414   case Intrinsic::stackguard: {
6415     MachineFunction &MF = DAG.getMachineFunction();
6416     const Module &M = *MF.getFunction().getParent();
6417     SDValue Chain = getRoot();
6418     if (TLI.useLoadStackGuardNode()) {
6419       Res = getLoadStackGuard(DAG, sdl, Chain);
6420     } else {
6421       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6422       const Value *Global = TLI.getSDagStackGuard(M);
6423       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
6424       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6425                         MachinePointerInfo(Global, 0), Align,
6426                         MachineMemOperand::MOVolatile);
6427     }
6428     if (TLI.useStackGuardXorFP())
6429       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6430     DAG.setRoot(Chain);
6431     setValue(&I, Res);
6432     return;
6433   }
6434   case Intrinsic::stackprotector: {
6435     // Emit code into the DAG to store the stack guard onto the stack.
6436     MachineFunction &MF = DAG.getMachineFunction();
6437     MachineFrameInfo &MFI = MF.getFrameInfo();
6438     SDValue Src, Chain = getRoot();
6439 
6440     if (TLI.useLoadStackGuardNode())
6441       Src = getLoadStackGuard(DAG, sdl, Chain);
6442     else
6443       Src = getValue(I.getArgOperand(0));   // The guard's value.
6444 
6445     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6446 
6447     int FI = FuncInfo.StaticAllocaMap[Slot];
6448     MFI.setStackProtectorIndex(FI);
6449     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6450 
6451     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6452 
6453     // Store the stack protector onto the stack.
6454     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
6455                                                  DAG.getMachineFunction(), FI),
6456                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
6457     setValue(&I, Res);
6458     DAG.setRoot(Res);
6459     return;
6460   }
6461   case Intrinsic::objectsize:
6462     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6463 
6464   case Intrinsic::is_constant:
6465     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6466 
6467   case Intrinsic::annotation:
6468   case Intrinsic::ptr_annotation:
6469   case Intrinsic::launder_invariant_group:
6470   case Intrinsic::strip_invariant_group:
6471     // Drop the intrinsic, but forward the value
6472     setValue(&I, getValue(I.getOperand(0)));
6473     return;
6474   case Intrinsic::assume:
6475   case Intrinsic::var_annotation:
6476   case Intrinsic::sideeffect:
6477     // Discard annotate attributes, assumptions, and artificial side-effects.
6478     return;
6479 
6480   case Intrinsic::codeview_annotation: {
6481     // Emit a label associated with this metadata.
6482     MachineFunction &MF = DAG.getMachineFunction();
6483     MCSymbol *Label =
6484         MF.getMMI().getContext().createTempSymbol("annotation", true);
6485     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6486     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6487     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6488     DAG.setRoot(Res);
6489     return;
6490   }
6491 
6492   case Intrinsic::init_trampoline: {
6493     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6494 
6495     SDValue Ops[6];
6496     Ops[0] = getRoot();
6497     Ops[1] = getValue(I.getArgOperand(0));
6498     Ops[2] = getValue(I.getArgOperand(1));
6499     Ops[3] = getValue(I.getArgOperand(2));
6500     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6501     Ops[5] = DAG.getSrcValue(F);
6502 
6503     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6504 
6505     DAG.setRoot(Res);
6506     return;
6507   }
6508   case Intrinsic::adjust_trampoline:
6509     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6510                              TLI.getPointerTy(DAG.getDataLayout()),
6511                              getValue(I.getArgOperand(0))));
6512     return;
6513   case Intrinsic::gcroot: {
6514     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6515            "only valid in functions with gc specified, enforced by Verifier");
6516     assert(GFI && "implied by previous");
6517     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6518     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6519 
6520     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6521     GFI->addStackRoot(FI->getIndex(), TypeMap);
6522     return;
6523   }
6524   case Intrinsic::gcread:
6525   case Intrinsic::gcwrite:
6526     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6527   case Intrinsic::flt_rounds:
6528     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6529     setValue(&I, Res);
6530     DAG.setRoot(Res.getValue(1));
6531     return;
6532 
6533   case Intrinsic::expect:
6534     // Just replace __builtin_expect(exp, c) with EXP.
6535     setValue(&I, getValue(I.getArgOperand(0)));
6536     return;
6537 
6538   case Intrinsic::debugtrap:
6539   case Intrinsic::trap: {
6540     StringRef TrapFuncName =
6541         I.getAttributes()
6542             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6543             .getValueAsString();
6544     if (TrapFuncName.empty()) {
6545       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6546         ISD::TRAP : ISD::DEBUGTRAP;
6547       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6548       return;
6549     }
6550     TargetLowering::ArgListTy Args;
6551 
6552     TargetLowering::CallLoweringInfo CLI(DAG);
6553     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6554         CallingConv::C, I.getType(),
6555         DAG.getExternalSymbol(TrapFuncName.data(),
6556                               TLI.getPointerTy(DAG.getDataLayout())),
6557         std::move(Args));
6558 
6559     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6560     DAG.setRoot(Result.second);
6561     return;
6562   }
6563 
6564   case Intrinsic::uadd_with_overflow:
6565   case Intrinsic::sadd_with_overflow:
6566   case Intrinsic::usub_with_overflow:
6567   case Intrinsic::ssub_with_overflow:
6568   case Intrinsic::umul_with_overflow:
6569   case Intrinsic::smul_with_overflow: {
6570     ISD::NodeType Op;
6571     switch (Intrinsic) {
6572     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6573     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6574     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6575     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6576     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6577     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6578     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6579     }
6580     SDValue Op1 = getValue(I.getArgOperand(0));
6581     SDValue Op2 = getValue(I.getArgOperand(1));
6582 
6583     EVT ResultVT = Op1.getValueType();
6584     EVT OverflowVT = MVT::i1;
6585     if (ResultVT.isVector())
6586       OverflowVT = EVT::getVectorVT(
6587           *Context, OverflowVT, ResultVT.getVectorNumElements());
6588 
6589     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6590     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6591     return;
6592   }
6593   case Intrinsic::prefetch: {
6594     SDValue Ops[5];
6595     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6596     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6597     Ops[0] = DAG.getRoot();
6598     Ops[1] = getValue(I.getArgOperand(0));
6599     Ops[2] = getValue(I.getArgOperand(1));
6600     Ops[3] = getValue(I.getArgOperand(2));
6601     Ops[4] = getValue(I.getArgOperand(3));
6602     SDValue Result = DAG.getMemIntrinsicNode(
6603         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6604         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6605         /* align */ None, Flags);
6606 
6607     // Chain the prefetch in parallell with any pending loads, to stay out of
6608     // the way of later optimizations.
6609     PendingLoads.push_back(Result);
6610     Result = getRoot();
6611     DAG.setRoot(Result);
6612     return;
6613   }
6614   case Intrinsic::lifetime_start:
6615   case Intrinsic::lifetime_end: {
6616     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6617     // Stack coloring is not enabled in O0, discard region information.
6618     if (TM.getOptLevel() == CodeGenOpt::None)
6619       return;
6620 
6621     const int64_t ObjectSize =
6622         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6623     Value *const ObjectPtr = I.getArgOperand(1);
6624     SmallVector<const Value *, 4> Allocas;
6625     getUnderlyingObjects(ObjectPtr, Allocas);
6626 
6627     for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(),
6628            E = Allocas.end(); Object != E; ++Object) {
6629       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6630 
6631       // Could not find an Alloca.
6632       if (!LifetimeObject)
6633         continue;
6634 
6635       // First check that the Alloca is static, otherwise it won't have a
6636       // valid frame index.
6637       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6638       if (SI == FuncInfo.StaticAllocaMap.end())
6639         return;
6640 
6641       const int FrameIndex = SI->second;
6642       int64_t Offset;
6643       if (GetPointerBaseWithConstantOffset(
6644               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6645         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6646       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6647                                 Offset);
6648       DAG.setRoot(Res);
6649     }
6650     return;
6651   }
6652   case Intrinsic::invariant_start:
6653     // Discard region information.
6654     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6655     return;
6656   case Intrinsic::invariant_end:
6657     // Discard region information.
6658     return;
6659   case Intrinsic::clear_cache:
6660     /// FunctionName may be null.
6661     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6662       lowerCallToExternalSymbol(I, FunctionName);
6663     return;
6664   case Intrinsic::donothing:
6665     // ignore
6666     return;
6667   case Intrinsic::experimental_stackmap:
6668     visitStackmap(I);
6669     return;
6670   case Intrinsic::experimental_patchpoint_void:
6671   case Intrinsic::experimental_patchpoint_i64:
6672     visitPatchpoint(I);
6673     return;
6674   case Intrinsic::experimental_gc_statepoint:
6675     LowerStatepoint(cast<GCStatepointInst>(I));
6676     return;
6677   case Intrinsic::experimental_gc_result:
6678     visitGCResult(cast<GCResultInst>(I));
6679     return;
6680   case Intrinsic::experimental_gc_relocate:
6681     visitGCRelocate(cast<GCRelocateInst>(I));
6682     return;
6683   case Intrinsic::instrprof_increment:
6684     llvm_unreachable("instrprof failed to lower an increment");
6685   case Intrinsic::instrprof_value_profile:
6686     llvm_unreachable("instrprof failed to lower a value profiling call");
6687   case Intrinsic::localescape: {
6688     MachineFunction &MF = DAG.getMachineFunction();
6689     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6690 
6691     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6692     // is the same on all targets.
6693     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6694       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6695       if (isa<ConstantPointerNull>(Arg))
6696         continue; // Skip null pointers. They represent a hole in index space.
6697       AllocaInst *Slot = cast<AllocaInst>(Arg);
6698       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6699              "can only escape static allocas");
6700       int FI = FuncInfo.StaticAllocaMap[Slot];
6701       MCSymbol *FrameAllocSym =
6702           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6703               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6704       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6705               TII->get(TargetOpcode::LOCAL_ESCAPE))
6706           .addSym(FrameAllocSym)
6707           .addFrameIndex(FI);
6708     }
6709 
6710     return;
6711   }
6712 
6713   case Intrinsic::localrecover: {
6714     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6715     MachineFunction &MF = DAG.getMachineFunction();
6716 
6717     // Get the symbol that defines the frame offset.
6718     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6719     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6720     unsigned IdxVal =
6721         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6722     MCSymbol *FrameAllocSym =
6723         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6724             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6725 
6726     Value *FP = I.getArgOperand(1);
6727     SDValue FPVal = getValue(FP);
6728     EVT PtrVT = FPVal.getValueType();
6729 
6730     // Create a MCSymbol for the label to avoid any target lowering
6731     // that would make this PC relative.
6732     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6733     SDValue OffsetVal =
6734         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6735 
6736     // Add the offset to the FP.
6737     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6738     setValue(&I, Add);
6739 
6740     return;
6741   }
6742 
6743   case Intrinsic::eh_exceptionpointer:
6744   case Intrinsic::eh_exceptioncode: {
6745     // Get the exception pointer vreg, copy from it, and resize it to fit.
6746     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6747     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6748     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6749     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6750     SDValue N =
6751         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6752     if (Intrinsic == Intrinsic::eh_exceptioncode)
6753       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6754     setValue(&I, N);
6755     return;
6756   }
6757   case Intrinsic::xray_customevent: {
6758     // Here we want to make sure that the intrinsic behaves as if it has a
6759     // specific calling convention, and only for x86_64.
6760     // FIXME: Support other platforms later.
6761     const auto &Triple = DAG.getTarget().getTargetTriple();
6762     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6763       return;
6764 
6765     SDLoc DL = getCurSDLoc();
6766     SmallVector<SDValue, 8> Ops;
6767 
6768     // We want to say that we always want the arguments in registers.
6769     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6770     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6771     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6772     SDValue Chain = getRoot();
6773     Ops.push_back(LogEntryVal);
6774     Ops.push_back(StrSizeVal);
6775     Ops.push_back(Chain);
6776 
6777     // We need to enforce the calling convention for the callsite, so that
6778     // argument ordering is enforced correctly, and that register allocation can
6779     // see that some registers may be assumed clobbered and have to preserve
6780     // them across calls to the intrinsic.
6781     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6782                                            DL, NodeTys, Ops);
6783     SDValue patchableNode = SDValue(MN, 0);
6784     DAG.setRoot(patchableNode);
6785     setValue(&I, patchableNode);
6786     return;
6787   }
6788   case Intrinsic::xray_typedevent: {
6789     // Here we want to make sure that the intrinsic behaves as if it has a
6790     // specific calling convention, and only for x86_64.
6791     // FIXME: Support other platforms later.
6792     const auto &Triple = DAG.getTarget().getTargetTriple();
6793     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6794       return;
6795 
6796     SDLoc DL = getCurSDLoc();
6797     SmallVector<SDValue, 8> Ops;
6798 
6799     // We want to say that we always want the arguments in registers.
6800     // It's unclear to me how manipulating the selection DAG here forces callers
6801     // to provide arguments in registers instead of on the stack.
6802     SDValue LogTypeId = getValue(I.getArgOperand(0));
6803     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6804     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6805     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6806     SDValue Chain = getRoot();
6807     Ops.push_back(LogTypeId);
6808     Ops.push_back(LogEntryVal);
6809     Ops.push_back(StrSizeVal);
6810     Ops.push_back(Chain);
6811 
6812     // We need to enforce the calling convention for the callsite, so that
6813     // argument ordering is enforced correctly, and that register allocation can
6814     // see that some registers may be assumed clobbered and have to preserve
6815     // them across calls to the intrinsic.
6816     MachineSDNode *MN = DAG.getMachineNode(
6817         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6818     SDValue patchableNode = SDValue(MN, 0);
6819     DAG.setRoot(patchableNode);
6820     setValue(&I, patchableNode);
6821     return;
6822   }
6823   case Intrinsic::experimental_deoptimize:
6824     LowerDeoptimizeCall(&I);
6825     return;
6826 
6827   case Intrinsic::experimental_vector_reduce_v2_fadd:
6828   case Intrinsic::experimental_vector_reduce_v2_fmul:
6829   case Intrinsic::experimental_vector_reduce_add:
6830   case Intrinsic::experimental_vector_reduce_mul:
6831   case Intrinsic::experimental_vector_reduce_and:
6832   case Intrinsic::experimental_vector_reduce_or:
6833   case Intrinsic::experimental_vector_reduce_xor:
6834   case Intrinsic::experimental_vector_reduce_smax:
6835   case Intrinsic::experimental_vector_reduce_smin:
6836   case Intrinsic::experimental_vector_reduce_umax:
6837   case Intrinsic::experimental_vector_reduce_umin:
6838   case Intrinsic::experimental_vector_reduce_fmax:
6839   case Intrinsic::experimental_vector_reduce_fmin:
6840     visitVectorReduce(I, Intrinsic);
6841     return;
6842 
6843   case Intrinsic::icall_branch_funnel: {
6844     SmallVector<SDValue, 16> Ops;
6845     Ops.push_back(getValue(I.getArgOperand(0)));
6846 
6847     int64_t Offset;
6848     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6849         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6850     if (!Base)
6851       report_fatal_error(
6852           "llvm.icall.branch.funnel operand must be a GlobalValue");
6853     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6854 
6855     struct BranchFunnelTarget {
6856       int64_t Offset;
6857       SDValue Target;
6858     };
6859     SmallVector<BranchFunnelTarget, 8> Targets;
6860 
6861     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6862       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6863           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6864       if (ElemBase != Base)
6865         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6866                            "to the same GlobalValue");
6867 
6868       SDValue Val = getValue(I.getArgOperand(Op + 1));
6869       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6870       if (!GA)
6871         report_fatal_error(
6872             "llvm.icall.branch.funnel operand must be a GlobalValue");
6873       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6874                                      GA->getGlobal(), getCurSDLoc(),
6875                                      Val.getValueType(), GA->getOffset())});
6876     }
6877     llvm::sort(Targets,
6878                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6879                  return T1.Offset < T2.Offset;
6880                });
6881 
6882     for (auto &T : Targets) {
6883       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6884       Ops.push_back(T.Target);
6885     }
6886 
6887     Ops.push_back(DAG.getRoot()); // Chain
6888     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6889                                  getCurSDLoc(), MVT::Other, Ops),
6890               0);
6891     DAG.setRoot(N);
6892     setValue(&I, N);
6893     HasTailCall = true;
6894     return;
6895   }
6896 
6897   case Intrinsic::wasm_landingpad_index:
6898     // Information this intrinsic contained has been transferred to
6899     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6900     // delete it now.
6901     return;
6902 
6903   case Intrinsic::aarch64_settag:
6904   case Intrinsic::aarch64_settag_zero: {
6905     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6906     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
6907     SDValue Val = TSI.EmitTargetCodeForSetTag(
6908         DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
6909         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
6910         ZeroMemory);
6911     DAG.setRoot(Val);
6912     setValue(&I, Val);
6913     return;
6914   }
6915   case Intrinsic::ptrmask: {
6916     SDValue Ptr = getValue(I.getOperand(0));
6917     SDValue Const = getValue(I.getOperand(1));
6918 
6919     EVT PtrVT = Ptr.getValueType();
6920     setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr,
6921                              DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT)));
6922     return;
6923   }
6924   case Intrinsic::get_active_lane_mask: {
6925     auto DL = getCurSDLoc();
6926     SDValue Index = getValue(I.getOperand(0));
6927     SDValue BTC = getValue(I.getOperand(1));
6928     Type *ElementTy = I.getOperand(0)->getType();
6929     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6930     unsigned VecWidth = VT.getVectorNumElements();
6931 
6932     SmallVector<SDValue, 16> OpsBTC;
6933     SmallVector<SDValue, 16> OpsIndex;
6934     SmallVector<SDValue, 16> OpsStepConstants;
6935     for (unsigned i = 0; i < VecWidth; i++) {
6936       OpsBTC.push_back(BTC);
6937       OpsIndex.push_back(Index);
6938       OpsStepConstants.push_back(DAG.getConstant(i, DL, MVT::getVT(ElementTy)));
6939     }
6940 
6941     EVT CCVT = MVT::i1;
6942     CCVT = EVT::getVectorVT(I.getContext(), CCVT, VecWidth);
6943 
6944     auto VecTy = MVT::getVT(FixedVectorType::get(ElementTy, VecWidth));
6945     SDValue VectorIndex = DAG.getBuildVector(VecTy, DL, OpsIndex);
6946     SDValue VectorStep = DAG.getBuildVector(VecTy, DL, OpsStepConstants);
6947     SDValue VectorInduction = DAG.getNode(
6948        ISD::UADDO, DL, DAG.getVTList(VecTy, CCVT), VectorIndex, VectorStep);
6949     SDValue VectorBTC = DAG.getBuildVector(VecTy, DL, OpsBTC);
6950     SDValue SetCC = DAG.getSetCC(DL, CCVT, VectorInduction.getValue(0),
6951                                  VectorBTC, ISD::CondCode::SETULE);
6952     setValue(&I, DAG.getNode(ISD::AND, DL, CCVT,
6953                              DAG.getNOT(DL, VectorInduction.getValue(1), CCVT),
6954                              SetCC));
6955     return;
6956   }
6957   }
6958 }
6959 
6960 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6961     const ConstrainedFPIntrinsic &FPI) {
6962   SDLoc sdl = getCurSDLoc();
6963 
6964   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6965   SmallVector<EVT, 4> ValueVTs;
6966   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6967   ValueVTs.push_back(MVT::Other); // Out chain
6968 
6969   // We do not need to serialize constrained FP intrinsics against
6970   // each other or against (nonvolatile) loads, so they can be
6971   // chained like loads.
6972   SDValue Chain = DAG.getRoot();
6973   SmallVector<SDValue, 4> Opers;
6974   Opers.push_back(Chain);
6975   if (FPI.isUnaryOp()) {
6976     Opers.push_back(getValue(FPI.getArgOperand(0)));
6977   } else if (FPI.isTernaryOp()) {
6978     Opers.push_back(getValue(FPI.getArgOperand(0)));
6979     Opers.push_back(getValue(FPI.getArgOperand(1)));
6980     Opers.push_back(getValue(FPI.getArgOperand(2)));
6981   } else {
6982     Opers.push_back(getValue(FPI.getArgOperand(0)));
6983     Opers.push_back(getValue(FPI.getArgOperand(1)));
6984   }
6985 
6986   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
6987     assert(Result.getNode()->getNumValues() == 2);
6988 
6989     // Push node to the appropriate list so that future instructions can be
6990     // chained up correctly.
6991     SDValue OutChain = Result.getValue(1);
6992     switch (EB) {
6993     case fp::ExceptionBehavior::ebIgnore:
6994       // The only reason why ebIgnore nodes still need to be chained is that
6995       // they might depend on the current rounding mode, and therefore must
6996       // not be moved across instruction that may change that mode.
6997       LLVM_FALLTHROUGH;
6998     case fp::ExceptionBehavior::ebMayTrap:
6999       // These must not be moved across calls or instructions that may change
7000       // floating-point exception masks.
7001       PendingConstrainedFP.push_back(OutChain);
7002       break;
7003     case fp::ExceptionBehavior::ebStrict:
7004       // These must not be moved across calls or instructions that may change
7005       // floating-point exception masks or read floating-point exception flags.
7006       // In addition, they cannot be optimized out even if unused.
7007       PendingConstrainedFPStrict.push_back(OutChain);
7008       break;
7009     }
7010   };
7011 
7012   SDVTList VTs = DAG.getVTList(ValueVTs);
7013   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
7014 
7015   SDNodeFlags Flags;
7016   if (EB == fp::ExceptionBehavior::ebIgnore)
7017     Flags.setNoFPExcept(true);
7018 
7019   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7020     Flags.copyFMF(*FPOp);
7021 
7022   unsigned Opcode;
7023   switch (FPI.getIntrinsicID()) {
7024   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7025 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7026   case Intrinsic::INTRINSIC:                                                   \
7027     Opcode = ISD::STRICT_##DAGN;                                               \
7028     break;
7029 #include "llvm/IR/ConstrainedOps.def"
7030   case Intrinsic::experimental_constrained_fmuladd: {
7031     Opcode = ISD::STRICT_FMA;
7032     // Break fmuladd into fmul and fadd.
7033     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7034         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
7035                                         ValueVTs[0])) {
7036       Opers.pop_back();
7037       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7038       pushOutChain(Mul, EB);
7039       Opcode = ISD::STRICT_FADD;
7040       Opers.clear();
7041       Opers.push_back(Mul.getValue(1));
7042       Opers.push_back(Mul.getValue(0));
7043       Opers.push_back(getValue(FPI.getArgOperand(2)));
7044     }
7045     break;
7046   }
7047   }
7048 
7049   // A few strict DAG nodes carry additional operands that are not
7050   // set up by the default code above.
7051   switch (Opcode) {
7052   default: break;
7053   case ISD::STRICT_FP_ROUND:
7054     Opers.push_back(
7055         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7056     break;
7057   case ISD::STRICT_FSETCC:
7058   case ISD::STRICT_FSETCCS: {
7059     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7060     Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate())));
7061     break;
7062   }
7063   }
7064 
7065   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7066   pushOutChain(Result, EB);
7067 
7068   SDValue FPResult = Result.getValue(0);
7069   setValue(&FPI, FPResult);
7070 }
7071 
7072 std::pair<SDValue, SDValue>
7073 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7074                                     const BasicBlock *EHPadBB) {
7075   MachineFunction &MF = DAG.getMachineFunction();
7076   MachineModuleInfo &MMI = MF.getMMI();
7077   MCSymbol *BeginLabel = nullptr;
7078 
7079   if (EHPadBB) {
7080     // Insert a label before the invoke call to mark the try range.  This can be
7081     // used to detect deletion of the invoke via the MachineModuleInfo.
7082     BeginLabel = MMI.getContext().createTempSymbol();
7083 
7084     // For SjLj, keep track of which landing pads go with which invokes
7085     // so as to maintain the ordering of pads in the LSDA.
7086     unsigned CallSiteIndex = MMI.getCurrentCallSite();
7087     if (CallSiteIndex) {
7088       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7089       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7090 
7091       // Now that the call site is handled, stop tracking it.
7092       MMI.setCurrentCallSite(0);
7093     }
7094 
7095     // Both PendingLoads and PendingExports must be flushed here;
7096     // this call might not return.
7097     (void)getRoot();
7098     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
7099 
7100     CLI.setChain(getRoot());
7101   }
7102   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7103   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7104 
7105   assert((CLI.IsTailCall || Result.second.getNode()) &&
7106          "Non-null chain expected with non-tail call!");
7107   assert((Result.second.getNode() || !Result.first.getNode()) &&
7108          "Null value expected with tail call!");
7109 
7110   if (!Result.second.getNode()) {
7111     // As a special case, a null chain means that a tail call has been emitted
7112     // and the DAG root is already updated.
7113     HasTailCall = true;
7114 
7115     // Since there's no actual continuation from this block, nothing can be
7116     // relying on us setting vregs for them.
7117     PendingExports.clear();
7118   } else {
7119     DAG.setRoot(Result.second);
7120   }
7121 
7122   if (EHPadBB) {
7123     // Insert a label at the end of the invoke call to mark the try range.  This
7124     // can be used to detect deletion of the invoke via the MachineModuleInfo.
7125     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7126     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
7127 
7128     // Inform MachineModuleInfo of range.
7129     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7130     // There is a platform (e.g. wasm) that uses funclet style IR but does not
7131     // actually use outlined funclets and their LSDA info style.
7132     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7133       assert(CLI.CB);
7134       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
7135       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CB), BeginLabel, EndLabel);
7136     } else if (!isScopedEHPersonality(Pers)) {
7137       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7138     }
7139   }
7140 
7141   return Result;
7142 }
7143 
7144 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7145                                       bool isTailCall,
7146                                       const BasicBlock *EHPadBB) {
7147   auto &DL = DAG.getDataLayout();
7148   FunctionType *FTy = CB.getFunctionType();
7149   Type *RetTy = CB.getType();
7150 
7151   TargetLowering::ArgListTy Args;
7152   Args.reserve(CB.arg_size());
7153 
7154   const Value *SwiftErrorVal = nullptr;
7155   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7156 
7157   if (isTailCall) {
7158     // Avoid emitting tail calls in functions with the disable-tail-calls
7159     // attribute.
7160     auto *Caller = CB.getParent()->getParent();
7161     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7162         "true")
7163       isTailCall = false;
7164 
7165     // We can't tail call inside a function with a swifterror argument. Lowering
7166     // does not support this yet. It would have to move into the swifterror
7167     // register before the call.
7168     if (TLI.supportSwiftError() &&
7169         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7170       isTailCall = false;
7171   }
7172 
7173   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7174     TargetLowering::ArgListEntry Entry;
7175     const Value *V = *I;
7176 
7177     // Skip empty types
7178     if (V->getType()->isEmptyTy())
7179       continue;
7180 
7181     SDValue ArgNode = getValue(V);
7182     Entry.Node = ArgNode; Entry.Ty = V->getType();
7183 
7184     Entry.setAttributes(&CB, I - CB.arg_begin());
7185 
7186     // Use swifterror virtual register as input to the call.
7187     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7188       SwiftErrorVal = V;
7189       // We find the virtual register for the actual swifterror argument.
7190       // Instead of using the Value, we use the virtual register instead.
7191       Entry.Node =
7192           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7193                           EVT(TLI.getPointerTy(DL)));
7194     }
7195 
7196     Args.push_back(Entry);
7197 
7198     // If we have an explicit sret argument that is an Instruction, (i.e., it
7199     // might point to function-local memory), we can't meaningfully tail-call.
7200     if (Entry.IsSRet && isa<Instruction>(V))
7201       isTailCall = false;
7202   }
7203 
7204   // If call site has a cfguardtarget operand bundle, create and add an
7205   // additional ArgListEntry.
7206   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7207     TargetLowering::ArgListEntry Entry;
7208     Value *V = Bundle->Inputs[0];
7209     SDValue ArgNode = getValue(V);
7210     Entry.Node = ArgNode;
7211     Entry.Ty = V->getType();
7212     Entry.IsCFGuardTarget = true;
7213     Args.push_back(Entry);
7214   }
7215 
7216   // Check if target-independent constraints permit a tail call here.
7217   // Target-dependent constraints are checked within TLI->LowerCallTo.
7218   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7219     isTailCall = false;
7220 
7221   // Disable tail calls if there is an swifterror argument. Targets have not
7222   // been updated to support tail calls.
7223   if (TLI.supportSwiftError() && SwiftErrorVal)
7224     isTailCall = false;
7225 
7226   TargetLowering::CallLoweringInfo CLI(DAG);
7227   CLI.setDebugLoc(getCurSDLoc())
7228       .setChain(getRoot())
7229       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7230       .setTailCall(isTailCall)
7231       .setConvergent(CB.isConvergent())
7232       .setIsPreallocated(
7233           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
7234   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7235 
7236   if (Result.first.getNode()) {
7237     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7238     setValue(&CB, Result.first);
7239   }
7240 
7241   // The last element of CLI.InVals has the SDValue for swifterror return.
7242   // Here we copy it to a virtual register and update SwiftErrorMap for
7243   // book-keeping.
7244   if (SwiftErrorVal && TLI.supportSwiftError()) {
7245     // Get the last element of InVals.
7246     SDValue Src = CLI.InVals.back();
7247     Register VReg =
7248         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
7249     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7250     DAG.setRoot(CopyNode);
7251   }
7252 }
7253 
7254 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7255                              SelectionDAGBuilder &Builder) {
7256   // Check to see if this load can be trivially constant folded, e.g. if the
7257   // input is from a string literal.
7258   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7259     // Cast pointer to the type we really want to load.
7260     Type *LoadTy =
7261         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7262     if (LoadVT.isVector())
7263       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
7264 
7265     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7266                                          PointerType::getUnqual(LoadTy));
7267 
7268     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7269             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7270       return Builder.getValue(LoadCst);
7271   }
7272 
7273   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7274   // still constant memory, the input chain can be the entry node.
7275   SDValue Root;
7276   bool ConstantMemory = false;
7277 
7278   // Do not serialize (non-volatile) loads of constant memory with anything.
7279   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7280     Root = Builder.DAG.getEntryNode();
7281     ConstantMemory = true;
7282   } else {
7283     // Do not serialize non-volatile loads against each other.
7284     Root = Builder.DAG.getRoot();
7285   }
7286 
7287   SDValue Ptr = Builder.getValue(PtrVal);
7288   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
7289                                         Ptr, MachinePointerInfo(PtrVal),
7290                                         /* Alignment = */ 1);
7291 
7292   if (!ConstantMemory)
7293     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7294   return LoadVal;
7295 }
7296 
7297 /// Record the value for an instruction that produces an integer result,
7298 /// converting the type where necessary.
7299 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7300                                                   SDValue Value,
7301                                                   bool IsSigned) {
7302   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7303                                                     I.getType(), true);
7304   if (IsSigned)
7305     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7306   else
7307     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7308   setValue(&I, Value);
7309 }
7310 
7311 /// See if we can lower a memcmp call into an optimized form. If so, return
7312 /// true and lower it. Otherwise return false, and it will be lowered like a
7313 /// normal call.
7314 /// The caller already checked that \p I calls the appropriate LibFunc with a
7315 /// correct prototype.
7316 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
7317   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7318   const Value *Size = I.getArgOperand(2);
7319   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7320   if (CSize && CSize->getZExtValue() == 0) {
7321     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7322                                                           I.getType(), true);
7323     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7324     return true;
7325   }
7326 
7327   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7328   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7329       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7330       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7331   if (Res.first.getNode()) {
7332     processIntegerCallValue(I, Res.first, true);
7333     PendingLoads.push_back(Res.second);
7334     return true;
7335   }
7336 
7337   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7338   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7339   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7340     return false;
7341 
7342   // If the target has a fast compare for the given size, it will return a
7343   // preferred load type for that size. Require that the load VT is legal and
7344   // that the target supports unaligned loads of that type. Otherwise, return
7345   // INVALID.
7346   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7347     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7348     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7349     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7350       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7351       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7352       // TODO: Check alignment of src and dest ptrs.
7353       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7354       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7355       if (!TLI.isTypeLegal(LVT) ||
7356           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7357           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7358         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7359     }
7360 
7361     return LVT;
7362   };
7363 
7364   // This turns into unaligned loads. We only do this if the target natively
7365   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7366   // we'll only produce a small number of byte loads.
7367   MVT LoadVT;
7368   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7369   switch (NumBitsToCompare) {
7370   default:
7371     return false;
7372   case 16:
7373     LoadVT = MVT::i16;
7374     break;
7375   case 32:
7376     LoadVT = MVT::i32;
7377     break;
7378   case 64:
7379   case 128:
7380   case 256:
7381     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7382     break;
7383   }
7384 
7385   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7386     return false;
7387 
7388   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7389   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7390 
7391   // Bitcast to a wide integer type if the loads are vectors.
7392   if (LoadVT.isVector()) {
7393     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7394     LoadL = DAG.getBitcast(CmpVT, LoadL);
7395     LoadR = DAG.getBitcast(CmpVT, LoadR);
7396   }
7397 
7398   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7399   processIntegerCallValue(I, Cmp, false);
7400   return true;
7401 }
7402 
7403 /// See if we can lower a memchr call into an optimized form. If so, return
7404 /// true and lower it. Otherwise return false, and it will be lowered like a
7405 /// normal call.
7406 /// The caller already checked that \p I calls the appropriate LibFunc with a
7407 /// correct prototype.
7408 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7409   const Value *Src = I.getArgOperand(0);
7410   const Value *Char = I.getArgOperand(1);
7411   const Value *Length = I.getArgOperand(2);
7412 
7413   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7414   std::pair<SDValue, SDValue> Res =
7415     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7416                                 getValue(Src), getValue(Char), getValue(Length),
7417                                 MachinePointerInfo(Src));
7418   if (Res.first.getNode()) {
7419     setValue(&I, Res.first);
7420     PendingLoads.push_back(Res.second);
7421     return true;
7422   }
7423 
7424   return false;
7425 }
7426 
7427 /// See if we can lower a mempcpy call into an optimized form. If so, return
7428 /// true and lower it. Otherwise return false, and it will be lowered like a
7429 /// normal call.
7430 /// The caller already checked that \p I calls the appropriate LibFunc with a
7431 /// correct prototype.
7432 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7433   SDValue Dst = getValue(I.getArgOperand(0));
7434   SDValue Src = getValue(I.getArgOperand(1));
7435   SDValue Size = getValue(I.getArgOperand(2));
7436 
7437   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
7438   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
7439   // DAG::getMemcpy needs Alignment to be defined.
7440   Align Alignment = std::min(DstAlign, SrcAlign);
7441 
7442   bool isVol = false;
7443   SDLoc sdl = getCurSDLoc();
7444 
7445   // In the mempcpy context we need to pass in a false value for isTailCall
7446   // because the return pointer needs to be adjusted by the size of
7447   // the copied memory.
7448   SDValue Root = isVol ? getRoot() : getMemoryRoot();
7449   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
7450                              /*isTailCall=*/false,
7451                              MachinePointerInfo(I.getArgOperand(0)),
7452                              MachinePointerInfo(I.getArgOperand(1)));
7453   assert(MC.getNode() != nullptr &&
7454          "** memcpy should not be lowered as TailCall in mempcpy context **");
7455   DAG.setRoot(MC);
7456 
7457   // Check if Size needs to be truncated or extended.
7458   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7459 
7460   // Adjust return pointer to point just past the last dst byte.
7461   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7462                                     Dst, Size);
7463   setValue(&I, DstPlusSize);
7464   return true;
7465 }
7466 
7467 /// See if we can lower a strcpy call into an optimized form.  If so, return
7468 /// true and lower it, otherwise return false and it will be lowered like a
7469 /// normal call.
7470 /// The caller already checked that \p I calls the appropriate LibFunc with a
7471 /// correct prototype.
7472 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7473   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7474 
7475   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7476   std::pair<SDValue, SDValue> Res =
7477     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7478                                 getValue(Arg0), getValue(Arg1),
7479                                 MachinePointerInfo(Arg0),
7480                                 MachinePointerInfo(Arg1), isStpcpy);
7481   if (Res.first.getNode()) {
7482     setValue(&I, Res.first);
7483     DAG.setRoot(Res.second);
7484     return true;
7485   }
7486 
7487   return false;
7488 }
7489 
7490 /// See if we can lower a strcmp call into an optimized form.  If so, return
7491 /// true and lower it, otherwise return false and it will be lowered like a
7492 /// normal call.
7493 /// The caller already checked that \p I calls the appropriate LibFunc with a
7494 /// correct prototype.
7495 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7496   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7497 
7498   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7499   std::pair<SDValue, SDValue> Res =
7500     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7501                                 getValue(Arg0), getValue(Arg1),
7502                                 MachinePointerInfo(Arg0),
7503                                 MachinePointerInfo(Arg1));
7504   if (Res.first.getNode()) {
7505     processIntegerCallValue(I, Res.first, true);
7506     PendingLoads.push_back(Res.second);
7507     return true;
7508   }
7509 
7510   return false;
7511 }
7512 
7513 /// See if we can lower a strlen call into an optimized form.  If so, return
7514 /// true and lower it, otherwise return false and it will be lowered like a
7515 /// normal call.
7516 /// The caller already checked that \p I calls the appropriate LibFunc with a
7517 /// correct prototype.
7518 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7519   const Value *Arg0 = I.getArgOperand(0);
7520 
7521   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7522   std::pair<SDValue, SDValue> Res =
7523     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7524                                 getValue(Arg0), MachinePointerInfo(Arg0));
7525   if (Res.first.getNode()) {
7526     processIntegerCallValue(I, Res.first, false);
7527     PendingLoads.push_back(Res.second);
7528     return true;
7529   }
7530 
7531   return false;
7532 }
7533 
7534 /// See if we can lower a strnlen call into an optimized form.  If so, return
7535 /// true and lower it, otherwise return false and it will be lowered like a
7536 /// normal call.
7537 /// The caller already checked that \p I calls the appropriate LibFunc with a
7538 /// correct prototype.
7539 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7540   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7541 
7542   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7543   std::pair<SDValue, SDValue> Res =
7544     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7545                                  getValue(Arg0), getValue(Arg1),
7546                                  MachinePointerInfo(Arg0));
7547   if (Res.first.getNode()) {
7548     processIntegerCallValue(I, Res.first, false);
7549     PendingLoads.push_back(Res.second);
7550     return true;
7551   }
7552 
7553   return false;
7554 }
7555 
7556 /// See if we can lower a unary floating-point operation into an SDNode with
7557 /// the specified Opcode.  If so, return true and lower it, otherwise return
7558 /// false and it will be lowered like a normal call.
7559 /// The caller already checked that \p I calls the appropriate LibFunc with a
7560 /// correct prototype.
7561 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7562                                               unsigned Opcode) {
7563   // We already checked this call's prototype; verify it doesn't modify errno.
7564   if (!I.onlyReadsMemory())
7565     return false;
7566 
7567   SDValue Tmp = getValue(I.getArgOperand(0));
7568   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
7569   return true;
7570 }
7571 
7572 /// See if we can lower a binary floating-point operation into an SDNode with
7573 /// the specified Opcode. If so, return true and lower it. Otherwise return
7574 /// false, and it will be lowered like a normal call.
7575 /// The caller already checked that \p I calls the appropriate LibFunc with a
7576 /// correct prototype.
7577 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7578                                                unsigned Opcode) {
7579   // We already checked this call's prototype; verify it doesn't modify errno.
7580   if (!I.onlyReadsMemory())
7581     return false;
7582 
7583   SDValue Tmp0 = getValue(I.getArgOperand(0));
7584   SDValue Tmp1 = getValue(I.getArgOperand(1));
7585   EVT VT = Tmp0.getValueType();
7586   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
7587   return true;
7588 }
7589 
7590 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7591   // Handle inline assembly differently.
7592   if (I.isInlineAsm()) {
7593     visitInlineAsm(I);
7594     return;
7595   }
7596 
7597   if (Function *F = I.getCalledFunction()) {
7598     if (F->isDeclaration()) {
7599       // Is this an LLVM intrinsic or a target-specific intrinsic?
7600       unsigned IID = F->getIntrinsicID();
7601       if (!IID)
7602         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7603           IID = II->getIntrinsicID(F);
7604 
7605       if (IID) {
7606         visitIntrinsicCall(I, IID);
7607         return;
7608       }
7609     }
7610 
7611     // Check for well-known libc/libm calls.  If the function is internal, it
7612     // can't be a library call.  Don't do the check if marked as nobuiltin for
7613     // some reason or the call site requires strict floating point semantics.
7614     LibFunc Func;
7615     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7616         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7617         LibInfo->hasOptimizedCodeGen(Func)) {
7618       switch (Func) {
7619       default: break;
7620       case LibFunc_copysign:
7621       case LibFunc_copysignf:
7622       case LibFunc_copysignl:
7623         // We already checked this call's prototype; verify it doesn't modify
7624         // errno.
7625         if (I.onlyReadsMemory()) {
7626           SDValue LHS = getValue(I.getArgOperand(0));
7627           SDValue RHS = getValue(I.getArgOperand(1));
7628           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7629                                    LHS.getValueType(), LHS, RHS));
7630           return;
7631         }
7632         break;
7633       case LibFunc_fabs:
7634       case LibFunc_fabsf:
7635       case LibFunc_fabsl:
7636         if (visitUnaryFloatCall(I, ISD::FABS))
7637           return;
7638         break;
7639       case LibFunc_fmin:
7640       case LibFunc_fminf:
7641       case LibFunc_fminl:
7642         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7643           return;
7644         break;
7645       case LibFunc_fmax:
7646       case LibFunc_fmaxf:
7647       case LibFunc_fmaxl:
7648         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7649           return;
7650         break;
7651       case LibFunc_sin:
7652       case LibFunc_sinf:
7653       case LibFunc_sinl:
7654         if (visitUnaryFloatCall(I, ISD::FSIN))
7655           return;
7656         break;
7657       case LibFunc_cos:
7658       case LibFunc_cosf:
7659       case LibFunc_cosl:
7660         if (visitUnaryFloatCall(I, ISD::FCOS))
7661           return;
7662         break;
7663       case LibFunc_sqrt:
7664       case LibFunc_sqrtf:
7665       case LibFunc_sqrtl:
7666       case LibFunc_sqrt_finite:
7667       case LibFunc_sqrtf_finite:
7668       case LibFunc_sqrtl_finite:
7669         if (visitUnaryFloatCall(I, ISD::FSQRT))
7670           return;
7671         break;
7672       case LibFunc_floor:
7673       case LibFunc_floorf:
7674       case LibFunc_floorl:
7675         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7676           return;
7677         break;
7678       case LibFunc_nearbyint:
7679       case LibFunc_nearbyintf:
7680       case LibFunc_nearbyintl:
7681         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7682           return;
7683         break;
7684       case LibFunc_ceil:
7685       case LibFunc_ceilf:
7686       case LibFunc_ceill:
7687         if (visitUnaryFloatCall(I, ISD::FCEIL))
7688           return;
7689         break;
7690       case LibFunc_rint:
7691       case LibFunc_rintf:
7692       case LibFunc_rintl:
7693         if (visitUnaryFloatCall(I, ISD::FRINT))
7694           return;
7695         break;
7696       case LibFunc_round:
7697       case LibFunc_roundf:
7698       case LibFunc_roundl:
7699         if (visitUnaryFloatCall(I, ISD::FROUND))
7700           return;
7701         break;
7702       case LibFunc_trunc:
7703       case LibFunc_truncf:
7704       case LibFunc_truncl:
7705         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7706           return;
7707         break;
7708       case LibFunc_log2:
7709       case LibFunc_log2f:
7710       case LibFunc_log2l:
7711         if (visitUnaryFloatCall(I, ISD::FLOG2))
7712           return;
7713         break;
7714       case LibFunc_exp2:
7715       case LibFunc_exp2f:
7716       case LibFunc_exp2l:
7717         if (visitUnaryFloatCall(I, ISD::FEXP2))
7718           return;
7719         break;
7720       case LibFunc_memcmp:
7721         if (visitMemCmpCall(I))
7722           return;
7723         break;
7724       case LibFunc_mempcpy:
7725         if (visitMemPCpyCall(I))
7726           return;
7727         break;
7728       case LibFunc_memchr:
7729         if (visitMemChrCall(I))
7730           return;
7731         break;
7732       case LibFunc_strcpy:
7733         if (visitStrCpyCall(I, false))
7734           return;
7735         break;
7736       case LibFunc_stpcpy:
7737         if (visitStrCpyCall(I, true))
7738           return;
7739         break;
7740       case LibFunc_strcmp:
7741         if (visitStrCmpCall(I))
7742           return;
7743         break;
7744       case LibFunc_strlen:
7745         if (visitStrLenCall(I))
7746           return;
7747         break;
7748       case LibFunc_strnlen:
7749         if (visitStrNLenCall(I))
7750           return;
7751         break;
7752       }
7753     }
7754   }
7755 
7756   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7757   // have to do anything here to lower funclet bundles.
7758   // CFGuardTarget bundles are lowered in LowerCallTo.
7759   assert(!I.hasOperandBundlesOtherThan(
7760              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
7761               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated}) &&
7762          "Cannot lower calls with arbitrary operand bundles!");
7763 
7764   SDValue Callee = getValue(I.getCalledOperand());
7765 
7766   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7767     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7768   else
7769     // Check if we can potentially perform a tail call. More detailed checking
7770     // is be done within LowerCallTo, after more information about the call is
7771     // known.
7772     LowerCallTo(I, Callee, I.isTailCall());
7773 }
7774 
7775 namespace {
7776 
7777 /// AsmOperandInfo - This contains information for each constraint that we are
7778 /// lowering.
7779 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7780 public:
7781   /// CallOperand - If this is the result output operand or a clobber
7782   /// this is null, otherwise it is the incoming operand to the CallInst.
7783   /// This gets modified as the asm is processed.
7784   SDValue CallOperand;
7785 
7786   /// AssignedRegs - If this is a register or register class operand, this
7787   /// contains the set of register corresponding to the operand.
7788   RegsForValue AssignedRegs;
7789 
7790   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7791     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7792   }
7793 
7794   /// Whether or not this operand accesses memory
7795   bool hasMemory(const TargetLowering &TLI) const {
7796     // Indirect operand accesses access memory.
7797     if (isIndirect)
7798       return true;
7799 
7800     for (const auto &Code : Codes)
7801       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7802         return true;
7803 
7804     return false;
7805   }
7806 
7807   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7808   /// corresponds to.  If there is no Value* for this operand, it returns
7809   /// MVT::Other.
7810   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7811                            const DataLayout &DL) const {
7812     if (!CallOperandVal) return MVT::Other;
7813 
7814     if (isa<BasicBlock>(CallOperandVal))
7815       return TLI.getProgramPointerTy(DL);
7816 
7817     llvm::Type *OpTy = CallOperandVal->getType();
7818 
7819     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7820     // If this is an indirect operand, the operand is a pointer to the
7821     // accessed type.
7822     if (isIndirect) {
7823       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7824       if (!PtrTy)
7825         report_fatal_error("Indirect operand for inline asm not a pointer!");
7826       OpTy = PtrTy->getElementType();
7827     }
7828 
7829     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7830     if (StructType *STy = dyn_cast<StructType>(OpTy))
7831       if (STy->getNumElements() == 1)
7832         OpTy = STy->getElementType(0);
7833 
7834     // If OpTy is not a single value, it may be a struct/union that we
7835     // can tile with integers.
7836     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7837       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7838       switch (BitSize) {
7839       default: break;
7840       case 1:
7841       case 8:
7842       case 16:
7843       case 32:
7844       case 64:
7845       case 128:
7846         OpTy = IntegerType::get(Context, BitSize);
7847         break;
7848       }
7849     }
7850 
7851     return TLI.getValueType(DL, OpTy, true);
7852   }
7853 };
7854 
7855 
7856 } // end anonymous namespace
7857 
7858 /// Make sure that the output operand \p OpInfo and its corresponding input
7859 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7860 /// out).
7861 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7862                                SDISelAsmOperandInfo &MatchingOpInfo,
7863                                SelectionDAG &DAG) {
7864   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7865     return;
7866 
7867   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7868   const auto &TLI = DAG.getTargetLoweringInfo();
7869 
7870   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7871       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7872                                        OpInfo.ConstraintVT);
7873   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7874       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7875                                        MatchingOpInfo.ConstraintVT);
7876   if ((OpInfo.ConstraintVT.isInteger() !=
7877        MatchingOpInfo.ConstraintVT.isInteger()) ||
7878       (MatchRC.second != InputRC.second)) {
7879     // FIXME: error out in a more elegant fashion
7880     report_fatal_error("Unsupported asm: input constraint"
7881                        " with a matching output constraint of"
7882                        " incompatible type!");
7883   }
7884   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7885 }
7886 
7887 /// Get a direct memory input to behave well as an indirect operand.
7888 /// This may introduce stores, hence the need for a \p Chain.
7889 /// \return The (possibly updated) chain.
7890 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7891                                         SDISelAsmOperandInfo &OpInfo,
7892                                         SelectionDAG &DAG) {
7893   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7894 
7895   // If we don't have an indirect input, put it in the constpool if we can,
7896   // otherwise spill it to a stack slot.
7897   // TODO: This isn't quite right. We need to handle these according to
7898   // the addressing mode that the constraint wants. Also, this may take
7899   // an additional register for the computation and we don't want that
7900   // either.
7901 
7902   // If the operand is a float, integer, or vector constant, spill to a
7903   // constant pool entry to get its address.
7904   const Value *OpVal = OpInfo.CallOperandVal;
7905   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7906       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7907     OpInfo.CallOperand = DAG.getConstantPool(
7908         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7909     return Chain;
7910   }
7911 
7912   // Otherwise, create a stack slot and emit a store to it before the asm.
7913   Type *Ty = OpVal->getType();
7914   auto &DL = DAG.getDataLayout();
7915   uint64_t TySize = DL.getTypeAllocSize(Ty);
7916   MachineFunction &MF = DAG.getMachineFunction();
7917   int SSFI = MF.getFrameInfo().CreateStackObject(
7918       TySize, DL.getPrefTypeAlign(Ty), false);
7919   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7920   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7921                             MachinePointerInfo::getFixedStack(MF, SSFI),
7922                             TLI.getMemValueType(DL, Ty));
7923   OpInfo.CallOperand = StackSlot;
7924 
7925   return Chain;
7926 }
7927 
7928 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7929 /// specified operand.  We prefer to assign virtual registers, to allow the
7930 /// register allocator to handle the assignment process.  However, if the asm
7931 /// uses features that we can't model on machineinstrs, we have SDISel do the
7932 /// allocation.  This produces generally horrible, but correct, code.
7933 ///
7934 ///   OpInfo describes the operand
7935 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7936 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7937                                  SDISelAsmOperandInfo &OpInfo,
7938                                  SDISelAsmOperandInfo &RefOpInfo) {
7939   LLVMContext &Context = *DAG.getContext();
7940   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7941 
7942   MachineFunction &MF = DAG.getMachineFunction();
7943   SmallVector<unsigned, 4> Regs;
7944   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7945 
7946   // No work to do for memory operations.
7947   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7948     return;
7949 
7950   // If this is a constraint for a single physreg, or a constraint for a
7951   // register class, find it.
7952   unsigned AssignedReg;
7953   const TargetRegisterClass *RC;
7954   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7955       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7956   // RC is unset only on failure. Return immediately.
7957   if (!RC)
7958     return;
7959 
7960   // Get the actual register value type.  This is important, because the user
7961   // may have asked for (e.g.) the AX register in i32 type.  We need to
7962   // remember that AX is actually i16 to get the right extension.
7963   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7964 
7965   if (OpInfo.ConstraintVT != MVT::Other) {
7966     // If this is an FP operand in an integer register (or visa versa), or more
7967     // generally if the operand value disagrees with the register class we plan
7968     // to stick it in, fix the operand type.
7969     //
7970     // If this is an input value, the bitcast to the new type is done now.
7971     // Bitcast for output value is done at the end of visitInlineAsm().
7972     if ((OpInfo.Type == InlineAsm::isOutput ||
7973          OpInfo.Type == InlineAsm::isInput) &&
7974         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7975       // Try to convert to the first EVT that the reg class contains.  If the
7976       // types are identical size, use a bitcast to convert (e.g. two differing
7977       // vector types).  Note: output bitcast is done at the end of
7978       // visitInlineAsm().
7979       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7980         // Exclude indirect inputs while they are unsupported because the code
7981         // to perform the load is missing and thus OpInfo.CallOperand still
7982         // refers to the input address rather than the pointed-to value.
7983         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7984           OpInfo.CallOperand =
7985               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7986         OpInfo.ConstraintVT = RegVT;
7987         // If the operand is an FP value and we want it in integer registers,
7988         // use the corresponding integer type. This turns an f64 value into
7989         // i64, which can be passed with two i32 values on a 32-bit machine.
7990       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7991         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7992         if (OpInfo.Type == InlineAsm::isInput)
7993           OpInfo.CallOperand =
7994               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
7995         OpInfo.ConstraintVT = VT;
7996       }
7997     }
7998   }
7999 
8000   // No need to allocate a matching input constraint since the constraint it's
8001   // matching to has already been allocated.
8002   if (OpInfo.isMatchingInputConstraint())
8003     return;
8004 
8005   EVT ValueVT = OpInfo.ConstraintVT;
8006   if (OpInfo.ConstraintVT == MVT::Other)
8007     ValueVT = RegVT;
8008 
8009   // Initialize NumRegs.
8010   unsigned NumRegs = 1;
8011   if (OpInfo.ConstraintVT != MVT::Other)
8012     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
8013 
8014   // If this is a constraint for a specific physical register, like {r17},
8015   // assign it now.
8016 
8017   // If this associated to a specific register, initialize iterator to correct
8018   // place. If virtual, make sure we have enough registers
8019 
8020   // Initialize iterator if necessary
8021   TargetRegisterClass::iterator I = RC->begin();
8022   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8023 
8024   // Do not check for single registers.
8025   if (AssignedReg) {
8026       for (; *I != AssignedReg; ++I)
8027         assert(I != RC->end() && "AssignedReg should be member of RC");
8028   }
8029 
8030   for (; NumRegs; --NumRegs, ++I) {
8031     assert(I != RC->end() && "Ran out of registers to allocate!");
8032     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8033     Regs.push_back(R);
8034   }
8035 
8036   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8037 }
8038 
8039 static unsigned
8040 findMatchingInlineAsmOperand(unsigned OperandNo,
8041                              const std::vector<SDValue> &AsmNodeOperands) {
8042   // Scan until we find the definition we already emitted of this operand.
8043   unsigned CurOp = InlineAsm::Op_FirstOperand;
8044   for (; OperandNo; --OperandNo) {
8045     // Advance to the next operand.
8046     unsigned OpFlag =
8047         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8048     assert((InlineAsm::isRegDefKind(OpFlag) ||
8049             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8050             InlineAsm::isMemKind(OpFlag)) &&
8051            "Skipped past definitions?");
8052     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8053   }
8054   return CurOp;
8055 }
8056 
8057 namespace {
8058 
8059 class ExtraFlags {
8060   unsigned Flags = 0;
8061 
8062 public:
8063   explicit ExtraFlags(const CallBase &Call) {
8064     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8065     if (IA->hasSideEffects())
8066       Flags |= InlineAsm::Extra_HasSideEffects;
8067     if (IA->isAlignStack())
8068       Flags |= InlineAsm::Extra_IsAlignStack;
8069     if (Call.isConvergent())
8070       Flags |= InlineAsm::Extra_IsConvergent;
8071     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8072   }
8073 
8074   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8075     // Ideally, we would only check against memory constraints.  However, the
8076     // meaning of an Other constraint can be target-specific and we can't easily
8077     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8078     // for Other constraints as well.
8079     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8080         OpInfo.ConstraintType == TargetLowering::C_Other) {
8081       if (OpInfo.Type == InlineAsm::isInput)
8082         Flags |= InlineAsm::Extra_MayLoad;
8083       else if (OpInfo.Type == InlineAsm::isOutput)
8084         Flags |= InlineAsm::Extra_MayStore;
8085       else if (OpInfo.Type == InlineAsm::isClobber)
8086         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8087     }
8088   }
8089 
8090   unsigned get() const { return Flags; }
8091 };
8092 
8093 } // end anonymous namespace
8094 
8095 /// visitInlineAsm - Handle a call to an InlineAsm object.
8096 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call) {
8097   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8098 
8099   /// ConstraintOperands - Information about all of the constraints.
8100   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8101 
8102   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8103   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8104       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8105 
8106   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8107   // AsmDialect, MayLoad, MayStore).
8108   bool HasSideEffect = IA->hasSideEffects();
8109   ExtraFlags ExtraInfo(Call);
8110 
8111   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8112   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8113   unsigned NumMatchingOps = 0;
8114   for (auto &T : TargetConstraints) {
8115     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8116     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8117 
8118     // Compute the value type for each operand.
8119     if (OpInfo.Type == InlineAsm::isInput ||
8120         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8121       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
8122 
8123       // Process the call argument. BasicBlocks are labels, currently appearing
8124       // only in asm's.
8125       if (isa<CallBrInst>(Call) &&
8126           ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() -
8127                         cast<CallBrInst>(&Call)->getNumIndirectDests() -
8128                         NumMatchingOps) &&
8129           (NumMatchingOps == 0 ||
8130            ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() -
8131                         NumMatchingOps))) {
8132         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8133         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8134         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8135       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8136         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8137       } else {
8138         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8139       }
8140 
8141       OpInfo.ConstraintVT =
8142           OpInfo
8143               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
8144               .getSimpleVT();
8145     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8146       // The return value of the call is this value.  As such, there is no
8147       // corresponding argument.
8148       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8149       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
8150         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8151             DAG.getDataLayout(), STy->getElementType(ResNo));
8152       } else {
8153         assert(ResNo == 0 && "Asm only has one result!");
8154         OpInfo.ConstraintVT =
8155             TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType());
8156       }
8157       ++ResNo;
8158     } else {
8159       OpInfo.ConstraintVT = MVT::Other;
8160     }
8161 
8162     if (OpInfo.hasMatchingInput())
8163       ++NumMatchingOps;
8164 
8165     if (!HasSideEffect)
8166       HasSideEffect = OpInfo.hasMemory(TLI);
8167 
8168     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8169     // FIXME: Could we compute this on OpInfo rather than T?
8170 
8171     // Compute the constraint code and ConstraintType to use.
8172     TLI.ComputeConstraintToUse(T, SDValue());
8173 
8174     if (T.ConstraintType == TargetLowering::C_Immediate &&
8175         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8176       // We've delayed emitting a diagnostic like the "n" constraint because
8177       // inlining could cause an integer showing up.
8178       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8179                                           "' expects an integer constant "
8180                                           "expression");
8181 
8182     ExtraInfo.update(T);
8183   }
8184 
8185 
8186   // We won't need to flush pending loads if this asm doesn't touch
8187   // memory and is nonvolatile.
8188   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8189 
8190   bool IsCallBr = isa<CallBrInst>(Call);
8191   if (IsCallBr) {
8192     // If this is a callbr we need to flush pending exports since inlineasm_br
8193     // is a terminator. We need to do this before nodes are glued to
8194     // the inlineasm_br node.
8195     Chain = getControlRoot();
8196   }
8197 
8198   // Second pass over the constraints: compute which constraint option to use.
8199   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8200     // If this is an output operand with a matching input operand, look up the
8201     // matching input. If their types mismatch, e.g. one is an integer, the
8202     // other is floating point, or their sizes are different, flag it as an
8203     // error.
8204     if (OpInfo.hasMatchingInput()) {
8205       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8206       patchMatchingInput(OpInfo, Input, DAG);
8207     }
8208 
8209     // Compute the constraint code and ConstraintType to use.
8210     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8211 
8212     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8213         OpInfo.Type == InlineAsm::isClobber)
8214       continue;
8215 
8216     // If this is a memory input, and if the operand is not indirect, do what we
8217     // need to provide an address for the memory input.
8218     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8219         !OpInfo.isIndirect) {
8220       assert((OpInfo.isMultipleAlternative ||
8221               (OpInfo.Type == InlineAsm::isInput)) &&
8222              "Can only indirectify direct input operands!");
8223 
8224       // Memory operands really want the address of the value.
8225       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8226 
8227       // There is no longer a Value* corresponding to this operand.
8228       OpInfo.CallOperandVal = nullptr;
8229 
8230       // It is now an indirect operand.
8231       OpInfo.isIndirect = true;
8232     }
8233 
8234   }
8235 
8236   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8237   std::vector<SDValue> AsmNodeOperands;
8238   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8239   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8240       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8241 
8242   // If we have a !srcloc metadata node associated with it, we want to attach
8243   // this to the ultimately generated inline asm machineinstr.  To do this, we
8244   // pass in the third operand as this (potentially null) inline asm MDNode.
8245   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8246   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8247 
8248   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8249   // bits as operand 3.
8250   AsmNodeOperands.push_back(DAG.getTargetConstant(
8251       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8252 
8253   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8254   // this, assign virtual and physical registers for inputs and otput.
8255   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8256     // Assign Registers.
8257     SDISelAsmOperandInfo &RefOpInfo =
8258         OpInfo.isMatchingInputConstraint()
8259             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8260             : OpInfo;
8261     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8262 
8263     auto DetectWriteToReservedRegister = [&]() {
8264       const MachineFunction &MF = DAG.getMachineFunction();
8265       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8266       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
8267         if (Register::isPhysicalRegister(Reg) &&
8268             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
8269           const char *RegName = TRI.getName(Reg);
8270           emitInlineAsmError(Call, "write to reserved register '" +
8271                                        Twine(RegName) + "'");
8272           return true;
8273         }
8274       }
8275       return false;
8276     };
8277 
8278     switch (OpInfo.Type) {
8279     case InlineAsm::isOutput:
8280       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8281         unsigned ConstraintID =
8282             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8283         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8284                "Failed to convert memory constraint code to constraint id.");
8285 
8286         // Add information to the INLINEASM node to know about this output.
8287         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8288         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8289         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8290                                                         MVT::i32));
8291         AsmNodeOperands.push_back(OpInfo.CallOperand);
8292       } else {
8293         // Otherwise, this outputs to a register (directly for C_Register /
8294         // C_RegisterClass, and a target-defined fashion for
8295         // C_Immediate/C_Other). Find a register that we can use.
8296         if (OpInfo.AssignedRegs.Regs.empty()) {
8297           emitInlineAsmError(
8298               Call, "couldn't allocate output register for constraint '" +
8299                         Twine(OpInfo.ConstraintCode) + "'");
8300           return;
8301         }
8302 
8303         if (DetectWriteToReservedRegister())
8304           return;
8305 
8306         // Add information to the INLINEASM node to know that this register is
8307         // set.
8308         OpInfo.AssignedRegs.AddInlineAsmOperands(
8309             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8310                                   : InlineAsm::Kind_RegDef,
8311             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8312       }
8313       break;
8314 
8315     case InlineAsm::isInput: {
8316       SDValue InOperandVal = OpInfo.CallOperand;
8317 
8318       if (OpInfo.isMatchingInputConstraint()) {
8319         // If this is required to match an output register we have already set,
8320         // just use its register.
8321         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8322                                                   AsmNodeOperands);
8323         unsigned OpFlag =
8324           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8325         if (InlineAsm::isRegDefKind(OpFlag) ||
8326             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8327           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8328           if (OpInfo.isIndirect) {
8329             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8330             emitInlineAsmError(Call, "inline asm not supported yet: "
8331                                      "don't know how to handle tied "
8332                                      "indirect register inputs");
8333             return;
8334           }
8335 
8336           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8337           SmallVector<unsigned, 4> Regs;
8338 
8339           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8340             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8341             MachineRegisterInfo &RegInfo =
8342                 DAG.getMachineFunction().getRegInfo();
8343             for (unsigned i = 0; i != NumRegs; ++i)
8344               Regs.push_back(RegInfo.createVirtualRegister(RC));
8345           } else {
8346             emitInlineAsmError(Call,
8347                                "inline asm error: This value type register "
8348                                "class is not natively supported!");
8349             return;
8350           }
8351 
8352           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8353 
8354           SDLoc dl = getCurSDLoc();
8355           // Use the produced MatchedRegs object to
8356           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
8357           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8358                                            true, OpInfo.getMatchedOperand(), dl,
8359                                            DAG, AsmNodeOperands);
8360           break;
8361         }
8362 
8363         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8364         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8365                "Unexpected number of operands");
8366         // Add information to the INLINEASM node to know about this input.
8367         // See InlineAsm.h isUseOperandTiedToDef.
8368         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8369         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8370                                                     OpInfo.getMatchedOperand());
8371         AsmNodeOperands.push_back(DAG.getTargetConstant(
8372             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8373         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8374         break;
8375       }
8376 
8377       // Treat indirect 'X' constraint as memory.
8378       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8379           OpInfo.isIndirect)
8380         OpInfo.ConstraintType = TargetLowering::C_Memory;
8381 
8382       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8383           OpInfo.ConstraintType == TargetLowering::C_Other) {
8384         std::vector<SDValue> Ops;
8385         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8386                                           Ops, DAG);
8387         if (Ops.empty()) {
8388           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8389             if (isa<ConstantSDNode>(InOperandVal)) {
8390               emitInlineAsmError(Call, "value out of range for constraint '" +
8391                                            Twine(OpInfo.ConstraintCode) + "'");
8392               return;
8393             }
8394 
8395           emitInlineAsmError(Call,
8396                              "invalid operand for inline asm constraint '" +
8397                                  Twine(OpInfo.ConstraintCode) + "'");
8398           return;
8399         }
8400 
8401         // Add information to the INLINEASM node to know about this input.
8402         unsigned ResOpType =
8403           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8404         AsmNodeOperands.push_back(DAG.getTargetConstant(
8405             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8406         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8407         break;
8408       }
8409 
8410       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8411         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8412         assert(InOperandVal.getValueType() ==
8413                    TLI.getPointerTy(DAG.getDataLayout()) &&
8414                "Memory operands expect pointer values");
8415 
8416         unsigned ConstraintID =
8417             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8418         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8419                "Failed to convert memory constraint code to constraint id.");
8420 
8421         // Add information to the INLINEASM node to know about this input.
8422         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8423         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8424         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8425                                                         getCurSDLoc(),
8426                                                         MVT::i32));
8427         AsmNodeOperands.push_back(InOperandVal);
8428         break;
8429       }
8430 
8431       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8432               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8433              "Unknown constraint type!");
8434 
8435       // TODO: Support this.
8436       if (OpInfo.isIndirect) {
8437         emitInlineAsmError(
8438             Call, "Don't know how to handle indirect register inputs yet "
8439                   "for constraint '" +
8440                       Twine(OpInfo.ConstraintCode) + "'");
8441         return;
8442       }
8443 
8444       // Copy the input into the appropriate registers.
8445       if (OpInfo.AssignedRegs.Regs.empty()) {
8446         emitInlineAsmError(Call,
8447                            "couldn't allocate input reg for constraint '" +
8448                                Twine(OpInfo.ConstraintCode) + "'");
8449         return;
8450       }
8451 
8452       if (DetectWriteToReservedRegister())
8453         return;
8454 
8455       SDLoc dl = getCurSDLoc();
8456 
8457       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8458                                         &Call);
8459 
8460       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8461                                                dl, DAG, AsmNodeOperands);
8462       break;
8463     }
8464     case InlineAsm::isClobber:
8465       // Add the clobbered value to the operand list, so that the register
8466       // allocator is aware that the physreg got clobbered.
8467       if (!OpInfo.AssignedRegs.Regs.empty())
8468         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8469                                                  false, 0, getCurSDLoc(), DAG,
8470                                                  AsmNodeOperands);
8471       break;
8472     }
8473   }
8474 
8475   // Finish up input operands.  Set the input chain and add the flag last.
8476   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8477   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8478 
8479   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8480   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8481                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8482   Flag = Chain.getValue(1);
8483 
8484   // Do additional work to generate outputs.
8485 
8486   SmallVector<EVT, 1> ResultVTs;
8487   SmallVector<SDValue, 1> ResultValues;
8488   SmallVector<SDValue, 8> OutChains;
8489 
8490   llvm::Type *CallResultType = Call.getType();
8491   ArrayRef<Type *> ResultTypes;
8492   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
8493     ResultTypes = StructResult->elements();
8494   else if (!CallResultType->isVoidTy())
8495     ResultTypes = makeArrayRef(CallResultType);
8496 
8497   auto CurResultType = ResultTypes.begin();
8498   auto handleRegAssign = [&](SDValue V) {
8499     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8500     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8501     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8502     ++CurResultType;
8503     // If the type of the inline asm call site return value is different but has
8504     // same size as the type of the asm output bitcast it.  One example of this
8505     // is for vectors with different width / number of elements.  This can
8506     // happen for register classes that can contain multiple different value
8507     // types.  The preg or vreg allocated may not have the same VT as was
8508     // expected.
8509     //
8510     // This can also happen for a return value that disagrees with the register
8511     // class it is put in, eg. a double in a general-purpose register on a
8512     // 32-bit machine.
8513     if (ResultVT != V.getValueType() &&
8514         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8515       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8516     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8517              V.getValueType().isInteger()) {
8518       // If a result value was tied to an input value, the computed result
8519       // may have a wider width than the expected result.  Extract the
8520       // relevant portion.
8521       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8522     }
8523     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8524     ResultVTs.push_back(ResultVT);
8525     ResultValues.push_back(V);
8526   };
8527 
8528   // Deal with output operands.
8529   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8530     if (OpInfo.Type == InlineAsm::isOutput) {
8531       SDValue Val;
8532       // Skip trivial output operands.
8533       if (OpInfo.AssignedRegs.Regs.empty())
8534         continue;
8535 
8536       switch (OpInfo.ConstraintType) {
8537       case TargetLowering::C_Register:
8538       case TargetLowering::C_RegisterClass:
8539         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
8540                                                   Chain, &Flag, &Call);
8541         break;
8542       case TargetLowering::C_Immediate:
8543       case TargetLowering::C_Other:
8544         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8545                                               OpInfo, DAG);
8546         break;
8547       case TargetLowering::C_Memory:
8548         break; // Already handled.
8549       case TargetLowering::C_Unknown:
8550         assert(false && "Unexpected unknown constraint");
8551       }
8552 
8553       // Indirect output manifest as stores. Record output chains.
8554       if (OpInfo.isIndirect) {
8555         const Value *Ptr = OpInfo.CallOperandVal;
8556         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8557         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8558                                      MachinePointerInfo(Ptr));
8559         OutChains.push_back(Store);
8560       } else {
8561         // generate CopyFromRegs to associated registers.
8562         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8563         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8564           for (const SDValue &V : Val->op_values())
8565             handleRegAssign(V);
8566         } else
8567           handleRegAssign(Val);
8568       }
8569     }
8570   }
8571 
8572   // Set results.
8573   if (!ResultValues.empty()) {
8574     assert(CurResultType == ResultTypes.end() &&
8575            "Mismatch in number of ResultTypes");
8576     assert(ResultValues.size() == ResultTypes.size() &&
8577            "Mismatch in number of output operands in asm result");
8578 
8579     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8580                             DAG.getVTList(ResultVTs), ResultValues);
8581     setValue(&Call, V);
8582   }
8583 
8584   // Collect store chains.
8585   if (!OutChains.empty())
8586     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8587 
8588   // Only Update Root if inline assembly has a memory effect.
8589   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr)
8590     DAG.setRoot(Chain);
8591 }
8592 
8593 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
8594                                              const Twine &Message) {
8595   LLVMContext &Ctx = *DAG.getContext();
8596   Ctx.emitError(&Call, Message);
8597 
8598   // Make sure we leave the DAG in a valid state
8599   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8600   SmallVector<EVT, 1> ValueVTs;
8601   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
8602 
8603   if (ValueVTs.empty())
8604     return;
8605 
8606   SmallVector<SDValue, 1> Ops;
8607   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8608     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8609 
8610   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
8611 }
8612 
8613 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8614   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8615                           MVT::Other, getRoot(),
8616                           getValue(I.getArgOperand(0)),
8617                           DAG.getSrcValue(I.getArgOperand(0))));
8618 }
8619 
8620 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8621   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8622   const DataLayout &DL = DAG.getDataLayout();
8623   SDValue V = DAG.getVAArg(
8624       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8625       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8626       DL.getABITypeAlign(I.getType()).value());
8627   DAG.setRoot(V.getValue(1));
8628 
8629   if (I.getType()->isPointerTy())
8630     V = DAG.getPtrExtOrTrunc(
8631         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8632   setValue(&I, V);
8633 }
8634 
8635 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8636   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8637                           MVT::Other, getRoot(),
8638                           getValue(I.getArgOperand(0)),
8639                           DAG.getSrcValue(I.getArgOperand(0))));
8640 }
8641 
8642 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8643   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8644                           MVT::Other, getRoot(),
8645                           getValue(I.getArgOperand(0)),
8646                           getValue(I.getArgOperand(1)),
8647                           DAG.getSrcValue(I.getArgOperand(0)),
8648                           DAG.getSrcValue(I.getArgOperand(1))));
8649 }
8650 
8651 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8652                                                     const Instruction &I,
8653                                                     SDValue Op) {
8654   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8655   if (!Range)
8656     return Op;
8657 
8658   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8659   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8660     return Op;
8661 
8662   APInt Lo = CR.getUnsignedMin();
8663   if (!Lo.isMinValue())
8664     return Op;
8665 
8666   APInt Hi = CR.getUnsignedMax();
8667   unsigned Bits = std::max(Hi.getActiveBits(),
8668                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8669 
8670   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8671 
8672   SDLoc SL = getCurSDLoc();
8673 
8674   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8675                              DAG.getValueType(SmallVT));
8676   unsigned NumVals = Op.getNode()->getNumValues();
8677   if (NumVals == 1)
8678     return ZExt;
8679 
8680   SmallVector<SDValue, 4> Ops;
8681 
8682   Ops.push_back(ZExt);
8683   for (unsigned I = 1; I != NumVals; ++I)
8684     Ops.push_back(Op.getValue(I));
8685 
8686   return DAG.getMergeValues(Ops, SL);
8687 }
8688 
8689 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8690 /// the call being lowered.
8691 ///
8692 /// This is a helper for lowering intrinsics that follow a target calling
8693 /// convention or require stack pointer adjustment. Only a subset of the
8694 /// intrinsic's operands need to participate in the calling convention.
8695 void SelectionDAGBuilder::populateCallLoweringInfo(
8696     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8697     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8698     bool IsPatchPoint) {
8699   TargetLowering::ArgListTy Args;
8700   Args.reserve(NumArgs);
8701 
8702   // Populate the argument list.
8703   // Attributes for args start at offset 1, after the return attribute.
8704   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8705        ArgI != ArgE; ++ArgI) {
8706     const Value *V = Call->getOperand(ArgI);
8707 
8708     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8709 
8710     TargetLowering::ArgListEntry Entry;
8711     Entry.Node = getValue(V);
8712     Entry.Ty = V->getType();
8713     Entry.setAttributes(Call, ArgI);
8714     Args.push_back(Entry);
8715   }
8716 
8717   CLI.setDebugLoc(getCurSDLoc())
8718       .setChain(getRoot())
8719       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8720       .setDiscardResult(Call->use_empty())
8721       .setIsPatchPoint(IsPatchPoint)
8722       .setIsPreallocated(
8723           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
8724 }
8725 
8726 /// Add a stack map intrinsic call's live variable operands to a stackmap
8727 /// or patchpoint target node's operand list.
8728 ///
8729 /// Constants are converted to TargetConstants purely as an optimization to
8730 /// avoid constant materialization and register allocation.
8731 ///
8732 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8733 /// generate addess computation nodes, and so FinalizeISel can convert the
8734 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8735 /// address materialization and register allocation, but may also be required
8736 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8737 /// alloca in the entry block, then the runtime may assume that the alloca's
8738 /// StackMap location can be read immediately after compilation and that the
8739 /// location is valid at any point during execution (this is similar to the
8740 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8741 /// only available in a register, then the runtime would need to trap when
8742 /// execution reaches the StackMap in order to read the alloca's location.
8743 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
8744                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8745                                 SelectionDAGBuilder &Builder) {
8746   for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) {
8747     SDValue OpVal = Builder.getValue(Call.getArgOperand(i));
8748     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8749       Ops.push_back(
8750         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8751       Ops.push_back(
8752         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8753     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8754       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8755       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8756           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8757     } else
8758       Ops.push_back(OpVal);
8759   }
8760 }
8761 
8762 /// Lower llvm.experimental.stackmap directly to its target opcode.
8763 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8764   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8765   //                                  [live variables...])
8766 
8767   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8768 
8769   SDValue Chain, InFlag, Callee, NullPtr;
8770   SmallVector<SDValue, 32> Ops;
8771 
8772   SDLoc DL = getCurSDLoc();
8773   Callee = getValue(CI.getCalledOperand());
8774   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8775 
8776   // The stackmap intrinsic only records the live variables (the arguments
8777   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8778   // intrinsic, this won't be lowered to a function call. This means we don't
8779   // have to worry about calling conventions and target specific lowering code.
8780   // Instead we perform the call lowering right here.
8781   //
8782   // chain, flag = CALLSEQ_START(chain, 0, 0)
8783   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8784   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8785   //
8786   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8787   InFlag = Chain.getValue(1);
8788 
8789   // Add the <id> and <numBytes> constants.
8790   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8791   Ops.push_back(DAG.getTargetConstant(
8792                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8793   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8794   Ops.push_back(DAG.getTargetConstant(
8795                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8796                   MVT::i32));
8797 
8798   // Push live variables for the stack map.
8799   addStackMapLiveVars(CI, 2, DL, Ops, *this);
8800 
8801   // We are not pushing any register mask info here on the operands list,
8802   // because the stackmap doesn't clobber anything.
8803 
8804   // Push the chain and the glue flag.
8805   Ops.push_back(Chain);
8806   Ops.push_back(InFlag);
8807 
8808   // Create the STACKMAP node.
8809   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8810   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8811   Chain = SDValue(SM, 0);
8812   InFlag = Chain.getValue(1);
8813 
8814   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8815 
8816   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8817 
8818   // Set the root to the target-lowered call chain.
8819   DAG.setRoot(Chain);
8820 
8821   // Inform the Frame Information that we have a stackmap in this function.
8822   FuncInfo.MF->getFrameInfo().setHasStackMap();
8823 }
8824 
8825 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8826 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
8827                                           const BasicBlock *EHPadBB) {
8828   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8829   //                                                 i32 <numBytes>,
8830   //                                                 i8* <target>,
8831   //                                                 i32 <numArgs>,
8832   //                                                 [Args...],
8833   //                                                 [live variables...])
8834 
8835   CallingConv::ID CC = CB.getCallingConv();
8836   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8837   bool HasDef = !CB.getType()->isVoidTy();
8838   SDLoc dl = getCurSDLoc();
8839   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
8840 
8841   // Handle immediate and symbolic callees.
8842   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8843     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8844                                    /*isTarget=*/true);
8845   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8846     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8847                                          SDLoc(SymbolicCallee),
8848                                          SymbolicCallee->getValueType(0));
8849 
8850   // Get the real number of arguments participating in the call <numArgs>
8851   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
8852   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8853 
8854   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8855   // Intrinsics include all meta-operands up to but not including CC.
8856   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8857   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
8858          "Not enough arguments provided to the patchpoint intrinsic");
8859 
8860   // For AnyRegCC the arguments are lowered later on manually.
8861   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8862   Type *ReturnTy =
8863       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
8864 
8865   TargetLowering::CallLoweringInfo CLI(DAG);
8866   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
8867                            ReturnTy, true);
8868   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8869 
8870   SDNode *CallEnd = Result.second.getNode();
8871   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8872     CallEnd = CallEnd->getOperand(0).getNode();
8873 
8874   /// Get a call instruction from the call sequence chain.
8875   /// Tail calls are not allowed.
8876   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8877          "Expected a callseq node.");
8878   SDNode *Call = CallEnd->getOperand(0).getNode();
8879   bool HasGlue = Call->getGluedNode();
8880 
8881   // Replace the target specific call node with the patchable intrinsic.
8882   SmallVector<SDValue, 8> Ops;
8883 
8884   // Add the <id> and <numBytes> constants.
8885   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
8886   Ops.push_back(DAG.getTargetConstant(
8887                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8888   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
8889   Ops.push_back(DAG.getTargetConstant(
8890                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8891                   MVT::i32));
8892 
8893   // Add the callee.
8894   Ops.push_back(Callee);
8895 
8896   // Adjust <numArgs> to account for any arguments that have been passed on the
8897   // stack instead.
8898   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8899   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8900   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8901   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8902 
8903   // Add the calling convention
8904   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8905 
8906   // Add the arguments we omitted previously. The register allocator should
8907   // place these in any free register.
8908   if (IsAnyRegCC)
8909     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8910       Ops.push_back(getValue(CB.getArgOperand(i)));
8911 
8912   // Push the arguments from the call instruction up to the register mask.
8913   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8914   Ops.append(Call->op_begin() + 2, e);
8915 
8916   // Push live variables for the stack map.
8917   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
8918 
8919   // Push the register mask info.
8920   if (HasGlue)
8921     Ops.push_back(*(Call->op_end()-2));
8922   else
8923     Ops.push_back(*(Call->op_end()-1));
8924 
8925   // Push the chain (this is originally the first operand of the call, but
8926   // becomes now the last or second to last operand).
8927   Ops.push_back(*(Call->op_begin()));
8928 
8929   // Push the glue flag (last operand).
8930   if (HasGlue)
8931     Ops.push_back(*(Call->op_end()-1));
8932 
8933   SDVTList NodeTys;
8934   if (IsAnyRegCC && HasDef) {
8935     // Create the return types based on the intrinsic definition
8936     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8937     SmallVector<EVT, 3> ValueVTs;
8938     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
8939     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8940 
8941     // There is always a chain and a glue type at the end
8942     ValueVTs.push_back(MVT::Other);
8943     ValueVTs.push_back(MVT::Glue);
8944     NodeTys = DAG.getVTList(ValueVTs);
8945   } else
8946     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8947 
8948   // Replace the target specific call node with a PATCHPOINT node.
8949   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8950                                          dl, NodeTys, Ops);
8951 
8952   // Update the NodeMap.
8953   if (HasDef) {
8954     if (IsAnyRegCC)
8955       setValue(&CB, SDValue(MN, 0));
8956     else
8957       setValue(&CB, Result.first);
8958   }
8959 
8960   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8961   // call sequence. Furthermore the location of the chain and glue can change
8962   // when the AnyReg calling convention is used and the intrinsic returns a
8963   // value.
8964   if (IsAnyRegCC && HasDef) {
8965     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8966     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8967     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8968   } else
8969     DAG.ReplaceAllUsesWith(Call, MN);
8970   DAG.DeleteNode(Call);
8971 
8972   // Inform the Frame Information that we have a patchpoint in this function.
8973   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8974 }
8975 
8976 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8977                                             unsigned Intrinsic) {
8978   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8979   SDValue Op1 = getValue(I.getArgOperand(0));
8980   SDValue Op2;
8981   if (I.getNumArgOperands() > 1)
8982     Op2 = getValue(I.getArgOperand(1));
8983   SDLoc dl = getCurSDLoc();
8984   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8985   SDValue Res;
8986   FastMathFlags FMF;
8987   if (isa<FPMathOperator>(I))
8988     FMF = I.getFastMathFlags();
8989 
8990   switch (Intrinsic) {
8991   case Intrinsic::experimental_vector_reduce_v2_fadd:
8992     if (FMF.allowReassoc())
8993       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
8994                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2));
8995     else
8996       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8997     break;
8998   case Intrinsic::experimental_vector_reduce_v2_fmul:
8999     if (FMF.allowReassoc())
9000       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9001                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2));
9002     else
9003       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
9004     break;
9005   case Intrinsic::experimental_vector_reduce_add:
9006     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9007     break;
9008   case Intrinsic::experimental_vector_reduce_mul:
9009     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9010     break;
9011   case Intrinsic::experimental_vector_reduce_and:
9012     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9013     break;
9014   case Intrinsic::experimental_vector_reduce_or:
9015     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9016     break;
9017   case Intrinsic::experimental_vector_reduce_xor:
9018     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9019     break;
9020   case Intrinsic::experimental_vector_reduce_smax:
9021     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9022     break;
9023   case Intrinsic::experimental_vector_reduce_smin:
9024     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9025     break;
9026   case Intrinsic::experimental_vector_reduce_umax:
9027     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9028     break;
9029   case Intrinsic::experimental_vector_reduce_umin:
9030     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9031     break;
9032   case Intrinsic::experimental_vector_reduce_fmax:
9033     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
9034     break;
9035   case Intrinsic::experimental_vector_reduce_fmin:
9036     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
9037     break;
9038   default:
9039     llvm_unreachable("Unhandled vector reduce intrinsic");
9040   }
9041   setValue(&I, Res);
9042 }
9043 
9044 /// Returns an AttributeList representing the attributes applied to the return
9045 /// value of the given call.
9046 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9047   SmallVector<Attribute::AttrKind, 2> Attrs;
9048   if (CLI.RetSExt)
9049     Attrs.push_back(Attribute::SExt);
9050   if (CLI.RetZExt)
9051     Attrs.push_back(Attribute::ZExt);
9052   if (CLI.IsInReg)
9053     Attrs.push_back(Attribute::InReg);
9054 
9055   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9056                             Attrs);
9057 }
9058 
9059 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9060 /// implementation, which just calls LowerCall.
9061 /// FIXME: When all targets are
9062 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9063 std::pair<SDValue, SDValue>
9064 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9065   // Handle the incoming return values from the call.
9066   CLI.Ins.clear();
9067   Type *OrigRetTy = CLI.RetTy;
9068   SmallVector<EVT, 4> RetTys;
9069   SmallVector<uint64_t, 4> Offsets;
9070   auto &DL = CLI.DAG.getDataLayout();
9071   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9072 
9073   if (CLI.IsPostTypeLegalization) {
9074     // If we are lowering a libcall after legalization, split the return type.
9075     SmallVector<EVT, 4> OldRetTys;
9076     SmallVector<uint64_t, 4> OldOffsets;
9077     RetTys.swap(OldRetTys);
9078     Offsets.swap(OldOffsets);
9079 
9080     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9081       EVT RetVT = OldRetTys[i];
9082       uint64_t Offset = OldOffsets[i];
9083       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9084       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9085       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9086       RetTys.append(NumRegs, RegisterVT);
9087       for (unsigned j = 0; j != NumRegs; ++j)
9088         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9089     }
9090   }
9091 
9092   SmallVector<ISD::OutputArg, 4> Outs;
9093   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9094 
9095   bool CanLowerReturn =
9096       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9097                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9098 
9099   SDValue DemoteStackSlot;
9100   int DemoteStackIdx = -100;
9101   if (!CanLowerReturn) {
9102     // FIXME: equivalent assert?
9103     // assert(!CS.hasInAllocaArgument() &&
9104     //        "sret demotion is incompatible with inalloca");
9105     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9106     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9107     MachineFunction &MF = CLI.DAG.getMachineFunction();
9108     DemoteStackIdx =
9109         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9110     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9111                                               DL.getAllocaAddrSpace());
9112 
9113     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9114     ArgListEntry Entry;
9115     Entry.Node = DemoteStackSlot;
9116     Entry.Ty = StackSlotPtrType;
9117     Entry.IsSExt = false;
9118     Entry.IsZExt = false;
9119     Entry.IsInReg = false;
9120     Entry.IsSRet = true;
9121     Entry.IsNest = false;
9122     Entry.IsByVal = false;
9123     Entry.IsByRef = false;
9124     Entry.IsReturned = false;
9125     Entry.IsSwiftSelf = false;
9126     Entry.IsSwiftError = false;
9127     Entry.IsCFGuardTarget = false;
9128     Entry.Alignment = Alignment;
9129     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9130     CLI.NumFixedArgs += 1;
9131     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9132 
9133     // sret demotion isn't compatible with tail-calls, since the sret argument
9134     // points into the callers stack frame.
9135     CLI.IsTailCall = false;
9136   } else {
9137     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9138         CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
9139     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9140       ISD::ArgFlagsTy Flags;
9141       if (NeedsRegBlock) {
9142         Flags.setInConsecutiveRegs();
9143         if (I == RetTys.size() - 1)
9144           Flags.setInConsecutiveRegsLast();
9145       }
9146       EVT VT = RetTys[I];
9147       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9148                                                      CLI.CallConv, VT);
9149       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9150                                                        CLI.CallConv, VT);
9151       for (unsigned i = 0; i != NumRegs; ++i) {
9152         ISD::InputArg MyFlags;
9153         MyFlags.Flags = Flags;
9154         MyFlags.VT = RegisterVT;
9155         MyFlags.ArgVT = VT;
9156         MyFlags.Used = CLI.IsReturnValueUsed;
9157         if (CLI.RetTy->isPointerTy()) {
9158           MyFlags.Flags.setPointer();
9159           MyFlags.Flags.setPointerAddrSpace(
9160               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9161         }
9162         if (CLI.RetSExt)
9163           MyFlags.Flags.setSExt();
9164         if (CLI.RetZExt)
9165           MyFlags.Flags.setZExt();
9166         if (CLI.IsInReg)
9167           MyFlags.Flags.setInReg();
9168         CLI.Ins.push_back(MyFlags);
9169       }
9170     }
9171   }
9172 
9173   // We push in swifterror return as the last element of CLI.Ins.
9174   ArgListTy &Args = CLI.getArgs();
9175   if (supportSwiftError()) {
9176     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9177       if (Args[i].IsSwiftError) {
9178         ISD::InputArg MyFlags;
9179         MyFlags.VT = getPointerTy(DL);
9180         MyFlags.ArgVT = EVT(getPointerTy(DL));
9181         MyFlags.Flags.setSwiftError();
9182         CLI.Ins.push_back(MyFlags);
9183       }
9184     }
9185   }
9186 
9187   // Handle all of the outgoing arguments.
9188   CLI.Outs.clear();
9189   CLI.OutVals.clear();
9190   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9191     SmallVector<EVT, 4> ValueVTs;
9192     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9193     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9194     Type *FinalType = Args[i].Ty;
9195     if (Args[i].IsByVal)
9196       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
9197     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9198         FinalType, CLI.CallConv, CLI.IsVarArg);
9199     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9200          ++Value) {
9201       EVT VT = ValueVTs[Value];
9202       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9203       SDValue Op = SDValue(Args[i].Node.getNode(),
9204                            Args[i].Node.getResNo() + Value);
9205       ISD::ArgFlagsTy Flags;
9206 
9207       // Certain targets (such as MIPS), may have a different ABI alignment
9208       // for a type depending on the context. Give the target a chance to
9209       // specify the alignment it wants.
9210       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9211 
9212       if (Args[i].Ty->isPointerTy()) {
9213         Flags.setPointer();
9214         Flags.setPointerAddrSpace(
9215             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9216       }
9217       if (Args[i].IsZExt)
9218         Flags.setZExt();
9219       if (Args[i].IsSExt)
9220         Flags.setSExt();
9221       if (Args[i].IsInReg) {
9222         // If we are using vectorcall calling convention, a structure that is
9223         // passed InReg - is surely an HVA
9224         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9225             isa<StructType>(FinalType)) {
9226           // The first value of a structure is marked
9227           if (0 == Value)
9228             Flags.setHvaStart();
9229           Flags.setHva();
9230         }
9231         // Set InReg Flag
9232         Flags.setInReg();
9233       }
9234       if (Args[i].IsSRet)
9235         Flags.setSRet();
9236       if (Args[i].IsSwiftSelf)
9237         Flags.setSwiftSelf();
9238       if (Args[i].IsSwiftError)
9239         Flags.setSwiftError();
9240       if (Args[i].IsCFGuardTarget)
9241         Flags.setCFGuardTarget();
9242       if (Args[i].IsByVal)
9243         Flags.setByVal();
9244       if (Args[i].IsByRef)
9245         Flags.setByRef();
9246       if (Args[i].IsPreallocated) {
9247         Flags.setPreallocated();
9248         // Set the byval flag for CCAssignFn callbacks that don't know about
9249         // preallocated.  This way we can know how many bytes we should've
9250         // allocated and how many bytes a callee cleanup function will pop.  If
9251         // we port preallocated to more targets, we'll have to add custom
9252         // preallocated handling in the various CC lowering callbacks.
9253         Flags.setByVal();
9254       }
9255       if (Args[i].IsInAlloca) {
9256         Flags.setInAlloca();
9257         // Set the byval flag for CCAssignFn callbacks that don't know about
9258         // inalloca.  This way we can know how many bytes we should've allocated
9259         // and how many bytes a callee cleanup function will pop.  If we port
9260         // inalloca to more targets, we'll have to add custom inalloca handling
9261         // in the various CC lowering callbacks.
9262         Flags.setByVal();
9263       }
9264       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
9265         PointerType *Ty = cast<PointerType>(Args[i].Ty);
9266         Type *ElementTy = Ty->getElementType();
9267 
9268         unsigned FrameSize = DL.getTypeAllocSize(
9269             Args[i].ByValType ? Args[i].ByValType : ElementTy);
9270         Flags.setByValSize(FrameSize);
9271 
9272         // info is not there but there are cases it cannot get right.
9273         Align FrameAlign;
9274         if (auto MA = Args[i].Alignment)
9275           FrameAlign = *MA;
9276         else
9277           FrameAlign = Align(getByValTypeAlignment(ElementTy, DL));
9278         Flags.setByValAlign(FrameAlign);
9279       }
9280       if (Args[i].IsNest)
9281         Flags.setNest();
9282       if (NeedsRegBlock)
9283         Flags.setInConsecutiveRegs();
9284       Flags.setOrigAlign(OriginalAlignment);
9285 
9286       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9287                                                  CLI.CallConv, VT);
9288       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9289                                                         CLI.CallConv, VT);
9290       SmallVector<SDValue, 4> Parts(NumParts);
9291       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9292 
9293       if (Args[i].IsSExt)
9294         ExtendKind = ISD::SIGN_EXTEND;
9295       else if (Args[i].IsZExt)
9296         ExtendKind = ISD::ZERO_EXTEND;
9297 
9298       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9299       // for now.
9300       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9301           CanLowerReturn) {
9302         assert((CLI.RetTy == Args[i].Ty ||
9303                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9304                  CLI.RetTy->getPointerAddressSpace() ==
9305                      Args[i].Ty->getPointerAddressSpace())) &&
9306                RetTys.size() == NumValues && "unexpected use of 'returned'");
9307         // Before passing 'returned' to the target lowering code, ensure that
9308         // either the register MVT and the actual EVT are the same size or that
9309         // the return value and argument are extended in the same way; in these
9310         // cases it's safe to pass the argument register value unchanged as the
9311         // return register value (although it's at the target's option whether
9312         // to do so)
9313         // TODO: allow code generation to take advantage of partially preserved
9314         // registers rather than clobbering the entire register when the
9315         // parameter extension method is not compatible with the return
9316         // extension method
9317         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9318             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9319              CLI.RetZExt == Args[i].IsZExt))
9320           Flags.setReturned();
9321       }
9322 
9323       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
9324                      CLI.CallConv, ExtendKind);
9325 
9326       for (unsigned j = 0; j != NumParts; ++j) {
9327         // if it isn't first piece, alignment must be 1
9328         // For scalable vectors the scalable part is currently handled
9329         // by individual targets, so we just use the known minimum size here.
9330         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9331                     i < CLI.NumFixedArgs, i,
9332                     j*Parts[j].getValueType().getStoreSize().getKnownMinSize());
9333         if (NumParts > 1 && j == 0)
9334           MyFlags.Flags.setSplit();
9335         else if (j != 0) {
9336           MyFlags.Flags.setOrigAlign(Align(1));
9337           if (j == NumParts - 1)
9338             MyFlags.Flags.setSplitEnd();
9339         }
9340 
9341         CLI.Outs.push_back(MyFlags);
9342         CLI.OutVals.push_back(Parts[j]);
9343       }
9344 
9345       if (NeedsRegBlock && Value == NumValues - 1)
9346         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9347     }
9348   }
9349 
9350   SmallVector<SDValue, 4> InVals;
9351   CLI.Chain = LowerCall(CLI, InVals);
9352 
9353   // Update CLI.InVals to use outside of this function.
9354   CLI.InVals = InVals;
9355 
9356   // Verify that the target's LowerCall behaved as expected.
9357   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9358          "LowerCall didn't return a valid chain!");
9359   assert((!CLI.IsTailCall || InVals.empty()) &&
9360          "LowerCall emitted a return value for a tail call!");
9361   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9362          "LowerCall didn't emit the correct number of values!");
9363 
9364   // For a tail call, the return value is merely live-out and there aren't
9365   // any nodes in the DAG representing it. Return a special value to
9366   // indicate that a tail call has been emitted and no more Instructions
9367   // should be processed in the current block.
9368   if (CLI.IsTailCall) {
9369     CLI.DAG.setRoot(CLI.Chain);
9370     return std::make_pair(SDValue(), SDValue());
9371   }
9372 
9373 #ifndef NDEBUG
9374   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9375     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9376     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9377            "LowerCall emitted a value with the wrong type!");
9378   }
9379 #endif
9380 
9381   SmallVector<SDValue, 4> ReturnValues;
9382   if (!CanLowerReturn) {
9383     // The instruction result is the result of loading from the
9384     // hidden sret parameter.
9385     SmallVector<EVT, 1> PVTs;
9386     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9387 
9388     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9389     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9390     EVT PtrVT = PVTs[0];
9391 
9392     unsigned NumValues = RetTys.size();
9393     ReturnValues.resize(NumValues);
9394     SmallVector<SDValue, 4> Chains(NumValues);
9395 
9396     // An aggregate return value cannot wrap around the address space, so
9397     // offsets to its parts don't wrap either.
9398     SDNodeFlags Flags;
9399     Flags.setNoUnsignedWrap(true);
9400 
9401     MachineFunction &MF = CLI.DAG.getMachineFunction();
9402     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
9403     for (unsigned i = 0; i < NumValues; ++i) {
9404       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9405                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9406                                                         PtrVT), Flags);
9407       SDValue L = CLI.DAG.getLoad(
9408           RetTys[i], CLI.DL, CLI.Chain, Add,
9409           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9410                                             DemoteStackIdx, Offsets[i]),
9411           HiddenSRetAlign);
9412       ReturnValues[i] = L;
9413       Chains[i] = L.getValue(1);
9414     }
9415 
9416     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9417   } else {
9418     // Collect the legal value parts into potentially illegal values
9419     // that correspond to the original function's return values.
9420     Optional<ISD::NodeType> AssertOp;
9421     if (CLI.RetSExt)
9422       AssertOp = ISD::AssertSext;
9423     else if (CLI.RetZExt)
9424       AssertOp = ISD::AssertZext;
9425     unsigned CurReg = 0;
9426     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9427       EVT VT = RetTys[I];
9428       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9429                                                      CLI.CallConv, VT);
9430       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9431                                                        CLI.CallConv, VT);
9432 
9433       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9434                                               NumRegs, RegisterVT, VT, nullptr,
9435                                               CLI.CallConv, AssertOp));
9436       CurReg += NumRegs;
9437     }
9438 
9439     // For a function returning void, there is no return value. We can't create
9440     // such a node, so we just return a null return value in that case. In
9441     // that case, nothing will actually look at the value.
9442     if (ReturnValues.empty())
9443       return std::make_pair(SDValue(), CLI.Chain);
9444   }
9445 
9446   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9447                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9448   return std::make_pair(Res, CLI.Chain);
9449 }
9450 
9451 void TargetLowering::LowerOperationWrapper(SDNode *N,
9452                                            SmallVectorImpl<SDValue> &Results,
9453                                            SelectionDAG &DAG) const {
9454   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
9455     Results.push_back(Res);
9456 }
9457 
9458 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9459   llvm_unreachable("LowerOperation not implemented for this target!");
9460 }
9461 
9462 void
9463 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9464   SDValue Op = getNonRegisterValue(V);
9465   assert((Op.getOpcode() != ISD::CopyFromReg ||
9466           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9467          "Copy from a reg to the same reg!");
9468   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9469 
9470   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9471   // If this is an InlineAsm we have to match the registers required, not the
9472   // notional registers required by the type.
9473 
9474   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9475                    None); // This is not an ABI copy.
9476   SDValue Chain = DAG.getEntryNode();
9477 
9478   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9479                               FuncInfo.PreferredExtendType.end())
9480                                  ? ISD::ANY_EXTEND
9481                                  : FuncInfo.PreferredExtendType[V];
9482   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9483   PendingExports.push_back(Chain);
9484 }
9485 
9486 #include "llvm/CodeGen/SelectionDAGISel.h"
9487 
9488 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9489 /// entry block, return true.  This includes arguments used by switches, since
9490 /// the switch may expand into multiple basic blocks.
9491 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9492   // With FastISel active, we may be splitting blocks, so force creation
9493   // of virtual registers for all non-dead arguments.
9494   if (FastISel)
9495     return A->use_empty();
9496 
9497   const BasicBlock &Entry = A->getParent()->front();
9498   for (const User *U : A->users())
9499     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9500       return false;  // Use not in entry block.
9501 
9502   return true;
9503 }
9504 
9505 using ArgCopyElisionMapTy =
9506     DenseMap<const Argument *,
9507              std::pair<const AllocaInst *, const StoreInst *>>;
9508 
9509 /// Scan the entry block of the function in FuncInfo for arguments that look
9510 /// like copies into a local alloca. Record any copied arguments in
9511 /// ArgCopyElisionCandidates.
9512 static void
9513 findArgumentCopyElisionCandidates(const DataLayout &DL,
9514                                   FunctionLoweringInfo *FuncInfo,
9515                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9516   // Record the state of every static alloca used in the entry block. Argument
9517   // allocas are all used in the entry block, so we need approximately as many
9518   // entries as we have arguments.
9519   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9520   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9521   unsigned NumArgs = FuncInfo->Fn->arg_size();
9522   StaticAllocas.reserve(NumArgs * 2);
9523 
9524   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9525     if (!V)
9526       return nullptr;
9527     V = V->stripPointerCasts();
9528     const auto *AI = dyn_cast<AllocaInst>(V);
9529     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9530       return nullptr;
9531     auto Iter = StaticAllocas.insert({AI, Unknown});
9532     return &Iter.first->second;
9533   };
9534 
9535   // Look for stores of arguments to static allocas. Look through bitcasts and
9536   // GEPs to handle type coercions, as long as the alloca is fully initialized
9537   // by the store. Any non-store use of an alloca escapes it and any subsequent
9538   // unanalyzed store might write it.
9539   // FIXME: Handle structs initialized with multiple stores.
9540   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9541     // Look for stores, and handle non-store uses conservatively.
9542     const auto *SI = dyn_cast<StoreInst>(&I);
9543     if (!SI) {
9544       // We will look through cast uses, so ignore them completely.
9545       if (I.isCast())
9546         continue;
9547       // Ignore debug info intrinsics, they don't escape or store to allocas.
9548       if (isa<DbgInfoIntrinsic>(I))
9549         continue;
9550       // This is an unknown instruction. Assume it escapes or writes to all
9551       // static alloca operands.
9552       for (const Use &U : I.operands()) {
9553         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9554           *Info = StaticAllocaInfo::Clobbered;
9555       }
9556       continue;
9557     }
9558 
9559     // If the stored value is a static alloca, mark it as escaped.
9560     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9561       *Info = StaticAllocaInfo::Clobbered;
9562 
9563     // Check if the destination is a static alloca.
9564     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9565     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9566     if (!Info)
9567       continue;
9568     const AllocaInst *AI = cast<AllocaInst>(Dst);
9569 
9570     // Skip allocas that have been initialized or clobbered.
9571     if (*Info != StaticAllocaInfo::Unknown)
9572       continue;
9573 
9574     // Check if the stored value is an argument, and that this store fully
9575     // initializes the alloca. Don't elide copies from the same argument twice.
9576     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9577     const auto *Arg = dyn_cast<Argument>(Val);
9578     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
9579         Arg->getType()->isEmptyTy() ||
9580         DL.getTypeStoreSize(Arg->getType()) !=
9581             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9582         ArgCopyElisionCandidates.count(Arg)) {
9583       *Info = StaticAllocaInfo::Clobbered;
9584       continue;
9585     }
9586 
9587     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9588                       << '\n');
9589 
9590     // Mark this alloca and store for argument copy elision.
9591     *Info = StaticAllocaInfo::Elidable;
9592     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9593 
9594     // Stop scanning if we've seen all arguments. This will happen early in -O0
9595     // builds, which is useful, because -O0 builds have large entry blocks and
9596     // many allocas.
9597     if (ArgCopyElisionCandidates.size() == NumArgs)
9598       break;
9599   }
9600 }
9601 
9602 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9603 /// ArgVal is a load from a suitable fixed stack object.
9604 static void tryToElideArgumentCopy(
9605     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
9606     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9607     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9608     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9609     SDValue ArgVal, bool &ArgHasUses) {
9610   // Check if this is a load from a fixed stack object.
9611   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9612   if (!LNode)
9613     return;
9614   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9615   if (!FINode)
9616     return;
9617 
9618   // Check that the fixed stack object is the right size and alignment.
9619   // Look at the alignment that the user wrote on the alloca instead of looking
9620   // at the stack object.
9621   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9622   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9623   const AllocaInst *AI = ArgCopyIter->second.first;
9624   int FixedIndex = FINode->getIndex();
9625   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
9626   int OldIndex = AllocaIndex;
9627   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
9628   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9629     LLVM_DEBUG(
9630         dbgs() << "  argument copy elision failed due to bad fixed stack "
9631                   "object size\n");
9632     return;
9633   }
9634   Align RequiredAlignment = AI->getAlign();
9635   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
9636     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9637                          "greater than stack argument alignment ("
9638                       << DebugStr(RequiredAlignment) << " vs "
9639                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
9640     return;
9641   }
9642 
9643   // Perform the elision. Delete the old stack object and replace its only use
9644   // in the variable info map. Mark the stack object as mutable.
9645   LLVM_DEBUG({
9646     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9647            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9648            << '\n';
9649   });
9650   MFI.RemoveStackObject(OldIndex);
9651   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9652   AllocaIndex = FixedIndex;
9653   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9654   Chains.push_back(ArgVal.getValue(1));
9655 
9656   // Avoid emitting code for the store implementing the copy.
9657   const StoreInst *SI = ArgCopyIter->second.second;
9658   ElidedArgCopyInstrs.insert(SI);
9659 
9660   // Check for uses of the argument again so that we can avoid exporting ArgVal
9661   // if it is't used by anything other than the store.
9662   for (const Value *U : Arg.users()) {
9663     if (U != SI) {
9664       ArgHasUses = true;
9665       break;
9666     }
9667   }
9668 }
9669 
9670 void SelectionDAGISel::LowerArguments(const Function &F) {
9671   SelectionDAG &DAG = SDB->DAG;
9672   SDLoc dl = SDB->getCurSDLoc();
9673   const DataLayout &DL = DAG.getDataLayout();
9674   SmallVector<ISD::InputArg, 16> Ins;
9675 
9676   // In Naked functions we aren't going to save any registers.
9677   if (F.hasFnAttribute(Attribute::Naked))
9678     return;
9679 
9680   if (!FuncInfo->CanLowerReturn) {
9681     // Put in an sret pointer parameter before all the other parameters.
9682     SmallVector<EVT, 1> ValueVTs;
9683     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9684                     F.getReturnType()->getPointerTo(
9685                         DAG.getDataLayout().getAllocaAddrSpace()),
9686                     ValueVTs);
9687 
9688     // NOTE: Assuming that a pointer will never break down to more than one VT
9689     // or one register.
9690     ISD::ArgFlagsTy Flags;
9691     Flags.setSRet();
9692     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9693     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9694                          ISD::InputArg::NoArgIndex, 0);
9695     Ins.push_back(RetArg);
9696   }
9697 
9698   // Look for stores of arguments to static allocas. Mark such arguments with a
9699   // flag to ask the target to give us the memory location of that argument if
9700   // available.
9701   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9702   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
9703                                     ArgCopyElisionCandidates);
9704 
9705   // Set up the incoming argument description vector.
9706   for (const Argument &Arg : F.args()) {
9707     unsigned ArgNo = Arg.getArgNo();
9708     SmallVector<EVT, 4> ValueVTs;
9709     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9710     bool isArgValueUsed = !Arg.use_empty();
9711     unsigned PartBase = 0;
9712     Type *FinalType = Arg.getType();
9713     if (Arg.hasAttribute(Attribute::ByVal))
9714       FinalType = Arg.getParamByValType();
9715     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9716         FinalType, F.getCallingConv(), F.isVarArg());
9717     for (unsigned Value = 0, NumValues = ValueVTs.size();
9718          Value != NumValues; ++Value) {
9719       EVT VT = ValueVTs[Value];
9720       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9721       ISD::ArgFlagsTy Flags;
9722 
9723       // Certain targets (such as MIPS), may have a different ABI alignment
9724       // for a type depending on the context. Give the target a chance to
9725       // specify the alignment it wants.
9726       const Align OriginalAlignment(
9727           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
9728 
9729       if (Arg.getType()->isPointerTy()) {
9730         Flags.setPointer();
9731         Flags.setPointerAddrSpace(
9732             cast<PointerType>(Arg.getType())->getAddressSpace());
9733       }
9734       if (Arg.hasAttribute(Attribute::ZExt))
9735         Flags.setZExt();
9736       if (Arg.hasAttribute(Attribute::SExt))
9737         Flags.setSExt();
9738       if (Arg.hasAttribute(Attribute::InReg)) {
9739         // If we are using vectorcall calling convention, a structure that is
9740         // passed InReg - is surely an HVA
9741         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9742             isa<StructType>(Arg.getType())) {
9743           // The first value of a structure is marked
9744           if (0 == Value)
9745             Flags.setHvaStart();
9746           Flags.setHva();
9747         }
9748         // Set InReg Flag
9749         Flags.setInReg();
9750       }
9751       if (Arg.hasAttribute(Attribute::StructRet))
9752         Flags.setSRet();
9753       if (Arg.hasAttribute(Attribute::SwiftSelf))
9754         Flags.setSwiftSelf();
9755       if (Arg.hasAttribute(Attribute::SwiftError))
9756         Flags.setSwiftError();
9757       if (Arg.hasAttribute(Attribute::ByVal))
9758         Flags.setByVal();
9759       if (Arg.hasAttribute(Attribute::ByRef))
9760         Flags.setByRef();
9761       if (Arg.hasAttribute(Attribute::InAlloca)) {
9762         Flags.setInAlloca();
9763         // Set the byval flag for CCAssignFn callbacks that don't know about
9764         // inalloca.  This way we can know how many bytes we should've allocated
9765         // and how many bytes a callee cleanup function will pop.  If we port
9766         // inalloca to more targets, we'll have to add custom inalloca handling
9767         // in the various CC lowering callbacks.
9768         Flags.setByVal();
9769       }
9770       if (Arg.hasAttribute(Attribute::Preallocated)) {
9771         Flags.setPreallocated();
9772         // Set the byval flag for CCAssignFn callbacks that don't know about
9773         // preallocated.  This way we can know how many bytes we should've
9774         // allocated and how many bytes a callee cleanup function will pop.  If
9775         // we port preallocated to more targets, we'll have to add custom
9776         // preallocated handling in the various CC lowering callbacks.
9777         Flags.setByVal();
9778       }
9779 
9780       Type *ArgMemTy = nullptr;
9781       if (F.getCallingConv() == CallingConv::X86_INTR) {
9782         // IA Interrupt passes frame (1st parameter) by value in the stack.
9783         if (ArgNo == 0) {
9784           Flags.setByVal();
9785           // FIXME: Dependence on pointee element type. See bug 46672.
9786           ArgMemTy = Arg.getType()->getPointerElementType();
9787         }
9788       }
9789       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
9790           Flags.isByRef()) {
9791         if (!ArgMemTy)
9792           ArgMemTy = Arg.getPointeeInMemoryValueType();
9793 
9794         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
9795 
9796         // For in-memory arguments, size and alignment should be passed from FE.
9797         // BE will guess if this info is not there but there are cases it cannot
9798         // get right.
9799         MaybeAlign MemAlign = Arg.getParamAlign();
9800         if (!MemAlign)
9801           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
9802 
9803         if (Flags.isByRef()) {
9804           Flags.setByRefSize(MemSize);
9805           Flags.setByRefAlign(*MemAlign);
9806         } else {
9807           Flags.setByValSize(MemSize);
9808           Flags.setByValAlign(*MemAlign);
9809         }
9810       }
9811 
9812       if (Arg.hasAttribute(Attribute::Nest))
9813         Flags.setNest();
9814       if (NeedsRegBlock)
9815         Flags.setInConsecutiveRegs();
9816       Flags.setOrigAlign(OriginalAlignment);
9817       if (ArgCopyElisionCandidates.count(&Arg))
9818         Flags.setCopyElisionCandidate();
9819       if (Arg.hasAttribute(Attribute::Returned))
9820         Flags.setReturned();
9821 
9822       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9823           *CurDAG->getContext(), F.getCallingConv(), VT);
9824       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9825           *CurDAG->getContext(), F.getCallingConv(), VT);
9826       for (unsigned i = 0; i != NumRegs; ++i) {
9827         // For scalable vectors, use the minimum size; individual targets
9828         // are responsible for handling scalable vector arguments and
9829         // return values.
9830         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9831                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
9832         if (NumRegs > 1 && i == 0)
9833           MyFlags.Flags.setSplit();
9834         // if it isn't first piece, alignment must be 1
9835         else if (i > 0) {
9836           MyFlags.Flags.setOrigAlign(Align(1));
9837           if (i == NumRegs - 1)
9838             MyFlags.Flags.setSplitEnd();
9839         }
9840         Ins.push_back(MyFlags);
9841       }
9842       if (NeedsRegBlock && Value == NumValues - 1)
9843         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9844       PartBase += VT.getStoreSize().getKnownMinSize();
9845     }
9846   }
9847 
9848   // Call the target to set up the argument values.
9849   SmallVector<SDValue, 8> InVals;
9850   SDValue NewRoot = TLI->LowerFormalArguments(
9851       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9852 
9853   // Verify that the target's LowerFormalArguments behaved as expected.
9854   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9855          "LowerFormalArguments didn't return a valid chain!");
9856   assert(InVals.size() == Ins.size() &&
9857          "LowerFormalArguments didn't emit the correct number of values!");
9858   LLVM_DEBUG({
9859     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9860       assert(InVals[i].getNode() &&
9861              "LowerFormalArguments emitted a null value!");
9862       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9863              "LowerFormalArguments emitted a value with the wrong type!");
9864     }
9865   });
9866 
9867   // Update the DAG with the new chain value resulting from argument lowering.
9868   DAG.setRoot(NewRoot);
9869 
9870   // Set up the argument values.
9871   unsigned i = 0;
9872   if (!FuncInfo->CanLowerReturn) {
9873     // Create a virtual register for the sret pointer, and put in a copy
9874     // from the sret argument into it.
9875     SmallVector<EVT, 1> ValueVTs;
9876     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9877                     F.getReturnType()->getPointerTo(
9878                         DAG.getDataLayout().getAllocaAddrSpace()),
9879                     ValueVTs);
9880     MVT VT = ValueVTs[0].getSimpleVT();
9881     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9882     Optional<ISD::NodeType> AssertOp = None;
9883     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9884                                         nullptr, F.getCallingConv(), AssertOp);
9885 
9886     MachineFunction& MF = SDB->DAG.getMachineFunction();
9887     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9888     Register SRetReg =
9889         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9890     FuncInfo->DemoteRegister = SRetReg;
9891     NewRoot =
9892         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9893     DAG.setRoot(NewRoot);
9894 
9895     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9896     ++i;
9897   }
9898 
9899   SmallVector<SDValue, 4> Chains;
9900   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9901   for (const Argument &Arg : F.args()) {
9902     SmallVector<SDValue, 4> ArgValues;
9903     SmallVector<EVT, 4> ValueVTs;
9904     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9905     unsigned NumValues = ValueVTs.size();
9906     if (NumValues == 0)
9907       continue;
9908 
9909     bool ArgHasUses = !Arg.use_empty();
9910 
9911     // Elide the copying store if the target loaded this argument from a
9912     // suitable fixed stack object.
9913     if (Ins[i].Flags.isCopyElisionCandidate()) {
9914       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9915                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9916                              InVals[i], ArgHasUses);
9917     }
9918 
9919     // If this argument is unused then remember its value. It is used to generate
9920     // debugging information.
9921     bool isSwiftErrorArg =
9922         TLI->supportSwiftError() &&
9923         Arg.hasAttribute(Attribute::SwiftError);
9924     if (!ArgHasUses && !isSwiftErrorArg) {
9925       SDB->setUnusedArgValue(&Arg, InVals[i]);
9926 
9927       // Also remember any frame index for use in FastISel.
9928       if (FrameIndexSDNode *FI =
9929           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9930         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9931     }
9932 
9933     for (unsigned Val = 0; Val != NumValues; ++Val) {
9934       EVT VT = ValueVTs[Val];
9935       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9936                                                       F.getCallingConv(), VT);
9937       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9938           *CurDAG->getContext(), F.getCallingConv(), VT);
9939 
9940       // Even an apparent 'unused' swifterror argument needs to be returned. So
9941       // we do generate a copy for it that can be used on return from the
9942       // function.
9943       if (ArgHasUses || isSwiftErrorArg) {
9944         Optional<ISD::NodeType> AssertOp;
9945         if (Arg.hasAttribute(Attribute::SExt))
9946           AssertOp = ISD::AssertSext;
9947         else if (Arg.hasAttribute(Attribute::ZExt))
9948           AssertOp = ISD::AssertZext;
9949 
9950         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9951                                              PartVT, VT, nullptr,
9952                                              F.getCallingConv(), AssertOp));
9953       }
9954 
9955       i += NumParts;
9956     }
9957 
9958     // We don't need to do anything else for unused arguments.
9959     if (ArgValues.empty())
9960       continue;
9961 
9962     // Note down frame index.
9963     if (FrameIndexSDNode *FI =
9964         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9965       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9966 
9967     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9968                                      SDB->getCurSDLoc());
9969 
9970     SDB->setValue(&Arg, Res);
9971     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9972       // We want to associate the argument with the frame index, among
9973       // involved operands, that correspond to the lowest address. The
9974       // getCopyFromParts function, called earlier, is swapping the order of
9975       // the operands to BUILD_PAIR depending on endianness. The result of
9976       // that swapping is that the least significant bits of the argument will
9977       // be in the first operand of the BUILD_PAIR node, and the most
9978       // significant bits will be in the second operand.
9979       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9980       if (LoadSDNode *LNode =
9981           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9982         if (FrameIndexSDNode *FI =
9983             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9984           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9985     }
9986 
9987     // Analyses past this point are naive and don't expect an assertion.
9988     if (Res.getOpcode() == ISD::AssertZext)
9989       Res = Res.getOperand(0);
9990 
9991     // Update the SwiftErrorVRegDefMap.
9992     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9993       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9994       if (Register::isVirtualRegister(Reg))
9995         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
9996                                    Reg);
9997     }
9998 
9999     // If this argument is live outside of the entry block, insert a copy from
10000     // wherever we got it to the vreg that other BB's will reference it as.
10001     if (Res.getOpcode() == ISD::CopyFromReg) {
10002       // If we can, though, try to skip creating an unnecessary vreg.
10003       // FIXME: This isn't very clean... it would be nice to make this more
10004       // general.
10005       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10006       if (Register::isVirtualRegister(Reg)) {
10007         FuncInfo->ValueMap[&Arg] = Reg;
10008         continue;
10009       }
10010     }
10011     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10012       FuncInfo->InitializeRegForValue(&Arg);
10013       SDB->CopyToExportRegsIfNeeded(&Arg);
10014     }
10015   }
10016 
10017   if (!Chains.empty()) {
10018     Chains.push_back(NewRoot);
10019     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10020   }
10021 
10022   DAG.setRoot(NewRoot);
10023 
10024   assert(i == InVals.size() && "Argument register count mismatch!");
10025 
10026   // If any argument copy elisions occurred and we have debug info, update the
10027   // stale frame indices used in the dbg.declare variable info table.
10028   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10029   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10030     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10031       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10032       if (I != ArgCopyElisionFrameIndexMap.end())
10033         VI.Slot = I->second;
10034     }
10035   }
10036 
10037   // Finally, if the target has anything special to do, allow it to do so.
10038   emitFunctionEntryCode();
10039 }
10040 
10041 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10042 /// ensure constants are generated when needed.  Remember the virtual registers
10043 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10044 /// directly add them, because expansion might result in multiple MBB's for one
10045 /// BB.  As such, the start of the BB might correspond to a different MBB than
10046 /// the end.
10047 void
10048 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10049   const Instruction *TI = LLVMBB->getTerminator();
10050 
10051   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10052 
10053   // Check PHI nodes in successors that expect a value to be available from this
10054   // block.
10055   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
10056     const BasicBlock *SuccBB = TI->getSuccessor(succ);
10057     if (!isa<PHINode>(SuccBB->begin())) continue;
10058     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10059 
10060     // If this terminator has multiple identical successors (common for
10061     // switches), only handle each succ once.
10062     if (!SuccsHandled.insert(SuccMBB).second)
10063       continue;
10064 
10065     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10066 
10067     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10068     // nodes and Machine PHI nodes, but the incoming operands have not been
10069     // emitted yet.
10070     for (const PHINode &PN : SuccBB->phis()) {
10071       // Ignore dead phi's.
10072       if (PN.use_empty())
10073         continue;
10074 
10075       // Skip empty types
10076       if (PN.getType()->isEmptyTy())
10077         continue;
10078 
10079       unsigned Reg;
10080       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10081 
10082       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10083         unsigned &RegOut = ConstantsOut[C];
10084         if (RegOut == 0) {
10085           RegOut = FuncInfo.CreateRegs(C);
10086           CopyValueToVirtualRegister(C, RegOut);
10087         }
10088         Reg = RegOut;
10089       } else {
10090         DenseMap<const Value *, Register>::iterator I =
10091           FuncInfo.ValueMap.find(PHIOp);
10092         if (I != FuncInfo.ValueMap.end())
10093           Reg = I->second;
10094         else {
10095           assert(isa<AllocaInst>(PHIOp) &&
10096                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10097                  "Didn't codegen value into a register!??");
10098           Reg = FuncInfo.CreateRegs(PHIOp);
10099           CopyValueToVirtualRegister(PHIOp, Reg);
10100         }
10101       }
10102 
10103       // Remember that this register needs to added to the machine PHI node as
10104       // the input for this MBB.
10105       SmallVector<EVT, 4> ValueVTs;
10106       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10107       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10108       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10109         EVT VT = ValueVTs[vti];
10110         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10111         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10112           FuncInfo.PHINodesToUpdate.push_back(
10113               std::make_pair(&*MBBI++, Reg + i));
10114         Reg += NumRegisters;
10115       }
10116     }
10117   }
10118 
10119   ConstantsOut.clear();
10120 }
10121 
10122 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
10123 /// is 0.
10124 MachineBasicBlock *
10125 SelectionDAGBuilder::StackProtectorDescriptor::
10126 AddSuccessorMBB(const BasicBlock *BB,
10127                 MachineBasicBlock *ParentMBB,
10128                 bool IsLikely,
10129                 MachineBasicBlock *SuccMBB) {
10130   // If SuccBB has not been created yet, create it.
10131   if (!SuccMBB) {
10132     MachineFunction *MF = ParentMBB->getParent();
10133     MachineFunction::iterator BBI(ParentMBB);
10134     SuccMBB = MF->CreateMachineBasicBlock(BB);
10135     MF->insert(++BBI, SuccMBB);
10136   }
10137   // Add it as a successor of ParentMBB.
10138   ParentMBB->addSuccessor(
10139       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
10140   return SuccMBB;
10141 }
10142 
10143 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10144   MachineFunction::iterator I(MBB);
10145   if (++I == FuncInfo.MF->end())
10146     return nullptr;
10147   return &*I;
10148 }
10149 
10150 /// During lowering new call nodes can be created (such as memset, etc.).
10151 /// Those will become new roots of the current DAG, but complications arise
10152 /// when they are tail calls. In such cases, the call lowering will update
10153 /// the root, but the builder still needs to know that a tail call has been
10154 /// lowered in order to avoid generating an additional return.
10155 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10156   // If the node is null, we do have a tail call.
10157   if (MaybeTC.getNode() != nullptr)
10158     DAG.setRoot(MaybeTC);
10159   else
10160     HasTailCall = true;
10161 }
10162 
10163 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10164                                         MachineBasicBlock *SwitchMBB,
10165                                         MachineBasicBlock *DefaultMBB) {
10166   MachineFunction *CurMF = FuncInfo.MF;
10167   MachineBasicBlock *NextMBB = nullptr;
10168   MachineFunction::iterator BBI(W.MBB);
10169   if (++BBI != FuncInfo.MF->end())
10170     NextMBB = &*BBI;
10171 
10172   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10173 
10174   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10175 
10176   if (Size == 2 && W.MBB == SwitchMBB) {
10177     // If any two of the cases has the same destination, and if one value
10178     // is the same as the other, but has one bit unset that the other has set,
10179     // use bit manipulation to do two compares at once.  For example:
10180     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10181     // TODO: This could be extended to merge any 2 cases in switches with 3
10182     // cases.
10183     // TODO: Handle cases where W.CaseBB != SwitchBB.
10184     CaseCluster &Small = *W.FirstCluster;
10185     CaseCluster &Big = *W.LastCluster;
10186 
10187     if (Small.Low == Small.High && Big.Low == Big.High &&
10188         Small.MBB == Big.MBB) {
10189       const APInt &SmallValue = Small.Low->getValue();
10190       const APInt &BigValue = Big.Low->getValue();
10191 
10192       // Check that there is only one bit different.
10193       APInt CommonBit = BigValue ^ SmallValue;
10194       if (CommonBit.isPowerOf2()) {
10195         SDValue CondLHS = getValue(Cond);
10196         EVT VT = CondLHS.getValueType();
10197         SDLoc DL = getCurSDLoc();
10198 
10199         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10200                                  DAG.getConstant(CommonBit, DL, VT));
10201         SDValue Cond = DAG.getSetCC(
10202             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10203             ISD::SETEQ);
10204 
10205         // Update successor info.
10206         // Both Small and Big will jump to Small.BB, so we sum up the
10207         // probabilities.
10208         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10209         if (BPI)
10210           addSuccessorWithProb(
10211               SwitchMBB, DefaultMBB,
10212               // The default destination is the first successor in IR.
10213               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10214         else
10215           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10216 
10217         // Insert the true branch.
10218         SDValue BrCond =
10219             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10220                         DAG.getBasicBlock(Small.MBB));
10221         // Insert the false branch.
10222         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10223                              DAG.getBasicBlock(DefaultMBB));
10224 
10225         DAG.setRoot(BrCond);
10226         return;
10227       }
10228     }
10229   }
10230 
10231   if (TM.getOptLevel() != CodeGenOpt::None) {
10232     // Here, we order cases by probability so the most likely case will be
10233     // checked first. However, two clusters can have the same probability in
10234     // which case their relative ordering is non-deterministic. So we use Low
10235     // as a tie-breaker as clusters are guaranteed to never overlap.
10236     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10237                [](const CaseCluster &a, const CaseCluster &b) {
10238       return a.Prob != b.Prob ?
10239              a.Prob > b.Prob :
10240              a.Low->getValue().slt(b.Low->getValue());
10241     });
10242 
10243     // Rearrange the case blocks so that the last one falls through if possible
10244     // without changing the order of probabilities.
10245     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10246       --I;
10247       if (I->Prob > W.LastCluster->Prob)
10248         break;
10249       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10250         std::swap(*I, *W.LastCluster);
10251         break;
10252       }
10253     }
10254   }
10255 
10256   // Compute total probability.
10257   BranchProbability DefaultProb = W.DefaultProb;
10258   BranchProbability UnhandledProbs = DefaultProb;
10259   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10260     UnhandledProbs += I->Prob;
10261 
10262   MachineBasicBlock *CurMBB = W.MBB;
10263   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10264     bool FallthroughUnreachable = false;
10265     MachineBasicBlock *Fallthrough;
10266     if (I == W.LastCluster) {
10267       // For the last cluster, fall through to the default destination.
10268       Fallthrough = DefaultMBB;
10269       FallthroughUnreachable = isa<UnreachableInst>(
10270           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10271     } else {
10272       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10273       CurMF->insert(BBI, Fallthrough);
10274       // Put Cond in a virtual register to make it available from the new blocks.
10275       ExportFromCurrentBlock(Cond);
10276     }
10277     UnhandledProbs -= I->Prob;
10278 
10279     switch (I->Kind) {
10280       case CC_JumpTable: {
10281         // FIXME: Optimize away range check based on pivot comparisons.
10282         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10283         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10284 
10285         // The jump block hasn't been inserted yet; insert it here.
10286         MachineBasicBlock *JumpMBB = JT->MBB;
10287         CurMF->insert(BBI, JumpMBB);
10288 
10289         auto JumpProb = I->Prob;
10290         auto FallthroughProb = UnhandledProbs;
10291 
10292         // If the default statement is a target of the jump table, we evenly
10293         // distribute the default probability to successors of CurMBB. Also
10294         // update the probability on the edge from JumpMBB to Fallthrough.
10295         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10296                                               SE = JumpMBB->succ_end();
10297              SI != SE; ++SI) {
10298           if (*SI == DefaultMBB) {
10299             JumpProb += DefaultProb / 2;
10300             FallthroughProb -= DefaultProb / 2;
10301             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10302             JumpMBB->normalizeSuccProbs();
10303             break;
10304           }
10305         }
10306 
10307         if (FallthroughUnreachable) {
10308           // Skip the range check if the fallthrough block is unreachable.
10309           JTH->OmitRangeCheck = true;
10310         }
10311 
10312         if (!JTH->OmitRangeCheck)
10313           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10314         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10315         CurMBB->normalizeSuccProbs();
10316 
10317         // The jump table header will be inserted in our current block, do the
10318         // range check, and fall through to our fallthrough block.
10319         JTH->HeaderBB = CurMBB;
10320         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10321 
10322         // If we're in the right place, emit the jump table header right now.
10323         if (CurMBB == SwitchMBB) {
10324           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10325           JTH->Emitted = true;
10326         }
10327         break;
10328       }
10329       case CC_BitTests: {
10330         // FIXME: Optimize away range check based on pivot comparisons.
10331         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10332 
10333         // The bit test blocks haven't been inserted yet; insert them here.
10334         for (BitTestCase &BTC : BTB->Cases)
10335           CurMF->insert(BBI, BTC.ThisBB);
10336 
10337         // Fill in fields of the BitTestBlock.
10338         BTB->Parent = CurMBB;
10339         BTB->Default = Fallthrough;
10340 
10341         BTB->DefaultProb = UnhandledProbs;
10342         // If the cases in bit test don't form a contiguous range, we evenly
10343         // distribute the probability on the edge to Fallthrough to two
10344         // successors of CurMBB.
10345         if (!BTB->ContiguousRange) {
10346           BTB->Prob += DefaultProb / 2;
10347           BTB->DefaultProb -= DefaultProb / 2;
10348         }
10349 
10350         if (FallthroughUnreachable) {
10351           // Skip the range check if the fallthrough block is unreachable.
10352           BTB->OmitRangeCheck = true;
10353         }
10354 
10355         // If we're in the right place, emit the bit test header right now.
10356         if (CurMBB == SwitchMBB) {
10357           visitBitTestHeader(*BTB, SwitchMBB);
10358           BTB->Emitted = true;
10359         }
10360         break;
10361       }
10362       case CC_Range: {
10363         const Value *RHS, *LHS, *MHS;
10364         ISD::CondCode CC;
10365         if (I->Low == I->High) {
10366           // Check Cond == I->Low.
10367           CC = ISD::SETEQ;
10368           LHS = Cond;
10369           RHS=I->Low;
10370           MHS = nullptr;
10371         } else {
10372           // Check I->Low <= Cond <= I->High.
10373           CC = ISD::SETLE;
10374           LHS = I->Low;
10375           MHS = Cond;
10376           RHS = I->High;
10377         }
10378 
10379         // If Fallthrough is unreachable, fold away the comparison.
10380         if (FallthroughUnreachable)
10381           CC = ISD::SETTRUE;
10382 
10383         // The false probability is the sum of all unhandled cases.
10384         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10385                      getCurSDLoc(), I->Prob, UnhandledProbs);
10386 
10387         if (CurMBB == SwitchMBB)
10388           visitSwitchCase(CB, SwitchMBB);
10389         else
10390           SL->SwitchCases.push_back(CB);
10391 
10392         break;
10393       }
10394     }
10395     CurMBB = Fallthrough;
10396   }
10397 }
10398 
10399 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10400                                               CaseClusterIt First,
10401                                               CaseClusterIt Last) {
10402   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10403     if (X.Prob != CC.Prob)
10404       return X.Prob > CC.Prob;
10405 
10406     // Ties are broken by comparing the case value.
10407     return X.Low->getValue().slt(CC.Low->getValue());
10408   });
10409 }
10410 
10411 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10412                                         const SwitchWorkListItem &W,
10413                                         Value *Cond,
10414                                         MachineBasicBlock *SwitchMBB) {
10415   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10416          "Clusters not sorted?");
10417 
10418   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10419 
10420   // Balance the tree based on branch probabilities to create a near-optimal (in
10421   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10422   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10423   CaseClusterIt LastLeft = W.FirstCluster;
10424   CaseClusterIt FirstRight = W.LastCluster;
10425   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10426   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10427 
10428   // Move LastLeft and FirstRight towards each other from opposite directions to
10429   // find a partitioning of the clusters which balances the probability on both
10430   // sides. If LeftProb and RightProb are equal, alternate which side is
10431   // taken to ensure 0-probability nodes are distributed evenly.
10432   unsigned I = 0;
10433   while (LastLeft + 1 < FirstRight) {
10434     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10435       LeftProb += (++LastLeft)->Prob;
10436     else
10437       RightProb += (--FirstRight)->Prob;
10438     I++;
10439   }
10440 
10441   while (true) {
10442     // Our binary search tree differs from a typical BST in that ours can have up
10443     // to three values in each leaf. The pivot selection above doesn't take that
10444     // into account, which means the tree might require more nodes and be less
10445     // efficient. We compensate for this here.
10446 
10447     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10448     unsigned NumRight = W.LastCluster - FirstRight + 1;
10449 
10450     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10451       // If one side has less than 3 clusters, and the other has more than 3,
10452       // consider taking a cluster from the other side.
10453 
10454       if (NumLeft < NumRight) {
10455         // Consider moving the first cluster on the right to the left side.
10456         CaseCluster &CC = *FirstRight;
10457         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10458         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10459         if (LeftSideRank <= RightSideRank) {
10460           // Moving the cluster to the left does not demote it.
10461           ++LastLeft;
10462           ++FirstRight;
10463           continue;
10464         }
10465       } else {
10466         assert(NumRight < NumLeft);
10467         // Consider moving the last element on the left to the right side.
10468         CaseCluster &CC = *LastLeft;
10469         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10470         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10471         if (RightSideRank <= LeftSideRank) {
10472           // Moving the cluster to the right does not demot it.
10473           --LastLeft;
10474           --FirstRight;
10475           continue;
10476         }
10477       }
10478     }
10479     break;
10480   }
10481 
10482   assert(LastLeft + 1 == FirstRight);
10483   assert(LastLeft >= W.FirstCluster);
10484   assert(FirstRight <= W.LastCluster);
10485 
10486   // Use the first element on the right as pivot since we will make less-than
10487   // comparisons against it.
10488   CaseClusterIt PivotCluster = FirstRight;
10489   assert(PivotCluster > W.FirstCluster);
10490   assert(PivotCluster <= W.LastCluster);
10491 
10492   CaseClusterIt FirstLeft = W.FirstCluster;
10493   CaseClusterIt LastRight = W.LastCluster;
10494 
10495   const ConstantInt *Pivot = PivotCluster->Low;
10496 
10497   // New blocks will be inserted immediately after the current one.
10498   MachineFunction::iterator BBI(W.MBB);
10499   ++BBI;
10500 
10501   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10502   // we can branch to its destination directly if it's squeezed exactly in
10503   // between the known lower bound and Pivot - 1.
10504   MachineBasicBlock *LeftMBB;
10505   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10506       FirstLeft->Low == W.GE &&
10507       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10508     LeftMBB = FirstLeft->MBB;
10509   } else {
10510     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10511     FuncInfo.MF->insert(BBI, LeftMBB);
10512     WorkList.push_back(
10513         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10514     // Put Cond in a virtual register to make it available from the new blocks.
10515     ExportFromCurrentBlock(Cond);
10516   }
10517 
10518   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10519   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10520   // directly if RHS.High equals the current upper bound.
10521   MachineBasicBlock *RightMBB;
10522   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10523       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10524     RightMBB = FirstRight->MBB;
10525   } else {
10526     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10527     FuncInfo.MF->insert(BBI, RightMBB);
10528     WorkList.push_back(
10529         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10530     // Put Cond in a virtual register to make it available from the new blocks.
10531     ExportFromCurrentBlock(Cond);
10532   }
10533 
10534   // Create the CaseBlock record that will be used to lower the branch.
10535   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10536                getCurSDLoc(), LeftProb, RightProb);
10537 
10538   if (W.MBB == SwitchMBB)
10539     visitSwitchCase(CB, SwitchMBB);
10540   else
10541     SL->SwitchCases.push_back(CB);
10542 }
10543 
10544 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10545 // from the swith statement.
10546 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10547                                             BranchProbability PeeledCaseProb) {
10548   if (PeeledCaseProb == BranchProbability::getOne())
10549     return BranchProbability::getZero();
10550   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10551 
10552   uint32_t Numerator = CaseProb.getNumerator();
10553   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10554   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10555 }
10556 
10557 // Try to peel the top probability case if it exceeds the threshold.
10558 // Return current MachineBasicBlock for the switch statement if the peeling
10559 // does not occur.
10560 // If the peeling is performed, return the newly created MachineBasicBlock
10561 // for the peeled switch statement. Also update Clusters to remove the peeled
10562 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10563 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10564     const SwitchInst &SI, CaseClusterVector &Clusters,
10565     BranchProbability &PeeledCaseProb) {
10566   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10567   // Don't perform if there is only one cluster or optimizing for size.
10568   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10569       TM.getOptLevel() == CodeGenOpt::None ||
10570       SwitchMBB->getParent()->getFunction().hasMinSize())
10571     return SwitchMBB;
10572 
10573   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10574   unsigned PeeledCaseIndex = 0;
10575   bool SwitchPeeled = false;
10576   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10577     CaseCluster &CC = Clusters[Index];
10578     if (CC.Prob < TopCaseProb)
10579       continue;
10580     TopCaseProb = CC.Prob;
10581     PeeledCaseIndex = Index;
10582     SwitchPeeled = true;
10583   }
10584   if (!SwitchPeeled)
10585     return SwitchMBB;
10586 
10587   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10588                     << TopCaseProb << "\n");
10589 
10590   // Record the MBB for the peeled switch statement.
10591   MachineFunction::iterator BBI(SwitchMBB);
10592   ++BBI;
10593   MachineBasicBlock *PeeledSwitchMBB =
10594       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10595   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10596 
10597   ExportFromCurrentBlock(SI.getCondition());
10598   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10599   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10600                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10601   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10602 
10603   Clusters.erase(PeeledCaseIt);
10604   for (CaseCluster &CC : Clusters) {
10605     LLVM_DEBUG(
10606         dbgs() << "Scale the probablity for one cluster, before scaling: "
10607                << CC.Prob << "\n");
10608     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10609     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10610   }
10611   PeeledCaseProb = TopCaseProb;
10612   return PeeledSwitchMBB;
10613 }
10614 
10615 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10616   // Extract cases from the switch.
10617   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10618   CaseClusterVector Clusters;
10619   Clusters.reserve(SI.getNumCases());
10620   for (auto I : SI.cases()) {
10621     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10622     const ConstantInt *CaseVal = I.getCaseValue();
10623     BranchProbability Prob =
10624         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10625             : BranchProbability(1, SI.getNumCases() + 1);
10626     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10627   }
10628 
10629   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10630 
10631   // Cluster adjacent cases with the same destination. We do this at all
10632   // optimization levels because it's cheap to do and will make codegen faster
10633   // if there are many clusters.
10634   sortAndRangeify(Clusters);
10635 
10636   // The branch probablity of the peeled case.
10637   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10638   MachineBasicBlock *PeeledSwitchMBB =
10639       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10640 
10641   // If there is only the default destination, jump there directly.
10642   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10643   if (Clusters.empty()) {
10644     assert(PeeledSwitchMBB == SwitchMBB);
10645     SwitchMBB->addSuccessor(DefaultMBB);
10646     if (DefaultMBB != NextBlock(SwitchMBB)) {
10647       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10648                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10649     }
10650     return;
10651   }
10652 
10653   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
10654   SL->findBitTestClusters(Clusters, &SI);
10655 
10656   LLVM_DEBUG({
10657     dbgs() << "Case clusters: ";
10658     for (const CaseCluster &C : Clusters) {
10659       if (C.Kind == CC_JumpTable)
10660         dbgs() << "JT:";
10661       if (C.Kind == CC_BitTests)
10662         dbgs() << "BT:";
10663 
10664       C.Low->getValue().print(dbgs(), true);
10665       if (C.Low != C.High) {
10666         dbgs() << '-';
10667         C.High->getValue().print(dbgs(), true);
10668       }
10669       dbgs() << ' ';
10670     }
10671     dbgs() << '\n';
10672   });
10673 
10674   assert(!Clusters.empty());
10675   SwitchWorkList WorkList;
10676   CaseClusterIt First = Clusters.begin();
10677   CaseClusterIt Last = Clusters.end() - 1;
10678   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10679   // Scale the branchprobability for DefaultMBB if the peel occurs and
10680   // DefaultMBB is not replaced.
10681   if (PeeledCaseProb != BranchProbability::getZero() &&
10682       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10683     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10684   WorkList.push_back(
10685       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10686 
10687   while (!WorkList.empty()) {
10688     SwitchWorkListItem W = WorkList.back();
10689     WorkList.pop_back();
10690     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10691 
10692     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10693         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10694       // For optimized builds, lower large range as a balanced binary tree.
10695       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10696       continue;
10697     }
10698 
10699     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10700   }
10701 }
10702 
10703 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
10704   SmallVector<EVT, 4> ValueVTs;
10705   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
10706                   ValueVTs);
10707   unsigned NumValues = ValueVTs.size();
10708   if (NumValues == 0) return;
10709 
10710   SmallVector<SDValue, 4> Values(NumValues);
10711   SDValue Op = getValue(I.getOperand(0));
10712 
10713   for (unsigned i = 0; i != NumValues; ++i)
10714     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
10715                             SDValue(Op.getNode(), Op.getResNo() + i));
10716 
10717   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
10718                            DAG.getVTList(ValueVTs), Values));
10719 }
10720