1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/Loads.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/VectorUtils.h" 27 #include "llvm/CodeGen/FastISel.h" 28 #include "llvm/CodeGen/FunctionLoweringInfo.h" 29 #include "llvm/CodeGen/GCMetadata.h" 30 #include "llvm/CodeGen/GCStrategy.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineInstrBuilder.h" 34 #include "llvm/CodeGen/MachineJumpTableInfo.h" 35 #include "llvm/CodeGen/MachineModuleInfo.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/SelectionDAG.h" 38 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 39 #include "llvm/CodeGen/StackMaps.h" 40 #include "llvm/CodeGen/WinEHFuncInfo.h" 41 #include "llvm/IR/CallingConv.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DebugInfo.h" 45 #include "llvm/IR/DerivedTypes.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/GetElementPtrTypeIterator.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InlineAsm.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/Statepoint.h" 56 #include "llvm/MC/MCSymbol.h" 57 #include "llvm/Support/CommandLine.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/MathExtras.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include "llvm/Target/TargetFrameLowering.h" 63 #include "llvm/Target/TargetInstrInfo.h" 64 #include "llvm/Target/TargetIntrinsicInfo.h" 65 #include "llvm/Target/TargetLowering.h" 66 #include "llvm/Target/TargetOptions.h" 67 #include "llvm/Target/TargetSubtargetInfo.h" 68 #include <algorithm> 69 #include <utility> 70 using namespace llvm; 71 72 #define DEBUG_TYPE "isel" 73 74 /// LimitFloatPrecision - Generate low-precision inline sequences for 75 /// some float libcalls (6, 8 or 12 bits). 76 static unsigned LimitFloatPrecision; 77 78 static cl::opt<unsigned, true> 79 LimitFPPrecision("limit-float-precision", 80 cl::desc("Generate low-precision inline sequences " 81 "for some float libcalls"), 82 cl::location(LimitFloatPrecision), 83 cl::init(0)); 84 85 static cl::opt<bool> 86 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 87 cl::desc("Enable fast-math-flags for DAG nodes")); 88 89 // Limit the width of DAG chains. This is important in general to prevent 90 // DAG-based analysis from blowing up. For example, alias analysis and 91 // load clustering may not complete in reasonable time. It is difficult to 92 // recognize and avoid this situation within each individual analysis, and 93 // future analyses are likely to have the same behavior. Limiting DAG width is 94 // the safe approach and will be especially important with global DAGs. 95 // 96 // MaxParallelChains default is arbitrarily high to avoid affecting 97 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 98 // sequence over this should have been converted to llvm.memcpy by the 99 // frontend. It easy to induce this behavior with .ll code such as: 100 // %buffer = alloca [4096 x i8] 101 // %data = load [4096 x i8]* %argPtr 102 // store [4096 x i8] %data, [4096 x i8]* %buffer 103 static const unsigned MaxParallelChains = 64; 104 105 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 106 const SDValue *Parts, unsigned NumParts, 107 MVT PartVT, EVT ValueVT, const Value *V); 108 109 /// getCopyFromParts - Create a value that contains the specified legal parts 110 /// combined into the value they represent. If the parts combine to a type 111 /// larger then ValueVT then AssertOp can be used to specify whether the extra 112 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 113 /// (ISD::AssertSext). 114 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 115 const SDValue *Parts, 116 unsigned NumParts, MVT PartVT, EVT ValueVT, 117 const Value *V, 118 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 119 if (ValueVT.isVector()) 120 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 121 PartVT, ValueVT, V); 122 123 assert(NumParts > 0 && "No parts to assemble!"); 124 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 125 SDValue Val = Parts[0]; 126 127 if (NumParts > 1) { 128 // Assemble the value from multiple parts. 129 if (ValueVT.isInteger()) { 130 unsigned PartBits = PartVT.getSizeInBits(); 131 unsigned ValueBits = ValueVT.getSizeInBits(); 132 133 // Assemble the power of 2 part. 134 unsigned RoundParts = NumParts & (NumParts - 1) ? 135 1 << Log2_32(NumParts) : NumParts; 136 unsigned RoundBits = PartBits * RoundParts; 137 EVT RoundVT = RoundBits == ValueBits ? 138 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 139 SDValue Lo, Hi; 140 141 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 142 143 if (RoundParts > 2) { 144 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 145 PartVT, HalfVT, V); 146 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 147 RoundParts / 2, PartVT, HalfVT, V); 148 } else { 149 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 150 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 151 } 152 153 if (DAG.getDataLayout().isBigEndian()) 154 std::swap(Lo, Hi); 155 156 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 157 158 if (RoundParts < NumParts) { 159 // Assemble the trailing non-power-of-2 part. 160 unsigned OddParts = NumParts - RoundParts; 161 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 162 Hi = getCopyFromParts(DAG, DL, 163 Parts + RoundParts, OddParts, PartVT, OddVT, V); 164 165 // Combine the round and odd parts. 166 Lo = Val; 167 if (DAG.getDataLayout().isBigEndian()) 168 std::swap(Lo, Hi); 169 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 170 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 171 Hi = 172 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 173 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 174 TLI.getPointerTy(DAG.getDataLayout()))); 175 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 176 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 177 } 178 } else if (PartVT.isFloatingPoint()) { 179 // FP split into multiple FP parts (for ppcf128) 180 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 181 "Unexpected split"); 182 SDValue Lo, Hi; 183 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 184 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 185 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 186 std::swap(Lo, Hi); 187 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 188 } else { 189 // FP split into integer parts (soft fp) 190 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 191 !PartVT.isVector() && "Unexpected split"); 192 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 193 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 194 } 195 } 196 197 // There is now one part, held in Val. Correct it to match ValueVT. 198 EVT PartEVT = Val.getValueType(); 199 200 if (PartEVT == ValueVT) 201 return Val; 202 203 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 204 ValueVT.bitsLT(PartEVT)) { 205 // For an FP value in an integer part, we need to truncate to the right 206 // width first. 207 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 208 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 209 } 210 211 if (PartEVT.isInteger() && ValueVT.isInteger()) { 212 if (ValueVT.bitsLT(PartEVT)) { 213 // For a truncate, see if we have any information to 214 // indicate whether the truncated bits will always be 215 // zero or sign-extension. 216 if (AssertOp != ISD::DELETED_NODE) 217 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 218 DAG.getValueType(ValueVT)); 219 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 220 } 221 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 222 } 223 224 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 225 // FP_ROUND's are always exact here. 226 if (ValueVT.bitsLT(Val.getValueType())) 227 return DAG.getNode( 228 ISD::FP_ROUND, DL, ValueVT, Val, 229 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 230 231 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 232 } 233 234 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 235 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 236 237 llvm_unreachable("Unknown mismatch!"); 238 } 239 240 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 241 const Twine &ErrMsg) { 242 const Instruction *I = dyn_cast_or_null<Instruction>(V); 243 if (!V) 244 return Ctx.emitError(ErrMsg); 245 246 const char *AsmError = ", possible invalid constraint for vector type"; 247 if (const CallInst *CI = dyn_cast<CallInst>(I)) 248 if (isa<InlineAsm>(CI->getCalledValue())) 249 return Ctx.emitError(I, ErrMsg + AsmError); 250 251 return Ctx.emitError(I, ErrMsg); 252 } 253 254 /// getCopyFromPartsVector - Create a value that contains the specified legal 255 /// parts combined into the value they represent. If the parts combine to a 256 /// type larger then ValueVT then AssertOp can be used to specify whether the 257 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 258 /// ValueVT (ISD::AssertSext). 259 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 260 const SDValue *Parts, unsigned NumParts, 261 MVT PartVT, EVT ValueVT, const Value *V) { 262 assert(ValueVT.isVector() && "Not a vector value"); 263 assert(NumParts > 0 && "No parts to assemble!"); 264 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 265 SDValue Val = Parts[0]; 266 267 // Handle a multi-element vector. 268 if (NumParts > 1) { 269 EVT IntermediateVT; 270 MVT RegisterVT; 271 unsigned NumIntermediates; 272 unsigned NumRegs = 273 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 274 NumIntermediates, RegisterVT); 275 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 276 NumParts = NumRegs; // Silence a compiler warning. 277 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 278 assert(RegisterVT.getSizeInBits() == 279 Parts[0].getSimpleValueType().getSizeInBits() && 280 "Part type sizes don't match!"); 281 282 // Assemble the parts into intermediate operands. 283 SmallVector<SDValue, 8> Ops(NumIntermediates); 284 if (NumIntermediates == NumParts) { 285 // If the register was not expanded, truncate or copy the value, 286 // as appropriate. 287 for (unsigned i = 0; i != NumParts; ++i) 288 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 289 PartVT, IntermediateVT, V); 290 } else if (NumParts > 0) { 291 // If the intermediate type was expanded, build the intermediate 292 // operands from the parts. 293 assert(NumParts % NumIntermediates == 0 && 294 "Must expand into a divisible number of parts!"); 295 unsigned Factor = NumParts / NumIntermediates; 296 for (unsigned i = 0; i != NumIntermediates; ++i) 297 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 298 PartVT, IntermediateVT, V); 299 } 300 301 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 302 // intermediate operands. 303 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 304 : ISD::BUILD_VECTOR, 305 DL, ValueVT, Ops); 306 } 307 308 // There is now one part, held in Val. Correct it to match ValueVT. 309 EVT PartEVT = Val.getValueType(); 310 311 if (PartEVT == ValueVT) 312 return Val; 313 314 if (PartEVT.isVector()) { 315 // If the element type of the source/dest vectors are the same, but the 316 // parts vector has more elements than the value vector, then we have a 317 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 318 // elements we want. 319 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 320 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 321 "Cannot narrow, it would be a lossy transformation"); 322 return DAG.getNode( 323 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 324 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 325 } 326 327 // Vector/Vector bitcast. 328 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 329 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 330 331 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 332 "Cannot handle this kind of promotion"); 333 // Promoted vector extract 334 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 335 336 } 337 338 // Trivial bitcast if the types are the same size and the destination 339 // vector type is legal. 340 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 341 TLI.isTypeLegal(ValueVT)) 342 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 343 344 // Handle cases such as i8 -> <1 x i1> 345 if (ValueVT.getVectorNumElements() != 1) { 346 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 347 "non-trivial scalar-to-vector conversion"); 348 return DAG.getUNDEF(ValueVT); 349 } 350 351 if (ValueVT.getVectorNumElements() == 1 && 352 ValueVT.getVectorElementType() != PartEVT) 353 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 354 355 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 356 } 357 358 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 359 SDValue Val, SDValue *Parts, unsigned NumParts, 360 MVT PartVT, const Value *V); 361 362 /// getCopyToParts - Create a series of nodes that contain the specified value 363 /// split into legal parts. If the parts contain more bits than Val, then, for 364 /// integers, ExtendKind can be used to specify how to generate the extra bits. 365 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 366 SDValue Val, SDValue *Parts, unsigned NumParts, 367 MVT PartVT, const Value *V, 368 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 369 EVT ValueVT = Val.getValueType(); 370 371 // Handle the vector case separately. 372 if (ValueVT.isVector()) 373 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 374 375 unsigned PartBits = PartVT.getSizeInBits(); 376 unsigned OrigNumParts = NumParts; 377 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 378 "Copying to an illegal type!"); 379 380 if (NumParts == 0) 381 return; 382 383 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 384 EVT PartEVT = PartVT; 385 if (PartEVT == ValueVT) { 386 assert(NumParts == 1 && "No-op copy with multiple parts!"); 387 Parts[0] = Val; 388 return; 389 } 390 391 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 392 // If the parts cover more bits than the value has, promote the value. 393 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 394 assert(NumParts == 1 && "Do not know what to promote to!"); 395 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 396 } else { 397 if (ValueVT.isFloatingPoint()) { 398 // FP values need to be bitcast, then extended if they are being put 399 // into a larger container. 400 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 401 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 402 } 403 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 404 ValueVT.isInteger() && 405 "Unknown mismatch!"); 406 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 407 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 408 if (PartVT == MVT::x86mmx) 409 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 410 } 411 } else if (PartBits == ValueVT.getSizeInBits()) { 412 // Different types of the same size. 413 assert(NumParts == 1 && PartEVT != ValueVT); 414 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 415 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 416 // If the parts cover less bits than value has, truncate the value. 417 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 418 ValueVT.isInteger() && 419 "Unknown mismatch!"); 420 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 421 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 422 if (PartVT == MVT::x86mmx) 423 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 424 } 425 426 // The value may have changed - recompute ValueVT. 427 ValueVT = Val.getValueType(); 428 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 429 "Failed to tile the value with PartVT!"); 430 431 if (NumParts == 1) { 432 if (PartEVT != ValueVT) 433 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 434 "scalar-to-vector conversion failed"); 435 436 Parts[0] = Val; 437 return; 438 } 439 440 // Expand the value into multiple parts. 441 if (NumParts & (NumParts - 1)) { 442 // The number of parts is not a power of 2. Split off and copy the tail. 443 assert(PartVT.isInteger() && ValueVT.isInteger() && 444 "Do not know what to expand to!"); 445 unsigned RoundParts = 1 << Log2_32(NumParts); 446 unsigned RoundBits = RoundParts * PartBits; 447 unsigned OddParts = NumParts - RoundParts; 448 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 449 DAG.getIntPtrConstant(RoundBits, DL)); 450 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 451 452 if (DAG.getDataLayout().isBigEndian()) 453 // The odd parts were reversed by getCopyToParts - unreverse them. 454 std::reverse(Parts + RoundParts, Parts + NumParts); 455 456 NumParts = RoundParts; 457 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 458 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 459 } 460 461 // The number of parts is a power of 2. Repeatedly bisect the value using 462 // EXTRACT_ELEMENT. 463 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 464 EVT::getIntegerVT(*DAG.getContext(), 465 ValueVT.getSizeInBits()), 466 Val); 467 468 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 469 for (unsigned i = 0; i < NumParts; i += StepSize) { 470 unsigned ThisBits = StepSize * PartBits / 2; 471 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 472 SDValue &Part0 = Parts[i]; 473 SDValue &Part1 = Parts[i+StepSize/2]; 474 475 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 476 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 477 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 478 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 479 480 if (ThisBits == PartBits && ThisVT != PartVT) { 481 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 482 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 483 } 484 } 485 } 486 487 if (DAG.getDataLayout().isBigEndian()) 488 std::reverse(Parts, Parts + OrigNumParts); 489 } 490 491 492 /// getCopyToPartsVector - Create a series of nodes that contain the specified 493 /// value split into legal parts. 494 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 495 SDValue Val, SDValue *Parts, unsigned NumParts, 496 MVT PartVT, const Value *V) { 497 EVT ValueVT = Val.getValueType(); 498 assert(ValueVT.isVector() && "Not a vector"); 499 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 500 501 if (NumParts == 1) { 502 EVT PartEVT = PartVT; 503 if (PartEVT == ValueVT) { 504 // Nothing to do. 505 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 506 // Bitconvert vector->vector case. 507 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 508 } else if (PartVT.isVector() && 509 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 510 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 511 EVT ElementVT = PartVT.getVectorElementType(); 512 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 513 // undef elements. 514 SmallVector<SDValue, 16> Ops; 515 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 516 Ops.push_back(DAG.getNode( 517 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 518 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 519 520 for (unsigned i = ValueVT.getVectorNumElements(), 521 e = PartVT.getVectorNumElements(); i != e; ++i) 522 Ops.push_back(DAG.getUNDEF(ElementVT)); 523 524 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 525 526 // FIXME: Use CONCAT for 2x -> 4x. 527 528 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 529 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 530 } else if (PartVT.isVector() && 531 PartEVT.getVectorElementType().bitsGE( 532 ValueVT.getVectorElementType()) && 533 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 534 535 // Promoted vector extract 536 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 537 } else{ 538 // Vector -> scalar conversion. 539 assert(ValueVT.getVectorNumElements() == 1 && 540 "Only trivial vector-to-scalar conversions should get here!"); 541 Val = DAG.getNode( 542 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 543 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 544 545 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 546 } 547 548 Parts[0] = Val; 549 return; 550 } 551 552 // Handle a multi-element vector. 553 EVT IntermediateVT; 554 MVT RegisterVT; 555 unsigned NumIntermediates; 556 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 557 IntermediateVT, 558 NumIntermediates, RegisterVT); 559 unsigned NumElements = ValueVT.getVectorNumElements(); 560 561 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 562 NumParts = NumRegs; // Silence a compiler warning. 563 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 564 565 // Split the vector into intermediate operands. 566 SmallVector<SDValue, 8> Ops(NumIntermediates); 567 for (unsigned i = 0; i != NumIntermediates; ++i) { 568 if (IntermediateVT.isVector()) 569 Ops[i] = 570 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 571 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 572 TLI.getVectorIdxTy(DAG.getDataLayout()))); 573 else 574 Ops[i] = DAG.getNode( 575 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 576 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 577 } 578 579 // Split the intermediate operands into legal parts. 580 if (NumParts == NumIntermediates) { 581 // If the register was not expanded, promote or copy the value, 582 // as appropriate. 583 for (unsigned i = 0; i != NumParts; ++i) 584 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 585 } else if (NumParts > 0) { 586 // If the intermediate type was expanded, split each the value into 587 // legal parts. 588 assert(NumIntermediates != 0 && "division by zero"); 589 assert(NumParts % NumIntermediates == 0 && 590 "Must expand into a divisible number of parts!"); 591 unsigned Factor = NumParts / NumIntermediates; 592 for (unsigned i = 0; i != NumIntermediates; ++i) 593 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 594 } 595 } 596 597 RegsForValue::RegsForValue() {} 598 599 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 600 EVT valuevt) 601 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 602 603 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 604 const DataLayout &DL, unsigned Reg, Type *Ty) { 605 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 606 607 for (EVT ValueVT : ValueVTs) { 608 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 609 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 610 for (unsigned i = 0; i != NumRegs; ++i) 611 Regs.push_back(Reg + i); 612 RegVTs.push_back(RegisterVT); 613 Reg += NumRegs; 614 } 615 } 616 617 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 618 /// this value and returns the result as a ValueVT value. This uses 619 /// Chain/Flag as the input and updates them for the output Chain/Flag. 620 /// If the Flag pointer is NULL, no flag is used. 621 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 622 FunctionLoweringInfo &FuncInfo, 623 SDLoc dl, 624 SDValue &Chain, SDValue *Flag, 625 const Value *V) const { 626 // A Value with type {} or [0 x %t] needs no registers. 627 if (ValueVTs.empty()) 628 return SDValue(); 629 630 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 631 632 // Assemble the legal parts into the final values. 633 SmallVector<SDValue, 4> Values(ValueVTs.size()); 634 SmallVector<SDValue, 8> Parts; 635 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 636 // Copy the legal parts from the registers. 637 EVT ValueVT = ValueVTs[Value]; 638 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 639 MVT RegisterVT = RegVTs[Value]; 640 641 Parts.resize(NumRegs); 642 for (unsigned i = 0; i != NumRegs; ++i) { 643 SDValue P; 644 if (!Flag) { 645 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 646 } else { 647 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 648 *Flag = P.getValue(2); 649 } 650 651 Chain = P.getValue(1); 652 Parts[i] = P; 653 654 // If the source register was virtual and if we know something about it, 655 // add an assert node. 656 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 657 !RegisterVT.isInteger() || RegisterVT.isVector()) 658 continue; 659 660 const FunctionLoweringInfo::LiveOutInfo *LOI = 661 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 662 if (!LOI) 663 continue; 664 665 unsigned RegSize = RegisterVT.getSizeInBits(); 666 unsigned NumSignBits = LOI->NumSignBits; 667 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 668 669 if (NumZeroBits == RegSize) { 670 // The current value is a zero. 671 // Explicitly express that as it would be easier for 672 // optimizations to kick in. 673 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 674 continue; 675 } 676 677 // FIXME: We capture more information than the dag can represent. For 678 // now, just use the tightest assertzext/assertsext possible. 679 bool isSExt = true; 680 EVT FromVT(MVT::Other); 681 if (NumSignBits == RegSize) { 682 isSExt = true; // ASSERT SEXT 1 683 FromVT = MVT::i1; 684 } else if (NumZeroBits >= RegSize - 1) { 685 isSExt = false; // ASSERT ZEXT 1 686 FromVT = MVT::i1; 687 } else if (NumSignBits > RegSize - 8) { 688 isSExt = true; // ASSERT SEXT 8 689 FromVT = MVT::i8; 690 } else if (NumZeroBits >= RegSize - 8) { 691 isSExt = false; // ASSERT ZEXT 8 692 FromVT = MVT::i8; 693 } else if (NumSignBits > RegSize - 16) { 694 isSExt = true; // ASSERT SEXT 16 695 FromVT = MVT::i16; 696 } else if (NumZeroBits >= RegSize - 16) { 697 isSExt = false; // ASSERT ZEXT 16 698 FromVT = MVT::i16; 699 } else if (NumSignBits > RegSize - 32) { 700 isSExt = true; // ASSERT SEXT 32 701 FromVT = MVT::i32; 702 } else if (NumZeroBits >= RegSize - 32) { 703 isSExt = false; // ASSERT ZEXT 32 704 FromVT = MVT::i32; 705 } else { 706 continue; 707 } 708 // Add an assertion node. 709 assert(FromVT != MVT::Other); 710 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 711 RegisterVT, P, DAG.getValueType(FromVT)); 712 } 713 714 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 715 NumRegs, RegisterVT, ValueVT, V); 716 Part += NumRegs; 717 Parts.clear(); 718 } 719 720 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 721 } 722 723 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 724 /// specified value into the registers specified by this object. This uses 725 /// Chain/Flag as the input and updates them for the output Chain/Flag. 726 /// If the Flag pointer is NULL, no flag is used. 727 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 728 SDValue &Chain, SDValue *Flag, const Value *V, 729 ISD::NodeType PreferredExtendType) const { 730 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 731 ISD::NodeType ExtendKind = PreferredExtendType; 732 733 // Get the list of the values's legal parts. 734 unsigned NumRegs = Regs.size(); 735 SmallVector<SDValue, 8> Parts(NumRegs); 736 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 737 EVT ValueVT = ValueVTs[Value]; 738 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 739 MVT RegisterVT = RegVTs[Value]; 740 741 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 742 ExtendKind = ISD::ZERO_EXTEND; 743 744 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 745 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 746 Part += NumParts; 747 } 748 749 // Copy the parts into the registers. 750 SmallVector<SDValue, 8> Chains(NumRegs); 751 for (unsigned i = 0; i != NumRegs; ++i) { 752 SDValue Part; 753 if (!Flag) { 754 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 755 } else { 756 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 757 *Flag = Part.getValue(1); 758 } 759 760 Chains[i] = Part.getValue(0); 761 } 762 763 if (NumRegs == 1 || Flag) 764 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 765 // flagged to it. That is the CopyToReg nodes and the user are considered 766 // a single scheduling unit. If we create a TokenFactor and return it as 767 // chain, then the TokenFactor is both a predecessor (operand) of the 768 // user as well as a successor (the TF operands are flagged to the user). 769 // c1, f1 = CopyToReg 770 // c2, f2 = CopyToReg 771 // c3 = TokenFactor c1, c2 772 // ... 773 // = op c3, ..., f2 774 Chain = Chains[NumRegs-1]; 775 else 776 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 777 } 778 779 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 780 /// operand list. This adds the code marker and includes the number of 781 /// values added into it. 782 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 783 unsigned MatchingIdx, SDLoc dl, 784 SelectionDAG &DAG, 785 std::vector<SDValue> &Ops) const { 786 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 787 788 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 789 if (HasMatching) 790 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 791 else if (!Regs.empty() && 792 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 793 // Put the register class of the virtual registers in the flag word. That 794 // way, later passes can recompute register class constraints for inline 795 // assembly as well as normal instructions. 796 // Don't do this for tied operands that can use the regclass information 797 // from the def. 798 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 799 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 800 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 801 } 802 803 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 804 Ops.push_back(Res); 805 806 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 807 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 808 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 809 MVT RegisterVT = RegVTs[Value]; 810 for (unsigned i = 0; i != NumRegs; ++i) { 811 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 812 unsigned TheReg = Regs[Reg++]; 813 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 814 815 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 816 // If we clobbered the stack pointer, MFI should know about it. 817 assert(DAG.getMachineFunction().getFrameInfo()-> 818 hasOpaqueSPAdjustment()); 819 } 820 } 821 } 822 } 823 824 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 825 const TargetLibraryInfo *li) { 826 AA = &aa; 827 GFI = gfi; 828 LibInfo = li; 829 DL = &DAG.getDataLayout(); 830 Context = DAG.getContext(); 831 LPadToCallSiteMap.clear(); 832 } 833 834 /// clear - Clear out the current SelectionDAG and the associated 835 /// state and prepare this SelectionDAGBuilder object to be used 836 /// for a new block. This doesn't clear out information about 837 /// additional blocks that are needed to complete switch lowering 838 /// or PHI node updating; that information is cleared out as it is 839 /// consumed. 840 void SelectionDAGBuilder::clear() { 841 NodeMap.clear(); 842 UnusedArgNodeMap.clear(); 843 PendingLoads.clear(); 844 PendingExports.clear(); 845 CurInst = nullptr; 846 HasTailCall = false; 847 SDNodeOrder = LowestSDNodeOrder; 848 StatepointLowering.clear(); 849 } 850 851 /// clearDanglingDebugInfo - Clear the dangling debug information 852 /// map. This function is separated from the clear so that debug 853 /// information that is dangling in a basic block can be properly 854 /// resolved in a different basic block. This allows the 855 /// SelectionDAG to resolve dangling debug information attached 856 /// to PHI nodes. 857 void SelectionDAGBuilder::clearDanglingDebugInfo() { 858 DanglingDebugInfoMap.clear(); 859 } 860 861 /// getRoot - Return the current virtual root of the Selection DAG, 862 /// flushing any PendingLoad items. This must be done before emitting 863 /// a store or any other node that may need to be ordered after any 864 /// prior load instructions. 865 /// 866 SDValue SelectionDAGBuilder::getRoot() { 867 if (PendingLoads.empty()) 868 return DAG.getRoot(); 869 870 if (PendingLoads.size() == 1) { 871 SDValue Root = PendingLoads[0]; 872 DAG.setRoot(Root); 873 PendingLoads.clear(); 874 return Root; 875 } 876 877 // Otherwise, we have to make a token factor node. 878 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 879 PendingLoads); 880 PendingLoads.clear(); 881 DAG.setRoot(Root); 882 return Root; 883 } 884 885 /// getControlRoot - Similar to getRoot, but instead of flushing all the 886 /// PendingLoad items, flush all the PendingExports items. It is necessary 887 /// to do this before emitting a terminator instruction. 888 /// 889 SDValue SelectionDAGBuilder::getControlRoot() { 890 SDValue Root = DAG.getRoot(); 891 892 if (PendingExports.empty()) 893 return Root; 894 895 // Turn all of the CopyToReg chains into one factored node. 896 if (Root.getOpcode() != ISD::EntryToken) { 897 unsigned i = 0, e = PendingExports.size(); 898 for (; i != e; ++i) { 899 assert(PendingExports[i].getNode()->getNumOperands() > 1); 900 if (PendingExports[i].getNode()->getOperand(0) == Root) 901 break; // Don't add the root if we already indirectly depend on it. 902 } 903 904 if (i == e) 905 PendingExports.push_back(Root); 906 } 907 908 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 909 PendingExports); 910 PendingExports.clear(); 911 DAG.setRoot(Root); 912 return Root; 913 } 914 915 void SelectionDAGBuilder::visit(const Instruction &I) { 916 // Set up outgoing PHI node register values before emitting the terminator. 917 if (isa<TerminatorInst>(&I)) 918 HandlePHINodesInSuccessorBlocks(I.getParent()); 919 920 ++SDNodeOrder; 921 922 CurInst = &I; 923 924 visit(I.getOpcode(), I); 925 926 if (!isa<TerminatorInst>(&I) && !HasTailCall && 927 !isStatepoint(&I)) // statepoints handle their exports internally 928 CopyToExportRegsIfNeeded(&I); 929 930 CurInst = nullptr; 931 } 932 933 void SelectionDAGBuilder::visitPHI(const PHINode &) { 934 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 935 } 936 937 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 938 // Note: this doesn't use InstVisitor, because it has to work with 939 // ConstantExpr's in addition to instructions. 940 switch (Opcode) { 941 default: llvm_unreachable("Unknown instruction type encountered!"); 942 // Build the switch statement using the Instruction.def file. 943 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 944 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 945 #include "llvm/IR/Instruction.def" 946 } 947 } 948 949 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 950 // generate the debug data structures now that we've seen its definition. 951 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 952 SDValue Val) { 953 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 954 if (DDI.getDI()) { 955 const DbgValueInst *DI = DDI.getDI(); 956 DebugLoc dl = DDI.getdl(); 957 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 958 DILocalVariable *Variable = DI->getVariable(); 959 DIExpression *Expr = DI->getExpression(); 960 assert(Variable->isValidLocationForIntrinsic(dl) && 961 "Expected inlined-at fields to agree"); 962 uint64_t Offset = DI->getOffset(); 963 SDDbgValue *SDV; 964 if (Val.getNode()) { 965 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false, 966 Val)) { 967 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 968 false, Offset, dl, DbgSDNodeOrder); 969 DAG.AddDbgValue(SDV, Val.getNode(), false); 970 } 971 } else 972 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 973 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 974 } 975 } 976 977 /// getCopyFromRegs - If there was virtual register allocated for the value V 978 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 979 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 980 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 981 SDValue Result; 982 983 if (It != FuncInfo.ValueMap.end()) { 984 unsigned InReg = It->second; 985 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 986 DAG.getDataLayout(), InReg, Ty); 987 SDValue Chain = DAG.getEntryNode(); 988 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 989 resolveDanglingDebugInfo(V, Result); 990 } 991 992 return Result; 993 } 994 995 /// getValue - Return an SDValue for the given Value. 996 SDValue SelectionDAGBuilder::getValue(const Value *V) { 997 // If we already have an SDValue for this value, use it. It's important 998 // to do this first, so that we don't create a CopyFromReg if we already 999 // have a regular SDValue. 1000 SDValue &N = NodeMap[V]; 1001 if (N.getNode()) return N; 1002 1003 // If there's a virtual register allocated and initialized for this 1004 // value, use it. 1005 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1006 return copyFromReg; 1007 1008 // Otherwise create a new SDValue and remember it. 1009 SDValue Val = getValueImpl(V); 1010 NodeMap[V] = Val; 1011 resolveDanglingDebugInfo(V, Val); 1012 return Val; 1013 } 1014 1015 // Return true if SDValue exists for the given Value 1016 bool SelectionDAGBuilder::findValue(const Value *V) const { 1017 return (NodeMap.find(V) != NodeMap.end()) || 1018 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1019 } 1020 1021 /// getNonRegisterValue - Return an SDValue for the given Value, but 1022 /// don't look in FuncInfo.ValueMap for a virtual register. 1023 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1024 // If we already have an SDValue for this value, use it. 1025 SDValue &N = NodeMap[V]; 1026 if (N.getNode()) { 1027 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1028 // Remove the debug location from the node as the node is about to be used 1029 // in a location which may differ from the original debug location. This 1030 // is relevant to Constant and ConstantFP nodes because they can appear 1031 // as constant expressions inside PHI nodes. 1032 N->setDebugLoc(DebugLoc()); 1033 } 1034 return N; 1035 } 1036 1037 // Otherwise create a new SDValue and remember it. 1038 SDValue Val = getValueImpl(V); 1039 NodeMap[V] = Val; 1040 resolveDanglingDebugInfo(V, Val); 1041 return Val; 1042 } 1043 1044 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1045 /// Create an SDValue for the given value. 1046 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1047 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1048 1049 if (const Constant *C = dyn_cast<Constant>(V)) { 1050 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1051 1052 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1053 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1054 1055 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1056 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1057 1058 if (isa<ConstantPointerNull>(C)) { 1059 unsigned AS = V->getType()->getPointerAddressSpace(); 1060 return DAG.getConstant(0, getCurSDLoc(), 1061 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1062 } 1063 1064 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1065 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1066 1067 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1068 return DAG.getUNDEF(VT); 1069 1070 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1071 visit(CE->getOpcode(), *CE); 1072 SDValue N1 = NodeMap[V]; 1073 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1074 return N1; 1075 } 1076 1077 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1078 SmallVector<SDValue, 4> Constants; 1079 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1080 OI != OE; ++OI) { 1081 SDNode *Val = getValue(*OI).getNode(); 1082 // If the operand is an empty aggregate, there are no values. 1083 if (!Val) continue; 1084 // Add each leaf value from the operand to the Constants list 1085 // to form a flattened list of all the values. 1086 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1087 Constants.push_back(SDValue(Val, i)); 1088 } 1089 1090 return DAG.getMergeValues(Constants, getCurSDLoc()); 1091 } 1092 1093 if (const ConstantDataSequential *CDS = 1094 dyn_cast<ConstantDataSequential>(C)) { 1095 SmallVector<SDValue, 4> Ops; 1096 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1097 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1098 // Add each leaf value from the operand to the Constants list 1099 // to form a flattened list of all the values. 1100 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1101 Ops.push_back(SDValue(Val, i)); 1102 } 1103 1104 if (isa<ArrayType>(CDS->getType())) 1105 return DAG.getMergeValues(Ops, getCurSDLoc()); 1106 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1107 VT, Ops); 1108 } 1109 1110 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1111 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1112 "Unknown struct or array constant!"); 1113 1114 SmallVector<EVT, 4> ValueVTs; 1115 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1116 unsigned NumElts = ValueVTs.size(); 1117 if (NumElts == 0) 1118 return SDValue(); // empty struct 1119 SmallVector<SDValue, 4> Constants(NumElts); 1120 for (unsigned i = 0; i != NumElts; ++i) { 1121 EVT EltVT = ValueVTs[i]; 1122 if (isa<UndefValue>(C)) 1123 Constants[i] = DAG.getUNDEF(EltVT); 1124 else if (EltVT.isFloatingPoint()) 1125 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1126 else 1127 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1128 } 1129 1130 return DAG.getMergeValues(Constants, getCurSDLoc()); 1131 } 1132 1133 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1134 return DAG.getBlockAddress(BA, VT); 1135 1136 VectorType *VecTy = cast<VectorType>(V->getType()); 1137 unsigned NumElements = VecTy->getNumElements(); 1138 1139 // Now that we know the number and type of the elements, get that number of 1140 // elements into the Ops array based on what kind of constant it is. 1141 SmallVector<SDValue, 16> Ops; 1142 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1143 for (unsigned i = 0; i != NumElements; ++i) 1144 Ops.push_back(getValue(CV->getOperand(i))); 1145 } else { 1146 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1147 EVT EltVT = 1148 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1149 1150 SDValue Op; 1151 if (EltVT.isFloatingPoint()) 1152 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1153 else 1154 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1155 Ops.assign(NumElements, Op); 1156 } 1157 1158 // Create a BUILD_VECTOR node. 1159 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1160 } 1161 1162 // If this is a static alloca, generate it as the frameindex instead of 1163 // computation. 1164 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1165 DenseMap<const AllocaInst*, int>::iterator SI = 1166 FuncInfo.StaticAllocaMap.find(AI); 1167 if (SI != FuncInfo.StaticAllocaMap.end()) 1168 return DAG.getFrameIndex(SI->second, 1169 TLI.getPointerTy(DAG.getDataLayout())); 1170 } 1171 1172 // If this is an instruction which fast-isel has deferred, select it now. 1173 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1174 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1175 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1176 Inst->getType()); 1177 SDValue Chain = DAG.getEntryNode(); 1178 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1179 } 1180 1181 llvm_unreachable("Can't get register for value!"); 1182 } 1183 1184 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1185 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1186 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1187 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1188 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1189 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1190 if (IsMSVCCXX || IsCoreCLR) 1191 CatchPadMBB->setIsEHFuncletEntry(); 1192 1193 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1194 } 1195 1196 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1197 // Update machine-CFG edge. 1198 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1199 FuncInfo.MBB->addSuccessor(TargetMBB); 1200 1201 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1202 bool IsSEH = isAsynchronousEHPersonality(Pers); 1203 if (IsSEH) { 1204 // If this is not a fall-through branch or optimizations are switched off, 1205 // emit the branch. 1206 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1207 TM.getOptLevel() == CodeGenOpt::None) 1208 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1209 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1210 return; 1211 } 1212 1213 // Figure out the funclet membership for the catchret's successor. 1214 // This will be used by the FuncletLayout pass to determine how to order the 1215 // BB's. 1216 // A 'catchret' returns to the outer scope's color. 1217 Value *ParentPad = I.getCatchSwitchParentPad(); 1218 const BasicBlock *SuccessorColor; 1219 if (isa<ConstantTokenNone>(ParentPad)) 1220 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1221 else 1222 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1223 assert(SuccessorColor && "No parent funclet for catchret!"); 1224 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1225 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1226 1227 // Create the terminator node. 1228 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1229 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1230 DAG.getBasicBlock(SuccessorColorMBB)); 1231 DAG.setRoot(Ret); 1232 } 1233 1234 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1235 // Don't emit any special code for the cleanuppad instruction. It just marks 1236 // the start of a funclet. 1237 FuncInfo.MBB->setIsEHFuncletEntry(); 1238 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1239 } 1240 1241 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1242 /// many places it could ultimately go. In the IR, we have a single unwind 1243 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1244 /// This function skips over imaginary basic blocks that hold catchswitch 1245 /// instructions, and finds all the "real" machine 1246 /// basic block destinations. As those destinations may not be successors of 1247 /// EHPadBB, here we also calculate the edge probability to those destinations. 1248 /// The passed-in Prob is the edge probability to EHPadBB. 1249 static void findUnwindDestinations( 1250 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1251 BranchProbability Prob, 1252 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1253 &UnwindDests) { 1254 EHPersonality Personality = 1255 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1256 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1257 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1258 1259 while (EHPadBB) { 1260 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1261 BasicBlock *NewEHPadBB = nullptr; 1262 if (isa<LandingPadInst>(Pad)) { 1263 // Stop on landingpads. They are not funclets. 1264 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1265 break; 1266 } else if (isa<CleanupPadInst>(Pad)) { 1267 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1268 // personalities. 1269 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1270 UnwindDests.back().first->setIsEHFuncletEntry(); 1271 break; 1272 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1273 // Add the catchpad handlers to the possible destinations. 1274 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1275 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1276 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1277 if (IsMSVCCXX || IsCoreCLR) 1278 UnwindDests.back().first->setIsEHFuncletEntry(); 1279 } 1280 NewEHPadBB = CatchSwitch->getUnwindDest(); 1281 } else { 1282 continue; 1283 } 1284 1285 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1286 if (BPI && NewEHPadBB) 1287 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1288 EHPadBB = NewEHPadBB; 1289 } 1290 } 1291 1292 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1293 // Update successor info. 1294 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1295 auto UnwindDest = I.getUnwindDest(); 1296 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1297 BranchProbability UnwindDestProb = 1298 (BPI && UnwindDest) 1299 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1300 : BranchProbability::getZero(); 1301 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1302 for (auto &UnwindDest : UnwindDests) { 1303 UnwindDest.first->setIsEHPad(); 1304 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1305 } 1306 FuncInfo.MBB->normalizeSuccProbs(); 1307 1308 // Create the terminator node. 1309 SDValue Ret = 1310 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1311 DAG.setRoot(Ret); 1312 } 1313 1314 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1315 report_fatal_error("visitCatchSwitch not yet implemented!"); 1316 } 1317 1318 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1319 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1320 auto &DL = DAG.getDataLayout(); 1321 SDValue Chain = getControlRoot(); 1322 SmallVector<ISD::OutputArg, 8> Outs; 1323 SmallVector<SDValue, 8> OutVals; 1324 1325 if (!FuncInfo.CanLowerReturn) { 1326 unsigned DemoteReg = FuncInfo.DemoteRegister; 1327 const Function *F = I.getParent()->getParent(); 1328 1329 // Emit a store of the return value through the virtual register. 1330 // Leave Outs empty so that LowerReturn won't try to load return 1331 // registers the usual way. 1332 SmallVector<EVT, 1> PtrValueVTs; 1333 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1334 PtrValueVTs); 1335 1336 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1337 DemoteReg, PtrValueVTs[0]); 1338 SDValue RetOp = getValue(I.getOperand(0)); 1339 1340 SmallVector<EVT, 4> ValueVTs; 1341 SmallVector<uint64_t, 4> Offsets; 1342 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1343 unsigned NumValues = ValueVTs.size(); 1344 1345 // An aggregate return value cannot wrap around the address space, so 1346 // offsets to its parts don't wrap either. 1347 SDNodeFlags Flags; 1348 Flags.setNoUnsignedWrap(true); 1349 1350 SmallVector<SDValue, 4> Chains(NumValues); 1351 for (unsigned i = 0; i != NumValues; ++i) { 1352 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1353 RetPtr.getValueType(), RetPtr, 1354 DAG.getIntPtrConstant(Offsets[i], 1355 getCurSDLoc()), 1356 &Flags); 1357 Chains[i] = 1358 DAG.getStore(Chain, getCurSDLoc(), 1359 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1360 // FIXME: better loc info would be nice. 1361 Add, MachinePointerInfo(), false, false, 0); 1362 } 1363 1364 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1365 MVT::Other, Chains); 1366 } else if (I.getNumOperands() != 0) { 1367 SmallVector<EVT, 4> ValueVTs; 1368 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1369 unsigned NumValues = ValueVTs.size(); 1370 if (NumValues) { 1371 SDValue RetOp = getValue(I.getOperand(0)); 1372 1373 const Function *F = I.getParent()->getParent(); 1374 1375 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1376 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1377 Attribute::SExt)) 1378 ExtendKind = ISD::SIGN_EXTEND; 1379 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1380 Attribute::ZExt)) 1381 ExtendKind = ISD::ZERO_EXTEND; 1382 1383 LLVMContext &Context = F->getContext(); 1384 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1385 Attribute::InReg); 1386 1387 for (unsigned j = 0; j != NumValues; ++j) { 1388 EVT VT = ValueVTs[j]; 1389 1390 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1391 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1392 1393 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1394 MVT PartVT = TLI.getRegisterType(Context, VT); 1395 SmallVector<SDValue, 4> Parts(NumParts); 1396 getCopyToParts(DAG, getCurSDLoc(), 1397 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1398 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1399 1400 // 'inreg' on function refers to return value 1401 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1402 if (RetInReg) 1403 Flags.setInReg(); 1404 1405 // Propagate extension type if any 1406 if (ExtendKind == ISD::SIGN_EXTEND) 1407 Flags.setSExt(); 1408 else if (ExtendKind == ISD::ZERO_EXTEND) 1409 Flags.setZExt(); 1410 1411 for (unsigned i = 0; i < NumParts; ++i) { 1412 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1413 VT, /*isfixed=*/true, 0, 0)); 1414 OutVals.push_back(Parts[i]); 1415 } 1416 } 1417 } 1418 } 1419 1420 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1421 CallingConv::ID CallConv = 1422 DAG.getMachineFunction().getFunction()->getCallingConv(); 1423 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1424 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1425 1426 // Verify that the target's LowerReturn behaved as expected. 1427 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1428 "LowerReturn didn't return a valid chain!"); 1429 1430 // Update the DAG with the new chain value resulting from return lowering. 1431 DAG.setRoot(Chain); 1432 } 1433 1434 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1435 /// created for it, emit nodes to copy the value into the virtual 1436 /// registers. 1437 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1438 // Skip empty types 1439 if (V->getType()->isEmptyTy()) 1440 return; 1441 1442 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1443 if (VMI != FuncInfo.ValueMap.end()) { 1444 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1445 CopyValueToVirtualRegister(V, VMI->second); 1446 } 1447 } 1448 1449 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1450 /// the current basic block, add it to ValueMap now so that we'll get a 1451 /// CopyTo/FromReg. 1452 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1453 // No need to export constants. 1454 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1455 1456 // Already exported? 1457 if (FuncInfo.isExportedInst(V)) return; 1458 1459 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1460 CopyValueToVirtualRegister(V, Reg); 1461 } 1462 1463 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1464 const BasicBlock *FromBB) { 1465 // The operands of the setcc have to be in this block. We don't know 1466 // how to export them from some other block. 1467 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1468 // Can export from current BB. 1469 if (VI->getParent() == FromBB) 1470 return true; 1471 1472 // Is already exported, noop. 1473 return FuncInfo.isExportedInst(V); 1474 } 1475 1476 // If this is an argument, we can export it if the BB is the entry block or 1477 // if it is already exported. 1478 if (isa<Argument>(V)) { 1479 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1480 return true; 1481 1482 // Otherwise, can only export this if it is already exported. 1483 return FuncInfo.isExportedInst(V); 1484 } 1485 1486 // Otherwise, constants can always be exported. 1487 return true; 1488 } 1489 1490 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1491 BranchProbability 1492 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1493 const MachineBasicBlock *Dst) const { 1494 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1495 const BasicBlock *SrcBB = Src->getBasicBlock(); 1496 const BasicBlock *DstBB = Dst->getBasicBlock(); 1497 if (!BPI) { 1498 // If BPI is not available, set the default probability as 1 / N, where N is 1499 // the number of successors. 1500 auto SuccSize = std::max<uint32_t>( 1501 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1502 return BranchProbability(1, SuccSize); 1503 } 1504 return BPI->getEdgeProbability(SrcBB, DstBB); 1505 } 1506 1507 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1508 MachineBasicBlock *Dst, 1509 BranchProbability Prob) { 1510 if (!FuncInfo.BPI) 1511 Src->addSuccessorWithoutProb(Dst); 1512 else { 1513 if (Prob.isUnknown()) 1514 Prob = getEdgeProbability(Src, Dst); 1515 Src->addSuccessor(Dst, Prob); 1516 } 1517 } 1518 1519 static bool InBlock(const Value *V, const BasicBlock *BB) { 1520 if (const Instruction *I = dyn_cast<Instruction>(V)) 1521 return I->getParent() == BB; 1522 return true; 1523 } 1524 1525 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1526 /// This function emits a branch and is used at the leaves of an OR or an 1527 /// AND operator tree. 1528 /// 1529 void 1530 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1531 MachineBasicBlock *TBB, 1532 MachineBasicBlock *FBB, 1533 MachineBasicBlock *CurBB, 1534 MachineBasicBlock *SwitchBB, 1535 BranchProbability TProb, 1536 BranchProbability FProb) { 1537 const BasicBlock *BB = CurBB->getBasicBlock(); 1538 1539 // If the leaf of the tree is a comparison, merge the condition into 1540 // the caseblock. 1541 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1542 // The operands of the cmp have to be in this block. We don't know 1543 // how to export them from some other block. If this is the first block 1544 // of the sequence, no exporting is needed. 1545 if (CurBB == SwitchBB || 1546 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1547 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1548 ISD::CondCode Condition; 1549 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1550 Condition = getICmpCondCode(IC->getPredicate()); 1551 } else { 1552 const FCmpInst *FC = cast<FCmpInst>(Cond); 1553 Condition = getFCmpCondCode(FC->getPredicate()); 1554 if (TM.Options.NoNaNsFPMath) 1555 Condition = getFCmpCodeWithoutNaN(Condition); 1556 } 1557 1558 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1559 TBB, FBB, CurBB, TProb, FProb); 1560 SwitchCases.push_back(CB); 1561 return; 1562 } 1563 } 1564 1565 // Create a CaseBlock record representing this branch. 1566 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1567 nullptr, TBB, FBB, CurBB, TProb, FProb); 1568 SwitchCases.push_back(CB); 1569 } 1570 1571 /// FindMergedConditions - If Cond is an expression like 1572 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1573 MachineBasicBlock *TBB, 1574 MachineBasicBlock *FBB, 1575 MachineBasicBlock *CurBB, 1576 MachineBasicBlock *SwitchBB, 1577 Instruction::BinaryOps Opc, 1578 BranchProbability TProb, 1579 BranchProbability FProb) { 1580 // If this node is not part of the or/and tree, emit it as a branch. 1581 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1582 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1583 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1584 BOp->getParent() != CurBB->getBasicBlock() || 1585 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1586 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1587 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1588 TProb, FProb); 1589 return; 1590 } 1591 1592 // Create TmpBB after CurBB. 1593 MachineFunction::iterator BBI(CurBB); 1594 MachineFunction &MF = DAG.getMachineFunction(); 1595 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1596 CurBB->getParent()->insert(++BBI, TmpBB); 1597 1598 if (Opc == Instruction::Or) { 1599 // Codegen X | Y as: 1600 // BB1: 1601 // jmp_if_X TBB 1602 // jmp TmpBB 1603 // TmpBB: 1604 // jmp_if_Y TBB 1605 // jmp FBB 1606 // 1607 1608 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1609 // The requirement is that 1610 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1611 // = TrueProb for original BB. 1612 // Assuming the original probabilities are A and B, one choice is to set 1613 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1614 // A/(1+B) and 2B/(1+B). This choice assumes that 1615 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1616 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1617 // TmpBB, but the math is more complicated. 1618 1619 auto NewTrueProb = TProb / 2; 1620 auto NewFalseProb = TProb / 2 + FProb; 1621 // Emit the LHS condition. 1622 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1623 NewTrueProb, NewFalseProb); 1624 1625 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1626 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1627 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1628 // Emit the RHS condition into TmpBB. 1629 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1630 Probs[0], Probs[1]); 1631 } else { 1632 assert(Opc == Instruction::And && "Unknown merge op!"); 1633 // Codegen X & Y as: 1634 // BB1: 1635 // jmp_if_X TmpBB 1636 // jmp FBB 1637 // TmpBB: 1638 // jmp_if_Y TBB 1639 // jmp FBB 1640 // 1641 // This requires creation of TmpBB after CurBB. 1642 1643 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1644 // The requirement is that 1645 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1646 // = FalseProb for original BB. 1647 // Assuming the original probabilities are A and B, one choice is to set 1648 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1649 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1650 // TrueProb for BB1 * FalseProb for TmpBB. 1651 1652 auto NewTrueProb = TProb + FProb / 2; 1653 auto NewFalseProb = FProb / 2; 1654 // Emit the LHS condition. 1655 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1656 NewTrueProb, NewFalseProb); 1657 1658 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1659 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1660 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1661 // Emit the RHS condition into TmpBB. 1662 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1663 Probs[0], Probs[1]); 1664 } 1665 } 1666 1667 /// If the set of cases should be emitted as a series of branches, return true. 1668 /// If we should emit this as a bunch of and/or'd together conditions, return 1669 /// false. 1670 bool 1671 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1672 if (Cases.size() != 2) return true; 1673 1674 // If this is two comparisons of the same values or'd or and'd together, they 1675 // will get folded into a single comparison, so don't emit two blocks. 1676 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1677 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1678 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1679 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1680 return false; 1681 } 1682 1683 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1684 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1685 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1686 Cases[0].CC == Cases[1].CC && 1687 isa<Constant>(Cases[0].CmpRHS) && 1688 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1689 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1690 return false; 1691 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1692 return false; 1693 } 1694 1695 return true; 1696 } 1697 1698 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1699 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1700 1701 // Update machine-CFG edges. 1702 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1703 1704 if (I.isUnconditional()) { 1705 // Update machine-CFG edges. 1706 BrMBB->addSuccessor(Succ0MBB); 1707 1708 // If this is not a fall-through branch or optimizations are switched off, 1709 // emit the branch. 1710 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1711 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1712 MVT::Other, getControlRoot(), 1713 DAG.getBasicBlock(Succ0MBB))); 1714 1715 return; 1716 } 1717 1718 // If this condition is one of the special cases we handle, do special stuff 1719 // now. 1720 const Value *CondVal = I.getCondition(); 1721 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1722 1723 // If this is a series of conditions that are or'd or and'd together, emit 1724 // this as a sequence of branches instead of setcc's with and/or operations. 1725 // As long as jumps are not expensive, this should improve performance. 1726 // For example, instead of something like: 1727 // cmp A, B 1728 // C = seteq 1729 // cmp D, E 1730 // F = setle 1731 // or C, F 1732 // jnz foo 1733 // Emit: 1734 // cmp A, B 1735 // je foo 1736 // cmp D, E 1737 // jle foo 1738 // 1739 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1740 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1741 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1742 !I.getMetadata(LLVMContext::MD_unpredictable) && 1743 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1744 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1745 Opcode, 1746 getEdgeProbability(BrMBB, Succ0MBB), 1747 getEdgeProbability(BrMBB, Succ1MBB)); 1748 // If the compares in later blocks need to use values not currently 1749 // exported from this block, export them now. This block should always 1750 // be the first entry. 1751 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1752 1753 // Allow some cases to be rejected. 1754 if (ShouldEmitAsBranches(SwitchCases)) { 1755 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1756 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1757 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1758 } 1759 1760 // Emit the branch for this block. 1761 visitSwitchCase(SwitchCases[0], BrMBB); 1762 SwitchCases.erase(SwitchCases.begin()); 1763 return; 1764 } 1765 1766 // Okay, we decided not to do this, remove any inserted MBB's and clear 1767 // SwitchCases. 1768 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1769 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1770 1771 SwitchCases.clear(); 1772 } 1773 } 1774 1775 // Create a CaseBlock record representing this branch. 1776 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1777 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1778 1779 // Use visitSwitchCase to actually insert the fast branch sequence for this 1780 // cond branch. 1781 visitSwitchCase(CB, BrMBB); 1782 } 1783 1784 /// visitSwitchCase - Emits the necessary code to represent a single node in 1785 /// the binary search tree resulting from lowering a switch instruction. 1786 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1787 MachineBasicBlock *SwitchBB) { 1788 SDValue Cond; 1789 SDValue CondLHS = getValue(CB.CmpLHS); 1790 SDLoc dl = getCurSDLoc(); 1791 1792 // Build the setcc now. 1793 if (!CB.CmpMHS) { 1794 // Fold "(X == true)" to X and "(X == false)" to !X to 1795 // handle common cases produced by branch lowering. 1796 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1797 CB.CC == ISD::SETEQ) 1798 Cond = CondLHS; 1799 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1800 CB.CC == ISD::SETEQ) { 1801 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1802 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1803 } else 1804 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1805 } else { 1806 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1807 1808 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1809 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1810 1811 SDValue CmpOp = getValue(CB.CmpMHS); 1812 EVT VT = CmpOp.getValueType(); 1813 1814 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1815 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1816 ISD::SETLE); 1817 } else { 1818 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1819 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1820 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1821 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1822 } 1823 } 1824 1825 // Update successor info 1826 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 1827 // TrueBB and FalseBB are always different unless the incoming IR is 1828 // degenerate. This only happens when running llc on weird IR. 1829 if (CB.TrueBB != CB.FalseBB) 1830 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 1831 SwitchBB->normalizeSuccProbs(); 1832 1833 // If the lhs block is the next block, invert the condition so that we can 1834 // fall through to the lhs instead of the rhs block. 1835 if (CB.TrueBB == NextBlock(SwitchBB)) { 1836 std::swap(CB.TrueBB, CB.FalseBB); 1837 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1838 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1839 } 1840 1841 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1842 MVT::Other, getControlRoot(), Cond, 1843 DAG.getBasicBlock(CB.TrueBB)); 1844 1845 // Insert the false branch. Do this even if it's a fall through branch, 1846 // this makes it easier to do DAG optimizations which require inverting 1847 // the branch condition. 1848 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1849 DAG.getBasicBlock(CB.FalseBB)); 1850 1851 DAG.setRoot(BrCond); 1852 } 1853 1854 /// visitJumpTable - Emit JumpTable node in the current MBB 1855 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1856 // Emit the code for the jump table 1857 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1858 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1859 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1860 JT.Reg, PTy); 1861 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1862 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1863 MVT::Other, Index.getValue(1), 1864 Table, Index); 1865 DAG.setRoot(BrJumpTable); 1866 } 1867 1868 /// visitJumpTableHeader - This function emits necessary code to produce index 1869 /// in the JumpTable from switch case. 1870 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1871 JumpTableHeader &JTH, 1872 MachineBasicBlock *SwitchBB) { 1873 SDLoc dl = getCurSDLoc(); 1874 1875 // Subtract the lowest switch case value from the value being switched on and 1876 // conditional branch to default mbb if the result is greater than the 1877 // difference between smallest and largest cases. 1878 SDValue SwitchOp = getValue(JTH.SValue); 1879 EVT VT = SwitchOp.getValueType(); 1880 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1881 DAG.getConstant(JTH.First, dl, VT)); 1882 1883 // The SDNode we just created, which holds the value being switched on minus 1884 // the smallest case value, needs to be copied to a virtual register so it 1885 // can be used as an index into the jump table in a subsequent basic block. 1886 // This value may be smaller or larger than the target's pointer type, and 1887 // therefore require extension or truncating. 1888 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1889 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1890 1891 unsigned JumpTableReg = 1892 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1893 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1894 JumpTableReg, SwitchOp); 1895 JT.Reg = JumpTableReg; 1896 1897 // Emit the range check for the jump table, and branch to the default block 1898 // for the switch statement if the value being switched on exceeds the largest 1899 // case in the switch. 1900 SDValue CMP = DAG.getSetCC( 1901 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1902 Sub.getValueType()), 1903 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1904 1905 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1906 MVT::Other, CopyTo, CMP, 1907 DAG.getBasicBlock(JT.Default)); 1908 1909 // Avoid emitting unnecessary branches to the next block. 1910 if (JT.MBB != NextBlock(SwitchBB)) 1911 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1912 DAG.getBasicBlock(JT.MBB)); 1913 1914 DAG.setRoot(BrCond); 1915 } 1916 1917 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1918 /// tail spliced into a stack protector check success bb. 1919 /// 1920 /// For a high level explanation of how this fits into the stack protector 1921 /// generation see the comment on the declaration of class 1922 /// StackProtectorDescriptor. 1923 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1924 MachineBasicBlock *ParentBB) { 1925 1926 // First create the loads to the guard/stack slot for the comparison. 1927 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1928 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1929 1930 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1931 int FI = MFI->getStackProtectorIndex(); 1932 1933 const Value *IRGuard = SPD.getGuard(); 1934 SDValue GuardPtr = getValue(IRGuard); 1935 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1936 1937 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1938 1939 SDValue Guard; 1940 SDLoc dl = getCurSDLoc(); 1941 1942 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1943 // guard value from the virtual register holding the value. Otherwise, emit a 1944 // volatile load to retrieve the stack guard value. 1945 unsigned GuardReg = SPD.getGuardReg(); 1946 1947 if (GuardReg && TLI.useLoadStackGuardNode()) 1948 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1949 PtrTy); 1950 else 1951 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1952 GuardPtr, MachinePointerInfo(IRGuard, 0), 1953 true, false, false, Align); 1954 1955 SDValue StackSlot = DAG.getLoad( 1956 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1957 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1958 false, false, Align); 1959 1960 // Perform the comparison via a subtract/getsetcc. 1961 EVT VT = Guard.getValueType(); 1962 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1963 1964 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1965 *DAG.getContext(), 1966 Sub.getValueType()), 1967 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1968 1969 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1970 // branch to failure MBB. 1971 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1972 MVT::Other, StackSlot.getOperand(0), 1973 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1974 // Otherwise branch to success MBB. 1975 SDValue Br = DAG.getNode(ISD::BR, dl, 1976 MVT::Other, BrCond, 1977 DAG.getBasicBlock(SPD.getSuccessMBB())); 1978 1979 DAG.setRoot(Br); 1980 } 1981 1982 /// Codegen the failure basic block for a stack protector check. 1983 /// 1984 /// A failure stack protector machine basic block consists simply of a call to 1985 /// __stack_chk_fail(). 1986 /// 1987 /// For a high level explanation of how this fits into the stack protector 1988 /// generation see the comment on the declaration of class 1989 /// StackProtectorDescriptor. 1990 void 1991 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1992 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1993 SDValue Chain = 1994 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1995 None, false, getCurSDLoc(), false, false).second; 1996 DAG.setRoot(Chain); 1997 } 1998 1999 /// visitBitTestHeader - This function emits necessary code to produce value 2000 /// suitable for "bit tests" 2001 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2002 MachineBasicBlock *SwitchBB) { 2003 SDLoc dl = getCurSDLoc(); 2004 2005 // Subtract the minimum value 2006 SDValue SwitchOp = getValue(B.SValue); 2007 EVT VT = SwitchOp.getValueType(); 2008 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2009 DAG.getConstant(B.First, dl, VT)); 2010 2011 // Check range 2012 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2013 SDValue RangeCmp = DAG.getSetCC( 2014 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2015 Sub.getValueType()), 2016 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2017 2018 // Determine the type of the test operands. 2019 bool UsePtrType = false; 2020 if (!TLI.isTypeLegal(VT)) 2021 UsePtrType = true; 2022 else { 2023 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2024 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2025 // Switch table case range are encoded into series of masks. 2026 // Just use pointer type, it's guaranteed to fit. 2027 UsePtrType = true; 2028 break; 2029 } 2030 } 2031 if (UsePtrType) { 2032 VT = TLI.getPointerTy(DAG.getDataLayout()); 2033 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2034 } 2035 2036 B.RegVT = VT.getSimpleVT(); 2037 B.Reg = FuncInfo.CreateReg(B.RegVT); 2038 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2039 2040 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2041 2042 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2043 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2044 SwitchBB->normalizeSuccProbs(); 2045 2046 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2047 MVT::Other, CopyTo, RangeCmp, 2048 DAG.getBasicBlock(B.Default)); 2049 2050 // Avoid emitting unnecessary branches to the next block. 2051 if (MBB != NextBlock(SwitchBB)) 2052 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2053 DAG.getBasicBlock(MBB)); 2054 2055 DAG.setRoot(BrRange); 2056 } 2057 2058 /// visitBitTestCase - this function produces one "bit test" 2059 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2060 MachineBasicBlock* NextMBB, 2061 BranchProbability BranchProbToNext, 2062 unsigned Reg, 2063 BitTestCase &B, 2064 MachineBasicBlock *SwitchBB) { 2065 SDLoc dl = getCurSDLoc(); 2066 MVT VT = BB.RegVT; 2067 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2068 SDValue Cmp; 2069 unsigned PopCount = countPopulation(B.Mask); 2070 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2071 if (PopCount == 1) { 2072 // Testing for a single bit; just compare the shift count with what it 2073 // would need to be to shift a 1 bit in that position. 2074 Cmp = DAG.getSetCC( 2075 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2076 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2077 ISD::SETEQ); 2078 } else if (PopCount == BB.Range) { 2079 // There is only one zero bit in the range, test for it directly. 2080 Cmp = DAG.getSetCC( 2081 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2082 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2083 ISD::SETNE); 2084 } else { 2085 // Make desired shift 2086 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2087 DAG.getConstant(1, dl, VT), ShiftOp); 2088 2089 // Emit bit tests and jumps 2090 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2091 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2092 Cmp = DAG.getSetCC( 2093 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2094 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2095 } 2096 2097 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2098 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2099 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2100 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2101 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2102 // one as they are relative probabilities (and thus work more like weights), 2103 // and hence we need to normalize them to let the sum of them become one. 2104 SwitchBB->normalizeSuccProbs(); 2105 2106 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2107 MVT::Other, getControlRoot(), 2108 Cmp, DAG.getBasicBlock(B.TargetBB)); 2109 2110 // Avoid emitting unnecessary branches to the next block. 2111 if (NextMBB != NextBlock(SwitchBB)) 2112 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2113 DAG.getBasicBlock(NextMBB)); 2114 2115 DAG.setRoot(BrAnd); 2116 } 2117 2118 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2119 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2120 2121 // Retrieve successors. Look through artificial IR level blocks like 2122 // catchswitch for successors. 2123 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2124 const BasicBlock *EHPadBB = I.getSuccessor(1); 2125 2126 const Value *Callee(I.getCalledValue()); 2127 const Function *Fn = dyn_cast<Function>(Callee); 2128 if (isa<InlineAsm>(Callee)) 2129 visitInlineAsm(&I); 2130 else if (Fn && Fn->isIntrinsic()) { 2131 switch (Fn->getIntrinsicID()) { 2132 default: 2133 llvm_unreachable("Cannot invoke this intrinsic"); 2134 case Intrinsic::donothing: 2135 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2136 break; 2137 case Intrinsic::experimental_patchpoint_void: 2138 case Intrinsic::experimental_patchpoint_i64: 2139 visitPatchpoint(&I, EHPadBB); 2140 break; 2141 case Intrinsic::experimental_gc_statepoint: 2142 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2143 break; 2144 } 2145 } else 2146 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2147 2148 // If the value of the invoke is used outside of its defining block, make it 2149 // available as a virtual register. 2150 // We already took care of the exported value for the statepoint instruction 2151 // during call to the LowerStatepoint. 2152 if (!isStatepoint(I)) { 2153 CopyToExportRegsIfNeeded(&I); 2154 } 2155 2156 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2157 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2158 BranchProbability EHPadBBProb = 2159 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2160 : BranchProbability::getZero(); 2161 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2162 2163 // Update successor info. 2164 addSuccessorWithProb(InvokeMBB, Return); 2165 for (auto &UnwindDest : UnwindDests) { 2166 UnwindDest.first->setIsEHPad(); 2167 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2168 } 2169 InvokeMBB->normalizeSuccProbs(); 2170 2171 // Drop into normal successor. 2172 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2173 MVT::Other, getControlRoot(), 2174 DAG.getBasicBlock(Return))); 2175 } 2176 2177 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2178 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2179 } 2180 2181 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2182 assert(FuncInfo.MBB->isEHPad() && 2183 "Call to landingpad not in landing pad!"); 2184 2185 MachineBasicBlock *MBB = FuncInfo.MBB; 2186 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2187 AddLandingPadInfo(LP, MMI, MBB); 2188 2189 // If there aren't registers to copy the values into (e.g., during SjLj 2190 // exceptions), then don't bother to create these DAG nodes. 2191 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2192 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2193 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2194 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2195 return; 2196 2197 // If landingpad's return type is token type, we don't create DAG nodes 2198 // for its exception pointer and selector value. The extraction of exception 2199 // pointer or selector value from token type landingpads is not currently 2200 // supported. 2201 if (LP.getType()->isTokenTy()) 2202 return; 2203 2204 SmallVector<EVT, 2> ValueVTs; 2205 SDLoc dl = getCurSDLoc(); 2206 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2207 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2208 2209 // Get the two live-in registers as SDValues. The physregs have already been 2210 // copied into virtual registers. 2211 SDValue Ops[2]; 2212 if (FuncInfo.ExceptionPointerVirtReg) { 2213 Ops[0] = DAG.getZExtOrTrunc( 2214 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2215 FuncInfo.ExceptionPointerVirtReg, 2216 TLI.getPointerTy(DAG.getDataLayout())), 2217 dl, ValueVTs[0]); 2218 } else { 2219 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2220 } 2221 Ops[1] = DAG.getZExtOrTrunc( 2222 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2223 FuncInfo.ExceptionSelectorVirtReg, 2224 TLI.getPointerTy(DAG.getDataLayout())), 2225 dl, ValueVTs[1]); 2226 2227 // Merge into one. 2228 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2229 DAG.getVTList(ValueVTs), Ops); 2230 setValue(&LP, Res); 2231 } 2232 2233 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2234 #ifndef NDEBUG 2235 for (const CaseCluster &CC : Clusters) 2236 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2237 #endif 2238 2239 std::sort(Clusters.begin(), Clusters.end(), 2240 [](const CaseCluster &a, const CaseCluster &b) { 2241 return a.Low->getValue().slt(b.Low->getValue()); 2242 }); 2243 2244 // Merge adjacent clusters with the same destination. 2245 const unsigned N = Clusters.size(); 2246 unsigned DstIndex = 0; 2247 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2248 CaseCluster &CC = Clusters[SrcIndex]; 2249 const ConstantInt *CaseVal = CC.Low; 2250 MachineBasicBlock *Succ = CC.MBB; 2251 2252 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2253 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2254 // If this case has the same successor and is a neighbour, merge it into 2255 // the previous cluster. 2256 Clusters[DstIndex - 1].High = CaseVal; 2257 Clusters[DstIndex - 1].Prob += CC.Prob; 2258 } else { 2259 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2260 sizeof(Clusters[SrcIndex])); 2261 } 2262 } 2263 Clusters.resize(DstIndex); 2264 } 2265 2266 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2267 MachineBasicBlock *Last) { 2268 // Update JTCases. 2269 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2270 if (JTCases[i].first.HeaderBB == First) 2271 JTCases[i].first.HeaderBB = Last; 2272 2273 // Update BitTestCases. 2274 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2275 if (BitTestCases[i].Parent == First) 2276 BitTestCases[i].Parent = Last; 2277 } 2278 2279 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2280 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2281 2282 // Update machine-CFG edges with unique successors. 2283 SmallSet<BasicBlock*, 32> Done; 2284 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2285 BasicBlock *BB = I.getSuccessor(i); 2286 bool Inserted = Done.insert(BB).second; 2287 if (!Inserted) 2288 continue; 2289 2290 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2291 addSuccessorWithProb(IndirectBrMBB, Succ); 2292 } 2293 IndirectBrMBB->normalizeSuccProbs(); 2294 2295 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2296 MVT::Other, getControlRoot(), 2297 getValue(I.getAddress()))); 2298 } 2299 2300 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2301 if (DAG.getTarget().Options.TrapUnreachable) 2302 DAG.setRoot( 2303 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2304 } 2305 2306 void SelectionDAGBuilder::visitFSub(const User &I) { 2307 // -0.0 - X --> fneg 2308 Type *Ty = I.getType(); 2309 if (isa<Constant>(I.getOperand(0)) && 2310 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2311 SDValue Op2 = getValue(I.getOperand(1)); 2312 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2313 Op2.getValueType(), Op2)); 2314 return; 2315 } 2316 2317 visitBinary(I, ISD::FSUB); 2318 } 2319 2320 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2321 SDValue Op1 = getValue(I.getOperand(0)); 2322 SDValue Op2 = getValue(I.getOperand(1)); 2323 2324 bool nuw = false; 2325 bool nsw = false; 2326 bool exact = false; 2327 FastMathFlags FMF; 2328 2329 if (const OverflowingBinaryOperator *OFBinOp = 2330 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2331 nuw = OFBinOp->hasNoUnsignedWrap(); 2332 nsw = OFBinOp->hasNoSignedWrap(); 2333 } 2334 if (const PossiblyExactOperator *ExactOp = 2335 dyn_cast<const PossiblyExactOperator>(&I)) 2336 exact = ExactOp->isExact(); 2337 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2338 FMF = FPOp->getFastMathFlags(); 2339 2340 SDNodeFlags Flags; 2341 Flags.setExact(exact); 2342 Flags.setNoSignedWrap(nsw); 2343 Flags.setNoUnsignedWrap(nuw); 2344 if (EnableFMFInDAG) { 2345 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2346 Flags.setNoInfs(FMF.noInfs()); 2347 Flags.setNoNaNs(FMF.noNaNs()); 2348 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2349 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2350 } 2351 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2352 Op1, Op2, &Flags); 2353 setValue(&I, BinNodeValue); 2354 } 2355 2356 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2357 SDValue Op1 = getValue(I.getOperand(0)); 2358 SDValue Op2 = getValue(I.getOperand(1)); 2359 2360 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2361 Op2.getValueType(), DAG.getDataLayout()); 2362 2363 // Coerce the shift amount to the right type if we can. 2364 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2365 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2366 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2367 SDLoc DL = getCurSDLoc(); 2368 2369 // If the operand is smaller than the shift count type, promote it. 2370 if (ShiftSize > Op2Size) 2371 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2372 2373 // If the operand is larger than the shift count type but the shift 2374 // count type has enough bits to represent any shift value, truncate 2375 // it now. This is a common case and it exposes the truncate to 2376 // optimization early. 2377 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2378 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2379 // Otherwise we'll need to temporarily settle for some other convenient 2380 // type. Type legalization will make adjustments once the shiftee is split. 2381 else 2382 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2383 } 2384 2385 bool nuw = false; 2386 bool nsw = false; 2387 bool exact = false; 2388 2389 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2390 2391 if (const OverflowingBinaryOperator *OFBinOp = 2392 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2393 nuw = OFBinOp->hasNoUnsignedWrap(); 2394 nsw = OFBinOp->hasNoSignedWrap(); 2395 } 2396 if (const PossiblyExactOperator *ExactOp = 2397 dyn_cast<const PossiblyExactOperator>(&I)) 2398 exact = ExactOp->isExact(); 2399 } 2400 SDNodeFlags Flags; 2401 Flags.setExact(exact); 2402 Flags.setNoSignedWrap(nsw); 2403 Flags.setNoUnsignedWrap(nuw); 2404 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2405 &Flags); 2406 setValue(&I, Res); 2407 } 2408 2409 void SelectionDAGBuilder::visitSDiv(const User &I) { 2410 SDValue Op1 = getValue(I.getOperand(0)); 2411 SDValue Op2 = getValue(I.getOperand(1)); 2412 2413 SDNodeFlags Flags; 2414 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2415 cast<PossiblyExactOperator>(&I)->isExact()); 2416 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2417 Op2, &Flags)); 2418 } 2419 2420 void SelectionDAGBuilder::visitICmp(const User &I) { 2421 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2422 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2423 predicate = IC->getPredicate(); 2424 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2425 predicate = ICmpInst::Predicate(IC->getPredicate()); 2426 SDValue Op1 = getValue(I.getOperand(0)); 2427 SDValue Op2 = getValue(I.getOperand(1)); 2428 ISD::CondCode Opcode = getICmpCondCode(predicate); 2429 2430 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2431 I.getType()); 2432 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2433 } 2434 2435 void SelectionDAGBuilder::visitFCmp(const User &I) { 2436 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2437 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2438 predicate = FC->getPredicate(); 2439 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2440 predicate = FCmpInst::Predicate(FC->getPredicate()); 2441 SDValue Op1 = getValue(I.getOperand(0)); 2442 SDValue Op2 = getValue(I.getOperand(1)); 2443 ISD::CondCode Condition = getFCmpCondCode(predicate); 2444 2445 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2446 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2447 // further optimization, but currently FMF is only applicable to binary nodes. 2448 if (TM.Options.NoNaNsFPMath) 2449 Condition = getFCmpCodeWithoutNaN(Condition); 2450 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2451 I.getType()); 2452 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2453 } 2454 2455 void SelectionDAGBuilder::visitSelect(const User &I) { 2456 SmallVector<EVT, 4> ValueVTs; 2457 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2458 ValueVTs); 2459 unsigned NumValues = ValueVTs.size(); 2460 if (NumValues == 0) return; 2461 2462 SmallVector<SDValue, 4> Values(NumValues); 2463 SDValue Cond = getValue(I.getOperand(0)); 2464 SDValue LHSVal = getValue(I.getOperand(1)); 2465 SDValue RHSVal = getValue(I.getOperand(2)); 2466 auto BaseOps = {Cond}; 2467 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2468 ISD::VSELECT : ISD::SELECT; 2469 2470 // Min/max matching is only viable if all output VTs are the same. 2471 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2472 EVT VT = ValueVTs[0]; 2473 LLVMContext &Ctx = *DAG.getContext(); 2474 auto &TLI = DAG.getTargetLoweringInfo(); 2475 2476 // We care about the legality of the operation after it has been type 2477 // legalized. 2478 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2479 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2480 VT = TLI.getTypeToTransformTo(Ctx, VT); 2481 2482 // If the vselect is legal, assume we want to leave this as a vector setcc + 2483 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2484 // min/max is legal on the scalar type. 2485 bool UseScalarMinMax = VT.isVector() && 2486 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2487 2488 Value *LHS, *RHS; 2489 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2490 ISD::NodeType Opc = ISD::DELETED_NODE; 2491 switch (SPR.Flavor) { 2492 case SPF_UMAX: Opc = ISD::UMAX; break; 2493 case SPF_UMIN: Opc = ISD::UMIN; break; 2494 case SPF_SMAX: Opc = ISD::SMAX; break; 2495 case SPF_SMIN: Opc = ISD::SMIN; break; 2496 case SPF_FMINNUM: 2497 switch (SPR.NaNBehavior) { 2498 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2499 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2500 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2501 case SPNB_RETURNS_ANY: { 2502 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2503 Opc = ISD::FMINNUM; 2504 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2505 Opc = ISD::FMINNAN; 2506 else if (UseScalarMinMax) 2507 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2508 ISD::FMINNUM : ISD::FMINNAN; 2509 break; 2510 } 2511 } 2512 break; 2513 case SPF_FMAXNUM: 2514 switch (SPR.NaNBehavior) { 2515 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2516 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2517 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2518 case SPNB_RETURNS_ANY: 2519 2520 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2521 Opc = ISD::FMAXNUM; 2522 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2523 Opc = ISD::FMAXNAN; 2524 else if (UseScalarMinMax) 2525 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2526 ISD::FMAXNUM : ISD::FMAXNAN; 2527 break; 2528 } 2529 break; 2530 default: break; 2531 } 2532 2533 if (Opc != ISD::DELETED_NODE && 2534 (TLI.isOperationLegalOrCustom(Opc, VT) || 2535 (UseScalarMinMax && 2536 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2537 // If the underlying comparison instruction is used by any other 2538 // instruction, the consumed instructions won't be destroyed, so it is 2539 // not profitable to convert to a min/max. 2540 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2541 OpCode = Opc; 2542 LHSVal = getValue(LHS); 2543 RHSVal = getValue(RHS); 2544 BaseOps = {}; 2545 } 2546 } 2547 2548 for (unsigned i = 0; i != NumValues; ++i) { 2549 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2550 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2551 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2552 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2553 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2554 Ops); 2555 } 2556 2557 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2558 DAG.getVTList(ValueVTs), Values)); 2559 } 2560 2561 void SelectionDAGBuilder::visitTrunc(const User &I) { 2562 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2563 SDValue N = getValue(I.getOperand(0)); 2564 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2565 I.getType()); 2566 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2567 } 2568 2569 void SelectionDAGBuilder::visitZExt(const User &I) { 2570 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2571 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2572 SDValue N = getValue(I.getOperand(0)); 2573 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2574 I.getType()); 2575 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2576 } 2577 2578 void SelectionDAGBuilder::visitSExt(const User &I) { 2579 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2580 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2581 SDValue N = getValue(I.getOperand(0)); 2582 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2583 I.getType()); 2584 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2585 } 2586 2587 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2588 // FPTrunc is never a no-op cast, no need to check 2589 SDValue N = getValue(I.getOperand(0)); 2590 SDLoc dl = getCurSDLoc(); 2591 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2592 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2593 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2594 DAG.getTargetConstant( 2595 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2596 } 2597 2598 void SelectionDAGBuilder::visitFPExt(const User &I) { 2599 // FPExt is never a no-op cast, no need to check 2600 SDValue N = getValue(I.getOperand(0)); 2601 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2602 I.getType()); 2603 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2604 } 2605 2606 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2607 // FPToUI is never a no-op cast, no need to check 2608 SDValue N = getValue(I.getOperand(0)); 2609 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2610 I.getType()); 2611 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2612 } 2613 2614 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2615 // FPToSI is never a no-op cast, no need to check 2616 SDValue N = getValue(I.getOperand(0)); 2617 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2618 I.getType()); 2619 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2620 } 2621 2622 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2623 // UIToFP is never a no-op cast, no need to check 2624 SDValue N = getValue(I.getOperand(0)); 2625 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2626 I.getType()); 2627 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2628 } 2629 2630 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2631 // SIToFP is never a no-op cast, no need to check 2632 SDValue N = getValue(I.getOperand(0)); 2633 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2634 I.getType()); 2635 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2636 } 2637 2638 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2639 // What to do depends on the size of the integer and the size of the pointer. 2640 // We can either truncate, zero extend, or no-op, accordingly. 2641 SDValue N = getValue(I.getOperand(0)); 2642 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2643 I.getType()); 2644 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2645 } 2646 2647 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2648 // What to do depends on the size of the integer and the size of the pointer. 2649 // We can either truncate, zero extend, or no-op, accordingly. 2650 SDValue N = getValue(I.getOperand(0)); 2651 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2652 I.getType()); 2653 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2654 } 2655 2656 void SelectionDAGBuilder::visitBitCast(const User &I) { 2657 SDValue N = getValue(I.getOperand(0)); 2658 SDLoc dl = getCurSDLoc(); 2659 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2660 I.getType()); 2661 2662 // BitCast assures us that source and destination are the same size so this is 2663 // either a BITCAST or a no-op. 2664 if (DestVT != N.getValueType()) 2665 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2666 DestVT, N)); // convert types. 2667 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2668 // might fold any kind of constant expression to an integer constant and that 2669 // is not what we are looking for. Only regcognize a bitcast of a genuine 2670 // constant integer as an opaque constant. 2671 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2672 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2673 /*isOpaque*/true)); 2674 else 2675 setValue(&I, N); // noop cast. 2676 } 2677 2678 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2679 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2680 const Value *SV = I.getOperand(0); 2681 SDValue N = getValue(SV); 2682 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2683 2684 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2685 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2686 2687 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2688 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2689 2690 setValue(&I, N); 2691 } 2692 2693 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2694 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2695 SDValue InVec = getValue(I.getOperand(0)); 2696 SDValue InVal = getValue(I.getOperand(1)); 2697 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2698 TLI.getVectorIdxTy(DAG.getDataLayout())); 2699 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2700 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2701 InVec, InVal, InIdx)); 2702 } 2703 2704 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2705 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2706 SDValue InVec = getValue(I.getOperand(0)); 2707 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2708 TLI.getVectorIdxTy(DAG.getDataLayout())); 2709 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2710 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2711 InVec, InIdx)); 2712 } 2713 2714 // Utility for visitShuffleVector - Return true if every element in Mask, 2715 // beginning from position Pos and ending in Pos+Size, falls within the 2716 // specified sequential range [L, L+Pos). or is undef. 2717 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2718 unsigned Pos, unsigned Size, int Low) { 2719 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2720 if (Mask[i] >= 0 && Mask[i] != Low) 2721 return false; 2722 return true; 2723 } 2724 2725 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2726 SDValue Src1 = getValue(I.getOperand(0)); 2727 SDValue Src2 = getValue(I.getOperand(1)); 2728 2729 SmallVector<int, 8> Mask; 2730 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2731 unsigned MaskNumElts = Mask.size(); 2732 2733 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2734 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2735 EVT SrcVT = Src1.getValueType(); 2736 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2737 2738 if (SrcNumElts == MaskNumElts) { 2739 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2740 &Mask[0])); 2741 return; 2742 } 2743 2744 // Normalize the shuffle vector since mask and vector length don't match. 2745 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2746 // Mask is longer than the source vectors and is a multiple of the source 2747 // vectors. We can use concatenate vector to make the mask and vectors 2748 // lengths match. 2749 if (SrcNumElts*2 == MaskNumElts) { 2750 // First check for Src1 in low and Src2 in high 2751 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2752 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2753 // The shuffle is concatenating two vectors together. 2754 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2755 VT, Src1, Src2)); 2756 return; 2757 } 2758 // Then check for Src2 in low and Src1 in high 2759 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2760 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2761 // The shuffle is concatenating two vectors together. 2762 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2763 VT, Src2, Src1)); 2764 return; 2765 } 2766 } 2767 2768 // Pad both vectors with undefs to make them the same length as the mask. 2769 unsigned NumConcat = MaskNumElts / SrcNumElts; 2770 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2771 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2772 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2773 2774 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2775 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2776 MOps1[0] = Src1; 2777 MOps2[0] = Src2; 2778 2779 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2780 getCurSDLoc(), VT, MOps1); 2781 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2782 getCurSDLoc(), VT, MOps2); 2783 2784 // Readjust mask for new input vector length. 2785 SmallVector<int, 8> MappedOps; 2786 for (unsigned i = 0; i != MaskNumElts; ++i) { 2787 int Idx = Mask[i]; 2788 if (Idx >= (int)SrcNumElts) 2789 Idx -= SrcNumElts - MaskNumElts; 2790 MappedOps.push_back(Idx); 2791 } 2792 2793 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2794 &MappedOps[0])); 2795 return; 2796 } 2797 2798 if (SrcNumElts > MaskNumElts) { 2799 // Analyze the access pattern of the vector to see if we can extract 2800 // two subvectors and do the shuffle. The analysis is done by calculating 2801 // the range of elements the mask access on both vectors. 2802 int MinRange[2] = { static_cast<int>(SrcNumElts), 2803 static_cast<int>(SrcNumElts)}; 2804 int MaxRange[2] = {-1, -1}; 2805 2806 for (unsigned i = 0; i != MaskNumElts; ++i) { 2807 int Idx = Mask[i]; 2808 unsigned Input = 0; 2809 if (Idx < 0) 2810 continue; 2811 2812 if (Idx >= (int)SrcNumElts) { 2813 Input = 1; 2814 Idx -= SrcNumElts; 2815 } 2816 if (Idx > MaxRange[Input]) 2817 MaxRange[Input] = Idx; 2818 if (Idx < MinRange[Input]) 2819 MinRange[Input] = Idx; 2820 } 2821 2822 // Check if the access is smaller than the vector size and can we find 2823 // a reasonable extract index. 2824 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2825 // Extract. 2826 int StartIdx[2]; // StartIdx to extract from 2827 for (unsigned Input = 0; Input < 2; ++Input) { 2828 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2829 RangeUse[Input] = 0; // Unused 2830 StartIdx[Input] = 0; 2831 continue; 2832 } 2833 2834 // Find a good start index that is a multiple of the mask length. Then 2835 // see if the rest of the elements are in range. 2836 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2837 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2838 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2839 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2840 } 2841 2842 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2843 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2844 return; 2845 } 2846 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2847 // Extract appropriate subvector and generate a vector shuffle 2848 for (unsigned Input = 0; Input < 2; ++Input) { 2849 SDValue &Src = Input == 0 ? Src1 : Src2; 2850 if (RangeUse[Input] == 0) 2851 Src = DAG.getUNDEF(VT); 2852 else { 2853 SDLoc dl = getCurSDLoc(); 2854 Src = DAG.getNode( 2855 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2856 DAG.getConstant(StartIdx[Input], dl, 2857 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2858 } 2859 } 2860 2861 // Calculate new mask. 2862 SmallVector<int, 8> MappedOps; 2863 for (unsigned i = 0; i != MaskNumElts; ++i) { 2864 int Idx = Mask[i]; 2865 if (Idx >= 0) { 2866 if (Idx < (int)SrcNumElts) 2867 Idx -= StartIdx[0]; 2868 else 2869 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2870 } 2871 MappedOps.push_back(Idx); 2872 } 2873 2874 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2875 &MappedOps[0])); 2876 return; 2877 } 2878 } 2879 2880 // We can't use either concat vectors or extract subvectors so fall back to 2881 // replacing the shuffle with extract and build vector. 2882 // to insert and build vector. 2883 EVT EltVT = VT.getVectorElementType(); 2884 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2885 SDLoc dl = getCurSDLoc(); 2886 SmallVector<SDValue,8> Ops; 2887 for (unsigned i = 0; i != MaskNumElts; ++i) { 2888 int Idx = Mask[i]; 2889 SDValue Res; 2890 2891 if (Idx < 0) { 2892 Res = DAG.getUNDEF(EltVT); 2893 } else { 2894 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2895 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2896 2897 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2898 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2899 } 2900 2901 Ops.push_back(Res); 2902 } 2903 2904 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2905 } 2906 2907 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2908 const Value *Op0 = I.getOperand(0); 2909 const Value *Op1 = I.getOperand(1); 2910 Type *AggTy = I.getType(); 2911 Type *ValTy = Op1->getType(); 2912 bool IntoUndef = isa<UndefValue>(Op0); 2913 bool FromUndef = isa<UndefValue>(Op1); 2914 2915 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2916 2917 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2918 SmallVector<EVT, 4> AggValueVTs; 2919 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2920 SmallVector<EVT, 4> ValValueVTs; 2921 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2922 2923 unsigned NumAggValues = AggValueVTs.size(); 2924 unsigned NumValValues = ValValueVTs.size(); 2925 SmallVector<SDValue, 4> Values(NumAggValues); 2926 2927 // Ignore an insertvalue that produces an empty object 2928 if (!NumAggValues) { 2929 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2930 return; 2931 } 2932 2933 SDValue Agg = getValue(Op0); 2934 unsigned i = 0; 2935 // Copy the beginning value(s) from the original aggregate. 2936 for (; i != LinearIndex; ++i) 2937 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2938 SDValue(Agg.getNode(), Agg.getResNo() + i); 2939 // Copy values from the inserted value(s). 2940 if (NumValValues) { 2941 SDValue Val = getValue(Op1); 2942 for (; i != LinearIndex + NumValValues; ++i) 2943 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2944 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2945 } 2946 // Copy remaining value(s) from the original aggregate. 2947 for (; i != NumAggValues; ++i) 2948 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2949 SDValue(Agg.getNode(), Agg.getResNo() + i); 2950 2951 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2952 DAG.getVTList(AggValueVTs), Values)); 2953 } 2954 2955 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2956 const Value *Op0 = I.getOperand(0); 2957 Type *AggTy = Op0->getType(); 2958 Type *ValTy = I.getType(); 2959 bool OutOfUndef = isa<UndefValue>(Op0); 2960 2961 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2962 2963 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2964 SmallVector<EVT, 4> ValValueVTs; 2965 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2966 2967 unsigned NumValValues = ValValueVTs.size(); 2968 2969 // Ignore a extractvalue that produces an empty object 2970 if (!NumValValues) { 2971 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2972 return; 2973 } 2974 2975 SmallVector<SDValue, 4> Values(NumValValues); 2976 2977 SDValue Agg = getValue(Op0); 2978 // Copy out the selected value(s). 2979 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2980 Values[i - LinearIndex] = 2981 OutOfUndef ? 2982 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2983 SDValue(Agg.getNode(), Agg.getResNo() + i); 2984 2985 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2986 DAG.getVTList(ValValueVTs), Values)); 2987 } 2988 2989 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2990 Value *Op0 = I.getOperand(0); 2991 // Note that the pointer operand may be a vector of pointers. Take the scalar 2992 // element which holds a pointer. 2993 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 2994 SDValue N = getValue(Op0); 2995 SDLoc dl = getCurSDLoc(); 2996 2997 // Normalize Vector GEP - all scalar operands should be converted to the 2998 // splat vector. 2999 unsigned VectorWidth = I.getType()->isVectorTy() ? 3000 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3001 3002 if (VectorWidth && !N.getValueType().isVector()) { 3003 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 3004 SmallVector<SDValue, 16> Ops(VectorWidth, N); 3005 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3006 } 3007 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3008 GTI != E; ++GTI) { 3009 const Value *Idx = GTI.getOperand(); 3010 if (StructType *StTy = dyn_cast<StructType>(*GTI)) { 3011 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3012 if (Field) { 3013 // N = N + Offset 3014 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3015 3016 // In an inbouds GEP with an offset that is nonnegative even when 3017 // interpreted as signed, assume there is no unsigned overflow. 3018 SDNodeFlags Flags; 3019 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3020 Flags.setNoUnsignedWrap(true); 3021 3022 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3023 DAG.getConstant(Offset, dl, N.getValueType()), &Flags); 3024 } 3025 } else { 3026 MVT PtrTy = 3027 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3028 unsigned PtrSize = PtrTy.getSizeInBits(); 3029 APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3030 3031 // If this is a scalar constant or a splat vector of constants, 3032 // handle it quickly. 3033 const auto *CI = dyn_cast<ConstantInt>(Idx); 3034 if (!CI && isa<ConstantDataVector>(Idx) && 3035 cast<ConstantDataVector>(Idx)->getSplatValue()) 3036 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3037 3038 if (CI) { 3039 if (CI->isZero()) 3040 continue; 3041 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3042 SDValue OffsVal = VectorWidth ? 3043 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 3044 DAG.getConstant(Offs, dl, PtrTy); 3045 3046 // In an inbouds GEP with an offset that is nonnegative even when 3047 // interpreted as signed, assume there is no unsigned overflow. 3048 SDNodeFlags Flags; 3049 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3050 Flags.setNoUnsignedWrap(true); 3051 3052 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags); 3053 continue; 3054 } 3055 3056 // N = N + Idx * ElementSize; 3057 SDValue IdxN = getValue(Idx); 3058 3059 if (!IdxN.getValueType().isVector() && VectorWidth) { 3060 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3061 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 3062 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3063 } 3064 // If the index is smaller or larger than intptr_t, truncate or extend 3065 // it. 3066 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3067 3068 // If this is a multiply by a power of two, turn it into a shl 3069 // immediately. This is a very common case. 3070 if (ElementSize != 1) { 3071 if (ElementSize.isPowerOf2()) { 3072 unsigned Amt = ElementSize.logBase2(); 3073 IdxN = DAG.getNode(ISD::SHL, dl, 3074 N.getValueType(), IdxN, 3075 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3076 } else { 3077 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3078 IdxN = DAG.getNode(ISD::MUL, dl, 3079 N.getValueType(), IdxN, Scale); 3080 } 3081 } 3082 3083 N = DAG.getNode(ISD::ADD, dl, 3084 N.getValueType(), N, IdxN); 3085 } 3086 } 3087 3088 setValue(&I, N); 3089 } 3090 3091 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3092 // If this is a fixed sized alloca in the entry block of the function, 3093 // allocate it statically on the stack. 3094 if (FuncInfo.StaticAllocaMap.count(&I)) 3095 return; // getValue will auto-populate this. 3096 3097 SDLoc dl = getCurSDLoc(); 3098 Type *Ty = I.getAllocatedType(); 3099 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3100 auto &DL = DAG.getDataLayout(); 3101 uint64_t TySize = DL.getTypeAllocSize(Ty); 3102 unsigned Align = 3103 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3104 3105 SDValue AllocSize = getValue(I.getArraySize()); 3106 3107 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3108 if (AllocSize.getValueType() != IntPtr) 3109 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3110 3111 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3112 AllocSize, 3113 DAG.getConstant(TySize, dl, IntPtr)); 3114 3115 // Handle alignment. If the requested alignment is less than or equal to 3116 // the stack alignment, ignore it. If the size is greater than or equal to 3117 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3118 unsigned StackAlign = 3119 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3120 if (Align <= StackAlign) 3121 Align = 0; 3122 3123 // Round the size of the allocation up to the stack alignment size 3124 // by add SA-1 to the size. This doesn't overflow because we're computing 3125 // an address inside an alloca. 3126 SDNodeFlags Flags; 3127 Flags.setNoUnsignedWrap(true); 3128 AllocSize = DAG.getNode(ISD::ADD, dl, 3129 AllocSize.getValueType(), AllocSize, 3130 DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags); 3131 3132 // Mask out the low bits for alignment purposes. 3133 AllocSize = DAG.getNode(ISD::AND, dl, 3134 AllocSize.getValueType(), AllocSize, 3135 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3136 dl)); 3137 3138 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3139 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3140 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3141 setValue(&I, DSA); 3142 DAG.setRoot(DSA.getValue(1)); 3143 3144 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3145 } 3146 3147 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3148 if (I.isAtomic()) 3149 return visitAtomicLoad(I); 3150 3151 const Value *SV = I.getOperand(0); 3152 SDValue Ptr = getValue(SV); 3153 3154 Type *Ty = I.getType(); 3155 3156 bool isVolatile = I.isVolatile(); 3157 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3158 3159 // The IR notion of invariant_load only guarantees that all *non-faulting* 3160 // invariant loads result in the same value. The MI notion of invariant load 3161 // guarantees that the load can be legally moved to any location within its 3162 // containing function. The MI notion of invariant_load is stronger than the 3163 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3164 // with a guarantee that the location being loaded from is dereferenceable 3165 // throughout the function's lifetime. 3166 3167 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3168 isDereferenceablePointer(SV, DAG.getDataLayout()); 3169 unsigned Alignment = I.getAlignment(); 3170 3171 AAMDNodes AAInfo; 3172 I.getAAMetadata(AAInfo); 3173 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3174 3175 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3176 SmallVector<EVT, 4> ValueVTs; 3177 SmallVector<uint64_t, 4> Offsets; 3178 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3179 unsigned NumValues = ValueVTs.size(); 3180 if (NumValues == 0) 3181 return; 3182 3183 SDValue Root; 3184 bool ConstantMemory = false; 3185 if (isVolatile || NumValues > MaxParallelChains) 3186 // Serialize volatile loads with other side effects. 3187 Root = getRoot(); 3188 else if (AA->pointsToConstantMemory(MemoryLocation( 3189 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3190 // Do not serialize (non-volatile) loads of constant memory with anything. 3191 Root = DAG.getEntryNode(); 3192 ConstantMemory = true; 3193 } else { 3194 // Do not serialize non-volatile loads against each other. 3195 Root = DAG.getRoot(); 3196 } 3197 3198 SDLoc dl = getCurSDLoc(); 3199 3200 if (isVolatile) 3201 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3202 3203 // An aggregate load cannot wrap around the address space, so offsets to its 3204 // parts don't wrap either. 3205 SDNodeFlags Flags; 3206 Flags.setNoUnsignedWrap(true); 3207 3208 SmallVector<SDValue, 4> Values(NumValues); 3209 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3210 EVT PtrVT = Ptr.getValueType(); 3211 unsigned ChainI = 0; 3212 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3213 // Serializing loads here may result in excessive register pressure, and 3214 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3215 // could recover a bit by hoisting nodes upward in the chain by recognizing 3216 // they are side-effect free or do not alias. The optimizer should really 3217 // avoid this case by converting large object/array copies to llvm.memcpy 3218 // (MaxParallelChains should always remain as failsafe). 3219 if (ChainI == MaxParallelChains) { 3220 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3221 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3222 makeArrayRef(Chains.data(), ChainI)); 3223 Root = Chain; 3224 ChainI = 0; 3225 } 3226 SDValue A = DAG.getNode(ISD::ADD, dl, 3227 PtrVT, Ptr, 3228 DAG.getConstant(Offsets[i], dl, PtrVT), 3229 &Flags); 3230 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3231 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3232 isNonTemporal, isInvariant, Alignment, AAInfo, 3233 Ranges); 3234 3235 Values[i] = L; 3236 Chains[ChainI] = L.getValue(1); 3237 } 3238 3239 if (!ConstantMemory) { 3240 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3241 makeArrayRef(Chains.data(), ChainI)); 3242 if (isVolatile) 3243 DAG.setRoot(Chain); 3244 else 3245 PendingLoads.push_back(Chain); 3246 } 3247 3248 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3249 DAG.getVTList(ValueVTs), Values)); 3250 } 3251 3252 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3253 if (I.isAtomic()) 3254 return visitAtomicStore(I); 3255 3256 const Value *SrcV = I.getOperand(0); 3257 const Value *PtrV = I.getOperand(1); 3258 3259 SmallVector<EVT, 4> ValueVTs; 3260 SmallVector<uint64_t, 4> Offsets; 3261 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3262 SrcV->getType(), ValueVTs, &Offsets); 3263 unsigned NumValues = ValueVTs.size(); 3264 if (NumValues == 0) 3265 return; 3266 3267 // Get the lowered operands. Note that we do this after 3268 // checking if NumResults is zero, because with zero results 3269 // the operands won't have values in the map. 3270 SDValue Src = getValue(SrcV); 3271 SDValue Ptr = getValue(PtrV); 3272 3273 SDValue Root = getRoot(); 3274 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3275 EVT PtrVT = Ptr.getValueType(); 3276 bool isVolatile = I.isVolatile(); 3277 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3278 unsigned Alignment = I.getAlignment(); 3279 SDLoc dl = getCurSDLoc(); 3280 3281 AAMDNodes AAInfo; 3282 I.getAAMetadata(AAInfo); 3283 3284 // An aggregate load cannot wrap around the address space, so offsets to its 3285 // parts don't wrap either. 3286 SDNodeFlags Flags; 3287 Flags.setNoUnsignedWrap(true); 3288 3289 unsigned ChainI = 0; 3290 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3291 // See visitLoad comments. 3292 if (ChainI == MaxParallelChains) { 3293 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3294 makeArrayRef(Chains.data(), ChainI)); 3295 Root = Chain; 3296 ChainI = 0; 3297 } 3298 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3299 DAG.getConstant(Offsets[i], dl, PtrVT), &Flags); 3300 SDValue St = DAG.getStore(Root, dl, 3301 SDValue(Src.getNode(), Src.getResNo() + i), 3302 Add, MachinePointerInfo(PtrV, Offsets[i]), 3303 isVolatile, isNonTemporal, Alignment, AAInfo); 3304 Chains[ChainI] = St; 3305 } 3306 3307 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3308 makeArrayRef(Chains.data(), ChainI)); 3309 DAG.setRoot(StoreNode); 3310 } 3311 3312 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3313 SDLoc sdl = getCurSDLoc(); 3314 3315 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3316 Value *PtrOperand = I.getArgOperand(1); 3317 SDValue Ptr = getValue(PtrOperand); 3318 SDValue Src0 = getValue(I.getArgOperand(0)); 3319 SDValue Mask = getValue(I.getArgOperand(3)); 3320 EVT VT = Src0.getValueType(); 3321 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3322 if (!Alignment) 3323 Alignment = DAG.getEVTAlignment(VT); 3324 3325 AAMDNodes AAInfo; 3326 I.getAAMetadata(AAInfo); 3327 3328 MachineMemOperand *MMO = 3329 DAG.getMachineFunction(). 3330 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3331 MachineMemOperand::MOStore, VT.getStoreSize(), 3332 Alignment, AAInfo); 3333 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3334 MMO, false); 3335 DAG.setRoot(StoreNode); 3336 setValue(&I, StoreNode); 3337 } 3338 3339 // Get a uniform base for the Gather/Scatter intrinsic. 3340 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3341 // We try to represent it as a base pointer + vector of indices. 3342 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3343 // The first operand of the GEP may be a single pointer or a vector of pointers 3344 // Example: 3345 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3346 // or 3347 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3348 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3349 // 3350 // When the first GEP operand is a single pointer - it is the uniform base we 3351 // are looking for. If first operand of the GEP is a splat vector - we 3352 // extract the spalt value and use it as a uniform base. 3353 // In all other cases the function returns 'false'. 3354 // 3355 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index, 3356 SelectionDAGBuilder* SDB) { 3357 3358 SelectionDAG& DAG = SDB->DAG; 3359 LLVMContext &Context = *DAG.getContext(); 3360 3361 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3362 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3363 if (!GEP || GEP->getNumOperands() > 2) 3364 return false; 3365 3366 const Value *GEPPtr = GEP->getPointerOperand(); 3367 if (!GEPPtr->getType()->isVectorTy()) 3368 Ptr = GEPPtr; 3369 else if (!(Ptr = getSplatValue(GEPPtr))) 3370 return false; 3371 3372 Value *IndexVal = GEP->getOperand(1); 3373 3374 // The operands of the GEP may be defined in another basic block. 3375 // In this case we'll not find nodes for the operands. 3376 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3377 return false; 3378 3379 Base = SDB->getValue(Ptr); 3380 Index = SDB->getValue(IndexVal); 3381 3382 // Suppress sign extension. 3383 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3384 if (SDB->findValue(Sext->getOperand(0))) { 3385 IndexVal = Sext->getOperand(0); 3386 Index = SDB->getValue(IndexVal); 3387 } 3388 } 3389 if (!Index.getValueType().isVector()) { 3390 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3391 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3392 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3393 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3394 } 3395 return true; 3396 } 3397 3398 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3399 SDLoc sdl = getCurSDLoc(); 3400 3401 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3402 const Value *Ptr = I.getArgOperand(1); 3403 SDValue Src0 = getValue(I.getArgOperand(0)); 3404 SDValue Mask = getValue(I.getArgOperand(3)); 3405 EVT VT = Src0.getValueType(); 3406 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3407 if (!Alignment) 3408 Alignment = DAG.getEVTAlignment(VT); 3409 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3410 3411 AAMDNodes AAInfo; 3412 I.getAAMetadata(AAInfo); 3413 3414 SDValue Base; 3415 SDValue Index; 3416 const Value *BasePtr = Ptr; 3417 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3418 3419 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3420 MachineMemOperand *MMO = DAG.getMachineFunction(). 3421 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3422 MachineMemOperand::MOStore, VT.getStoreSize(), 3423 Alignment, AAInfo); 3424 if (!UniformBase) { 3425 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3426 Index = getValue(Ptr); 3427 } 3428 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3429 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3430 Ops, MMO); 3431 DAG.setRoot(Scatter); 3432 setValue(&I, Scatter); 3433 } 3434 3435 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3436 SDLoc sdl = getCurSDLoc(); 3437 3438 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3439 Value *PtrOperand = I.getArgOperand(0); 3440 SDValue Ptr = getValue(PtrOperand); 3441 SDValue Src0 = getValue(I.getArgOperand(3)); 3442 SDValue Mask = getValue(I.getArgOperand(2)); 3443 3444 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3445 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3446 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3447 if (!Alignment) 3448 Alignment = DAG.getEVTAlignment(VT); 3449 3450 AAMDNodes AAInfo; 3451 I.getAAMetadata(AAInfo); 3452 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3453 3454 SDValue InChain = DAG.getRoot(); 3455 if (AA->pointsToConstantMemory(MemoryLocation( 3456 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3457 AAInfo))) { 3458 // Do not serialize (non-volatile) loads of constant memory with anything. 3459 InChain = DAG.getEntryNode(); 3460 } 3461 3462 MachineMemOperand *MMO = 3463 DAG.getMachineFunction(). 3464 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3465 MachineMemOperand::MOLoad, VT.getStoreSize(), 3466 Alignment, AAInfo, Ranges); 3467 3468 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3469 ISD::NON_EXTLOAD); 3470 SDValue OutChain = Load.getValue(1); 3471 DAG.setRoot(OutChain); 3472 setValue(&I, Load); 3473 } 3474 3475 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3476 SDLoc sdl = getCurSDLoc(); 3477 3478 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3479 const Value *Ptr = I.getArgOperand(0); 3480 SDValue Src0 = getValue(I.getArgOperand(3)); 3481 SDValue Mask = getValue(I.getArgOperand(2)); 3482 3483 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3484 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3485 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3486 if (!Alignment) 3487 Alignment = DAG.getEVTAlignment(VT); 3488 3489 AAMDNodes AAInfo; 3490 I.getAAMetadata(AAInfo); 3491 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3492 3493 SDValue Root = DAG.getRoot(); 3494 SDValue Base; 3495 SDValue Index; 3496 const Value *BasePtr = Ptr; 3497 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3498 bool ConstantMemory = false; 3499 if (UniformBase && 3500 AA->pointsToConstantMemory(MemoryLocation( 3501 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3502 AAInfo))) { 3503 // Do not serialize (non-volatile) loads of constant memory with anything. 3504 Root = DAG.getEntryNode(); 3505 ConstantMemory = true; 3506 } 3507 3508 MachineMemOperand *MMO = 3509 DAG.getMachineFunction(). 3510 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3511 MachineMemOperand::MOLoad, VT.getStoreSize(), 3512 Alignment, AAInfo, Ranges); 3513 3514 if (!UniformBase) { 3515 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3516 Index = getValue(Ptr); 3517 } 3518 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3519 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3520 Ops, MMO); 3521 3522 SDValue OutChain = Gather.getValue(1); 3523 if (!ConstantMemory) 3524 PendingLoads.push_back(OutChain); 3525 setValue(&I, Gather); 3526 } 3527 3528 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3529 SDLoc dl = getCurSDLoc(); 3530 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3531 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3532 SynchronizationScope Scope = I.getSynchScope(); 3533 3534 SDValue InChain = getRoot(); 3535 3536 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3537 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3538 SDValue L = DAG.getAtomicCmpSwap( 3539 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3540 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3541 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3542 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3543 3544 SDValue OutChain = L.getValue(2); 3545 3546 setValue(&I, L); 3547 DAG.setRoot(OutChain); 3548 } 3549 3550 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3551 SDLoc dl = getCurSDLoc(); 3552 ISD::NodeType NT; 3553 switch (I.getOperation()) { 3554 default: llvm_unreachable("Unknown atomicrmw operation"); 3555 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3556 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3557 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3558 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3559 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3560 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3561 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3562 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3563 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3564 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3565 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3566 } 3567 AtomicOrdering Order = I.getOrdering(); 3568 SynchronizationScope Scope = I.getSynchScope(); 3569 3570 SDValue InChain = getRoot(); 3571 3572 SDValue L = 3573 DAG.getAtomic(NT, dl, 3574 getValue(I.getValOperand()).getSimpleValueType(), 3575 InChain, 3576 getValue(I.getPointerOperand()), 3577 getValue(I.getValOperand()), 3578 I.getPointerOperand(), 3579 /* Alignment=*/ 0, Order, Scope); 3580 3581 SDValue OutChain = L.getValue(1); 3582 3583 setValue(&I, L); 3584 DAG.setRoot(OutChain); 3585 } 3586 3587 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3588 SDLoc dl = getCurSDLoc(); 3589 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3590 SDValue Ops[3]; 3591 Ops[0] = getRoot(); 3592 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3593 TLI.getPointerTy(DAG.getDataLayout())); 3594 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3595 TLI.getPointerTy(DAG.getDataLayout())); 3596 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3597 } 3598 3599 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3600 SDLoc dl = getCurSDLoc(); 3601 AtomicOrdering Order = I.getOrdering(); 3602 SynchronizationScope Scope = I.getSynchScope(); 3603 3604 SDValue InChain = getRoot(); 3605 3606 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3607 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3608 3609 if (I.getAlignment() < VT.getSizeInBits() / 8) 3610 report_fatal_error("Cannot generate unaligned atomic load"); 3611 3612 MachineMemOperand *MMO = 3613 DAG.getMachineFunction(). 3614 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3615 MachineMemOperand::MOVolatile | 3616 MachineMemOperand::MOLoad, 3617 VT.getStoreSize(), 3618 I.getAlignment() ? I.getAlignment() : 3619 DAG.getEVTAlignment(VT)); 3620 3621 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3622 SDValue L = 3623 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3624 getValue(I.getPointerOperand()), MMO, 3625 Order, Scope); 3626 3627 SDValue OutChain = L.getValue(1); 3628 3629 setValue(&I, L); 3630 DAG.setRoot(OutChain); 3631 } 3632 3633 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3634 SDLoc dl = getCurSDLoc(); 3635 3636 AtomicOrdering Order = I.getOrdering(); 3637 SynchronizationScope Scope = I.getSynchScope(); 3638 3639 SDValue InChain = getRoot(); 3640 3641 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3642 EVT VT = 3643 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3644 3645 if (I.getAlignment() < VT.getSizeInBits() / 8) 3646 report_fatal_error("Cannot generate unaligned atomic store"); 3647 3648 SDValue OutChain = 3649 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3650 InChain, 3651 getValue(I.getPointerOperand()), 3652 getValue(I.getValueOperand()), 3653 I.getPointerOperand(), I.getAlignment(), 3654 Order, Scope); 3655 3656 DAG.setRoot(OutChain); 3657 } 3658 3659 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3660 /// node. 3661 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3662 unsigned Intrinsic) { 3663 bool HasChain = !I.doesNotAccessMemory(); 3664 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3665 3666 // Build the operand list. 3667 SmallVector<SDValue, 8> Ops; 3668 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3669 if (OnlyLoad) { 3670 // We don't need to serialize loads against other loads. 3671 Ops.push_back(DAG.getRoot()); 3672 } else { 3673 Ops.push_back(getRoot()); 3674 } 3675 } 3676 3677 // Info is set by getTgtMemInstrinsic 3678 TargetLowering::IntrinsicInfo Info; 3679 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3680 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3681 3682 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3683 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3684 Info.opc == ISD::INTRINSIC_W_CHAIN) 3685 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3686 TLI.getPointerTy(DAG.getDataLayout()))); 3687 3688 // Add all operands of the call to the operand list. 3689 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3690 SDValue Op = getValue(I.getArgOperand(i)); 3691 Ops.push_back(Op); 3692 } 3693 3694 SmallVector<EVT, 4> ValueVTs; 3695 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3696 3697 if (HasChain) 3698 ValueVTs.push_back(MVT::Other); 3699 3700 SDVTList VTs = DAG.getVTList(ValueVTs); 3701 3702 // Create the node. 3703 SDValue Result; 3704 if (IsTgtIntrinsic) { 3705 // This is target intrinsic that touches memory 3706 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3707 VTs, Ops, Info.memVT, 3708 MachinePointerInfo(Info.ptrVal, Info.offset), 3709 Info.align, Info.vol, 3710 Info.readMem, Info.writeMem, Info.size); 3711 } else if (!HasChain) { 3712 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3713 } else if (!I.getType()->isVoidTy()) { 3714 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3715 } else { 3716 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3717 } 3718 3719 if (HasChain) { 3720 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3721 if (OnlyLoad) 3722 PendingLoads.push_back(Chain); 3723 else 3724 DAG.setRoot(Chain); 3725 } 3726 3727 if (!I.getType()->isVoidTy()) { 3728 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3729 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3730 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3731 } else 3732 Result = lowerRangeToAssertZExt(DAG, I, Result); 3733 3734 setValue(&I, Result); 3735 } 3736 } 3737 3738 /// GetSignificand - Get the significand and build it into a floating-point 3739 /// number with exponent of 1: 3740 /// 3741 /// Op = (Op & 0x007fffff) | 0x3f800000; 3742 /// 3743 /// where Op is the hexadecimal representation of floating point value. 3744 static SDValue 3745 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3746 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3747 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3748 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3749 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3750 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3751 } 3752 3753 /// GetExponent - Get the exponent: 3754 /// 3755 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3756 /// 3757 /// where Op is the hexadecimal representation of floating point value. 3758 static SDValue 3759 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3760 SDLoc dl) { 3761 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3762 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3763 SDValue t1 = DAG.getNode( 3764 ISD::SRL, dl, MVT::i32, t0, 3765 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3766 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3767 DAG.getConstant(127, dl, MVT::i32)); 3768 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3769 } 3770 3771 /// getF32Constant - Get 32-bit floating point constant. 3772 static SDValue 3773 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3774 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3775 MVT::f32); 3776 } 3777 3778 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3779 SelectionDAG &DAG) { 3780 // TODO: What fast-math-flags should be set on the floating-point nodes? 3781 3782 // IntegerPartOfX = ((int32_t)(t0); 3783 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3784 3785 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3786 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3787 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3788 3789 // IntegerPartOfX <<= 23; 3790 IntegerPartOfX = DAG.getNode( 3791 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3792 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3793 DAG.getDataLayout()))); 3794 3795 SDValue TwoToFractionalPartOfX; 3796 if (LimitFloatPrecision <= 6) { 3797 // For floating-point precision of 6: 3798 // 3799 // TwoToFractionalPartOfX = 3800 // 0.997535578f + 3801 // (0.735607626f + 0.252464424f * x) * x; 3802 // 3803 // error 0.0144103317, which is 6 bits 3804 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3805 getF32Constant(DAG, 0x3e814304, dl)); 3806 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3807 getF32Constant(DAG, 0x3f3c50c8, dl)); 3808 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3809 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3810 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3811 } else if (LimitFloatPrecision <= 12) { 3812 // For floating-point precision of 12: 3813 // 3814 // TwoToFractionalPartOfX = 3815 // 0.999892986f + 3816 // (0.696457318f + 3817 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3818 // 3819 // error 0.000107046256, which is 13 to 14 bits 3820 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3821 getF32Constant(DAG, 0x3da235e3, dl)); 3822 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3823 getF32Constant(DAG, 0x3e65b8f3, dl)); 3824 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3825 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3826 getF32Constant(DAG, 0x3f324b07, dl)); 3827 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3828 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3829 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3830 } else { // LimitFloatPrecision <= 18 3831 // For floating-point precision of 18: 3832 // 3833 // TwoToFractionalPartOfX = 3834 // 0.999999982f + 3835 // (0.693148872f + 3836 // (0.240227044f + 3837 // (0.554906021e-1f + 3838 // (0.961591928e-2f + 3839 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3840 // error 2.47208000*10^(-7), which is better than 18 bits 3841 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3842 getF32Constant(DAG, 0x3924b03e, dl)); 3843 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3844 getF32Constant(DAG, 0x3ab24b87, dl)); 3845 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3846 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3847 getF32Constant(DAG, 0x3c1d8c17, dl)); 3848 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3849 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3850 getF32Constant(DAG, 0x3d634a1d, dl)); 3851 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3852 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3853 getF32Constant(DAG, 0x3e75fe14, dl)); 3854 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3855 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3856 getF32Constant(DAG, 0x3f317234, dl)); 3857 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3858 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3859 getF32Constant(DAG, 0x3f800000, dl)); 3860 } 3861 3862 // Add the exponent into the result in integer domain. 3863 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3864 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3865 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3866 } 3867 3868 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3869 /// limited-precision mode. 3870 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3871 const TargetLowering &TLI) { 3872 if (Op.getValueType() == MVT::f32 && 3873 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3874 3875 // Put the exponent in the right bit position for later addition to the 3876 // final result: 3877 // 3878 // #define LOG2OFe 1.4426950f 3879 // t0 = Op * LOG2OFe 3880 3881 // TODO: What fast-math-flags should be set here? 3882 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3883 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3884 return getLimitedPrecisionExp2(t0, dl, DAG); 3885 } 3886 3887 // No special expansion. 3888 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3889 } 3890 3891 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3892 /// limited-precision mode. 3893 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3894 const TargetLowering &TLI) { 3895 3896 // TODO: What fast-math-flags should be set on the floating-point nodes? 3897 3898 if (Op.getValueType() == MVT::f32 && 3899 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3900 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3901 3902 // Scale the exponent by log(2) [0.69314718f]. 3903 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3904 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3905 getF32Constant(DAG, 0x3f317218, dl)); 3906 3907 // Get the significand and build it into a floating-point number with 3908 // exponent of 1. 3909 SDValue X = GetSignificand(DAG, Op1, dl); 3910 3911 SDValue LogOfMantissa; 3912 if (LimitFloatPrecision <= 6) { 3913 // For floating-point precision of 6: 3914 // 3915 // LogofMantissa = 3916 // -1.1609546f + 3917 // (1.4034025f - 0.23903021f * x) * x; 3918 // 3919 // error 0.0034276066, which is better than 8 bits 3920 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3921 getF32Constant(DAG, 0xbe74c456, dl)); 3922 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3923 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3924 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3925 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3926 getF32Constant(DAG, 0x3f949a29, dl)); 3927 } else if (LimitFloatPrecision <= 12) { 3928 // For floating-point precision of 12: 3929 // 3930 // LogOfMantissa = 3931 // -1.7417939f + 3932 // (2.8212026f + 3933 // (-1.4699568f + 3934 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3935 // 3936 // error 0.000061011436, which is 14 bits 3937 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3938 getF32Constant(DAG, 0xbd67b6d6, dl)); 3939 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3940 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3941 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3942 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3943 getF32Constant(DAG, 0x3fbc278b, dl)); 3944 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3945 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3946 getF32Constant(DAG, 0x40348e95, dl)); 3947 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3948 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3949 getF32Constant(DAG, 0x3fdef31a, dl)); 3950 } else { // LimitFloatPrecision <= 18 3951 // For floating-point precision of 18: 3952 // 3953 // LogOfMantissa = 3954 // -2.1072184f + 3955 // (4.2372794f + 3956 // (-3.7029485f + 3957 // (2.2781945f + 3958 // (-0.87823314f + 3959 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3960 // 3961 // error 0.0000023660568, which is better than 18 bits 3962 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3963 getF32Constant(DAG, 0xbc91e5ac, dl)); 3964 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3965 getF32Constant(DAG, 0x3e4350aa, dl)); 3966 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3967 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3968 getF32Constant(DAG, 0x3f60d3e3, dl)); 3969 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3970 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3971 getF32Constant(DAG, 0x4011cdf0, dl)); 3972 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3973 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3974 getF32Constant(DAG, 0x406cfd1c, dl)); 3975 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3976 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3977 getF32Constant(DAG, 0x408797cb, dl)); 3978 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3979 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3980 getF32Constant(DAG, 0x4006dcab, dl)); 3981 } 3982 3983 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3984 } 3985 3986 // No special expansion. 3987 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3988 } 3989 3990 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3991 /// limited-precision mode. 3992 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3993 const TargetLowering &TLI) { 3994 3995 // TODO: What fast-math-flags should be set on the floating-point nodes? 3996 3997 if (Op.getValueType() == MVT::f32 && 3998 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3999 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4000 4001 // Get the exponent. 4002 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4003 4004 // Get the significand and build it into a floating-point number with 4005 // exponent of 1. 4006 SDValue X = GetSignificand(DAG, Op1, dl); 4007 4008 // Different possible minimax approximations of significand in 4009 // floating-point for various degrees of accuracy over [1,2]. 4010 SDValue Log2ofMantissa; 4011 if (LimitFloatPrecision <= 6) { 4012 // For floating-point precision of 6: 4013 // 4014 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4015 // 4016 // error 0.0049451742, which is more than 7 bits 4017 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4018 getF32Constant(DAG, 0xbeb08fe0, dl)); 4019 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4020 getF32Constant(DAG, 0x40019463, dl)); 4021 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4022 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4023 getF32Constant(DAG, 0x3fd6633d, dl)); 4024 } else if (LimitFloatPrecision <= 12) { 4025 // For floating-point precision of 12: 4026 // 4027 // Log2ofMantissa = 4028 // -2.51285454f + 4029 // (4.07009056f + 4030 // (-2.12067489f + 4031 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4032 // 4033 // error 0.0000876136000, which is better than 13 bits 4034 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4035 getF32Constant(DAG, 0xbda7262e, dl)); 4036 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4037 getF32Constant(DAG, 0x3f25280b, dl)); 4038 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4039 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4040 getF32Constant(DAG, 0x4007b923, dl)); 4041 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4042 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4043 getF32Constant(DAG, 0x40823e2f, dl)); 4044 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4045 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4046 getF32Constant(DAG, 0x4020d29c, dl)); 4047 } else { // LimitFloatPrecision <= 18 4048 // For floating-point precision of 18: 4049 // 4050 // Log2ofMantissa = 4051 // -3.0400495f + 4052 // (6.1129976f + 4053 // (-5.3420409f + 4054 // (3.2865683f + 4055 // (-1.2669343f + 4056 // (0.27515199f - 4057 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4058 // 4059 // error 0.0000018516, which is better than 18 bits 4060 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4061 getF32Constant(DAG, 0xbcd2769e, dl)); 4062 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4063 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4064 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4065 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4066 getF32Constant(DAG, 0x3fa22ae7, dl)); 4067 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4068 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4069 getF32Constant(DAG, 0x40525723, dl)); 4070 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4071 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4072 getF32Constant(DAG, 0x40aaf200, dl)); 4073 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4074 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4075 getF32Constant(DAG, 0x40c39dad, dl)); 4076 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4077 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4078 getF32Constant(DAG, 0x4042902c, dl)); 4079 } 4080 4081 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4082 } 4083 4084 // No special expansion. 4085 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4086 } 4087 4088 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4089 /// limited-precision mode. 4090 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4091 const TargetLowering &TLI) { 4092 4093 // TODO: What fast-math-flags should be set on the floating-point nodes? 4094 4095 if (Op.getValueType() == MVT::f32 && 4096 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4097 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4098 4099 // Scale the exponent by log10(2) [0.30102999f]. 4100 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4101 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4102 getF32Constant(DAG, 0x3e9a209a, dl)); 4103 4104 // Get the significand and build it into a floating-point number with 4105 // exponent of 1. 4106 SDValue X = GetSignificand(DAG, Op1, dl); 4107 4108 SDValue Log10ofMantissa; 4109 if (LimitFloatPrecision <= 6) { 4110 // For floating-point precision of 6: 4111 // 4112 // Log10ofMantissa = 4113 // -0.50419619f + 4114 // (0.60948995f - 0.10380950f * x) * x; 4115 // 4116 // error 0.0014886165, which is 6 bits 4117 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4118 getF32Constant(DAG, 0xbdd49a13, dl)); 4119 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4120 getF32Constant(DAG, 0x3f1c0789, dl)); 4121 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4122 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4123 getF32Constant(DAG, 0x3f011300, dl)); 4124 } else if (LimitFloatPrecision <= 12) { 4125 // For floating-point precision of 12: 4126 // 4127 // Log10ofMantissa = 4128 // -0.64831180f + 4129 // (0.91751397f + 4130 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4131 // 4132 // error 0.00019228036, which is better than 12 bits 4133 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4134 getF32Constant(DAG, 0x3d431f31, dl)); 4135 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4136 getF32Constant(DAG, 0x3ea21fb2, dl)); 4137 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4138 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4139 getF32Constant(DAG, 0x3f6ae232, dl)); 4140 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4141 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4142 getF32Constant(DAG, 0x3f25f7c3, dl)); 4143 } else { // LimitFloatPrecision <= 18 4144 // For floating-point precision of 18: 4145 // 4146 // Log10ofMantissa = 4147 // -0.84299375f + 4148 // (1.5327582f + 4149 // (-1.0688956f + 4150 // (0.49102474f + 4151 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4152 // 4153 // error 0.0000037995730, which is better than 18 bits 4154 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4155 getF32Constant(DAG, 0x3c5d51ce, dl)); 4156 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4157 getF32Constant(DAG, 0x3e00685a, dl)); 4158 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4159 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4160 getF32Constant(DAG, 0x3efb6798, dl)); 4161 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4162 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4163 getF32Constant(DAG, 0x3f88d192, dl)); 4164 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4165 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4166 getF32Constant(DAG, 0x3fc4316c, dl)); 4167 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4168 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4169 getF32Constant(DAG, 0x3f57ce70, dl)); 4170 } 4171 4172 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4173 } 4174 4175 // No special expansion. 4176 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4177 } 4178 4179 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4180 /// limited-precision mode. 4181 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4182 const TargetLowering &TLI) { 4183 if (Op.getValueType() == MVT::f32 && 4184 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4185 return getLimitedPrecisionExp2(Op, dl, DAG); 4186 4187 // No special expansion. 4188 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4189 } 4190 4191 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4192 /// limited-precision mode with x == 10.0f. 4193 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4194 SelectionDAG &DAG, const TargetLowering &TLI) { 4195 bool IsExp10 = false; 4196 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4197 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4198 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4199 APFloat Ten(10.0f); 4200 IsExp10 = LHSC->isExactlyValue(Ten); 4201 } 4202 } 4203 4204 // TODO: What fast-math-flags should be set on the FMUL node? 4205 if (IsExp10) { 4206 // Put the exponent in the right bit position for later addition to the 4207 // final result: 4208 // 4209 // #define LOG2OF10 3.3219281f 4210 // t0 = Op * LOG2OF10; 4211 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4212 getF32Constant(DAG, 0x40549a78, dl)); 4213 return getLimitedPrecisionExp2(t0, dl, DAG); 4214 } 4215 4216 // No special expansion. 4217 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4218 } 4219 4220 4221 /// ExpandPowI - Expand a llvm.powi intrinsic. 4222 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4223 SelectionDAG &DAG) { 4224 // If RHS is a constant, we can expand this out to a multiplication tree, 4225 // otherwise we end up lowering to a call to __powidf2 (for example). When 4226 // optimizing for size, we only want to do this if the expansion would produce 4227 // a small number of multiplies, otherwise we do the full expansion. 4228 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4229 // Get the exponent as a positive value. 4230 unsigned Val = RHSC->getSExtValue(); 4231 if ((int)Val < 0) Val = -Val; 4232 4233 // powi(x, 0) -> 1.0 4234 if (Val == 0) 4235 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4236 4237 const Function *F = DAG.getMachineFunction().getFunction(); 4238 if (!F->optForSize() || 4239 // If optimizing for size, don't insert too many multiplies. 4240 // This inserts up to 5 multiplies. 4241 countPopulation(Val) + Log2_32(Val) < 7) { 4242 // We use the simple binary decomposition method to generate the multiply 4243 // sequence. There are more optimal ways to do this (for example, 4244 // powi(x,15) generates one more multiply than it should), but this has 4245 // the benefit of being both really simple and much better than a libcall. 4246 SDValue Res; // Logically starts equal to 1.0 4247 SDValue CurSquare = LHS; 4248 // TODO: Intrinsics should have fast-math-flags that propagate to these 4249 // nodes. 4250 while (Val) { 4251 if (Val & 1) { 4252 if (Res.getNode()) 4253 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4254 else 4255 Res = CurSquare; // 1.0*CurSquare. 4256 } 4257 4258 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4259 CurSquare, CurSquare); 4260 Val >>= 1; 4261 } 4262 4263 // If the original was negative, invert the result, producing 1/(x*x*x). 4264 if (RHSC->getSExtValue() < 0) 4265 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4266 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4267 return Res; 4268 } 4269 } 4270 4271 // Otherwise, expand to a libcall. 4272 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4273 } 4274 4275 // getUnderlyingArgReg - Find underlying register used for a truncated or 4276 // bitcasted argument. 4277 static unsigned getUnderlyingArgReg(const SDValue &N) { 4278 switch (N.getOpcode()) { 4279 case ISD::CopyFromReg: 4280 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4281 case ISD::BITCAST: 4282 case ISD::AssertZext: 4283 case ISD::AssertSext: 4284 case ISD::TRUNCATE: 4285 return getUnderlyingArgReg(N.getOperand(0)); 4286 default: 4287 return 0; 4288 } 4289 } 4290 4291 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4292 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4293 /// At the end of instruction selection, they will be inserted to the entry BB. 4294 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4295 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4296 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4297 const Argument *Arg = dyn_cast<Argument>(V); 4298 if (!Arg) 4299 return false; 4300 4301 MachineFunction &MF = DAG.getMachineFunction(); 4302 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4303 4304 // Ignore inlined function arguments here. 4305 // 4306 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4307 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4308 return false; 4309 4310 Optional<MachineOperand> Op; 4311 // Some arguments' frame index is recorded during argument lowering. 4312 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4313 Op = MachineOperand::CreateFI(FI); 4314 4315 if (!Op && N.getNode()) { 4316 unsigned Reg = getUnderlyingArgReg(N); 4317 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4318 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4319 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4320 if (PR) 4321 Reg = PR; 4322 } 4323 if (Reg) 4324 Op = MachineOperand::CreateReg(Reg, false); 4325 } 4326 4327 if (!Op) { 4328 // Check if ValueMap has reg number. 4329 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4330 if (VMI != FuncInfo.ValueMap.end()) 4331 Op = MachineOperand::CreateReg(VMI->second, false); 4332 } 4333 4334 if (!Op && N.getNode()) 4335 // Check if frame index is available. 4336 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4337 if (FrameIndexSDNode *FINode = 4338 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4339 Op = MachineOperand::CreateFI(FINode->getIndex()); 4340 4341 if (!Op) 4342 return false; 4343 4344 assert(Variable->isValidLocationForIntrinsic(DL) && 4345 "Expected inlined-at fields to agree"); 4346 if (Op->isReg()) 4347 FuncInfo.ArgDbgValues.push_back( 4348 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4349 Op->getReg(), Offset, Variable, Expr)); 4350 else 4351 FuncInfo.ArgDbgValues.push_back( 4352 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4353 .addOperand(*Op) 4354 .addImm(Offset) 4355 .addMetadata(Variable) 4356 .addMetadata(Expr)); 4357 4358 return true; 4359 } 4360 4361 // VisualStudio defines setjmp as _setjmp 4362 #if defined(_MSC_VER) && defined(setjmp) && \ 4363 !defined(setjmp_undefined_for_msvc) 4364 # pragma push_macro("setjmp") 4365 # undef setjmp 4366 # define setjmp_undefined_for_msvc 4367 #endif 4368 4369 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4370 /// we want to emit this as a call to a named external function, return the name 4371 /// otherwise lower it and return null. 4372 const char * 4373 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4374 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4375 SDLoc sdl = getCurSDLoc(); 4376 DebugLoc dl = getCurDebugLoc(); 4377 SDValue Res; 4378 4379 switch (Intrinsic) { 4380 default: 4381 // By default, turn this into a target intrinsic node. 4382 visitTargetIntrinsic(I, Intrinsic); 4383 return nullptr; 4384 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4385 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4386 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4387 case Intrinsic::returnaddress: 4388 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4389 TLI.getPointerTy(DAG.getDataLayout()), 4390 getValue(I.getArgOperand(0)))); 4391 return nullptr; 4392 case Intrinsic::frameaddress: 4393 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4394 TLI.getPointerTy(DAG.getDataLayout()), 4395 getValue(I.getArgOperand(0)))); 4396 return nullptr; 4397 case Intrinsic::read_register: { 4398 Value *Reg = I.getArgOperand(0); 4399 SDValue Chain = getRoot(); 4400 SDValue RegName = 4401 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4402 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4403 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4404 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4405 setValue(&I, Res); 4406 DAG.setRoot(Res.getValue(1)); 4407 return nullptr; 4408 } 4409 case Intrinsic::write_register: { 4410 Value *Reg = I.getArgOperand(0); 4411 Value *RegValue = I.getArgOperand(1); 4412 SDValue Chain = getRoot(); 4413 SDValue RegName = 4414 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4415 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4416 RegName, getValue(RegValue))); 4417 return nullptr; 4418 } 4419 case Intrinsic::setjmp: 4420 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4421 case Intrinsic::longjmp: 4422 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4423 case Intrinsic::memcpy: { 4424 SDValue Op1 = getValue(I.getArgOperand(0)); 4425 SDValue Op2 = getValue(I.getArgOperand(1)); 4426 SDValue Op3 = getValue(I.getArgOperand(2)); 4427 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4428 if (!Align) 4429 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4430 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4431 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4432 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4433 false, isTC, 4434 MachinePointerInfo(I.getArgOperand(0)), 4435 MachinePointerInfo(I.getArgOperand(1))); 4436 updateDAGForMaybeTailCall(MC); 4437 return nullptr; 4438 } 4439 case Intrinsic::memset: { 4440 SDValue Op1 = getValue(I.getArgOperand(0)); 4441 SDValue Op2 = getValue(I.getArgOperand(1)); 4442 SDValue Op3 = getValue(I.getArgOperand(2)); 4443 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4444 if (!Align) 4445 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4446 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4447 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4448 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4449 isTC, MachinePointerInfo(I.getArgOperand(0))); 4450 updateDAGForMaybeTailCall(MS); 4451 return nullptr; 4452 } 4453 case Intrinsic::memmove: { 4454 SDValue Op1 = getValue(I.getArgOperand(0)); 4455 SDValue Op2 = getValue(I.getArgOperand(1)); 4456 SDValue Op3 = getValue(I.getArgOperand(2)); 4457 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4458 if (!Align) 4459 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4460 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4461 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4462 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4463 isTC, MachinePointerInfo(I.getArgOperand(0)), 4464 MachinePointerInfo(I.getArgOperand(1))); 4465 updateDAGForMaybeTailCall(MM); 4466 return nullptr; 4467 } 4468 case Intrinsic::dbg_declare: { 4469 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4470 DILocalVariable *Variable = DI.getVariable(); 4471 DIExpression *Expression = DI.getExpression(); 4472 const Value *Address = DI.getAddress(); 4473 assert(Variable && "Missing variable"); 4474 if (!Address) { 4475 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4476 return nullptr; 4477 } 4478 4479 // Check if address has undef value. 4480 if (isa<UndefValue>(Address) || 4481 (Address->use_empty() && !isa<Argument>(Address))) { 4482 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4483 return nullptr; 4484 } 4485 4486 SDValue &N = NodeMap[Address]; 4487 if (!N.getNode() && isa<Argument>(Address)) 4488 // Check unused arguments map. 4489 N = UnusedArgNodeMap[Address]; 4490 SDDbgValue *SDV; 4491 if (N.getNode()) { 4492 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4493 Address = BCI->getOperand(0); 4494 // Parameters are handled specially. 4495 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4496 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4497 if (isParameter && FINode) { 4498 // Byval parameter. We have a frame index at this point. 4499 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 4500 FINode->getIndex(), 0, dl, SDNodeOrder); 4501 } else if (isa<Argument>(Address)) { 4502 // Address is an argument, so try to emit its dbg value using 4503 // virtual register info from the FuncInfo.ValueMap. 4504 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4505 N); 4506 return nullptr; 4507 } else { 4508 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4509 true, 0, dl, SDNodeOrder); 4510 } 4511 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4512 } else { 4513 // If Address is an argument then try to emit its dbg value using 4514 // virtual register info from the FuncInfo.ValueMap. 4515 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4516 N)) { 4517 // If variable is pinned by a alloca in dominating bb then 4518 // use StaticAllocaMap. 4519 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4520 if (AI->getParent() != DI.getParent()) { 4521 DenseMap<const AllocaInst*, int>::iterator SI = 4522 FuncInfo.StaticAllocaMap.find(AI); 4523 if (SI != FuncInfo.StaticAllocaMap.end()) { 4524 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4525 0, dl, SDNodeOrder); 4526 DAG.AddDbgValue(SDV, nullptr, false); 4527 return nullptr; 4528 } 4529 } 4530 } 4531 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4532 } 4533 } 4534 return nullptr; 4535 } 4536 case Intrinsic::dbg_value: { 4537 const DbgValueInst &DI = cast<DbgValueInst>(I); 4538 assert(DI.getVariable() && "Missing variable"); 4539 4540 DILocalVariable *Variable = DI.getVariable(); 4541 DIExpression *Expression = DI.getExpression(); 4542 uint64_t Offset = DI.getOffset(); 4543 const Value *V = DI.getValue(); 4544 if (!V) 4545 return nullptr; 4546 4547 SDDbgValue *SDV; 4548 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4549 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4550 SDNodeOrder); 4551 DAG.AddDbgValue(SDV, nullptr, false); 4552 } else { 4553 // Do not use getValue() in here; we don't want to generate code at 4554 // this point if it hasn't been done yet. 4555 SDValue N = NodeMap[V]; 4556 if (!N.getNode() && isa<Argument>(V)) 4557 // Check unused arguments map. 4558 N = UnusedArgNodeMap[V]; 4559 if (N.getNode()) { 4560 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4561 false, N)) { 4562 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4563 false, Offset, dl, SDNodeOrder); 4564 DAG.AddDbgValue(SDV, N.getNode(), false); 4565 } 4566 } else if (!V->use_empty() ) { 4567 // Do not call getValue(V) yet, as we don't want to generate code. 4568 // Remember it for later. 4569 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4570 DanglingDebugInfoMap[V] = DDI; 4571 } else { 4572 // We may expand this to cover more cases. One case where we have no 4573 // data available is an unreferenced parameter. 4574 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4575 } 4576 } 4577 4578 // Build a debug info table entry. 4579 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4580 V = BCI->getOperand(0); 4581 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4582 // Don't handle byval struct arguments or VLAs, for example. 4583 if (!AI) { 4584 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4585 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4586 return nullptr; 4587 } 4588 DenseMap<const AllocaInst*, int>::iterator SI = 4589 FuncInfo.StaticAllocaMap.find(AI); 4590 if (SI == FuncInfo.StaticAllocaMap.end()) 4591 return nullptr; // VLAs. 4592 return nullptr; 4593 } 4594 4595 case Intrinsic::eh_typeid_for: { 4596 // Find the type id for the given typeinfo. 4597 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4598 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4599 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4600 setValue(&I, Res); 4601 return nullptr; 4602 } 4603 4604 case Intrinsic::eh_return_i32: 4605 case Intrinsic::eh_return_i64: 4606 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4607 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4608 MVT::Other, 4609 getControlRoot(), 4610 getValue(I.getArgOperand(0)), 4611 getValue(I.getArgOperand(1)))); 4612 return nullptr; 4613 case Intrinsic::eh_unwind_init: 4614 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4615 return nullptr; 4616 case Intrinsic::eh_dwarf_cfa: { 4617 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4618 TLI.getPointerTy(DAG.getDataLayout())); 4619 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4620 CfaArg.getValueType(), 4621 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4622 CfaArg.getValueType()), 4623 CfaArg); 4624 SDValue FA = DAG.getNode( 4625 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4626 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4627 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4628 FA, Offset)); 4629 return nullptr; 4630 } 4631 case Intrinsic::eh_sjlj_callsite: { 4632 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4633 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4634 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4635 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4636 4637 MMI.setCurrentCallSite(CI->getZExtValue()); 4638 return nullptr; 4639 } 4640 case Intrinsic::eh_sjlj_functioncontext: { 4641 // Get and store the index of the function context. 4642 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4643 AllocaInst *FnCtx = 4644 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4645 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4646 MFI->setFunctionContextIndex(FI); 4647 return nullptr; 4648 } 4649 case Intrinsic::eh_sjlj_setjmp: { 4650 SDValue Ops[2]; 4651 Ops[0] = getRoot(); 4652 Ops[1] = getValue(I.getArgOperand(0)); 4653 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4654 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4655 setValue(&I, Op.getValue(0)); 4656 DAG.setRoot(Op.getValue(1)); 4657 return nullptr; 4658 } 4659 case Intrinsic::eh_sjlj_longjmp: { 4660 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4661 getRoot(), getValue(I.getArgOperand(0)))); 4662 return nullptr; 4663 } 4664 case Intrinsic::eh_sjlj_setup_dispatch: { 4665 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4666 getRoot())); 4667 return nullptr; 4668 } 4669 4670 case Intrinsic::masked_gather: 4671 visitMaskedGather(I); 4672 return nullptr; 4673 case Intrinsic::masked_load: 4674 visitMaskedLoad(I); 4675 return nullptr; 4676 case Intrinsic::masked_scatter: 4677 visitMaskedScatter(I); 4678 return nullptr; 4679 case Intrinsic::masked_store: 4680 visitMaskedStore(I); 4681 return nullptr; 4682 case Intrinsic::x86_mmx_pslli_w: 4683 case Intrinsic::x86_mmx_pslli_d: 4684 case Intrinsic::x86_mmx_pslli_q: 4685 case Intrinsic::x86_mmx_psrli_w: 4686 case Intrinsic::x86_mmx_psrli_d: 4687 case Intrinsic::x86_mmx_psrli_q: 4688 case Intrinsic::x86_mmx_psrai_w: 4689 case Intrinsic::x86_mmx_psrai_d: { 4690 SDValue ShAmt = getValue(I.getArgOperand(1)); 4691 if (isa<ConstantSDNode>(ShAmt)) { 4692 visitTargetIntrinsic(I, Intrinsic); 4693 return nullptr; 4694 } 4695 unsigned NewIntrinsic = 0; 4696 EVT ShAmtVT = MVT::v2i32; 4697 switch (Intrinsic) { 4698 case Intrinsic::x86_mmx_pslli_w: 4699 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4700 break; 4701 case Intrinsic::x86_mmx_pslli_d: 4702 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4703 break; 4704 case Intrinsic::x86_mmx_pslli_q: 4705 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4706 break; 4707 case Intrinsic::x86_mmx_psrli_w: 4708 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4709 break; 4710 case Intrinsic::x86_mmx_psrli_d: 4711 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4712 break; 4713 case Intrinsic::x86_mmx_psrli_q: 4714 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4715 break; 4716 case Intrinsic::x86_mmx_psrai_w: 4717 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4718 break; 4719 case Intrinsic::x86_mmx_psrai_d: 4720 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4721 break; 4722 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4723 } 4724 4725 // The vector shift intrinsics with scalars uses 32b shift amounts but 4726 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4727 // to be zero. 4728 // We must do this early because v2i32 is not a legal type. 4729 SDValue ShOps[2]; 4730 ShOps[0] = ShAmt; 4731 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4732 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4733 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4734 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4735 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4736 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4737 getValue(I.getArgOperand(0)), ShAmt); 4738 setValue(&I, Res); 4739 return nullptr; 4740 } 4741 case Intrinsic::convertff: 4742 case Intrinsic::convertfsi: 4743 case Intrinsic::convertfui: 4744 case Intrinsic::convertsif: 4745 case Intrinsic::convertuif: 4746 case Intrinsic::convertss: 4747 case Intrinsic::convertsu: 4748 case Intrinsic::convertus: 4749 case Intrinsic::convertuu: { 4750 ISD::CvtCode Code = ISD::CVT_INVALID; 4751 switch (Intrinsic) { 4752 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4753 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4754 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4755 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4756 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4757 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4758 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4759 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4760 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4761 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4762 } 4763 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4764 const Value *Op1 = I.getArgOperand(0); 4765 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4766 DAG.getValueType(DestVT), 4767 DAG.getValueType(getValue(Op1).getValueType()), 4768 getValue(I.getArgOperand(1)), 4769 getValue(I.getArgOperand(2)), 4770 Code); 4771 setValue(&I, Res); 4772 return nullptr; 4773 } 4774 case Intrinsic::powi: 4775 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4776 getValue(I.getArgOperand(1)), DAG)); 4777 return nullptr; 4778 case Intrinsic::log: 4779 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4780 return nullptr; 4781 case Intrinsic::log2: 4782 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4783 return nullptr; 4784 case Intrinsic::log10: 4785 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4786 return nullptr; 4787 case Intrinsic::exp: 4788 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4789 return nullptr; 4790 case Intrinsic::exp2: 4791 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4792 return nullptr; 4793 case Intrinsic::pow: 4794 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4795 getValue(I.getArgOperand(1)), DAG, TLI)); 4796 return nullptr; 4797 case Intrinsic::sqrt: 4798 case Intrinsic::fabs: 4799 case Intrinsic::sin: 4800 case Intrinsic::cos: 4801 case Intrinsic::floor: 4802 case Intrinsic::ceil: 4803 case Intrinsic::trunc: 4804 case Intrinsic::rint: 4805 case Intrinsic::nearbyint: 4806 case Intrinsic::round: { 4807 unsigned Opcode; 4808 switch (Intrinsic) { 4809 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4810 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4811 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4812 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4813 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4814 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4815 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4816 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4817 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4818 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4819 case Intrinsic::round: Opcode = ISD::FROUND; break; 4820 } 4821 4822 setValue(&I, DAG.getNode(Opcode, sdl, 4823 getValue(I.getArgOperand(0)).getValueType(), 4824 getValue(I.getArgOperand(0)))); 4825 return nullptr; 4826 } 4827 case Intrinsic::minnum: 4828 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4829 getValue(I.getArgOperand(0)).getValueType(), 4830 getValue(I.getArgOperand(0)), 4831 getValue(I.getArgOperand(1)))); 4832 return nullptr; 4833 case Intrinsic::maxnum: 4834 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4835 getValue(I.getArgOperand(0)).getValueType(), 4836 getValue(I.getArgOperand(0)), 4837 getValue(I.getArgOperand(1)))); 4838 return nullptr; 4839 case Intrinsic::copysign: 4840 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4841 getValue(I.getArgOperand(0)).getValueType(), 4842 getValue(I.getArgOperand(0)), 4843 getValue(I.getArgOperand(1)))); 4844 return nullptr; 4845 case Intrinsic::fma: 4846 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4847 getValue(I.getArgOperand(0)).getValueType(), 4848 getValue(I.getArgOperand(0)), 4849 getValue(I.getArgOperand(1)), 4850 getValue(I.getArgOperand(2)))); 4851 return nullptr; 4852 case Intrinsic::fmuladd: { 4853 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4854 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4855 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4856 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4857 getValue(I.getArgOperand(0)).getValueType(), 4858 getValue(I.getArgOperand(0)), 4859 getValue(I.getArgOperand(1)), 4860 getValue(I.getArgOperand(2)))); 4861 } else { 4862 // TODO: Intrinsic calls should have fast-math-flags. 4863 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4864 getValue(I.getArgOperand(0)).getValueType(), 4865 getValue(I.getArgOperand(0)), 4866 getValue(I.getArgOperand(1))); 4867 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4868 getValue(I.getArgOperand(0)).getValueType(), 4869 Mul, 4870 getValue(I.getArgOperand(2))); 4871 setValue(&I, Add); 4872 } 4873 return nullptr; 4874 } 4875 case Intrinsic::convert_to_fp16: 4876 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4877 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4878 getValue(I.getArgOperand(0)), 4879 DAG.getTargetConstant(0, sdl, 4880 MVT::i32)))); 4881 return nullptr; 4882 case Intrinsic::convert_from_fp16: 4883 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4884 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4885 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4886 getValue(I.getArgOperand(0))))); 4887 return nullptr; 4888 case Intrinsic::pcmarker: { 4889 SDValue Tmp = getValue(I.getArgOperand(0)); 4890 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4891 return nullptr; 4892 } 4893 case Intrinsic::readcyclecounter: { 4894 SDValue Op = getRoot(); 4895 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4896 DAG.getVTList(MVT::i64, MVT::Other), Op); 4897 setValue(&I, Res); 4898 DAG.setRoot(Res.getValue(1)); 4899 return nullptr; 4900 } 4901 case Intrinsic::bitreverse: 4902 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 4903 getValue(I.getArgOperand(0)).getValueType(), 4904 getValue(I.getArgOperand(0)))); 4905 return nullptr; 4906 case Intrinsic::bswap: 4907 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4908 getValue(I.getArgOperand(0)).getValueType(), 4909 getValue(I.getArgOperand(0)))); 4910 return nullptr; 4911 case Intrinsic::cttz: { 4912 SDValue Arg = getValue(I.getArgOperand(0)); 4913 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4914 EVT Ty = Arg.getValueType(); 4915 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4916 sdl, Ty, Arg)); 4917 return nullptr; 4918 } 4919 case Intrinsic::ctlz: { 4920 SDValue Arg = getValue(I.getArgOperand(0)); 4921 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4922 EVT Ty = Arg.getValueType(); 4923 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4924 sdl, Ty, Arg)); 4925 return nullptr; 4926 } 4927 case Intrinsic::ctpop: { 4928 SDValue Arg = getValue(I.getArgOperand(0)); 4929 EVT Ty = Arg.getValueType(); 4930 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4931 return nullptr; 4932 } 4933 case Intrinsic::stacksave: { 4934 SDValue Op = getRoot(); 4935 Res = DAG.getNode( 4936 ISD::STACKSAVE, sdl, 4937 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4938 setValue(&I, Res); 4939 DAG.setRoot(Res.getValue(1)); 4940 return nullptr; 4941 } 4942 case Intrinsic::stackrestore: { 4943 Res = getValue(I.getArgOperand(0)); 4944 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4945 return nullptr; 4946 } 4947 case Intrinsic::get_dynamic_area_offset: { 4948 SDValue Op = getRoot(); 4949 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4950 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4951 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 4952 // target. 4953 if (PtrTy != ResTy) 4954 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 4955 " intrinsic!"); 4956 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 4957 Op); 4958 DAG.setRoot(Op); 4959 setValue(&I, Res); 4960 return nullptr; 4961 } 4962 case Intrinsic::stackprotector: { 4963 // Emit code into the DAG to store the stack guard onto the stack. 4964 MachineFunction &MF = DAG.getMachineFunction(); 4965 MachineFrameInfo *MFI = MF.getFrameInfo(); 4966 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4967 SDValue Src, Chain = getRoot(); 4968 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4969 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4970 4971 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4972 // global variable __stack_chk_guard. 4973 if (!GV) 4974 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4975 if (BC->getOpcode() == Instruction::BitCast) 4976 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4977 4978 if (GV && TLI.useLoadStackGuardNode()) { 4979 // Emit a LOAD_STACK_GUARD node. 4980 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4981 sdl, PtrTy, Chain); 4982 MachinePointerInfo MPInfo(GV); 4983 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4984 unsigned Flags = MachineMemOperand::MOLoad | 4985 MachineMemOperand::MOInvariant; 4986 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4987 PtrTy.getSizeInBits() / 8, 4988 DAG.getEVTAlignment(PtrTy)); 4989 Node->setMemRefs(MemRefs, MemRefs + 1); 4990 4991 // Copy the guard value to a virtual register so that it can be 4992 // retrieved in the epilogue. 4993 Src = SDValue(Node, 0); 4994 const TargetRegisterClass *RC = 4995 TLI.getRegClassFor(Src.getSimpleValueType()); 4996 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4997 4998 SPDescriptor.setGuardReg(Reg); 4999 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 5000 } else { 5001 Src = getValue(I.getArgOperand(0)); // The guard's value. 5002 } 5003 5004 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5005 5006 int FI = FuncInfo.StaticAllocaMap[Slot]; 5007 MFI->setStackProtectorIndex(FI); 5008 5009 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5010 5011 // Store the stack protector onto the stack. 5012 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5013 DAG.getMachineFunction(), FI), 5014 true, false, 0); 5015 setValue(&I, Res); 5016 DAG.setRoot(Res); 5017 return nullptr; 5018 } 5019 case Intrinsic::objectsize: { 5020 // If we don't know by now, we're never going to know. 5021 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5022 5023 assert(CI && "Non-constant type in __builtin_object_size?"); 5024 5025 SDValue Arg = getValue(I.getCalledValue()); 5026 EVT Ty = Arg.getValueType(); 5027 5028 if (CI->isZero()) 5029 Res = DAG.getConstant(-1ULL, sdl, Ty); 5030 else 5031 Res = DAG.getConstant(0, sdl, Ty); 5032 5033 setValue(&I, Res); 5034 return nullptr; 5035 } 5036 case Intrinsic::annotation: 5037 case Intrinsic::ptr_annotation: 5038 // Drop the intrinsic, but forward the value 5039 setValue(&I, getValue(I.getOperand(0))); 5040 return nullptr; 5041 case Intrinsic::assume: 5042 case Intrinsic::var_annotation: 5043 // Discard annotate attributes and assumptions 5044 return nullptr; 5045 5046 case Intrinsic::init_trampoline: { 5047 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5048 5049 SDValue Ops[6]; 5050 Ops[0] = getRoot(); 5051 Ops[1] = getValue(I.getArgOperand(0)); 5052 Ops[2] = getValue(I.getArgOperand(1)); 5053 Ops[3] = getValue(I.getArgOperand(2)); 5054 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5055 Ops[5] = DAG.getSrcValue(F); 5056 5057 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5058 5059 DAG.setRoot(Res); 5060 return nullptr; 5061 } 5062 case Intrinsic::adjust_trampoline: { 5063 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5064 TLI.getPointerTy(DAG.getDataLayout()), 5065 getValue(I.getArgOperand(0)))); 5066 return nullptr; 5067 } 5068 case Intrinsic::gcroot: { 5069 MachineFunction &MF = DAG.getMachineFunction(); 5070 const Function *F = MF.getFunction(); 5071 (void)F; 5072 assert(F->hasGC() && 5073 "only valid in functions with gc specified, enforced by Verifier"); 5074 assert(GFI && "implied by previous"); 5075 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5076 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5077 5078 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5079 GFI->addStackRoot(FI->getIndex(), TypeMap); 5080 return nullptr; 5081 } 5082 case Intrinsic::gcread: 5083 case Intrinsic::gcwrite: 5084 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5085 case Intrinsic::flt_rounds: 5086 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5087 return nullptr; 5088 5089 case Intrinsic::expect: { 5090 // Just replace __builtin_expect(exp, c) with EXP. 5091 setValue(&I, getValue(I.getArgOperand(0))); 5092 return nullptr; 5093 } 5094 5095 case Intrinsic::debugtrap: 5096 case Intrinsic::trap: { 5097 StringRef TrapFuncName = 5098 I.getAttributes() 5099 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 5100 .getValueAsString(); 5101 if (TrapFuncName.empty()) { 5102 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5103 ISD::TRAP : ISD::DEBUGTRAP; 5104 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5105 return nullptr; 5106 } 5107 TargetLowering::ArgListTy Args; 5108 5109 TargetLowering::CallLoweringInfo CLI(DAG); 5110 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5111 CallingConv::C, I.getType(), 5112 DAG.getExternalSymbol(TrapFuncName.data(), 5113 TLI.getPointerTy(DAG.getDataLayout())), 5114 std::move(Args), 0); 5115 5116 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5117 DAG.setRoot(Result.second); 5118 return nullptr; 5119 } 5120 5121 case Intrinsic::uadd_with_overflow: 5122 case Intrinsic::sadd_with_overflow: 5123 case Intrinsic::usub_with_overflow: 5124 case Intrinsic::ssub_with_overflow: 5125 case Intrinsic::umul_with_overflow: 5126 case Intrinsic::smul_with_overflow: { 5127 ISD::NodeType Op; 5128 switch (Intrinsic) { 5129 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5130 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5131 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5132 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5133 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5134 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5135 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5136 } 5137 SDValue Op1 = getValue(I.getArgOperand(0)); 5138 SDValue Op2 = getValue(I.getArgOperand(1)); 5139 5140 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5141 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5142 return nullptr; 5143 } 5144 case Intrinsic::prefetch: { 5145 SDValue Ops[5]; 5146 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5147 Ops[0] = getRoot(); 5148 Ops[1] = getValue(I.getArgOperand(0)); 5149 Ops[2] = getValue(I.getArgOperand(1)); 5150 Ops[3] = getValue(I.getArgOperand(2)); 5151 Ops[4] = getValue(I.getArgOperand(3)); 5152 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5153 DAG.getVTList(MVT::Other), Ops, 5154 EVT::getIntegerVT(*Context, 8), 5155 MachinePointerInfo(I.getArgOperand(0)), 5156 0, /* align */ 5157 false, /* volatile */ 5158 rw==0, /* read */ 5159 rw==1)); /* write */ 5160 return nullptr; 5161 } 5162 case Intrinsic::lifetime_start: 5163 case Intrinsic::lifetime_end: { 5164 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5165 // Stack coloring is not enabled in O0, discard region information. 5166 if (TM.getOptLevel() == CodeGenOpt::None) 5167 return nullptr; 5168 5169 SmallVector<Value *, 4> Allocas; 5170 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5171 5172 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5173 E = Allocas.end(); Object != E; ++Object) { 5174 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5175 5176 // Could not find an Alloca. 5177 if (!LifetimeObject) 5178 continue; 5179 5180 // First check that the Alloca is static, otherwise it won't have a 5181 // valid frame index. 5182 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5183 if (SI == FuncInfo.StaticAllocaMap.end()) 5184 return nullptr; 5185 5186 int FI = SI->second; 5187 5188 SDValue Ops[2]; 5189 Ops[0] = getRoot(); 5190 Ops[1] = 5191 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5192 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5193 5194 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5195 DAG.setRoot(Res); 5196 } 5197 return nullptr; 5198 } 5199 case Intrinsic::invariant_start: 5200 // Discard region information. 5201 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5202 return nullptr; 5203 case Intrinsic::invariant_end: 5204 // Discard region information. 5205 return nullptr; 5206 case Intrinsic::stackprotectorcheck: { 5207 // Do not actually emit anything for this basic block. Instead we initialize 5208 // the stack protector descriptor and export the guard variable so we can 5209 // access it in FinishBasicBlock. 5210 const BasicBlock *BB = I.getParent(); 5211 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5212 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5213 5214 // Flush our exports since we are going to process a terminator. 5215 (void)getControlRoot(); 5216 return nullptr; 5217 } 5218 case Intrinsic::clear_cache: 5219 return TLI.getClearCacheBuiltinName(); 5220 case Intrinsic::donothing: 5221 // ignore 5222 return nullptr; 5223 case Intrinsic::experimental_stackmap: { 5224 visitStackmap(I); 5225 return nullptr; 5226 } 5227 case Intrinsic::experimental_patchpoint_void: 5228 case Intrinsic::experimental_patchpoint_i64: { 5229 visitPatchpoint(&I); 5230 return nullptr; 5231 } 5232 case Intrinsic::experimental_gc_statepoint: { 5233 visitStatepoint(I); 5234 return nullptr; 5235 } 5236 case Intrinsic::experimental_gc_result: { 5237 visitGCResult(I); 5238 return nullptr; 5239 } 5240 case Intrinsic::experimental_gc_relocate: { 5241 visitGCRelocate(cast<GCRelocateInst>(I)); 5242 return nullptr; 5243 } 5244 case Intrinsic::instrprof_increment: 5245 llvm_unreachable("instrprof failed to lower an increment"); 5246 case Intrinsic::instrprof_value_profile: 5247 llvm_unreachable("instrprof failed to lower a value profiling call"); 5248 case Intrinsic::localescape: { 5249 MachineFunction &MF = DAG.getMachineFunction(); 5250 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5251 5252 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5253 // is the same on all targets. 5254 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5255 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5256 if (isa<ConstantPointerNull>(Arg)) 5257 continue; // Skip null pointers. They represent a hole in index space. 5258 AllocaInst *Slot = cast<AllocaInst>(Arg); 5259 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5260 "can only escape static allocas"); 5261 int FI = FuncInfo.StaticAllocaMap[Slot]; 5262 MCSymbol *FrameAllocSym = 5263 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5264 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5265 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5266 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5267 .addSym(FrameAllocSym) 5268 .addFrameIndex(FI); 5269 } 5270 5271 return nullptr; 5272 } 5273 5274 case Intrinsic::localrecover: { 5275 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5276 MachineFunction &MF = DAG.getMachineFunction(); 5277 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5278 5279 // Get the symbol that defines the frame offset. 5280 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5281 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5282 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5283 MCSymbol *FrameAllocSym = 5284 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5285 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5286 5287 // Create a MCSymbol for the label to avoid any target lowering 5288 // that would make this PC relative. 5289 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5290 SDValue OffsetVal = 5291 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5292 5293 // Add the offset to the FP. 5294 Value *FP = I.getArgOperand(1); 5295 SDValue FPVal = getValue(FP); 5296 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5297 setValue(&I, Add); 5298 5299 return nullptr; 5300 } 5301 5302 case Intrinsic::eh_exceptionpointer: 5303 case Intrinsic::eh_exceptioncode: { 5304 // Get the exception pointer vreg, copy from it, and resize it to fit. 5305 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5306 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5307 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5308 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5309 SDValue N = 5310 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5311 if (Intrinsic == Intrinsic::eh_exceptioncode) 5312 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5313 setValue(&I, N); 5314 return nullptr; 5315 } 5316 } 5317 } 5318 5319 std::pair<SDValue, SDValue> 5320 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5321 const BasicBlock *EHPadBB) { 5322 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5323 MCSymbol *BeginLabel = nullptr; 5324 5325 if (EHPadBB) { 5326 // Insert a label before the invoke call to mark the try range. This can be 5327 // used to detect deletion of the invoke via the MachineModuleInfo. 5328 BeginLabel = MMI.getContext().createTempSymbol(); 5329 5330 // For SjLj, keep track of which landing pads go with which invokes 5331 // so as to maintain the ordering of pads in the LSDA. 5332 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5333 if (CallSiteIndex) { 5334 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5335 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5336 5337 // Now that the call site is handled, stop tracking it. 5338 MMI.setCurrentCallSite(0); 5339 } 5340 5341 // Both PendingLoads and PendingExports must be flushed here; 5342 // this call might not return. 5343 (void)getRoot(); 5344 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5345 5346 CLI.setChain(getRoot()); 5347 } 5348 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5349 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5350 5351 assert((CLI.IsTailCall || Result.second.getNode()) && 5352 "Non-null chain expected with non-tail call!"); 5353 assert((Result.second.getNode() || !Result.first.getNode()) && 5354 "Null value expected with tail call!"); 5355 5356 if (!Result.second.getNode()) { 5357 // As a special case, a null chain means that a tail call has been emitted 5358 // and the DAG root is already updated. 5359 HasTailCall = true; 5360 5361 // Since there's no actual continuation from this block, nothing can be 5362 // relying on us setting vregs for them. 5363 PendingExports.clear(); 5364 } else { 5365 DAG.setRoot(Result.second); 5366 } 5367 5368 if (EHPadBB) { 5369 // Insert a label at the end of the invoke call to mark the try range. This 5370 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5371 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5372 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5373 5374 // Inform MachineModuleInfo of range. 5375 if (MMI.hasEHFunclets()) { 5376 assert(CLI.CS); 5377 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 5378 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()), 5379 BeginLabel, EndLabel); 5380 } else { 5381 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5382 } 5383 } 5384 5385 return Result; 5386 } 5387 5388 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5389 bool isTailCall, 5390 const BasicBlock *EHPadBB) { 5391 FunctionType *FTy = CS.getFunctionType(); 5392 Type *RetTy = CS.getType(); 5393 5394 TargetLowering::ArgListTy Args; 5395 TargetLowering::ArgListEntry Entry; 5396 Args.reserve(CS.arg_size()); 5397 5398 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5399 i != e; ++i) { 5400 const Value *V = *i; 5401 5402 // Skip empty types 5403 if (V->getType()->isEmptyTy()) 5404 continue; 5405 5406 SDValue ArgNode = getValue(V); 5407 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5408 5409 // Skip the first return-type Attribute to get to params. 5410 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5411 Args.push_back(Entry); 5412 5413 // If we have an explicit sret argument that is an Instruction, (i.e., it 5414 // might point to function-local memory), we can't meaningfully tail-call. 5415 if (Entry.isSRet && isa<Instruction>(V)) 5416 isTailCall = false; 5417 } 5418 5419 // Check if target-independent constraints permit a tail call here. 5420 // Target-dependent constraints are checked within TLI->LowerCallTo. 5421 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5422 isTailCall = false; 5423 5424 TargetLowering::CallLoweringInfo CLI(DAG); 5425 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5426 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5427 .setTailCall(isTailCall); 5428 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5429 5430 if (Result.first.getNode()) { 5431 const Instruction *Inst = CS.getInstruction(); 5432 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 5433 setValue(Inst, Result.first); 5434 } 5435 } 5436 5437 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5438 /// value is equal or not-equal to zero. 5439 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5440 for (const User *U : V->users()) { 5441 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5442 if (IC->isEquality()) 5443 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5444 if (C->isNullValue()) 5445 continue; 5446 // Unknown instruction. 5447 return false; 5448 } 5449 return true; 5450 } 5451 5452 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5453 Type *LoadTy, 5454 SelectionDAGBuilder &Builder) { 5455 5456 // Check to see if this load can be trivially constant folded, e.g. if the 5457 // input is from a string literal. 5458 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5459 // Cast pointer to the type we really want to load. 5460 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5461 PointerType::getUnqual(LoadTy)); 5462 5463 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5464 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 5465 return Builder.getValue(LoadCst); 5466 } 5467 5468 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5469 // still constant memory, the input chain can be the entry node. 5470 SDValue Root; 5471 bool ConstantMemory = false; 5472 5473 // Do not serialize (non-volatile) loads of constant memory with anything. 5474 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5475 Root = Builder.DAG.getEntryNode(); 5476 ConstantMemory = true; 5477 } else { 5478 // Do not serialize non-volatile loads against each other. 5479 Root = Builder.DAG.getRoot(); 5480 } 5481 5482 SDValue Ptr = Builder.getValue(PtrVal); 5483 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5484 Ptr, MachinePointerInfo(PtrVal), 5485 false /*volatile*/, 5486 false /*nontemporal*/, 5487 false /*isinvariant*/, 1 /* align=1 */); 5488 5489 if (!ConstantMemory) 5490 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5491 return LoadVal; 5492 } 5493 5494 /// processIntegerCallValue - Record the value for an instruction that 5495 /// produces an integer result, converting the type where necessary. 5496 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5497 SDValue Value, 5498 bool IsSigned) { 5499 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5500 I.getType(), true); 5501 if (IsSigned) 5502 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5503 else 5504 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5505 setValue(&I, Value); 5506 } 5507 5508 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5509 /// If so, return true and lower it, otherwise return false and it will be 5510 /// lowered like a normal call. 5511 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5512 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5513 if (I.getNumArgOperands() != 3) 5514 return false; 5515 5516 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5517 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5518 !I.getArgOperand(2)->getType()->isIntegerTy() || 5519 !I.getType()->isIntegerTy()) 5520 return false; 5521 5522 const Value *Size = I.getArgOperand(2); 5523 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5524 if (CSize && CSize->getZExtValue() == 0) { 5525 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5526 I.getType(), true); 5527 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5528 return true; 5529 } 5530 5531 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5532 std::pair<SDValue, SDValue> Res = 5533 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5534 getValue(LHS), getValue(RHS), getValue(Size), 5535 MachinePointerInfo(LHS), 5536 MachinePointerInfo(RHS)); 5537 if (Res.first.getNode()) { 5538 processIntegerCallValue(I, Res.first, true); 5539 PendingLoads.push_back(Res.second); 5540 return true; 5541 } 5542 5543 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5544 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5545 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5546 bool ActuallyDoIt = true; 5547 MVT LoadVT; 5548 Type *LoadTy; 5549 switch (CSize->getZExtValue()) { 5550 default: 5551 LoadVT = MVT::Other; 5552 LoadTy = nullptr; 5553 ActuallyDoIt = false; 5554 break; 5555 case 2: 5556 LoadVT = MVT::i16; 5557 LoadTy = Type::getInt16Ty(CSize->getContext()); 5558 break; 5559 case 4: 5560 LoadVT = MVT::i32; 5561 LoadTy = Type::getInt32Ty(CSize->getContext()); 5562 break; 5563 case 8: 5564 LoadVT = MVT::i64; 5565 LoadTy = Type::getInt64Ty(CSize->getContext()); 5566 break; 5567 /* 5568 case 16: 5569 LoadVT = MVT::v4i32; 5570 LoadTy = Type::getInt32Ty(CSize->getContext()); 5571 LoadTy = VectorType::get(LoadTy, 4); 5572 break; 5573 */ 5574 } 5575 5576 // This turns into unaligned loads. We only do this if the target natively 5577 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5578 // we'll only produce a small number of byte loads. 5579 5580 // Require that we can find a legal MVT, and only do this if the target 5581 // supports unaligned loads of that type. Expanding into byte loads would 5582 // bloat the code. 5583 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5584 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5585 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5586 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5587 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5588 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5589 // TODO: Check alignment of src and dest ptrs. 5590 if (!TLI.isTypeLegal(LoadVT) || 5591 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5592 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5593 ActuallyDoIt = false; 5594 } 5595 5596 if (ActuallyDoIt) { 5597 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5598 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5599 5600 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5601 ISD::SETNE); 5602 processIntegerCallValue(I, Res, false); 5603 return true; 5604 } 5605 } 5606 5607 5608 return false; 5609 } 5610 5611 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5612 /// form. If so, return true and lower it, otherwise return false and it 5613 /// will be lowered like a normal call. 5614 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5615 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5616 if (I.getNumArgOperands() != 3) 5617 return false; 5618 5619 const Value *Src = I.getArgOperand(0); 5620 const Value *Char = I.getArgOperand(1); 5621 const Value *Length = I.getArgOperand(2); 5622 if (!Src->getType()->isPointerTy() || 5623 !Char->getType()->isIntegerTy() || 5624 !Length->getType()->isIntegerTy() || 5625 !I.getType()->isPointerTy()) 5626 return false; 5627 5628 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5629 std::pair<SDValue, SDValue> Res = 5630 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5631 getValue(Src), getValue(Char), getValue(Length), 5632 MachinePointerInfo(Src)); 5633 if (Res.first.getNode()) { 5634 setValue(&I, Res.first); 5635 PendingLoads.push_back(Res.second); 5636 return true; 5637 } 5638 5639 return false; 5640 } 5641 5642 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5643 /// optimized form. If so, return true and lower it, otherwise return false 5644 /// and it will be lowered like a normal call. 5645 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5646 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5647 if (I.getNumArgOperands() != 2) 5648 return false; 5649 5650 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5651 if (!Arg0->getType()->isPointerTy() || 5652 !Arg1->getType()->isPointerTy() || 5653 !I.getType()->isPointerTy()) 5654 return false; 5655 5656 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5657 std::pair<SDValue, SDValue> Res = 5658 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5659 getValue(Arg0), getValue(Arg1), 5660 MachinePointerInfo(Arg0), 5661 MachinePointerInfo(Arg1), isStpcpy); 5662 if (Res.first.getNode()) { 5663 setValue(&I, Res.first); 5664 DAG.setRoot(Res.second); 5665 return true; 5666 } 5667 5668 return false; 5669 } 5670 5671 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5672 /// If so, return true and lower it, otherwise return false and it will be 5673 /// lowered like a normal call. 5674 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5675 // Verify that the prototype makes sense. int strcmp(void*,void*) 5676 if (I.getNumArgOperands() != 2) 5677 return false; 5678 5679 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5680 if (!Arg0->getType()->isPointerTy() || 5681 !Arg1->getType()->isPointerTy() || 5682 !I.getType()->isIntegerTy()) 5683 return false; 5684 5685 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5686 std::pair<SDValue, SDValue> Res = 5687 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5688 getValue(Arg0), getValue(Arg1), 5689 MachinePointerInfo(Arg0), 5690 MachinePointerInfo(Arg1)); 5691 if (Res.first.getNode()) { 5692 processIntegerCallValue(I, Res.first, true); 5693 PendingLoads.push_back(Res.second); 5694 return true; 5695 } 5696 5697 return false; 5698 } 5699 5700 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5701 /// form. If so, return true and lower it, otherwise return false and it 5702 /// will be lowered like a normal call. 5703 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5704 // Verify that the prototype makes sense. size_t strlen(char *) 5705 if (I.getNumArgOperands() != 1) 5706 return false; 5707 5708 const Value *Arg0 = I.getArgOperand(0); 5709 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5710 return false; 5711 5712 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5713 std::pair<SDValue, SDValue> Res = 5714 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5715 getValue(Arg0), MachinePointerInfo(Arg0)); 5716 if (Res.first.getNode()) { 5717 processIntegerCallValue(I, Res.first, false); 5718 PendingLoads.push_back(Res.second); 5719 return true; 5720 } 5721 5722 return false; 5723 } 5724 5725 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5726 /// form. If so, return true and lower it, otherwise return false and it 5727 /// will be lowered like a normal call. 5728 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5729 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5730 if (I.getNumArgOperands() != 2) 5731 return false; 5732 5733 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5734 if (!Arg0->getType()->isPointerTy() || 5735 !Arg1->getType()->isIntegerTy() || 5736 !I.getType()->isIntegerTy()) 5737 return false; 5738 5739 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5740 std::pair<SDValue, SDValue> Res = 5741 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5742 getValue(Arg0), getValue(Arg1), 5743 MachinePointerInfo(Arg0)); 5744 if (Res.first.getNode()) { 5745 processIntegerCallValue(I, Res.first, false); 5746 PendingLoads.push_back(Res.second); 5747 return true; 5748 } 5749 5750 return false; 5751 } 5752 5753 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5754 /// operation (as expected), translate it to an SDNode with the specified opcode 5755 /// and return true. 5756 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5757 unsigned Opcode) { 5758 // Sanity check that it really is a unary floating-point call. 5759 if (I.getNumArgOperands() != 1 || 5760 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5761 I.getType() != I.getArgOperand(0)->getType() || 5762 !I.onlyReadsMemory()) 5763 return false; 5764 5765 SDValue Tmp = getValue(I.getArgOperand(0)); 5766 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5767 return true; 5768 } 5769 5770 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5771 /// operation (as expected), translate it to an SDNode with the specified opcode 5772 /// and return true. 5773 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5774 unsigned Opcode) { 5775 // Sanity check that it really is a binary floating-point call. 5776 if (I.getNumArgOperands() != 2 || 5777 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5778 I.getType() != I.getArgOperand(0)->getType() || 5779 I.getType() != I.getArgOperand(1)->getType() || 5780 !I.onlyReadsMemory()) 5781 return false; 5782 5783 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5784 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5785 EVT VT = Tmp0.getValueType(); 5786 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5787 return true; 5788 } 5789 5790 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5791 // Handle inline assembly differently. 5792 if (isa<InlineAsm>(I.getCalledValue())) { 5793 visitInlineAsm(&I); 5794 return; 5795 } 5796 5797 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5798 ComputeUsesVAFloatArgument(I, &MMI); 5799 5800 const char *RenameFn = nullptr; 5801 if (Function *F = I.getCalledFunction()) { 5802 if (F->isDeclaration()) { 5803 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5804 if (unsigned IID = II->getIntrinsicID(F)) { 5805 RenameFn = visitIntrinsicCall(I, IID); 5806 if (!RenameFn) 5807 return; 5808 } 5809 } 5810 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5811 RenameFn = visitIntrinsicCall(I, IID); 5812 if (!RenameFn) 5813 return; 5814 } 5815 } 5816 5817 // Check for well-known libc/libm calls. If the function is internal, it 5818 // can't be a library call. 5819 LibFunc::Func Func; 5820 if (!F->hasLocalLinkage() && F->hasName() && 5821 LibInfo->getLibFunc(F->getName(), Func) && 5822 LibInfo->hasOptimizedCodeGen(Func)) { 5823 switch (Func) { 5824 default: break; 5825 case LibFunc::copysign: 5826 case LibFunc::copysignf: 5827 case LibFunc::copysignl: 5828 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5829 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5830 I.getType() == I.getArgOperand(0)->getType() && 5831 I.getType() == I.getArgOperand(1)->getType() && 5832 I.onlyReadsMemory()) { 5833 SDValue LHS = getValue(I.getArgOperand(0)); 5834 SDValue RHS = getValue(I.getArgOperand(1)); 5835 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5836 LHS.getValueType(), LHS, RHS)); 5837 return; 5838 } 5839 break; 5840 case LibFunc::fabs: 5841 case LibFunc::fabsf: 5842 case LibFunc::fabsl: 5843 if (visitUnaryFloatCall(I, ISD::FABS)) 5844 return; 5845 break; 5846 case LibFunc::fmin: 5847 case LibFunc::fminf: 5848 case LibFunc::fminl: 5849 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5850 return; 5851 break; 5852 case LibFunc::fmax: 5853 case LibFunc::fmaxf: 5854 case LibFunc::fmaxl: 5855 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5856 return; 5857 break; 5858 case LibFunc::sin: 5859 case LibFunc::sinf: 5860 case LibFunc::sinl: 5861 if (visitUnaryFloatCall(I, ISD::FSIN)) 5862 return; 5863 break; 5864 case LibFunc::cos: 5865 case LibFunc::cosf: 5866 case LibFunc::cosl: 5867 if (visitUnaryFloatCall(I, ISD::FCOS)) 5868 return; 5869 break; 5870 case LibFunc::sqrt: 5871 case LibFunc::sqrtf: 5872 case LibFunc::sqrtl: 5873 case LibFunc::sqrt_finite: 5874 case LibFunc::sqrtf_finite: 5875 case LibFunc::sqrtl_finite: 5876 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5877 return; 5878 break; 5879 case LibFunc::floor: 5880 case LibFunc::floorf: 5881 case LibFunc::floorl: 5882 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5883 return; 5884 break; 5885 case LibFunc::nearbyint: 5886 case LibFunc::nearbyintf: 5887 case LibFunc::nearbyintl: 5888 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5889 return; 5890 break; 5891 case LibFunc::ceil: 5892 case LibFunc::ceilf: 5893 case LibFunc::ceill: 5894 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5895 return; 5896 break; 5897 case LibFunc::rint: 5898 case LibFunc::rintf: 5899 case LibFunc::rintl: 5900 if (visitUnaryFloatCall(I, ISD::FRINT)) 5901 return; 5902 break; 5903 case LibFunc::round: 5904 case LibFunc::roundf: 5905 case LibFunc::roundl: 5906 if (visitUnaryFloatCall(I, ISD::FROUND)) 5907 return; 5908 break; 5909 case LibFunc::trunc: 5910 case LibFunc::truncf: 5911 case LibFunc::truncl: 5912 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5913 return; 5914 break; 5915 case LibFunc::log2: 5916 case LibFunc::log2f: 5917 case LibFunc::log2l: 5918 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5919 return; 5920 break; 5921 case LibFunc::exp2: 5922 case LibFunc::exp2f: 5923 case LibFunc::exp2l: 5924 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5925 return; 5926 break; 5927 case LibFunc::memcmp: 5928 if (visitMemCmpCall(I)) 5929 return; 5930 break; 5931 case LibFunc::memchr: 5932 if (visitMemChrCall(I)) 5933 return; 5934 break; 5935 case LibFunc::strcpy: 5936 if (visitStrCpyCall(I, false)) 5937 return; 5938 break; 5939 case LibFunc::stpcpy: 5940 if (visitStrCpyCall(I, true)) 5941 return; 5942 break; 5943 case LibFunc::strcmp: 5944 if (visitStrCmpCall(I)) 5945 return; 5946 break; 5947 case LibFunc::strlen: 5948 if (visitStrLenCall(I)) 5949 return; 5950 break; 5951 case LibFunc::strnlen: 5952 if (visitStrNLenCall(I)) 5953 return; 5954 break; 5955 } 5956 } 5957 } 5958 5959 SDValue Callee; 5960 if (!RenameFn) 5961 Callee = getValue(I.getCalledValue()); 5962 else 5963 Callee = DAG.getExternalSymbol( 5964 RenameFn, 5965 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5966 5967 // Check if we can potentially perform a tail call. More detailed checking is 5968 // be done within LowerCallTo, after more information about the call is known. 5969 LowerCallTo(&I, Callee, I.isTailCall()); 5970 } 5971 5972 namespace { 5973 5974 /// AsmOperandInfo - This contains information for each constraint that we are 5975 /// lowering. 5976 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5977 public: 5978 /// CallOperand - If this is the result output operand or a clobber 5979 /// this is null, otherwise it is the incoming operand to the CallInst. 5980 /// This gets modified as the asm is processed. 5981 SDValue CallOperand; 5982 5983 /// AssignedRegs - If this is a register or register class operand, this 5984 /// contains the set of register corresponding to the operand. 5985 RegsForValue AssignedRegs; 5986 5987 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5988 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5989 } 5990 5991 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5992 /// corresponds to. If there is no Value* for this operand, it returns 5993 /// MVT::Other. 5994 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5995 const DataLayout &DL) const { 5996 if (!CallOperandVal) return MVT::Other; 5997 5998 if (isa<BasicBlock>(CallOperandVal)) 5999 return TLI.getPointerTy(DL); 6000 6001 llvm::Type *OpTy = CallOperandVal->getType(); 6002 6003 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6004 // If this is an indirect operand, the operand is a pointer to the 6005 // accessed type. 6006 if (isIndirect) { 6007 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6008 if (!PtrTy) 6009 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6010 OpTy = PtrTy->getElementType(); 6011 } 6012 6013 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6014 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6015 if (STy->getNumElements() == 1) 6016 OpTy = STy->getElementType(0); 6017 6018 // If OpTy is not a single value, it may be a struct/union that we 6019 // can tile with integers. 6020 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6021 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 6022 switch (BitSize) { 6023 default: break; 6024 case 1: 6025 case 8: 6026 case 16: 6027 case 32: 6028 case 64: 6029 case 128: 6030 OpTy = IntegerType::get(Context, BitSize); 6031 break; 6032 } 6033 } 6034 6035 return TLI.getValueType(DL, OpTy, true); 6036 } 6037 }; 6038 6039 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6040 6041 } // end anonymous namespace 6042 6043 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6044 /// specified operand. We prefer to assign virtual registers, to allow the 6045 /// register allocator to handle the assignment process. However, if the asm 6046 /// uses features that we can't model on machineinstrs, we have SDISel do the 6047 /// allocation. This produces generally horrible, but correct, code. 6048 /// 6049 /// OpInfo describes the operand. 6050 /// 6051 static void GetRegistersForValue(SelectionDAG &DAG, 6052 const TargetLowering &TLI, 6053 SDLoc DL, 6054 SDISelAsmOperandInfo &OpInfo) { 6055 LLVMContext &Context = *DAG.getContext(); 6056 6057 MachineFunction &MF = DAG.getMachineFunction(); 6058 SmallVector<unsigned, 4> Regs; 6059 6060 // If this is a constraint for a single physreg, or a constraint for a 6061 // register class, find it. 6062 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6063 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6064 OpInfo.ConstraintCode, 6065 OpInfo.ConstraintVT); 6066 6067 unsigned NumRegs = 1; 6068 if (OpInfo.ConstraintVT != MVT::Other) { 6069 // If this is a FP input in an integer register (or visa versa) insert a bit 6070 // cast of the input value. More generally, handle any case where the input 6071 // value disagrees with the register class we plan to stick this in. 6072 if (OpInfo.Type == InlineAsm::isInput && 6073 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6074 // Try to convert to the first EVT that the reg class contains. If the 6075 // types are identical size, use a bitcast to convert (e.g. two differing 6076 // vector types). 6077 MVT RegVT = *PhysReg.second->vt_begin(); 6078 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6079 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6080 RegVT, OpInfo.CallOperand); 6081 OpInfo.ConstraintVT = RegVT; 6082 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6083 // If the input is a FP value and we want it in FP registers, do a 6084 // bitcast to the corresponding integer type. This turns an f64 value 6085 // into i64, which can be passed with two i32 values on a 32-bit 6086 // machine. 6087 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6088 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6089 RegVT, OpInfo.CallOperand); 6090 OpInfo.ConstraintVT = RegVT; 6091 } 6092 } 6093 6094 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6095 } 6096 6097 MVT RegVT; 6098 EVT ValueVT = OpInfo.ConstraintVT; 6099 6100 // If this is a constraint for a specific physical register, like {r17}, 6101 // assign it now. 6102 if (unsigned AssignedReg = PhysReg.first) { 6103 const TargetRegisterClass *RC = PhysReg.second; 6104 if (OpInfo.ConstraintVT == MVT::Other) 6105 ValueVT = *RC->vt_begin(); 6106 6107 // Get the actual register value type. This is important, because the user 6108 // may have asked for (e.g.) the AX register in i32 type. We need to 6109 // remember that AX is actually i16 to get the right extension. 6110 RegVT = *RC->vt_begin(); 6111 6112 // This is a explicit reference to a physical register. 6113 Regs.push_back(AssignedReg); 6114 6115 // If this is an expanded reference, add the rest of the regs to Regs. 6116 if (NumRegs != 1) { 6117 TargetRegisterClass::iterator I = RC->begin(); 6118 for (; *I != AssignedReg; ++I) 6119 assert(I != RC->end() && "Didn't find reg!"); 6120 6121 // Already added the first reg. 6122 --NumRegs; ++I; 6123 for (; NumRegs; --NumRegs, ++I) { 6124 assert(I != RC->end() && "Ran out of registers to allocate!"); 6125 Regs.push_back(*I); 6126 } 6127 } 6128 6129 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6130 return; 6131 } 6132 6133 // Otherwise, if this was a reference to an LLVM register class, create vregs 6134 // for this reference. 6135 if (const TargetRegisterClass *RC = PhysReg.second) { 6136 RegVT = *RC->vt_begin(); 6137 if (OpInfo.ConstraintVT == MVT::Other) 6138 ValueVT = RegVT; 6139 6140 // Create the appropriate number of virtual registers. 6141 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6142 for (; NumRegs; --NumRegs) 6143 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6144 6145 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6146 return; 6147 } 6148 6149 // Otherwise, we couldn't allocate enough registers for this. 6150 } 6151 6152 /// visitInlineAsm - Handle a call to an InlineAsm object. 6153 /// 6154 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6155 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6156 6157 /// ConstraintOperands - Information about all of the constraints. 6158 SDISelAsmOperandInfoVector ConstraintOperands; 6159 6160 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6161 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6162 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6163 6164 bool hasMemory = false; 6165 6166 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6167 unsigned ResNo = 0; // ResNo - The result number of the next output. 6168 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6169 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6170 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6171 6172 MVT OpVT = MVT::Other; 6173 6174 // Compute the value type for each operand. 6175 switch (OpInfo.Type) { 6176 case InlineAsm::isOutput: 6177 // Indirect outputs just consume an argument. 6178 if (OpInfo.isIndirect) { 6179 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6180 break; 6181 } 6182 6183 // The return value of the call is this value. As such, there is no 6184 // corresponding argument. 6185 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6186 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6187 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6188 STy->getElementType(ResNo)); 6189 } else { 6190 assert(ResNo == 0 && "Asm only has one result!"); 6191 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6192 } 6193 ++ResNo; 6194 break; 6195 case InlineAsm::isInput: 6196 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6197 break; 6198 case InlineAsm::isClobber: 6199 // Nothing to do. 6200 break; 6201 } 6202 6203 // If this is an input or an indirect output, process the call argument. 6204 // BasicBlocks are labels, currently appearing only in asm's. 6205 if (OpInfo.CallOperandVal) { 6206 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6207 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6208 } else { 6209 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6210 } 6211 6212 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6213 DAG.getDataLayout()).getSimpleVT(); 6214 } 6215 6216 OpInfo.ConstraintVT = OpVT; 6217 6218 // Indirect operand accesses access memory. 6219 if (OpInfo.isIndirect) 6220 hasMemory = true; 6221 else { 6222 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6223 TargetLowering::ConstraintType 6224 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6225 if (CType == TargetLowering::C_Memory) { 6226 hasMemory = true; 6227 break; 6228 } 6229 } 6230 } 6231 } 6232 6233 SDValue Chain, Flag; 6234 6235 // We won't need to flush pending loads if this asm doesn't touch 6236 // memory and is nonvolatile. 6237 if (hasMemory || IA->hasSideEffects()) 6238 Chain = getRoot(); 6239 else 6240 Chain = DAG.getRoot(); 6241 6242 // Second pass over the constraints: compute which constraint option to use 6243 // and assign registers to constraints that want a specific physreg. 6244 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6245 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6246 6247 // If this is an output operand with a matching input operand, look up the 6248 // matching input. If their types mismatch, e.g. one is an integer, the 6249 // other is floating point, or their sizes are different, flag it as an 6250 // error. 6251 if (OpInfo.hasMatchingInput()) { 6252 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6253 6254 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6255 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6256 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6257 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6258 OpInfo.ConstraintVT); 6259 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6260 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6261 Input.ConstraintVT); 6262 if ((OpInfo.ConstraintVT.isInteger() != 6263 Input.ConstraintVT.isInteger()) || 6264 (MatchRC.second != InputRC.second)) { 6265 report_fatal_error("Unsupported asm: input constraint" 6266 " with a matching output constraint of" 6267 " incompatible type!"); 6268 } 6269 Input.ConstraintVT = OpInfo.ConstraintVT; 6270 } 6271 } 6272 6273 // Compute the constraint code and ConstraintType to use. 6274 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6275 6276 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6277 OpInfo.Type == InlineAsm::isClobber) 6278 continue; 6279 6280 // If this is a memory input, and if the operand is not indirect, do what we 6281 // need to to provide an address for the memory input. 6282 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6283 !OpInfo.isIndirect) { 6284 assert((OpInfo.isMultipleAlternative || 6285 (OpInfo.Type == InlineAsm::isInput)) && 6286 "Can only indirectify direct input operands!"); 6287 6288 // Memory operands really want the address of the value. If we don't have 6289 // an indirect input, put it in the constpool if we can, otherwise spill 6290 // it to a stack slot. 6291 // TODO: This isn't quite right. We need to handle these according to 6292 // the addressing mode that the constraint wants. Also, this may take 6293 // an additional register for the computation and we don't want that 6294 // either. 6295 6296 // If the operand is a float, integer, or vector constant, spill to a 6297 // constant pool entry to get its address. 6298 const Value *OpVal = OpInfo.CallOperandVal; 6299 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6300 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6301 OpInfo.CallOperand = DAG.getConstantPool( 6302 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6303 } else { 6304 // Otherwise, create a stack slot and emit a store to it before the 6305 // asm. 6306 Type *Ty = OpVal->getType(); 6307 auto &DL = DAG.getDataLayout(); 6308 uint64_t TySize = DL.getTypeAllocSize(Ty); 6309 unsigned Align = DL.getPrefTypeAlignment(Ty); 6310 MachineFunction &MF = DAG.getMachineFunction(); 6311 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6312 SDValue StackSlot = 6313 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6314 Chain = DAG.getStore( 6315 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6316 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6317 false, false, 0); 6318 OpInfo.CallOperand = StackSlot; 6319 } 6320 6321 // There is no longer a Value* corresponding to this operand. 6322 OpInfo.CallOperandVal = nullptr; 6323 6324 // It is now an indirect operand. 6325 OpInfo.isIndirect = true; 6326 } 6327 6328 // If this constraint is for a specific register, allocate it before 6329 // anything else. 6330 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6331 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6332 } 6333 6334 // Second pass - Loop over all of the operands, assigning virtual or physregs 6335 // to register class operands. 6336 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6337 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6338 6339 // C_Register operands have already been allocated, Other/Memory don't need 6340 // to be. 6341 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6342 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6343 } 6344 6345 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6346 std::vector<SDValue> AsmNodeOperands; 6347 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6348 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6349 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6350 6351 // If we have a !srcloc metadata node associated with it, we want to attach 6352 // this to the ultimately generated inline asm machineinstr. To do this, we 6353 // pass in the third operand as this (potentially null) inline asm MDNode. 6354 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6355 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6356 6357 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6358 // bits as operand 3. 6359 unsigned ExtraInfo = 0; 6360 if (IA->hasSideEffects()) 6361 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6362 if (IA->isAlignStack()) 6363 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6364 // Set the asm dialect. 6365 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6366 6367 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6368 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6369 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6370 6371 // Compute the constraint code and ConstraintType to use. 6372 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6373 6374 // Ideally, we would only check against memory constraints. However, the 6375 // meaning of an other constraint can be target-specific and we can't easily 6376 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6377 // for other constriants as well. 6378 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6379 OpInfo.ConstraintType == TargetLowering::C_Other) { 6380 if (OpInfo.Type == InlineAsm::isInput) 6381 ExtraInfo |= InlineAsm::Extra_MayLoad; 6382 else if (OpInfo.Type == InlineAsm::isOutput) 6383 ExtraInfo |= InlineAsm::Extra_MayStore; 6384 else if (OpInfo.Type == InlineAsm::isClobber) 6385 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6386 } 6387 } 6388 6389 AsmNodeOperands.push_back(DAG.getTargetConstant( 6390 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6391 6392 // Loop over all of the inputs, copying the operand values into the 6393 // appropriate registers and processing the output regs. 6394 RegsForValue RetValRegs; 6395 6396 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6397 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6398 6399 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6400 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6401 6402 switch (OpInfo.Type) { 6403 case InlineAsm::isOutput: { 6404 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6405 OpInfo.ConstraintType != TargetLowering::C_Register) { 6406 // Memory output, or 'other' output (e.g. 'X' constraint). 6407 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6408 6409 unsigned ConstraintID = 6410 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6411 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6412 "Failed to convert memory constraint code to constraint id."); 6413 6414 // Add information to the INLINEASM node to know about this output. 6415 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6416 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6417 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6418 MVT::i32)); 6419 AsmNodeOperands.push_back(OpInfo.CallOperand); 6420 break; 6421 } 6422 6423 // Otherwise, this is a register or register class output. 6424 6425 // Copy the output from the appropriate register. Find a register that 6426 // we can use. 6427 if (OpInfo.AssignedRegs.Regs.empty()) { 6428 LLVMContext &Ctx = *DAG.getContext(); 6429 Ctx.emitError(CS.getInstruction(), 6430 "couldn't allocate output register for constraint '" + 6431 Twine(OpInfo.ConstraintCode) + "'"); 6432 return; 6433 } 6434 6435 // If this is an indirect operand, store through the pointer after the 6436 // asm. 6437 if (OpInfo.isIndirect) { 6438 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6439 OpInfo.CallOperandVal)); 6440 } else { 6441 // This is the result value of the call. 6442 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6443 // Concatenate this output onto the outputs list. 6444 RetValRegs.append(OpInfo.AssignedRegs); 6445 } 6446 6447 // Add information to the INLINEASM node to know that this register is 6448 // set. 6449 OpInfo.AssignedRegs 6450 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6451 ? InlineAsm::Kind_RegDefEarlyClobber 6452 : InlineAsm::Kind_RegDef, 6453 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6454 break; 6455 } 6456 case InlineAsm::isInput: { 6457 SDValue InOperandVal = OpInfo.CallOperand; 6458 6459 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6460 // If this is required to match an output register we have already set, 6461 // just use its register. 6462 unsigned OperandNo = OpInfo.getMatchedOperand(); 6463 6464 // Scan until we find the definition we already emitted of this operand. 6465 // When we find it, create a RegsForValue operand. 6466 unsigned CurOp = InlineAsm::Op_FirstOperand; 6467 for (; OperandNo; --OperandNo) { 6468 // Advance to the next operand. 6469 unsigned OpFlag = 6470 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6471 assert((InlineAsm::isRegDefKind(OpFlag) || 6472 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6473 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6474 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6475 } 6476 6477 unsigned OpFlag = 6478 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6479 if (InlineAsm::isRegDefKind(OpFlag) || 6480 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6481 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6482 if (OpInfo.isIndirect) { 6483 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6484 LLVMContext &Ctx = *DAG.getContext(); 6485 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6486 " don't know how to handle tied " 6487 "indirect register inputs"); 6488 return; 6489 } 6490 6491 RegsForValue MatchedRegs; 6492 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6493 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6494 MatchedRegs.RegVTs.push_back(RegVT); 6495 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6496 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6497 i != e; ++i) { 6498 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6499 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6500 else { 6501 LLVMContext &Ctx = *DAG.getContext(); 6502 Ctx.emitError(CS.getInstruction(), 6503 "inline asm error: This value" 6504 " type register class is not natively supported!"); 6505 return; 6506 } 6507 } 6508 SDLoc dl = getCurSDLoc(); 6509 // Use the produced MatchedRegs object to 6510 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6511 Chain, &Flag, CS.getInstruction()); 6512 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6513 true, OpInfo.getMatchedOperand(), dl, 6514 DAG, AsmNodeOperands); 6515 break; 6516 } 6517 6518 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6519 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6520 "Unexpected number of operands"); 6521 // Add information to the INLINEASM node to know about this input. 6522 // See InlineAsm.h isUseOperandTiedToDef. 6523 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6524 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6525 OpInfo.getMatchedOperand()); 6526 AsmNodeOperands.push_back(DAG.getTargetConstant( 6527 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6528 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6529 break; 6530 } 6531 6532 // Treat indirect 'X' constraint as memory. 6533 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6534 OpInfo.isIndirect) 6535 OpInfo.ConstraintType = TargetLowering::C_Memory; 6536 6537 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6538 std::vector<SDValue> Ops; 6539 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6540 Ops, DAG); 6541 if (Ops.empty()) { 6542 LLVMContext &Ctx = *DAG.getContext(); 6543 Ctx.emitError(CS.getInstruction(), 6544 "invalid operand for inline asm constraint '" + 6545 Twine(OpInfo.ConstraintCode) + "'"); 6546 return; 6547 } 6548 6549 // Add information to the INLINEASM node to know about this input. 6550 unsigned ResOpType = 6551 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6552 AsmNodeOperands.push_back(DAG.getTargetConstant( 6553 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6554 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6555 break; 6556 } 6557 6558 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6559 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6560 assert(InOperandVal.getValueType() == 6561 TLI.getPointerTy(DAG.getDataLayout()) && 6562 "Memory operands expect pointer values"); 6563 6564 unsigned ConstraintID = 6565 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6566 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6567 "Failed to convert memory constraint code to constraint id."); 6568 6569 // Add information to the INLINEASM node to know about this input. 6570 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6571 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6572 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6573 getCurSDLoc(), 6574 MVT::i32)); 6575 AsmNodeOperands.push_back(InOperandVal); 6576 break; 6577 } 6578 6579 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6580 OpInfo.ConstraintType == TargetLowering::C_Register) && 6581 "Unknown constraint type!"); 6582 6583 // TODO: Support this. 6584 if (OpInfo.isIndirect) { 6585 LLVMContext &Ctx = *DAG.getContext(); 6586 Ctx.emitError(CS.getInstruction(), 6587 "Don't know how to handle indirect register inputs yet " 6588 "for constraint '" + 6589 Twine(OpInfo.ConstraintCode) + "'"); 6590 return; 6591 } 6592 6593 // Copy the input into the appropriate registers. 6594 if (OpInfo.AssignedRegs.Regs.empty()) { 6595 LLVMContext &Ctx = *DAG.getContext(); 6596 Ctx.emitError(CS.getInstruction(), 6597 "couldn't allocate input reg for constraint '" + 6598 Twine(OpInfo.ConstraintCode) + "'"); 6599 return; 6600 } 6601 6602 SDLoc dl = getCurSDLoc(); 6603 6604 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6605 Chain, &Flag, CS.getInstruction()); 6606 6607 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6608 dl, DAG, AsmNodeOperands); 6609 break; 6610 } 6611 case InlineAsm::isClobber: { 6612 // Add the clobbered value to the operand list, so that the register 6613 // allocator is aware that the physreg got clobbered. 6614 if (!OpInfo.AssignedRegs.Regs.empty()) 6615 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6616 false, 0, getCurSDLoc(), DAG, 6617 AsmNodeOperands); 6618 break; 6619 } 6620 } 6621 } 6622 6623 // Finish up input operands. Set the input chain and add the flag last. 6624 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6625 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6626 6627 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6628 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6629 Flag = Chain.getValue(1); 6630 6631 // If this asm returns a register value, copy the result from that register 6632 // and set it as the value of the call. 6633 if (!RetValRegs.Regs.empty()) { 6634 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6635 Chain, &Flag, CS.getInstruction()); 6636 6637 // FIXME: Why don't we do this for inline asms with MRVs? 6638 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6639 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6640 6641 // If any of the results of the inline asm is a vector, it may have the 6642 // wrong width/num elts. This can happen for register classes that can 6643 // contain multiple different value types. The preg or vreg allocated may 6644 // not have the same VT as was expected. Convert it to the right type 6645 // with bit_convert. 6646 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6647 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6648 ResultType, Val); 6649 6650 } else if (ResultType != Val.getValueType() && 6651 ResultType.isInteger() && Val.getValueType().isInteger()) { 6652 // If a result value was tied to an input value, the computed result may 6653 // have a wider width than the expected result. Extract the relevant 6654 // portion. 6655 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6656 } 6657 6658 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6659 } 6660 6661 setValue(CS.getInstruction(), Val); 6662 // Don't need to use this as a chain in this case. 6663 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6664 return; 6665 } 6666 6667 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6668 6669 // Process indirect outputs, first output all of the flagged copies out of 6670 // physregs. 6671 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6672 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6673 const Value *Ptr = IndirectStoresToEmit[i].second; 6674 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6675 Chain, &Flag, IA); 6676 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6677 } 6678 6679 // Emit the non-flagged stores from the physregs. 6680 SmallVector<SDValue, 8> OutChains; 6681 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6682 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6683 StoresToEmit[i].first, 6684 getValue(StoresToEmit[i].second), 6685 MachinePointerInfo(StoresToEmit[i].second), 6686 false, false, 0); 6687 OutChains.push_back(Val); 6688 } 6689 6690 if (!OutChains.empty()) 6691 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6692 6693 DAG.setRoot(Chain); 6694 } 6695 6696 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6697 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6698 MVT::Other, getRoot(), 6699 getValue(I.getArgOperand(0)), 6700 DAG.getSrcValue(I.getArgOperand(0)))); 6701 } 6702 6703 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6704 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6705 const DataLayout &DL = DAG.getDataLayout(); 6706 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6707 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6708 DAG.getSrcValue(I.getOperand(0)), 6709 DL.getABITypeAlignment(I.getType())); 6710 setValue(&I, V); 6711 DAG.setRoot(V.getValue(1)); 6712 } 6713 6714 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6715 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6716 MVT::Other, getRoot(), 6717 getValue(I.getArgOperand(0)), 6718 DAG.getSrcValue(I.getArgOperand(0)))); 6719 } 6720 6721 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6722 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6723 MVT::Other, getRoot(), 6724 getValue(I.getArgOperand(0)), 6725 getValue(I.getArgOperand(1)), 6726 DAG.getSrcValue(I.getArgOperand(0)), 6727 DAG.getSrcValue(I.getArgOperand(1)))); 6728 } 6729 6730 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 6731 const Instruction &I, 6732 SDValue Op) { 6733 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 6734 if (!Range) 6735 return Op; 6736 6737 Constant *Lo = cast<ConstantAsMetadata>(Range->getOperand(0))->getValue(); 6738 if (!Lo->isNullValue()) 6739 return Op; 6740 6741 Constant *Hi = cast<ConstantAsMetadata>(Range->getOperand(1))->getValue(); 6742 unsigned Bits = cast<ConstantInt>(Hi)->getValue().logBase2(); 6743 6744 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 6745 6746 SDLoc SL = getCurSDLoc(); 6747 6748 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), 6749 Op, DAG.getValueType(SmallVT)); 6750 unsigned NumVals = Op.getNode()->getNumValues(); 6751 if (NumVals == 1) 6752 return ZExt; 6753 6754 SmallVector<SDValue, 4> Ops; 6755 6756 Ops.push_back(ZExt); 6757 for (unsigned I = 1; I != NumVals; ++I) 6758 Ops.push_back(Op.getValue(I)); 6759 6760 return DAG.getMergeValues(Ops, SL); 6761 } 6762 6763 /// \brief Lower an argument list according to the target calling convention. 6764 /// 6765 /// \return A tuple of <return-value, token-chain> 6766 /// 6767 /// This is a helper for lowering intrinsics that follow a target calling 6768 /// convention or require stack pointer adjustment. Only a subset of the 6769 /// intrinsic's operands need to participate in the calling convention. 6770 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands( 6771 ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, 6772 Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) { 6773 TargetLowering::ArgListTy Args; 6774 Args.reserve(NumArgs); 6775 6776 // Populate the argument list. 6777 // Attributes for args start at offset 1, after the return attribute. 6778 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6779 ArgI != ArgE; ++ArgI) { 6780 const Value *V = CS->getOperand(ArgI); 6781 6782 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6783 6784 TargetLowering::ArgListEntry Entry; 6785 Entry.Node = getValue(V); 6786 Entry.Ty = V->getType(); 6787 Entry.setAttributes(&CS, AttrI); 6788 Args.push_back(Entry); 6789 } 6790 6791 TargetLowering::CallLoweringInfo CLI(DAG); 6792 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6793 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6794 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6795 6796 return lowerInvokable(CLI, EHPadBB); 6797 } 6798 6799 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6800 /// or patchpoint target node's operand list. 6801 /// 6802 /// Constants are converted to TargetConstants purely as an optimization to 6803 /// avoid constant materialization and register allocation. 6804 /// 6805 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6806 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6807 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6808 /// address materialization and register allocation, but may also be required 6809 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6810 /// alloca in the entry block, then the runtime may assume that the alloca's 6811 /// StackMap location can be read immediately after compilation and that the 6812 /// location is valid at any point during execution (this is similar to the 6813 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6814 /// only available in a register, then the runtime would need to trap when 6815 /// execution reaches the StackMap in order to read the alloca's location. 6816 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6817 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6818 SelectionDAGBuilder &Builder) { 6819 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6820 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6821 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6822 Ops.push_back( 6823 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6824 Ops.push_back( 6825 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6826 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6827 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6828 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6829 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6830 } else 6831 Ops.push_back(OpVal); 6832 } 6833 } 6834 6835 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6836 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6837 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6838 // [live variables...]) 6839 6840 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6841 6842 SDValue Chain, InFlag, Callee, NullPtr; 6843 SmallVector<SDValue, 32> Ops; 6844 6845 SDLoc DL = getCurSDLoc(); 6846 Callee = getValue(CI.getCalledValue()); 6847 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6848 6849 // The stackmap intrinsic only records the live variables (the arguemnts 6850 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6851 // intrinsic, this won't be lowered to a function call. This means we don't 6852 // have to worry about calling conventions and target specific lowering code. 6853 // Instead we perform the call lowering right here. 6854 // 6855 // chain, flag = CALLSEQ_START(chain, 0) 6856 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6857 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6858 // 6859 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6860 InFlag = Chain.getValue(1); 6861 6862 // Add the <id> and <numBytes> constants. 6863 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6864 Ops.push_back(DAG.getTargetConstant( 6865 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6866 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6867 Ops.push_back(DAG.getTargetConstant( 6868 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6869 MVT::i32)); 6870 6871 // Push live variables for the stack map. 6872 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6873 6874 // We are not pushing any register mask info here on the operands list, 6875 // because the stackmap doesn't clobber anything. 6876 6877 // Push the chain and the glue flag. 6878 Ops.push_back(Chain); 6879 Ops.push_back(InFlag); 6880 6881 // Create the STACKMAP node. 6882 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6883 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6884 Chain = SDValue(SM, 0); 6885 InFlag = Chain.getValue(1); 6886 6887 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6888 6889 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6890 6891 // Set the root to the target-lowered call chain. 6892 DAG.setRoot(Chain); 6893 6894 // Inform the Frame Information that we have a stackmap in this function. 6895 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6896 } 6897 6898 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6899 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6900 const BasicBlock *EHPadBB) { 6901 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6902 // i32 <numBytes>, 6903 // i8* <target>, 6904 // i32 <numArgs>, 6905 // [Args...], 6906 // [live variables...]) 6907 6908 CallingConv::ID CC = CS.getCallingConv(); 6909 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6910 bool HasDef = !CS->getType()->isVoidTy(); 6911 SDLoc dl = getCurSDLoc(); 6912 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6913 6914 // Handle immediate and symbolic callees. 6915 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6916 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6917 /*isTarget=*/true); 6918 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6919 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6920 SDLoc(SymbolicCallee), 6921 SymbolicCallee->getValueType(0)); 6922 6923 // Get the real number of arguments participating in the call <numArgs> 6924 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6925 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6926 6927 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6928 // Intrinsics include all meta-operands up to but not including CC. 6929 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6930 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6931 "Not enough arguments provided to the patchpoint intrinsic"); 6932 6933 // For AnyRegCC the arguments are lowered later on manually. 6934 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6935 Type *ReturnTy = 6936 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6937 std::pair<SDValue, SDValue> Result = lowerCallOperands( 6938 CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true); 6939 6940 SDNode *CallEnd = Result.second.getNode(); 6941 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6942 CallEnd = CallEnd->getOperand(0).getNode(); 6943 6944 /// Get a call instruction from the call sequence chain. 6945 /// Tail calls are not allowed. 6946 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6947 "Expected a callseq node."); 6948 SDNode *Call = CallEnd->getOperand(0).getNode(); 6949 bool HasGlue = Call->getGluedNode(); 6950 6951 // Replace the target specific call node with the patchable intrinsic. 6952 SmallVector<SDValue, 8> Ops; 6953 6954 // Add the <id> and <numBytes> constants. 6955 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6956 Ops.push_back(DAG.getTargetConstant( 6957 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6958 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6959 Ops.push_back(DAG.getTargetConstant( 6960 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6961 MVT::i32)); 6962 6963 // Add the callee. 6964 Ops.push_back(Callee); 6965 6966 // Adjust <numArgs> to account for any arguments that have been passed on the 6967 // stack instead. 6968 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6969 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6970 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6971 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6972 6973 // Add the calling convention 6974 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6975 6976 // Add the arguments we omitted previously. The register allocator should 6977 // place these in any free register. 6978 if (IsAnyRegCC) 6979 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6980 Ops.push_back(getValue(CS.getArgument(i))); 6981 6982 // Push the arguments from the call instruction up to the register mask. 6983 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6984 Ops.append(Call->op_begin() + 2, e); 6985 6986 // Push live variables for the stack map. 6987 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6988 6989 // Push the register mask info. 6990 if (HasGlue) 6991 Ops.push_back(*(Call->op_end()-2)); 6992 else 6993 Ops.push_back(*(Call->op_end()-1)); 6994 6995 // Push the chain (this is originally the first operand of the call, but 6996 // becomes now the last or second to last operand). 6997 Ops.push_back(*(Call->op_begin())); 6998 6999 // Push the glue flag (last operand). 7000 if (HasGlue) 7001 Ops.push_back(*(Call->op_end()-1)); 7002 7003 SDVTList NodeTys; 7004 if (IsAnyRegCC && HasDef) { 7005 // Create the return types based on the intrinsic definition 7006 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7007 SmallVector<EVT, 3> ValueVTs; 7008 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 7009 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7010 7011 // There is always a chain and a glue type at the end 7012 ValueVTs.push_back(MVT::Other); 7013 ValueVTs.push_back(MVT::Glue); 7014 NodeTys = DAG.getVTList(ValueVTs); 7015 } else 7016 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7017 7018 // Replace the target specific call node with a PATCHPOINT node. 7019 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7020 dl, NodeTys, Ops); 7021 7022 // Update the NodeMap. 7023 if (HasDef) { 7024 if (IsAnyRegCC) 7025 setValue(CS.getInstruction(), SDValue(MN, 0)); 7026 else 7027 setValue(CS.getInstruction(), Result.first); 7028 } 7029 7030 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7031 // call sequence. Furthermore the location of the chain and glue can change 7032 // when the AnyReg calling convention is used and the intrinsic returns a 7033 // value. 7034 if (IsAnyRegCC && HasDef) { 7035 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7036 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7037 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7038 } else 7039 DAG.ReplaceAllUsesWith(Call, MN); 7040 DAG.DeleteNode(Call); 7041 7042 // Inform the Frame Information that we have a patchpoint in this function. 7043 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7044 } 7045 7046 /// Returns an AttributeSet representing the attributes applied to the return 7047 /// value of the given call. 7048 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7049 SmallVector<Attribute::AttrKind, 2> Attrs; 7050 if (CLI.RetSExt) 7051 Attrs.push_back(Attribute::SExt); 7052 if (CLI.RetZExt) 7053 Attrs.push_back(Attribute::ZExt); 7054 if (CLI.IsInReg) 7055 Attrs.push_back(Attribute::InReg); 7056 7057 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7058 Attrs); 7059 } 7060 7061 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7062 /// implementation, which just calls LowerCall. 7063 /// FIXME: When all targets are 7064 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7065 std::pair<SDValue, SDValue> 7066 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7067 // Handle the incoming return values from the call. 7068 CLI.Ins.clear(); 7069 Type *OrigRetTy = CLI.RetTy; 7070 SmallVector<EVT, 4> RetTys; 7071 SmallVector<uint64_t, 4> Offsets; 7072 auto &DL = CLI.DAG.getDataLayout(); 7073 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 7074 7075 SmallVector<ISD::OutputArg, 4> Outs; 7076 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 7077 7078 bool CanLowerReturn = 7079 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7080 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7081 7082 SDValue DemoteStackSlot; 7083 int DemoteStackIdx = -100; 7084 if (!CanLowerReturn) { 7085 // FIXME: equivalent assert? 7086 // assert(!CS.hasInAllocaArgument() && 7087 // "sret demotion is incompatible with inalloca"); 7088 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7089 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7090 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7091 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7092 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7093 7094 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7095 ArgListEntry Entry; 7096 Entry.Node = DemoteStackSlot; 7097 Entry.Ty = StackSlotPtrType; 7098 Entry.isSExt = false; 7099 Entry.isZExt = false; 7100 Entry.isInReg = false; 7101 Entry.isSRet = true; 7102 Entry.isNest = false; 7103 Entry.isByVal = false; 7104 Entry.isReturned = false; 7105 Entry.Alignment = Align; 7106 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7107 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7108 7109 // sret demotion isn't compatible with tail-calls, since the sret argument 7110 // points into the callers stack frame. 7111 CLI.IsTailCall = false; 7112 } else { 7113 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7114 EVT VT = RetTys[I]; 7115 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7116 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7117 for (unsigned i = 0; i != NumRegs; ++i) { 7118 ISD::InputArg MyFlags; 7119 MyFlags.VT = RegisterVT; 7120 MyFlags.ArgVT = VT; 7121 MyFlags.Used = CLI.IsReturnValueUsed; 7122 if (CLI.RetSExt) 7123 MyFlags.Flags.setSExt(); 7124 if (CLI.RetZExt) 7125 MyFlags.Flags.setZExt(); 7126 if (CLI.IsInReg) 7127 MyFlags.Flags.setInReg(); 7128 CLI.Ins.push_back(MyFlags); 7129 } 7130 } 7131 } 7132 7133 // Handle all of the outgoing arguments. 7134 CLI.Outs.clear(); 7135 CLI.OutVals.clear(); 7136 ArgListTy &Args = CLI.getArgs(); 7137 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7138 SmallVector<EVT, 4> ValueVTs; 7139 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7140 Type *FinalType = Args[i].Ty; 7141 if (Args[i].isByVal) 7142 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7143 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7144 FinalType, CLI.CallConv, CLI.IsVarArg); 7145 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7146 ++Value) { 7147 EVT VT = ValueVTs[Value]; 7148 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7149 SDValue Op = SDValue(Args[i].Node.getNode(), 7150 Args[i].Node.getResNo() + Value); 7151 ISD::ArgFlagsTy Flags; 7152 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7153 7154 if (Args[i].isZExt) 7155 Flags.setZExt(); 7156 if (Args[i].isSExt) 7157 Flags.setSExt(); 7158 if (Args[i].isInReg) 7159 Flags.setInReg(); 7160 if (Args[i].isSRet) 7161 Flags.setSRet(); 7162 if (Args[i].isByVal) 7163 Flags.setByVal(); 7164 if (Args[i].isInAlloca) { 7165 Flags.setInAlloca(); 7166 // Set the byval flag for CCAssignFn callbacks that don't know about 7167 // inalloca. This way we can know how many bytes we should've allocated 7168 // and how many bytes a callee cleanup function will pop. If we port 7169 // inalloca to more targets, we'll have to add custom inalloca handling 7170 // in the various CC lowering callbacks. 7171 Flags.setByVal(); 7172 } 7173 if (Args[i].isByVal || Args[i].isInAlloca) { 7174 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7175 Type *ElementTy = Ty->getElementType(); 7176 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7177 // For ByVal, alignment should come from FE. BE will guess if this 7178 // info is not there but there are cases it cannot get right. 7179 unsigned FrameAlign; 7180 if (Args[i].Alignment) 7181 FrameAlign = Args[i].Alignment; 7182 else 7183 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7184 Flags.setByValAlign(FrameAlign); 7185 } 7186 if (Args[i].isNest) 7187 Flags.setNest(); 7188 if (NeedsRegBlock) 7189 Flags.setInConsecutiveRegs(); 7190 Flags.setOrigAlign(OriginalAlignment); 7191 7192 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7193 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7194 SmallVector<SDValue, 4> Parts(NumParts); 7195 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7196 7197 if (Args[i].isSExt) 7198 ExtendKind = ISD::SIGN_EXTEND; 7199 else if (Args[i].isZExt) 7200 ExtendKind = ISD::ZERO_EXTEND; 7201 7202 // Conservatively only handle 'returned' on non-vectors for now 7203 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7204 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7205 "unexpected use of 'returned'"); 7206 // Before passing 'returned' to the target lowering code, ensure that 7207 // either the register MVT and the actual EVT are the same size or that 7208 // the return value and argument are extended in the same way; in these 7209 // cases it's safe to pass the argument register value unchanged as the 7210 // return register value (although it's at the target's option whether 7211 // to do so) 7212 // TODO: allow code generation to take advantage of partially preserved 7213 // registers rather than clobbering the entire register when the 7214 // parameter extension method is not compatible with the return 7215 // extension method 7216 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7217 (ExtendKind != ISD::ANY_EXTEND && 7218 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7219 Flags.setReturned(); 7220 } 7221 7222 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7223 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7224 7225 for (unsigned j = 0; j != NumParts; ++j) { 7226 // if it isn't first piece, alignment must be 1 7227 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7228 i < CLI.NumFixedArgs, 7229 i, j*Parts[j].getValueType().getStoreSize()); 7230 if (NumParts > 1 && j == 0) 7231 MyFlags.Flags.setSplit(); 7232 else if (j != 0) { 7233 MyFlags.Flags.setOrigAlign(1); 7234 if (j == NumParts - 1) 7235 MyFlags.Flags.setSplitEnd(); 7236 } 7237 7238 CLI.Outs.push_back(MyFlags); 7239 CLI.OutVals.push_back(Parts[j]); 7240 } 7241 7242 if (NeedsRegBlock && Value == NumValues - 1) 7243 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7244 } 7245 } 7246 7247 SmallVector<SDValue, 4> InVals; 7248 CLI.Chain = LowerCall(CLI, InVals); 7249 7250 // Verify that the target's LowerCall behaved as expected. 7251 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7252 "LowerCall didn't return a valid chain!"); 7253 assert((!CLI.IsTailCall || InVals.empty()) && 7254 "LowerCall emitted a return value for a tail call!"); 7255 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7256 "LowerCall didn't emit the correct number of values!"); 7257 7258 // For a tail call, the return value is merely live-out and there aren't 7259 // any nodes in the DAG representing it. Return a special value to 7260 // indicate that a tail call has been emitted and no more Instructions 7261 // should be processed in the current block. 7262 if (CLI.IsTailCall) { 7263 CLI.DAG.setRoot(CLI.Chain); 7264 return std::make_pair(SDValue(), SDValue()); 7265 } 7266 7267 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7268 assert(InVals[i].getNode() && 7269 "LowerCall emitted a null value!"); 7270 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7271 "LowerCall emitted a value with the wrong type!"); 7272 }); 7273 7274 SmallVector<SDValue, 4> ReturnValues; 7275 if (!CanLowerReturn) { 7276 // The instruction result is the result of loading from the 7277 // hidden sret parameter. 7278 SmallVector<EVT, 1> PVTs; 7279 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7280 7281 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7282 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7283 EVT PtrVT = PVTs[0]; 7284 7285 unsigned NumValues = RetTys.size(); 7286 ReturnValues.resize(NumValues); 7287 SmallVector<SDValue, 4> Chains(NumValues); 7288 7289 // An aggregate return value cannot wrap around the address space, so 7290 // offsets to its parts don't wrap either. 7291 SDNodeFlags Flags; 7292 Flags.setNoUnsignedWrap(true); 7293 7294 for (unsigned i = 0; i < NumValues; ++i) { 7295 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7296 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7297 PtrVT), &Flags); 7298 SDValue L = CLI.DAG.getLoad( 7299 RetTys[i], CLI.DL, CLI.Chain, Add, 7300 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7301 DemoteStackIdx, Offsets[i]), 7302 false, false, false, 1); 7303 ReturnValues[i] = L; 7304 Chains[i] = L.getValue(1); 7305 } 7306 7307 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7308 } else { 7309 // Collect the legal value parts into potentially illegal values 7310 // that correspond to the original function's return values. 7311 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7312 if (CLI.RetSExt) 7313 AssertOp = ISD::AssertSext; 7314 else if (CLI.RetZExt) 7315 AssertOp = ISD::AssertZext; 7316 unsigned CurReg = 0; 7317 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7318 EVT VT = RetTys[I]; 7319 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7320 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7321 7322 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7323 NumRegs, RegisterVT, VT, nullptr, 7324 AssertOp)); 7325 CurReg += NumRegs; 7326 } 7327 7328 // For a function returning void, there is no return value. We can't create 7329 // such a node, so we just return a null return value in that case. In 7330 // that case, nothing will actually look at the value. 7331 if (ReturnValues.empty()) 7332 return std::make_pair(SDValue(), CLI.Chain); 7333 } 7334 7335 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7336 CLI.DAG.getVTList(RetTys), ReturnValues); 7337 return std::make_pair(Res, CLI.Chain); 7338 } 7339 7340 void TargetLowering::LowerOperationWrapper(SDNode *N, 7341 SmallVectorImpl<SDValue> &Results, 7342 SelectionDAG &DAG) const { 7343 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 7344 Results.push_back(Res); 7345 } 7346 7347 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7348 llvm_unreachable("LowerOperation not implemented for this target!"); 7349 } 7350 7351 void 7352 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7353 SDValue Op = getNonRegisterValue(V); 7354 assert((Op.getOpcode() != ISD::CopyFromReg || 7355 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7356 "Copy from a reg to the same reg!"); 7357 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7358 7359 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7360 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7361 V->getType()); 7362 SDValue Chain = DAG.getEntryNode(); 7363 7364 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7365 FuncInfo.PreferredExtendType.end()) 7366 ? ISD::ANY_EXTEND 7367 : FuncInfo.PreferredExtendType[V]; 7368 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7369 PendingExports.push_back(Chain); 7370 } 7371 7372 #include "llvm/CodeGen/SelectionDAGISel.h" 7373 7374 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7375 /// entry block, return true. This includes arguments used by switches, since 7376 /// the switch may expand into multiple basic blocks. 7377 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7378 // With FastISel active, we may be splitting blocks, so force creation 7379 // of virtual registers for all non-dead arguments. 7380 if (FastISel) 7381 return A->use_empty(); 7382 7383 const BasicBlock &Entry = A->getParent()->front(); 7384 for (const User *U : A->users()) 7385 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 7386 return false; // Use not in entry block. 7387 7388 return true; 7389 } 7390 7391 void SelectionDAGISel::LowerArguments(const Function &F) { 7392 SelectionDAG &DAG = SDB->DAG; 7393 SDLoc dl = SDB->getCurSDLoc(); 7394 const DataLayout &DL = DAG.getDataLayout(); 7395 SmallVector<ISD::InputArg, 16> Ins; 7396 7397 if (!FuncInfo->CanLowerReturn) { 7398 // Put in an sret pointer parameter before all the other parameters. 7399 SmallVector<EVT, 1> ValueVTs; 7400 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7401 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7402 7403 // NOTE: Assuming that a pointer will never break down to more than one VT 7404 // or one register. 7405 ISD::ArgFlagsTy Flags; 7406 Flags.setSRet(); 7407 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7408 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7409 ISD::InputArg::NoArgIndex, 0); 7410 Ins.push_back(RetArg); 7411 } 7412 7413 // Set up the incoming argument description vector. 7414 unsigned Idx = 1; 7415 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7416 I != E; ++I, ++Idx) { 7417 SmallVector<EVT, 4> ValueVTs; 7418 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7419 bool isArgValueUsed = !I->use_empty(); 7420 unsigned PartBase = 0; 7421 Type *FinalType = I->getType(); 7422 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7423 FinalType = cast<PointerType>(FinalType)->getElementType(); 7424 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7425 FinalType, F.getCallingConv(), F.isVarArg()); 7426 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7427 Value != NumValues; ++Value) { 7428 EVT VT = ValueVTs[Value]; 7429 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7430 ISD::ArgFlagsTy Flags; 7431 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7432 7433 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7434 Flags.setZExt(); 7435 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7436 Flags.setSExt(); 7437 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7438 Flags.setInReg(); 7439 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7440 Flags.setSRet(); 7441 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7442 Flags.setByVal(); 7443 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7444 Flags.setInAlloca(); 7445 // Set the byval flag for CCAssignFn callbacks that don't know about 7446 // inalloca. This way we can know how many bytes we should've allocated 7447 // and how many bytes a callee cleanup function will pop. If we port 7448 // inalloca to more targets, we'll have to add custom inalloca handling 7449 // in the various CC lowering callbacks. 7450 Flags.setByVal(); 7451 } 7452 if (F.getCallingConv() == CallingConv::X86_INTR) { 7453 // IA Interrupt passes frame (1st parameter) by value in the stack. 7454 if (Idx == 1) 7455 Flags.setByVal(); 7456 } 7457 if (Flags.isByVal() || Flags.isInAlloca()) { 7458 PointerType *Ty = cast<PointerType>(I->getType()); 7459 Type *ElementTy = Ty->getElementType(); 7460 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7461 // For ByVal, alignment should be passed from FE. BE will guess if 7462 // this info is not there but there are cases it cannot get right. 7463 unsigned FrameAlign; 7464 if (F.getParamAlignment(Idx)) 7465 FrameAlign = F.getParamAlignment(Idx); 7466 else 7467 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7468 Flags.setByValAlign(FrameAlign); 7469 } 7470 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7471 Flags.setNest(); 7472 if (NeedsRegBlock) 7473 Flags.setInConsecutiveRegs(); 7474 Flags.setOrigAlign(OriginalAlignment); 7475 7476 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7477 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7478 for (unsigned i = 0; i != NumRegs; ++i) { 7479 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7480 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7481 if (NumRegs > 1 && i == 0) 7482 MyFlags.Flags.setSplit(); 7483 // if it isn't first piece, alignment must be 1 7484 else if (i > 0) { 7485 MyFlags.Flags.setOrigAlign(1); 7486 if (i == NumRegs - 1) 7487 MyFlags.Flags.setSplitEnd(); 7488 } 7489 Ins.push_back(MyFlags); 7490 } 7491 if (NeedsRegBlock && Value == NumValues - 1) 7492 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7493 PartBase += VT.getStoreSize(); 7494 } 7495 } 7496 7497 // Call the target to set up the argument values. 7498 SmallVector<SDValue, 8> InVals; 7499 SDValue NewRoot = TLI->LowerFormalArguments( 7500 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7501 7502 // Verify that the target's LowerFormalArguments behaved as expected. 7503 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7504 "LowerFormalArguments didn't return a valid chain!"); 7505 assert(InVals.size() == Ins.size() && 7506 "LowerFormalArguments didn't emit the correct number of values!"); 7507 DEBUG({ 7508 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7509 assert(InVals[i].getNode() && 7510 "LowerFormalArguments emitted a null value!"); 7511 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7512 "LowerFormalArguments emitted a value with the wrong type!"); 7513 } 7514 }); 7515 7516 // Update the DAG with the new chain value resulting from argument lowering. 7517 DAG.setRoot(NewRoot); 7518 7519 // Set up the argument values. 7520 unsigned i = 0; 7521 Idx = 1; 7522 if (!FuncInfo->CanLowerReturn) { 7523 // Create a virtual register for the sret pointer, and put in a copy 7524 // from the sret argument into it. 7525 SmallVector<EVT, 1> ValueVTs; 7526 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7527 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7528 MVT VT = ValueVTs[0].getSimpleVT(); 7529 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7530 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7531 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7532 RegVT, VT, nullptr, AssertOp); 7533 7534 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7535 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7536 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7537 FuncInfo->DemoteRegister = SRetReg; 7538 NewRoot = 7539 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7540 DAG.setRoot(NewRoot); 7541 7542 // i indexes lowered arguments. Bump it past the hidden sret argument. 7543 // Idx indexes LLVM arguments. Don't touch it. 7544 ++i; 7545 } 7546 7547 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7548 ++I, ++Idx) { 7549 SmallVector<SDValue, 4> ArgValues; 7550 SmallVector<EVT, 4> ValueVTs; 7551 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7552 unsigned NumValues = ValueVTs.size(); 7553 7554 // If this argument is unused then remember its value. It is used to generate 7555 // debugging information. 7556 if (I->use_empty() && NumValues) { 7557 SDB->setUnusedArgValue(&*I, InVals[i]); 7558 7559 // Also remember any frame index for use in FastISel. 7560 if (FrameIndexSDNode *FI = 7561 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7562 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7563 } 7564 7565 for (unsigned Val = 0; Val != NumValues; ++Val) { 7566 EVT VT = ValueVTs[Val]; 7567 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7568 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7569 7570 if (!I->use_empty()) { 7571 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7572 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7573 AssertOp = ISD::AssertSext; 7574 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7575 AssertOp = ISD::AssertZext; 7576 7577 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7578 NumParts, PartVT, VT, 7579 nullptr, AssertOp)); 7580 } 7581 7582 i += NumParts; 7583 } 7584 7585 // We don't need to do anything else for unused arguments. 7586 if (ArgValues.empty()) 7587 continue; 7588 7589 // Note down frame index. 7590 if (FrameIndexSDNode *FI = 7591 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7592 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7593 7594 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7595 SDB->getCurSDLoc()); 7596 7597 SDB->setValue(&*I, Res); 7598 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7599 if (LoadSDNode *LNode = 7600 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7601 if (FrameIndexSDNode *FI = 7602 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7603 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7604 } 7605 7606 // If this argument is live outside of the entry block, insert a copy from 7607 // wherever we got it to the vreg that other BB's will reference it as. 7608 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7609 // If we can, though, try to skip creating an unnecessary vreg. 7610 // FIXME: This isn't very clean... it would be nice to make this more 7611 // general. It's also subtly incompatible with the hacks FastISel 7612 // uses with vregs. 7613 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7614 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7615 FuncInfo->ValueMap[&*I] = Reg; 7616 continue; 7617 } 7618 } 7619 if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) { 7620 FuncInfo->InitializeRegForValue(&*I); 7621 SDB->CopyToExportRegsIfNeeded(&*I); 7622 } 7623 } 7624 7625 assert(i == InVals.size() && "Argument register count mismatch!"); 7626 7627 // Finally, if the target has anything special to do, allow it to do so. 7628 EmitFunctionEntryCode(); 7629 } 7630 7631 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7632 /// ensure constants are generated when needed. Remember the virtual registers 7633 /// that need to be added to the Machine PHI nodes as input. We cannot just 7634 /// directly add them, because expansion might result in multiple MBB's for one 7635 /// BB. As such, the start of the BB might correspond to a different MBB than 7636 /// the end. 7637 /// 7638 void 7639 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7640 const TerminatorInst *TI = LLVMBB->getTerminator(); 7641 7642 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7643 7644 // Check PHI nodes in successors that expect a value to be available from this 7645 // block. 7646 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7647 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7648 if (!isa<PHINode>(SuccBB->begin())) continue; 7649 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7650 7651 // If this terminator has multiple identical successors (common for 7652 // switches), only handle each succ once. 7653 if (!SuccsHandled.insert(SuccMBB).second) 7654 continue; 7655 7656 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7657 7658 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7659 // nodes and Machine PHI nodes, but the incoming operands have not been 7660 // emitted yet. 7661 for (BasicBlock::const_iterator I = SuccBB->begin(); 7662 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7663 // Ignore dead phi's. 7664 if (PN->use_empty()) continue; 7665 7666 // Skip empty types 7667 if (PN->getType()->isEmptyTy()) 7668 continue; 7669 7670 unsigned Reg; 7671 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7672 7673 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7674 unsigned &RegOut = ConstantsOut[C]; 7675 if (RegOut == 0) { 7676 RegOut = FuncInfo.CreateRegs(C->getType()); 7677 CopyValueToVirtualRegister(C, RegOut); 7678 } 7679 Reg = RegOut; 7680 } else { 7681 DenseMap<const Value *, unsigned>::iterator I = 7682 FuncInfo.ValueMap.find(PHIOp); 7683 if (I != FuncInfo.ValueMap.end()) 7684 Reg = I->second; 7685 else { 7686 assert(isa<AllocaInst>(PHIOp) && 7687 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7688 "Didn't codegen value into a register!??"); 7689 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7690 CopyValueToVirtualRegister(PHIOp, Reg); 7691 } 7692 } 7693 7694 // Remember that this register needs to added to the machine PHI node as 7695 // the input for this MBB. 7696 SmallVector<EVT, 4> ValueVTs; 7697 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7698 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7699 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7700 EVT VT = ValueVTs[vti]; 7701 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7702 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7703 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7704 Reg += NumRegisters; 7705 } 7706 } 7707 } 7708 7709 ConstantsOut.clear(); 7710 } 7711 7712 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7713 /// is 0. 7714 MachineBasicBlock * 7715 SelectionDAGBuilder::StackProtectorDescriptor:: 7716 AddSuccessorMBB(const BasicBlock *BB, 7717 MachineBasicBlock *ParentMBB, 7718 bool IsLikely, 7719 MachineBasicBlock *SuccMBB) { 7720 // If SuccBB has not been created yet, create it. 7721 if (!SuccMBB) { 7722 MachineFunction *MF = ParentMBB->getParent(); 7723 MachineFunction::iterator BBI(ParentMBB); 7724 SuccMBB = MF->CreateMachineBasicBlock(BB); 7725 MF->insert(++BBI, SuccMBB); 7726 } 7727 // Add it as a successor of ParentMBB. 7728 ParentMBB->addSuccessor( 7729 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 7730 return SuccMBB; 7731 } 7732 7733 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7734 MachineFunction::iterator I(MBB); 7735 if (++I == FuncInfo.MF->end()) 7736 return nullptr; 7737 return &*I; 7738 } 7739 7740 /// During lowering new call nodes can be created (such as memset, etc.). 7741 /// Those will become new roots of the current DAG, but complications arise 7742 /// when they are tail calls. In such cases, the call lowering will update 7743 /// the root, but the builder still needs to know that a tail call has been 7744 /// lowered in order to avoid generating an additional return. 7745 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7746 // If the node is null, we do have a tail call. 7747 if (MaybeTC.getNode() != nullptr) 7748 DAG.setRoot(MaybeTC); 7749 else 7750 HasTailCall = true; 7751 } 7752 7753 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7754 unsigned *TotalCases, unsigned First, 7755 unsigned Last) { 7756 assert(Last >= First); 7757 assert(TotalCases[Last] >= TotalCases[First]); 7758 7759 APInt LowCase = Clusters[First].Low->getValue(); 7760 APInt HighCase = Clusters[Last].High->getValue(); 7761 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7762 7763 // FIXME: A range of consecutive cases has 100% density, but only requires one 7764 // comparison to lower. We should discriminate against such consecutive ranges 7765 // in jump tables. 7766 7767 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7768 uint64_t Range = Diff + 1; 7769 7770 uint64_t NumCases = 7771 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7772 7773 assert(NumCases < UINT64_MAX / 100); 7774 assert(Range >= NumCases); 7775 7776 return NumCases * 100 >= Range * MinJumpTableDensity; 7777 } 7778 7779 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7780 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7781 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7782 } 7783 7784 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7785 unsigned First, unsigned Last, 7786 const SwitchInst *SI, 7787 MachineBasicBlock *DefaultMBB, 7788 CaseCluster &JTCluster) { 7789 assert(First <= Last); 7790 7791 auto Prob = BranchProbability::getZero(); 7792 unsigned NumCmps = 0; 7793 std::vector<MachineBasicBlock*> Table; 7794 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 7795 7796 // Initialize probabilities in JTProbs. 7797 for (unsigned I = First; I <= Last; ++I) 7798 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 7799 7800 for (unsigned I = First; I <= Last; ++I) { 7801 assert(Clusters[I].Kind == CC_Range); 7802 Prob += Clusters[I].Prob; 7803 APInt Low = Clusters[I].Low->getValue(); 7804 APInt High = Clusters[I].High->getValue(); 7805 NumCmps += (Low == High) ? 1 : 2; 7806 if (I != First) { 7807 // Fill the gap between this and the previous cluster. 7808 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7809 assert(PreviousHigh.slt(Low)); 7810 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7811 for (uint64_t J = 0; J < Gap; J++) 7812 Table.push_back(DefaultMBB); 7813 } 7814 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7815 for (uint64_t J = 0; J < ClusterSize; ++J) 7816 Table.push_back(Clusters[I].MBB); 7817 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 7818 } 7819 7820 unsigned NumDests = JTProbs.size(); 7821 if (isSuitableForBitTests(NumDests, NumCmps, 7822 Clusters[First].Low->getValue(), 7823 Clusters[Last].High->getValue())) { 7824 // Clusters[First..Last] should be lowered as bit tests instead. 7825 return false; 7826 } 7827 7828 // Create the MBB that will load from and jump through the table. 7829 // Note: We create it here, but it's not inserted into the function yet. 7830 MachineFunction *CurMF = FuncInfo.MF; 7831 MachineBasicBlock *JumpTableMBB = 7832 CurMF->CreateMachineBasicBlock(SI->getParent()); 7833 7834 // Add successors. Note: use table order for determinism. 7835 SmallPtrSet<MachineBasicBlock *, 8> Done; 7836 for (MachineBasicBlock *Succ : Table) { 7837 if (Done.count(Succ)) 7838 continue; 7839 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 7840 Done.insert(Succ); 7841 } 7842 JumpTableMBB->normalizeSuccProbs(); 7843 7844 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7845 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7846 ->createJumpTableIndex(Table); 7847 7848 // Set up the jump table info. 7849 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7850 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7851 Clusters[Last].High->getValue(), SI->getCondition(), 7852 nullptr, false); 7853 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7854 7855 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7856 JTCases.size() - 1, Prob); 7857 return true; 7858 } 7859 7860 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7861 const SwitchInst *SI, 7862 MachineBasicBlock *DefaultMBB) { 7863 #ifndef NDEBUG 7864 // Clusters must be non-empty, sorted, and only contain Range clusters. 7865 assert(!Clusters.empty()); 7866 for (CaseCluster &C : Clusters) 7867 assert(C.Kind == CC_Range); 7868 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7869 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7870 #endif 7871 7872 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7873 if (!areJTsAllowed(TLI)) 7874 return; 7875 7876 const int64_t N = Clusters.size(); 7877 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7878 7879 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7880 SmallVector<unsigned, 8> TotalCases(N); 7881 7882 for (unsigned i = 0; i < N; ++i) { 7883 APInt Hi = Clusters[i].High->getValue(); 7884 APInt Lo = Clusters[i].Low->getValue(); 7885 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7886 if (i != 0) 7887 TotalCases[i] += TotalCases[i - 1]; 7888 } 7889 7890 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7891 // Cheap case: the whole range might be suitable for jump table. 7892 CaseCluster JTCluster; 7893 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7894 Clusters[0] = JTCluster; 7895 Clusters.resize(1); 7896 return; 7897 } 7898 } 7899 7900 // The algorithm below is not suitable for -O0. 7901 if (TM.getOptLevel() == CodeGenOpt::None) 7902 return; 7903 7904 // Split Clusters into minimum number of dense partitions. The algorithm uses 7905 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7906 // for the Case Statement'" (1994), but builds the MinPartitions array in 7907 // reverse order to make it easier to reconstruct the partitions in ascending 7908 // order. In the choice between two optimal partitionings, it picks the one 7909 // which yields more jump tables. 7910 7911 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7912 SmallVector<unsigned, 8> MinPartitions(N); 7913 // LastElement[i] is the last element of the partition starting at i. 7914 SmallVector<unsigned, 8> LastElement(N); 7915 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7916 SmallVector<unsigned, 8> NumTables(N); 7917 7918 // Base case: There is only one way to partition Clusters[N-1]. 7919 MinPartitions[N - 1] = 1; 7920 LastElement[N - 1] = N - 1; 7921 assert(MinJumpTableSize > 1); 7922 NumTables[N - 1] = 0; 7923 7924 // Note: loop indexes are signed to avoid underflow. 7925 for (int64_t i = N - 2; i >= 0; i--) { 7926 // Find optimal partitioning of Clusters[i..N-1]. 7927 // Baseline: Put Clusters[i] into a partition on its own. 7928 MinPartitions[i] = MinPartitions[i + 1] + 1; 7929 LastElement[i] = i; 7930 NumTables[i] = NumTables[i + 1]; 7931 7932 // Search for a solution that results in fewer partitions. 7933 for (int64_t j = N - 1; j > i; j--) { 7934 // Try building a partition from Clusters[i..j]. 7935 if (isDense(Clusters, &TotalCases[0], i, j)) { 7936 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7937 bool IsTable = j - i + 1 >= MinJumpTableSize; 7938 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7939 7940 // If this j leads to fewer partitions, or same number of partitions 7941 // with more lookup tables, it is a better partitioning. 7942 if (NumPartitions < MinPartitions[i] || 7943 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7944 MinPartitions[i] = NumPartitions; 7945 LastElement[i] = j; 7946 NumTables[i] = Tables; 7947 } 7948 } 7949 } 7950 } 7951 7952 // Iterate over the partitions, replacing some with jump tables in-place. 7953 unsigned DstIndex = 0; 7954 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7955 Last = LastElement[First]; 7956 assert(Last >= First); 7957 assert(DstIndex <= First); 7958 unsigned NumClusters = Last - First + 1; 7959 7960 CaseCluster JTCluster; 7961 if (NumClusters >= MinJumpTableSize && 7962 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7963 Clusters[DstIndex++] = JTCluster; 7964 } else { 7965 for (unsigned I = First; I <= Last; ++I) 7966 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7967 } 7968 } 7969 Clusters.resize(DstIndex); 7970 } 7971 7972 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7973 // FIXME: Using the pointer type doesn't seem ideal. 7974 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7975 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7976 return Range <= BW; 7977 } 7978 7979 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7980 unsigned NumCmps, 7981 const APInt &Low, 7982 const APInt &High) { 7983 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7984 // range of cases both require only one branch to lower. Just looking at the 7985 // number of clusters and destinations should be enough to decide whether to 7986 // build bit tests. 7987 7988 // To lower a range with bit tests, the range must fit the bitwidth of a 7989 // machine word. 7990 if (!rangeFitsInWord(Low, High)) 7991 return false; 7992 7993 // Decide whether it's profitable to lower this range with bit tests. Each 7994 // destination requires a bit test and branch, and there is an overall range 7995 // check branch. For a small number of clusters, separate comparisons might be 7996 // cheaper, and for many destinations, splitting the range might be better. 7997 return (NumDests == 1 && NumCmps >= 3) || 7998 (NumDests == 2 && NumCmps >= 5) || 7999 (NumDests == 3 && NumCmps >= 6); 8000 } 8001 8002 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 8003 unsigned First, unsigned Last, 8004 const SwitchInst *SI, 8005 CaseCluster &BTCluster) { 8006 assert(First <= Last); 8007 if (First == Last) 8008 return false; 8009 8010 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8011 unsigned NumCmps = 0; 8012 for (int64_t I = First; I <= Last; ++I) { 8013 assert(Clusters[I].Kind == CC_Range); 8014 Dests.set(Clusters[I].MBB->getNumber()); 8015 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 8016 } 8017 unsigned NumDests = Dests.count(); 8018 8019 APInt Low = Clusters[First].Low->getValue(); 8020 APInt High = Clusters[Last].High->getValue(); 8021 assert(Low.slt(High)); 8022 8023 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 8024 return false; 8025 8026 APInt LowBound; 8027 APInt CmpRange; 8028 8029 const int BitWidth = DAG.getTargetLoweringInfo() 8030 .getPointerTy(DAG.getDataLayout()) 8031 .getSizeInBits(); 8032 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 8033 8034 // Check if the clusters cover a contiguous range such that no value in the 8035 // range will jump to the default statement. 8036 bool ContiguousRange = true; 8037 for (int64_t I = First + 1; I <= Last; ++I) { 8038 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 8039 ContiguousRange = false; 8040 break; 8041 } 8042 } 8043 8044 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 8045 // Optimize the case where all the case values fit in a word without having 8046 // to subtract minValue. In this case, we can optimize away the subtraction. 8047 LowBound = APInt::getNullValue(Low.getBitWidth()); 8048 CmpRange = High; 8049 ContiguousRange = false; 8050 } else { 8051 LowBound = Low; 8052 CmpRange = High - Low; 8053 } 8054 8055 CaseBitsVector CBV; 8056 auto TotalProb = BranchProbability::getZero(); 8057 for (unsigned i = First; i <= Last; ++i) { 8058 // Find the CaseBits for this destination. 8059 unsigned j; 8060 for (j = 0; j < CBV.size(); ++j) 8061 if (CBV[j].BB == Clusters[i].MBB) 8062 break; 8063 if (j == CBV.size()) 8064 CBV.push_back( 8065 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 8066 CaseBits *CB = &CBV[j]; 8067 8068 // Update Mask, Bits and ExtraProb. 8069 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 8070 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 8071 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 8072 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 8073 CB->Bits += Hi - Lo + 1; 8074 CB->ExtraProb += Clusters[i].Prob; 8075 TotalProb += Clusters[i].Prob; 8076 } 8077 8078 BitTestInfo BTI; 8079 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 8080 // Sort by probability first, number of bits second. 8081 if (a.ExtraProb != b.ExtraProb) 8082 return a.ExtraProb > b.ExtraProb; 8083 return a.Bits > b.Bits; 8084 }); 8085 8086 for (auto &CB : CBV) { 8087 MachineBasicBlock *BitTestBB = 8088 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 8089 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 8090 } 8091 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 8092 SI->getCondition(), -1U, MVT::Other, false, 8093 ContiguousRange, nullptr, nullptr, std::move(BTI), 8094 TotalProb); 8095 8096 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 8097 BitTestCases.size() - 1, TotalProb); 8098 return true; 8099 } 8100 8101 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8102 const SwitchInst *SI) { 8103 // Partition Clusters into as few subsets as possible, where each subset has a 8104 // range that fits in a machine word and has <= 3 unique destinations. 8105 8106 #ifndef NDEBUG 8107 // Clusters must be sorted and contain Range or JumpTable clusters. 8108 assert(!Clusters.empty()); 8109 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8110 for (const CaseCluster &C : Clusters) 8111 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8112 for (unsigned i = 1; i < Clusters.size(); ++i) 8113 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8114 #endif 8115 8116 // The algorithm below is not suitable for -O0. 8117 if (TM.getOptLevel() == CodeGenOpt::None) 8118 return; 8119 8120 // If target does not have legal shift left, do not emit bit tests at all. 8121 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8122 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 8123 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 8124 return; 8125 8126 int BitWidth = PTy.getSizeInBits(); 8127 const int64_t N = Clusters.size(); 8128 8129 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8130 SmallVector<unsigned, 8> MinPartitions(N); 8131 // LastElement[i] is the last element of the partition starting at i. 8132 SmallVector<unsigned, 8> LastElement(N); 8133 8134 // FIXME: This might not be the best algorithm for finding bit test clusters. 8135 8136 // Base case: There is only one way to partition Clusters[N-1]. 8137 MinPartitions[N - 1] = 1; 8138 LastElement[N - 1] = N - 1; 8139 8140 // Note: loop indexes are signed to avoid underflow. 8141 for (int64_t i = N - 2; i >= 0; --i) { 8142 // Find optimal partitioning of Clusters[i..N-1]. 8143 // Baseline: Put Clusters[i] into a partition on its own. 8144 MinPartitions[i] = MinPartitions[i + 1] + 1; 8145 LastElement[i] = i; 8146 8147 // Search for a solution that results in fewer partitions. 8148 // Note: the search is limited by BitWidth, reducing time complexity. 8149 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 8150 // Try building a partition from Clusters[i..j]. 8151 8152 // Check the range. 8153 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 8154 Clusters[j].High->getValue())) 8155 continue; 8156 8157 // Check nbr of destinations and cluster types. 8158 // FIXME: This works, but doesn't seem very efficient. 8159 bool RangesOnly = true; 8160 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8161 for (int64_t k = i; k <= j; k++) { 8162 if (Clusters[k].Kind != CC_Range) { 8163 RangesOnly = false; 8164 break; 8165 } 8166 Dests.set(Clusters[k].MBB->getNumber()); 8167 } 8168 if (!RangesOnly || Dests.count() > 3) 8169 break; 8170 8171 // Check if it's a better partition. 8172 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8173 if (NumPartitions < MinPartitions[i]) { 8174 // Found a better partition. 8175 MinPartitions[i] = NumPartitions; 8176 LastElement[i] = j; 8177 } 8178 } 8179 } 8180 8181 // Iterate over the partitions, replacing with bit-test clusters in-place. 8182 unsigned DstIndex = 0; 8183 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8184 Last = LastElement[First]; 8185 assert(First <= Last); 8186 assert(DstIndex <= First); 8187 8188 CaseCluster BitTestCluster; 8189 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8190 Clusters[DstIndex++] = BitTestCluster; 8191 } else { 8192 size_t NumClusters = Last - First + 1; 8193 std::memmove(&Clusters[DstIndex], &Clusters[First], 8194 sizeof(Clusters[0]) * NumClusters); 8195 DstIndex += NumClusters; 8196 } 8197 } 8198 Clusters.resize(DstIndex); 8199 } 8200 8201 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8202 MachineBasicBlock *SwitchMBB, 8203 MachineBasicBlock *DefaultMBB) { 8204 MachineFunction *CurMF = FuncInfo.MF; 8205 MachineBasicBlock *NextMBB = nullptr; 8206 MachineFunction::iterator BBI(W.MBB); 8207 if (++BBI != FuncInfo.MF->end()) 8208 NextMBB = &*BBI; 8209 8210 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8211 8212 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8213 8214 if (Size == 2 && W.MBB == SwitchMBB) { 8215 // If any two of the cases has the same destination, and if one value 8216 // is the same as the other, but has one bit unset that the other has set, 8217 // use bit manipulation to do two compares at once. For example: 8218 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8219 // TODO: This could be extended to merge any 2 cases in switches with 3 8220 // cases. 8221 // TODO: Handle cases where W.CaseBB != SwitchBB. 8222 CaseCluster &Small = *W.FirstCluster; 8223 CaseCluster &Big = *W.LastCluster; 8224 8225 if (Small.Low == Small.High && Big.Low == Big.High && 8226 Small.MBB == Big.MBB) { 8227 const APInt &SmallValue = Small.Low->getValue(); 8228 const APInt &BigValue = Big.Low->getValue(); 8229 8230 // Check that there is only one bit different. 8231 APInt CommonBit = BigValue ^ SmallValue; 8232 if (CommonBit.isPowerOf2()) { 8233 SDValue CondLHS = getValue(Cond); 8234 EVT VT = CondLHS.getValueType(); 8235 SDLoc DL = getCurSDLoc(); 8236 8237 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8238 DAG.getConstant(CommonBit, DL, VT)); 8239 SDValue Cond = DAG.getSetCC( 8240 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8241 ISD::SETEQ); 8242 8243 // Update successor info. 8244 // Both Small and Big will jump to Small.BB, so we sum up the 8245 // probabilities. 8246 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 8247 if (BPI) 8248 addSuccessorWithProb( 8249 SwitchMBB, DefaultMBB, 8250 // The default destination is the first successor in IR. 8251 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 8252 else 8253 addSuccessorWithProb(SwitchMBB, DefaultMBB); 8254 8255 // Insert the true branch. 8256 SDValue BrCond = 8257 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8258 DAG.getBasicBlock(Small.MBB)); 8259 // Insert the false branch. 8260 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8261 DAG.getBasicBlock(DefaultMBB)); 8262 8263 DAG.setRoot(BrCond); 8264 return; 8265 } 8266 } 8267 } 8268 8269 if (TM.getOptLevel() != CodeGenOpt::None) { 8270 // Order cases by probability so the most likely case will be checked first. 8271 std::sort(W.FirstCluster, W.LastCluster + 1, 8272 [](const CaseCluster &a, const CaseCluster &b) { 8273 return a.Prob > b.Prob; 8274 }); 8275 8276 // Rearrange the case blocks so that the last one falls through if possible 8277 // without without changing the order of probabilities. 8278 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8279 --I; 8280 if (I->Prob > W.LastCluster->Prob) 8281 break; 8282 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8283 std::swap(*I, *W.LastCluster); 8284 break; 8285 } 8286 } 8287 } 8288 8289 // Compute total probability. 8290 BranchProbability DefaultProb = W.DefaultProb; 8291 BranchProbability UnhandledProbs = DefaultProb; 8292 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 8293 UnhandledProbs += I->Prob; 8294 8295 MachineBasicBlock *CurMBB = W.MBB; 8296 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8297 MachineBasicBlock *Fallthrough; 8298 if (I == W.LastCluster) { 8299 // For the last cluster, fall through to the default destination. 8300 Fallthrough = DefaultMBB; 8301 } else { 8302 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8303 CurMF->insert(BBI, Fallthrough); 8304 // Put Cond in a virtual register to make it available from the new blocks. 8305 ExportFromCurrentBlock(Cond); 8306 } 8307 UnhandledProbs -= I->Prob; 8308 8309 switch (I->Kind) { 8310 case CC_JumpTable: { 8311 // FIXME: Optimize away range check based on pivot comparisons. 8312 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8313 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8314 8315 // The jump block hasn't been inserted yet; insert it here. 8316 MachineBasicBlock *JumpMBB = JT->MBB; 8317 CurMF->insert(BBI, JumpMBB); 8318 8319 auto JumpProb = I->Prob; 8320 auto FallthroughProb = UnhandledProbs; 8321 8322 // If the default statement is a target of the jump table, we evenly 8323 // distribute the default probability to successors of CurMBB. Also 8324 // update the probability on the edge from JumpMBB to Fallthrough. 8325 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8326 SE = JumpMBB->succ_end(); 8327 SI != SE; ++SI) { 8328 if (*SI == DefaultMBB) { 8329 JumpProb += DefaultProb / 2; 8330 FallthroughProb -= DefaultProb / 2; 8331 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 8332 JumpMBB->normalizeSuccProbs(); 8333 break; 8334 } 8335 } 8336 8337 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 8338 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 8339 CurMBB->normalizeSuccProbs(); 8340 8341 // The jump table header will be inserted in our current block, do the 8342 // range check, and fall through to our fallthrough block. 8343 JTH->HeaderBB = CurMBB; 8344 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8345 8346 // If we're in the right place, emit the jump table header right now. 8347 if (CurMBB == SwitchMBB) { 8348 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8349 JTH->Emitted = true; 8350 } 8351 break; 8352 } 8353 case CC_BitTests: { 8354 // FIXME: Optimize away range check based on pivot comparisons. 8355 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8356 8357 // The bit test blocks haven't been inserted yet; insert them here. 8358 for (BitTestCase &BTC : BTB->Cases) 8359 CurMF->insert(BBI, BTC.ThisBB); 8360 8361 // Fill in fields of the BitTestBlock. 8362 BTB->Parent = CurMBB; 8363 BTB->Default = Fallthrough; 8364 8365 BTB->DefaultProb = UnhandledProbs; 8366 // If the cases in bit test don't form a contiguous range, we evenly 8367 // distribute the probability on the edge to Fallthrough to two 8368 // successors of CurMBB. 8369 if (!BTB->ContiguousRange) { 8370 BTB->Prob += DefaultProb / 2; 8371 BTB->DefaultProb -= DefaultProb / 2; 8372 } 8373 8374 // If we're in the right place, emit the bit test header right now. 8375 if (CurMBB == SwitchMBB) { 8376 visitBitTestHeader(*BTB, SwitchMBB); 8377 BTB->Emitted = true; 8378 } 8379 break; 8380 } 8381 case CC_Range: { 8382 const Value *RHS, *LHS, *MHS; 8383 ISD::CondCode CC; 8384 if (I->Low == I->High) { 8385 // Check Cond == I->Low. 8386 CC = ISD::SETEQ; 8387 LHS = Cond; 8388 RHS=I->Low; 8389 MHS = nullptr; 8390 } else { 8391 // Check I->Low <= Cond <= I->High. 8392 CC = ISD::SETLE; 8393 LHS = I->Low; 8394 MHS = Cond; 8395 RHS = I->High; 8396 } 8397 8398 // The false probability is the sum of all unhandled cases. 8399 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob, 8400 UnhandledProbs); 8401 8402 if (CurMBB == SwitchMBB) 8403 visitSwitchCase(CB, SwitchMBB); 8404 else 8405 SwitchCases.push_back(CB); 8406 8407 break; 8408 } 8409 } 8410 CurMBB = Fallthrough; 8411 } 8412 } 8413 8414 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8415 CaseClusterIt First, 8416 CaseClusterIt Last) { 8417 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8418 if (X.Prob != CC.Prob) 8419 return X.Prob > CC.Prob; 8420 8421 // Ties are broken by comparing the case value. 8422 return X.Low->getValue().slt(CC.Low->getValue()); 8423 }); 8424 } 8425 8426 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8427 const SwitchWorkListItem &W, 8428 Value *Cond, 8429 MachineBasicBlock *SwitchMBB) { 8430 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8431 "Clusters not sorted?"); 8432 8433 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8434 8435 // Balance the tree based on branch probabilities to create a near-optimal (in 8436 // terms of search time given key frequency) binary search tree. See e.g. Kurt 8437 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8438 CaseClusterIt LastLeft = W.FirstCluster; 8439 CaseClusterIt FirstRight = W.LastCluster; 8440 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 8441 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 8442 8443 // Move LastLeft and FirstRight towards each other from opposite directions to 8444 // find a partitioning of the clusters which balances the probability on both 8445 // sides. If LeftProb and RightProb are equal, alternate which side is 8446 // taken to ensure 0-probability nodes are distributed evenly. 8447 unsigned I = 0; 8448 while (LastLeft + 1 < FirstRight) { 8449 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 8450 LeftProb += (++LastLeft)->Prob; 8451 else 8452 RightProb += (--FirstRight)->Prob; 8453 I++; 8454 } 8455 8456 for (;;) { 8457 // Our binary search tree differs from a typical BST in that ours can have up 8458 // to three values in each leaf. The pivot selection above doesn't take that 8459 // into account, which means the tree might require more nodes and be less 8460 // efficient. We compensate for this here. 8461 8462 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8463 unsigned NumRight = W.LastCluster - FirstRight + 1; 8464 8465 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8466 // If one side has less than 3 clusters, and the other has more than 3, 8467 // consider taking a cluster from the other side. 8468 8469 if (NumLeft < NumRight) { 8470 // Consider moving the first cluster on the right to the left side. 8471 CaseCluster &CC = *FirstRight; 8472 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8473 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8474 if (LeftSideRank <= RightSideRank) { 8475 // Moving the cluster to the left does not demote it. 8476 ++LastLeft; 8477 ++FirstRight; 8478 continue; 8479 } 8480 } else { 8481 assert(NumRight < NumLeft); 8482 // Consider moving the last element on the left to the right side. 8483 CaseCluster &CC = *LastLeft; 8484 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8485 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8486 if (RightSideRank <= LeftSideRank) { 8487 // Moving the cluster to the right does not demot it. 8488 --LastLeft; 8489 --FirstRight; 8490 continue; 8491 } 8492 } 8493 } 8494 break; 8495 } 8496 8497 assert(LastLeft + 1 == FirstRight); 8498 assert(LastLeft >= W.FirstCluster); 8499 assert(FirstRight <= W.LastCluster); 8500 8501 // Use the first element on the right as pivot since we will make less-than 8502 // comparisons against it. 8503 CaseClusterIt PivotCluster = FirstRight; 8504 assert(PivotCluster > W.FirstCluster); 8505 assert(PivotCluster <= W.LastCluster); 8506 8507 CaseClusterIt FirstLeft = W.FirstCluster; 8508 CaseClusterIt LastRight = W.LastCluster; 8509 8510 const ConstantInt *Pivot = PivotCluster->Low; 8511 8512 // New blocks will be inserted immediately after the current one. 8513 MachineFunction::iterator BBI(W.MBB); 8514 ++BBI; 8515 8516 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8517 // we can branch to its destination directly if it's squeezed exactly in 8518 // between the known lower bound and Pivot - 1. 8519 MachineBasicBlock *LeftMBB; 8520 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8521 FirstLeft->Low == W.GE && 8522 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8523 LeftMBB = FirstLeft->MBB; 8524 } else { 8525 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8526 FuncInfo.MF->insert(BBI, LeftMBB); 8527 WorkList.push_back( 8528 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 8529 // Put Cond in a virtual register to make it available from the new blocks. 8530 ExportFromCurrentBlock(Cond); 8531 } 8532 8533 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8534 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8535 // directly if RHS.High equals the current upper bound. 8536 MachineBasicBlock *RightMBB; 8537 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8538 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8539 RightMBB = FirstRight->MBB; 8540 } else { 8541 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8542 FuncInfo.MF->insert(BBI, RightMBB); 8543 WorkList.push_back( 8544 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 8545 // Put Cond in a virtual register to make it available from the new blocks. 8546 ExportFromCurrentBlock(Cond); 8547 } 8548 8549 // Create the CaseBlock record that will be used to lower the branch. 8550 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8551 LeftProb, RightProb); 8552 8553 if (W.MBB == SwitchMBB) 8554 visitSwitchCase(CB, SwitchMBB); 8555 else 8556 SwitchCases.push_back(CB); 8557 } 8558 8559 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8560 // Extract cases from the switch. 8561 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8562 CaseClusterVector Clusters; 8563 Clusters.reserve(SI.getNumCases()); 8564 for (auto I : SI.cases()) { 8565 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8566 const ConstantInt *CaseVal = I.getCaseValue(); 8567 BranchProbability Prob = 8568 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 8569 : BranchProbability(1, SI.getNumCases() + 1); 8570 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 8571 } 8572 8573 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8574 8575 // Cluster adjacent cases with the same destination. We do this at all 8576 // optimization levels because it's cheap to do and will make codegen faster 8577 // if there are many clusters. 8578 sortAndRangeify(Clusters); 8579 8580 if (TM.getOptLevel() != CodeGenOpt::None) { 8581 // Replace an unreachable default with the most popular destination. 8582 // FIXME: Exploit unreachable default more aggressively. 8583 bool UnreachableDefault = 8584 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8585 if (UnreachableDefault && !Clusters.empty()) { 8586 DenseMap<const BasicBlock *, unsigned> Popularity; 8587 unsigned MaxPop = 0; 8588 const BasicBlock *MaxBB = nullptr; 8589 for (auto I : SI.cases()) { 8590 const BasicBlock *BB = I.getCaseSuccessor(); 8591 if (++Popularity[BB] > MaxPop) { 8592 MaxPop = Popularity[BB]; 8593 MaxBB = BB; 8594 } 8595 } 8596 // Set new default. 8597 assert(MaxPop > 0 && MaxBB); 8598 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8599 8600 // Remove cases that were pointing to the destination that is now the 8601 // default. 8602 CaseClusterVector New; 8603 New.reserve(Clusters.size()); 8604 for (CaseCluster &CC : Clusters) { 8605 if (CC.MBB != DefaultMBB) 8606 New.push_back(CC); 8607 } 8608 Clusters = std::move(New); 8609 } 8610 } 8611 8612 // If there is only the default destination, jump there directly. 8613 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8614 if (Clusters.empty()) { 8615 SwitchMBB->addSuccessor(DefaultMBB); 8616 if (DefaultMBB != NextBlock(SwitchMBB)) { 8617 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8618 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8619 } 8620 return; 8621 } 8622 8623 findJumpTables(Clusters, &SI, DefaultMBB); 8624 findBitTestClusters(Clusters, &SI); 8625 8626 DEBUG({ 8627 dbgs() << "Case clusters: "; 8628 for (const CaseCluster &C : Clusters) { 8629 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8630 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8631 8632 C.Low->getValue().print(dbgs(), true); 8633 if (C.Low != C.High) { 8634 dbgs() << '-'; 8635 C.High->getValue().print(dbgs(), true); 8636 } 8637 dbgs() << ' '; 8638 } 8639 dbgs() << '\n'; 8640 }); 8641 8642 assert(!Clusters.empty()); 8643 SwitchWorkList WorkList; 8644 CaseClusterIt First = Clusters.begin(); 8645 CaseClusterIt Last = Clusters.end() - 1; 8646 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 8647 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 8648 8649 while (!WorkList.empty()) { 8650 SwitchWorkListItem W = WorkList.back(); 8651 WorkList.pop_back(); 8652 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8653 8654 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8655 // For optimized builds, lower large range as a balanced binary tree. 8656 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8657 continue; 8658 } 8659 8660 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8661 } 8662 } 8663