xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 3137fe4d23eeb8df08c03e9111465325eeafe08e)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BranchProbabilityInfo.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/Loads.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/CodeGen/Analysis.h"
39 #include "llvm/CodeGen/FunctionLoweringInfo.h"
40 #include "llvm/CodeGen/GCMetadata.h"
41 #include "llvm/CodeGen/ISDOpcodes.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBuilder.h"
47 #include "llvm/CodeGen/MachineJumpTableInfo.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineModuleInfo.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RuntimeLibcalls.h"
53 #include "llvm/CodeGen/SelectionDAG.h"
54 #include "llvm/CodeGen/SelectionDAGNodes.h"
55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
58 #include "llvm/CodeGen/TargetFrameLowering.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetLowering.h"
61 #include "llvm/CodeGen/TargetOpcodes.h"
62 #include "llvm/CodeGen/TargetRegisterInfo.h"
63 #include "llvm/CodeGen/TargetSubtargetInfo.h"
64 #include "llvm/CodeGen/ValueTypes.h"
65 #include "llvm/CodeGen/WinEHFuncInfo.h"
66 #include "llvm/IR/Argument.h"
67 #include "llvm/IR/Attributes.h"
68 #include "llvm/IR/BasicBlock.h"
69 #include "llvm/IR/CFG.h"
70 #include "llvm/IR/CallSite.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Constant.h"
73 #include "llvm/IR/ConstantRange.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DebugInfoMetadata.h"
77 #include "llvm/IR/DebugLoc.h"
78 #include "llvm/IR/DerivedTypes.h"
79 #include "llvm/IR/Function.h"
80 #include "llvm/IR/GetElementPtrTypeIterator.h"
81 #include "llvm/IR/InlineAsm.h"
82 #include "llvm/IR/InstrTypes.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/Intrinsics.h"
87 #include "llvm/IR/LLVMContext.h"
88 #include "llvm/IR/Metadata.h"
89 #include "llvm/IR/Module.h"
90 #include "llvm/IR/Operator.h"
91 #include "llvm/IR/PatternMatch.h"
92 #include "llvm/IR/Statepoint.h"
93 #include "llvm/IR/Type.h"
94 #include "llvm/IR/User.h"
95 #include "llvm/IR/Value.h"
96 #include "llvm/MC/MCContext.h"
97 #include "llvm/MC/MCSymbol.h"
98 #include "llvm/Support/AtomicOrdering.h"
99 #include "llvm/Support/BranchProbability.h"
100 #include "llvm/Support/Casting.h"
101 #include "llvm/Support/CodeGen.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Compiler.h"
104 #include "llvm/Support/Debug.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/MachineValueType.h"
107 #include "llvm/Support/MathExtras.h"
108 #include "llvm/Support/raw_ostream.h"
109 #include "llvm/Target/TargetIntrinsicInfo.h"
110 #include "llvm/Target/TargetMachine.h"
111 #include "llvm/Target/TargetOptions.h"
112 #include "llvm/Transforms/Utils/Local.h"
113 #include <algorithm>
114 #include <cassert>
115 #include <cstddef>
116 #include <cstdint>
117 #include <cstring>
118 #include <iterator>
119 #include <limits>
120 #include <numeric>
121 #include <tuple>
122 #include <utility>
123 #include <vector>
124 
125 using namespace llvm;
126 using namespace PatternMatch;
127 using namespace SwitchCG;
128 
129 #define DEBUG_TYPE "isel"
130 
131 /// LimitFloatPrecision - Generate low-precision inline sequences for
132 /// some float libcalls (6, 8 or 12 bits).
133 static unsigned LimitFloatPrecision;
134 
135 static cl::opt<unsigned, true>
136     LimitFPPrecision("limit-float-precision",
137                      cl::desc("Generate low-precision inline sequences "
138                               "for some float libcalls"),
139                      cl::location(LimitFloatPrecision), cl::Hidden,
140                      cl::init(0));
141 
142 static cl::opt<unsigned> SwitchPeelThreshold(
143     "switch-peel-threshold", cl::Hidden, cl::init(66),
144     cl::desc("Set the case probability threshold for peeling the case from a "
145              "switch statement. A value greater than 100 will void this "
146              "optimization"));
147 
148 // Limit the width of DAG chains. This is important in general to prevent
149 // DAG-based analysis from blowing up. For example, alias analysis and
150 // load clustering may not complete in reasonable time. It is difficult to
151 // recognize and avoid this situation within each individual analysis, and
152 // future analyses are likely to have the same behavior. Limiting DAG width is
153 // the safe approach and will be especially important with global DAGs.
154 //
155 // MaxParallelChains default is arbitrarily high to avoid affecting
156 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
157 // sequence over this should have been converted to llvm.memcpy by the
158 // frontend. It is easy to induce this behavior with .ll code such as:
159 // %buffer = alloca [4096 x i8]
160 // %data = load [4096 x i8]* %argPtr
161 // store [4096 x i8] %data, [4096 x i8]* %buffer
162 static const unsigned MaxParallelChains = 64;
163 
164 // Return the calling convention if the Value passed requires ABI mangling as it
165 // is a parameter to a function or a return value from a function which is not
166 // an intrinsic.
167 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
168   if (auto *R = dyn_cast<ReturnInst>(V))
169     return R->getParent()->getParent()->getCallingConv();
170 
171   if (auto *CI = dyn_cast<CallInst>(V)) {
172     const bool IsInlineAsm = CI->isInlineAsm();
173     const bool IsIndirectFunctionCall =
174         !IsInlineAsm && !CI->getCalledFunction();
175 
176     // It is possible that the call instruction is an inline asm statement or an
177     // indirect function call in which case the return value of
178     // getCalledFunction() would be nullptr.
179     const bool IsInstrinsicCall =
180         !IsInlineAsm && !IsIndirectFunctionCall &&
181         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
182 
183     if (!IsInlineAsm && !IsInstrinsicCall)
184       return CI->getCallingConv();
185   }
186 
187   return None;
188 }
189 
190 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
191                                       const SDValue *Parts, unsigned NumParts,
192                                       MVT PartVT, EVT ValueVT, const Value *V,
193                                       Optional<CallingConv::ID> CC);
194 
195 /// getCopyFromParts - Create a value that contains the specified legal parts
196 /// combined into the value they represent.  If the parts combine to a type
197 /// larger than ValueVT then AssertOp can be used to specify whether the extra
198 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
199 /// (ISD::AssertSext).
200 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
201                                 const SDValue *Parts, unsigned NumParts,
202                                 MVT PartVT, EVT ValueVT, const Value *V,
203                                 Optional<CallingConv::ID> CC = None,
204                                 Optional<ISD::NodeType> AssertOp = None) {
205   if (ValueVT.isVector())
206     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
207                                   CC);
208 
209   assert(NumParts > 0 && "No parts to assemble!");
210   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
211   SDValue Val = Parts[0];
212 
213   if (NumParts > 1) {
214     // Assemble the value from multiple parts.
215     if (ValueVT.isInteger()) {
216       unsigned PartBits = PartVT.getSizeInBits();
217       unsigned ValueBits = ValueVT.getSizeInBits();
218 
219       // Assemble the power of 2 part.
220       unsigned RoundParts =
221           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
222       unsigned RoundBits = PartBits * RoundParts;
223       EVT RoundVT = RoundBits == ValueBits ?
224         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
225       SDValue Lo, Hi;
226 
227       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
228 
229       if (RoundParts > 2) {
230         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
231                               PartVT, HalfVT, V);
232         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
233                               RoundParts / 2, PartVT, HalfVT, V);
234       } else {
235         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
236         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
237       }
238 
239       if (DAG.getDataLayout().isBigEndian())
240         std::swap(Lo, Hi);
241 
242       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
243 
244       if (RoundParts < NumParts) {
245         // Assemble the trailing non-power-of-2 part.
246         unsigned OddParts = NumParts - RoundParts;
247         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
248         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
249                               OddVT, V, CC);
250 
251         // Combine the round and odd parts.
252         Lo = Val;
253         if (DAG.getDataLayout().isBigEndian())
254           std::swap(Lo, Hi);
255         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
256         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
257         Hi =
258             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
259                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
260                                         TLI.getPointerTy(DAG.getDataLayout())));
261         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
262         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
263       }
264     } else if (PartVT.isFloatingPoint()) {
265       // FP split into multiple FP parts (for ppcf128)
266       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
267              "Unexpected split");
268       SDValue Lo, Hi;
269       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
270       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
271       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
272         std::swap(Lo, Hi);
273       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
274     } else {
275       // FP split into integer parts (soft fp)
276       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
277              !PartVT.isVector() && "Unexpected split");
278       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
279       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
280     }
281   }
282 
283   // There is now one part, held in Val.  Correct it to match ValueVT.
284   // PartEVT is the type of the register class that holds the value.
285   // ValueVT is the type of the inline asm operation.
286   EVT PartEVT = Val.getValueType();
287 
288   if (PartEVT == ValueVT)
289     return Val;
290 
291   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
292       ValueVT.bitsLT(PartEVT)) {
293     // For an FP value in an integer part, we need to truncate to the right
294     // width first.
295     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
296     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
297   }
298 
299   // Handle types that have the same size.
300   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
301     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
302 
303   // Handle types with different sizes.
304   if (PartEVT.isInteger() && ValueVT.isInteger()) {
305     if (ValueVT.bitsLT(PartEVT)) {
306       // For a truncate, see if we have any information to
307       // indicate whether the truncated bits will always be
308       // zero or sign-extension.
309       if (AssertOp.hasValue())
310         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
311                           DAG.getValueType(ValueVT));
312       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
313     }
314     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
315   }
316 
317   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
318     // FP_ROUND's are always exact here.
319     if (ValueVT.bitsLT(Val.getValueType()))
320       return DAG.getNode(
321           ISD::FP_ROUND, DL, ValueVT, Val,
322           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
323 
324     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
325   }
326 
327   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
328   // then truncating.
329   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
330       ValueVT.bitsLT(PartEVT)) {
331     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
332     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
333   }
334 
335   report_fatal_error("Unknown mismatch in getCopyFromParts!");
336 }
337 
338 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
339                                               const Twine &ErrMsg) {
340   const Instruction *I = dyn_cast_or_null<Instruction>(V);
341   if (!V)
342     return Ctx.emitError(ErrMsg);
343 
344   const char *AsmError = ", possible invalid constraint for vector type";
345   if (const CallInst *CI = dyn_cast<CallInst>(I))
346     if (isa<InlineAsm>(CI->getCalledValue()))
347       return Ctx.emitError(I, ErrMsg + AsmError);
348 
349   return Ctx.emitError(I, ErrMsg);
350 }
351 
352 /// getCopyFromPartsVector - Create a value that contains the specified legal
353 /// parts combined into the value they represent.  If the parts combine to a
354 /// type larger than ValueVT then AssertOp can be used to specify whether the
355 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
356 /// ValueVT (ISD::AssertSext).
357 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
358                                       const SDValue *Parts, unsigned NumParts,
359                                       MVT PartVT, EVT ValueVT, const Value *V,
360                                       Optional<CallingConv::ID> CallConv) {
361   assert(ValueVT.isVector() && "Not a vector value");
362   assert(NumParts > 0 && "No parts to assemble!");
363   const bool IsABIRegCopy = CallConv.hasValue();
364 
365   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
366   SDValue Val = Parts[0];
367 
368   // Handle a multi-element vector.
369   if (NumParts > 1) {
370     EVT IntermediateVT;
371     MVT RegisterVT;
372     unsigned NumIntermediates;
373     unsigned NumRegs;
374 
375     if (IsABIRegCopy) {
376       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
377           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
378           NumIntermediates, RegisterVT);
379     } else {
380       NumRegs =
381           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
382                                      NumIntermediates, RegisterVT);
383     }
384 
385     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
386     NumParts = NumRegs; // Silence a compiler warning.
387     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
388     assert(RegisterVT.getSizeInBits() ==
389            Parts[0].getSimpleValueType().getSizeInBits() &&
390            "Part type sizes don't match!");
391 
392     // Assemble the parts into intermediate operands.
393     SmallVector<SDValue, 8> Ops(NumIntermediates);
394     if (NumIntermediates == NumParts) {
395       // If the register was not expanded, truncate or copy the value,
396       // as appropriate.
397       for (unsigned i = 0; i != NumParts; ++i)
398         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
399                                   PartVT, IntermediateVT, V);
400     } else if (NumParts > 0) {
401       // If the intermediate type was expanded, build the intermediate
402       // operands from the parts.
403       assert(NumParts % NumIntermediates == 0 &&
404              "Must expand into a divisible number of parts!");
405       unsigned Factor = NumParts / NumIntermediates;
406       for (unsigned i = 0; i != NumIntermediates; ++i)
407         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
408                                   PartVT, IntermediateVT, V);
409     }
410 
411     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
412     // intermediate operands.
413     EVT BuiltVectorTy =
414         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
415                          (IntermediateVT.isVector()
416                               ? IntermediateVT.getVectorNumElements() * NumParts
417                               : NumIntermediates));
418     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
419                                                 : ISD::BUILD_VECTOR,
420                       DL, BuiltVectorTy, Ops);
421   }
422 
423   // There is now one part, held in Val.  Correct it to match ValueVT.
424   EVT PartEVT = Val.getValueType();
425 
426   if (PartEVT == ValueVT)
427     return Val;
428 
429   if (PartEVT.isVector()) {
430     // If the element type of the source/dest vectors are the same, but the
431     // parts vector has more elements than the value vector, then we have a
432     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
433     // elements we want.
434     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
435       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
436              "Cannot narrow, it would be a lossy transformation");
437       return DAG.getNode(
438           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
439           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
440     }
441 
442     // Vector/Vector bitcast.
443     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
444       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
445 
446     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
447       "Cannot handle this kind of promotion");
448     // Promoted vector extract
449     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
450 
451   }
452 
453   // Trivial bitcast if the types are the same size and the destination
454   // vector type is legal.
455   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
456       TLI.isTypeLegal(ValueVT))
457     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
458 
459   if (ValueVT.getVectorNumElements() != 1) {
460      // Certain ABIs require that vectors are passed as integers. For vectors
461      // are the same size, this is an obvious bitcast.
462      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
463        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
464      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
465        // Bitcast Val back the original type and extract the corresponding
466        // vector we want.
467        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
468        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
469                                            ValueVT.getVectorElementType(), Elts);
470        Val = DAG.getBitcast(WiderVecType, Val);
471        return DAG.getNode(
472            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
473            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
474      }
475 
476      diagnosePossiblyInvalidConstraint(
477          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
478      return DAG.getUNDEF(ValueVT);
479   }
480 
481   // Handle cases such as i8 -> <1 x i1>
482   EVT ValueSVT = ValueVT.getVectorElementType();
483   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
484     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
485                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
486 
487   return DAG.getBuildVector(ValueVT, DL, Val);
488 }
489 
490 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
491                                  SDValue Val, SDValue *Parts, unsigned NumParts,
492                                  MVT PartVT, const Value *V,
493                                  Optional<CallingConv::ID> CallConv);
494 
495 /// getCopyToParts - Create a series of nodes that contain the specified value
496 /// split into legal parts.  If the parts contain more bits than Val, then, for
497 /// integers, ExtendKind can be used to specify how to generate the extra bits.
498 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
499                            SDValue *Parts, unsigned NumParts, MVT PartVT,
500                            const Value *V,
501                            Optional<CallingConv::ID> CallConv = None,
502                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
503   EVT ValueVT = Val.getValueType();
504 
505   // Handle the vector case separately.
506   if (ValueVT.isVector())
507     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
508                                 CallConv);
509 
510   unsigned PartBits = PartVT.getSizeInBits();
511   unsigned OrigNumParts = NumParts;
512   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
513          "Copying to an illegal type!");
514 
515   if (NumParts == 0)
516     return;
517 
518   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
519   EVT PartEVT = PartVT;
520   if (PartEVT == ValueVT) {
521     assert(NumParts == 1 && "No-op copy with multiple parts!");
522     Parts[0] = Val;
523     return;
524   }
525 
526   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
527     // If the parts cover more bits than the value has, promote the value.
528     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
529       assert(NumParts == 1 && "Do not know what to promote to!");
530       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
531     } else {
532       if (ValueVT.isFloatingPoint()) {
533         // FP values need to be bitcast, then extended if they are being put
534         // into a larger container.
535         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
536         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
537       }
538       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
539              ValueVT.isInteger() &&
540              "Unknown mismatch!");
541       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
542       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
543       if (PartVT == MVT::x86mmx)
544         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
545     }
546   } else if (PartBits == ValueVT.getSizeInBits()) {
547     // Different types of the same size.
548     assert(NumParts == 1 && PartEVT != ValueVT);
549     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
550   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
551     // If the parts cover less bits than value has, truncate the value.
552     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
553            ValueVT.isInteger() &&
554            "Unknown mismatch!");
555     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
556     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
557     if (PartVT == MVT::x86mmx)
558       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
559   }
560 
561   // The value may have changed - recompute ValueVT.
562   ValueVT = Val.getValueType();
563   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
564          "Failed to tile the value with PartVT!");
565 
566   if (NumParts == 1) {
567     if (PartEVT != ValueVT) {
568       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
569                                         "scalar-to-vector conversion failed");
570       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
571     }
572 
573     Parts[0] = Val;
574     return;
575   }
576 
577   // Expand the value into multiple parts.
578   if (NumParts & (NumParts - 1)) {
579     // The number of parts is not a power of 2.  Split off and copy the tail.
580     assert(PartVT.isInteger() && ValueVT.isInteger() &&
581            "Do not know what to expand to!");
582     unsigned RoundParts = 1 << Log2_32(NumParts);
583     unsigned RoundBits = RoundParts * PartBits;
584     unsigned OddParts = NumParts - RoundParts;
585     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
586       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
587 
588     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
589                    CallConv);
590 
591     if (DAG.getDataLayout().isBigEndian())
592       // The odd parts were reversed by getCopyToParts - unreverse them.
593       std::reverse(Parts + RoundParts, Parts + NumParts);
594 
595     NumParts = RoundParts;
596     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
597     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
598   }
599 
600   // The number of parts is a power of 2.  Repeatedly bisect the value using
601   // EXTRACT_ELEMENT.
602   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
603                          EVT::getIntegerVT(*DAG.getContext(),
604                                            ValueVT.getSizeInBits()),
605                          Val);
606 
607   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
608     for (unsigned i = 0; i < NumParts; i += StepSize) {
609       unsigned ThisBits = StepSize * PartBits / 2;
610       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
611       SDValue &Part0 = Parts[i];
612       SDValue &Part1 = Parts[i+StepSize/2];
613 
614       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
615                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
616       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
617                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
618 
619       if (ThisBits == PartBits && ThisVT != PartVT) {
620         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
621         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
622       }
623     }
624   }
625 
626   if (DAG.getDataLayout().isBigEndian())
627     std::reverse(Parts, Parts + OrigNumParts);
628 }
629 
630 static SDValue widenVectorToPartType(SelectionDAG &DAG,
631                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
632   if (!PartVT.isVector())
633     return SDValue();
634 
635   EVT ValueVT = Val.getValueType();
636   unsigned PartNumElts = PartVT.getVectorNumElements();
637   unsigned ValueNumElts = ValueVT.getVectorNumElements();
638   if (PartNumElts > ValueNumElts &&
639       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
640     EVT ElementVT = PartVT.getVectorElementType();
641     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
642     // undef elements.
643     SmallVector<SDValue, 16> Ops;
644     DAG.ExtractVectorElements(Val, Ops);
645     SDValue EltUndef = DAG.getUNDEF(ElementVT);
646     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
647       Ops.push_back(EltUndef);
648 
649     // FIXME: Use CONCAT for 2x -> 4x.
650     return DAG.getBuildVector(PartVT, DL, Ops);
651   }
652 
653   return SDValue();
654 }
655 
656 /// getCopyToPartsVector - Create a series of nodes that contain the specified
657 /// value split into legal parts.
658 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
659                                  SDValue Val, SDValue *Parts, unsigned NumParts,
660                                  MVT PartVT, const Value *V,
661                                  Optional<CallingConv::ID> CallConv) {
662   EVT ValueVT = Val.getValueType();
663   assert(ValueVT.isVector() && "Not a vector");
664   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
665   const bool IsABIRegCopy = CallConv.hasValue();
666 
667   if (NumParts == 1) {
668     EVT PartEVT = PartVT;
669     if (PartEVT == ValueVT) {
670       // Nothing to do.
671     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
672       // Bitconvert vector->vector case.
673       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
674     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
675       Val = Widened;
676     } else if (PartVT.isVector() &&
677                PartEVT.getVectorElementType().bitsGE(
678                  ValueVT.getVectorElementType()) &&
679                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
680 
681       // Promoted vector extract
682       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
683     } else {
684       if (ValueVT.getVectorNumElements() == 1) {
685         Val = DAG.getNode(
686             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
687             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
688       } else {
689         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
690                "lossy conversion of vector to scalar type");
691         EVT IntermediateType =
692             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
693         Val = DAG.getBitcast(IntermediateType, Val);
694         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
695       }
696     }
697 
698     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
699     Parts[0] = Val;
700     return;
701   }
702 
703   // Handle a multi-element vector.
704   EVT IntermediateVT;
705   MVT RegisterVT;
706   unsigned NumIntermediates;
707   unsigned NumRegs;
708   if (IsABIRegCopy) {
709     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
710         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
711         NumIntermediates, RegisterVT);
712   } else {
713     NumRegs =
714         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
715                                    NumIntermediates, RegisterVT);
716   }
717 
718   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
719   NumParts = NumRegs; // Silence a compiler warning.
720   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
721 
722   unsigned IntermediateNumElts = IntermediateVT.isVector() ?
723     IntermediateVT.getVectorNumElements() : 1;
724 
725   // Convert the vector to the appropriate type if necessary.
726   unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
727 
728   EVT BuiltVectorTy = EVT::getVectorVT(
729       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
730   MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
731   if (ValueVT != BuiltVectorTy) {
732     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
733       Val = Widened;
734 
735     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
736   }
737 
738   // Split the vector into intermediate operands.
739   SmallVector<SDValue, 8> Ops(NumIntermediates);
740   for (unsigned i = 0; i != NumIntermediates; ++i) {
741     if (IntermediateVT.isVector()) {
742       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
743                            DAG.getConstant(i * IntermediateNumElts, DL, IdxVT));
744     } else {
745       Ops[i] = DAG.getNode(
746           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
747           DAG.getConstant(i, DL, IdxVT));
748     }
749   }
750 
751   // Split the intermediate operands into legal parts.
752   if (NumParts == NumIntermediates) {
753     // If the register was not expanded, promote or copy the value,
754     // as appropriate.
755     for (unsigned i = 0; i != NumParts; ++i)
756       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
757   } else if (NumParts > 0) {
758     // If the intermediate type was expanded, split each the value into
759     // legal parts.
760     assert(NumIntermediates != 0 && "division by zero");
761     assert(NumParts % NumIntermediates == 0 &&
762            "Must expand into a divisible number of parts!");
763     unsigned Factor = NumParts / NumIntermediates;
764     for (unsigned i = 0; i != NumIntermediates; ++i)
765       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
766                      CallConv);
767   }
768 }
769 
770 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
771                            EVT valuevt, Optional<CallingConv::ID> CC)
772     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
773       RegCount(1, regs.size()), CallConv(CC) {}
774 
775 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
776                            const DataLayout &DL, unsigned Reg, Type *Ty,
777                            Optional<CallingConv::ID> CC) {
778   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
779 
780   CallConv = CC;
781 
782   for (EVT ValueVT : ValueVTs) {
783     unsigned NumRegs =
784         isABIMangled()
785             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
786             : TLI.getNumRegisters(Context, ValueVT);
787     MVT RegisterVT =
788         isABIMangled()
789             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
790             : TLI.getRegisterType(Context, ValueVT);
791     for (unsigned i = 0; i != NumRegs; ++i)
792       Regs.push_back(Reg + i);
793     RegVTs.push_back(RegisterVT);
794     RegCount.push_back(NumRegs);
795     Reg += NumRegs;
796   }
797 }
798 
799 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
800                                       FunctionLoweringInfo &FuncInfo,
801                                       const SDLoc &dl, SDValue &Chain,
802                                       SDValue *Flag, const Value *V) const {
803   // A Value with type {} or [0 x %t] needs no registers.
804   if (ValueVTs.empty())
805     return SDValue();
806 
807   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
808 
809   // Assemble the legal parts into the final values.
810   SmallVector<SDValue, 4> Values(ValueVTs.size());
811   SmallVector<SDValue, 8> Parts;
812   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
813     // Copy the legal parts from the registers.
814     EVT ValueVT = ValueVTs[Value];
815     unsigned NumRegs = RegCount[Value];
816     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
817                                           *DAG.getContext(),
818                                           CallConv.getValue(), RegVTs[Value])
819                                     : RegVTs[Value];
820 
821     Parts.resize(NumRegs);
822     for (unsigned i = 0; i != NumRegs; ++i) {
823       SDValue P;
824       if (!Flag) {
825         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
826       } else {
827         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
828         *Flag = P.getValue(2);
829       }
830 
831       Chain = P.getValue(1);
832       Parts[i] = P;
833 
834       // If the source register was virtual and if we know something about it,
835       // add an assert node.
836       if (!Register::isVirtualRegister(Regs[Part + i]) ||
837           !RegisterVT.isInteger())
838         continue;
839 
840       const FunctionLoweringInfo::LiveOutInfo *LOI =
841         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
842       if (!LOI)
843         continue;
844 
845       unsigned RegSize = RegisterVT.getScalarSizeInBits();
846       unsigned NumSignBits = LOI->NumSignBits;
847       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
848 
849       if (NumZeroBits == RegSize) {
850         // The current value is a zero.
851         // Explicitly express that as it would be easier for
852         // optimizations to kick in.
853         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
854         continue;
855       }
856 
857       // FIXME: We capture more information than the dag can represent.  For
858       // now, just use the tightest assertzext/assertsext possible.
859       bool isSExt;
860       EVT FromVT(MVT::Other);
861       if (NumZeroBits) {
862         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
863         isSExt = false;
864       } else if (NumSignBits > 1) {
865         FromVT =
866             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
867         isSExt = true;
868       } else {
869         continue;
870       }
871       // Add an assertion node.
872       assert(FromVT != MVT::Other);
873       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
874                              RegisterVT, P, DAG.getValueType(FromVT));
875     }
876 
877     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
878                                      RegisterVT, ValueVT, V, CallConv);
879     Part += NumRegs;
880     Parts.clear();
881   }
882 
883   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
884 }
885 
886 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
887                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
888                                  const Value *V,
889                                  ISD::NodeType PreferredExtendType) const {
890   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
891   ISD::NodeType ExtendKind = PreferredExtendType;
892 
893   // Get the list of the values's legal parts.
894   unsigned NumRegs = Regs.size();
895   SmallVector<SDValue, 8> Parts(NumRegs);
896   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
897     unsigned NumParts = RegCount[Value];
898 
899     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
900                                           *DAG.getContext(),
901                                           CallConv.getValue(), RegVTs[Value])
902                                     : RegVTs[Value];
903 
904     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
905       ExtendKind = ISD::ZERO_EXTEND;
906 
907     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
908                    NumParts, RegisterVT, V, CallConv, ExtendKind);
909     Part += NumParts;
910   }
911 
912   // Copy the parts into the registers.
913   SmallVector<SDValue, 8> Chains(NumRegs);
914   for (unsigned i = 0; i != NumRegs; ++i) {
915     SDValue Part;
916     if (!Flag) {
917       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
918     } else {
919       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
920       *Flag = Part.getValue(1);
921     }
922 
923     Chains[i] = Part.getValue(0);
924   }
925 
926   if (NumRegs == 1 || Flag)
927     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
928     // flagged to it. That is the CopyToReg nodes and the user are considered
929     // a single scheduling unit. If we create a TokenFactor and return it as
930     // chain, then the TokenFactor is both a predecessor (operand) of the
931     // user as well as a successor (the TF operands are flagged to the user).
932     // c1, f1 = CopyToReg
933     // c2, f2 = CopyToReg
934     // c3     = TokenFactor c1, c2
935     // ...
936     //        = op c3, ..., f2
937     Chain = Chains[NumRegs-1];
938   else
939     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
940 }
941 
942 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
943                                         unsigned MatchingIdx, const SDLoc &dl,
944                                         SelectionDAG &DAG,
945                                         std::vector<SDValue> &Ops) const {
946   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
947 
948   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
949   if (HasMatching)
950     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
951   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
952     // Put the register class of the virtual registers in the flag word.  That
953     // way, later passes can recompute register class constraints for inline
954     // assembly as well as normal instructions.
955     // Don't do this for tied operands that can use the regclass information
956     // from the def.
957     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
958     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
959     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
960   }
961 
962   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
963   Ops.push_back(Res);
964 
965   if (Code == InlineAsm::Kind_Clobber) {
966     // Clobbers should always have a 1:1 mapping with registers, and may
967     // reference registers that have illegal (e.g. vector) types. Hence, we
968     // shouldn't try to apply any sort of splitting logic to them.
969     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
970            "No 1:1 mapping from clobbers to regs?");
971     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
972     (void)SP;
973     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
974       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
975       assert(
976           (Regs[I] != SP ||
977            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
978           "If we clobbered the stack pointer, MFI should know about it.");
979     }
980     return;
981   }
982 
983   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
984     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
985     MVT RegisterVT = RegVTs[Value];
986     for (unsigned i = 0; i != NumRegs; ++i) {
987       assert(Reg < Regs.size() && "Mismatch in # registers expected");
988       unsigned TheReg = Regs[Reg++];
989       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
990     }
991   }
992 }
993 
994 SmallVector<std::pair<unsigned, unsigned>, 4>
995 RegsForValue::getRegsAndSizes() const {
996   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
997   unsigned I = 0;
998   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
999     unsigned RegCount = std::get<0>(CountAndVT);
1000     MVT RegisterVT = std::get<1>(CountAndVT);
1001     unsigned RegisterSize = RegisterVT.getSizeInBits();
1002     for (unsigned E = I + RegCount; I != E; ++I)
1003       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1004   }
1005   return OutVec;
1006 }
1007 
1008 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1009                                const TargetLibraryInfo *li) {
1010   AA = aa;
1011   GFI = gfi;
1012   LibInfo = li;
1013   DL = &DAG.getDataLayout();
1014   Context = DAG.getContext();
1015   LPadToCallSiteMap.clear();
1016   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1017 }
1018 
1019 void SelectionDAGBuilder::clear() {
1020   NodeMap.clear();
1021   UnusedArgNodeMap.clear();
1022   PendingLoads.clear();
1023   PendingExports.clear();
1024   CurInst = nullptr;
1025   HasTailCall = false;
1026   SDNodeOrder = LowestSDNodeOrder;
1027   StatepointLowering.clear();
1028 }
1029 
1030 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1031   DanglingDebugInfoMap.clear();
1032 }
1033 
1034 SDValue SelectionDAGBuilder::getRoot() {
1035   if (PendingLoads.empty())
1036     return DAG.getRoot();
1037 
1038   if (PendingLoads.size() == 1) {
1039     SDValue Root = PendingLoads[0];
1040     DAG.setRoot(Root);
1041     PendingLoads.clear();
1042     return Root;
1043   }
1044 
1045   // Otherwise, we have to make a token factor node.
1046   SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads);
1047   PendingLoads.clear();
1048   DAG.setRoot(Root);
1049   return Root;
1050 }
1051 
1052 SDValue SelectionDAGBuilder::getControlRoot() {
1053   SDValue Root = DAG.getRoot();
1054 
1055   if (PendingExports.empty())
1056     return Root;
1057 
1058   // Turn all of the CopyToReg chains into one factored node.
1059   if (Root.getOpcode() != ISD::EntryToken) {
1060     unsigned i = 0, e = PendingExports.size();
1061     for (; i != e; ++i) {
1062       assert(PendingExports[i].getNode()->getNumOperands() > 1);
1063       if (PendingExports[i].getNode()->getOperand(0) == Root)
1064         break;  // Don't add the root if we already indirectly depend on it.
1065     }
1066 
1067     if (i == e)
1068       PendingExports.push_back(Root);
1069   }
1070 
1071   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1072                      PendingExports);
1073   PendingExports.clear();
1074   DAG.setRoot(Root);
1075   return Root;
1076 }
1077 
1078 void SelectionDAGBuilder::visit(const Instruction &I) {
1079   // Set up outgoing PHI node register values before emitting the terminator.
1080   if (I.isTerminator()) {
1081     HandlePHINodesInSuccessorBlocks(I.getParent());
1082   }
1083 
1084   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1085   if (!isa<DbgInfoIntrinsic>(I))
1086     ++SDNodeOrder;
1087 
1088   CurInst = &I;
1089 
1090   visit(I.getOpcode(), I);
1091 
1092   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1093     // Propagate the fast-math-flags of this IR instruction to the DAG node that
1094     // maps to this instruction.
1095     // TODO: We could handle all flags (nsw, etc) here.
1096     // TODO: If an IR instruction maps to >1 node, only the final node will have
1097     //       flags set.
1098     if (SDNode *Node = getNodeForIRValue(&I)) {
1099       SDNodeFlags IncomingFlags;
1100       IncomingFlags.copyFMF(*FPMO);
1101       if (!Node->getFlags().isDefined())
1102         Node->setFlags(IncomingFlags);
1103       else
1104         Node->intersectFlagsWith(IncomingFlags);
1105     }
1106   }
1107 
1108   if (!I.isTerminator() && !HasTailCall &&
1109       !isStatepoint(&I)) // statepoints handle their exports internally
1110     CopyToExportRegsIfNeeded(&I);
1111 
1112   CurInst = nullptr;
1113 }
1114 
1115 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1116   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1117 }
1118 
1119 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1120   // Note: this doesn't use InstVisitor, because it has to work with
1121   // ConstantExpr's in addition to instructions.
1122   switch (Opcode) {
1123   default: llvm_unreachable("Unknown instruction type encountered!");
1124     // Build the switch statement using the Instruction.def file.
1125 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1126     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1127 #include "llvm/IR/Instruction.def"
1128   }
1129 }
1130 
1131 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1132                                                 const DIExpression *Expr) {
1133   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1134     const DbgValueInst *DI = DDI.getDI();
1135     DIVariable *DanglingVariable = DI->getVariable();
1136     DIExpression *DanglingExpr = DI->getExpression();
1137     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1138       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1139       return true;
1140     }
1141     return false;
1142   };
1143 
1144   for (auto &DDIMI : DanglingDebugInfoMap) {
1145     DanglingDebugInfoVector &DDIV = DDIMI.second;
1146 
1147     // If debug info is to be dropped, run it through final checks to see
1148     // whether it can be salvaged.
1149     for (auto &DDI : DDIV)
1150       if (isMatchingDbgValue(DDI))
1151         salvageUnresolvedDbgValue(DDI);
1152 
1153     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1154   }
1155 }
1156 
1157 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1158 // generate the debug data structures now that we've seen its definition.
1159 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1160                                                    SDValue Val) {
1161   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1162   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1163     return;
1164 
1165   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1166   for (auto &DDI : DDIV) {
1167     const DbgValueInst *DI = DDI.getDI();
1168     assert(DI && "Ill-formed DanglingDebugInfo");
1169     DebugLoc dl = DDI.getdl();
1170     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1171     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1172     DILocalVariable *Variable = DI->getVariable();
1173     DIExpression *Expr = DI->getExpression();
1174     assert(Variable->isValidLocationForIntrinsic(dl) &&
1175            "Expected inlined-at fields to agree");
1176     SDDbgValue *SDV;
1177     if (Val.getNode()) {
1178       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1179       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1180       // we couldn't resolve it directly when examining the DbgValue intrinsic
1181       // in the first place we should not be more successful here). Unless we
1182       // have some test case that prove this to be correct we should avoid
1183       // calling EmitFuncArgumentDbgValue here.
1184       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1185         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1186                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1187         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1188         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1189         // inserted after the definition of Val when emitting the instructions
1190         // after ISel. An alternative could be to teach
1191         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1192         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1193                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1194                    << ValSDNodeOrder << "\n");
1195         SDV = getDbgValue(Val, Variable, Expr, dl,
1196                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1197         DAG.AddDbgValue(SDV, Val.getNode(), false);
1198       } else
1199         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1200                           << "in EmitFuncArgumentDbgValue\n");
1201     } else {
1202       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1203       auto Undef =
1204           UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1205       auto SDV =
1206           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1207       DAG.AddDbgValue(SDV, nullptr, false);
1208     }
1209   }
1210   DDIV.clear();
1211 }
1212 
1213 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1214   Value *V = DDI.getDI()->getValue();
1215   DILocalVariable *Var = DDI.getDI()->getVariable();
1216   DIExpression *Expr = DDI.getDI()->getExpression();
1217   DebugLoc DL = DDI.getdl();
1218   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1219   unsigned SDOrder = DDI.getSDNodeOrder();
1220 
1221   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1222   // that DW_OP_stack_value is desired.
1223   assert(isa<DbgValueInst>(DDI.getDI()));
1224   bool StackValue = true;
1225 
1226   // Can this Value can be encoded without any further work?
1227   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1228     return;
1229 
1230   // Attempt to salvage back through as many instructions as possible. Bail if
1231   // a non-instruction is seen, such as a constant expression or global
1232   // variable. FIXME: Further work could recover those too.
1233   while (isa<Instruction>(V)) {
1234     Instruction &VAsInst = *cast<Instruction>(V);
1235     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1236 
1237     // If we cannot salvage any further, and haven't yet found a suitable debug
1238     // expression, bail out.
1239     if (!NewExpr)
1240       break;
1241 
1242     // New value and expr now represent this debuginfo.
1243     V = VAsInst.getOperand(0);
1244     Expr = NewExpr;
1245 
1246     // Some kind of simplification occurred: check whether the operand of the
1247     // salvaged debug expression can be encoded in this DAG.
1248     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1249       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1250                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1251       return;
1252     }
1253   }
1254 
1255   // This was the final opportunity to salvage this debug information, and it
1256   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1257   // any earlier variable location.
1258   auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1259   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1260   DAG.AddDbgValue(SDV, nullptr, false);
1261 
1262   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1263                     << "\n");
1264   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1265                     << "\n");
1266 }
1267 
1268 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1269                                            DIExpression *Expr, DebugLoc dl,
1270                                            DebugLoc InstDL, unsigned Order) {
1271   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1272   SDDbgValue *SDV;
1273   if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1274       isa<ConstantPointerNull>(V)) {
1275     SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1276     DAG.AddDbgValue(SDV, nullptr, false);
1277     return true;
1278   }
1279 
1280   // If the Value is a frame index, we can create a FrameIndex debug value
1281   // without relying on the DAG at all.
1282   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1283     auto SI = FuncInfo.StaticAllocaMap.find(AI);
1284     if (SI != FuncInfo.StaticAllocaMap.end()) {
1285       auto SDV =
1286           DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1287                                     /*IsIndirect*/ false, dl, SDNodeOrder);
1288       // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1289       // is still available even if the SDNode gets optimized out.
1290       DAG.AddDbgValue(SDV, nullptr, false);
1291       return true;
1292     }
1293   }
1294 
1295   // Do not use getValue() in here; we don't want to generate code at
1296   // this point if it hasn't been done yet.
1297   SDValue N = NodeMap[V];
1298   if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1299     N = UnusedArgNodeMap[V];
1300   if (N.getNode()) {
1301     if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1302       return true;
1303     SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1304     DAG.AddDbgValue(SDV, N.getNode(), false);
1305     return true;
1306   }
1307 
1308   // Special rules apply for the first dbg.values of parameter variables in a
1309   // function. Identify them by the fact they reference Argument Values, that
1310   // they're parameters, and they are parameters of the current function. We
1311   // need to let them dangle until they get an SDNode.
1312   bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1313                        !InstDL.getInlinedAt();
1314   if (!IsParamOfFunc) {
1315     // The value is not used in this block yet (or it would have an SDNode).
1316     // We still want the value to appear for the user if possible -- if it has
1317     // an associated VReg, we can refer to that instead.
1318     auto VMI = FuncInfo.ValueMap.find(V);
1319     if (VMI != FuncInfo.ValueMap.end()) {
1320       unsigned Reg = VMI->second;
1321       // If this is a PHI node, it may be split up into several MI PHI nodes
1322       // (in FunctionLoweringInfo::set).
1323       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1324                        V->getType(), None);
1325       if (RFV.occupiesMultipleRegs()) {
1326         unsigned Offset = 0;
1327         unsigned BitsToDescribe = 0;
1328         if (auto VarSize = Var->getSizeInBits())
1329           BitsToDescribe = *VarSize;
1330         if (auto Fragment = Expr->getFragmentInfo())
1331           BitsToDescribe = Fragment->SizeInBits;
1332         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1333           unsigned RegisterSize = RegAndSize.second;
1334           // Bail out if all bits are described already.
1335           if (Offset >= BitsToDescribe)
1336             break;
1337           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1338               ? BitsToDescribe - Offset
1339               : RegisterSize;
1340           auto FragmentExpr = DIExpression::createFragmentExpression(
1341               Expr, Offset, FragmentSize);
1342           if (!FragmentExpr)
1343               continue;
1344           SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1345                                     false, dl, SDNodeOrder);
1346           DAG.AddDbgValue(SDV, nullptr, false);
1347           Offset += RegisterSize;
1348         }
1349       } else {
1350         SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1351         DAG.AddDbgValue(SDV, nullptr, false);
1352       }
1353       return true;
1354     }
1355   }
1356 
1357   return false;
1358 }
1359 
1360 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1361   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1362   for (auto &Pair : DanglingDebugInfoMap)
1363     for (auto &DDI : Pair.second)
1364       salvageUnresolvedDbgValue(DDI);
1365   clearDanglingDebugInfo();
1366 }
1367 
1368 /// getCopyFromRegs - If there was virtual register allocated for the value V
1369 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1370 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1371   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1372   SDValue Result;
1373 
1374   if (It != FuncInfo.ValueMap.end()) {
1375     unsigned InReg = It->second;
1376 
1377     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1378                      DAG.getDataLayout(), InReg, Ty,
1379                      None); // This is not an ABI copy.
1380     SDValue Chain = DAG.getEntryNode();
1381     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1382                                  V);
1383     resolveDanglingDebugInfo(V, Result);
1384   }
1385 
1386   return Result;
1387 }
1388 
1389 /// getValue - Return an SDValue for the given Value.
1390 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1391   // If we already have an SDValue for this value, use it. It's important
1392   // to do this first, so that we don't create a CopyFromReg if we already
1393   // have a regular SDValue.
1394   SDValue &N = NodeMap[V];
1395   if (N.getNode()) return N;
1396 
1397   // If there's a virtual register allocated and initialized for this
1398   // value, use it.
1399   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1400     return copyFromReg;
1401 
1402   // Otherwise create a new SDValue and remember it.
1403   SDValue Val = getValueImpl(V);
1404   NodeMap[V] = Val;
1405   resolveDanglingDebugInfo(V, Val);
1406   return Val;
1407 }
1408 
1409 // Return true if SDValue exists for the given Value
1410 bool SelectionDAGBuilder::findValue(const Value *V) const {
1411   return (NodeMap.find(V) != NodeMap.end()) ||
1412     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1413 }
1414 
1415 /// getNonRegisterValue - Return an SDValue for the given Value, but
1416 /// don't look in FuncInfo.ValueMap for a virtual register.
1417 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1418   // If we already have an SDValue for this value, use it.
1419   SDValue &N = NodeMap[V];
1420   if (N.getNode()) {
1421     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1422       // Remove the debug location from the node as the node is about to be used
1423       // in a location which may differ from the original debug location.  This
1424       // is relevant to Constant and ConstantFP nodes because they can appear
1425       // as constant expressions inside PHI nodes.
1426       N->setDebugLoc(DebugLoc());
1427     }
1428     return N;
1429   }
1430 
1431   // Otherwise create a new SDValue and remember it.
1432   SDValue Val = getValueImpl(V);
1433   NodeMap[V] = Val;
1434   resolveDanglingDebugInfo(V, Val);
1435   return Val;
1436 }
1437 
1438 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1439 /// Create an SDValue for the given value.
1440 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1441   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1442 
1443   if (const Constant *C = dyn_cast<Constant>(V)) {
1444     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1445 
1446     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1447       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1448 
1449     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1450       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1451 
1452     if (isa<ConstantPointerNull>(C)) {
1453       unsigned AS = V->getType()->getPointerAddressSpace();
1454       return DAG.getConstant(0, getCurSDLoc(),
1455                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1456     }
1457 
1458     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1459       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1460 
1461     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1462       return DAG.getUNDEF(VT);
1463 
1464     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1465       visit(CE->getOpcode(), *CE);
1466       SDValue N1 = NodeMap[V];
1467       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1468       return N1;
1469     }
1470 
1471     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1472       SmallVector<SDValue, 4> Constants;
1473       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1474            OI != OE; ++OI) {
1475         SDNode *Val = getValue(*OI).getNode();
1476         // If the operand is an empty aggregate, there are no values.
1477         if (!Val) continue;
1478         // Add each leaf value from the operand to the Constants list
1479         // to form a flattened list of all the values.
1480         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1481           Constants.push_back(SDValue(Val, i));
1482       }
1483 
1484       return DAG.getMergeValues(Constants, getCurSDLoc());
1485     }
1486 
1487     if (const ConstantDataSequential *CDS =
1488           dyn_cast<ConstantDataSequential>(C)) {
1489       SmallVector<SDValue, 4> Ops;
1490       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1491         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1492         // Add each leaf value from the operand to the Constants list
1493         // to form a flattened list of all the values.
1494         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1495           Ops.push_back(SDValue(Val, i));
1496       }
1497 
1498       if (isa<ArrayType>(CDS->getType()))
1499         return DAG.getMergeValues(Ops, getCurSDLoc());
1500       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1501     }
1502 
1503     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1504       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1505              "Unknown struct or array constant!");
1506 
1507       SmallVector<EVT, 4> ValueVTs;
1508       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1509       unsigned NumElts = ValueVTs.size();
1510       if (NumElts == 0)
1511         return SDValue(); // empty struct
1512       SmallVector<SDValue, 4> Constants(NumElts);
1513       for (unsigned i = 0; i != NumElts; ++i) {
1514         EVT EltVT = ValueVTs[i];
1515         if (isa<UndefValue>(C))
1516           Constants[i] = DAG.getUNDEF(EltVT);
1517         else if (EltVT.isFloatingPoint())
1518           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1519         else
1520           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1521       }
1522 
1523       return DAG.getMergeValues(Constants, getCurSDLoc());
1524     }
1525 
1526     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1527       return DAG.getBlockAddress(BA, VT);
1528 
1529     VectorType *VecTy = cast<VectorType>(V->getType());
1530     unsigned NumElements = VecTy->getNumElements();
1531 
1532     // Now that we know the number and type of the elements, get that number of
1533     // elements into the Ops array based on what kind of constant it is.
1534     SmallVector<SDValue, 16> Ops;
1535     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1536       for (unsigned i = 0; i != NumElements; ++i)
1537         Ops.push_back(getValue(CV->getOperand(i)));
1538     } else {
1539       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1540       EVT EltVT =
1541           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1542 
1543       SDValue Op;
1544       if (EltVT.isFloatingPoint())
1545         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1546       else
1547         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1548       Ops.assign(NumElements, Op);
1549     }
1550 
1551     // Create a BUILD_VECTOR node.
1552     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1553   }
1554 
1555   // If this is a static alloca, generate it as the frameindex instead of
1556   // computation.
1557   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1558     DenseMap<const AllocaInst*, int>::iterator SI =
1559       FuncInfo.StaticAllocaMap.find(AI);
1560     if (SI != FuncInfo.StaticAllocaMap.end())
1561       return DAG.getFrameIndex(SI->second,
1562                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1563   }
1564 
1565   // If this is an instruction which fast-isel has deferred, select it now.
1566   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1567     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1568 
1569     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1570                      Inst->getType(), getABIRegCopyCC(V));
1571     SDValue Chain = DAG.getEntryNode();
1572     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1573   }
1574 
1575   llvm_unreachable("Can't get register for value!");
1576 }
1577 
1578 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1579   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1580   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1581   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1582   bool IsSEH = isAsynchronousEHPersonality(Pers);
1583   bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX;
1584   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1585   if (!IsSEH)
1586     CatchPadMBB->setIsEHScopeEntry();
1587   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1588   if (IsMSVCCXX || IsCoreCLR)
1589     CatchPadMBB->setIsEHFuncletEntry();
1590   // Wasm does not need catchpads anymore
1591   if (!IsWasmCXX)
1592     DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other,
1593                             getControlRoot()));
1594 }
1595 
1596 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1597   // Update machine-CFG edge.
1598   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1599   FuncInfo.MBB->addSuccessor(TargetMBB);
1600 
1601   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1602   bool IsSEH = isAsynchronousEHPersonality(Pers);
1603   if (IsSEH) {
1604     // If this is not a fall-through branch or optimizations are switched off,
1605     // emit the branch.
1606     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1607         TM.getOptLevel() == CodeGenOpt::None)
1608       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1609                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1610     return;
1611   }
1612 
1613   // Figure out the funclet membership for the catchret's successor.
1614   // This will be used by the FuncletLayout pass to determine how to order the
1615   // BB's.
1616   // A 'catchret' returns to the outer scope's color.
1617   Value *ParentPad = I.getCatchSwitchParentPad();
1618   const BasicBlock *SuccessorColor;
1619   if (isa<ConstantTokenNone>(ParentPad))
1620     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1621   else
1622     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1623   assert(SuccessorColor && "No parent funclet for catchret!");
1624   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1625   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1626 
1627   // Create the terminator node.
1628   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1629                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1630                             DAG.getBasicBlock(SuccessorColorMBB));
1631   DAG.setRoot(Ret);
1632 }
1633 
1634 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1635   // Don't emit any special code for the cleanuppad instruction. It just marks
1636   // the start of an EH scope/funclet.
1637   FuncInfo.MBB->setIsEHScopeEntry();
1638   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1639   if (Pers != EHPersonality::Wasm_CXX) {
1640     FuncInfo.MBB->setIsEHFuncletEntry();
1641     FuncInfo.MBB->setIsCleanupFuncletEntry();
1642   }
1643 }
1644 
1645 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1646 // the control flow always stops at the single catch pad, as it does for a
1647 // cleanup pad. In case the exception caught is not of the types the catch pad
1648 // catches, it will be rethrown by a rethrow.
1649 static void findWasmUnwindDestinations(
1650     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1651     BranchProbability Prob,
1652     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1653         &UnwindDests) {
1654   while (EHPadBB) {
1655     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1656     if (isa<CleanupPadInst>(Pad)) {
1657       // Stop on cleanup pads.
1658       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1659       UnwindDests.back().first->setIsEHScopeEntry();
1660       break;
1661     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1662       // Add the catchpad handlers to the possible destinations. We don't
1663       // continue to the unwind destination of the catchswitch for wasm.
1664       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1665         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1666         UnwindDests.back().first->setIsEHScopeEntry();
1667       }
1668       break;
1669     } else {
1670       continue;
1671     }
1672   }
1673 }
1674 
1675 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1676 /// many places it could ultimately go. In the IR, we have a single unwind
1677 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1678 /// This function skips over imaginary basic blocks that hold catchswitch
1679 /// instructions, and finds all the "real" machine
1680 /// basic block destinations. As those destinations may not be successors of
1681 /// EHPadBB, here we also calculate the edge probability to those destinations.
1682 /// The passed-in Prob is the edge probability to EHPadBB.
1683 static void findUnwindDestinations(
1684     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1685     BranchProbability Prob,
1686     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1687         &UnwindDests) {
1688   EHPersonality Personality =
1689     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1690   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1691   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1692   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1693   bool IsSEH = isAsynchronousEHPersonality(Personality);
1694 
1695   if (IsWasmCXX) {
1696     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1697     assert(UnwindDests.size() <= 1 &&
1698            "There should be at most one unwind destination for wasm");
1699     return;
1700   }
1701 
1702   while (EHPadBB) {
1703     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1704     BasicBlock *NewEHPadBB = nullptr;
1705     if (isa<LandingPadInst>(Pad)) {
1706       // Stop on landingpads. They are not funclets.
1707       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1708       break;
1709     } else if (isa<CleanupPadInst>(Pad)) {
1710       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1711       // personalities.
1712       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1713       UnwindDests.back().first->setIsEHScopeEntry();
1714       UnwindDests.back().first->setIsEHFuncletEntry();
1715       break;
1716     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1717       // Add the catchpad handlers to the possible destinations.
1718       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1719         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1720         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1721         if (IsMSVCCXX || IsCoreCLR)
1722           UnwindDests.back().first->setIsEHFuncletEntry();
1723         if (!IsSEH)
1724           UnwindDests.back().first->setIsEHScopeEntry();
1725       }
1726       NewEHPadBB = CatchSwitch->getUnwindDest();
1727     } else {
1728       continue;
1729     }
1730 
1731     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1732     if (BPI && NewEHPadBB)
1733       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1734     EHPadBB = NewEHPadBB;
1735   }
1736 }
1737 
1738 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1739   // Update successor info.
1740   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1741   auto UnwindDest = I.getUnwindDest();
1742   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1743   BranchProbability UnwindDestProb =
1744       (BPI && UnwindDest)
1745           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1746           : BranchProbability::getZero();
1747   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1748   for (auto &UnwindDest : UnwindDests) {
1749     UnwindDest.first->setIsEHPad();
1750     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1751   }
1752   FuncInfo.MBB->normalizeSuccProbs();
1753 
1754   // Create the terminator node.
1755   SDValue Ret =
1756       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1757   DAG.setRoot(Ret);
1758 }
1759 
1760 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1761   report_fatal_error("visitCatchSwitch not yet implemented!");
1762 }
1763 
1764 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1765   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1766   auto &DL = DAG.getDataLayout();
1767   SDValue Chain = getControlRoot();
1768   SmallVector<ISD::OutputArg, 8> Outs;
1769   SmallVector<SDValue, 8> OutVals;
1770 
1771   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1772   // lower
1773   //
1774   //   %val = call <ty> @llvm.experimental.deoptimize()
1775   //   ret <ty> %val
1776   //
1777   // differently.
1778   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1779     LowerDeoptimizingReturn();
1780     return;
1781   }
1782 
1783   if (!FuncInfo.CanLowerReturn) {
1784     unsigned DemoteReg = FuncInfo.DemoteRegister;
1785     const Function *F = I.getParent()->getParent();
1786 
1787     // Emit a store of the return value through the virtual register.
1788     // Leave Outs empty so that LowerReturn won't try to load return
1789     // registers the usual way.
1790     SmallVector<EVT, 1> PtrValueVTs;
1791     ComputeValueVTs(TLI, DL,
1792                     F->getReturnType()->getPointerTo(
1793                         DAG.getDataLayout().getAllocaAddrSpace()),
1794                     PtrValueVTs);
1795 
1796     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1797                                         DemoteReg, PtrValueVTs[0]);
1798     SDValue RetOp = getValue(I.getOperand(0));
1799 
1800     SmallVector<EVT, 4> ValueVTs, MemVTs;
1801     SmallVector<uint64_t, 4> Offsets;
1802     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1803                     &Offsets);
1804     unsigned NumValues = ValueVTs.size();
1805 
1806     SmallVector<SDValue, 4> Chains(NumValues);
1807     for (unsigned i = 0; i != NumValues; ++i) {
1808       // An aggregate return value cannot wrap around the address space, so
1809       // offsets to its parts don't wrap either.
1810       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1811 
1812       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1813       if (MemVTs[i] != ValueVTs[i])
1814         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1815       Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val,
1816           // FIXME: better loc info would be nice.
1817           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1818     }
1819 
1820     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1821                         MVT::Other, Chains);
1822   } else if (I.getNumOperands() != 0) {
1823     SmallVector<EVT, 4> ValueVTs;
1824     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1825     unsigned NumValues = ValueVTs.size();
1826     if (NumValues) {
1827       SDValue RetOp = getValue(I.getOperand(0));
1828 
1829       const Function *F = I.getParent()->getParent();
1830 
1831       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1832           I.getOperand(0)->getType(), F->getCallingConv(),
1833           /*IsVarArg*/ false);
1834 
1835       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1836       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1837                                           Attribute::SExt))
1838         ExtendKind = ISD::SIGN_EXTEND;
1839       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1840                                                Attribute::ZExt))
1841         ExtendKind = ISD::ZERO_EXTEND;
1842 
1843       LLVMContext &Context = F->getContext();
1844       bool RetInReg = F->getAttributes().hasAttribute(
1845           AttributeList::ReturnIndex, Attribute::InReg);
1846 
1847       for (unsigned j = 0; j != NumValues; ++j) {
1848         EVT VT = ValueVTs[j];
1849 
1850         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1851           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1852 
1853         CallingConv::ID CC = F->getCallingConv();
1854 
1855         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1856         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1857         SmallVector<SDValue, 4> Parts(NumParts);
1858         getCopyToParts(DAG, getCurSDLoc(),
1859                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1860                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1861 
1862         // 'inreg' on function refers to return value
1863         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1864         if (RetInReg)
1865           Flags.setInReg();
1866 
1867         if (I.getOperand(0)->getType()->isPointerTy()) {
1868           Flags.setPointer();
1869           Flags.setPointerAddrSpace(
1870               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1871         }
1872 
1873         if (NeedsRegBlock) {
1874           Flags.setInConsecutiveRegs();
1875           if (j == NumValues - 1)
1876             Flags.setInConsecutiveRegsLast();
1877         }
1878 
1879         // Propagate extension type if any
1880         if (ExtendKind == ISD::SIGN_EXTEND)
1881           Flags.setSExt();
1882         else if (ExtendKind == ISD::ZERO_EXTEND)
1883           Flags.setZExt();
1884 
1885         for (unsigned i = 0; i < NumParts; ++i) {
1886           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1887                                         VT, /*isfixed=*/true, 0, 0));
1888           OutVals.push_back(Parts[i]);
1889         }
1890       }
1891     }
1892   }
1893 
1894   // Push in swifterror virtual register as the last element of Outs. This makes
1895   // sure swifterror virtual register will be returned in the swifterror
1896   // physical register.
1897   const Function *F = I.getParent()->getParent();
1898   if (TLI.supportSwiftError() &&
1899       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1900     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
1901     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1902     Flags.setSwiftError();
1903     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1904                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1905                                   true /*isfixed*/, 1 /*origidx*/,
1906                                   0 /*partOffs*/));
1907     // Create SDNode for the swifterror virtual register.
1908     OutVals.push_back(
1909         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
1910                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
1911                         EVT(TLI.getPointerTy(DL))));
1912   }
1913 
1914   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1915   CallingConv::ID CallConv =
1916     DAG.getMachineFunction().getFunction().getCallingConv();
1917   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1918       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1919 
1920   // Verify that the target's LowerReturn behaved as expected.
1921   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1922          "LowerReturn didn't return a valid chain!");
1923 
1924   // Update the DAG with the new chain value resulting from return lowering.
1925   DAG.setRoot(Chain);
1926 }
1927 
1928 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1929 /// created for it, emit nodes to copy the value into the virtual
1930 /// registers.
1931 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1932   // Skip empty types
1933   if (V->getType()->isEmptyTy())
1934     return;
1935 
1936   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1937   if (VMI != FuncInfo.ValueMap.end()) {
1938     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1939     CopyValueToVirtualRegister(V, VMI->second);
1940   }
1941 }
1942 
1943 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1944 /// the current basic block, add it to ValueMap now so that we'll get a
1945 /// CopyTo/FromReg.
1946 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1947   // No need to export constants.
1948   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1949 
1950   // Already exported?
1951   if (FuncInfo.isExportedInst(V)) return;
1952 
1953   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1954   CopyValueToVirtualRegister(V, Reg);
1955 }
1956 
1957 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1958                                                      const BasicBlock *FromBB) {
1959   // The operands of the setcc have to be in this block.  We don't know
1960   // how to export them from some other block.
1961   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1962     // Can export from current BB.
1963     if (VI->getParent() == FromBB)
1964       return true;
1965 
1966     // Is already exported, noop.
1967     return FuncInfo.isExportedInst(V);
1968   }
1969 
1970   // If this is an argument, we can export it if the BB is the entry block or
1971   // if it is already exported.
1972   if (isa<Argument>(V)) {
1973     if (FromBB == &FromBB->getParent()->getEntryBlock())
1974       return true;
1975 
1976     // Otherwise, can only export this if it is already exported.
1977     return FuncInfo.isExportedInst(V);
1978   }
1979 
1980   // Otherwise, constants can always be exported.
1981   return true;
1982 }
1983 
1984 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1985 BranchProbability
1986 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1987                                         const MachineBasicBlock *Dst) const {
1988   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1989   const BasicBlock *SrcBB = Src->getBasicBlock();
1990   const BasicBlock *DstBB = Dst->getBasicBlock();
1991   if (!BPI) {
1992     // If BPI is not available, set the default probability as 1 / N, where N is
1993     // the number of successors.
1994     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1995     return BranchProbability(1, SuccSize);
1996   }
1997   return BPI->getEdgeProbability(SrcBB, DstBB);
1998 }
1999 
2000 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2001                                                MachineBasicBlock *Dst,
2002                                                BranchProbability Prob) {
2003   if (!FuncInfo.BPI)
2004     Src->addSuccessorWithoutProb(Dst);
2005   else {
2006     if (Prob.isUnknown())
2007       Prob = getEdgeProbability(Src, Dst);
2008     Src->addSuccessor(Dst, Prob);
2009   }
2010 }
2011 
2012 static bool InBlock(const Value *V, const BasicBlock *BB) {
2013   if (const Instruction *I = dyn_cast<Instruction>(V))
2014     return I->getParent() == BB;
2015   return true;
2016 }
2017 
2018 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2019 /// This function emits a branch and is used at the leaves of an OR or an
2020 /// AND operator tree.
2021 void
2022 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2023                                                   MachineBasicBlock *TBB,
2024                                                   MachineBasicBlock *FBB,
2025                                                   MachineBasicBlock *CurBB,
2026                                                   MachineBasicBlock *SwitchBB,
2027                                                   BranchProbability TProb,
2028                                                   BranchProbability FProb,
2029                                                   bool InvertCond) {
2030   const BasicBlock *BB = CurBB->getBasicBlock();
2031 
2032   // If the leaf of the tree is a comparison, merge the condition into
2033   // the caseblock.
2034   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2035     // The operands of the cmp have to be in this block.  We don't know
2036     // how to export them from some other block.  If this is the first block
2037     // of the sequence, no exporting is needed.
2038     if (CurBB == SwitchBB ||
2039         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2040          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2041       ISD::CondCode Condition;
2042       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2043         ICmpInst::Predicate Pred =
2044             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2045         Condition = getICmpCondCode(Pred);
2046       } else {
2047         const FCmpInst *FC = cast<FCmpInst>(Cond);
2048         FCmpInst::Predicate Pred =
2049             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2050         Condition = getFCmpCondCode(Pred);
2051         if (TM.Options.NoNaNsFPMath)
2052           Condition = getFCmpCodeWithoutNaN(Condition);
2053       }
2054 
2055       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2056                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2057       SL->SwitchCases.push_back(CB);
2058       return;
2059     }
2060   }
2061 
2062   // Create a CaseBlock record representing this branch.
2063   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2064   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2065                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2066   SL->SwitchCases.push_back(CB);
2067 }
2068 
2069 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2070                                                MachineBasicBlock *TBB,
2071                                                MachineBasicBlock *FBB,
2072                                                MachineBasicBlock *CurBB,
2073                                                MachineBasicBlock *SwitchBB,
2074                                                Instruction::BinaryOps Opc,
2075                                                BranchProbability TProb,
2076                                                BranchProbability FProb,
2077                                                bool InvertCond) {
2078   // Skip over not part of the tree and remember to invert op and operands at
2079   // next level.
2080   Value *NotCond;
2081   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2082       InBlock(NotCond, CurBB->getBasicBlock())) {
2083     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2084                          !InvertCond);
2085     return;
2086   }
2087 
2088   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2089   // Compute the effective opcode for Cond, taking into account whether it needs
2090   // to be inverted, e.g.
2091   //   and (not (or A, B)), C
2092   // gets lowered as
2093   //   and (and (not A, not B), C)
2094   unsigned BOpc = 0;
2095   if (BOp) {
2096     BOpc = BOp->getOpcode();
2097     if (InvertCond) {
2098       if (BOpc == Instruction::And)
2099         BOpc = Instruction::Or;
2100       else if (BOpc == Instruction::Or)
2101         BOpc = Instruction::And;
2102     }
2103   }
2104 
2105   // If this node is not part of the or/and tree, emit it as a branch.
2106   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2107       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2108       BOp->getParent() != CurBB->getBasicBlock() ||
2109       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2110       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2111     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2112                                  TProb, FProb, InvertCond);
2113     return;
2114   }
2115 
2116   //  Create TmpBB after CurBB.
2117   MachineFunction::iterator BBI(CurBB);
2118   MachineFunction &MF = DAG.getMachineFunction();
2119   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2120   CurBB->getParent()->insert(++BBI, TmpBB);
2121 
2122   if (Opc == Instruction::Or) {
2123     // Codegen X | Y as:
2124     // BB1:
2125     //   jmp_if_X TBB
2126     //   jmp TmpBB
2127     // TmpBB:
2128     //   jmp_if_Y TBB
2129     //   jmp FBB
2130     //
2131 
2132     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2133     // The requirement is that
2134     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2135     //     = TrueProb for original BB.
2136     // Assuming the original probabilities are A and B, one choice is to set
2137     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2138     // A/(1+B) and 2B/(1+B). This choice assumes that
2139     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2140     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2141     // TmpBB, but the math is more complicated.
2142 
2143     auto NewTrueProb = TProb / 2;
2144     auto NewFalseProb = TProb / 2 + FProb;
2145     // Emit the LHS condition.
2146     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2147                          NewTrueProb, NewFalseProb, InvertCond);
2148 
2149     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2150     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2151     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2152     // Emit the RHS condition into TmpBB.
2153     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2154                          Probs[0], Probs[1], InvertCond);
2155   } else {
2156     assert(Opc == Instruction::And && "Unknown merge op!");
2157     // Codegen X & Y as:
2158     // BB1:
2159     //   jmp_if_X TmpBB
2160     //   jmp FBB
2161     // TmpBB:
2162     //   jmp_if_Y TBB
2163     //   jmp FBB
2164     //
2165     //  This requires creation of TmpBB after CurBB.
2166 
2167     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2168     // The requirement is that
2169     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2170     //     = FalseProb for original BB.
2171     // Assuming the original probabilities are A and B, one choice is to set
2172     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2173     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2174     // TrueProb for BB1 * FalseProb for TmpBB.
2175 
2176     auto NewTrueProb = TProb + FProb / 2;
2177     auto NewFalseProb = FProb / 2;
2178     // Emit the LHS condition.
2179     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2180                          NewTrueProb, NewFalseProb, InvertCond);
2181 
2182     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2183     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2184     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2185     // Emit the RHS condition into TmpBB.
2186     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2187                          Probs[0], Probs[1], InvertCond);
2188   }
2189 }
2190 
2191 /// If the set of cases should be emitted as a series of branches, return true.
2192 /// If we should emit this as a bunch of and/or'd together conditions, return
2193 /// false.
2194 bool
2195 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2196   if (Cases.size() != 2) return true;
2197 
2198   // If this is two comparisons of the same values or'd or and'd together, they
2199   // will get folded into a single comparison, so don't emit two blocks.
2200   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2201        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2202       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2203        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2204     return false;
2205   }
2206 
2207   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2208   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2209   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2210       Cases[0].CC == Cases[1].CC &&
2211       isa<Constant>(Cases[0].CmpRHS) &&
2212       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2213     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2214       return false;
2215     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2216       return false;
2217   }
2218 
2219   return true;
2220 }
2221 
2222 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2223   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2224 
2225   // Update machine-CFG edges.
2226   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2227 
2228   if (I.isUnconditional()) {
2229     // Update machine-CFG edges.
2230     BrMBB->addSuccessor(Succ0MBB);
2231 
2232     // If this is not a fall-through branch or optimizations are switched off,
2233     // emit the branch.
2234     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2235       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2236                               MVT::Other, getControlRoot(),
2237                               DAG.getBasicBlock(Succ0MBB)));
2238 
2239     return;
2240   }
2241 
2242   // If this condition is one of the special cases we handle, do special stuff
2243   // now.
2244   const Value *CondVal = I.getCondition();
2245   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2246 
2247   // If this is a series of conditions that are or'd or and'd together, emit
2248   // this as a sequence of branches instead of setcc's with and/or operations.
2249   // As long as jumps are not expensive, this should improve performance.
2250   // For example, instead of something like:
2251   //     cmp A, B
2252   //     C = seteq
2253   //     cmp D, E
2254   //     F = setle
2255   //     or C, F
2256   //     jnz foo
2257   // Emit:
2258   //     cmp A, B
2259   //     je foo
2260   //     cmp D, E
2261   //     jle foo
2262   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2263     Instruction::BinaryOps Opcode = BOp->getOpcode();
2264     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2265         !I.hasMetadata(LLVMContext::MD_unpredictable) &&
2266         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2267       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2268                            Opcode,
2269                            getEdgeProbability(BrMBB, Succ0MBB),
2270                            getEdgeProbability(BrMBB, Succ1MBB),
2271                            /*InvertCond=*/false);
2272       // If the compares in later blocks need to use values not currently
2273       // exported from this block, export them now.  This block should always
2274       // be the first entry.
2275       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2276 
2277       // Allow some cases to be rejected.
2278       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2279         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2280           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2281           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2282         }
2283 
2284         // Emit the branch for this block.
2285         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2286         SL->SwitchCases.erase(SL->SwitchCases.begin());
2287         return;
2288       }
2289 
2290       // Okay, we decided not to do this, remove any inserted MBB's and clear
2291       // SwitchCases.
2292       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2293         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2294 
2295       SL->SwitchCases.clear();
2296     }
2297   }
2298 
2299   // Create a CaseBlock record representing this branch.
2300   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2301                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2302 
2303   // Use visitSwitchCase to actually insert the fast branch sequence for this
2304   // cond branch.
2305   visitSwitchCase(CB, BrMBB);
2306 }
2307 
2308 /// visitSwitchCase - Emits the necessary code to represent a single node in
2309 /// the binary search tree resulting from lowering a switch instruction.
2310 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2311                                           MachineBasicBlock *SwitchBB) {
2312   SDValue Cond;
2313   SDValue CondLHS = getValue(CB.CmpLHS);
2314   SDLoc dl = CB.DL;
2315 
2316   if (CB.CC == ISD::SETTRUE) {
2317     // Branch or fall through to TrueBB.
2318     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2319     SwitchBB->normalizeSuccProbs();
2320     if (CB.TrueBB != NextBlock(SwitchBB)) {
2321       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2322                               DAG.getBasicBlock(CB.TrueBB)));
2323     }
2324     return;
2325   }
2326 
2327   auto &TLI = DAG.getTargetLoweringInfo();
2328   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2329 
2330   // Build the setcc now.
2331   if (!CB.CmpMHS) {
2332     // Fold "(X == true)" to X and "(X == false)" to !X to
2333     // handle common cases produced by branch lowering.
2334     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2335         CB.CC == ISD::SETEQ)
2336       Cond = CondLHS;
2337     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2338              CB.CC == ISD::SETEQ) {
2339       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2340       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2341     } else {
2342       SDValue CondRHS = getValue(CB.CmpRHS);
2343 
2344       // If a pointer's DAG type is larger than its memory type then the DAG
2345       // values are zero-extended. This breaks signed comparisons so truncate
2346       // back to the underlying type before doing the compare.
2347       if (CondLHS.getValueType() != MemVT) {
2348         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2349         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2350       }
2351       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2352     }
2353   } else {
2354     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2355 
2356     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2357     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2358 
2359     SDValue CmpOp = getValue(CB.CmpMHS);
2360     EVT VT = CmpOp.getValueType();
2361 
2362     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2363       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2364                           ISD::SETLE);
2365     } else {
2366       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2367                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2368       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2369                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2370     }
2371   }
2372 
2373   // Update successor info
2374   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2375   // TrueBB and FalseBB are always different unless the incoming IR is
2376   // degenerate. This only happens when running llc on weird IR.
2377   if (CB.TrueBB != CB.FalseBB)
2378     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2379   SwitchBB->normalizeSuccProbs();
2380 
2381   // If the lhs block is the next block, invert the condition so that we can
2382   // fall through to the lhs instead of the rhs block.
2383   if (CB.TrueBB == NextBlock(SwitchBB)) {
2384     std::swap(CB.TrueBB, CB.FalseBB);
2385     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2386     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2387   }
2388 
2389   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2390                                MVT::Other, getControlRoot(), Cond,
2391                                DAG.getBasicBlock(CB.TrueBB));
2392 
2393   // Insert the false branch. Do this even if it's a fall through branch,
2394   // this makes it easier to do DAG optimizations which require inverting
2395   // the branch condition.
2396   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2397                        DAG.getBasicBlock(CB.FalseBB));
2398 
2399   DAG.setRoot(BrCond);
2400 }
2401 
2402 /// visitJumpTable - Emit JumpTable node in the current MBB
2403 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2404   // Emit the code for the jump table
2405   assert(JT.Reg != -1U && "Should lower JT Header first!");
2406   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2407   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2408                                      JT.Reg, PTy);
2409   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2410   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2411                                     MVT::Other, Index.getValue(1),
2412                                     Table, Index);
2413   DAG.setRoot(BrJumpTable);
2414 }
2415 
2416 /// visitJumpTableHeader - This function emits necessary code to produce index
2417 /// in the JumpTable from switch case.
2418 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2419                                                JumpTableHeader &JTH,
2420                                                MachineBasicBlock *SwitchBB) {
2421   SDLoc dl = getCurSDLoc();
2422 
2423   // Subtract the lowest switch case value from the value being switched on.
2424   SDValue SwitchOp = getValue(JTH.SValue);
2425   EVT VT = SwitchOp.getValueType();
2426   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2427                             DAG.getConstant(JTH.First, dl, VT));
2428 
2429   // The SDNode we just created, which holds the value being switched on minus
2430   // the smallest case value, needs to be copied to a virtual register so it
2431   // can be used as an index into the jump table in a subsequent basic block.
2432   // This value may be smaller or larger than the target's pointer type, and
2433   // therefore require extension or truncating.
2434   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2435   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2436 
2437   unsigned JumpTableReg =
2438       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2439   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2440                                     JumpTableReg, SwitchOp);
2441   JT.Reg = JumpTableReg;
2442 
2443   if (!JTH.OmitRangeCheck) {
2444     // Emit the range check for the jump table, and branch to the default block
2445     // for the switch statement if the value being switched on exceeds the
2446     // largest case in the switch.
2447     SDValue CMP = DAG.getSetCC(
2448         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2449                                    Sub.getValueType()),
2450         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2451 
2452     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2453                                  MVT::Other, CopyTo, CMP,
2454                                  DAG.getBasicBlock(JT.Default));
2455 
2456     // Avoid emitting unnecessary branches to the next block.
2457     if (JT.MBB != NextBlock(SwitchBB))
2458       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2459                            DAG.getBasicBlock(JT.MBB));
2460 
2461     DAG.setRoot(BrCond);
2462   } else {
2463     // Avoid emitting unnecessary branches to the next block.
2464     if (JT.MBB != NextBlock(SwitchBB))
2465       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2466                               DAG.getBasicBlock(JT.MBB)));
2467     else
2468       DAG.setRoot(CopyTo);
2469   }
2470 }
2471 
2472 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2473 /// variable if there exists one.
2474 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2475                                  SDValue &Chain) {
2476   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2477   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2478   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2479   MachineFunction &MF = DAG.getMachineFunction();
2480   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2481   MachineSDNode *Node =
2482       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2483   if (Global) {
2484     MachinePointerInfo MPInfo(Global);
2485     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2486                  MachineMemOperand::MODereferenceable;
2487     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2488         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy));
2489     DAG.setNodeMemRefs(Node, {MemRef});
2490   }
2491   if (PtrTy != PtrMemTy)
2492     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2493   return SDValue(Node, 0);
2494 }
2495 
2496 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2497 /// tail spliced into a stack protector check success bb.
2498 ///
2499 /// For a high level explanation of how this fits into the stack protector
2500 /// generation see the comment on the declaration of class
2501 /// StackProtectorDescriptor.
2502 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2503                                                   MachineBasicBlock *ParentBB) {
2504 
2505   // First create the loads to the guard/stack slot for the comparison.
2506   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2507   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2508   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2509 
2510   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2511   int FI = MFI.getStackProtectorIndex();
2512 
2513   SDValue Guard;
2514   SDLoc dl = getCurSDLoc();
2515   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2516   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2517   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2518 
2519   // Generate code to load the content of the guard slot.
2520   SDValue GuardVal = DAG.getLoad(
2521       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2522       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2523       MachineMemOperand::MOVolatile);
2524 
2525   if (TLI.useStackGuardXorFP())
2526     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2527 
2528   // Retrieve guard check function, nullptr if instrumentation is inlined.
2529   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2530     // The target provides a guard check function to validate the guard value.
2531     // Generate a call to that function with the content of the guard slot as
2532     // argument.
2533     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2534     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2535 
2536     TargetLowering::ArgListTy Args;
2537     TargetLowering::ArgListEntry Entry;
2538     Entry.Node = GuardVal;
2539     Entry.Ty = FnTy->getParamType(0);
2540     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2541       Entry.IsInReg = true;
2542     Args.push_back(Entry);
2543 
2544     TargetLowering::CallLoweringInfo CLI(DAG);
2545     CLI.setDebugLoc(getCurSDLoc())
2546         .setChain(DAG.getEntryNode())
2547         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2548                    getValue(GuardCheckFn), std::move(Args));
2549 
2550     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2551     DAG.setRoot(Result.second);
2552     return;
2553   }
2554 
2555   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2556   // Otherwise, emit a volatile load to retrieve the stack guard value.
2557   SDValue Chain = DAG.getEntryNode();
2558   if (TLI.useLoadStackGuardNode()) {
2559     Guard = getLoadStackGuard(DAG, dl, Chain);
2560   } else {
2561     const Value *IRGuard = TLI.getSDagStackGuard(M);
2562     SDValue GuardPtr = getValue(IRGuard);
2563 
2564     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2565                         MachinePointerInfo(IRGuard, 0), Align,
2566                         MachineMemOperand::MOVolatile);
2567   }
2568 
2569   // Perform the comparison via a subtract/getsetcc.
2570   EVT VT = Guard.getValueType();
2571   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2572 
2573   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2574                                                         *DAG.getContext(),
2575                                                         Sub.getValueType()),
2576                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2577 
2578   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2579   // branch to failure MBB.
2580   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2581                                MVT::Other, GuardVal.getOperand(0),
2582                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2583   // Otherwise branch to success MBB.
2584   SDValue Br = DAG.getNode(ISD::BR, dl,
2585                            MVT::Other, BrCond,
2586                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2587 
2588   DAG.setRoot(Br);
2589 }
2590 
2591 /// Codegen the failure basic block for a stack protector check.
2592 ///
2593 /// A failure stack protector machine basic block consists simply of a call to
2594 /// __stack_chk_fail().
2595 ///
2596 /// For a high level explanation of how this fits into the stack protector
2597 /// generation see the comment on the declaration of class
2598 /// StackProtectorDescriptor.
2599 void
2600 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2601   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2602   TargetLowering::MakeLibCallOptions CallOptions;
2603   CallOptions.setDiscardResult(true);
2604   SDValue Chain =
2605       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2606                       None, CallOptions, getCurSDLoc()).second;
2607   // On PS4, the "return address" must still be within the calling function,
2608   // even if it's at the very end, so emit an explicit TRAP here.
2609   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2610   if (TM.getTargetTriple().isPS4CPU())
2611     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2612 
2613   DAG.setRoot(Chain);
2614 }
2615 
2616 /// visitBitTestHeader - This function emits necessary code to produce value
2617 /// suitable for "bit tests"
2618 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2619                                              MachineBasicBlock *SwitchBB) {
2620   SDLoc dl = getCurSDLoc();
2621 
2622   // Subtract the minimum value.
2623   SDValue SwitchOp = getValue(B.SValue);
2624   EVT VT = SwitchOp.getValueType();
2625   SDValue RangeSub =
2626       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2627 
2628   // Determine the type of the test operands.
2629   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2630   bool UsePtrType = false;
2631   if (!TLI.isTypeLegal(VT)) {
2632     UsePtrType = true;
2633   } else {
2634     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2635       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2636         // Switch table case range are encoded into series of masks.
2637         // Just use pointer type, it's guaranteed to fit.
2638         UsePtrType = true;
2639         break;
2640       }
2641   }
2642   SDValue Sub = RangeSub;
2643   if (UsePtrType) {
2644     VT = TLI.getPointerTy(DAG.getDataLayout());
2645     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2646   }
2647 
2648   B.RegVT = VT.getSimpleVT();
2649   B.Reg = FuncInfo.CreateReg(B.RegVT);
2650   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2651 
2652   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2653 
2654   if (!B.OmitRangeCheck)
2655     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2656   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2657   SwitchBB->normalizeSuccProbs();
2658 
2659   SDValue Root = CopyTo;
2660   if (!B.OmitRangeCheck) {
2661     // Conditional branch to the default block.
2662     SDValue RangeCmp = DAG.getSetCC(dl,
2663         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2664                                RangeSub.getValueType()),
2665         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2666         ISD::SETUGT);
2667 
2668     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2669                        DAG.getBasicBlock(B.Default));
2670   }
2671 
2672   // Avoid emitting unnecessary branches to the next block.
2673   if (MBB != NextBlock(SwitchBB))
2674     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2675 
2676   DAG.setRoot(Root);
2677 }
2678 
2679 /// visitBitTestCase - this function produces one "bit test"
2680 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2681                                            MachineBasicBlock* NextMBB,
2682                                            BranchProbability BranchProbToNext,
2683                                            unsigned Reg,
2684                                            BitTestCase &B,
2685                                            MachineBasicBlock *SwitchBB) {
2686   SDLoc dl = getCurSDLoc();
2687   MVT VT = BB.RegVT;
2688   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2689   SDValue Cmp;
2690   unsigned PopCount = countPopulation(B.Mask);
2691   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2692   if (PopCount == 1) {
2693     // Testing for a single bit; just compare the shift count with what it
2694     // would need to be to shift a 1 bit in that position.
2695     Cmp = DAG.getSetCC(
2696         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2697         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2698         ISD::SETEQ);
2699   } else if (PopCount == BB.Range) {
2700     // There is only one zero bit in the range, test for it directly.
2701     Cmp = DAG.getSetCC(
2702         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2703         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2704         ISD::SETNE);
2705   } else {
2706     // Make desired shift
2707     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2708                                     DAG.getConstant(1, dl, VT), ShiftOp);
2709 
2710     // Emit bit tests and jumps
2711     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2712                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2713     Cmp = DAG.getSetCC(
2714         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2715         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2716   }
2717 
2718   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2719   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2720   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2721   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2722   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2723   // one as they are relative probabilities (and thus work more like weights),
2724   // and hence we need to normalize them to let the sum of them become one.
2725   SwitchBB->normalizeSuccProbs();
2726 
2727   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2728                               MVT::Other, getControlRoot(),
2729                               Cmp, DAG.getBasicBlock(B.TargetBB));
2730 
2731   // Avoid emitting unnecessary branches to the next block.
2732   if (NextMBB != NextBlock(SwitchBB))
2733     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2734                         DAG.getBasicBlock(NextMBB));
2735 
2736   DAG.setRoot(BrAnd);
2737 }
2738 
2739 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2740   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2741 
2742   // Retrieve successors. Look through artificial IR level blocks like
2743   // catchswitch for successors.
2744   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2745   const BasicBlock *EHPadBB = I.getSuccessor(1);
2746 
2747   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2748   // have to do anything here to lower funclet bundles.
2749   assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt,
2750                                         LLVMContext::OB_funclet,
2751                                         LLVMContext::OB_cfguardtarget}) &&
2752          "Cannot lower invokes with arbitrary operand bundles yet!");
2753 
2754   const Value *Callee(I.getCalledValue());
2755   const Function *Fn = dyn_cast<Function>(Callee);
2756   if (isa<InlineAsm>(Callee))
2757     visitInlineAsm(&I);
2758   else if (Fn && Fn->isIntrinsic()) {
2759     switch (Fn->getIntrinsicID()) {
2760     default:
2761       llvm_unreachable("Cannot invoke this intrinsic");
2762     case Intrinsic::donothing:
2763       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2764       break;
2765     case Intrinsic::experimental_patchpoint_void:
2766     case Intrinsic::experimental_patchpoint_i64:
2767       visitPatchpoint(&I, EHPadBB);
2768       break;
2769     case Intrinsic::experimental_gc_statepoint:
2770       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2771       break;
2772     case Intrinsic::wasm_rethrow_in_catch: {
2773       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2774       // special because it can be invoked, so we manually lower it to a DAG
2775       // node here.
2776       SmallVector<SDValue, 8> Ops;
2777       Ops.push_back(getRoot()); // inchain
2778       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2779       Ops.push_back(
2780           DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(),
2781                                 TLI.getPointerTy(DAG.getDataLayout())));
2782       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2783       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2784       break;
2785     }
2786     }
2787   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2788     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2789     // Eventually we will support lowering the @llvm.experimental.deoptimize
2790     // intrinsic, and right now there are no plans to support other intrinsics
2791     // with deopt state.
2792     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2793   } else {
2794     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2795   }
2796 
2797   // If the value of the invoke is used outside of its defining block, make it
2798   // available as a virtual register.
2799   // We already took care of the exported value for the statepoint instruction
2800   // during call to the LowerStatepoint.
2801   if (!isStatepoint(I)) {
2802     CopyToExportRegsIfNeeded(&I);
2803   }
2804 
2805   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2806   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2807   BranchProbability EHPadBBProb =
2808       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2809           : BranchProbability::getZero();
2810   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2811 
2812   // Update successor info.
2813   addSuccessorWithProb(InvokeMBB, Return);
2814   for (auto &UnwindDest : UnwindDests) {
2815     UnwindDest.first->setIsEHPad();
2816     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2817   }
2818   InvokeMBB->normalizeSuccProbs();
2819 
2820   // Drop into normal successor.
2821   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2822                           DAG.getBasicBlock(Return)));
2823 }
2824 
2825 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2826   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2827 
2828   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2829   // have to do anything here to lower funclet bundles.
2830   assert(!I.hasOperandBundlesOtherThan(
2831              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2832          "Cannot lower callbrs with arbitrary operand bundles yet!");
2833 
2834   assert(isa<InlineAsm>(I.getCalledValue()) &&
2835          "Only know how to handle inlineasm callbr");
2836   visitInlineAsm(&I);
2837 
2838   // Retrieve successors.
2839   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2840 
2841   // Update successor info.
2842   addSuccessorWithProb(CallBrMBB, Return);
2843   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2844     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2845     addSuccessorWithProb(CallBrMBB, Target);
2846   }
2847   CallBrMBB->normalizeSuccProbs();
2848 
2849   // Drop into default successor.
2850   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2851                           MVT::Other, getControlRoot(),
2852                           DAG.getBasicBlock(Return)));
2853 }
2854 
2855 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2856   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2857 }
2858 
2859 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2860   assert(FuncInfo.MBB->isEHPad() &&
2861          "Call to landingpad not in landing pad!");
2862 
2863   // If there aren't registers to copy the values into (e.g., during SjLj
2864   // exceptions), then don't bother to create these DAG nodes.
2865   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2866   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2867   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2868       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2869     return;
2870 
2871   // If landingpad's return type is token type, we don't create DAG nodes
2872   // for its exception pointer and selector value. The extraction of exception
2873   // pointer or selector value from token type landingpads is not currently
2874   // supported.
2875   if (LP.getType()->isTokenTy())
2876     return;
2877 
2878   SmallVector<EVT, 2> ValueVTs;
2879   SDLoc dl = getCurSDLoc();
2880   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2881   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2882 
2883   // Get the two live-in registers as SDValues. The physregs have already been
2884   // copied into virtual registers.
2885   SDValue Ops[2];
2886   if (FuncInfo.ExceptionPointerVirtReg) {
2887     Ops[0] = DAG.getZExtOrTrunc(
2888         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2889                            FuncInfo.ExceptionPointerVirtReg,
2890                            TLI.getPointerTy(DAG.getDataLayout())),
2891         dl, ValueVTs[0]);
2892   } else {
2893     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2894   }
2895   Ops[1] = DAG.getZExtOrTrunc(
2896       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2897                          FuncInfo.ExceptionSelectorVirtReg,
2898                          TLI.getPointerTy(DAG.getDataLayout())),
2899       dl, ValueVTs[1]);
2900 
2901   // Merge into one.
2902   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2903                             DAG.getVTList(ValueVTs), Ops);
2904   setValue(&LP, Res);
2905 }
2906 
2907 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2908                                            MachineBasicBlock *Last) {
2909   // Update JTCases.
2910   for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
2911     if (SL->JTCases[i].first.HeaderBB == First)
2912       SL->JTCases[i].first.HeaderBB = Last;
2913 
2914   // Update BitTestCases.
2915   for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
2916     if (SL->BitTestCases[i].Parent == First)
2917       SL->BitTestCases[i].Parent = Last;
2918 }
2919 
2920 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2921   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2922 
2923   // Update machine-CFG edges with unique successors.
2924   SmallSet<BasicBlock*, 32> Done;
2925   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2926     BasicBlock *BB = I.getSuccessor(i);
2927     bool Inserted = Done.insert(BB).second;
2928     if (!Inserted)
2929         continue;
2930 
2931     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2932     addSuccessorWithProb(IndirectBrMBB, Succ);
2933   }
2934   IndirectBrMBB->normalizeSuccProbs();
2935 
2936   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2937                           MVT::Other, getControlRoot(),
2938                           getValue(I.getAddress())));
2939 }
2940 
2941 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2942   if (!DAG.getTarget().Options.TrapUnreachable)
2943     return;
2944 
2945   // We may be able to ignore unreachable behind a noreturn call.
2946   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2947     const BasicBlock &BB = *I.getParent();
2948     if (&I != &BB.front()) {
2949       BasicBlock::const_iterator PredI =
2950         std::prev(BasicBlock::const_iterator(&I));
2951       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2952         if (Call->doesNotReturn())
2953           return;
2954       }
2955     }
2956   }
2957 
2958   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2959 }
2960 
2961 void SelectionDAGBuilder::visitFSub(const User &I) {
2962   // -0.0 - X --> fneg
2963   Type *Ty = I.getType();
2964   if (isa<Constant>(I.getOperand(0)) &&
2965       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2966     SDValue Op2 = getValue(I.getOperand(1));
2967     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2968                              Op2.getValueType(), Op2));
2969     return;
2970   }
2971 
2972   visitBinary(I, ISD::FSUB);
2973 }
2974 
2975 /// Checks if the given instruction performs a vector reduction, in which case
2976 /// we have the freedom to alter the elements in the result as long as the
2977 /// reduction of them stays unchanged.
2978 static bool isVectorReductionOp(const User *I) {
2979   const Instruction *Inst = dyn_cast<Instruction>(I);
2980   if (!Inst || !Inst->getType()->isVectorTy())
2981     return false;
2982 
2983   auto OpCode = Inst->getOpcode();
2984   switch (OpCode) {
2985   case Instruction::Add:
2986   case Instruction::Mul:
2987   case Instruction::And:
2988   case Instruction::Or:
2989   case Instruction::Xor:
2990     break;
2991   case Instruction::FAdd:
2992   case Instruction::FMul:
2993     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2994       if (FPOp->getFastMathFlags().isFast())
2995         break;
2996     LLVM_FALLTHROUGH;
2997   default:
2998     return false;
2999   }
3000 
3001   unsigned ElemNum = Inst->getType()->getVectorNumElements();
3002   // Ensure the reduction size is a power of 2.
3003   if (!isPowerOf2_32(ElemNum))
3004     return false;
3005 
3006   unsigned ElemNumToReduce = ElemNum;
3007 
3008   // Do DFS search on the def-use chain from the given instruction. We only
3009   // allow four kinds of operations during the search until we reach the
3010   // instruction that extracts the first element from the vector:
3011   //
3012   //   1. The reduction operation of the same opcode as the given instruction.
3013   //
3014   //   2. PHI node.
3015   //
3016   //   3. ShuffleVector instruction together with a reduction operation that
3017   //      does a partial reduction.
3018   //
3019   //   4. ExtractElement that extracts the first element from the vector, and we
3020   //      stop searching the def-use chain here.
3021   //
3022   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
3023   // from 1-3 to the stack to continue the DFS. The given instruction is not
3024   // a reduction operation if we meet any other instructions other than those
3025   // listed above.
3026 
3027   SmallVector<const User *, 16> UsersToVisit{Inst};
3028   SmallPtrSet<const User *, 16> Visited;
3029   bool ReduxExtracted = false;
3030 
3031   while (!UsersToVisit.empty()) {
3032     auto User = UsersToVisit.back();
3033     UsersToVisit.pop_back();
3034     if (!Visited.insert(User).second)
3035       continue;
3036 
3037     for (const auto &U : User->users()) {
3038       auto Inst = dyn_cast<Instruction>(U);
3039       if (!Inst)
3040         return false;
3041 
3042       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
3043         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
3044           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
3045             return false;
3046         UsersToVisit.push_back(U);
3047       } else if (const ShuffleVectorInst *ShufInst =
3048                      dyn_cast<ShuffleVectorInst>(U)) {
3049         // Detect the following pattern: A ShuffleVector instruction together
3050         // with a reduction that do partial reduction on the first and second
3051         // ElemNumToReduce / 2 elements, and store the result in
3052         // ElemNumToReduce / 2 elements in another vector.
3053 
3054         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
3055         if (ResultElements < ElemNum)
3056           return false;
3057 
3058         if (ElemNumToReduce == 1)
3059           return false;
3060         if (!isa<UndefValue>(U->getOperand(1)))
3061           return false;
3062         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
3063           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
3064             return false;
3065         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
3066           if (ShufInst->getMaskValue(i) != -1)
3067             return false;
3068 
3069         // There is only one user of this ShuffleVector instruction, which
3070         // must be a reduction operation.
3071         if (!U->hasOneUse())
3072           return false;
3073 
3074         auto U2 = dyn_cast<Instruction>(*U->user_begin());
3075         if (!U2 || U2->getOpcode() != OpCode)
3076           return false;
3077 
3078         // Check operands of the reduction operation.
3079         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
3080             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
3081           UsersToVisit.push_back(U2);
3082           ElemNumToReduce /= 2;
3083         } else
3084           return false;
3085       } else if (isa<ExtractElementInst>(U)) {
3086         // At this moment we should have reduced all elements in the vector.
3087         if (ElemNumToReduce != 1)
3088           return false;
3089 
3090         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
3091         if (!Val || !Val->isZero())
3092           return false;
3093 
3094         ReduxExtracted = true;
3095       } else
3096         return false;
3097     }
3098   }
3099   return ReduxExtracted;
3100 }
3101 
3102 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3103   SDNodeFlags Flags;
3104 
3105   SDValue Op = getValue(I.getOperand(0));
3106   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3107                                     Op, Flags);
3108   setValue(&I, UnNodeValue);
3109 }
3110 
3111 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3112   SDNodeFlags Flags;
3113   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3114     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3115     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3116   }
3117   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
3118     Flags.setExact(ExactOp->isExact());
3119   }
3120   if (isVectorReductionOp(&I)) {
3121     Flags.setVectorReduction(true);
3122     LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
3123   }
3124 
3125   SDValue Op1 = getValue(I.getOperand(0));
3126   SDValue Op2 = getValue(I.getOperand(1));
3127   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3128                                      Op1, Op2, Flags);
3129   setValue(&I, BinNodeValue);
3130 }
3131 
3132 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3133   SDValue Op1 = getValue(I.getOperand(0));
3134   SDValue Op2 = getValue(I.getOperand(1));
3135 
3136   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3137       Op1.getValueType(), DAG.getDataLayout());
3138 
3139   // Coerce the shift amount to the right type if we can.
3140   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3141     unsigned ShiftSize = ShiftTy.getSizeInBits();
3142     unsigned Op2Size = Op2.getValueSizeInBits();
3143     SDLoc DL = getCurSDLoc();
3144 
3145     // If the operand is smaller than the shift count type, promote it.
3146     if (ShiftSize > Op2Size)
3147       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3148 
3149     // If the operand is larger than the shift count type but the shift
3150     // count type has enough bits to represent any shift value, truncate
3151     // it now. This is a common case and it exposes the truncate to
3152     // optimization early.
3153     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3154       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3155     // Otherwise we'll need to temporarily settle for some other convenient
3156     // type.  Type legalization will make adjustments once the shiftee is split.
3157     else
3158       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3159   }
3160 
3161   bool nuw = false;
3162   bool nsw = false;
3163   bool exact = false;
3164 
3165   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3166 
3167     if (const OverflowingBinaryOperator *OFBinOp =
3168             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3169       nuw = OFBinOp->hasNoUnsignedWrap();
3170       nsw = OFBinOp->hasNoSignedWrap();
3171     }
3172     if (const PossiblyExactOperator *ExactOp =
3173             dyn_cast<const PossiblyExactOperator>(&I))
3174       exact = ExactOp->isExact();
3175   }
3176   SDNodeFlags Flags;
3177   Flags.setExact(exact);
3178   Flags.setNoSignedWrap(nsw);
3179   Flags.setNoUnsignedWrap(nuw);
3180   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3181                             Flags);
3182   setValue(&I, Res);
3183 }
3184 
3185 void SelectionDAGBuilder::visitSDiv(const User &I) {
3186   SDValue Op1 = getValue(I.getOperand(0));
3187   SDValue Op2 = getValue(I.getOperand(1));
3188 
3189   SDNodeFlags Flags;
3190   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3191                  cast<PossiblyExactOperator>(&I)->isExact());
3192   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3193                            Op2, Flags));
3194 }
3195 
3196 void SelectionDAGBuilder::visitICmp(const User &I) {
3197   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3198   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3199     predicate = IC->getPredicate();
3200   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3201     predicate = ICmpInst::Predicate(IC->getPredicate());
3202   SDValue Op1 = getValue(I.getOperand(0));
3203   SDValue Op2 = getValue(I.getOperand(1));
3204   ISD::CondCode Opcode = getICmpCondCode(predicate);
3205 
3206   auto &TLI = DAG.getTargetLoweringInfo();
3207   EVT MemVT =
3208       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3209 
3210   // If a pointer's DAG type is larger than its memory type then the DAG values
3211   // are zero-extended. This breaks signed comparisons so truncate back to the
3212   // underlying type before doing the compare.
3213   if (Op1.getValueType() != MemVT) {
3214     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3215     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3216   }
3217 
3218   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3219                                                         I.getType());
3220   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3221 }
3222 
3223 void SelectionDAGBuilder::visitFCmp(const User &I) {
3224   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3225   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3226     predicate = FC->getPredicate();
3227   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3228     predicate = FCmpInst::Predicate(FC->getPredicate());
3229   SDValue Op1 = getValue(I.getOperand(0));
3230   SDValue Op2 = getValue(I.getOperand(1));
3231 
3232   ISD::CondCode Condition = getFCmpCondCode(predicate);
3233   auto *FPMO = dyn_cast<FPMathOperator>(&I);
3234   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
3235     Condition = getFCmpCodeWithoutNaN(Condition);
3236 
3237   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3238                                                         I.getType());
3239   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3240 }
3241 
3242 // Check if the condition of the select has one use or two users that are both
3243 // selects with the same condition.
3244 static bool hasOnlySelectUsers(const Value *Cond) {
3245   return llvm::all_of(Cond->users(), [](const Value *V) {
3246     return isa<SelectInst>(V);
3247   });
3248 }
3249 
3250 void SelectionDAGBuilder::visitSelect(const User &I) {
3251   SmallVector<EVT, 4> ValueVTs;
3252   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3253                   ValueVTs);
3254   unsigned NumValues = ValueVTs.size();
3255   if (NumValues == 0) return;
3256 
3257   SmallVector<SDValue, 4> Values(NumValues);
3258   SDValue Cond     = getValue(I.getOperand(0));
3259   SDValue LHSVal   = getValue(I.getOperand(1));
3260   SDValue RHSVal   = getValue(I.getOperand(2));
3261   auto BaseOps = {Cond};
3262   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
3263     ISD::VSELECT : ISD::SELECT;
3264 
3265   bool IsUnaryAbs = false;
3266 
3267   // Min/max matching is only viable if all output VTs are the same.
3268   if (is_splat(ValueVTs)) {
3269     EVT VT = ValueVTs[0];
3270     LLVMContext &Ctx = *DAG.getContext();
3271     auto &TLI = DAG.getTargetLoweringInfo();
3272 
3273     // We care about the legality of the operation after it has been type
3274     // legalized.
3275     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3276       VT = TLI.getTypeToTransformTo(Ctx, VT);
3277 
3278     // If the vselect is legal, assume we want to leave this as a vector setcc +
3279     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3280     // min/max is legal on the scalar type.
3281     bool UseScalarMinMax = VT.isVector() &&
3282       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3283 
3284     Value *LHS, *RHS;
3285     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3286     ISD::NodeType Opc = ISD::DELETED_NODE;
3287     switch (SPR.Flavor) {
3288     case SPF_UMAX:    Opc = ISD::UMAX; break;
3289     case SPF_UMIN:    Opc = ISD::UMIN; break;
3290     case SPF_SMAX:    Opc = ISD::SMAX; break;
3291     case SPF_SMIN:    Opc = ISD::SMIN; break;
3292     case SPF_FMINNUM:
3293       switch (SPR.NaNBehavior) {
3294       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3295       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3296       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3297       case SPNB_RETURNS_ANY: {
3298         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3299           Opc = ISD::FMINNUM;
3300         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3301           Opc = ISD::FMINIMUM;
3302         else if (UseScalarMinMax)
3303           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3304             ISD::FMINNUM : ISD::FMINIMUM;
3305         break;
3306       }
3307       }
3308       break;
3309     case SPF_FMAXNUM:
3310       switch (SPR.NaNBehavior) {
3311       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3312       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3313       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3314       case SPNB_RETURNS_ANY:
3315 
3316         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3317           Opc = ISD::FMAXNUM;
3318         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3319           Opc = ISD::FMAXIMUM;
3320         else if (UseScalarMinMax)
3321           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3322             ISD::FMAXNUM : ISD::FMAXIMUM;
3323         break;
3324       }
3325       break;
3326     case SPF_ABS:
3327       IsUnaryAbs = true;
3328       Opc = ISD::ABS;
3329       break;
3330     case SPF_NABS:
3331       // TODO: we need to produce sub(0, abs(X)).
3332     default: break;
3333     }
3334 
3335     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3336         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3337          (UseScalarMinMax &&
3338           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3339         // If the underlying comparison instruction is used by any other
3340         // instruction, the consumed instructions won't be destroyed, so it is
3341         // not profitable to convert to a min/max.
3342         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3343       OpCode = Opc;
3344       LHSVal = getValue(LHS);
3345       RHSVal = getValue(RHS);
3346       BaseOps = {};
3347     }
3348 
3349     if (IsUnaryAbs) {
3350       OpCode = Opc;
3351       LHSVal = getValue(LHS);
3352       BaseOps = {};
3353     }
3354   }
3355 
3356   if (IsUnaryAbs) {
3357     for (unsigned i = 0; i != NumValues; ++i) {
3358       Values[i] =
3359           DAG.getNode(OpCode, getCurSDLoc(),
3360                       LHSVal.getNode()->getValueType(LHSVal.getResNo() + i),
3361                       SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3362     }
3363   } else {
3364     for (unsigned i = 0; i != NumValues; ++i) {
3365       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3366       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3367       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3368       Values[i] = DAG.getNode(
3369           OpCode, getCurSDLoc(),
3370           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops);
3371     }
3372   }
3373 
3374   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3375                            DAG.getVTList(ValueVTs), Values));
3376 }
3377 
3378 void SelectionDAGBuilder::visitTrunc(const User &I) {
3379   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3380   SDValue N = getValue(I.getOperand(0));
3381   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3382                                                         I.getType());
3383   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3384 }
3385 
3386 void SelectionDAGBuilder::visitZExt(const User &I) {
3387   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3388   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3389   SDValue N = getValue(I.getOperand(0));
3390   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3391                                                         I.getType());
3392   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3393 }
3394 
3395 void SelectionDAGBuilder::visitSExt(const User &I) {
3396   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3397   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3398   SDValue N = getValue(I.getOperand(0));
3399   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3400                                                         I.getType());
3401   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3402 }
3403 
3404 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3405   // FPTrunc is never a no-op cast, no need to check
3406   SDValue N = getValue(I.getOperand(0));
3407   SDLoc dl = getCurSDLoc();
3408   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3409   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3410   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3411                            DAG.getTargetConstant(
3412                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3413 }
3414 
3415 void SelectionDAGBuilder::visitFPExt(const User &I) {
3416   // FPExt is never a no-op cast, no need to check
3417   SDValue N = getValue(I.getOperand(0));
3418   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3419                                                         I.getType());
3420   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3421 }
3422 
3423 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3424   // FPToUI is never a no-op cast, no need to check
3425   SDValue N = getValue(I.getOperand(0));
3426   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3427                                                         I.getType());
3428   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3429 }
3430 
3431 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3432   // FPToSI is never a no-op cast, no need to check
3433   SDValue N = getValue(I.getOperand(0));
3434   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3435                                                         I.getType());
3436   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3437 }
3438 
3439 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3440   // UIToFP is never a no-op cast, no need to check
3441   SDValue N = getValue(I.getOperand(0));
3442   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3443                                                         I.getType());
3444   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3445 }
3446 
3447 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3448   // SIToFP is never a no-op cast, no need to check
3449   SDValue N = getValue(I.getOperand(0));
3450   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3451                                                         I.getType());
3452   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3453 }
3454 
3455 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3456   // What to do depends on the size of the integer and the size of the pointer.
3457   // We can either truncate, zero extend, or no-op, accordingly.
3458   SDValue N = getValue(I.getOperand(0));
3459   auto &TLI = DAG.getTargetLoweringInfo();
3460   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3461                                                         I.getType());
3462   EVT PtrMemVT =
3463       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3464   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3465   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3466   setValue(&I, N);
3467 }
3468 
3469 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3470   // What to do depends on the size of the integer and the size of the pointer.
3471   // We can either truncate, zero extend, or no-op, accordingly.
3472   SDValue N = getValue(I.getOperand(0));
3473   auto &TLI = DAG.getTargetLoweringInfo();
3474   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3475   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3476   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3477   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3478   setValue(&I, N);
3479 }
3480 
3481 void SelectionDAGBuilder::visitBitCast(const User &I) {
3482   SDValue N = getValue(I.getOperand(0));
3483   SDLoc dl = getCurSDLoc();
3484   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3485                                                         I.getType());
3486 
3487   // BitCast assures us that source and destination are the same size so this is
3488   // either a BITCAST or a no-op.
3489   if (DestVT != N.getValueType())
3490     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3491                              DestVT, N)); // convert types.
3492   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3493   // might fold any kind of constant expression to an integer constant and that
3494   // is not what we are looking for. Only recognize a bitcast of a genuine
3495   // constant integer as an opaque constant.
3496   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3497     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3498                                  /*isOpaque*/true));
3499   else
3500     setValue(&I, N);            // noop cast.
3501 }
3502 
3503 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3504   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3505   const Value *SV = I.getOperand(0);
3506   SDValue N = getValue(SV);
3507   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3508 
3509   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3510   unsigned DestAS = I.getType()->getPointerAddressSpace();
3511 
3512   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3513     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3514 
3515   setValue(&I, N);
3516 }
3517 
3518 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3519   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3520   SDValue InVec = getValue(I.getOperand(0));
3521   SDValue InVal = getValue(I.getOperand(1));
3522   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3523                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3524   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3525                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3526                            InVec, InVal, InIdx));
3527 }
3528 
3529 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3530   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3531   SDValue InVec = getValue(I.getOperand(0));
3532   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3533                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3534   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3535                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3536                            InVec, InIdx));
3537 }
3538 
3539 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3540   SDValue Src1 = getValue(I.getOperand(0));
3541   SDValue Src2 = getValue(I.getOperand(1));
3542   Constant *MaskV = cast<Constant>(I.getOperand(2));
3543   SDLoc DL = getCurSDLoc();
3544   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3545   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3546   EVT SrcVT = Src1.getValueType();
3547   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3548 
3549   if (MaskV->isNullValue() && VT.isScalableVector()) {
3550     // Canonical splat form of first element of first input vector.
3551     SDValue FirstElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3552                                    SrcVT.getScalarType(), Src1,
3553                                    DAG.getConstant(0, DL,
3554                                    TLI.getVectorIdxTy(DAG.getDataLayout())));
3555     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3556     return;
3557   }
3558 
3559   // For now, we only handle splats for scalable vectors.
3560   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3561   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3562   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3563 
3564   SmallVector<int, 8> Mask;
3565   ShuffleVectorInst::getShuffleMask(MaskV, Mask);
3566   unsigned MaskNumElts = Mask.size();
3567 
3568   if (SrcNumElts == MaskNumElts) {
3569     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3570     return;
3571   }
3572 
3573   // Normalize the shuffle vector since mask and vector length don't match.
3574   if (SrcNumElts < MaskNumElts) {
3575     // Mask is longer than the source vectors. We can use concatenate vector to
3576     // make the mask and vectors lengths match.
3577 
3578     if (MaskNumElts % SrcNumElts == 0) {
3579       // Mask length is a multiple of the source vector length.
3580       // Check if the shuffle is some kind of concatenation of the input
3581       // vectors.
3582       unsigned NumConcat = MaskNumElts / SrcNumElts;
3583       bool IsConcat = true;
3584       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3585       for (unsigned i = 0; i != MaskNumElts; ++i) {
3586         int Idx = Mask[i];
3587         if (Idx < 0)
3588           continue;
3589         // Ensure the indices in each SrcVT sized piece are sequential and that
3590         // the same source is used for the whole piece.
3591         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3592             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3593              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3594           IsConcat = false;
3595           break;
3596         }
3597         // Remember which source this index came from.
3598         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3599       }
3600 
3601       // The shuffle is concatenating multiple vectors together. Just emit
3602       // a CONCAT_VECTORS operation.
3603       if (IsConcat) {
3604         SmallVector<SDValue, 8> ConcatOps;
3605         for (auto Src : ConcatSrcs) {
3606           if (Src < 0)
3607             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3608           else if (Src == 0)
3609             ConcatOps.push_back(Src1);
3610           else
3611             ConcatOps.push_back(Src2);
3612         }
3613         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3614         return;
3615       }
3616     }
3617 
3618     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3619     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3620     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3621                                     PaddedMaskNumElts);
3622 
3623     // Pad both vectors with undefs to make them the same length as the mask.
3624     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3625 
3626     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3627     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3628     MOps1[0] = Src1;
3629     MOps2[0] = Src2;
3630 
3631     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3632     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3633 
3634     // Readjust mask for new input vector length.
3635     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3636     for (unsigned i = 0; i != MaskNumElts; ++i) {
3637       int Idx = Mask[i];
3638       if (Idx >= (int)SrcNumElts)
3639         Idx -= SrcNumElts - PaddedMaskNumElts;
3640       MappedOps[i] = Idx;
3641     }
3642 
3643     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3644 
3645     // If the concatenated vector was padded, extract a subvector with the
3646     // correct number of elements.
3647     if (MaskNumElts != PaddedMaskNumElts)
3648       Result = DAG.getNode(
3649           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3650           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3651 
3652     setValue(&I, Result);
3653     return;
3654   }
3655 
3656   if (SrcNumElts > MaskNumElts) {
3657     // Analyze the access pattern of the vector to see if we can extract
3658     // two subvectors and do the shuffle.
3659     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3660     bool CanExtract = true;
3661     for (int Idx : Mask) {
3662       unsigned Input = 0;
3663       if (Idx < 0)
3664         continue;
3665 
3666       if (Idx >= (int)SrcNumElts) {
3667         Input = 1;
3668         Idx -= SrcNumElts;
3669       }
3670 
3671       // If all the indices come from the same MaskNumElts sized portion of
3672       // the sources we can use extract. Also make sure the extract wouldn't
3673       // extract past the end of the source.
3674       int NewStartIdx = alignDown(Idx, MaskNumElts);
3675       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3676           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3677         CanExtract = false;
3678       // Make sure we always update StartIdx as we use it to track if all
3679       // elements are undef.
3680       StartIdx[Input] = NewStartIdx;
3681     }
3682 
3683     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3684       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3685       return;
3686     }
3687     if (CanExtract) {
3688       // Extract appropriate subvector and generate a vector shuffle
3689       for (unsigned Input = 0; Input < 2; ++Input) {
3690         SDValue &Src = Input == 0 ? Src1 : Src2;
3691         if (StartIdx[Input] < 0)
3692           Src = DAG.getUNDEF(VT);
3693         else {
3694           Src = DAG.getNode(
3695               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3696               DAG.getConstant(StartIdx[Input], DL,
3697                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3698         }
3699       }
3700 
3701       // Calculate new mask.
3702       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3703       for (int &Idx : MappedOps) {
3704         if (Idx >= (int)SrcNumElts)
3705           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3706         else if (Idx >= 0)
3707           Idx -= StartIdx[0];
3708       }
3709 
3710       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3711       return;
3712     }
3713   }
3714 
3715   // We can't use either concat vectors or extract subvectors so fall back to
3716   // replacing the shuffle with extract and build vector.
3717   // to insert and build vector.
3718   EVT EltVT = VT.getVectorElementType();
3719   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3720   SmallVector<SDValue,8> Ops;
3721   for (int Idx : Mask) {
3722     SDValue Res;
3723 
3724     if (Idx < 0) {
3725       Res = DAG.getUNDEF(EltVT);
3726     } else {
3727       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3728       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3729 
3730       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3731                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3732     }
3733 
3734     Ops.push_back(Res);
3735   }
3736 
3737   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3738 }
3739 
3740 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3741   ArrayRef<unsigned> Indices;
3742   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3743     Indices = IV->getIndices();
3744   else
3745     Indices = cast<ConstantExpr>(&I)->getIndices();
3746 
3747   const Value *Op0 = I.getOperand(0);
3748   const Value *Op1 = I.getOperand(1);
3749   Type *AggTy = I.getType();
3750   Type *ValTy = Op1->getType();
3751   bool IntoUndef = isa<UndefValue>(Op0);
3752   bool FromUndef = isa<UndefValue>(Op1);
3753 
3754   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3755 
3756   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3757   SmallVector<EVT, 4> AggValueVTs;
3758   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3759   SmallVector<EVT, 4> ValValueVTs;
3760   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3761 
3762   unsigned NumAggValues = AggValueVTs.size();
3763   unsigned NumValValues = ValValueVTs.size();
3764   SmallVector<SDValue, 4> Values(NumAggValues);
3765 
3766   // Ignore an insertvalue that produces an empty object
3767   if (!NumAggValues) {
3768     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3769     return;
3770   }
3771 
3772   SDValue Agg = getValue(Op0);
3773   unsigned i = 0;
3774   // Copy the beginning value(s) from the original aggregate.
3775   for (; i != LinearIndex; ++i)
3776     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3777                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3778   // Copy values from the inserted value(s).
3779   if (NumValValues) {
3780     SDValue Val = getValue(Op1);
3781     for (; i != LinearIndex + NumValValues; ++i)
3782       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3783                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3784   }
3785   // Copy remaining value(s) from the original aggregate.
3786   for (; i != NumAggValues; ++i)
3787     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3788                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3789 
3790   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3791                            DAG.getVTList(AggValueVTs), Values));
3792 }
3793 
3794 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3795   ArrayRef<unsigned> Indices;
3796   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3797     Indices = EV->getIndices();
3798   else
3799     Indices = cast<ConstantExpr>(&I)->getIndices();
3800 
3801   const Value *Op0 = I.getOperand(0);
3802   Type *AggTy = Op0->getType();
3803   Type *ValTy = I.getType();
3804   bool OutOfUndef = isa<UndefValue>(Op0);
3805 
3806   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3807 
3808   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3809   SmallVector<EVT, 4> ValValueVTs;
3810   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3811 
3812   unsigned NumValValues = ValValueVTs.size();
3813 
3814   // Ignore a extractvalue that produces an empty object
3815   if (!NumValValues) {
3816     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3817     return;
3818   }
3819 
3820   SmallVector<SDValue, 4> Values(NumValValues);
3821 
3822   SDValue Agg = getValue(Op0);
3823   // Copy out the selected value(s).
3824   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3825     Values[i - LinearIndex] =
3826       OutOfUndef ?
3827         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3828         SDValue(Agg.getNode(), Agg.getResNo() + i);
3829 
3830   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3831                            DAG.getVTList(ValValueVTs), Values));
3832 }
3833 
3834 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3835   Value *Op0 = I.getOperand(0);
3836   // Note that the pointer operand may be a vector of pointers. Take the scalar
3837   // element which holds a pointer.
3838   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3839   SDValue N = getValue(Op0);
3840   SDLoc dl = getCurSDLoc();
3841   auto &TLI = DAG.getTargetLoweringInfo();
3842   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3843   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3844 
3845   // Normalize Vector GEP - all scalar operands should be converted to the
3846   // splat vector.
3847   unsigned VectorWidth = I.getType()->isVectorTy() ?
3848     I.getType()->getVectorNumElements() : 0;
3849 
3850   if (VectorWidth && !N.getValueType().isVector()) {
3851     LLVMContext &Context = *DAG.getContext();
3852     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3853     N = DAG.getSplatBuildVector(VT, dl, N);
3854   }
3855 
3856   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3857        GTI != E; ++GTI) {
3858     const Value *Idx = GTI.getOperand();
3859     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3860       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3861       if (Field) {
3862         // N = N + Offset
3863         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3864 
3865         // In an inbounds GEP with an offset that is nonnegative even when
3866         // interpreted as signed, assume there is no unsigned overflow.
3867         SDNodeFlags Flags;
3868         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3869           Flags.setNoUnsignedWrap(true);
3870 
3871         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3872                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3873       }
3874     } else {
3875       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3876       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3877       APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3878 
3879       // If this is a scalar constant or a splat vector of constants,
3880       // handle it quickly.
3881       const auto *C = dyn_cast<Constant>(Idx);
3882       if (C && isa<VectorType>(C->getType()))
3883         C = C->getSplatValue();
3884 
3885       if (const auto *CI = dyn_cast_or_null<ConstantInt>(C)) {
3886         if (CI->isZero())
3887           continue;
3888         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3889         LLVMContext &Context = *DAG.getContext();
3890         SDValue OffsVal = VectorWidth ?
3891           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3892           DAG.getConstant(Offs, dl, IdxTy);
3893 
3894         // In an inbounds GEP with an offset that is nonnegative even when
3895         // interpreted as signed, assume there is no unsigned overflow.
3896         SDNodeFlags Flags;
3897         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3898           Flags.setNoUnsignedWrap(true);
3899 
3900         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3901 
3902         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3903         continue;
3904       }
3905 
3906       // N = N + Idx * ElementSize;
3907       SDValue IdxN = getValue(Idx);
3908 
3909       if (!IdxN.getValueType().isVector() && VectorWidth) {
3910         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3911         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3912       }
3913 
3914       // If the index is smaller or larger than intptr_t, truncate or extend
3915       // it.
3916       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3917 
3918       // If this is a multiply by a power of two, turn it into a shl
3919       // immediately.  This is a very common case.
3920       if (ElementSize != 1) {
3921         if (ElementSize.isPowerOf2()) {
3922           unsigned Amt = ElementSize.logBase2();
3923           IdxN = DAG.getNode(ISD::SHL, dl,
3924                              N.getValueType(), IdxN,
3925                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3926         } else {
3927           SDValue Scale = DAG.getConstant(ElementSize.getZExtValue(), dl,
3928                                           IdxN.getValueType());
3929           IdxN = DAG.getNode(ISD::MUL, dl,
3930                              N.getValueType(), IdxN, Scale);
3931         }
3932       }
3933 
3934       N = DAG.getNode(ISD::ADD, dl,
3935                       N.getValueType(), N, IdxN);
3936     }
3937   }
3938 
3939   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3940     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3941 
3942   setValue(&I, N);
3943 }
3944 
3945 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3946   // If this is a fixed sized alloca in the entry block of the function,
3947   // allocate it statically on the stack.
3948   if (FuncInfo.StaticAllocaMap.count(&I))
3949     return;   // getValue will auto-populate this.
3950 
3951   SDLoc dl = getCurSDLoc();
3952   Type *Ty = I.getAllocatedType();
3953   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3954   auto &DL = DAG.getDataLayout();
3955   uint64_t TySize = DL.getTypeAllocSize(Ty);
3956   unsigned Align =
3957       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3958 
3959   SDValue AllocSize = getValue(I.getArraySize());
3960 
3961   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3962   if (AllocSize.getValueType() != IntPtr)
3963     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3964 
3965   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3966                           AllocSize,
3967                           DAG.getConstant(TySize, dl, IntPtr));
3968 
3969   // Handle alignment.  If the requested alignment is less than or equal to
3970   // the stack alignment, ignore it.  If the size is greater than or equal to
3971   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3972   unsigned StackAlign =
3973       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3974   if (Align <= StackAlign)
3975     Align = 0;
3976 
3977   // Round the size of the allocation up to the stack alignment size
3978   // by add SA-1 to the size. This doesn't overflow because we're computing
3979   // an address inside an alloca.
3980   SDNodeFlags Flags;
3981   Flags.setNoUnsignedWrap(true);
3982   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3983                           DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3984 
3985   // Mask out the low bits for alignment purposes.
3986   AllocSize =
3987       DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3988                   DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
3989 
3990   SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
3991   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3992   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3993   setValue(&I, DSA);
3994   DAG.setRoot(DSA.getValue(1));
3995 
3996   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3997 }
3998 
3999 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4000   if (I.isAtomic())
4001     return visitAtomicLoad(I);
4002 
4003   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4004   const Value *SV = I.getOperand(0);
4005   if (TLI.supportSwiftError()) {
4006     // Swifterror values can come from either a function parameter with
4007     // swifterror attribute or an alloca with swifterror attribute.
4008     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4009       if (Arg->hasSwiftErrorAttr())
4010         return visitLoadFromSwiftError(I);
4011     }
4012 
4013     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4014       if (Alloca->isSwiftError())
4015         return visitLoadFromSwiftError(I);
4016     }
4017   }
4018 
4019   SDValue Ptr = getValue(SV);
4020 
4021   Type *Ty = I.getType();
4022 
4023   bool isVolatile = I.isVolatile();
4024   bool isNonTemporal = I.hasMetadata(LLVMContext::MD_nontemporal);
4025   bool isInvariant = I.hasMetadata(LLVMContext::MD_invariant_load);
4026   bool isDereferenceable =
4027       isDereferenceablePointer(SV, I.getType(), DAG.getDataLayout());
4028   unsigned Alignment = I.getAlignment();
4029 
4030   AAMDNodes AAInfo;
4031   I.getAAMetadata(AAInfo);
4032   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4033 
4034   SmallVector<EVT, 4> ValueVTs, MemVTs;
4035   SmallVector<uint64_t, 4> Offsets;
4036   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4037   unsigned NumValues = ValueVTs.size();
4038   if (NumValues == 0)
4039     return;
4040 
4041   SDValue Root;
4042   bool ConstantMemory = false;
4043   if (isVolatile || NumValues > MaxParallelChains)
4044     // Serialize volatile loads with other side effects.
4045     Root = getRoot();
4046   else if (AA &&
4047            AA->pointsToConstantMemory(MemoryLocation(
4048                SV,
4049                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4050                AAInfo))) {
4051     // Do not serialize (non-volatile) loads of constant memory with anything.
4052     Root = DAG.getEntryNode();
4053     ConstantMemory = true;
4054   } else {
4055     // Do not serialize non-volatile loads against each other.
4056     Root = DAG.getRoot();
4057   }
4058 
4059   SDLoc dl = getCurSDLoc();
4060 
4061   if (isVolatile)
4062     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4063 
4064   // An aggregate load cannot wrap around the address space, so offsets to its
4065   // parts don't wrap either.
4066   SDNodeFlags Flags;
4067   Flags.setNoUnsignedWrap(true);
4068 
4069   SmallVector<SDValue, 4> Values(NumValues);
4070   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4071   EVT PtrVT = Ptr.getValueType();
4072   unsigned ChainI = 0;
4073   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4074     // Serializing loads here may result in excessive register pressure, and
4075     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4076     // could recover a bit by hoisting nodes upward in the chain by recognizing
4077     // they are side-effect free or do not alias. The optimizer should really
4078     // avoid this case by converting large object/array copies to llvm.memcpy
4079     // (MaxParallelChains should always remain as failsafe).
4080     if (ChainI == MaxParallelChains) {
4081       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4082       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4083                                   makeArrayRef(Chains.data(), ChainI));
4084       Root = Chain;
4085       ChainI = 0;
4086     }
4087     SDValue A = DAG.getNode(ISD::ADD, dl,
4088                             PtrVT, Ptr,
4089                             DAG.getConstant(Offsets[i], dl, PtrVT),
4090                             Flags);
4091     auto MMOFlags = MachineMemOperand::MONone;
4092     if (isVolatile)
4093       MMOFlags |= MachineMemOperand::MOVolatile;
4094     if (isNonTemporal)
4095       MMOFlags |= MachineMemOperand::MONonTemporal;
4096     if (isInvariant)
4097       MMOFlags |= MachineMemOperand::MOInvariant;
4098     if (isDereferenceable)
4099       MMOFlags |= MachineMemOperand::MODereferenceable;
4100     MMOFlags |= TLI.getMMOFlags(I);
4101 
4102     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4103                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4104                             MMOFlags, AAInfo, Ranges);
4105     Chains[ChainI] = L.getValue(1);
4106 
4107     if (MemVTs[i] != ValueVTs[i])
4108       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4109 
4110     Values[i] = L;
4111   }
4112 
4113   if (!ConstantMemory) {
4114     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4115                                 makeArrayRef(Chains.data(), ChainI));
4116     if (isVolatile)
4117       DAG.setRoot(Chain);
4118     else
4119       PendingLoads.push_back(Chain);
4120   }
4121 
4122   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4123                            DAG.getVTList(ValueVTs), Values));
4124 }
4125 
4126 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4127   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4128          "call visitStoreToSwiftError when backend supports swifterror");
4129 
4130   SmallVector<EVT, 4> ValueVTs;
4131   SmallVector<uint64_t, 4> Offsets;
4132   const Value *SrcV = I.getOperand(0);
4133   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4134                   SrcV->getType(), ValueVTs, &Offsets);
4135   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4136          "expect a single EVT for swifterror");
4137 
4138   SDValue Src = getValue(SrcV);
4139   // Create a virtual register, then update the virtual register.
4140   Register VReg =
4141       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4142   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4143   // Chain can be getRoot or getControlRoot.
4144   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4145                                       SDValue(Src.getNode(), Src.getResNo()));
4146   DAG.setRoot(CopyNode);
4147 }
4148 
4149 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4150   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4151          "call visitLoadFromSwiftError when backend supports swifterror");
4152 
4153   assert(!I.isVolatile() &&
4154          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4155          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4156          "Support volatile, non temporal, invariant for load_from_swift_error");
4157 
4158   const Value *SV = I.getOperand(0);
4159   Type *Ty = I.getType();
4160   AAMDNodes AAInfo;
4161   I.getAAMetadata(AAInfo);
4162   assert(
4163       (!AA ||
4164        !AA->pointsToConstantMemory(MemoryLocation(
4165            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4166            AAInfo))) &&
4167       "load_from_swift_error should not be constant memory");
4168 
4169   SmallVector<EVT, 4> ValueVTs;
4170   SmallVector<uint64_t, 4> Offsets;
4171   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4172                   ValueVTs, &Offsets);
4173   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4174          "expect a single EVT for swifterror");
4175 
4176   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4177   SDValue L = DAG.getCopyFromReg(
4178       getRoot(), getCurSDLoc(),
4179       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4180 
4181   setValue(&I, L);
4182 }
4183 
4184 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4185   if (I.isAtomic())
4186     return visitAtomicStore(I);
4187 
4188   const Value *SrcV = I.getOperand(0);
4189   const Value *PtrV = I.getOperand(1);
4190 
4191   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4192   if (TLI.supportSwiftError()) {
4193     // Swifterror values can come from either a function parameter with
4194     // swifterror attribute or an alloca with swifterror attribute.
4195     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4196       if (Arg->hasSwiftErrorAttr())
4197         return visitStoreToSwiftError(I);
4198     }
4199 
4200     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4201       if (Alloca->isSwiftError())
4202         return visitStoreToSwiftError(I);
4203     }
4204   }
4205 
4206   SmallVector<EVT, 4> ValueVTs, MemVTs;
4207   SmallVector<uint64_t, 4> Offsets;
4208   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4209                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4210   unsigned NumValues = ValueVTs.size();
4211   if (NumValues == 0)
4212     return;
4213 
4214   // Get the lowered operands. Note that we do this after
4215   // checking if NumResults is zero, because with zero results
4216   // the operands won't have values in the map.
4217   SDValue Src = getValue(SrcV);
4218   SDValue Ptr = getValue(PtrV);
4219 
4220   SDValue Root = getRoot();
4221   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4222   SDLoc dl = getCurSDLoc();
4223   EVT PtrVT = Ptr.getValueType();
4224   unsigned Alignment = I.getAlignment();
4225   AAMDNodes AAInfo;
4226   I.getAAMetadata(AAInfo);
4227 
4228   auto MMOFlags = MachineMemOperand::MONone;
4229   if (I.isVolatile())
4230     MMOFlags |= MachineMemOperand::MOVolatile;
4231   if (I.hasMetadata(LLVMContext::MD_nontemporal))
4232     MMOFlags |= MachineMemOperand::MONonTemporal;
4233   MMOFlags |= TLI.getMMOFlags(I);
4234 
4235   // An aggregate load cannot wrap around the address space, so offsets to its
4236   // parts don't wrap either.
4237   SDNodeFlags Flags;
4238   Flags.setNoUnsignedWrap(true);
4239 
4240   unsigned ChainI = 0;
4241   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4242     // See visitLoad comments.
4243     if (ChainI == MaxParallelChains) {
4244       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4245                                   makeArrayRef(Chains.data(), ChainI));
4246       Root = Chain;
4247       ChainI = 0;
4248     }
4249     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
4250                               DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
4251     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4252     if (MemVTs[i] != ValueVTs[i])
4253       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4254     SDValue St =
4255         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4256                      Alignment, MMOFlags, AAInfo);
4257     Chains[ChainI] = St;
4258   }
4259 
4260   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4261                                   makeArrayRef(Chains.data(), ChainI));
4262   DAG.setRoot(StoreNode);
4263 }
4264 
4265 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4266                                            bool IsCompressing) {
4267   SDLoc sdl = getCurSDLoc();
4268 
4269   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4270                            unsigned& Alignment) {
4271     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4272     Src0 = I.getArgOperand(0);
4273     Ptr = I.getArgOperand(1);
4274     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
4275     Mask = I.getArgOperand(3);
4276   };
4277   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4278                            unsigned& Alignment) {
4279     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4280     Src0 = I.getArgOperand(0);
4281     Ptr = I.getArgOperand(1);
4282     Mask = I.getArgOperand(2);
4283     Alignment = 0;
4284   };
4285 
4286   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4287   unsigned Alignment;
4288   if (IsCompressing)
4289     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4290   else
4291     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4292 
4293   SDValue Ptr = getValue(PtrOperand);
4294   SDValue Src0 = getValue(Src0Operand);
4295   SDValue Mask = getValue(MaskOperand);
4296 
4297   EVT VT = Src0.getValueType();
4298   if (!Alignment)
4299     Alignment = DAG.getEVTAlignment(VT);
4300 
4301   AAMDNodes AAInfo;
4302   I.getAAMetadata(AAInfo);
4303 
4304   MachineMemOperand *MMO =
4305     DAG.getMachineFunction().
4306     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4307                           MachineMemOperand::MOStore,  VT.getStoreSize(),
4308                           Alignment, AAInfo);
4309   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
4310                                          MMO, false /* Truncating */,
4311                                          IsCompressing);
4312   DAG.setRoot(StoreNode);
4313   setValue(&I, StoreNode);
4314 }
4315 
4316 // Get a uniform base for the Gather/Scatter intrinsic.
4317 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4318 // We try to represent it as a base pointer + vector of indices.
4319 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4320 // The first operand of the GEP may be a single pointer or a vector of pointers
4321 // Example:
4322 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4323 //  or
4324 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4325 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4326 //
4327 // When the first GEP operand is a single pointer - it is the uniform base we
4328 // are looking for. If first operand of the GEP is a splat vector - we
4329 // extract the splat value and use it as a uniform base.
4330 // In all other cases the function returns 'false'.
4331 static bool getUniformBase(const Value *&Ptr, SDValue &Base, SDValue &Index,
4332                            ISD::MemIndexType &IndexType, SDValue &Scale,
4333                            SelectionDAGBuilder *SDB) {
4334   SelectionDAG& DAG = SDB->DAG;
4335   LLVMContext &Context = *DAG.getContext();
4336 
4337   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4338   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4339   if (!GEP)
4340     return false;
4341 
4342   const Value *GEPPtr = GEP->getPointerOperand();
4343   if (!GEPPtr->getType()->isVectorTy())
4344     Ptr = GEPPtr;
4345   else if (!(Ptr = getSplatValue(GEPPtr)))
4346     return false;
4347 
4348   unsigned FinalIndex = GEP->getNumOperands() - 1;
4349   Value *IndexVal = GEP->getOperand(FinalIndex);
4350 
4351   // Ensure all the other indices are 0.
4352   for (unsigned i = 1; i < FinalIndex; ++i) {
4353     auto *C = dyn_cast<Constant>(GEP->getOperand(i));
4354     if (!C)
4355       return false;
4356     if (isa<VectorType>(C->getType()))
4357       C = C->getSplatValue();
4358     auto *CI = dyn_cast_or_null<ConstantInt>(C);
4359     if (!CI || !CI->isZero())
4360       return false;
4361   }
4362 
4363   // The operands of the GEP may be defined in another basic block.
4364   // In this case we'll not find nodes for the operands.
4365   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
4366     return false;
4367 
4368   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4369   const DataLayout &DL = DAG.getDataLayout();
4370   Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()),
4371                                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4372   Base = SDB->getValue(Ptr);
4373   Index = SDB->getValue(IndexVal);
4374   IndexType = ISD::SIGNED_SCALED;
4375 
4376   if (!Index.getValueType().isVector()) {
4377     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
4378     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
4379     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
4380   }
4381   return true;
4382 }
4383 
4384 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4385   SDLoc sdl = getCurSDLoc();
4386 
4387   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
4388   const Value *Ptr = I.getArgOperand(1);
4389   SDValue Src0 = getValue(I.getArgOperand(0));
4390   SDValue Mask = getValue(I.getArgOperand(3));
4391   EVT VT = Src0.getValueType();
4392   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
4393   if (!Alignment)
4394     Alignment = DAG.getEVTAlignment(VT);
4395   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4396 
4397   AAMDNodes AAInfo;
4398   I.getAAMetadata(AAInfo);
4399 
4400   SDValue Base;
4401   SDValue Index;
4402   ISD::MemIndexType IndexType;
4403   SDValue Scale;
4404   const Value *BasePtr = Ptr;
4405   bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale,
4406                                     this);
4407 
4408   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
4409   MachineMemOperand *MMO = DAG.getMachineFunction().
4410     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
4411                          MachineMemOperand::MOStore,  VT.getStoreSize(),
4412                          Alignment, AAInfo);
4413   if (!UniformBase) {
4414     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4415     Index = getValue(Ptr);
4416     IndexType = ISD::SIGNED_SCALED;
4417     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4418   }
4419   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
4420   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4421                                          Ops, MMO, IndexType);
4422   DAG.setRoot(Scatter);
4423   setValue(&I, Scatter);
4424 }
4425 
4426 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4427   SDLoc sdl = getCurSDLoc();
4428 
4429   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4430                            unsigned& Alignment) {
4431     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4432     Ptr = I.getArgOperand(0);
4433     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4434     Mask = I.getArgOperand(2);
4435     Src0 = I.getArgOperand(3);
4436   };
4437   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4438                            unsigned& Alignment) {
4439     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4440     Ptr = I.getArgOperand(0);
4441     Alignment = 0;
4442     Mask = I.getArgOperand(1);
4443     Src0 = I.getArgOperand(2);
4444   };
4445 
4446   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4447   unsigned Alignment;
4448   if (IsExpanding)
4449     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4450   else
4451     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4452 
4453   SDValue Ptr = getValue(PtrOperand);
4454   SDValue Src0 = getValue(Src0Operand);
4455   SDValue Mask = getValue(MaskOperand);
4456 
4457   EVT VT = Src0.getValueType();
4458   if (!Alignment)
4459     Alignment = DAG.getEVTAlignment(VT);
4460 
4461   AAMDNodes AAInfo;
4462   I.getAAMetadata(AAInfo);
4463   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4464 
4465   // Do not serialize masked loads of constant memory with anything.
4466   MemoryLocation ML;
4467   if (VT.isScalableVector())
4468     ML = MemoryLocation(PtrOperand);
4469   else
4470     ML = MemoryLocation(PtrOperand, LocationSize::precise(
4471                            DAG.getDataLayout().getTypeStoreSize(I.getType())),
4472                            AAInfo);
4473   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4474 
4475   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4476 
4477   MachineMemOperand *MMO =
4478     DAG.getMachineFunction().
4479     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4480                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
4481                           Alignment, AAInfo, Ranges);
4482 
4483   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
4484                                    ISD::NON_EXTLOAD, IsExpanding);
4485   if (AddToChain)
4486     PendingLoads.push_back(Load.getValue(1));
4487   setValue(&I, Load);
4488 }
4489 
4490 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4491   SDLoc sdl = getCurSDLoc();
4492 
4493   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4494   const Value *Ptr = I.getArgOperand(0);
4495   SDValue Src0 = getValue(I.getArgOperand(3));
4496   SDValue Mask = getValue(I.getArgOperand(2));
4497 
4498   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4499   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4500   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4501   if (!Alignment)
4502     Alignment = DAG.getEVTAlignment(VT);
4503 
4504   AAMDNodes AAInfo;
4505   I.getAAMetadata(AAInfo);
4506   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4507 
4508   SDValue Root = DAG.getRoot();
4509   SDValue Base;
4510   SDValue Index;
4511   ISD::MemIndexType IndexType;
4512   SDValue Scale;
4513   const Value *BasePtr = Ptr;
4514   bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale,
4515                                     this);
4516   bool ConstantMemory = false;
4517   if (UniformBase && AA &&
4518       AA->pointsToConstantMemory(
4519           MemoryLocation(BasePtr,
4520                          LocationSize::precise(
4521                              DAG.getDataLayout().getTypeStoreSize(I.getType())),
4522                          AAInfo))) {
4523     // Do not serialize (non-volatile) loads of constant memory with anything.
4524     Root = DAG.getEntryNode();
4525     ConstantMemory = true;
4526   }
4527 
4528   MachineMemOperand *MMO =
4529     DAG.getMachineFunction().
4530     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4531                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
4532                          Alignment, AAInfo, Ranges);
4533 
4534   if (!UniformBase) {
4535     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4536     Index = getValue(Ptr);
4537     IndexType = ISD::SIGNED_SCALED;
4538     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4539   }
4540   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4541   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4542                                        Ops, MMO, IndexType);
4543 
4544   SDValue OutChain = Gather.getValue(1);
4545   if (!ConstantMemory)
4546     PendingLoads.push_back(OutChain);
4547   setValue(&I, Gather);
4548 }
4549 
4550 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4551   SDLoc dl = getCurSDLoc();
4552   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4553   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4554   SyncScope::ID SSID = I.getSyncScopeID();
4555 
4556   SDValue InChain = getRoot();
4557 
4558   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4559   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4560 
4561   auto Alignment = DAG.getEVTAlignment(MemVT);
4562 
4563   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4564   if (I.isVolatile())
4565     Flags |= MachineMemOperand::MOVolatile;
4566   Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4567 
4568   MachineFunction &MF = DAG.getMachineFunction();
4569   MachineMemOperand *MMO =
4570     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4571                             Flags, MemVT.getStoreSize(), Alignment,
4572                             AAMDNodes(), nullptr, SSID, SuccessOrdering,
4573                             FailureOrdering);
4574 
4575   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4576                                    dl, MemVT, VTs, InChain,
4577                                    getValue(I.getPointerOperand()),
4578                                    getValue(I.getCompareOperand()),
4579                                    getValue(I.getNewValOperand()), MMO);
4580 
4581   SDValue OutChain = L.getValue(2);
4582 
4583   setValue(&I, L);
4584   DAG.setRoot(OutChain);
4585 }
4586 
4587 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4588   SDLoc dl = getCurSDLoc();
4589   ISD::NodeType NT;
4590   switch (I.getOperation()) {
4591   default: llvm_unreachable("Unknown atomicrmw operation");
4592   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4593   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4594   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4595   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4596   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4597   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4598   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4599   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4600   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4601   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4602   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4603   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4604   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4605   }
4606   AtomicOrdering Ordering = I.getOrdering();
4607   SyncScope::ID SSID = I.getSyncScopeID();
4608 
4609   SDValue InChain = getRoot();
4610 
4611   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4612   auto Alignment = DAG.getEVTAlignment(MemVT);
4613 
4614   auto Flags = MachineMemOperand::MOLoad |  MachineMemOperand::MOStore;
4615   if (I.isVolatile())
4616     Flags |= MachineMemOperand::MOVolatile;
4617   Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4618 
4619   MachineFunction &MF = DAG.getMachineFunction();
4620   MachineMemOperand *MMO =
4621     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4622                             MemVT.getStoreSize(), Alignment, AAMDNodes(),
4623                             nullptr, SSID, Ordering);
4624 
4625   SDValue L =
4626     DAG.getAtomic(NT, dl, MemVT, InChain,
4627                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4628                   MMO);
4629 
4630   SDValue OutChain = L.getValue(1);
4631 
4632   setValue(&I, L);
4633   DAG.setRoot(OutChain);
4634 }
4635 
4636 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4637   SDLoc dl = getCurSDLoc();
4638   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4639   SDValue Ops[3];
4640   Ops[0] = getRoot();
4641   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4642                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4643   Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4644                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4645   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4646 }
4647 
4648 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4649   SDLoc dl = getCurSDLoc();
4650   AtomicOrdering Order = I.getOrdering();
4651   SyncScope::ID SSID = I.getSyncScopeID();
4652 
4653   SDValue InChain = getRoot();
4654 
4655   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4656   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4657   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4658 
4659   if (!TLI.supportsUnalignedAtomics() &&
4660       I.getAlignment() < MemVT.getSizeInBits() / 8)
4661     report_fatal_error("Cannot generate unaligned atomic load");
4662 
4663   auto Flags = MachineMemOperand::MOLoad;
4664   if (I.isVolatile())
4665     Flags |= MachineMemOperand::MOVolatile;
4666   if (I.hasMetadata(LLVMContext::MD_invariant_load))
4667     Flags |= MachineMemOperand::MOInvariant;
4668   if (isDereferenceablePointer(I.getPointerOperand(), I.getType(),
4669                                DAG.getDataLayout()))
4670     Flags |= MachineMemOperand::MODereferenceable;
4671 
4672   Flags |= TLI.getMMOFlags(I);
4673 
4674   MachineMemOperand *MMO =
4675       DAG.getMachineFunction().
4676       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4677                            Flags, MemVT.getStoreSize(),
4678                            I.getAlignment() ? I.getAlignment() :
4679                                               DAG.getEVTAlignment(MemVT),
4680                            AAMDNodes(), nullptr, SSID, Order);
4681 
4682   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4683 
4684   SDValue Ptr = getValue(I.getPointerOperand());
4685 
4686   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4687     // TODO: Once this is better exercised by tests, it should be merged with
4688     // the normal path for loads to prevent future divergence.
4689     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4690     if (MemVT != VT)
4691       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4692 
4693     setValue(&I, L);
4694     SDValue OutChain = L.getValue(1);
4695     if (!I.isUnordered())
4696       DAG.setRoot(OutChain);
4697     else
4698       PendingLoads.push_back(OutChain);
4699     return;
4700   }
4701 
4702   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4703                             Ptr, MMO);
4704 
4705   SDValue OutChain = L.getValue(1);
4706   if (MemVT != VT)
4707     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4708 
4709   setValue(&I, L);
4710   DAG.setRoot(OutChain);
4711 }
4712 
4713 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4714   SDLoc dl = getCurSDLoc();
4715 
4716   AtomicOrdering Ordering = I.getOrdering();
4717   SyncScope::ID SSID = I.getSyncScopeID();
4718 
4719   SDValue InChain = getRoot();
4720 
4721   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4722   EVT MemVT =
4723       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4724 
4725   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4726     report_fatal_error("Cannot generate unaligned atomic store");
4727 
4728   auto Flags = MachineMemOperand::MOStore;
4729   if (I.isVolatile())
4730     Flags |= MachineMemOperand::MOVolatile;
4731   Flags |= TLI.getMMOFlags(I);
4732 
4733   MachineFunction &MF = DAG.getMachineFunction();
4734   MachineMemOperand *MMO =
4735     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4736                             MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(),
4737                             nullptr, SSID, Ordering);
4738 
4739   SDValue Val = getValue(I.getValueOperand());
4740   if (Val.getValueType() != MemVT)
4741     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4742   SDValue Ptr = getValue(I.getPointerOperand());
4743 
4744   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4745     // TODO: Once this is better exercised by tests, it should be merged with
4746     // the normal path for stores to prevent future divergence.
4747     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4748     DAG.setRoot(S);
4749     return;
4750   }
4751   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4752                                    Ptr, Val, MMO);
4753 
4754 
4755   DAG.setRoot(OutChain);
4756 }
4757 
4758 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4759 /// node.
4760 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4761                                                unsigned Intrinsic) {
4762   // Ignore the callsite's attributes. A specific call site may be marked with
4763   // readnone, but the lowering code will expect the chain based on the
4764   // definition.
4765   const Function *F = I.getCalledFunction();
4766   bool HasChain = !F->doesNotAccessMemory();
4767   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4768 
4769   // Build the operand list.
4770   SmallVector<SDValue, 8> Ops;
4771   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4772     if (OnlyLoad) {
4773       // We don't need to serialize loads against other loads.
4774       Ops.push_back(DAG.getRoot());
4775     } else {
4776       Ops.push_back(getRoot());
4777     }
4778   }
4779 
4780   // Info is set by getTgtMemInstrinsic
4781   TargetLowering::IntrinsicInfo Info;
4782   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4783   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4784                                                DAG.getMachineFunction(),
4785                                                Intrinsic);
4786 
4787   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4788   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4789       Info.opc == ISD::INTRINSIC_W_CHAIN)
4790     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4791                                         TLI.getPointerTy(DAG.getDataLayout())));
4792 
4793   // Add all operands of the call to the operand list.
4794   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4795     const Value *Arg = I.getArgOperand(i);
4796     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4797       Ops.push_back(getValue(Arg));
4798       continue;
4799     }
4800 
4801     // Use TargetConstant instead of a regular constant for immarg.
4802     EVT VT = TLI.getValueType(*DL, Arg->getType(), true);
4803     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4804       assert(CI->getBitWidth() <= 64 &&
4805              "large intrinsic immediates not handled");
4806       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4807     } else {
4808       Ops.push_back(
4809           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4810     }
4811   }
4812 
4813   SmallVector<EVT, 4> ValueVTs;
4814   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4815 
4816   if (HasChain)
4817     ValueVTs.push_back(MVT::Other);
4818 
4819   SDVTList VTs = DAG.getVTList(ValueVTs);
4820 
4821   // Create the node.
4822   SDValue Result;
4823   if (IsTgtIntrinsic) {
4824     // This is target intrinsic that touches memory
4825     AAMDNodes AAInfo;
4826     I.getAAMetadata(AAInfo);
4827     Result = DAG.getMemIntrinsicNode(
4828         Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4829         MachinePointerInfo(Info.ptrVal, Info.offset),
4830         Info.align ? Info.align->value() : 0, Info.flags, Info.size, AAInfo);
4831   } else if (!HasChain) {
4832     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4833   } else if (!I.getType()->isVoidTy()) {
4834     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4835   } else {
4836     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4837   }
4838 
4839   if (HasChain) {
4840     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4841     if (OnlyLoad)
4842       PendingLoads.push_back(Chain);
4843     else
4844       DAG.setRoot(Chain);
4845   }
4846 
4847   if (!I.getType()->isVoidTy()) {
4848     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4849       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4850       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4851     } else
4852       Result = lowerRangeToAssertZExt(DAG, I, Result);
4853 
4854     setValue(&I, Result);
4855   }
4856 }
4857 
4858 /// GetSignificand - Get the significand and build it into a floating-point
4859 /// number with exponent of 1:
4860 ///
4861 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4862 ///
4863 /// where Op is the hexadecimal representation of floating point value.
4864 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4865   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4866                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4867   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4868                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4869   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4870 }
4871 
4872 /// GetExponent - Get the exponent:
4873 ///
4874 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4875 ///
4876 /// where Op is the hexadecimal representation of floating point value.
4877 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4878                            const TargetLowering &TLI, const SDLoc &dl) {
4879   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4880                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4881   SDValue t1 = DAG.getNode(
4882       ISD::SRL, dl, MVT::i32, t0,
4883       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4884   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4885                            DAG.getConstant(127, dl, MVT::i32));
4886   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4887 }
4888 
4889 /// getF32Constant - Get 32-bit floating point constant.
4890 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4891                               const SDLoc &dl) {
4892   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4893                            MVT::f32);
4894 }
4895 
4896 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4897                                        SelectionDAG &DAG) {
4898   // TODO: What fast-math-flags should be set on the floating-point nodes?
4899 
4900   //   IntegerPartOfX = ((int32_t)(t0);
4901   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4902 
4903   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4904   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4905   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4906 
4907   //   IntegerPartOfX <<= 23;
4908   IntegerPartOfX = DAG.getNode(
4909       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4910       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4911                                   DAG.getDataLayout())));
4912 
4913   SDValue TwoToFractionalPartOfX;
4914   if (LimitFloatPrecision <= 6) {
4915     // For floating-point precision of 6:
4916     //
4917     //   TwoToFractionalPartOfX =
4918     //     0.997535578f +
4919     //       (0.735607626f + 0.252464424f * x) * x;
4920     //
4921     // error 0.0144103317, which is 6 bits
4922     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4923                              getF32Constant(DAG, 0x3e814304, dl));
4924     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4925                              getF32Constant(DAG, 0x3f3c50c8, dl));
4926     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4927     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4928                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4929   } else if (LimitFloatPrecision <= 12) {
4930     // For floating-point precision of 12:
4931     //
4932     //   TwoToFractionalPartOfX =
4933     //     0.999892986f +
4934     //       (0.696457318f +
4935     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4936     //
4937     // error 0.000107046256, which is 13 to 14 bits
4938     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4939                              getF32Constant(DAG, 0x3da235e3, dl));
4940     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4941                              getF32Constant(DAG, 0x3e65b8f3, dl));
4942     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4943     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4944                              getF32Constant(DAG, 0x3f324b07, dl));
4945     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4946     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4947                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4948   } else { // LimitFloatPrecision <= 18
4949     // For floating-point precision of 18:
4950     //
4951     //   TwoToFractionalPartOfX =
4952     //     0.999999982f +
4953     //       (0.693148872f +
4954     //         (0.240227044f +
4955     //           (0.554906021e-1f +
4956     //             (0.961591928e-2f +
4957     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4958     // error 2.47208000*10^(-7), which is better than 18 bits
4959     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4960                              getF32Constant(DAG, 0x3924b03e, dl));
4961     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4962                              getF32Constant(DAG, 0x3ab24b87, dl));
4963     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4964     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4965                              getF32Constant(DAG, 0x3c1d8c17, dl));
4966     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4967     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4968                              getF32Constant(DAG, 0x3d634a1d, dl));
4969     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4970     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4971                              getF32Constant(DAG, 0x3e75fe14, dl));
4972     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4973     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4974                               getF32Constant(DAG, 0x3f317234, dl));
4975     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4976     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4977                                          getF32Constant(DAG, 0x3f800000, dl));
4978   }
4979 
4980   // Add the exponent into the result in integer domain.
4981   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4982   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4983                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4984 }
4985 
4986 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4987 /// limited-precision mode.
4988 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4989                          const TargetLowering &TLI) {
4990   if (Op.getValueType() == MVT::f32 &&
4991       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4992 
4993     // Put the exponent in the right bit position for later addition to the
4994     // final result:
4995     //
4996     // t0 = Op * log2(e)
4997 
4998     // TODO: What fast-math-flags should be set here?
4999     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5000                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5001     return getLimitedPrecisionExp2(t0, dl, DAG);
5002   }
5003 
5004   // No special expansion.
5005   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
5006 }
5007 
5008 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5009 /// limited-precision mode.
5010 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5011                          const TargetLowering &TLI) {
5012   // TODO: What fast-math-flags should be set on the floating-point nodes?
5013 
5014   if (Op.getValueType() == MVT::f32 &&
5015       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5016     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5017 
5018     // Scale the exponent by log(2).
5019     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5020     SDValue LogOfExponent =
5021         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5022                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5023 
5024     // Get the significand and build it into a floating-point number with
5025     // exponent of 1.
5026     SDValue X = GetSignificand(DAG, Op1, dl);
5027 
5028     SDValue LogOfMantissa;
5029     if (LimitFloatPrecision <= 6) {
5030       // For floating-point precision of 6:
5031       //
5032       //   LogofMantissa =
5033       //     -1.1609546f +
5034       //       (1.4034025f - 0.23903021f * x) * x;
5035       //
5036       // error 0.0034276066, which is better than 8 bits
5037       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5038                                getF32Constant(DAG, 0xbe74c456, dl));
5039       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5040                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5041       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5042       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5043                                   getF32Constant(DAG, 0x3f949a29, dl));
5044     } else if (LimitFloatPrecision <= 12) {
5045       // For floating-point precision of 12:
5046       //
5047       //   LogOfMantissa =
5048       //     -1.7417939f +
5049       //       (2.8212026f +
5050       //         (-1.4699568f +
5051       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5052       //
5053       // error 0.000061011436, which is 14 bits
5054       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5055                                getF32Constant(DAG, 0xbd67b6d6, dl));
5056       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5057                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5058       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5059       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5060                                getF32Constant(DAG, 0x3fbc278b, dl));
5061       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5062       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5063                                getF32Constant(DAG, 0x40348e95, dl));
5064       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5065       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5066                                   getF32Constant(DAG, 0x3fdef31a, dl));
5067     } else { // LimitFloatPrecision <= 18
5068       // For floating-point precision of 18:
5069       //
5070       //   LogOfMantissa =
5071       //     -2.1072184f +
5072       //       (4.2372794f +
5073       //         (-3.7029485f +
5074       //           (2.2781945f +
5075       //             (-0.87823314f +
5076       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5077       //
5078       // error 0.0000023660568, which is better than 18 bits
5079       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5080                                getF32Constant(DAG, 0xbc91e5ac, dl));
5081       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5082                                getF32Constant(DAG, 0x3e4350aa, dl));
5083       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5084       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5085                                getF32Constant(DAG, 0x3f60d3e3, dl));
5086       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5087       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5088                                getF32Constant(DAG, 0x4011cdf0, dl));
5089       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5090       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5091                                getF32Constant(DAG, 0x406cfd1c, dl));
5092       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5093       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5094                                getF32Constant(DAG, 0x408797cb, dl));
5095       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5096       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5097                                   getF32Constant(DAG, 0x4006dcab, dl));
5098     }
5099 
5100     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5101   }
5102 
5103   // No special expansion.
5104   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
5105 }
5106 
5107 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5108 /// limited-precision mode.
5109 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5110                           const TargetLowering &TLI) {
5111   // TODO: What fast-math-flags should be set on the floating-point nodes?
5112 
5113   if (Op.getValueType() == MVT::f32 &&
5114       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5115     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5116 
5117     // Get the exponent.
5118     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5119 
5120     // Get the significand and build it into a floating-point number with
5121     // exponent of 1.
5122     SDValue X = GetSignificand(DAG, Op1, dl);
5123 
5124     // Different possible minimax approximations of significand in
5125     // floating-point for various degrees of accuracy over [1,2].
5126     SDValue Log2ofMantissa;
5127     if (LimitFloatPrecision <= 6) {
5128       // For floating-point precision of 6:
5129       //
5130       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5131       //
5132       // error 0.0049451742, which is more than 7 bits
5133       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5134                                getF32Constant(DAG, 0xbeb08fe0, dl));
5135       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5136                                getF32Constant(DAG, 0x40019463, dl));
5137       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5138       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5139                                    getF32Constant(DAG, 0x3fd6633d, dl));
5140     } else if (LimitFloatPrecision <= 12) {
5141       // For floating-point precision of 12:
5142       //
5143       //   Log2ofMantissa =
5144       //     -2.51285454f +
5145       //       (4.07009056f +
5146       //         (-2.12067489f +
5147       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5148       //
5149       // error 0.0000876136000, which is better than 13 bits
5150       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5151                                getF32Constant(DAG, 0xbda7262e, dl));
5152       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5153                                getF32Constant(DAG, 0x3f25280b, dl));
5154       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5155       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5156                                getF32Constant(DAG, 0x4007b923, dl));
5157       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5158       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5159                                getF32Constant(DAG, 0x40823e2f, dl));
5160       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5161       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5162                                    getF32Constant(DAG, 0x4020d29c, dl));
5163     } else { // LimitFloatPrecision <= 18
5164       // For floating-point precision of 18:
5165       //
5166       //   Log2ofMantissa =
5167       //     -3.0400495f +
5168       //       (6.1129976f +
5169       //         (-5.3420409f +
5170       //           (3.2865683f +
5171       //             (-1.2669343f +
5172       //               (0.27515199f -
5173       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5174       //
5175       // error 0.0000018516, which is better than 18 bits
5176       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5177                                getF32Constant(DAG, 0xbcd2769e, dl));
5178       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5179                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5180       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5181       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5182                                getF32Constant(DAG, 0x3fa22ae7, dl));
5183       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5184       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5185                                getF32Constant(DAG, 0x40525723, dl));
5186       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5187       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5188                                getF32Constant(DAG, 0x40aaf200, dl));
5189       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5190       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5191                                getF32Constant(DAG, 0x40c39dad, dl));
5192       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5193       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5194                                    getF32Constant(DAG, 0x4042902c, dl));
5195     }
5196 
5197     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5198   }
5199 
5200   // No special expansion.
5201   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
5202 }
5203 
5204 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5205 /// limited-precision mode.
5206 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5207                            const TargetLowering &TLI) {
5208   // TODO: What fast-math-flags should be set on the floating-point nodes?
5209 
5210   if (Op.getValueType() == MVT::f32 &&
5211       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5212     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5213 
5214     // Scale the exponent by log10(2) [0.30102999f].
5215     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5216     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5217                                         getF32Constant(DAG, 0x3e9a209a, dl));
5218 
5219     // Get the significand and build it into a floating-point number with
5220     // exponent of 1.
5221     SDValue X = GetSignificand(DAG, Op1, dl);
5222 
5223     SDValue Log10ofMantissa;
5224     if (LimitFloatPrecision <= 6) {
5225       // For floating-point precision of 6:
5226       //
5227       //   Log10ofMantissa =
5228       //     -0.50419619f +
5229       //       (0.60948995f - 0.10380950f * x) * x;
5230       //
5231       // error 0.0014886165, which is 6 bits
5232       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5233                                getF32Constant(DAG, 0xbdd49a13, dl));
5234       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5235                                getF32Constant(DAG, 0x3f1c0789, dl));
5236       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5237       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5238                                     getF32Constant(DAG, 0x3f011300, dl));
5239     } else if (LimitFloatPrecision <= 12) {
5240       // For floating-point precision of 12:
5241       //
5242       //   Log10ofMantissa =
5243       //     -0.64831180f +
5244       //       (0.91751397f +
5245       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5246       //
5247       // error 0.00019228036, which is better than 12 bits
5248       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5249                                getF32Constant(DAG, 0x3d431f31, dl));
5250       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5251                                getF32Constant(DAG, 0x3ea21fb2, dl));
5252       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5253       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5254                                getF32Constant(DAG, 0x3f6ae232, dl));
5255       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5256       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5257                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5258     } else { // LimitFloatPrecision <= 18
5259       // For floating-point precision of 18:
5260       //
5261       //   Log10ofMantissa =
5262       //     -0.84299375f +
5263       //       (1.5327582f +
5264       //         (-1.0688956f +
5265       //           (0.49102474f +
5266       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5267       //
5268       // error 0.0000037995730, which is better than 18 bits
5269       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5270                                getF32Constant(DAG, 0x3c5d51ce, dl));
5271       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5272                                getF32Constant(DAG, 0x3e00685a, dl));
5273       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5274       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5275                                getF32Constant(DAG, 0x3efb6798, dl));
5276       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5277       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5278                                getF32Constant(DAG, 0x3f88d192, dl));
5279       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5280       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5281                                getF32Constant(DAG, 0x3fc4316c, dl));
5282       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5283       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5284                                     getF32Constant(DAG, 0x3f57ce70, dl));
5285     }
5286 
5287     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5288   }
5289 
5290   // No special expansion.
5291   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
5292 }
5293 
5294 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5295 /// limited-precision mode.
5296 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5297                           const TargetLowering &TLI) {
5298   if (Op.getValueType() == MVT::f32 &&
5299       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5300     return getLimitedPrecisionExp2(Op, dl, DAG);
5301 
5302   // No special expansion.
5303   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
5304 }
5305 
5306 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5307 /// limited-precision mode with x == 10.0f.
5308 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5309                          SelectionDAG &DAG, const TargetLowering &TLI) {
5310   bool IsExp10 = false;
5311   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5312       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5313     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5314       APFloat Ten(10.0f);
5315       IsExp10 = LHSC->isExactlyValue(Ten);
5316     }
5317   }
5318 
5319   // TODO: What fast-math-flags should be set on the FMUL node?
5320   if (IsExp10) {
5321     // Put the exponent in the right bit position for later addition to the
5322     // final result:
5323     //
5324     //   #define LOG2OF10 3.3219281f
5325     //   t0 = Op * LOG2OF10;
5326     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5327                              getF32Constant(DAG, 0x40549a78, dl));
5328     return getLimitedPrecisionExp2(t0, dl, DAG);
5329   }
5330 
5331   // No special expansion.
5332   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
5333 }
5334 
5335 /// ExpandPowI - Expand a llvm.powi intrinsic.
5336 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5337                           SelectionDAG &DAG) {
5338   // If RHS is a constant, we can expand this out to a multiplication tree,
5339   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5340   // optimizing for size, we only want to do this if the expansion would produce
5341   // a small number of multiplies, otherwise we do the full expansion.
5342   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5343     // Get the exponent as a positive value.
5344     unsigned Val = RHSC->getSExtValue();
5345     if ((int)Val < 0) Val = -Val;
5346 
5347     // powi(x, 0) -> 1.0
5348     if (Val == 0)
5349       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5350 
5351     const Function &F = DAG.getMachineFunction().getFunction();
5352     if (!F.hasOptSize() ||
5353         // If optimizing for size, don't insert too many multiplies.
5354         // This inserts up to 5 multiplies.
5355         countPopulation(Val) + Log2_32(Val) < 7) {
5356       // We use the simple binary decomposition method to generate the multiply
5357       // sequence.  There are more optimal ways to do this (for example,
5358       // powi(x,15) generates one more multiply than it should), but this has
5359       // the benefit of being both really simple and much better than a libcall.
5360       SDValue Res;  // Logically starts equal to 1.0
5361       SDValue CurSquare = LHS;
5362       // TODO: Intrinsics should have fast-math-flags that propagate to these
5363       // nodes.
5364       while (Val) {
5365         if (Val & 1) {
5366           if (Res.getNode())
5367             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5368           else
5369             Res = CurSquare;  // 1.0*CurSquare.
5370         }
5371 
5372         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5373                                 CurSquare, CurSquare);
5374         Val >>= 1;
5375       }
5376 
5377       // If the original was negative, invert the result, producing 1/(x*x*x).
5378       if (RHSC->getSExtValue() < 0)
5379         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5380                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5381       return Res;
5382     }
5383   }
5384 
5385   // Otherwise, expand to a libcall.
5386   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5387 }
5388 
5389 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5390 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5391 static void
5392 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
5393                      const SDValue &N) {
5394   switch (N.getOpcode()) {
5395   case ISD::CopyFromReg: {
5396     SDValue Op = N.getOperand(1);
5397     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5398                       Op.getValueType().getSizeInBits());
5399     return;
5400   }
5401   case ISD::BITCAST:
5402   case ISD::AssertZext:
5403   case ISD::AssertSext:
5404   case ISD::TRUNCATE:
5405     getUnderlyingArgRegs(Regs, N.getOperand(0));
5406     return;
5407   case ISD::BUILD_PAIR:
5408   case ISD::BUILD_VECTOR:
5409   case ISD::CONCAT_VECTORS:
5410     for (SDValue Op : N->op_values())
5411       getUnderlyingArgRegs(Regs, Op);
5412     return;
5413   default:
5414     return;
5415   }
5416 }
5417 
5418 /// If the DbgValueInst is a dbg_value of a function argument, create the
5419 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5420 /// instruction selection, they will be inserted to the entry BB.
5421 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5422     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5423     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5424   const Argument *Arg = dyn_cast<Argument>(V);
5425   if (!Arg)
5426     return false;
5427 
5428   if (!IsDbgDeclare) {
5429     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5430     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5431     // the entry block.
5432     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5433     if (!IsInEntryBlock)
5434       return false;
5435 
5436     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5437     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5438     // variable that also is a param.
5439     //
5440     // Although, if we are at the top of the entry block already, we can still
5441     // emit using ArgDbgValue. This might catch some situations when the
5442     // dbg.value refers to an argument that isn't used in the entry block, so
5443     // any CopyToReg node would be optimized out and the only way to express
5444     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5445     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5446     // we should only emit as ArgDbgValue if the Variable is an argument to the
5447     // current function, and the dbg.value intrinsic is found in the entry
5448     // block.
5449     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5450         !DL->getInlinedAt();
5451     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5452     if (!IsInPrologue && !VariableIsFunctionInputArg)
5453       return false;
5454 
5455     // Here we assume that a function argument on IR level only can be used to
5456     // describe one input parameter on source level. If we for example have
5457     // source code like this
5458     //
5459     //    struct A { long x, y; };
5460     //    void foo(struct A a, long b) {
5461     //      ...
5462     //      b = a.x;
5463     //      ...
5464     //    }
5465     //
5466     // and IR like this
5467     //
5468     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5469     //  entry:
5470     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5471     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5472     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5473     //    ...
5474     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5475     //    ...
5476     //
5477     // then the last dbg.value is describing a parameter "b" using a value that
5478     // is an argument. But since we already has used %a1 to describe a parameter
5479     // we should not handle that last dbg.value here (that would result in an
5480     // incorrect hoisting of the DBG_VALUE to the function entry).
5481     // Notice that we allow one dbg.value per IR level argument, to accommodate
5482     // for the situation with fragments above.
5483     if (VariableIsFunctionInputArg) {
5484       unsigned ArgNo = Arg->getArgNo();
5485       if (ArgNo >= FuncInfo.DescribedArgs.size())
5486         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5487       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5488         return false;
5489       FuncInfo.DescribedArgs.set(ArgNo);
5490     }
5491   }
5492 
5493   MachineFunction &MF = DAG.getMachineFunction();
5494   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5495 
5496   Optional<MachineOperand> Op;
5497   // Some arguments' frame index is recorded during argument lowering.
5498   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5499   if (FI != std::numeric_limits<int>::max())
5500     Op = MachineOperand::CreateFI(FI);
5501 
5502   SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes;
5503   if (!Op && N.getNode()) {
5504     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5505     Register Reg;
5506     if (ArgRegsAndSizes.size() == 1)
5507       Reg = ArgRegsAndSizes.front().first;
5508 
5509     if (Reg && Reg.isVirtual()) {
5510       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5511       Register PR = RegInfo.getLiveInPhysReg(Reg);
5512       if (PR)
5513         Reg = PR;
5514     }
5515     if (Reg) {
5516       Op = MachineOperand::CreateReg(Reg, false);
5517     }
5518   }
5519 
5520   if (!Op && N.getNode()) {
5521     // Check if frame index is available.
5522     SDValue LCandidate = peekThroughBitcasts(N);
5523     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5524       if (FrameIndexSDNode *FINode =
5525           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5526         Op = MachineOperand::CreateFI(FINode->getIndex());
5527   }
5528 
5529   if (!Op) {
5530     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5531     auto splitMultiRegDbgValue
5532       = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) {
5533       unsigned Offset = 0;
5534       for (auto RegAndSize : SplitRegs) {
5535         auto FragmentExpr = DIExpression::createFragmentExpression(
5536           Expr, Offset, RegAndSize.second);
5537         if (!FragmentExpr)
5538           continue;
5539         assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?");
5540         FuncInfo.ArgDbgValues.push_back(
5541           BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), false,
5542                   RegAndSize.first, Variable, *FragmentExpr));
5543         Offset += RegAndSize.second;
5544       }
5545     };
5546 
5547     // Check if ValueMap has reg number.
5548     DenseMap<const Value *, unsigned>::const_iterator
5549       VMI = FuncInfo.ValueMap.find(V);
5550     if (VMI != FuncInfo.ValueMap.end()) {
5551       const auto &TLI = DAG.getTargetLoweringInfo();
5552       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5553                        V->getType(), getABIRegCopyCC(V));
5554       if (RFV.occupiesMultipleRegs()) {
5555         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5556         return true;
5557       }
5558 
5559       Op = MachineOperand::CreateReg(VMI->second, false);
5560     } else if (ArgRegsAndSizes.size() > 1) {
5561       // This was split due to the calling convention, and no virtual register
5562       // mapping exists for the value.
5563       splitMultiRegDbgValue(ArgRegsAndSizes);
5564       return true;
5565     }
5566   }
5567 
5568   if (!Op)
5569     return false;
5570 
5571   assert(Variable->isValidLocationForIntrinsic(DL) &&
5572          "Expected inlined-at fields to agree");
5573 
5574   // If the argument arrives in a stack slot, then what the IR thought was a
5575   // normal Value is actually in memory, and we must add a deref to load it.
5576   if (Op->isFI()) {
5577     int FI = Op->getIndex();
5578     unsigned Size = DAG.getMachineFunction().getFrameInfo().getObjectSize(FI);
5579     if (Expr->isImplicit()) {
5580       SmallVector<uint64_t, 2> Ops = {dwarf::DW_OP_deref_size, Size};
5581       Expr = DIExpression::prependOpcodes(Expr, Ops);
5582     } else {
5583       Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
5584     }
5585   }
5586 
5587   // If this location was specified with a dbg.declare, then it and its
5588   // expression calculate the address of the variable. Append a deref to
5589   // force it to be a memory location.
5590   if (IsDbgDeclare)
5591     Expr = DIExpression::append(Expr, {dwarf::DW_OP_deref});
5592 
5593   FuncInfo.ArgDbgValues.push_back(
5594       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), false,
5595               *Op, Variable, Expr));
5596 
5597   return true;
5598 }
5599 
5600 /// Return the appropriate SDDbgValue based on N.
5601 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5602                                              DILocalVariable *Variable,
5603                                              DIExpression *Expr,
5604                                              const DebugLoc &dl,
5605                                              unsigned DbgSDNodeOrder) {
5606   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5607     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5608     // stack slot locations.
5609     //
5610     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5611     // debug values here after optimization:
5612     //
5613     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5614     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5615     //
5616     // Both describe the direct values of their associated variables.
5617     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5618                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5619   }
5620   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5621                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5622 }
5623 
5624 // VisualStudio defines setjmp as _setjmp
5625 #if defined(_MSC_VER) && defined(setjmp) && \
5626                          !defined(setjmp_undefined_for_msvc)
5627 #  pragma push_macro("setjmp")
5628 #  undef setjmp
5629 #  define setjmp_undefined_for_msvc
5630 #endif
5631 
5632 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5633   switch (Intrinsic) {
5634   case Intrinsic::smul_fix:
5635     return ISD::SMULFIX;
5636   case Intrinsic::umul_fix:
5637     return ISD::UMULFIX;
5638   default:
5639     llvm_unreachable("Unhandled fixed point intrinsic");
5640   }
5641 }
5642 
5643 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5644                                            const char *FunctionName) {
5645   assert(FunctionName && "FunctionName must not be nullptr");
5646   SDValue Callee = DAG.getExternalSymbol(
5647       FunctionName,
5648       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5649   LowerCallTo(&I, Callee, I.isTailCall());
5650 }
5651 
5652 /// Lower the call to the specified intrinsic function.
5653 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5654                                              unsigned Intrinsic) {
5655   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5656   SDLoc sdl = getCurSDLoc();
5657   DebugLoc dl = getCurDebugLoc();
5658   SDValue Res;
5659 
5660   switch (Intrinsic) {
5661   default:
5662     // By default, turn this into a target intrinsic node.
5663     visitTargetIntrinsic(I, Intrinsic);
5664     return;
5665   case Intrinsic::vastart:  visitVAStart(I); return;
5666   case Intrinsic::vaend:    visitVAEnd(I); return;
5667   case Intrinsic::vacopy:   visitVACopy(I); return;
5668   case Intrinsic::returnaddress:
5669     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5670                              TLI.getPointerTy(DAG.getDataLayout()),
5671                              getValue(I.getArgOperand(0))));
5672     return;
5673   case Intrinsic::addressofreturnaddress:
5674     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5675                              TLI.getPointerTy(DAG.getDataLayout())));
5676     return;
5677   case Intrinsic::sponentry:
5678     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5679                              TLI.getFrameIndexTy(DAG.getDataLayout())));
5680     return;
5681   case Intrinsic::frameaddress:
5682     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5683                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5684                              getValue(I.getArgOperand(0))));
5685     return;
5686   case Intrinsic::read_register: {
5687     Value *Reg = I.getArgOperand(0);
5688     SDValue Chain = getRoot();
5689     SDValue RegName =
5690         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5691     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5692     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5693       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5694     setValue(&I, Res);
5695     DAG.setRoot(Res.getValue(1));
5696     return;
5697   }
5698   case Intrinsic::write_register: {
5699     Value *Reg = I.getArgOperand(0);
5700     Value *RegValue = I.getArgOperand(1);
5701     SDValue Chain = getRoot();
5702     SDValue RegName =
5703         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5704     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5705                             RegName, getValue(RegValue)));
5706     return;
5707   }
5708   case Intrinsic::setjmp:
5709     lowerCallToExternalSymbol(I, &"_setjmp"[!TLI.usesUnderscoreSetJmp()]);
5710     return;
5711   case Intrinsic::longjmp:
5712     lowerCallToExternalSymbol(I, &"_longjmp"[!TLI.usesUnderscoreLongJmp()]);
5713     return;
5714   case Intrinsic::memcpy: {
5715     const auto &MCI = cast<MemCpyInst>(I);
5716     SDValue Op1 = getValue(I.getArgOperand(0));
5717     SDValue Op2 = getValue(I.getArgOperand(1));
5718     SDValue Op3 = getValue(I.getArgOperand(2));
5719     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5720     unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5721     unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5722     unsigned Align = MinAlign(DstAlign, SrcAlign);
5723     bool isVol = MCI.isVolatile();
5724     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5725     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5726     // node.
5727     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5728                                false, isTC,
5729                                MachinePointerInfo(I.getArgOperand(0)),
5730                                MachinePointerInfo(I.getArgOperand(1)));
5731     updateDAGForMaybeTailCall(MC);
5732     return;
5733   }
5734   case Intrinsic::memset: {
5735     const auto &MSI = cast<MemSetInst>(I);
5736     SDValue Op1 = getValue(I.getArgOperand(0));
5737     SDValue Op2 = getValue(I.getArgOperand(1));
5738     SDValue Op3 = getValue(I.getArgOperand(2));
5739     // @llvm.memset defines 0 and 1 to both mean no alignment.
5740     unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5741     bool isVol = MSI.isVolatile();
5742     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5743     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5744                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5745     updateDAGForMaybeTailCall(MS);
5746     return;
5747   }
5748   case Intrinsic::memmove: {
5749     const auto &MMI = cast<MemMoveInst>(I);
5750     SDValue Op1 = getValue(I.getArgOperand(0));
5751     SDValue Op2 = getValue(I.getArgOperand(1));
5752     SDValue Op3 = getValue(I.getArgOperand(2));
5753     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5754     unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5755     unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5756     unsigned Align = MinAlign(DstAlign, SrcAlign);
5757     bool isVol = MMI.isVolatile();
5758     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5759     // FIXME: Support passing different dest/src alignments to the memmove DAG
5760     // node.
5761     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5762                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5763                                 MachinePointerInfo(I.getArgOperand(1)));
5764     updateDAGForMaybeTailCall(MM);
5765     return;
5766   }
5767   case Intrinsic::memcpy_element_unordered_atomic: {
5768     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5769     SDValue Dst = getValue(MI.getRawDest());
5770     SDValue Src = getValue(MI.getRawSource());
5771     SDValue Length = getValue(MI.getLength());
5772 
5773     unsigned DstAlign = MI.getDestAlignment();
5774     unsigned SrcAlign = MI.getSourceAlignment();
5775     Type *LengthTy = MI.getLength()->getType();
5776     unsigned ElemSz = MI.getElementSizeInBytes();
5777     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5778     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5779                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5780                                      MachinePointerInfo(MI.getRawDest()),
5781                                      MachinePointerInfo(MI.getRawSource()));
5782     updateDAGForMaybeTailCall(MC);
5783     return;
5784   }
5785   case Intrinsic::memmove_element_unordered_atomic: {
5786     auto &MI = cast<AtomicMemMoveInst>(I);
5787     SDValue Dst = getValue(MI.getRawDest());
5788     SDValue Src = getValue(MI.getRawSource());
5789     SDValue Length = getValue(MI.getLength());
5790 
5791     unsigned DstAlign = MI.getDestAlignment();
5792     unsigned SrcAlign = MI.getSourceAlignment();
5793     Type *LengthTy = MI.getLength()->getType();
5794     unsigned ElemSz = MI.getElementSizeInBytes();
5795     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5796     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5797                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5798                                       MachinePointerInfo(MI.getRawDest()),
5799                                       MachinePointerInfo(MI.getRawSource()));
5800     updateDAGForMaybeTailCall(MC);
5801     return;
5802   }
5803   case Intrinsic::memset_element_unordered_atomic: {
5804     auto &MI = cast<AtomicMemSetInst>(I);
5805     SDValue Dst = getValue(MI.getRawDest());
5806     SDValue Val = getValue(MI.getValue());
5807     SDValue Length = getValue(MI.getLength());
5808 
5809     unsigned DstAlign = MI.getDestAlignment();
5810     Type *LengthTy = MI.getLength()->getType();
5811     unsigned ElemSz = MI.getElementSizeInBytes();
5812     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5813     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5814                                      LengthTy, ElemSz, isTC,
5815                                      MachinePointerInfo(MI.getRawDest()));
5816     updateDAGForMaybeTailCall(MC);
5817     return;
5818   }
5819   case Intrinsic::dbg_addr:
5820   case Intrinsic::dbg_declare: {
5821     const auto &DI = cast<DbgVariableIntrinsic>(I);
5822     DILocalVariable *Variable = DI.getVariable();
5823     DIExpression *Expression = DI.getExpression();
5824     dropDanglingDebugInfo(Variable, Expression);
5825     assert(Variable && "Missing variable");
5826 
5827     // Check if address has undef value.
5828     const Value *Address = DI.getVariableLocation();
5829     if (!Address || isa<UndefValue>(Address) ||
5830         (Address->use_empty() && !isa<Argument>(Address))) {
5831       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5832       return;
5833     }
5834 
5835     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5836 
5837     // Check if this variable can be described by a frame index, typically
5838     // either as a static alloca or a byval parameter.
5839     int FI = std::numeric_limits<int>::max();
5840     if (const auto *AI =
5841             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5842       if (AI->isStaticAlloca()) {
5843         auto I = FuncInfo.StaticAllocaMap.find(AI);
5844         if (I != FuncInfo.StaticAllocaMap.end())
5845           FI = I->second;
5846       }
5847     } else if (const auto *Arg = dyn_cast<Argument>(
5848                    Address->stripInBoundsConstantOffsets())) {
5849       FI = FuncInfo.getArgumentFrameIndex(Arg);
5850     }
5851 
5852     // llvm.dbg.addr is control dependent and always generates indirect
5853     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5854     // the MachineFunction variable table.
5855     if (FI != std::numeric_limits<int>::max()) {
5856       if (Intrinsic == Intrinsic::dbg_addr) {
5857         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5858             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5859         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5860       }
5861       return;
5862     }
5863 
5864     SDValue &N = NodeMap[Address];
5865     if (!N.getNode() && isa<Argument>(Address))
5866       // Check unused arguments map.
5867       N = UnusedArgNodeMap[Address];
5868     SDDbgValue *SDV;
5869     if (N.getNode()) {
5870       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5871         Address = BCI->getOperand(0);
5872       // Parameters are handled specially.
5873       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5874       if (isParameter && FINode) {
5875         // Byval parameter. We have a frame index at this point.
5876         SDV =
5877             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5878                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5879       } else if (isa<Argument>(Address)) {
5880         // Address is an argument, so try to emit its dbg value using
5881         // virtual register info from the FuncInfo.ValueMap.
5882         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5883         return;
5884       } else {
5885         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5886                               true, dl, SDNodeOrder);
5887       }
5888       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5889     } else {
5890       // If Address is an argument then try to emit its dbg value using
5891       // virtual register info from the FuncInfo.ValueMap.
5892       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5893                                     N)) {
5894         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5895       }
5896     }
5897     return;
5898   }
5899   case Intrinsic::dbg_label: {
5900     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5901     DILabel *Label = DI.getLabel();
5902     assert(Label && "Missing label");
5903 
5904     SDDbgLabel *SDV;
5905     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5906     DAG.AddDbgLabel(SDV);
5907     return;
5908   }
5909   case Intrinsic::dbg_value: {
5910     const DbgValueInst &DI = cast<DbgValueInst>(I);
5911     assert(DI.getVariable() && "Missing variable");
5912 
5913     DILocalVariable *Variable = DI.getVariable();
5914     DIExpression *Expression = DI.getExpression();
5915     dropDanglingDebugInfo(Variable, Expression);
5916     const Value *V = DI.getValue();
5917     if (!V)
5918       return;
5919 
5920     if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
5921         SDNodeOrder))
5922       return;
5923 
5924     // TODO: Dangling debug info will eventually either be resolved or produce
5925     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5926     // between the original dbg.value location and its resolved DBG_VALUE, which
5927     // we should ideally fill with an extra Undef DBG_VALUE.
5928 
5929     DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5930     return;
5931   }
5932 
5933   case Intrinsic::eh_typeid_for: {
5934     // Find the type id for the given typeinfo.
5935     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5936     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5937     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5938     setValue(&I, Res);
5939     return;
5940   }
5941 
5942   case Intrinsic::eh_return_i32:
5943   case Intrinsic::eh_return_i64:
5944     DAG.getMachineFunction().setCallsEHReturn(true);
5945     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5946                             MVT::Other,
5947                             getControlRoot(),
5948                             getValue(I.getArgOperand(0)),
5949                             getValue(I.getArgOperand(1))));
5950     return;
5951   case Intrinsic::eh_unwind_init:
5952     DAG.getMachineFunction().setCallsUnwindInit(true);
5953     return;
5954   case Intrinsic::eh_dwarf_cfa:
5955     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5956                              TLI.getPointerTy(DAG.getDataLayout()),
5957                              getValue(I.getArgOperand(0))));
5958     return;
5959   case Intrinsic::eh_sjlj_callsite: {
5960     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5961     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5962     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5963     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5964 
5965     MMI.setCurrentCallSite(CI->getZExtValue());
5966     return;
5967   }
5968   case Intrinsic::eh_sjlj_functioncontext: {
5969     // Get and store the index of the function context.
5970     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5971     AllocaInst *FnCtx =
5972       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5973     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5974     MFI.setFunctionContextIndex(FI);
5975     return;
5976   }
5977   case Intrinsic::eh_sjlj_setjmp: {
5978     SDValue Ops[2];
5979     Ops[0] = getRoot();
5980     Ops[1] = getValue(I.getArgOperand(0));
5981     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5982                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5983     setValue(&I, Op.getValue(0));
5984     DAG.setRoot(Op.getValue(1));
5985     return;
5986   }
5987   case Intrinsic::eh_sjlj_longjmp:
5988     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5989                             getRoot(), getValue(I.getArgOperand(0))));
5990     return;
5991   case Intrinsic::eh_sjlj_setup_dispatch:
5992     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5993                             getRoot()));
5994     return;
5995   case Intrinsic::masked_gather:
5996     visitMaskedGather(I);
5997     return;
5998   case Intrinsic::masked_load:
5999     visitMaskedLoad(I);
6000     return;
6001   case Intrinsic::masked_scatter:
6002     visitMaskedScatter(I);
6003     return;
6004   case Intrinsic::masked_store:
6005     visitMaskedStore(I);
6006     return;
6007   case Intrinsic::masked_expandload:
6008     visitMaskedLoad(I, true /* IsExpanding */);
6009     return;
6010   case Intrinsic::masked_compressstore:
6011     visitMaskedStore(I, true /* IsCompressing */);
6012     return;
6013   case Intrinsic::powi:
6014     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6015                             getValue(I.getArgOperand(1)), DAG));
6016     return;
6017   case Intrinsic::log:
6018     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6019     return;
6020   case Intrinsic::log2:
6021     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6022     return;
6023   case Intrinsic::log10:
6024     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6025     return;
6026   case Intrinsic::exp:
6027     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6028     return;
6029   case Intrinsic::exp2:
6030     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6031     return;
6032   case Intrinsic::pow:
6033     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6034                            getValue(I.getArgOperand(1)), DAG, TLI));
6035     return;
6036   case Intrinsic::sqrt:
6037   case Intrinsic::fabs:
6038   case Intrinsic::sin:
6039   case Intrinsic::cos:
6040   case Intrinsic::floor:
6041   case Intrinsic::ceil:
6042   case Intrinsic::trunc:
6043   case Intrinsic::rint:
6044   case Intrinsic::nearbyint:
6045   case Intrinsic::round:
6046   case Intrinsic::canonicalize: {
6047     unsigned Opcode;
6048     switch (Intrinsic) {
6049     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6050     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6051     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6052     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6053     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6054     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6055     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6056     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6057     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6058     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6059     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6060     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6061     }
6062 
6063     setValue(&I, DAG.getNode(Opcode, sdl,
6064                              getValue(I.getArgOperand(0)).getValueType(),
6065                              getValue(I.getArgOperand(0))));
6066     return;
6067   }
6068   case Intrinsic::lround:
6069   case Intrinsic::llround:
6070   case Intrinsic::lrint:
6071   case Intrinsic::llrint: {
6072     unsigned Opcode;
6073     switch (Intrinsic) {
6074     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6075     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6076     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6077     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6078     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6079     }
6080 
6081     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6082     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6083                              getValue(I.getArgOperand(0))));
6084     return;
6085   }
6086   case Intrinsic::minnum:
6087     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6088                              getValue(I.getArgOperand(0)).getValueType(),
6089                              getValue(I.getArgOperand(0)),
6090                              getValue(I.getArgOperand(1))));
6091     return;
6092   case Intrinsic::maxnum:
6093     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6094                              getValue(I.getArgOperand(0)).getValueType(),
6095                              getValue(I.getArgOperand(0)),
6096                              getValue(I.getArgOperand(1))));
6097     return;
6098   case Intrinsic::minimum:
6099     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6100                              getValue(I.getArgOperand(0)).getValueType(),
6101                              getValue(I.getArgOperand(0)),
6102                              getValue(I.getArgOperand(1))));
6103     return;
6104   case Intrinsic::maximum:
6105     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6106                              getValue(I.getArgOperand(0)).getValueType(),
6107                              getValue(I.getArgOperand(0)),
6108                              getValue(I.getArgOperand(1))));
6109     return;
6110   case Intrinsic::copysign:
6111     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6112                              getValue(I.getArgOperand(0)).getValueType(),
6113                              getValue(I.getArgOperand(0)),
6114                              getValue(I.getArgOperand(1))));
6115     return;
6116   case Intrinsic::fma:
6117     setValue(&I, DAG.getNode(ISD::FMA, sdl,
6118                              getValue(I.getArgOperand(0)).getValueType(),
6119                              getValue(I.getArgOperand(0)),
6120                              getValue(I.getArgOperand(1)),
6121                              getValue(I.getArgOperand(2))));
6122     return;
6123   case Intrinsic::experimental_constrained_fadd:
6124   case Intrinsic::experimental_constrained_fsub:
6125   case Intrinsic::experimental_constrained_fmul:
6126   case Intrinsic::experimental_constrained_fdiv:
6127   case Intrinsic::experimental_constrained_frem:
6128   case Intrinsic::experimental_constrained_fma:
6129   case Intrinsic::experimental_constrained_fptosi:
6130   case Intrinsic::experimental_constrained_fptoui:
6131   case Intrinsic::experimental_constrained_fptrunc:
6132   case Intrinsic::experimental_constrained_fpext:
6133   case Intrinsic::experimental_constrained_sqrt:
6134   case Intrinsic::experimental_constrained_pow:
6135   case Intrinsic::experimental_constrained_powi:
6136   case Intrinsic::experimental_constrained_sin:
6137   case Intrinsic::experimental_constrained_cos:
6138   case Intrinsic::experimental_constrained_exp:
6139   case Intrinsic::experimental_constrained_exp2:
6140   case Intrinsic::experimental_constrained_log:
6141   case Intrinsic::experimental_constrained_log10:
6142   case Intrinsic::experimental_constrained_log2:
6143   case Intrinsic::experimental_constrained_lrint:
6144   case Intrinsic::experimental_constrained_llrint:
6145   case Intrinsic::experimental_constrained_rint:
6146   case Intrinsic::experimental_constrained_nearbyint:
6147   case Intrinsic::experimental_constrained_maxnum:
6148   case Intrinsic::experimental_constrained_minnum:
6149   case Intrinsic::experimental_constrained_ceil:
6150   case Intrinsic::experimental_constrained_floor:
6151   case Intrinsic::experimental_constrained_lround:
6152   case Intrinsic::experimental_constrained_llround:
6153   case Intrinsic::experimental_constrained_round:
6154   case Intrinsic::experimental_constrained_trunc:
6155     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6156     return;
6157   case Intrinsic::fmuladd: {
6158     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6159     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6160         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
6161       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6162                                getValue(I.getArgOperand(0)).getValueType(),
6163                                getValue(I.getArgOperand(0)),
6164                                getValue(I.getArgOperand(1)),
6165                                getValue(I.getArgOperand(2))));
6166     } else {
6167       // TODO: Intrinsic calls should have fast-math-flags.
6168       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
6169                                 getValue(I.getArgOperand(0)).getValueType(),
6170                                 getValue(I.getArgOperand(0)),
6171                                 getValue(I.getArgOperand(1)));
6172       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6173                                 getValue(I.getArgOperand(0)).getValueType(),
6174                                 Mul,
6175                                 getValue(I.getArgOperand(2)));
6176       setValue(&I, Add);
6177     }
6178     return;
6179   }
6180   case Intrinsic::convert_to_fp16:
6181     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6182                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6183                                          getValue(I.getArgOperand(0)),
6184                                          DAG.getTargetConstant(0, sdl,
6185                                                                MVT::i32))));
6186     return;
6187   case Intrinsic::convert_from_fp16:
6188     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6189                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6190                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6191                                          getValue(I.getArgOperand(0)))));
6192     return;
6193   case Intrinsic::pcmarker: {
6194     SDValue Tmp = getValue(I.getArgOperand(0));
6195     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6196     return;
6197   }
6198   case Intrinsic::readcyclecounter: {
6199     SDValue Op = getRoot();
6200     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6201                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6202     setValue(&I, Res);
6203     DAG.setRoot(Res.getValue(1));
6204     return;
6205   }
6206   case Intrinsic::bitreverse:
6207     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6208                              getValue(I.getArgOperand(0)).getValueType(),
6209                              getValue(I.getArgOperand(0))));
6210     return;
6211   case Intrinsic::bswap:
6212     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6213                              getValue(I.getArgOperand(0)).getValueType(),
6214                              getValue(I.getArgOperand(0))));
6215     return;
6216   case Intrinsic::cttz: {
6217     SDValue Arg = getValue(I.getArgOperand(0));
6218     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6219     EVT Ty = Arg.getValueType();
6220     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6221                              sdl, Ty, Arg));
6222     return;
6223   }
6224   case Intrinsic::ctlz: {
6225     SDValue Arg = getValue(I.getArgOperand(0));
6226     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6227     EVT Ty = Arg.getValueType();
6228     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6229                              sdl, Ty, Arg));
6230     return;
6231   }
6232   case Intrinsic::ctpop: {
6233     SDValue Arg = getValue(I.getArgOperand(0));
6234     EVT Ty = Arg.getValueType();
6235     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6236     return;
6237   }
6238   case Intrinsic::fshl:
6239   case Intrinsic::fshr: {
6240     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6241     SDValue X = getValue(I.getArgOperand(0));
6242     SDValue Y = getValue(I.getArgOperand(1));
6243     SDValue Z = getValue(I.getArgOperand(2));
6244     EVT VT = X.getValueType();
6245     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
6246     SDValue Zero = DAG.getConstant(0, sdl, VT);
6247     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
6248 
6249     auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6250     if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
6251       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6252       return;
6253     }
6254 
6255     // When X == Y, this is rotate. If the data type has a power-of-2 size, we
6256     // avoid the select that is necessary in the general case to filter out
6257     // the 0-shift possibility that leads to UB.
6258     if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
6259       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6260       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6261         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6262         return;
6263       }
6264 
6265       // Some targets only rotate one way. Try the opposite direction.
6266       RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
6267       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6268         // Negate the shift amount because it is safe to ignore the high bits.
6269         SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6270         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
6271         return;
6272       }
6273 
6274       // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
6275       // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
6276       SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6277       SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
6278       SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
6279       SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
6280       setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
6281       return;
6282     }
6283 
6284     // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6285     // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6286     SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
6287     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
6288     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6289     SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
6290 
6291     // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6292     // and that is undefined. We must compare and select to avoid UB.
6293     EVT CCVT = MVT::i1;
6294     if (VT.isVector())
6295       CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
6296 
6297     // For fshl, 0-shift returns the 1st arg (X).
6298     // For fshr, 0-shift returns the 2nd arg (Y).
6299     SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
6300     setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
6301     return;
6302   }
6303   case Intrinsic::sadd_sat: {
6304     SDValue Op1 = getValue(I.getArgOperand(0));
6305     SDValue Op2 = getValue(I.getArgOperand(1));
6306     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6307     return;
6308   }
6309   case Intrinsic::uadd_sat: {
6310     SDValue Op1 = getValue(I.getArgOperand(0));
6311     SDValue Op2 = getValue(I.getArgOperand(1));
6312     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6313     return;
6314   }
6315   case Intrinsic::ssub_sat: {
6316     SDValue Op1 = getValue(I.getArgOperand(0));
6317     SDValue Op2 = getValue(I.getArgOperand(1));
6318     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6319     return;
6320   }
6321   case Intrinsic::usub_sat: {
6322     SDValue Op1 = getValue(I.getArgOperand(0));
6323     SDValue Op2 = getValue(I.getArgOperand(1));
6324     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6325     return;
6326   }
6327   case Intrinsic::smul_fix:
6328   case Intrinsic::umul_fix: {
6329     SDValue Op1 = getValue(I.getArgOperand(0));
6330     SDValue Op2 = getValue(I.getArgOperand(1));
6331     SDValue Op3 = getValue(I.getArgOperand(2));
6332     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6333                              Op1.getValueType(), Op1, Op2, Op3));
6334     return;
6335   }
6336   case Intrinsic::smul_fix_sat: {
6337     SDValue Op1 = getValue(I.getArgOperand(0));
6338     SDValue Op2 = getValue(I.getArgOperand(1));
6339     SDValue Op3 = getValue(I.getArgOperand(2));
6340     setValue(&I, DAG.getNode(ISD::SMULFIXSAT, sdl, Op1.getValueType(), Op1, Op2,
6341                              Op3));
6342     return;
6343   }
6344   case Intrinsic::umul_fix_sat: {
6345     SDValue Op1 = getValue(I.getArgOperand(0));
6346     SDValue Op2 = getValue(I.getArgOperand(1));
6347     SDValue Op3 = getValue(I.getArgOperand(2));
6348     setValue(&I, DAG.getNode(ISD::UMULFIXSAT, sdl, Op1.getValueType(), Op1, Op2,
6349                              Op3));
6350     return;
6351   }
6352   case Intrinsic::stacksave: {
6353     SDValue Op = getRoot();
6354     Res = DAG.getNode(
6355         ISD::STACKSAVE, sdl,
6356         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
6357     setValue(&I, Res);
6358     DAG.setRoot(Res.getValue(1));
6359     return;
6360   }
6361   case Intrinsic::stackrestore:
6362     Res = getValue(I.getArgOperand(0));
6363     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6364     return;
6365   case Intrinsic::get_dynamic_area_offset: {
6366     SDValue Op = getRoot();
6367     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6368     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6369     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6370     // target.
6371     if (PtrTy.getSizeInBits() < ResTy.getSizeInBits())
6372       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6373                          " intrinsic!");
6374     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6375                       Op);
6376     DAG.setRoot(Op);
6377     setValue(&I, Res);
6378     return;
6379   }
6380   case Intrinsic::stackguard: {
6381     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6382     MachineFunction &MF = DAG.getMachineFunction();
6383     const Module &M = *MF.getFunction().getParent();
6384     SDValue Chain = getRoot();
6385     if (TLI.useLoadStackGuardNode()) {
6386       Res = getLoadStackGuard(DAG, sdl, Chain);
6387     } else {
6388       const Value *Global = TLI.getSDagStackGuard(M);
6389       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
6390       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6391                         MachinePointerInfo(Global, 0), Align,
6392                         MachineMemOperand::MOVolatile);
6393     }
6394     if (TLI.useStackGuardXorFP())
6395       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6396     DAG.setRoot(Chain);
6397     setValue(&I, Res);
6398     return;
6399   }
6400   case Intrinsic::stackprotector: {
6401     // Emit code into the DAG to store the stack guard onto the stack.
6402     MachineFunction &MF = DAG.getMachineFunction();
6403     MachineFrameInfo &MFI = MF.getFrameInfo();
6404     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6405     SDValue Src, Chain = getRoot();
6406 
6407     if (TLI.useLoadStackGuardNode())
6408       Src = getLoadStackGuard(DAG, sdl, Chain);
6409     else
6410       Src = getValue(I.getArgOperand(0));   // The guard's value.
6411 
6412     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6413 
6414     int FI = FuncInfo.StaticAllocaMap[Slot];
6415     MFI.setStackProtectorIndex(FI);
6416 
6417     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6418 
6419     // Store the stack protector onto the stack.
6420     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
6421                                                  DAG.getMachineFunction(), FI),
6422                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
6423     setValue(&I, Res);
6424     DAG.setRoot(Res);
6425     return;
6426   }
6427   case Intrinsic::objectsize:
6428     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6429 
6430   case Intrinsic::is_constant:
6431     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6432 
6433   case Intrinsic::annotation:
6434   case Intrinsic::ptr_annotation:
6435   case Intrinsic::launder_invariant_group:
6436   case Intrinsic::strip_invariant_group:
6437     // Drop the intrinsic, but forward the value
6438     setValue(&I, getValue(I.getOperand(0)));
6439     return;
6440   case Intrinsic::assume:
6441   case Intrinsic::var_annotation:
6442   case Intrinsic::sideeffect:
6443     // Discard annotate attributes, assumptions, and artificial side-effects.
6444     return;
6445 
6446   case Intrinsic::codeview_annotation: {
6447     // Emit a label associated with this metadata.
6448     MachineFunction &MF = DAG.getMachineFunction();
6449     MCSymbol *Label =
6450         MF.getMMI().getContext().createTempSymbol("annotation", true);
6451     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6452     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6453     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6454     DAG.setRoot(Res);
6455     return;
6456   }
6457 
6458   case Intrinsic::init_trampoline: {
6459     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6460 
6461     SDValue Ops[6];
6462     Ops[0] = getRoot();
6463     Ops[1] = getValue(I.getArgOperand(0));
6464     Ops[2] = getValue(I.getArgOperand(1));
6465     Ops[3] = getValue(I.getArgOperand(2));
6466     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6467     Ops[5] = DAG.getSrcValue(F);
6468 
6469     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6470 
6471     DAG.setRoot(Res);
6472     return;
6473   }
6474   case Intrinsic::adjust_trampoline:
6475     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6476                              TLI.getPointerTy(DAG.getDataLayout()),
6477                              getValue(I.getArgOperand(0))));
6478     return;
6479   case Intrinsic::gcroot: {
6480     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6481            "only valid in functions with gc specified, enforced by Verifier");
6482     assert(GFI && "implied by previous");
6483     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6484     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6485 
6486     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6487     GFI->addStackRoot(FI->getIndex(), TypeMap);
6488     return;
6489   }
6490   case Intrinsic::gcread:
6491   case Intrinsic::gcwrite:
6492     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6493   case Intrinsic::flt_rounds:
6494     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
6495     return;
6496 
6497   case Intrinsic::expect:
6498     // Just replace __builtin_expect(exp, c) with EXP.
6499     setValue(&I, getValue(I.getArgOperand(0)));
6500     return;
6501 
6502   case Intrinsic::debugtrap:
6503   case Intrinsic::trap: {
6504     StringRef TrapFuncName =
6505         I.getAttributes()
6506             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6507             .getValueAsString();
6508     if (TrapFuncName.empty()) {
6509       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6510         ISD::TRAP : ISD::DEBUGTRAP;
6511       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6512       return;
6513     }
6514     TargetLowering::ArgListTy Args;
6515 
6516     TargetLowering::CallLoweringInfo CLI(DAG);
6517     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6518         CallingConv::C, I.getType(),
6519         DAG.getExternalSymbol(TrapFuncName.data(),
6520                               TLI.getPointerTy(DAG.getDataLayout())),
6521         std::move(Args));
6522 
6523     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6524     DAG.setRoot(Result.second);
6525     return;
6526   }
6527 
6528   case Intrinsic::uadd_with_overflow:
6529   case Intrinsic::sadd_with_overflow:
6530   case Intrinsic::usub_with_overflow:
6531   case Intrinsic::ssub_with_overflow:
6532   case Intrinsic::umul_with_overflow:
6533   case Intrinsic::smul_with_overflow: {
6534     ISD::NodeType Op;
6535     switch (Intrinsic) {
6536     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6537     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6538     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6539     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6540     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6541     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6542     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6543     }
6544     SDValue Op1 = getValue(I.getArgOperand(0));
6545     SDValue Op2 = getValue(I.getArgOperand(1));
6546 
6547     EVT ResultVT = Op1.getValueType();
6548     EVT OverflowVT = MVT::i1;
6549     if (ResultVT.isVector())
6550       OverflowVT = EVT::getVectorVT(
6551           *Context, OverflowVT, ResultVT.getVectorNumElements());
6552 
6553     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6554     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6555     return;
6556   }
6557   case Intrinsic::prefetch: {
6558     SDValue Ops[5];
6559     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6560     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6561     Ops[0] = DAG.getRoot();
6562     Ops[1] = getValue(I.getArgOperand(0));
6563     Ops[2] = getValue(I.getArgOperand(1));
6564     Ops[3] = getValue(I.getArgOperand(2));
6565     Ops[4] = getValue(I.getArgOperand(3));
6566     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
6567                                              DAG.getVTList(MVT::Other), Ops,
6568                                              EVT::getIntegerVT(*Context, 8),
6569                                              MachinePointerInfo(I.getArgOperand(0)),
6570                                              0, /* align */
6571                                              Flags);
6572 
6573     // Chain the prefetch in parallell with any pending loads, to stay out of
6574     // the way of later optimizations.
6575     PendingLoads.push_back(Result);
6576     Result = getRoot();
6577     DAG.setRoot(Result);
6578     return;
6579   }
6580   case Intrinsic::lifetime_start:
6581   case Intrinsic::lifetime_end: {
6582     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6583     // Stack coloring is not enabled in O0, discard region information.
6584     if (TM.getOptLevel() == CodeGenOpt::None)
6585       return;
6586 
6587     const int64_t ObjectSize =
6588         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6589     Value *const ObjectPtr = I.getArgOperand(1);
6590     SmallVector<const Value *, 4> Allocas;
6591     GetUnderlyingObjects(ObjectPtr, Allocas, *DL);
6592 
6593     for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(),
6594            E = Allocas.end(); Object != E; ++Object) {
6595       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6596 
6597       // Could not find an Alloca.
6598       if (!LifetimeObject)
6599         continue;
6600 
6601       // First check that the Alloca is static, otherwise it won't have a
6602       // valid frame index.
6603       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6604       if (SI == FuncInfo.StaticAllocaMap.end())
6605         return;
6606 
6607       const int FrameIndex = SI->second;
6608       int64_t Offset;
6609       if (GetPointerBaseWithConstantOffset(
6610               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6611         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6612       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6613                                 Offset);
6614       DAG.setRoot(Res);
6615     }
6616     return;
6617   }
6618   case Intrinsic::invariant_start:
6619     // Discard region information.
6620     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6621     return;
6622   case Intrinsic::invariant_end:
6623     // Discard region information.
6624     return;
6625   case Intrinsic::clear_cache:
6626     /// FunctionName may be null.
6627     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6628       lowerCallToExternalSymbol(I, FunctionName);
6629     return;
6630   case Intrinsic::donothing:
6631     // ignore
6632     return;
6633   case Intrinsic::experimental_stackmap:
6634     visitStackmap(I);
6635     return;
6636   case Intrinsic::experimental_patchpoint_void:
6637   case Intrinsic::experimental_patchpoint_i64:
6638     visitPatchpoint(&I);
6639     return;
6640   case Intrinsic::experimental_gc_statepoint:
6641     LowerStatepoint(ImmutableStatepoint(&I));
6642     return;
6643   case Intrinsic::experimental_gc_result:
6644     visitGCResult(cast<GCResultInst>(I));
6645     return;
6646   case Intrinsic::experimental_gc_relocate:
6647     visitGCRelocate(cast<GCRelocateInst>(I));
6648     return;
6649   case Intrinsic::instrprof_increment:
6650     llvm_unreachable("instrprof failed to lower an increment");
6651   case Intrinsic::instrprof_value_profile:
6652     llvm_unreachable("instrprof failed to lower a value profiling call");
6653   case Intrinsic::localescape: {
6654     MachineFunction &MF = DAG.getMachineFunction();
6655     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6656 
6657     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6658     // is the same on all targets.
6659     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6660       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6661       if (isa<ConstantPointerNull>(Arg))
6662         continue; // Skip null pointers. They represent a hole in index space.
6663       AllocaInst *Slot = cast<AllocaInst>(Arg);
6664       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6665              "can only escape static allocas");
6666       int FI = FuncInfo.StaticAllocaMap[Slot];
6667       MCSymbol *FrameAllocSym =
6668           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6669               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6670       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6671               TII->get(TargetOpcode::LOCAL_ESCAPE))
6672           .addSym(FrameAllocSym)
6673           .addFrameIndex(FI);
6674     }
6675 
6676     return;
6677   }
6678 
6679   case Intrinsic::localrecover: {
6680     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6681     MachineFunction &MF = DAG.getMachineFunction();
6682     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6683 
6684     // Get the symbol that defines the frame offset.
6685     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6686     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6687     unsigned IdxVal =
6688         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6689     MCSymbol *FrameAllocSym =
6690         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6691             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6692 
6693     // Create a MCSymbol for the label to avoid any target lowering
6694     // that would make this PC relative.
6695     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6696     SDValue OffsetVal =
6697         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6698 
6699     // Add the offset to the FP.
6700     Value *FP = I.getArgOperand(1);
6701     SDValue FPVal = getValue(FP);
6702     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
6703     setValue(&I, Add);
6704 
6705     return;
6706   }
6707 
6708   case Intrinsic::eh_exceptionpointer:
6709   case Intrinsic::eh_exceptioncode: {
6710     // Get the exception pointer vreg, copy from it, and resize it to fit.
6711     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6712     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6713     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6714     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6715     SDValue N =
6716         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6717     if (Intrinsic == Intrinsic::eh_exceptioncode)
6718       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6719     setValue(&I, N);
6720     return;
6721   }
6722   case Intrinsic::xray_customevent: {
6723     // Here we want to make sure that the intrinsic behaves as if it has a
6724     // specific calling convention, and only for x86_64.
6725     // FIXME: Support other platforms later.
6726     const auto &Triple = DAG.getTarget().getTargetTriple();
6727     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6728       return;
6729 
6730     SDLoc DL = getCurSDLoc();
6731     SmallVector<SDValue, 8> Ops;
6732 
6733     // We want to say that we always want the arguments in registers.
6734     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6735     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6736     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6737     SDValue Chain = getRoot();
6738     Ops.push_back(LogEntryVal);
6739     Ops.push_back(StrSizeVal);
6740     Ops.push_back(Chain);
6741 
6742     // We need to enforce the calling convention for the callsite, so that
6743     // argument ordering is enforced correctly, and that register allocation can
6744     // see that some registers may be assumed clobbered and have to preserve
6745     // them across calls to the intrinsic.
6746     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6747                                            DL, NodeTys, Ops);
6748     SDValue patchableNode = SDValue(MN, 0);
6749     DAG.setRoot(patchableNode);
6750     setValue(&I, patchableNode);
6751     return;
6752   }
6753   case Intrinsic::xray_typedevent: {
6754     // Here we want to make sure that the intrinsic behaves as if it has a
6755     // specific calling convention, and only for x86_64.
6756     // FIXME: Support other platforms later.
6757     const auto &Triple = DAG.getTarget().getTargetTriple();
6758     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6759       return;
6760 
6761     SDLoc DL = getCurSDLoc();
6762     SmallVector<SDValue, 8> Ops;
6763 
6764     // We want to say that we always want the arguments in registers.
6765     // It's unclear to me how manipulating the selection DAG here forces callers
6766     // to provide arguments in registers instead of on the stack.
6767     SDValue LogTypeId = getValue(I.getArgOperand(0));
6768     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6769     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6770     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6771     SDValue Chain = getRoot();
6772     Ops.push_back(LogTypeId);
6773     Ops.push_back(LogEntryVal);
6774     Ops.push_back(StrSizeVal);
6775     Ops.push_back(Chain);
6776 
6777     // We need to enforce the calling convention for the callsite, so that
6778     // argument ordering is enforced correctly, and that register allocation can
6779     // see that some registers may be assumed clobbered and have to preserve
6780     // them across calls to the intrinsic.
6781     MachineSDNode *MN = DAG.getMachineNode(
6782         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6783     SDValue patchableNode = SDValue(MN, 0);
6784     DAG.setRoot(patchableNode);
6785     setValue(&I, patchableNode);
6786     return;
6787   }
6788   case Intrinsic::experimental_deoptimize:
6789     LowerDeoptimizeCall(&I);
6790     return;
6791 
6792   case Intrinsic::experimental_vector_reduce_v2_fadd:
6793   case Intrinsic::experimental_vector_reduce_v2_fmul:
6794   case Intrinsic::experimental_vector_reduce_add:
6795   case Intrinsic::experimental_vector_reduce_mul:
6796   case Intrinsic::experimental_vector_reduce_and:
6797   case Intrinsic::experimental_vector_reduce_or:
6798   case Intrinsic::experimental_vector_reduce_xor:
6799   case Intrinsic::experimental_vector_reduce_smax:
6800   case Intrinsic::experimental_vector_reduce_smin:
6801   case Intrinsic::experimental_vector_reduce_umax:
6802   case Intrinsic::experimental_vector_reduce_umin:
6803   case Intrinsic::experimental_vector_reduce_fmax:
6804   case Intrinsic::experimental_vector_reduce_fmin:
6805     visitVectorReduce(I, Intrinsic);
6806     return;
6807 
6808   case Intrinsic::icall_branch_funnel: {
6809     SmallVector<SDValue, 16> Ops;
6810     Ops.push_back(getValue(I.getArgOperand(0)));
6811 
6812     int64_t Offset;
6813     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6814         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6815     if (!Base)
6816       report_fatal_error(
6817           "llvm.icall.branch.funnel operand must be a GlobalValue");
6818     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6819 
6820     struct BranchFunnelTarget {
6821       int64_t Offset;
6822       SDValue Target;
6823     };
6824     SmallVector<BranchFunnelTarget, 8> Targets;
6825 
6826     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6827       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6828           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6829       if (ElemBase != Base)
6830         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6831                            "to the same GlobalValue");
6832 
6833       SDValue Val = getValue(I.getArgOperand(Op + 1));
6834       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6835       if (!GA)
6836         report_fatal_error(
6837             "llvm.icall.branch.funnel operand must be a GlobalValue");
6838       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6839                                      GA->getGlobal(), getCurSDLoc(),
6840                                      Val.getValueType(), GA->getOffset())});
6841     }
6842     llvm::sort(Targets,
6843                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6844                  return T1.Offset < T2.Offset;
6845                });
6846 
6847     for (auto &T : Targets) {
6848       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6849       Ops.push_back(T.Target);
6850     }
6851 
6852     Ops.push_back(DAG.getRoot()); // Chain
6853     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6854                                  getCurSDLoc(), MVT::Other, Ops),
6855               0);
6856     DAG.setRoot(N);
6857     setValue(&I, N);
6858     HasTailCall = true;
6859     return;
6860   }
6861 
6862   case Intrinsic::wasm_landingpad_index:
6863     // Information this intrinsic contained has been transferred to
6864     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6865     // delete it now.
6866     return;
6867 
6868   case Intrinsic::aarch64_settag:
6869   case Intrinsic::aarch64_settag_zero: {
6870     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6871     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
6872     SDValue Val = TSI.EmitTargetCodeForSetTag(
6873         DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
6874         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
6875         ZeroMemory);
6876     DAG.setRoot(Val);
6877     setValue(&I, Val);
6878     return;
6879   }
6880   case Intrinsic::ptrmask: {
6881     SDValue Ptr = getValue(I.getOperand(0));
6882     SDValue Const = getValue(I.getOperand(1));
6883 
6884     EVT DestVT =
6885         EVT(DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6886 
6887     setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), DestVT, Ptr,
6888                              DAG.getZExtOrTrunc(Const, getCurSDLoc(), DestVT)));
6889     return;
6890   }
6891   }
6892 }
6893 
6894 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6895     const ConstrainedFPIntrinsic &FPI) {
6896   SDLoc sdl = getCurSDLoc();
6897   unsigned Opcode;
6898   switch (FPI.getIntrinsicID()) {
6899   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6900   case Intrinsic::experimental_constrained_fadd:
6901     Opcode = ISD::STRICT_FADD;
6902     break;
6903   case Intrinsic::experimental_constrained_fsub:
6904     Opcode = ISD::STRICT_FSUB;
6905     break;
6906   case Intrinsic::experimental_constrained_fmul:
6907     Opcode = ISD::STRICT_FMUL;
6908     break;
6909   case Intrinsic::experimental_constrained_fdiv:
6910     Opcode = ISD::STRICT_FDIV;
6911     break;
6912   case Intrinsic::experimental_constrained_frem:
6913     Opcode = ISD::STRICT_FREM;
6914     break;
6915   case Intrinsic::experimental_constrained_fma:
6916     Opcode = ISD::STRICT_FMA;
6917     break;
6918   case Intrinsic::experimental_constrained_fptosi:
6919     Opcode = ISD::STRICT_FP_TO_SINT;
6920     break;
6921   case Intrinsic::experimental_constrained_fptoui:
6922     Opcode = ISD::STRICT_FP_TO_UINT;
6923     break;
6924   case Intrinsic::experimental_constrained_fptrunc:
6925     Opcode = ISD::STRICT_FP_ROUND;
6926     break;
6927   case Intrinsic::experimental_constrained_fpext:
6928     Opcode = ISD::STRICT_FP_EXTEND;
6929     break;
6930   case Intrinsic::experimental_constrained_sqrt:
6931     Opcode = ISD::STRICT_FSQRT;
6932     break;
6933   case Intrinsic::experimental_constrained_pow:
6934     Opcode = ISD::STRICT_FPOW;
6935     break;
6936   case Intrinsic::experimental_constrained_powi:
6937     Opcode = ISD::STRICT_FPOWI;
6938     break;
6939   case Intrinsic::experimental_constrained_sin:
6940     Opcode = ISD::STRICT_FSIN;
6941     break;
6942   case Intrinsic::experimental_constrained_cos:
6943     Opcode = ISD::STRICT_FCOS;
6944     break;
6945   case Intrinsic::experimental_constrained_exp:
6946     Opcode = ISD::STRICT_FEXP;
6947     break;
6948   case Intrinsic::experimental_constrained_exp2:
6949     Opcode = ISD::STRICT_FEXP2;
6950     break;
6951   case Intrinsic::experimental_constrained_log:
6952     Opcode = ISD::STRICT_FLOG;
6953     break;
6954   case Intrinsic::experimental_constrained_log10:
6955     Opcode = ISD::STRICT_FLOG10;
6956     break;
6957   case Intrinsic::experimental_constrained_log2:
6958     Opcode = ISD::STRICT_FLOG2;
6959     break;
6960   case Intrinsic::experimental_constrained_lrint:
6961     Opcode = ISD::STRICT_LRINT;
6962     break;
6963   case Intrinsic::experimental_constrained_llrint:
6964     Opcode = ISD::STRICT_LLRINT;
6965     break;
6966   case Intrinsic::experimental_constrained_rint:
6967     Opcode = ISD::STRICT_FRINT;
6968     break;
6969   case Intrinsic::experimental_constrained_nearbyint:
6970     Opcode = ISD::STRICT_FNEARBYINT;
6971     break;
6972   case Intrinsic::experimental_constrained_maxnum:
6973     Opcode = ISD::STRICT_FMAXNUM;
6974     break;
6975   case Intrinsic::experimental_constrained_minnum:
6976     Opcode = ISD::STRICT_FMINNUM;
6977     break;
6978   case Intrinsic::experimental_constrained_ceil:
6979     Opcode = ISD::STRICT_FCEIL;
6980     break;
6981   case Intrinsic::experimental_constrained_floor:
6982     Opcode = ISD::STRICT_FFLOOR;
6983     break;
6984   case Intrinsic::experimental_constrained_lround:
6985     Opcode = ISD::STRICT_LROUND;
6986     break;
6987   case Intrinsic::experimental_constrained_llround:
6988     Opcode = ISD::STRICT_LLROUND;
6989     break;
6990   case Intrinsic::experimental_constrained_round:
6991     Opcode = ISD::STRICT_FROUND;
6992     break;
6993   case Intrinsic::experimental_constrained_trunc:
6994     Opcode = ISD::STRICT_FTRUNC;
6995     break;
6996   }
6997   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6998   SDValue Chain = getRoot();
6999   SmallVector<EVT, 4> ValueVTs;
7000   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
7001   ValueVTs.push_back(MVT::Other); // Out chain
7002 
7003   SDVTList VTs = DAG.getVTList(ValueVTs);
7004   SDValue Result;
7005   if (Opcode == ISD::STRICT_FP_ROUND)
7006     Result = DAG.getNode(Opcode, sdl, VTs,
7007                           { Chain, getValue(FPI.getArgOperand(0)),
7008                                DAG.getTargetConstant(0, sdl,
7009                                TLI.getPointerTy(DAG.getDataLayout())) });
7010   else if (FPI.isUnaryOp())
7011     Result = DAG.getNode(Opcode, sdl, VTs,
7012                          { Chain, getValue(FPI.getArgOperand(0)) });
7013   else if (FPI.isTernaryOp())
7014     Result = DAG.getNode(Opcode, sdl, VTs,
7015                          { Chain, getValue(FPI.getArgOperand(0)),
7016                                   getValue(FPI.getArgOperand(1)),
7017                                   getValue(FPI.getArgOperand(2)) });
7018   else
7019     Result = DAG.getNode(Opcode, sdl, VTs,
7020                          { Chain, getValue(FPI.getArgOperand(0)),
7021                            getValue(FPI.getArgOperand(1))  });
7022 
7023   if (FPI.getExceptionBehavior() !=
7024       ConstrainedFPIntrinsic::ExceptionBehavior::ebIgnore) {
7025     SDNodeFlags Flags;
7026     Flags.setFPExcept(true);
7027     Result->setFlags(Flags);
7028   }
7029 
7030   assert(Result.getNode()->getNumValues() == 2);
7031   SDValue OutChain = Result.getValue(1);
7032   DAG.setRoot(OutChain);
7033   SDValue FPResult = Result.getValue(0);
7034   setValue(&FPI, FPResult);
7035 }
7036 
7037 std::pair<SDValue, SDValue>
7038 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7039                                     const BasicBlock *EHPadBB) {
7040   MachineFunction &MF = DAG.getMachineFunction();
7041   MachineModuleInfo &MMI = MF.getMMI();
7042   MCSymbol *BeginLabel = nullptr;
7043 
7044   if (EHPadBB) {
7045     // Insert a label before the invoke call to mark the try range.  This can be
7046     // used to detect deletion of the invoke via the MachineModuleInfo.
7047     BeginLabel = MMI.getContext().createTempSymbol();
7048 
7049     // For SjLj, keep track of which landing pads go with which invokes
7050     // so as to maintain the ordering of pads in the LSDA.
7051     unsigned CallSiteIndex = MMI.getCurrentCallSite();
7052     if (CallSiteIndex) {
7053       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7054       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7055 
7056       // Now that the call site is handled, stop tracking it.
7057       MMI.setCurrentCallSite(0);
7058     }
7059 
7060     // Both PendingLoads and PendingExports must be flushed here;
7061     // this call might not return.
7062     (void)getRoot();
7063     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
7064 
7065     CLI.setChain(getRoot());
7066   }
7067   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7068   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7069 
7070   assert((CLI.IsTailCall || Result.second.getNode()) &&
7071          "Non-null chain expected with non-tail call!");
7072   assert((Result.second.getNode() || !Result.first.getNode()) &&
7073          "Null value expected with tail call!");
7074 
7075   if (!Result.second.getNode()) {
7076     // As a special case, a null chain means that a tail call has been emitted
7077     // and the DAG root is already updated.
7078     HasTailCall = true;
7079 
7080     // Since there's no actual continuation from this block, nothing can be
7081     // relying on us setting vregs for them.
7082     PendingExports.clear();
7083   } else {
7084     DAG.setRoot(Result.second);
7085   }
7086 
7087   if (EHPadBB) {
7088     // Insert a label at the end of the invoke call to mark the try range.  This
7089     // can be used to detect deletion of the invoke via the MachineModuleInfo.
7090     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7091     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
7092 
7093     // Inform MachineModuleInfo of range.
7094     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7095     // There is a platform (e.g. wasm) that uses funclet style IR but does not
7096     // actually use outlined funclets and their LSDA info style.
7097     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7098       assert(CLI.CS);
7099       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
7100       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
7101                                 BeginLabel, EndLabel);
7102     } else if (!isScopedEHPersonality(Pers)) {
7103       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7104     }
7105   }
7106 
7107   return Result;
7108 }
7109 
7110 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
7111                                       bool isTailCall,
7112                                       const BasicBlock *EHPadBB) {
7113   auto &DL = DAG.getDataLayout();
7114   FunctionType *FTy = CS.getFunctionType();
7115   Type *RetTy = CS.getType();
7116 
7117   TargetLowering::ArgListTy Args;
7118   Args.reserve(CS.arg_size());
7119 
7120   const Value *SwiftErrorVal = nullptr;
7121   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7122 
7123   // We can't tail call inside a function with a swifterror argument. Lowering
7124   // does not support this yet. It would have to move into the swifterror
7125   // register before the call.
7126   auto *Caller = CS.getInstruction()->getParent()->getParent();
7127   if (TLI.supportSwiftError() &&
7128       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7129     isTailCall = false;
7130 
7131   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
7132        i != e; ++i) {
7133     TargetLowering::ArgListEntry Entry;
7134     const Value *V = *i;
7135 
7136     // Skip empty types
7137     if (V->getType()->isEmptyTy())
7138       continue;
7139 
7140     SDValue ArgNode = getValue(V);
7141     Entry.Node = ArgNode; Entry.Ty = V->getType();
7142 
7143     Entry.setAttributes(&CS, i - CS.arg_begin());
7144 
7145     // Use swifterror virtual register as input to the call.
7146     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7147       SwiftErrorVal = V;
7148       // We find the virtual register for the actual swifterror argument.
7149       // Instead of using the Value, we use the virtual register instead.
7150       Entry.Node = DAG.getRegister(
7151           SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V),
7152           EVT(TLI.getPointerTy(DL)));
7153     }
7154 
7155     Args.push_back(Entry);
7156 
7157     // If we have an explicit sret argument that is an Instruction, (i.e., it
7158     // might point to function-local memory), we can't meaningfully tail-call.
7159     if (Entry.IsSRet && isa<Instruction>(V))
7160       isTailCall = false;
7161   }
7162 
7163   // If call site has a cfguardtarget operand bundle, create and add an
7164   // additional ArgListEntry.
7165   if (auto Bundle = CS.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7166     TargetLowering::ArgListEntry Entry;
7167     Value *V = Bundle->Inputs[0];
7168     SDValue ArgNode = getValue(V);
7169     Entry.Node = ArgNode;
7170     Entry.Ty = V->getType();
7171     Entry.IsCFGuardTarget = true;
7172     Args.push_back(Entry);
7173   }
7174 
7175   // Check if target-independent constraints permit a tail call here.
7176   // Target-dependent constraints are checked within TLI->LowerCallTo.
7177   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
7178     isTailCall = false;
7179 
7180   // Disable tail calls if there is an swifterror argument. Targets have not
7181   // been updated to support tail calls.
7182   if (TLI.supportSwiftError() && SwiftErrorVal)
7183     isTailCall = false;
7184 
7185   TargetLowering::CallLoweringInfo CLI(DAG);
7186   CLI.setDebugLoc(getCurSDLoc())
7187       .setChain(getRoot())
7188       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
7189       .setTailCall(isTailCall)
7190       .setConvergent(CS.isConvergent());
7191   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7192 
7193   if (Result.first.getNode()) {
7194     const Instruction *Inst = CS.getInstruction();
7195     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
7196     setValue(Inst, Result.first);
7197   }
7198 
7199   // The last element of CLI.InVals has the SDValue for swifterror return.
7200   // Here we copy it to a virtual register and update SwiftErrorMap for
7201   // book-keeping.
7202   if (SwiftErrorVal && TLI.supportSwiftError()) {
7203     // Get the last element of InVals.
7204     SDValue Src = CLI.InVals.back();
7205     Register VReg = SwiftError.getOrCreateVRegDefAt(
7206         CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal);
7207     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7208     DAG.setRoot(CopyNode);
7209   }
7210 }
7211 
7212 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7213                              SelectionDAGBuilder &Builder) {
7214   // Check to see if this load can be trivially constant folded, e.g. if the
7215   // input is from a string literal.
7216   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7217     // Cast pointer to the type we really want to load.
7218     Type *LoadTy =
7219         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7220     if (LoadVT.isVector())
7221       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
7222 
7223     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7224                                          PointerType::getUnqual(LoadTy));
7225 
7226     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7227             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7228       return Builder.getValue(LoadCst);
7229   }
7230 
7231   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7232   // still constant memory, the input chain can be the entry node.
7233   SDValue Root;
7234   bool ConstantMemory = false;
7235 
7236   // Do not serialize (non-volatile) loads of constant memory with anything.
7237   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7238     Root = Builder.DAG.getEntryNode();
7239     ConstantMemory = true;
7240   } else {
7241     // Do not serialize non-volatile loads against each other.
7242     Root = Builder.DAG.getRoot();
7243   }
7244 
7245   SDValue Ptr = Builder.getValue(PtrVal);
7246   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
7247                                         Ptr, MachinePointerInfo(PtrVal),
7248                                         /* Alignment = */ 1);
7249 
7250   if (!ConstantMemory)
7251     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7252   return LoadVal;
7253 }
7254 
7255 /// Record the value for an instruction that produces an integer result,
7256 /// converting the type where necessary.
7257 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7258                                                   SDValue Value,
7259                                                   bool IsSigned) {
7260   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7261                                                     I.getType(), true);
7262   if (IsSigned)
7263     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7264   else
7265     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7266   setValue(&I, Value);
7267 }
7268 
7269 /// See if we can lower a memcmp call into an optimized form. If so, return
7270 /// true and lower it. Otherwise return false, and it will be lowered like a
7271 /// normal call.
7272 /// The caller already checked that \p I calls the appropriate LibFunc with a
7273 /// correct prototype.
7274 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
7275   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7276   const Value *Size = I.getArgOperand(2);
7277   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7278   if (CSize && CSize->getZExtValue() == 0) {
7279     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7280                                                           I.getType(), true);
7281     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7282     return true;
7283   }
7284 
7285   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7286   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7287       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7288       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7289   if (Res.first.getNode()) {
7290     processIntegerCallValue(I, Res.first, true);
7291     PendingLoads.push_back(Res.second);
7292     return true;
7293   }
7294 
7295   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7296   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7297   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7298     return false;
7299 
7300   // If the target has a fast compare for the given size, it will return a
7301   // preferred load type for that size. Require that the load VT is legal and
7302   // that the target supports unaligned loads of that type. Otherwise, return
7303   // INVALID.
7304   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7305     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7306     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7307     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7308       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7309       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7310       // TODO: Check alignment of src and dest ptrs.
7311       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7312       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7313       if (!TLI.isTypeLegal(LVT) ||
7314           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7315           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7316         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7317     }
7318 
7319     return LVT;
7320   };
7321 
7322   // This turns into unaligned loads. We only do this if the target natively
7323   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7324   // we'll only produce a small number of byte loads.
7325   MVT LoadVT;
7326   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7327   switch (NumBitsToCompare) {
7328   default:
7329     return false;
7330   case 16:
7331     LoadVT = MVT::i16;
7332     break;
7333   case 32:
7334     LoadVT = MVT::i32;
7335     break;
7336   case 64:
7337   case 128:
7338   case 256:
7339     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7340     break;
7341   }
7342 
7343   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7344     return false;
7345 
7346   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7347   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7348 
7349   // Bitcast to a wide integer type if the loads are vectors.
7350   if (LoadVT.isVector()) {
7351     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7352     LoadL = DAG.getBitcast(CmpVT, LoadL);
7353     LoadR = DAG.getBitcast(CmpVT, LoadR);
7354   }
7355 
7356   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7357   processIntegerCallValue(I, Cmp, false);
7358   return true;
7359 }
7360 
7361 /// See if we can lower a memchr call into an optimized form. If so, return
7362 /// true and lower it. Otherwise return false, and it will be lowered like a
7363 /// normal call.
7364 /// The caller already checked that \p I calls the appropriate LibFunc with a
7365 /// correct prototype.
7366 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7367   const Value *Src = I.getArgOperand(0);
7368   const Value *Char = I.getArgOperand(1);
7369   const Value *Length = I.getArgOperand(2);
7370 
7371   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7372   std::pair<SDValue, SDValue> Res =
7373     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7374                                 getValue(Src), getValue(Char), getValue(Length),
7375                                 MachinePointerInfo(Src));
7376   if (Res.first.getNode()) {
7377     setValue(&I, Res.first);
7378     PendingLoads.push_back(Res.second);
7379     return true;
7380   }
7381 
7382   return false;
7383 }
7384 
7385 /// See if we can lower a mempcpy call into an optimized form. If so, return
7386 /// true and lower it. Otherwise return false, and it will be lowered like a
7387 /// normal call.
7388 /// The caller already checked that \p I calls the appropriate LibFunc with a
7389 /// correct prototype.
7390 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7391   SDValue Dst = getValue(I.getArgOperand(0));
7392   SDValue Src = getValue(I.getArgOperand(1));
7393   SDValue Size = getValue(I.getArgOperand(2));
7394 
7395   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
7396   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
7397   unsigned Align = std::min(DstAlign, SrcAlign);
7398   if (Align == 0) // Alignment of one or both could not be inferred.
7399     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
7400 
7401   bool isVol = false;
7402   SDLoc sdl = getCurSDLoc();
7403 
7404   // In the mempcpy context we need to pass in a false value for isTailCall
7405   // because the return pointer needs to be adjusted by the size of
7406   // the copied memory.
7407   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
7408                              false, /*isTailCall=*/false,
7409                              MachinePointerInfo(I.getArgOperand(0)),
7410                              MachinePointerInfo(I.getArgOperand(1)));
7411   assert(MC.getNode() != nullptr &&
7412          "** memcpy should not be lowered as TailCall in mempcpy context **");
7413   DAG.setRoot(MC);
7414 
7415   // Check if Size needs to be truncated or extended.
7416   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7417 
7418   // Adjust return pointer to point just past the last dst byte.
7419   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7420                                     Dst, Size);
7421   setValue(&I, DstPlusSize);
7422   return true;
7423 }
7424 
7425 /// See if we can lower a strcpy call into an optimized form.  If so, return
7426 /// true and lower it, otherwise return false and it will be lowered like a
7427 /// normal call.
7428 /// The caller already checked that \p I calls the appropriate LibFunc with a
7429 /// correct prototype.
7430 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7431   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7432 
7433   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7434   std::pair<SDValue, SDValue> Res =
7435     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7436                                 getValue(Arg0), getValue(Arg1),
7437                                 MachinePointerInfo(Arg0),
7438                                 MachinePointerInfo(Arg1), isStpcpy);
7439   if (Res.first.getNode()) {
7440     setValue(&I, Res.first);
7441     DAG.setRoot(Res.second);
7442     return true;
7443   }
7444 
7445   return false;
7446 }
7447 
7448 /// See if we can lower a strcmp call into an optimized form.  If so, return
7449 /// true and lower it, otherwise return false and it will be lowered like a
7450 /// normal call.
7451 /// The caller already checked that \p I calls the appropriate LibFunc with a
7452 /// correct prototype.
7453 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7454   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7455 
7456   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7457   std::pair<SDValue, SDValue> Res =
7458     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7459                                 getValue(Arg0), getValue(Arg1),
7460                                 MachinePointerInfo(Arg0),
7461                                 MachinePointerInfo(Arg1));
7462   if (Res.first.getNode()) {
7463     processIntegerCallValue(I, Res.first, true);
7464     PendingLoads.push_back(Res.second);
7465     return true;
7466   }
7467 
7468   return false;
7469 }
7470 
7471 /// See if we can lower a strlen call into an optimized form.  If so, return
7472 /// true and lower it, otherwise return false and it will be lowered like a
7473 /// normal call.
7474 /// The caller already checked that \p I calls the appropriate LibFunc with a
7475 /// correct prototype.
7476 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7477   const Value *Arg0 = I.getArgOperand(0);
7478 
7479   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7480   std::pair<SDValue, SDValue> Res =
7481     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7482                                 getValue(Arg0), MachinePointerInfo(Arg0));
7483   if (Res.first.getNode()) {
7484     processIntegerCallValue(I, Res.first, false);
7485     PendingLoads.push_back(Res.second);
7486     return true;
7487   }
7488 
7489   return false;
7490 }
7491 
7492 /// See if we can lower a strnlen call into an optimized form.  If so, return
7493 /// true and lower it, otherwise return false and it will be lowered like a
7494 /// normal call.
7495 /// The caller already checked that \p I calls the appropriate LibFunc with a
7496 /// correct prototype.
7497 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7498   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7499 
7500   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7501   std::pair<SDValue, SDValue> Res =
7502     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7503                                  getValue(Arg0), getValue(Arg1),
7504                                  MachinePointerInfo(Arg0));
7505   if (Res.first.getNode()) {
7506     processIntegerCallValue(I, Res.first, false);
7507     PendingLoads.push_back(Res.second);
7508     return true;
7509   }
7510 
7511   return false;
7512 }
7513 
7514 /// See if we can lower a unary floating-point operation into an SDNode with
7515 /// the specified Opcode.  If so, return true and lower it, otherwise return
7516 /// false and it will be lowered like a normal call.
7517 /// The caller already checked that \p I calls the appropriate LibFunc with a
7518 /// correct prototype.
7519 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7520                                               unsigned Opcode) {
7521   // We already checked this call's prototype; verify it doesn't modify errno.
7522   if (!I.onlyReadsMemory())
7523     return false;
7524 
7525   SDValue Tmp = getValue(I.getArgOperand(0));
7526   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
7527   return true;
7528 }
7529 
7530 /// See if we can lower a binary floating-point operation into an SDNode with
7531 /// the specified Opcode. If so, return true and lower it. Otherwise return
7532 /// false, and it will be lowered like a normal call.
7533 /// The caller already checked that \p I calls the appropriate LibFunc with a
7534 /// correct prototype.
7535 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7536                                                unsigned Opcode) {
7537   // We already checked this call's prototype; verify it doesn't modify errno.
7538   if (!I.onlyReadsMemory())
7539     return false;
7540 
7541   SDValue Tmp0 = getValue(I.getArgOperand(0));
7542   SDValue Tmp1 = getValue(I.getArgOperand(1));
7543   EVT VT = Tmp0.getValueType();
7544   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
7545   return true;
7546 }
7547 
7548 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7549   // Handle inline assembly differently.
7550   if (isa<InlineAsm>(I.getCalledValue())) {
7551     visitInlineAsm(&I);
7552     return;
7553   }
7554 
7555   if (Function *F = I.getCalledFunction()) {
7556     if (F->isDeclaration()) {
7557       // Is this an LLVM intrinsic or a target-specific intrinsic?
7558       unsigned IID = F->getIntrinsicID();
7559       if (!IID)
7560         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7561           IID = II->getIntrinsicID(F);
7562 
7563       if (IID) {
7564         visitIntrinsicCall(I, IID);
7565         return;
7566       }
7567     }
7568 
7569     // Check for well-known libc/libm calls.  If the function is internal, it
7570     // can't be a library call.  Don't do the check if marked as nobuiltin for
7571     // some reason or the call site requires strict floating point semantics.
7572     LibFunc Func;
7573     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7574         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7575         LibInfo->hasOptimizedCodeGen(Func)) {
7576       switch (Func) {
7577       default: break;
7578       case LibFunc_copysign:
7579       case LibFunc_copysignf:
7580       case LibFunc_copysignl:
7581         // We already checked this call's prototype; verify it doesn't modify
7582         // errno.
7583         if (I.onlyReadsMemory()) {
7584           SDValue LHS = getValue(I.getArgOperand(0));
7585           SDValue RHS = getValue(I.getArgOperand(1));
7586           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7587                                    LHS.getValueType(), LHS, RHS));
7588           return;
7589         }
7590         break;
7591       case LibFunc_fabs:
7592       case LibFunc_fabsf:
7593       case LibFunc_fabsl:
7594         if (visitUnaryFloatCall(I, ISD::FABS))
7595           return;
7596         break;
7597       case LibFunc_fmin:
7598       case LibFunc_fminf:
7599       case LibFunc_fminl:
7600         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7601           return;
7602         break;
7603       case LibFunc_fmax:
7604       case LibFunc_fmaxf:
7605       case LibFunc_fmaxl:
7606         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7607           return;
7608         break;
7609       case LibFunc_sin:
7610       case LibFunc_sinf:
7611       case LibFunc_sinl:
7612         if (visitUnaryFloatCall(I, ISD::FSIN))
7613           return;
7614         break;
7615       case LibFunc_cos:
7616       case LibFunc_cosf:
7617       case LibFunc_cosl:
7618         if (visitUnaryFloatCall(I, ISD::FCOS))
7619           return;
7620         break;
7621       case LibFunc_sqrt:
7622       case LibFunc_sqrtf:
7623       case LibFunc_sqrtl:
7624       case LibFunc_sqrt_finite:
7625       case LibFunc_sqrtf_finite:
7626       case LibFunc_sqrtl_finite:
7627         if (visitUnaryFloatCall(I, ISD::FSQRT))
7628           return;
7629         break;
7630       case LibFunc_floor:
7631       case LibFunc_floorf:
7632       case LibFunc_floorl:
7633         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7634           return;
7635         break;
7636       case LibFunc_nearbyint:
7637       case LibFunc_nearbyintf:
7638       case LibFunc_nearbyintl:
7639         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7640           return;
7641         break;
7642       case LibFunc_ceil:
7643       case LibFunc_ceilf:
7644       case LibFunc_ceill:
7645         if (visitUnaryFloatCall(I, ISD::FCEIL))
7646           return;
7647         break;
7648       case LibFunc_rint:
7649       case LibFunc_rintf:
7650       case LibFunc_rintl:
7651         if (visitUnaryFloatCall(I, ISD::FRINT))
7652           return;
7653         break;
7654       case LibFunc_round:
7655       case LibFunc_roundf:
7656       case LibFunc_roundl:
7657         if (visitUnaryFloatCall(I, ISD::FROUND))
7658           return;
7659         break;
7660       case LibFunc_trunc:
7661       case LibFunc_truncf:
7662       case LibFunc_truncl:
7663         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7664           return;
7665         break;
7666       case LibFunc_log2:
7667       case LibFunc_log2f:
7668       case LibFunc_log2l:
7669         if (visitUnaryFloatCall(I, ISD::FLOG2))
7670           return;
7671         break;
7672       case LibFunc_exp2:
7673       case LibFunc_exp2f:
7674       case LibFunc_exp2l:
7675         if (visitUnaryFloatCall(I, ISD::FEXP2))
7676           return;
7677         break;
7678       case LibFunc_memcmp:
7679         if (visitMemCmpCall(I))
7680           return;
7681         break;
7682       case LibFunc_mempcpy:
7683         if (visitMemPCpyCall(I))
7684           return;
7685         break;
7686       case LibFunc_memchr:
7687         if (visitMemChrCall(I))
7688           return;
7689         break;
7690       case LibFunc_strcpy:
7691         if (visitStrCpyCall(I, false))
7692           return;
7693         break;
7694       case LibFunc_stpcpy:
7695         if (visitStrCpyCall(I, true))
7696           return;
7697         break;
7698       case LibFunc_strcmp:
7699         if (visitStrCmpCall(I))
7700           return;
7701         break;
7702       case LibFunc_strlen:
7703         if (visitStrLenCall(I))
7704           return;
7705         break;
7706       case LibFunc_strnlen:
7707         if (visitStrNLenCall(I))
7708           return;
7709         break;
7710       }
7711     }
7712   }
7713 
7714   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7715   // have to do anything here to lower funclet bundles.
7716   // CFGuardTarget bundles are lowered in LowerCallTo.
7717   assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt,
7718                                         LLVMContext::OB_funclet,
7719                                         LLVMContext::OB_cfguardtarget}) &&
7720          "Cannot lower calls with arbitrary operand bundles!");
7721 
7722   SDValue Callee = getValue(I.getCalledValue());
7723 
7724   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7725     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7726   else
7727     // Check if we can potentially perform a tail call. More detailed checking
7728     // is be done within LowerCallTo, after more information about the call is
7729     // known.
7730     LowerCallTo(&I, Callee, I.isTailCall());
7731 }
7732 
7733 namespace {
7734 
7735 /// AsmOperandInfo - This contains information for each constraint that we are
7736 /// lowering.
7737 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7738 public:
7739   /// CallOperand - If this is the result output operand or a clobber
7740   /// this is null, otherwise it is the incoming operand to the CallInst.
7741   /// This gets modified as the asm is processed.
7742   SDValue CallOperand;
7743 
7744   /// AssignedRegs - If this is a register or register class operand, this
7745   /// contains the set of register corresponding to the operand.
7746   RegsForValue AssignedRegs;
7747 
7748   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7749     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7750   }
7751 
7752   /// Whether or not this operand accesses memory
7753   bool hasMemory(const TargetLowering &TLI) const {
7754     // Indirect operand accesses access memory.
7755     if (isIndirect)
7756       return true;
7757 
7758     for (const auto &Code : Codes)
7759       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7760         return true;
7761 
7762     return false;
7763   }
7764 
7765   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7766   /// corresponds to.  If there is no Value* for this operand, it returns
7767   /// MVT::Other.
7768   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7769                            const DataLayout &DL) const {
7770     if (!CallOperandVal) return MVT::Other;
7771 
7772     if (isa<BasicBlock>(CallOperandVal))
7773       return TLI.getPointerTy(DL);
7774 
7775     llvm::Type *OpTy = CallOperandVal->getType();
7776 
7777     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7778     // If this is an indirect operand, the operand is a pointer to the
7779     // accessed type.
7780     if (isIndirect) {
7781       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7782       if (!PtrTy)
7783         report_fatal_error("Indirect operand for inline asm not a pointer!");
7784       OpTy = PtrTy->getElementType();
7785     }
7786 
7787     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7788     if (StructType *STy = dyn_cast<StructType>(OpTy))
7789       if (STy->getNumElements() == 1)
7790         OpTy = STy->getElementType(0);
7791 
7792     // If OpTy is not a single value, it may be a struct/union that we
7793     // can tile with integers.
7794     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7795       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7796       switch (BitSize) {
7797       default: break;
7798       case 1:
7799       case 8:
7800       case 16:
7801       case 32:
7802       case 64:
7803       case 128:
7804         OpTy = IntegerType::get(Context, BitSize);
7805         break;
7806       }
7807     }
7808 
7809     return TLI.getValueType(DL, OpTy, true);
7810   }
7811 };
7812 
7813 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7814 
7815 } // end anonymous namespace
7816 
7817 /// Make sure that the output operand \p OpInfo and its corresponding input
7818 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7819 /// out).
7820 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7821                                SDISelAsmOperandInfo &MatchingOpInfo,
7822                                SelectionDAG &DAG) {
7823   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7824     return;
7825 
7826   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7827   const auto &TLI = DAG.getTargetLoweringInfo();
7828 
7829   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7830       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7831                                        OpInfo.ConstraintVT);
7832   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7833       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7834                                        MatchingOpInfo.ConstraintVT);
7835   if ((OpInfo.ConstraintVT.isInteger() !=
7836        MatchingOpInfo.ConstraintVT.isInteger()) ||
7837       (MatchRC.second != InputRC.second)) {
7838     // FIXME: error out in a more elegant fashion
7839     report_fatal_error("Unsupported asm: input constraint"
7840                        " with a matching output constraint of"
7841                        " incompatible type!");
7842   }
7843   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7844 }
7845 
7846 /// Get a direct memory input to behave well as an indirect operand.
7847 /// This may introduce stores, hence the need for a \p Chain.
7848 /// \return The (possibly updated) chain.
7849 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7850                                         SDISelAsmOperandInfo &OpInfo,
7851                                         SelectionDAG &DAG) {
7852   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7853 
7854   // If we don't have an indirect input, put it in the constpool if we can,
7855   // otherwise spill it to a stack slot.
7856   // TODO: This isn't quite right. We need to handle these according to
7857   // the addressing mode that the constraint wants. Also, this may take
7858   // an additional register for the computation and we don't want that
7859   // either.
7860 
7861   // If the operand is a float, integer, or vector constant, spill to a
7862   // constant pool entry to get its address.
7863   const Value *OpVal = OpInfo.CallOperandVal;
7864   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7865       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7866     OpInfo.CallOperand = DAG.getConstantPool(
7867         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7868     return Chain;
7869   }
7870 
7871   // Otherwise, create a stack slot and emit a store to it before the asm.
7872   Type *Ty = OpVal->getType();
7873   auto &DL = DAG.getDataLayout();
7874   uint64_t TySize = DL.getTypeAllocSize(Ty);
7875   unsigned Align = DL.getPrefTypeAlignment(Ty);
7876   MachineFunction &MF = DAG.getMachineFunction();
7877   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7878   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7879   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7880                             MachinePointerInfo::getFixedStack(MF, SSFI),
7881                             TLI.getMemValueType(DL, Ty));
7882   OpInfo.CallOperand = StackSlot;
7883 
7884   return Chain;
7885 }
7886 
7887 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7888 /// specified operand.  We prefer to assign virtual registers, to allow the
7889 /// register allocator to handle the assignment process.  However, if the asm
7890 /// uses features that we can't model on machineinstrs, we have SDISel do the
7891 /// allocation.  This produces generally horrible, but correct, code.
7892 ///
7893 ///   OpInfo describes the operand
7894 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7895 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7896                                  SDISelAsmOperandInfo &OpInfo,
7897                                  SDISelAsmOperandInfo &RefOpInfo) {
7898   LLVMContext &Context = *DAG.getContext();
7899   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7900 
7901   MachineFunction &MF = DAG.getMachineFunction();
7902   SmallVector<unsigned, 4> Regs;
7903   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7904 
7905   // No work to do for memory operations.
7906   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7907     return;
7908 
7909   // If this is a constraint for a single physreg, or a constraint for a
7910   // register class, find it.
7911   unsigned AssignedReg;
7912   const TargetRegisterClass *RC;
7913   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7914       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7915   // RC is unset only on failure. Return immediately.
7916   if (!RC)
7917     return;
7918 
7919   // Get the actual register value type.  This is important, because the user
7920   // may have asked for (e.g.) the AX register in i32 type.  We need to
7921   // remember that AX is actually i16 to get the right extension.
7922   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7923 
7924   if (OpInfo.ConstraintVT != MVT::Other) {
7925     // If this is an FP operand in an integer register (or visa versa), or more
7926     // generally if the operand value disagrees with the register class we plan
7927     // to stick it in, fix the operand type.
7928     //
7929     // If this is an input value, the bitcast to the new type is done now.
7930     // Bitcast for output value is done at the end of visitInlineAsm().
7931     if ((OpInfo.Type == InlineAsm::isOutput ||
7932          OpInfo.Type == InlineAsm::isInput) &&
7933         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7934       // Try to convert to the first EVT that the reg class contains.  If the
7935       // types are identical size, use a bitcast to convert (e.g. two differing
7936       // vector types).  Note: output bitcast is done at the end of
7937       // visitInlineAsm().
7938       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7939         // Exclude indirect inputs while they are unsupported because the code
7940         // to perform the load is missing and thus OpInfo.CallOperand still
7941         // refers to the input address rather than the pointed-to value.
7942         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7943           OpInfo.CallOperand =
7944               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7945         OpInfo.ConstraintVT = RegVT;
7946         // If the operand is an FP value and we want it in integer registers,
7947         // use the corresponding integer type. This turns an f64 value into
7948         // i64, which can be passed with two i32 values on a 32-bit machine.
7949       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7950         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7951         if (OpInfo.Type == InlineAsm::isInput)
7952           OpInfo.CallOperand =
7953               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
7954         OpInfo.ConstraintVT = VT;
7955       }
7956     }
7957   }
7958 
7959   // No need to allocate a matching input constraint since the constraint it's
7960   // matching to has already been allocated.
7961   if (OpInfo.isMatchingInputConstraint())
7962     return;
7963 
7964   EVT ValueVT = OpInfo.ConstraintVT;
7965   if (OpInfo.ConstraintVT == MVT::Other)
7966     ValueVT = RegVT;
7967 
7968   // Initialize NumRegs.
7969   unsigned NumRegs = 1;
7970   if (OpInfo.ConstraintVT != MVT::Other)
7971     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7972 
7973   // If this is a constraint for a specific physical register, like {r17},
7974   // assign it now.
7975 
7976   // If this associated to a specific register, initialize iterator to correct
7977   // place. If virtual, make sure we have enough registers
7978 
7979   // Initialize iterator if necessary
7980   TargetRegisterClass::iterator I = RC->begin();
7981   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7982 
7983   // Do not check for single registers.
7984   if (AssignedReg) {
7985       for (; *I != AssignedReg; ++I)
7986         assert(I != RC->end() && "AssignedReg should be member of RC");
7987   }
7988 
7989   for (; NumRegs; --NumRegs, ++I) {
7990     assert(I != RC->end() && "Ran out of registers to allocate!");
7991     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
7992     Regs.push_back(R);
7993   }
7994 
7995   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7996 }
7997 
7998 static unsigned
7999 findMatchingInlineAsmOperand(unsigned OperandNo,
8000                              const std::vector<SDValue> &AsmNodeOperands) {
8001   // Scan until we find the definition we already emitted of this operand.
8002   unsigned CurOp = InlineAsm::Op_FirstOperand;
8003   for (; OperandNo; --OperandNo) {
8004     // Advance to the next operand.
8005     unsigned OpFlag =
8006         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8007     assert((InlineAsm::isRegDefKind(OpFlag) ||
8008             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8009             InlineAsm::isMemKind(OpFlag)) &&
8010            "Skipped past definitions?");
8011     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8012   }
8013   return CurOp;
8014 }
8015 
8016 namespace {
8017 
8018 class ExtraFlags {
8019   unsigned Flags = 0;
8020 
8021 public:
8022   explicit ExtraFlags(ImmutableCallSite CS) {
8023     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
8024     if (IA->hasSideEffects())
8025       Flags |= InlineAsm::Extra_HasSideEffects;
8026     if (IA->isAlignStack())
8027       Flags |= InlineAsm::Extra_IsAlignStack;
8028     if (CS.isConvergent())
8029       Flags |= InlineAsm::Extra_IsConvergent;
8030     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8031   }
8032 
8033   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8034     // Ideally, we would only check against memory constraints.  However, the
8035     // meaning of an Other constraint can be target-specific and we can't easily
8036     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8037     // for Other constraints as well.
8038     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8039         OpInfo.ConstraintType == TargetLowering::C_Other) {
8040       if (OpInfo.Type == InlineAsm::isInput)
8041         Flags |= InlineAsm::Extra_MayLoad;
8042       else if (OpInfo.Type == InlineAsm::isOutput)
8043         Flags |= InlineAsm::Extra_MayStore;
8044       else if (OpInfo.Type == InlineAsm::isClobber)
8045         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8046     }
8047   }
8048 
8049   unsigned get() const { return Flags; }
8050 };
8051 
8052 } // end anonymous namespace
8053 
8054 /// visitInlineAsm - Handle a call to an InlineAsm object.
8055 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
8056   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
8057 
8058   /// ConstraintOperands - Information about all of the constraints.
8059   SDISelAsmOperandInfoVector ConstraintOperands;
8060 
8061   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8062   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8063       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
8064 
8065   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8066   // AsmDialect, MayLoad, MayStore).
8067   bool HasSideEffect = IA->hasSideEffects();
8068   ExtraFlags ExtraInfo(CS);
8069 
8070   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8071   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8072   for (auto &T : TargetConstraints) {
8073     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8074     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8075 
8076     // Compute the value type for each operand.
8077     if (OpInfo.Type == InlineAsm::isInput ||
8078         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8079       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
8080 
8081       // Process the call argument. BasicBlocks are labels, currently appearing
8082       // only in asm's.
8083       const Instruction *I = CS.getInstruction();
8084       if (isa<CallBrInst>(I) &&
8085           (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() -
8086                           cast<CallBrInst>(I)->getNumIndirectDests())) {
8087         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8088         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8089         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8090       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8091         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8092       } else {
8093         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8094       }
8095 
8096       OpInfo.ConstraintVT =
8097           OpInfo
8098               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
8099               .getSimpleVT();
8100     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8101       // The return value of the call is this value.  As such, there is no
8102       // corresponding argument.
8103       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8104       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
8105         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8106             DAG.getDataLayout(), STy->getElementType(ResNo));
8107       } else {
8108         assert(ResNo == 0 && "Asm only has one result!");
8109         OpInfo.ConstraintVT =
8110             TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
8111       }
8112       ++ResNo;
8113     } else {
8114       OpInfo.ConstraintVT = MVT::Other;
8115     }
8116 
8117     if (!HasSideEffect)
8118       HasSideEffect = OpInfo.hasMemory(TLI);
8119 
8120     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8121     // FIXME: Could we compute this on OpInfo rather than T?
8122 
8123     // Compute the constraint code and ConstraintType to use.
8124     TLI.ComputeConstraintToUse(T, SDValue());
8125 
8126     if (T.ConstraintType == TargetLowering::C_Immediate &&
8127         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8128       // We've delayed emitting a diagnostic like the "n" constraint because
8129       // inlining could cause an integer showing up.
8130       return emitInlineAsmError(
8131           CS, "constraint '" + Twine(T.ConstraintCode) + "' expects an "
8132                   "integer constant expression");
8133 
8134     ExtraInfo.update(T);
8135   }
8136 
8137 
8138   // We won't need to flush pending loads if this asm doesn't touch
8139   // memory and is nonvolatile.
8140   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8141 
8142   bool IsCallBr = isa<CallBrInst>(CS.getInstruction());
8143   if (IsCallBr) {
8144     // If this is a callbr we need to flush pending exports since inlineasm_br
8145     // is a terminator. We need to do this before nodes are glued to
8146     // the inlineasm_br node.
8147     Chain = getControlRoot();
8148   }
8149 
8150   // Second pass over the constraints: compute which constraint option to use.
8151   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8152     // If this is an output operand with a matching input operand, look up the
8153     // matching input. If their types mismatch, e.g. one is an integer, the
8154     // other is floating point, or their sizes are different, flag it as an
8155     // error.
8156     if (OpInfo.hasMatchingInput()) {
8157       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8158       patchMatchingInput(OpInfo, Input, DAG);
8159     }
8160 
8161     // Compute the constraint code and ConstraintType to use.
8162     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8163 
8164     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8165         OpInfo.Type == InlineAsm::isClobber)
8166       continue;
8167 
8168     // If this is a memory input, and if the operand is not indirect, do what we
8169     // need to provide an address for the memory input.
8170     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8171         !OpInfo.isIndirect) {
8172       assert((OpInfo.isMultipleAlternative ||
8173               (OpInfo.Type == InlineAsm::isInput)) &&
8174              "Can only indirectify direct input operands!");
8175 
8176       // Memory operands really want the address of the value.
8177       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8178 
8179       // There is no longer a Value* corresponding to this operand.
8180       OpInfo.CallOperandVal = nullptr;
8181 
8182       // It is now an indirect operand.
8183       OpInfo.isIndirect = true;
8184     }
8185 
8186   }
8187 
8188   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8189   std::vector<SDValue> AsmNodeOperands;
8190   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8191   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8192       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
8193 
8194   // If we have a !srcloc metadata node associated with it, we want to attach
8195   // this to the ultimately generated inline asm machineinstr.  To do this, we
8196   // pass in the third operand as this (potentially null) inline asm MDNode.
8197   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
8198   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8199 
8200   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8201   // bits as operand 3.
8202   AsmNodeOperands.push_back(DAG.getTargetConstant(
8203       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8204 
8205   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8206   // this, assign virtual and physical registers for inputs and otput.
8207   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8208     // Assign Registers.
8209     SDISelAsmOperandInfo &RefOpInfo =
8210         OpInfo.isMatchingInputConstraint()
8211             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8212             : OpInfo;
8213     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8214 
8215     switch (OpInfo.Type) {
8216     case InlineAsm::isOutput:
8217       if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8218           ((OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8219             OpInfo.ConstraintType == TargetLowering::C_Other) &&
8220            OpInfo.isIndirect)) {
8221         unsigned ConstraintID =
8222             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8223         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8224                "Failed to convert memory constraint code to constraint id.");
8225 
8226         // Add information to the INLINEASM node to know about this output.
8227         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8228         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8229         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8230                                                         MVT::i32));
8231         AsmNodeOperands.push_back(OpInfo.CallOperand);
8232         break;
8233       } else if (((OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8234                    OpInfo.ConstraintType == TargetLowering::C_Other) &&
8235                   !OpInfo.isIndirect) ||
8236                  OpInfo.ConstraintType == TargetLowering::C_Register ||
8237                  OpInfo.ConstraintType == TargetLowering::C_RegisterClass) {
8238         // Otherwise, this outputs to a register (directly for C_Register /
8239         // C_RegisterClass, and a target-defined fashion for
8240         // C_Immediate/C_Other). Find a register that we can use.
8241         if (OpInfo.AssignedRegs.Regs.empty()) {
8242           emitInlineAsmError(
8243               CS, "couldn't allocate output register for constraint '" +
8244                       Twine(OpInfo.ConstraintCode) + "'");
8245           return;
8246         }
8247 
8248         // Add information to the INLINEASM node to know that this register is
8249         // set.
8250         OpInfo.AssignedRegs.AddInlineAsmOperands(
8251             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8252                                   : InlineAsm::Kind_RegDef,
8253             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8254       }
8255       break;
8256 
8257     case InlineAsm::isInput: {
8258       SDValue InOperandVal = OpInfo.CallOperand;
8259 
8260       if (OpInfo.isMatchingInputConstraint()) {
8261         // If this is required to match an output register we have already set,
8262         // just use its register.
8263         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8264                                                   AsmNodeOperands);
8265         unsigned OpFlag =
8266           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8267         if (InlineAsm::isRegDefKind(OpFlag) ||
8268             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8269           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8270           if (OpInfo.isIndirect) {
8271             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8272             emitInlineAsmError(CS, "inline asm not supported yet:"
8273                                    " don't know how to handle tied "
8274                                    "indirect register inputs");
8275             return;
8276           }
8277 
8278           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8279           SmallVector<unsigned, 4> Regs;
8280 
8281           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8282             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8283             MachineRegisterInfo &RegInfo =
8284                 DAG.getMachineFunction().getRegInfo();
8285             for (unsigned i = 0; i != NumRegs; ++i)
8286               Regs.push_back(RegInfo.createVirtualRegister(RC));
8287           } else {
8288             emitInlineAsmError(CS, "inline asm error: This value type register "
8289                                    "class is not natively supported!");
8290             return;
8291           }
8292 
8293           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8294 
8295           SDLoc dl = getCurSDLoc();
8296           // Use the produced MatchedRegs object to
8297           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8298                                     CS.getInstruction());
8299           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8300                                            true, OpInfo.getMatchedOperand(), dl,
8301                                            DAG, AsmNodeOperands);
8302           break;
8303         }
8304 
8305         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8306         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8307                "Unexpected number of operands");
8308         // Add information to the INLINEASM node to know about this input.
8309         // See InlineAsm.h isUseOperandTiedToDef.
8310         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8311         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8312                                                     OpInfo.getMatchedOperand());
8313         AsmNodeOperands.push_back(DAG.getTargetConstant(
8314             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8315         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8316         break;
8317       }
8318 
8319       // Treat indirect 'X' constraint as memory.
8320       if ((OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8321            OpInfo.ConstraintType == TargetLowering::C_Other) &&
8322           OpInfo.isIndirect)
8323         OpInfo.ConstraintType = TargetLowering::C_Memory;
8324 
8325       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8326           OpInfo.ConstraintType == TargetLowering::C_Other) {
8327         std::vector<SDValue> Ops;
8328         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8329                                           Ops, DAG);
8330         if (Ops.empty()) {
8331           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8332             if (isa<ConstantSDNode>(InOperandVal)) {
8333               emitInlineAsmError(CS, "value out of range for constraint '" +
8334                                  Twine(OpInfo.ConstraintCode) + "'");
8335               return;
8336             }
8337 
8338           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
8339                                      Twine(OpInfo.ConstraintCode) + "'");
8340           return;
8341         }
8342 
8343         // Add information to the INLINEASM node to know about this input.
8344         unsigned ResOpType =
8345           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8346         AsmNodeOperands.push_back(DAG.getTargetConstant(
8347             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8348         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8349         break;
8350       }
8351 
8352       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8353         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8354         assert(InOperandVal.getValueType() ==
8355                    TLI.getPointerTy(DAG.getDataLayout()) &&
8356                "Memory operands expect pointer values");
8357 
8358         unsigned ConstraintID =
8359             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8360         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8361                "Failed to convert memory constraint code to constraint id.");
8362 
8363         // Add information to the INLINEASM node to know about this input.
8364         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8365         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8366         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8367                                                         getCurSDLoc(),
8368                                                         MVT::i32));
8369         AsmNodeOperands.push_back(InOperandVal);
8370         break;
8371       }
8372 
8373       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8374               OpInfo.ConstraintType == TargetLowering::C_Register ||
8375               OpInfo.ConstraintType == TargetLowering::C_Immediate) &&
8376              "Unknown constraint type!");
8377 
8378       // TODO: Support this.
8379       if (OpInfo.isIndirect) {
8380         emitInlineAsmError(
8381             CS, "Don't know how to handle indirect register inputs yet "
8382                 "for constraint '" +
8383                     Twine(OpInfo.ConstraintCode) + "'");
8384         return;
8385       }
8386 
8387       // Copy the input into the appropriate registers.
8388       if (OpInfo.AssignedRegs.Regs.empty()) {
8389         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
8390                                    Twine(OpInfo.ConstraintCode) + "'");
8391         return;
8392       }
8393 
8394       SDLoc dl = getCurSDLoc();
8395 
8396       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
8397                                         Chain, &Flag, CS.getInstruction());
8398 
8399       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8400                                                dl, DAG, AsmNodeOperands);
8401       break;
8402     }
8403     case InlineAsm::isClobber:
8404       // Add the clobbered value to the operand list, so that the register
8405       // allocator is aware that the physreg got clobbered.
8406       if (!OpInfo.AssignedRegs.Regs.empty())
8407         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8408                                                  false, 0, getCurSDLoc(), DAG,
8409                                                  AsmNodeOperands);
8410       break;
8411     }
8412   }
8413 
8414   // Finish up input operands.  Set the input chain and add the flag last.
8415   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8416   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8417 
8418   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8419   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8420                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8421   Flag = Chain.getValue(1);
8422 
8423   // Do additional work to generate outputs.
8424 
8425   SmallVector<EVT, 1> ResultVTs;
8426   SmallVector<SDValue, 1> ResultValues;
8427   SmallVector<SDValue, 8> OutChains;
8428 
8429   llvm::Type *CSResultType = CS.getType();
8430   ArrayRef<Type *> ResultTypes;
8431   if (StructType *StructResult = dyn_cast<StructType>(CSResultType))
8432     ResultTypes = StructResult->elements();
8433   else if (!CSResultType->isVoidTy())
8434     ResultTypes = makeArrayRef(CSResultType);
8435 
8436   auto CurResultType = ResultTypes.begin();
8437   auto handleRegAssign = [&](SDValue V) {
8438     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8439     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8440     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8441     ++CurResultType;
8442     // If the type of the inline asm call site return value is different but has
8443     // same size as the type of the asm output bitcast it.  One example of this
8444     // is for vectors with different width / number of elements.  This can
8445     // happen for register classes that can contain multiple different value
8446     // types.  The preg or vreg allocated may not have the same VT as was
8447     // expected.
8448     //
8449     // This can also happen for a return value that disagrees with the register
8450     // class it is put in, eg. a double in a general-purpose register on a
8451     // 32-bit machine.
8452     if (ResultVT != V.getValueType() &&
8453         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8454       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8455     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8456              V.getValueType().isInteger()) {
8457       // If a result value was tied to an input value, the computed result
8458       // may have a wider width than the expected result.  Extract the
8459       // relevant portion.
8460       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8461     }
8462     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8463     ResultVTs.push_back(ResultVT);
8464     ResultValues.push_back(V);
8465   };
8466 
8467   // Deal with output operands.
8468   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8469     if (OpInfo.Type == InlineAsm::isOutput) {
8470       SDValue Val;
8471       // Skip trivial output operands.
8472       if (OpInfo.AssignedRegs.Regs.empty())
8473         continue;
8474 
8475       switch (OpInfo.ConstraintType) {
8476       case TargetLowering::C_Register:
8477       case TargetLowering::C_RegisterClass:
8478         Val = OpInfo.AssignedRegs.getCopyFromRegs(
8479             DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction());
8480         break;
8481       case TargetLowering::C_Immediate:
8482       case TargetLowering::C_Other:
8483         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8484                                               OpInfo, DAG);
8485         break;
8486       case TargetLowering::C_Memory:
8487         break; // Already handled.
8488       case TargetLowering::C_Unknown:
8489         assert(false && "Unexpected unknown constraint");
8490       }
8491 
8492       // Indirect output manifest as stores. Record output chains.
8493       if (OpInfo.isIndirect) {
8494         const Value *Ptr = OpInfo.CallOperandVal;
8495         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8496         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8497                                      MachinePointerInfo(Ptr));
8498         OutChains.push_back(Store);
8499       } else {
8500         // generate CopyFromRegs to associated registers.
8501         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8502         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8503           for (const SDValue &V : Val->op_values())
8504             handleRegAssign(V);
8505         } else
8506           handleRegAssign(Val);
8507       }
8508     }
8509   }
8510 
8511   // Set results.
8512   if (!ResultValues.empty()) {
8513     assert(CurResultType == ResultTypes.end() &&
8514            "Mismatch in number of ResultTypes");
8515     assert(ResultValues.size() == ResultTypes.size() &&
8516            "Mismatch in number of output operands in asm result");
8517 
8518     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8519                             DAG.getVTList(ResultVTs), ResultValues);
8520     setValue(CS.getInstruction(), V);
8521   }
8522 
8523   // Collect store chains.
8524   if (!OutChains.empty())
8525     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8526 
8527   // Only Update Root if inline assembly has a memory effect.
8528   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr)
8529     DAG.setRoot(Chain);
8530 }
8531 
8532 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
8533                                              const Twine &Message) {
8534   LLVMContext &Ctx = *DAG.getContext();
8535   Ctx.emitError(CS.getInstruction(), Message);
8536 
8537   // Make sure we leave the DAG in a valid state
8538   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8539   SmallVector<EVT, 1> ValueVTs;
8540   ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8541 
8542   if (ValueVTs.empty())
8543     return;
8544 
8545   SmallVector<SDValue, 1> Ops;
8546   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8547     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8548 
8549   setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
8550 }
8551 
8552 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8553   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8554                           MVT::Other, getRoot(),
8555                           getValue(I.getArgOperand(0)),
8556                           DAG.getSrcValue(I.getArgOperand(0))));
8557 }
8558 
8559 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8560   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8561   const DataLayout &DL = DAG.getDataLayout();
8562   SDValue V = DAG.getVAArg(
8563       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8564       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8565       DL.getABITypeAlignment(I.getType()));
8566   DAG.setRoot(V.getValue(1));
8567 
8568   if (I.getType()->isPointerTy())
8569     V = DAG.getPtrExtOrTrunc(
8570         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8571   setValue(&I, V);
8572 }
8573 
8574 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8575   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8576                           MVT::Other, getRoot(),
8577                           getValue(I.getArgOperand(0)),
8578                           DAG.getSrcValue(I.getArgOperand(0))));
8579 }
8580 
8581 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8582   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8583                           MVT::Other, getRoot(),
8584                           getValue(I.getArgOperand(0)),
8585                           getValue(I.getArgOperand(1)),
8586                           DAG.getSrcValue(I.getArgOperand(0)),
8587                           DAG.getSrcValue(I.getArgOperand(1))));
8588 }
8589 
8590 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8591                                                     const Instruction &I,
8592                                                     SDValue Op) {
8593   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8594   if (!Range)
8595     return Op;
8596 
8597   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8598   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8599     return Op;
8600 
8601   APInt Lo = CR.getUnsignedMin();
8602   if (!Lo.isMinValue())
8603     return Op;
8604 
8605   APInt Hi = CR.getUnsignedMax();
8606   unsigned Bits = std::max(Hi.getActiveBits(),
8607                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8608 
8609   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8610 
8611   SDLoc SL = getCurSDLoc();
8612 
8613   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8614                              DAG.getValueType(SmallVT));
8615   unsigned NumVals = Op.getNode()->getNumValues();
8616   if (NumVals == 1)
8617     return ZExt;
8618 
8619   SmallVector<SDValue, 4> Ops;
8620 
8621   Ops.push_back(ZExt);
8622   for (unsigned I = 1; I != NumVals; ++I)
8623     Ops.push_back(Op.getValue(I));
8624 
8625   return DAG.getMergeValues(Ops, SL);
8626 }
8627 
8628 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8629 /// the call being lowered.
8630 ///
8631 /// This is a helper for lowering intrinsics that follow a target calling
8632 /// convention or require stack pointer adjustment. Only a subset of the
8633 /// intrinsic's operands need to participate in the calling convention.
8634 void SelectionDAGBuilder::populateCallLoweringInfo(
8635     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8636     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8637     bool IsPatchPoint) {
8638   TargetLowering::ArgListTy Args;
8639   Args.reserve(NumArgs);
8640 
8641   // Populate the argument list.
8642   // Attributes for args start at offset 1, after the return attribute.
8643   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8644        ArgI != ArgE; ++ArgI) {
8645     const Value *V = Call->getOperand(ArgI);
8646 
8647     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8648 
8649     TargetLowering::ArgListEntry Entry;
8650     Entry.Node = getValue(V);
8651     Entry.Ty = V->getType();
8652     Entry.setAttributes(Call, ArgI);
8653     Args.push_back(Entry);
8654   }
8655 
8656   CLI.setDebugLoc(getCurSDLoc())
8657       .setChain(getRoot())
8658       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8659       .setDiscardResult(Call->use_empty())
8660       .setIsPatchPoint(IsPatchPoint);
8661 }
8662 
8663 /// Add a stack map intrinsic call's live variable operands to a stackmap
8664 /// or patchpoint target node's operand list.
8665 ///
8666 /// Constants are converted to TargetConstants purely as an optimization to
8667 /// avoid constant materialization and register allocation.
8668 ///
8669 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8670 /// generate addess computation nodes, and so FinalizeISel can convert the
8671 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8672 /// address materialization and register allocation, but may also be required
8673 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8674 /// alloca in the entry block, then the runtime may assume that the alloca's
8675 /// StackMap location can be read immediately after compilation and that the
8676 /// location is valid at any point during execution (this is similar to the
8677 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8678 /// only available in a register, then the runtime would need to trap when
8679 /// execution reaches the StackMap in order to read the alloca's location.
8680 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
8681                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8682                                 SelectionDAGBuilder &Builder) {
8683   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
8684     SDValue OpVal = Builder.getValue(CS.getArgument(i));
8685     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8686       Ops.push_back(
8687         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8688       Ops.push_back(
8689         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8690     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8691       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8692       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8693           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8694     } else
8695       Ops.push_back(OpVal);
8696   }
8697 }
8698 
8699 /// Lower llvm.experimental.stackmap directly to its target opcode.
8700 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8701   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8702   //                                  [live variables...])
8703 
8704   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8705 
8706   SDValue Chain, InFlag, Callee, NullPtr;
8707   SmallVector<SDValue, 32> Ops;
8708 
8709   SDLoc DL = getCurSDLoc();
8710   Callee = getValue(CI.getCalledValue());
8711   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8712 
8713   // The stackmap intrinsic only records the live variables (the arguments
8714   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8715   // intrinsic, this won't be lowered to a function call. This means we don't
8716   // have to worry about calling conventions and target specific lowering code.
8717   // Instead we perform the call lowering right here.
8718   //
8719   // chain, flag = CALLSEQ_START(chain, 0, 0)
8720   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8721   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8722   //
8723   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8724   InFlag = Chain.getValue(1);
8725 
8726   // Add the <id> and <numBytes> constants.
8727   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8728   Ops.push_back(DAG.getTargetConstant(
8729                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8730   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8731   Ops.push_back(DAG.getTargetConstant(
8732                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8733                   MVT::i32));
8734 
8735   // Push live variables for the stack map.
8736   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
8737 
8738   // We are not pushing any register mask info here on the operands list,
8739   // because the stackmap doesn't clobber anything.
8740 
8741   // Push the chain and the glue flag.
8742   Ops.push_back(Chain);
8743   Ops.push_back(InFlag);
8744 
8745   // Create the STACKMAP node.
8746   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8747   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8748   Chain = SDValue(SM, 0);
8749   InFlag = Chain.getValue(1);
8750 
8751   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8752 
8753   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8754 
8755   // Set the root to the target-lowered call chain.
8756   DAG.setRoot(Chain);
8757 
8758   // Inform the Frame Information that we have a stackmap in this function.
8759   FuncInfo.MF->getFrameInfo().setHasStackMap();
8760 }
8761 
8762 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8763 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
8764                                           const BasicBlock *EHPadBB) {
8765   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8766   //                                                 i32 <numBytes>,
8767   //                                                 i8* <target>,
8768   //                                                 i32 <numArgs>,
8769   //                                                 [Args...],
8770   //                                                 [live variables...])
8771 
8772   CallingConv::ID CC = CS.getCallingConv();
8773   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8774   bool HasDef = !CS->getType()->isVoidTy();
8775   SDLoc dl = getCurSDLoc();
8776   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8777 
8778   // Handle immediate and symbolic callees.
8779   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8780     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8781                                    /*isTarget=*/true);
8782   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8783     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8784                                          SDLoc(SymbolicCallee),
8785                                          SymbolicCallee->getValueType(0));
8786 
8787   // Get the real number of arguments participating in the call <numArgs>
8788   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8789   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8790 
8791   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8792   // Intrinsics include all meta-operands up to but not including CC.
8793   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8794   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8795          "Not enough arguments provided to the patchpoint intrinsic");
8796 
8797   // For AnyRegCC the arguments are lowered later on manually.
8798   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8799   Type *ReturnTy =
8800     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8801 
8802   TargetLowering::CallLoweringInfo CLI(DAG);
8803   populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()),
8804                            NumMetaOpers, NumCallArgs, Callee, ReturnTy, true);
8805   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8806 
8807   SDNode *CallEnd = Result.second.getNode();
8808   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8809     CallEnd = CallEnd->getOperand(0).getNode();
8810 
8811   /// Get a call instruction from the call sequence chain.
8812   /// Tail calls are not allowed.
8813   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8814          "Expected a callseq node.");
8815   SDNode *Call = CallEnd->getOperand(0).getNode();
8816   bool HasGlue = Call->getGluedNode();
8817 
8818   // Replace the target specific call node with the patchable intrinsic.
8819   SmallVector<SDValue, 8> Ops;
8820 
8821   // Add the <id> and <numBytes> constants.
8822   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8823   Ops.push_back(DAG.getTargetConstant(
8824                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8825   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8826   Ops.push_back(DAG.getTargetConstant(
8827                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8828                   MVT::i32));
8829 
8830   // Add the callee.
8831   Ops.push_back(Callee);
8832 
8833   // Adjust <numArgs> to account for any arguments that have been passed on the
8834   // stack instead.
8835   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8836   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8837   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8838   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8839 
8840   // Add the calling convention
8841   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8842 
8843   // Add the arguments we omitted previously. The register allocator should
8844   // place these in any free register.
8845   if (IsAnyRegCC)
8846     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8847       Ops.push_back(getValue(CS.getArgument(i)));
8848 
8849   // Push the arguments from the call instruction up to the register mask.
8850   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8851   Ops.append(Call->op_begin() + 2, e);
8852 
8853   // Push live variables for the stack map.
8854   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8855 
8856   // Push the register mask info.
8857   if (HasGlue)
8858     Ops.push_back(*(Call->op_end()-2));
8859   else
8860     Ops.push_back(*(Call->op_end()-1));
8861 
8862   // Push the chain (this is originally the first operand of the call, but
8863   // becomes now the last or second to last operand).
8864   Ops.push_back(*(Call->op_begin()));
8865 
8866   // Push the glue flag (last operand).
8867   if (HasGlue)
8868     Ops.push_back(*(Call->op_end()-1));
8869 
8870   SDVTList NodeTys;
8871   if (IsAnyRegCC && HasDef) {
8872     // Create the return types based on the intrinsic definition
8873     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8874     SmallVector<EVT, 3> ValueVTs;
8875     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8876     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8877 
8878     // There is always a chain and a glue type at the end
8879     ValueVTs.push_back(MVT::Other);
8880     ValueVTs.push_back(MVT::Glue);
8881     NodeTys = DAG.getVTList(ValueVTs);
8882   } else
8883     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8884 
8885   // Replace the target specific call node with a PATCHPOINT node.
8886   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8887                                          dl, NodeTys, Ops);
8888 
8889   // Update the NodeMap.
8890   if (HasDef) {
8891     if (IsAnyRegCC)
8892       setValue(CS.getInstruction(), SDValue(MN, 0));
8893     else
8894       setValue(CS.getInstruction(), Result.first);
8895   }
8896 
8897   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8898   // call sequence. Furthermore the location of the chain and glue can change
8899   // when the AnyReg calling convention is used and the intrinsic returns a
8900   // value.
8901   if (IsAnyRegCC && HasDef) {
8902     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8903     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8904     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8905   } else
8906     DAG.ReplaceAllUsesWith(Call, MN);
8907   DAG.DeleteNode(Call);
8908 
8909   // Inform the Frame Information that we have a patchpoint in this function.
8910   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8911 }
8912 
8913 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8914                                             unsigned Intrinsic) {
8915   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8916   SDValue Op1 = getValue(I.getArgOperand(0));
8917   SDValue Op2;
8918   if (I.getNumArgOperands() > 1)
8919     Op2 = getValue(I.getArgOperand(1));
8920   SDLoc dl = getCurSDLoc();
8921   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8922   SDValue Res;
8923   FastMathFlags FMF;
8924   if (isa<FPMathOperator>(I))
8925     FMF = I.getFastMathFlags();
8926 
8927   switch (Intrinsic) {
8928   case Intrinsic::experimental_vector_reduce_v2_fadd:
8929     if (FMF.allowReassoc())
8930       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
8931                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2));
8932     else
8933       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8934     break;
8935   case Intrinsic::experimental_vector_reduce_v2_fmul:
8936     if (FMF.allowReassoc())
8937       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
8938                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2));
8939     else
8940       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8941     break;
8942   case Intrinsic::experimental_vector_reduce_add:
8943     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8944     break;
8945   case Intrinsic::experimental_vector_reduce_mul:
8946     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8947     break;
8948   case Intrinsic::experimental_vector_reduce_and:
8949     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8950     break;
8951   case Intrinsic::experimental_vector_reduce_or:
8952     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8953     break;
8954   case Intrinsic::experimental_vector_reduce_xor:
8955     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8956     break;
8957   case Intrinsic::experimental_vector_reduce_smax:
8958     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8959     break;
8960   case Intrinsic::experimental_vector_reduce_smin:
8961     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8962     break;
8963   case Intrinsic::experimental_vector_reduce_umax:
8964     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8965     break;
8966   case Intrinsic::experimental_vector_reduce_umin:
8967     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8968     break;
8969   case Intrinsic::experimental_vector_reduce_fmax:
8970     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8971     break;
8972   case Intrinsic::experimental_vector_reduce_fmin:
8973     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8974     break;
8975   default:
8976     llvm_unreachable("Unhandled vector reduce intrinsic");
8977   }
8978   setValue(&I, Res);
8979 }
8980 
8981 /// Returns an AttributeList representing the attributes applied to the return
8982 /// value of the given call.
8983 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8984   SmallVector<Attribute::AttrKind, 2> Attrs;
8985   if (CLI.RetSExt)
8986     Attrs.push_back(Attribute::SExt);
8987   if (CLI.RetZExt)
8988     Attrs.push_back(Attribute::ZExt);
8989   if (CLI.IsInReg)
8990     Attrs.push_back(Attribute::InReg);
8991 
8992   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8993                             Attrs);
8994 }
8995 
8996 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8997 /// implementation, which just calls LowerCall.
8998 /// FIXME: When all targets are
8999 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9000 std::pair<SDValue, SDValue>
9001 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9002   // Handle the incoming return values from the call.
9003   CLI.Ins.clear();
9004   Type *OrigRetTy = CLI.RetTy;
9005   SmallVector<EVT, 4> RetTys;
9006   SmallVector<uint64_t, 4> Offsets;
9007   auto &DL = CLI.DAG.getDataLayout();
9008   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9009 
9010   if (CLI.IsPostTypeLegalization) {
9011     // If we are lowering a libcall after legalization, split the return type.
9012     SmallVector<EVT, 4> OldRetTys;
9013     SmallVector<uint64_t, 4> OldOffsets;
9014     RetTys.swap(OldRetTys);
9015     Offsets.swap(OldOffsets);
9016 
9017     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9018       EVT RetVT = OldRetTys[i];
9019       uint64_t Offset = OldOffsets[i];
9020       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9021       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9022       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9023       RetTys.append(NumRegs, RegisterVT);
9024       for (unsigned j = 0; j != NumRegs; ++j)
9025         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9026     }
9027   }
9028 
9029   SmallVector<ISD::OutputArg, 4> Outs;
9030   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9031 
9032   bool CanLowerReturn =
9033       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9034                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9035 
9036   SDValue DemoteStackSlot;
9037   int DemoteStackIdx = -100;
9038   if (!CanLowerReturn) {
9039     // FIXME: equivalent assert?
9040     // assert(!CS.hasInAllocaArgument() &&
9041     //        "sret demotion is incompatible with inalloca");
9042     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9043     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
9044     MachineFunction &MF = CLI.DAG.getMachineFunction();
9045     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
9046     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9047                                               DL.getAllocaAddrSpace());
9048 
9049     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9050     ArgListEntry Entry;
9051     Entry.Node = DemoteStackSlot;
9052     Entry.Ty = StackSlotPtrType;
9053     Entry.IsSExt = false;
9054     Entry.IsZExt = false;
9055     Entry.IsInReg = false;
9056     Entry.IsSRet = true;
9057     Entry.IsNest = false;
9058     Entry.IsByVal = false;
9059     Entry.IsReturned = false;
9060     Entry.IsSwiftSelf = false;
9061     Entry.IsSwiftError = false;
9062     Entry.IsCFGuardTarget = false;
9063     Entry.Alignment = Align;
9064     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9065     CLI.NumFixedArgs += 1;
9066     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9067 
9068     // sret demotion isn't compatible with tail-calls, since the sret argument
9069     // points into the callers stack frame.
9070     CLI.IsTailCall = false;
9071   } else {
9072     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9073         CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
9074     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9075       ISD::ArgFlagsTy Flags;
9076       if (NeedsRegBlock) {
9077         Flags.setInConsecutiveRegs();
9078         if (I == RetTys.size() - 1)
9079           Flags.setInConsecutiveRegsLast();
9080       }
9081       EVT VT = RetTys[I];
9082       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9083                                                      CLI.CallConv, VT);
9084       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9085                                                        CLI.CallConv, VT);
9086       for (unsigned i = 0; i != NumRegs; ++i) {
9087         ISD::InputArg MyFlags;
9088         MyFlags.Flags = Flags;
9089         MyFlags.VT = RegisterVT;
9090         MyFlags.ArgVT = VT;
9091         MyFlags.Used = CLI.IsReturnValueUsed;
9092         if (CLI.RetTy->isPointerTy()) {
9093           MyFlags.Flags.setPointer();
9094           MyFlags.Flags.setPointerAddrSpace(
9095               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9096         }
9097         if (CLI.RetSExt)
9098           MyFlags.Flags.setSExt();
9099         if (CLI.RetZExt)
9100           MyFlags.Flags.setZExt();
9101         if (CLI.IsInReg)
9102           MyFlags.Flags.setInReg();
9103         CLI.Ins.push_back(MyFlags);
9104       }
9105     }
9106   }
9107 
9108   // We push in swifterror return as the last element of CLI.Ins.
9109   ArgListTy &Args = CLI.getArgs();
9110   if (supportSwiftError()) {
9111     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9112       if (Args[i].IsSwiftError) {
9113         ISD::InputArg MyFlags;
9114         MyFlags.VT = getPointerTy(DL);
9115         MyFlags.ArgVT = EVT(getPointerTy(DL));
9116         MyFlags.Flags.setSwiftError();
9117         CLI.Ins.push_back(MyFlags);
9118       }
9119     }
9120   }
9121 
9122   // Handle all of the outgoing arguments.
9123   CLI.Outs.clear();
9124   CLI.OutVals.clear();
9125   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9126     SmallVector<EVT, 4> ValueVTs;
9127     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9128     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9129     Type *FinalType = Args[i].Ty;
9130     if (Args[i].IsByVal)
9131       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
9132     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9133         FinalType, CLI.CallConv, CLI.IsVarArg);
9134     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9135          ++Value) {
9136       EVT VT = ValueVTs[Value];
9137       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9138       SDValue Op = SDValue(Args[i].Node.getNode(),
9139                            Args[i].Node.getResNo() + Value);
9140       ISD::ArgFlagsTy Flags;
9141 
9142       // Certain targets (such as MIPS), may have a different ABI alignment
9143       // for a type depending on the context. Give the target a chance to
9144       // specify the alignment it wants.
9145       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9146 
9147       if (Args[i].Ty->isPointerTy()) {
9148         Flags.setPointer();
9149         Flags.setPointerAddrSpace(
9150             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9151       }
9152       if (Args[i].IsZExt)
9153         Flags.setZExt();
9154       if (Args[i].IsSExt)
9155         Flags.setSExt();
9156       if (Args[i].IsInReg) {
9157         // If we are using vectorcall calling convention, a structure that is
9158         // passed InReg - is surely an HVA
9159         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9160             isa<StructType>(FinalType)) {
9161           // The first value of a structure is marked
9162           if (0 == Value)
9163             Flags.setHvaStart();
9164           Flags.setHva();
9165         }
9166         // Set InReg Flag
9167         Flags.setInReg();
9168       }
9169       if (Args[i].IsSRet)
9170         Flags.setSRet();
9171       if (Args[i].IsSwiftSelf)
9172         Flags.setSwiftSelf();
9173       if (Args[i].IsSwiftError)
9174         Flags.setSwiftError();
9175       if (Args[i].IsCFGuardTarget)
9176         Flags.setCFGuardTarget();
9177       if (Args[i].IsByVal)
9178         Flags.setByVal();
9179       if (Args[i].IsInAlloca) {
9180         Flags.setInAlloca();
9181         // Set the byval flag for CCAssignFn callbacks that don't know about
9182         // inalloca.  This way we can know how many bytes we should've allocated
9183         // and how many bytes a callee cleanup function will pop.  If we port
9184         // inalloca to more targets, we'll have to add custom inalloca handling
9185         // in the various CC lowering callbacks.
9186         Flags.setByVal();
9187       }
9188       if (Args[i].IsByVal || Args[i].IsInAlloca) {
9189         PointerType *Ty = cast<PointerType>(Args[i].Ty);
9190         Type *ElementTy = Ty->getElementType();
9191 
9192         unsigned FrameSize = DL.getTypeAllocSize(
9193             Args[i].ByValType ? Args[i].ByValType : ElementTy);
9194         Flags.setByValSize(FrameSize);
9195 
9196         // info is not there but there are cases it cannot get right.
9197         unsigned FrameAlign;
9198         if (Args[i].Alignment)
9199           FrameAlign = Args[i].Alignment;
9200         else
9201           FrameAlign = getByValTypeAlignment(ElementTy, DL);
9202         Flags.setByValAlign(Align(FrameAlign));
9203       }
9204       if (Args[i].IsNest)
9205         Flags.setNest();
9206       if (NeedsRegBlock)
9207         Flags.setInConsecutiveRegs();
9208       Flags.setOrigAlign(OriginalAlignment);
9209 
9210       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9211                                                  CLI.CallConv, VT);
9212       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9213                                                         CLI.CallConv, VT);
9214       SmallVector<SDValue, 4> Parts(NumParts);
9215       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9216 
9217       if (Args[i].IsSExt)
9218         ExtendKind = ISD::SIGN_EXTEND;
9219       else if (Args[i].IsZExt)
9220         ExtendKind = ISD::ZERO_EXTEND;
9221 
9222       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9223       // for now.
9224       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9225           CanLowerReturn) {
9226         assert((CLI.RetTy == Args[i].Ty ||
9227                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9228                  CLI.RetTy->getPointerAddressSpace() ==
9229                      Args[i].Ty->getPointerAddressSpace())) &&
9230                RetTys.size() == NumValues && "unexpected use of 'returned'");
9231         // Before passing 'returned' to the target lowering code, ensure that
9232         // either the register MVT and the actual EVT are the same size or that
9233         // the return value and argument are extended in the same way; in these
9234         // cases it's safe to pass the argument register value unchanged as the
9235         // return register value (although it's at the target's option whether
9236         // to do so)
9237         // TODO: allow code generation to take advantage of partially preserved
9238         // registers rather than clobbering the entire register when the
9239         // parameter extension method is not compatible with the return
9240         // extension method
9241         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9242             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9243              CLI.RetZExt == Args[i].IsZExt))
9244           Flags.setReturned();
9245       }
9246 
9247       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
9248                      CLI.CS.getInstruction(), CLI.CallConv, ExtendKind);
9249 
9250       for (unsigned j = 0; j != NumParts; ++j) {
9251         // if it isn't first piece, alignment must be 1
9252         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9253                                i < CLI.NumFixedArgs,
9254                                i, j*Parts[j].getValueType().getStoreSize());
9255         if (NumParts > 1 && j == 0)
9256           MyFlags.Flags.setSplit();
9257         else if (j != 0) {
9258           MyFlags.Flags.setOrigAlign(Align::None());
9259           if (j == NumParts - 1)
9260             MyFlags.Flags.setSplitEnd();
9261         }
9262 
9263         CLI.Outs.push_back(MyFlags);
9264         CLI.OutVals.push_back(Parts[j]);
9265       }
9266 
9267       if (NeedsRegBlock && Value == NumValues - 1)
9268         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9269     }
9270   }
9271 
9272   SmallVector<SDValue, 4> InVals;
9273   CLI.Chain = LowerCall(CLI, InVals);
9274 
9275   // Update CLI.InVals to use outside of this function.
9276   CLI.InVals = InVals;
9277 
9278   // Verify that the target's LowerCall behaved as expected.
9279   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9280          "LowerCall didn't return a valid chain!");
9281   assert((!CLI.IsTailCall || InVals.empty()) &&
9282          "LowerCall emitted a return value for a tail call!");
9283   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9284          "LowerCall didn't emit the correct number of values!");
9285 
9286   // For a tail call, the return value is merely live-out and there aren't
9287   // any nodes in the DAG representing it. Return a special value to
9288   // indicate that a tail call has been emitted and no more Instructions
9289   // should be processed in the current block.
9290   if (CLI.IsTailCall) {
9291     CLI.DAG.setRoot(CLI.Chain);
9292     return std::make_pair(SDValue(), SDValue());
9293   }
9294 
9295 #ifndef NDEBUG
9296   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9297     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9298     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9299            "LowerCall emitted a value with the wrong type!");
9300   }
9301 #endif
9302 
9303   SmallVector<SDValue, 4> ReturnValues;
9304   if (!CanLowerReturn) {
9305     // The instruction result is the result of loading from the
9306     // hidden sret parameter.
9307     SmallVector<EVT, 1> PVTs;
9308     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9309 
9310     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9311     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9312     EVT PtrVT = PVTs[0];
9313 
9314     unsigned NumValues = RetTys.size();
9315     ReturnValues.resize(NumValues);
9316     SmallVector<SDValue, 4> Chains(NumValues);
9317 
9318     // An aggregate return value cannot wrap around the address space, so
9319     // offsets to its parts don't wrap either.
9320     SDNodeFlags Flags;
9321     Flags.setNoUnsignedWrap(true);
9322 
9323     for (unsigned i = 0; i < NumValues; ++i) {
9324       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9325                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9326                                                         PtrVT), Flags);
9327       SDValue L = CLI.DAG.getLoad(
9328           RetTys[i], CLI.DL, CLI.Chain, Add,
9329           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9330                                             DemoteStackIdx, Offsets[i]),
9331           /* Alignment = */ 1);
9332       ReturnValues[i] = L;
9333       Chains[i] = L.getValue(1);
9334     }
9335 
9336     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9337   } else {
9338     // Collect the legal value parts into potentially illegal values
9339     // that correspond to the original function's return values.
9340     Optional<ISD::NodeType> AssertOp;
9341     if (CLI.RetSExt)
9342       AssertOp = ISD::AssertSext;
9343     else if (CLI.RetZExt)
9344       AssertOp = ISD::AssertZext;
9345     unsigned CurReg = 0;
9346     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9347       EVT VT = RetTys[I];
9348       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9349                                                      CLI.CallConv, VT);
9350       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9351                                                        CLI.CallConv, VT);
9352 
9353       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9354                                               NumRegs, RegisterVT, VT, nullptr,
9355                                               CLI.CallConv, AssertOp));
9356       CurReg += NumRegs;
9357     }
9358 
9359     // For a function returning void, there is no return value. We can't create
9360     // such a node, so we just return a null return value in that case. In
9361     // that case, nothing will actually look at the value.
9362     if (ReturnValues.empty())
9363       return std::make_pair(SDValue(), CLI.Chain);
9364   }
9365 
9366   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9367                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9368   return std::make_pair(Res, CLI.Chain);
9369 }
9370 
9371 void TargetLowering::LowerOperationWrapper(SDNode *N,
9372                                            SmallVectorImpl<SDValue> &Results,
9373                                            SelectionDAG &DAG) const {
9374   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
9375     Results.push_back(Res);
9376 }
9377 
9378 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9379   llvm_unreachable("LowerOperation not implemented for this target!");
9380 }
9381 
9382 void
9383 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9384   SDValue Op = getNonRegisterValue(V);
9385   assert((Op.getOpcode() != ISD::CopyFromReg ||
9386           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9387          "Copy from a reg to the same reg!");
9388   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9389 
9390   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9391   // If this is an InlineAsm we have to match the registers required, not the
9392   // notional registers required by the type.
9393 
9394   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9395                    None); // This is not an ABI copy.
9396   SDValue Chain = DAG.getEntryNode();
9397 
9398   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9399                               FuncInfo.PreferredExtendType.end())
9400                                  ? ISD::ANY_EXTEND
9401                                  : FuncInfo.PreferredExtendType[V];
9402   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9403   PendingExports.push_back(Chain);
9404 }
9405 
9406 #include "llvm/CodeGen/SelectionDAGISel.h"
9407 
9408 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9409 /// entry block, return true.  This includes arguments used by switches, since
9410 /// the switch may expand into multiple basic blocks.
9411 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9412   // With FastISel active, we may be splitting blocks, so force creation
9413   // of virtual registers for all non-dead arguments.
9414   if (FastISel)
9415     return A->use_empty();
9416 
9417   const BasicBlock &Entry = A->getParent()->front();
9418   for (const User *U : A->users())
9419     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9420       return false;  // Use not in entry block.
9421 
9422   return true;
9423 }
9424 
9425 using ArgCopyElisionMapTy =
9426     DenseMap<const Argument *,
9427              std::pair<const AllocaInst *, const StoreInst *>>;
9428 
9429 /// Scan the entry block of the function in FuncInfo for arguments that look
9430 /// like copies into a local alloca. Record any copied arguments in
9431 /// ArgCopyElisionCandidates.
9432 static void
9433 findArgumentCopyElisionCandidates(const DataLayout &DL,
9434                                   FunctionLoweringInfo *FuncInfo,
9435                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9436   // Record the state of every static alloca used in the entry block. Argument
9437   // allocas are all used in the entry block, so we need approximately as many
9438   // entries as we have arguments.
9439   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9440   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9441   unsigned NumArgs = FuncInfo->Fn->arg_size();
9442   StaticAllocas.reserve(NumArgs * 2);
9443 
9444   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9445     if (!V)
9446       return nullptr;
9447     V = V->stripPointerCasts();
9448     const auto *AI = dyn_cast<AllocaInst>(V);
9449     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9450       return nullptr;
9451     auto Iter = StaticAllocas.insert({AI, Unknown});
9452     return &Iter.first->second;
9453   };
9454 
9455   // Look for stores of arguments to static allocas. Look through bitcasts and
9456   // GEPs to handle type coercions, as long as the alloca is fully initialized
9457   // by the store. Any non-store use of an alloca escapes it and any subsequent
9458   // unanalyzed store might write it.
9459   // FIXME: Handle structs initialized with multiple stores.
9460   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9461     // Look for stores, and handle non-store uses conservatively.
9462     const auto *SI = dyn_cast<StoreInst>(&I);
9463     if (!SI) {
9464       // We will look through cast uses, so ignore them completely.
9465       if (I.isCast())
9466         continue;
9467       // Ignore debug info intrinsics, they don't escape or store to allocas.
9468       if (isa<DbgInfoIntrinsic>(I))
9469         continue;
9470       // This is an unknown instruction. Assume it escapes or writes to all
9471       // static alloca operands.
9472       for (const Use &U : I.operands()) {
9473         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9474           *Info = StaticAllocaInfo::Clobbered;
9475       }
9476       continue;
9477     }
9478 
9479     // If the stored value is a static alloca, mark it as escaped.
9480     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9481       *Info = StaticAllocaInfo::Clobbered;
9482 
9483     // Check if the destination is a static alloca.
9484     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9485     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9486     if (!Info)
9487       continue;
9488     const AllocaInst *AI = cast<AllocaInst>(Dst);
9489 
9490     // Skip allocas that have been initialized or clobbered.
9491     if (*Info != StaticAllocaInfo::Unknown)
9492       continue;
9493 
9494     // Check if the stored value is an argument, and that this store fully
9495     // initializes the alloca. Don't elide copies from the same argument twice.
9496     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9497     const auto *Arg = dyn_cast<Argument>(Val);
9498     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
9499         Arg->getType()->isEmptyTy() ||
9500         DL.getTypeStoreSize(Arg->getType()) !=
9501             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9502         ArgCopyElisionCandidates.count(Arg)) {
9503       *Info = StaticAllocaInfo::Clobbered;
9504       continue;
9505     }
9506 
9507     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9508                       << '\n');
9509 
9510     // Mark this alloca and store for argument copy elision.
9511     *Info = StaticAllocaInfo::Elidable;
9512     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9513 
9514     // Stop scanning if we've seen all arguments. This will happen early in -O0
9515     // builds, which is useful, because -O0 builds have large entry blocks and
9516     // many allocas.
9517     if (ArgCopyElisionCandidates.size() == NumArgs)
9518       break;
9519   }
9520 }
9521 
9522 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9523 /// ArgVal is a load from a suitable fixed stack object.
9524 static void tryToElideArgumentCopy(
9525     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
9526     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9527     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9528     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9529     SDValue ArgVal, bool &ArgHasUses) {
9530   // Check if this is a load from a fixed stack object.
9531   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9532   if (!LNode)
9533     return;
9534   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9535   if (!FINode)
9536     return;
9537 
9538   // Check that the fixed stack object is the right size and alignment.
9539   // Look at the alignment that the user wrote on the alloca instead of looking
9540   // at the stack object.
9541   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9542   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9543   const AllocaInst *AI = ArgCopyIter->second.first;
9544   int FixedIndex = FINode->getIndex();
9545   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
9546   int OldIndex = AllocaIndex;
9547   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
9548   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9549     LLVM_DEBUG(
9550         dbgs() << "  argument copy elision failed due to bad fixed stack "
9551                   "object size\n");
9552     return;
9553   }
9554   unsigned RequiredAlignment = AI->getAlignment();
9555   if (!RequiredAlignment) {
9556     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
9557         AI->getAllocatedType());
9558   }
9559   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
9560     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9561                          "greater than stack argument alignment ("
9562                       << RequiredAlignment << " vs "
9563                       << MFI.getObjectAlignment(FixedIndex) << ")\n");
9564     return;
9565   }
9566 
9567   // Perform the elision. Delete the old stack object and replace its only use
9568   // in the variable info map. Mark the stack object as mutable.
9569   LLVM_DEBUG({
9570     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9571            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9572            << '\n';
9573   });
9574   MFI.RemoveStackObject(OldIndex);
9575   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9576   AllocaIndex = FixedIndex;
9577   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9578   Chains.push_back(ArgVal.getValue(1));
9579 
9580   // Avoid emitting code for the store implementing the copy.
9581   const StoreInst *SI = ArgCopyIter->second.second;
9582   ElidedArgCopyInstrs.insert(SI);
9583 
9584   // Check for uses of the argument again so that we can avoid exporting ArgVal
9585   // if it is't used by anything other than the store.
9586   for (const Value *U : Arg.users()) {
9587     if (U != SI) {
9588       ArgHasUses = true;
9589       break;
9590     }
9591   }
9592 }
9593 
9594 void SelectionDAGISel::LowerArguments(const Function &F) {
9595   SelectionDAG &DAG = SDB->DAG;
9596   SDLoc dl = SDB->getCurSDLoc();
9597   const DataLayout &DL = DAG.getDataLayout();
9598   SmallVector<ISD::InputArg, 16> Ins;
9599 
9600   if (!FuncInfo->CanLowerReturn) {
9601     // Put in an sret pointer parameter before all the other parameters.
9602     SmallVector<EVT, 1> ValueVTs;
9603     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9604                     F.getReturnType()->getPointerTo(
9605                         DAG.getDataLayout().getAllocaAddrSpace()),
9606                     ValueVTs);
9607 
9608     // NOTE: Assuming that a pointer will never break down to more than one VT
9609     // or one register.
9610     ISD::ArgFlagsTy Flags;
9611     Flags.setSRet();
9612     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9613     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9614                          ISD::InputArg::NoArgIndex, 0);
9615     Ins.push_back(RetArg);
9616   }
9617 
9618   // Look for stores of arguments to static allocas. Mark such arguments with a
9619   // flag to ask the target to give us the memory location of that argument if
9620   // available.
9621   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9622   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
9623 
9624   // Set up the incoming argument description vector.
9625   for (const Argument &Arg : F.args()) {
9626     unsigned ArgNo = Arg.getArgNo();
9627     SmallVector<EVT, 4> ValueVTs;
9628     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9629     bool isArgValueUsed = !Arg.use_empty();
9630     unsigned PartBase = 0;
9631     Type *FinalType = Arg.getType();
9632     if (Arg.hasAttribute(Attribute::ByVal))
9633       FinalType = Arg.getParamByValType();
9634     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9635         FinalType, F.getCallingConv(), F.isVarArg());
9636     for (unsigned Value = 0, NumValues = ValueVTs.size();
9637          Value != NumValues; ++Value) {
9638       EVT VT = ValueVTs[Value];
9639       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9640       ISD::ArgFlagsTy Flags;
9641 
9642       // Certain targets (such as MIPS), may have a different ABI alignment
9643       // for a type depending on the context. Give the target a chance to
9644       // specify the alignment it wants.
9645       const Align OriginalAlignment(
9646           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
9647 
9648       if (Arg.getType()->isPointerTy()) {
9649         Flags.setPointer();
9650         Flags.setPointerAddrSpace(
9651             cast<PointerType>(Arg.getType())->getAddressSpace());
9652       }
9653       if (Arg.hasAttribute(Attribute::ZExt))
9654         Flags.setZExt();
9655       if (Arg.hasAttribute(Attribute::SExt))
9656         Flags.setSExt();
9657       if (Arg.hasAttribute(Attribute::InReg)) {
9658         // If we are using vectorcall calling convention, a structure that is
9659         // passed InReg - is surely an HVA
9660         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9661             isa<StructType>(Arg.getType())) {
9662           // The first value of a structure is marked
9663           if (0 == Value)
9664             Flags.setHvaStart();
9665           Flags.setHva();
9666         }
9667         // Set InReg Flag
9668         Flags.setInReg();
9669       }
9670       if (Arg.hasAttribute(Attribute::StructRet))
9671         Flags.setSRet();
9672       if (Arg.hasAttribute(Attribute::SwiftSelf))
9673         Flags.setSwiftSelf();
9674       if (Arg.hasAttribute(Attribute::SwiftError))
9675         Flags.setSwiftError();
9676       if (Arg.hasAttribute(Attribute::ByVal))
9677         Flags.setByVal();
9678       if (Arg.hasAttribute(Attribute::InAlloca)) {
9679         Flags.setInAlloca();
9680         // Set the byval flag for CCAssignFn callbacks that don't know about
9681         // inalloca.  This way we can know how many bytes we should've allocated
9682         // and how many bytes a callee cleanup function will pop.  If we port
9683         // inalloca to more targets, we'll have to add custom inalloca handling
9684         // in the various CC lowering callbacks.
9685         Flags.setByVal();
9686       }
9687       if (F.getCallingConv() == CallingConv::X86_INTR) {
9688         // IA Interrupt passes frame (1st parameter) by value in the stack.
9689         if (ArgNo == 0)
9690           Flags.setByVal();
9691       }
9692       if (Flags.isByVal() || Flags.isInAlloca()) {
9693         Type *ElementTy = Arg.getParamByValType();
9694 
9695         // For ByVal, size and alignment should be passed from FE.  BE will
9696         // guess if this info is not there but there are cases it cannot get
9697         // right.
9698         unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType());
9699         Flags.setByValSize(FrameSize);
9700 
9701         unsigned FrameAlign;
9702         if (Arg.getParamAlignment())
9703           FrameAlign = Arg.getParamAlignment();
9704         else
9705           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9706         Flags.setByValAlign(Align(FrameAlign));
9707       }
9708       if (Arg.hasAttribute(Attribute::Nest))
9709         Flags.setNest();
9710       if (NeedsRegBlock)
9711         Flags.setInConsecutiveRegs();
9712       Flags.setOrigAlign(OriginalAlignment);
9713       if (ArgCopyElisionCandidates.count(&Arg))
9714         Flags.setCopyElisionCandidate();
9715       if (Arg.hasAttribute(Attribute::Returned))
9716         Flags.setReturned();
9717 
9718       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9719           *CurDAG->getContext(), F.getCallingConv(), VT);
9720       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9721           *CurDAG->getContext(), F.getCallingConv(), VT);
9722       for (unsigned i = 0; i != NumRegs; ++i) {
9723         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9724                               ArgNo, PartBase+i*RegisterVT.getStoreSize());
9725         if (NumRegs > 1 && i == 0)
9726           MyFlags.Flags.setSplit();
9727         // if it isn't first piece, alignment must be 1
9728         else if (i > 0) {
9729           MyFlags.Flags.setOrigAlign(Align::None());
9730           if (i == NumRegs - 1)
9731             MyFlags.Flags.setSplitEnd();
9732         }
9733         Ins.push_back(MyFlags);
9734       }
9735       if (NeedsRegBlock && Value == NumValues - 1)
9736         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9737       PartBase += VT.getStoreSize();
9738     }
9739   }
9740 
9741   // Call the target to set up the argument values.
9742   SmallVector<SDValue, 8> InVals;
9743   SDValue NewRoot = TLI->LowerFormalArguments(
9744       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9745 
9746   // Verify that the target's LowerFormalArguments behaved as expected.
9747   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9748          "LowerFormalArguments didn't return a valid chain!");
9749   assert(InVals.size() == Ins.size() &&
9750          "LowerFormalArguments didn't emit the correct number of values!");
9751   LLVM_DEBUG({
9752     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9753       assert(InVals[i].getNode() &&
9754              "LowerFormalArguments emitted a null value!");
9755       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9756              "LowerFormalArguments emitted a value with the wrong type!");
9757     }
9758   });
9759 
9760   // Update the DAG with the new chain value resulting from argument lowering.
9761   DAG.setRoot(NewRoot);
9762 
9763   // Set up the argument values.
9764   unsigned i = 0;
9765   if (!FuncInfo->CanLowerReturn) {
9766     // Create a virtual register for the sret pointer, and put in a copy
9767     // from the sret argument into it.
9768     SmallVector<EVT, 1> ValueVTs;
9769     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9770                     F.getReturnType()->getPointerTo(
9771                         DAG.getDataLayout().getAllocaAddrSpace()),
9772                     ValueVTs);
9773     MVT VT = ValueVTs[0].getSimpleVT();
9774     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9775     Optional<ISD::NodeType> AssertOp = None;
9776     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9777                                         nullptr, F.getCallingConv(), AssertOp);
9778 
9779     MachineFunction& MF = SDB->DAG.getMachineFunction();
9780     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9781     Register SRetReg =
9782         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9783     FuncInfo->DemoteRegister = SRetReg;
9784     NewRoot =
9785         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9786     DAG.setRoot(NewRoot);
9787 
9788     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9789     ++i;
9790   }
9791 
9792   SmallVector<SDValue, 4> Chains;
9793   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9794   for (const Argument &Arg : F.args()) {
9795     SmallVector<SDValue, 4> ArgValues;
9796     SmallVector<EVT, 4> ValueVTs;
9797     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9798     unsigned NumValues = ValueVTs.size();
9799     if (NumValues == 0)
9800       continue;
9801 
9802     bool ArgHasUses = !Arg.use_empty();
9803 
9804     // Elide the copying store if the target loaded this argument from a
9805     // suitable fixed stack object.
9806     if (Ins[i].Flags.isCopyElisionCandidate()) {
9807       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9808                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9809                              InVals[i], ArgHasUses);
9810     }
9811 
9812     // If this argument is unused then remember its value. It is used to generate
9813     // debugging information.
9814     bool isSwiftErrorArg =
9815         TLI->supportSwiftError() &&
9816         Arg.hasAttribute(Attribute::SwiftError);
9817     if (!ArgHasUses && !isSwiftErrorArg) {
9818       SDB->setUnusedArgValue(&Arg, InVals[i]);
9819 
9820       // Also remember any frame index for use in FastISel.
9821       if (FrameIndexSDNode *FI =
9822           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9823         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9824     }
9825 
9826     for (unsigned Val = 0; Val != NumValues; ++Val) {
9827       EVT VT = ValueVTs[Val];
9828       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9829                                                       F.getCallingConv(), VT);
9830       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9831           *CurDAG->getContext(), F.getCallingConv(), VT);
9832 
9833       // Even an apparent 'unused' swifterror argument needs to be returned. So
9834       // we do generate a copy for it that can be used on return from the
9835       // function.
9836       if (ArgHasUses || isSwiftErrorArg) {
9837         Optional<ISD::NodeType> AssertOp;
9838         if (Arg.hasAttribute(Attribute::SExt))
9839           AssertOp = ISD::AssertSext;
9840         else if (Arg.hasAttribute(Attribute::ZExt))
9841           AssertOp = ISD::AssertZext;
9842 
9843         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9844                                              PartVT, VT, nullptr,
9845                                              F.getCallingConv(), AssertOp));
9846       }
9847 
9848       i += NumParts;
9849     }
9850 
9851     // We don't need to do anything else for unused arguments.
9852     if (ArgValues.empty())
9853       continue;
9854 
9855     // Note down frame index.
9856     if (FrameIndexSDNode *FI =
9857         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9858       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9859 
9860     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9861                                      SDB->getCurSDLoc());
9862 
9863     SDB->setValue(&Arg, Res);
9864     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9865       // We want to associate the argument with the frame index, among
9866       // involved operands, that correspond to the lowest address. The
9867       // getCopyFromParts function, called earlier, is swapping the order of
9868       // the operands to BUILD_PAIR depending on endianness. The result of
9869       // that swapping is that the least significant bits of the argument will
9870       // be in the first operand of the BUILD_PAIR node, and the most
9871       // significant bits will be in the second operand.
9872       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9873       if (LoadSDNode *LNode =
9874           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9875         if (FrameIndexSDNode *FI =
9876             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9877           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9878     }
9879 
9880     // Analyses past this point are naive and don't expect an assertion.
9881     if (Res.getOpcode() == ISD::AssertZext)
9882       Res = Res.getOperand(0);
9883 
9884     // Update the SwiftErrorVRegDefMap.
9885     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9886       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9887       if (Register::isVirtualRegister(Reg))
9888         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
9889                                    Reg);
9890     }
9891 
9892     // If this argument is live outside of the entry block, insert a copy from
9893     // wherever we got it to the vreg that other BB's will reference it as.
9894     if (Res.getOpcode() == ISD::CopyFromReg) {
9895       // If we can, though, try to skip creating an unnecessary vreg.
9896       // FIXME: This isn't very clean... it would be nice to make this more
9897       // general.
9898       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9899       if (Register::isVirtualRegister(Reg)) {
9900         FuncInfo->ValueMap[&Arg] = Reg;
9901         continue;
9902       }
9903     }
9904     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9905       FuncInfo->InitializeRegForValue(&Arg);
9906       SDB->CopyToExportRegsIfNeeded(&Arg);
9907     }
9908   }
9909 
9910   if (!Chains.empty()) {
9911     Chains.push_back(NewRoot);
9912     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9913   }
9914 
9915   DAG.setRoot(NewRoot);
9916 
9917   assert(i == InVals.size() && "Argument register count mismatch!");
9918 
9919   // If any argument copy elisions occurred and we have debug info, update the
9920   // stale frame indices used in the dbg.declare variable info table.
9921   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9922   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9923     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9924       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9925       if (I != ArgCopyElisionFrameIndexMap.end())
9926         VI.Slot = I->second;
9927     }
9928   }
9929 
9930   // Finally, if the target has anything special to do, allow it to do so.
9931   EmitFunctionEntryCode();
9932 }
9933 
9934 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9935 /// ensure constants are generated when needed.  Remember the virtual registers
9936 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9937 /// directly add them, because expansion might result in multiple MBB's for one
9938 /// BB.  As such, the start of the BB might correspond to a different MBB than
9939 /// the end.
9940 void
9941 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9942   const Instruction *TI = LLVMBB->getTerminator();
9943 
9944   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9945 
9946   // Check PHI nodes in successors that expect a value to be available from this
9947   // block.
9948   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9949     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9950     if (!isa<PHINode>(SuccBB->begin())) continue;
9951     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9952 
9953     // If this terminator has multiple identical successors (common for
9954     // switches), only handle each succ once.
9955     if (!SuccsHandled.insert(SuccMBB).second)
9956       continue;
9957 
9958     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9959 
9960     // At this point we know that there is a 1-1 correspondence between LLVM PHI
9961     // nodes and Machine PHI nodes, but the incoming operands have not been
9962     // emitted yet.
9963     for (const PHINode &PN : SuccBB->phis()) {
9964       // Ignore dead phi's.
9965       if (PN.use_empty())
9966         continue;
9967 
9968       // Skip empty types
9969       if (PN.getType()->isEmptyTy())
9970         continue;
9971 
9972       unsigned Reg;
9973       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9974 
9975       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9976         unsigned &RegOut = ConstantsOut[C];
9977         if (RegOut == 0) {
9978           RegOut = FuncInfo.CreateRegs(C);
9979           CopyValueToVirtualRegister(C, RegOut);
9980         }
9981         Reg = RegOut;
9982       } else {
9983         DenseMap<const Value *, unsigned>::iterator I =
9984           FuncInfo.ValueMap.find(PHIOp);
9985         if (I != FuncInfo.ValueMap.end())
9986           Reg = I->second;
9987         else {
9988           assert(isa<AllocaInst>(PHIOp) &&
9989                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9990                  "Didn't codegen value into a register!??");
9991           Reg = FuncInfo.CreateRegs(PHIOp);
9992           CopyValueToVirtualRegister(PHIOp, Reg);
9993         }
9994       }
9995 
9996       // Remember that this register needs to added to the machine PHI node as
9997       // the input for this MBB.
9998       SmallVector<EVT, 4> ValueVTs;
9999       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10000       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10001       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10002         EVT VT = ValueVTs[vti];
10003         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10004         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10005           FuncInfo.PHINodesToUpdate.push_back(
10006               std::make_pair(&*MBBI++, Reg + i));
10007         Reg += NumRegisters;
10008       }
10009     }
10010   }
10011 
10012   ConstantsOut.clear();
10013 }
10014 
10015 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
10016 /// is 0.
10017 MachineBasicBlock *
10018 SelectionDAGBuilder::StackProtectorDescriptor::
10019 AddSuccessorMBB(const BasicBlock *BB,
10020                 MachineBasicBlock *ParentMBB,
10021                 bool IsLikely,
10022                 MachineBasicBlock *SuccMBB) {
10023   // If SuccBB has not been created yet, create it.
10024   if (!SuccMBB) {
10025     MachineFunction *MF = ParentMBB->getParent();
10026     MachineFunction::iterator BBI(ParentMBB);
10027     SuccMBB = MF->CreateMachineBasicBlock(BB);
10028     MF->insert(++BBI, SuccMBB);
10029   }
10030   // Add it as a successor of ParentMBB.
10031   ParentMBB->addSuccessor(
10032       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
10033   return SuccMBB;
10034 }
10035 
10036 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10037   MachineFunction::iterator I(MBB);
10038   if (++I == FuncInfo.MF->end())
10039     return nullptr;
10040   return &*I;
10041 }
10042 
10043 /// During lowering new call nodes can be created (such as memset, etc.).
10044 /// Those will become new roots of the current DAG, but complications arise
10045 /// when they are tail calls. In such cases, the call lowering will update
10046 /// the root, but the builder still needs to know that a tail call has been
10047 /// lowered in order to avoid generating an additional return.
10048 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10049   // If the node is null, we do have a tail call.
10050   if (MaybeTC.getNode() != nullptr)
10051     DAG.setRoot(MaybeTC);
10052   else
10053     HasTailCall = true;
10054 }
10055 
10056 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10057                                         MachineBasicBlock *SwitchMBB,
10058                                         MachineBasicBlock *DefaultMBB) {
10059   MachineFunction *CurMF = FuncInfo.MF;
10060   MachineBasicBlock *NextMBB = nullptr;
10061   MachineFunction::iterator BBI(W.MBB);
10062   if (++BBI != FuncInfo.MF->end())
10063     NextMBB = &*BBI;
10064 
10065   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10066 
10067   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10068 
10069   if (Size == 2 && W.MBB == SwitchMBB) {
10070     // If any two of the cases has the same destination, and if one value
10071     // is the same as the other, but has one bit unset that the other has set,
10072     // use bit manipulation to do two compares at once.  For example:
10073     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10074     // TODO: This could be extended to merge any 2 cases in switches with 3
10075     // cases.
10076     // TODO: Handle cases where W.CaseBB != SwitchBB.
10077     CaseCluster &Small = *W.FirstCluster;
10078     CaseCluster &Big = *W.LastCluster;
10079 
10080     if (Small.Low == Small.High && Big.Low == Big.High &&
10081         Small.MBB == Big.MBB) {
10082       const APInt &SmallValue = Small.Low->getValue();
10083       const APInt &BigValue = Big.Low->getValue();
10084 
10085       // Check that there is only one bit different.
10086       APInt CommonBit = BigValue ^ SmallValue;
10087       if (CommonBit.isPowerOf2()) {
10088         SDValue CondLHS = getValue(Cond);
10089         EVT VT = CondLHS.getValueType();
10090         SDLoc DL = getCurSDLoc();
10091 
10092         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10093                                  DAG.getConstant(CommonBit, DL, VT));
10094         SDValue Cond = DAG.getSetCC(
10095             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10096             ISD::SETEQ);
10097 
10098         // Update successor info.
10099         // Both Small and Big will jump to Small.BB, so we sum up the
10100         // probabilities.
10101         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10102         if (BPI)
10103           addSuccessorWithProb(
10104               SwitchMBB, DefaultMBB,
10105               // The default destination is the first successor in IR.
10106               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10107         else
10108           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10109 
10110         // Insert the true branch.
10111         SDValue BrCond =
10112             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10113                         DAG.getBasicBlock(Small.MBB));
10114         // Insert the false branch.
10115         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10116                              DAG.getBasicBlock(DefaultMBB));
10117 
10118         DAG.setRoot(BrCond);
10119         return;
10120       }
10121     }
10122   }
10123 
10124   if (TM.getOptLevel() != CodeGenOpt::None) {
10125     // Here, we order cases by probability so the most likely case will be
10126     // checked first. However, two clusters can have the same probability in
10127     // which case their relative ordering is non-deterministic. So we use Low
10128     // as a tie-breaker as clusters are guaranteed to never overlap.
10129     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10130                [](const CaseCluster &a, const CaseCluster &b) {
10131       return a.Prob != b.Prob ?
10132              a.Prob > b.Prob :
10133              a.Low->getValue().slt(b.Low->getValue());
10134     });
10135 
10136     // Rearrange the case blocks so that the last one falls through if possible
10137     // without changing the order of probabilities.
10138     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10139       --I;
10140       if (I->Prob > W.LastCluster->Prob)
10141         break;
10142       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10143         std::swap(*I, *W.LastCluster);
10144         break;
10145       }
10146     }
10147   }
10148 
10149   // Compute total probability.
10150   BranchProbability DefaultProb = W.DefaultProb;
10151   BranchProbability UnhandledProbs = DefaultProb;
10152   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10153     UnhandledProbs += I->Prob;
10154 
10155   MachineBasicBlock *CurMBB = W.MBB;
10156   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10157     bool FallthroughUnreachable = false;
10158     MachineBasicBlock *Fallthrough;
10159     if (I == W.LastCluster) {
10160       // For the last cluster, fall through to the default destination.
10161       Fallthrough = DefaultMBB;
10162       FallthroughUnreachable = isa<UnreachableInst>(
10163           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10164     } else {
10165       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10166       CurMF->insert(BBI, Fallthrough);
10167       // Put Cond in a virtual register to make it available from the new blocks.
10168       ExportFromCurrentBlock(Cond);
10169     }
10170     UnhandledProbs -= I->Prob;
10171 
10172     switch (I->Kind) {
10173       case CC_JumpTable: {
10174         // FIXME: Optimize away range check based on pivot comparisons.
10175         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10176         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10177 
10178         // The jump block hasn't been inserted yet; insert it here.
10179         MachineBasicBlock *JumpMBB = JT->MBB;
10180         CurMF->insert(BBI, JumpMBB);
10181 
10182         auto JumpProb = I->Prob;
10183         auto FallthroughProb = UnhandledProbs;
10184 
10185         // If the default statement is a target of the jump table, we evenly
10186         // distribute the default probability to successors of CurMBB. Also
10187         // update the probability on the edge from JumpMBB to Fallthrough.
10188         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10189                                               SE = JumpMBB->succ_end();
10190              SI != SE; ++SI) {
10191           if (*SI == DefaultMBB) {
10192             JumpProb += DefaultProb / 2;
10193             FallthroughProb -= DefaultProb / 2;
10194             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10195             JumpMBB->normalizeSuccProbs();
10196             break;
10197           }
10198         }
10199 
10200         if (FallthroughUnreachable) {
10201           // Skip the range check if the fallthrough block is unreachable.
10202           JTH->OmitRangeCheck = true;
10203         }
10204 
10205         if (!JTH->OmitRangeCheck)
10206           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10207         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10208         CurMBB->normalizeSuccProbs();
10209 
10210         // The jump table header will be inserted in our current block, do the
10211         // range check, and fall through to our fallthrough block.
10212         JTH->HeaderBB = CurMBB;
10213         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10214 
10215         // If we're in the right place, emit the jump table header right now.
10216         if (CurMBB == SwitchMBB) {
10217           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10218           JTH->Emitted = true;
10219         }
10220         break;
10221       }
10222       case CC_BitTests: {
10223         // FIXME: Optimize away range check based on pivot comparisons.
10224         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10225 
10226         // The bit test blocks haven't been inserted yet; insert them here.
10227         for (BitTestCase &BTC : BTB->Cases)
10228           CurMF->insert(BBI, BTC.ThisBB);
10229 
10230         // Fill in fields of the BitTestBlock.
10231         BTB->Parent = CurMBB;
10232         BTB->Default = Fallthrough;
10233 
10234         BTB->DefaultProb = UnhandledProbs;
10235         // If the cases in bit test don't form a contiguous range, we evenly
10236         // distribute the probability on the edge to Fallthrough to two
10237         // successors of CurMBB.
10238         if (!BTB->ContiguousRange) {
10239           BTB->Prob += DefaultProb / 2;
10240           BTB->DefaultProb -= DefaultProb / 2;
10241         }
10242 
10243         if (FallthroughUnreachable) {
10244           // Skip the range check if the fallthrough block is unreachable.
10245           BTB->OmitRangeCheck = true;
10246         }
10247 
10248         // If we're in the right place, emit the bit test header right now.
10249         if (CurMBB == SwitchMBB) {
10250           visitBitTestHeader(*BTB, SwitchMBB);
10251           BTB->Emitted = true;
10252         }
10253         break;
10254       }
10255       case CC_Range: {
10256         const Value *RHS, *LHS, *MHS;
10257         ISD::CondCode CC;
10258         if (I->Low == I->High) {
10259           // Check Cond == I->Low.
10260           CC = ISD::SETEQ;
10261           LHS = Cond;
10262           RHS=I->Low;
10263           MHS = nullptr;
10264         } else {
10265           // Check I->Low <= Cond <= I->High.
10266           CC = ISD::SETLE;
10267           LHS = I->Low;
10268           MHS = Cond;
10269           RHS = I->High;
10270         }
10271 
10272         // If Fallthrough is unreachable, fold away the comparison.
10273         if (FallthroughUnreachable)
10274           CC = ISD::SETTRUE;
10275 
10276         // The false probability is the sum of all unhandled cases.
10277         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10278                      getCurSDLoc(), I->Prob, UnhandledProbs);
10279 
10280         if (CurMBB == SwitchMBB)
10281           visitSwitchCase(CB, SwitchMBB);
10282         else
10283           SL->SwitchCases.push_back(CB);
10284 
10285         break;
10286       }
10287     }
10288     CurMBB = Fallthrough;
10289   }
10290 }
10291 
10292 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10293                                               CaseClusterIt First,
10294                                               CaseClusterIt Last) {
10295   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10296     if (X.Prob != CC.Prob)
10297       return X.Prob > CC.Prob;
10298 
10299     // Ties are broken by comparing the case value.
10300     return X.Low->getValue().slt(CC.Low->getValue());
10301   });
10302 }
10303 
10304 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10305                                         const SwitchWorkListItem &W,
10306                                         Value *Cond,
10307                                         MachineBasicBlock *SwitchMBB) {
10308   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10309          "Clusters not sorted?");
10310 
10311   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10312 
10313   // Balance the tree based on branch probabilities to create a near-optimal (in
10314   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10315   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10316   CaseClusterIt LastLeft = W.FirstCluster;
10317   CaseClusterIt FirstRight = W.LastCluster;
10318   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10319   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10320 
10321   // Move LastLeft and FirstRight towards each other from opposite directions to
10322   // find a partitioning of the clusters which balances the probability on both
10323   // sides. If LeftProb and RightProb are equal, alternate which side is
10324   // taken to ensure 0-probability nodes are distributed evenly.
10325   unsigned I = 0;
10326   while (LastLeft + 1 < FirstRight) {
10327     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10328       LeftProb += (++LastLeft)->Prob;
10329     else
10330       RightProb += (--FirstRight)->Prob;
10331     I++;
10332   }
10333 
10334   while (true) {
10335     // Our binary search tree differs from a typical BST in that ours can have up
10336     // to three values in each leaf. The pivot selection above doesn't take that
10337     // into account, which means the tree might require more nodes and be less
10338     // efficient. We compensate for this here.
10339 
10340     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10341     unsigned NumRight = W.LastCluster - FirstRight + 1;
10342 
10343     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10344       // If one side has less than 3 clusters, and the other has more than 3,
10345       // consider taking a cluster from the other side.
10346 
10347       if (NumLeft < NumRight) {
10348         // Consider moving the first cluster on the right to the left side.
10349         CaseCluster &CC = *FirstRight;
10350         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10351         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10352         if (LeftSideRank <= RightSideRank) {
10353           // Moving the cluster to the left does not demote it.
10354           ++LastLeft;
10355           ++FirstRight;
10356           continue;
10357         }
10358       } else {
10359         assert(NumRight < NumLeft);
10360         // Consider moving the last element on the left to the right side.
10361         CaseCluster &CC = *LastLeft;
10362         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10363         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10364         if (RightSideRank <= LeftSideRank) {
10365           // Moving the cluster to the right does not demot it.
10366           --LastLeft;
10367           --FirstRight;
10368           continue;
10369         }
10370       }
10371     }
10372     break;
10373   }
10374 
10375   assert(LastLeft + 1 == FirstRight);
10376   assert(LastLeft >= W.FirstCluster);
10377   assert(FirstRight <= W.LastCluster);
10378 
10379   // Use the first element on the right as pivot since we will make less-than
10380   // comparisons against it.
10381   CaseClusterIt PivotCluster = FirstRight;
10382   assert(PivotCluster > W.FirstCluster);
10383   assert(PivotCluster <= W.LastCluster);
10384 
10385   CaseClusterIt FirstLeft = W.FirstCluster;
10386   CaseClusterIt LastRight = W.LastCluster;
10387 
10388   const ConstantInt *Pivot = PivotCluster->Low;
10389 
10390   // New blocks will be inserted immediately after the current one.
10391   MachineFunction::iterator BBI(W.MBB);
10392   ++BBI;
10393 
10394   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10395   // we can branch to its destination directly if it's squeezed exactly in
10396   // between the known lower bound and Pivot - 1.
10397   MachineBasicBlock *LeftMBB;
10398   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10399       FirstLeft->Low == W.GE &&
10400       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10401     LeftMBB = FirstLeft->MBB;
10402   } else {
10403     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10404     FuncInfo.MF->insert(BBI, LeftMBB);
10405     WorkList.push_back(
10406         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10407     // Put Cond in a virtual register to make it available from the new blocks.
10408     ExportFromCurrentBlock(Cond);
10409   }
10410 
10411   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10412   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10413   // directly if RHS.High equals the current upper bound.
10414   MachineBasicBlock *RightMBB;
10415   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10416       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10417     RightMBB = FirstRight->MBB;
10418   } else {
10419     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10420     FuncInfo.MF->insert(BBI, RightMBB);
10421     WorkList.push_back(
10422         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10423     // Put Cond in a virtual register to make it available from the new blocks.
10424     ExportFromCurrentBlock(Cond);
10425   }
10426 
10427   // Create the CaseBlock record that will be used to lower the branch.
10428   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10429                getCurSDLoc(), LeftProb, RightProb);
10430 
10431   if (W.MBB == SwitchMBB)
10432     visitSwitchCase(CB, SwitchMBB);
10433   else
10434     SL->SwitchCases.push_back(CB);
10435 }
10436 
10437 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10438 // from the swith statement.
10439 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10440                                             BranchProbability PeeledCaseProb) {
10441   if (PeeledCaseProb == BranchProbability::getOne())
10442     return BranchProbability::getZero();
10443   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10444 
10445   uint32_t Numerator = CaseProb.getNumerator();
10446   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10447   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10448 }
10449 
10450 // Try to peel the top probability case if it exceeds the threshold.
10451 // Return current MachineBasicBlock for the switch statement if the peeling
10452 // does not occur.
10453 // If the peeling is performed, return the newly created MachineBasicBlock
10454 // for the peeled switch statement. Also update Clusters to remove the peeled
10455 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10456 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10457     const SwitchInst &SI, CaseClusterVector &Clusters,
10458     BranchProbability &PeeledCaseProb) {
10459   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10460   // Don't perform if there is only one cluster or optimizing for size.
10461   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10462       TM.getOptLevel() == CodeGenOpt::None ||
10463       SwitchMBB->getParent()->getFunction().hasMinSize())
10464     return SwitchMBB;
10465 
10466   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10467   unsigned PeeledCaseIndex = 0;
10468   bool SwitchPeeled = false;
10469   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10470     CaseCluster &CC = Clusters[Index];
10471     if (CC.Prob < TopCaseProb)
10472       continue;
10473     TopCaseProb = CC.Prob;
10474     PeeledCaseIndex = Index;
10475     SwitchPeeled = true;
10476   }
10477   if (!SwitchPeeled)
10478     return SwitchMBB;
10479 
10480   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10481                     << TopCaseProb << "\n");
10482 
10483   // Record the MBB for the peeled switch statement.
10484   MachineFunction::iterator BBI(SwitchMBB);
10485   ++BBI;
10486   MachineBasicBlock *PeeledSwitchMBB =
10487       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10488   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10489 
10490   ExportFromCurrentBlock(SI.getCondition());
10491   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10492   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10493                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10494   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10495 
10496   Clusters.erase(PeeledCaseIt);
10497   for (CaseCluster &CC : Clusters) {
10498     LLVM_DEBUG(
10499         dbgs() << "Scale the probablity for one cluster, before scaling: "
10500                << CC.Prob << "\n");
10501     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10502     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10503   }
10504   PeeledCaseProb = TopCaseProb;
10505   return PeeledSwitchMBB;
10506 }
10507 
10508 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10509   // Extract cases from the switch.
10510   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10511   CaseClusterVector Clusters;
10512   Clusters.reserve(SI.getNumCases());
10513   for (auto I : SI.cases()) {
10514     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10515     const ConstantInt *CaseVal = I.getCaseValue();
10516     BranchProbability Prob =
10517         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10518             : BranchProbability(1, SI.getNumCases() + 1);
10519     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10520   }
10521 
10522   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10523 
10524   // Cluster adjacent cases with the same destination. We do this at all
10525   // optimization levels because it's cheap to do and will make codegen faster
10526   // if there are many clusters.
10527   sortAndRangeify(Clusters);
10528 
10529   // The branch probablity of the peeled case.
10530   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10531   MachineBasicBlock *PeeledSwitchMBB =
10532       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10533 
10534   // If there is only the default destination, jump there directly.
10535   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10536   if (Clusters.empty()) {
10537     assert(PeeledSwitchMBB == SwitchMBB);
10538     SwitchMBB->addSuccessor(DefaultMBB);
10539     if (DefaultMBB != NextBlock(SwitchMBB)) {
10540       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10541                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10542     }
10543     return;
10544   }
10545 
10546   SL->findJumpTables(Clusters, &SI, DefaultMBB);
10547   SL->findBitTestClusters(Clusters, &SI);
10548 
10549   LLVM_DEBUG({
10550     dbgs() << "Case clusters: ";
10551     for (const CaseCluster &C : Clusters) {
10552       if (C.Kind == CC_JumpTable)
10553         dbgs() << "JT:";
10554       if (C.Kind == CC_BitTests)
10555         dbgs() << "BT:";
10556 
10557       C.Low->getValue().print(dbgs(), true);
10558       if (C.Low != C.High) {
10559         dbgs() << '-';
10560         C.High->getValue().print(dbgs(), true);
10561       }
10562       dbgs() << ' ';
10563     }
10564     dbgs() << '\n';
10565   });
10566 
10567   assert(!Clusters.empty());
10568   SwitchWorkList WorkList;
10569   CaseClusterIt First = Clusters.begin();
10570   CaseClusterIt Last = Clusters.end() - 1;
10571   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10572   // Scale the branchprobability for DefaultMBB if the peel occurs and
10573   // DefaultMBB is not replaced.
10574   if (PeeledCaseProb != BranchProbability::getZero() &&
10575       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10576     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10577   WorkList.push_back(
10578       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10579 
10580   while (!WorkList.empty()) {
10581     SwitchWorkListItem W = WorkList.back();
10582     WorkList.pop_back();
10583     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10584 
10585     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10586         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10587       // For optimized builds, lower large range as a balanced binary tree.
10588       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10589       continue;
10590     }
10591 
10592     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10593   }
10594 }
10595