xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 308ed0233a3da5b3a7d646808c6470ac30870603)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/Analysis/VectorUtils.h"
32 #include "llvm/CodeGen/Analysis.h"
33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
34 #include "llvm/CodeGen/CodeGenCommonISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCMetadata.h"
37 #include "llvm/CodeGen/ISDOpcodes.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineInstrBuilder.h"
42 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
43 #include "llvm/CodeGen/MachineMemOperand.h"
44 #include "llvm/CodeGen/MachineModuleInfo.h"
45 #include "llvm/CodeGen/MachineOperand.h"
46 #include "llvm/CodeGen/MachineRegisterInfo.h"
47 #include "llvm/CodeGen/RuntimeLibcalls.h"
48 #include "llvm/CodeGen/SelectionDAG.h"
49 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
50 #include "llvm/CodeGen/StackMaps.h"
51 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
52 #include "llvm/CodeGen/TargetFrameLowering.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/CodeGen/WinEHFuncInfo.h"
58 #include "llvm/IR/Argument.h"
59 #include "llvm/IR/Attributes.h"
60 #include "llvm/IR/BasicBlock.h"
61 #include "llvm/IR/CFG.h"
62 #include "llvm/IR/CallingConv.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/ConstantRange.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DebugInfo.h"
68 #include "llvm/IR/DebugInfoMetadata.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/DiagnosticInfo.h"
71 #include "llvm/IR/EHPersonalities.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GetElementPtrTypeIterator.h"
74 #include "llvm/IR/InlineAsm.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/IntrinsicsAArch64.h"
80 #include "llvm/IR/IntrinsicsAMDGPU.h"
81 #include "llvm/IR/IntrinsicsWebAssembly.h"
82 #include "llvm/IR/LLVMContext.h"
83 #include "llvm/IR/Metadata.h"
84 #include "llvm/IR/Module.h"
85 #include "llvm/IR/Operator.h"
86 #include "llvm/IR/PatternMatch.h"
87 #include "llvm/IR/Statepoint.h"
88 #include "llvm/IR/Type.h"
89 #include "llvm/IR/User.h"
90 #include "llvm/IR/Value.h"
91 #include "llvm/MC/MCContext.h"
92 #include "llvm/Support/AtomicOrdering.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/InstructionCost.h"
98 #include "llvm/Support/MathExtras.h"
99 #include "llvm/Support/raw_ostream.h"
100 #include "llvm/Target/TargetIntrinsicInfo.h"
101 #include "llvm/Target/TargetMachine.h"
102 #include "llvm/Target/TargetOptions.h"
103 #include "llvm/TargetParser/Triple.h"
104 #include "llvm/Transforms/Utils/Local.h"
105 #include <cstddef>
106 #include <iterator>
107 #include <limits>
108 #include <optional>
109 #include <tuple>
110 
111 using namespace llvm;
112 using namespace PatternMatch;
113 using namespace SwitchCG;
114 
115 #define DEBUG_TYPE "isel"
116 
117 /// LimitFloatPrecision - Generate low-precision inline sequences for
118 /// some float libcalls (6, 8 or 12 bits).
119 static unsigned LimitFloatPrecision;
120 
121 static cl::opt<bool>
122     InsertAssertAlign("insert-assert-align", cl::init(true),
123                       cl::desc("Insert the experimental `assertalign` node."),
124                       cl::ReallyHidden);
125 
126 static cl::opt<unsigned, true>
127     LimitFPPrecision("limit-float-precision",
128                      cl::desc("Generate low-precision inline sequences "
129                               "for some float libcalls"),
130                      cl::location(LimitFloatPrecision), cl::Hidden,
131                      cl::init(0));
132 
133 static cl::opt<unsigned> SwitchPeelThreshold(
134     "switch-peel-threshold", cl::Hidden, cl::init(66),
135     cl::desc("Set the case probability threshold for peeling the case from a "
136              "switch statement. A value greater than 100 will void this "
137              "optimization"));
138 
139 // Limit the width of DAG chains. This is important in general to prevent
140 // DAG-based analysis from blowing up. For example, alias analysis and
141 // load clustering may not complete in reasonable time. It is difficult to
142 // recognize and avoid this situation within each individual analysis, and
143 // future analyses are likely to have the same behavior. Limiting DAG width is
144 // the safe approach and will be especially important with global DAGs.
145 //
146 // MaxParallelChains default is arbitrarily high to avoid affecting
147 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
148 // sequence over this should have been converted to llvm.memcpy by the
149 // frontend. It is easy to induce this behavior with .ll code such as:
150 // %buffer = alloca [4096 x i8]
151 // %data = load [4096 x i8]* %argPtr
152 // store [4096 x i8] %data, [4096 x i8]* %buffer
153 static const unsigned MaxParallelChains = 64;
154 
155 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
156                                       const SDValue *Parts, unsigned NumParts,
157                                       MVT PartVT, EVT ValueVT, const Value *V,
158                                       SDValue InChain,
159                                       std::optional<CallingConv::ID> CC);
160 
161 /// getCopyFromParts - Create a value that contains the specified legal parts
162 /// combined into the value they represent.  If the parts combine to a type
163 /// larger than ValueVT then AssertOp can be used to specify whether the extra
164 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
165 /// (ISD::AssertSext).
166 static SDValue
167 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
168                  unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
169                  SDValue InChain,
170                  std::optional<CallingConv::ID> CC = std::nullopt,
171                  std::optional<ISD::NodeType> AssertOp = std::nullopt) {
172   // Let the target assemble the parts if it wants to
173   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
174   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
175                                                    PartVT, ValueVT, CC))
176     return Val;
177 
178   if (ValueVT.isVector())
179     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
180                                   InChain, CC);
181 
182   assert(NumParts > 0 && "No parts to assemble!");
183   SDValue Val = Parts[0];
184 
185   if (NumParts > 1) {
186     // Assemble the value from multiple parts.
187     if (ValueVT.isInteger()) {
188       unsigned PartBits = PartVT.getSizeInBits();
189       unsigned ValueBits = ValueVT.getSizeInBits();
190 
191       // Assemble the power of 2 part.
192       unsigned RoundParts = llvm::bit_floor(NumParts);
193       unsigned RoundBits = PartBits * RoundParts;
194       EVT RoundVT = RoundBits == ValueBits ?
195         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
196       SDValue Lo, Hi;
197 
198       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
199 
200       if (RoundParts > 2) {
201         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V,
202                               InChain);
203         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2,
204                               PartVT, HalfVT, V, InChain);
205       } else {
206         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
207         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
208       }
209 
210       if (DAG.getDataLayout().isBigEndian())
211         std::swap(Lo, Hi);
212 
213       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
214 
215       if (RoundParts < NumParts) {
216         // Assemble the trailing non-power-of-2 part.
217         unsigned OddParts = NumParts - RoundParts;
218         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
219         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
220                               OddVT, V, InChain, CC);
221 
222         // Combine the round and odd parts.
223         Lo = Val;
224         if (DAG.getDataLayout().isBigEndian())
225           std::swap(Lo, Hi);
226         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
227         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
228         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
229                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
230                                          TLI.getShiftAmountTy(
231                                              TotalVT, DAG.getDataLayout())));
232         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
233         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
234       }
235     } else if (PartVT.isFloatingPoint()) {
236       // FP split into multiple FP parts (for ppcf128)
237       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
238              "Unexpected split");
239       SDValue Lo, Hi;
240       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
241       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
242       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
243         std::swap(Lo, Hi);
244       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
245     } else {
246       // FP split into integer parts (soft fp)
247       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
248              !PartVT.isVector() && "Unexpected split");
249       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
250       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V,
251                              InChain, CC);
252     }
253   }
254 
255   // There is now one part, held in Val.  Correct it to match ValueVT.
256   // PartEVT is the type of the register class that holds the value.
257   // ValueVT is the type of the inline asm operation.
258   EVT PartEVT = Val.getValueType();
259 
260   if (PartEVT == ValueVT)
261     return Val;
262 
263   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
264       ValueVT.bitsLT(PartEVT)) {
265     // For an FP value in an integer part, we need to truncate to the right
266     // width first.
267     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
268     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
269   }
270 
271   // Handle types that have the same size.
272   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
273     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
274 
275   // Handle types with different sizes.
276   if (PartEVT.isInteger() && ValueVT.isInteger()) {
277     if (ValueVT.bitsLT(PartEVT)) {
278       // For a truncate, see if we have any information to
279       // indicate whether the truncated bits will always be
280       // zero or sign-extension.
281       if (AssertOp)
282         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
283                           DAG.getValueType(ValueVT));
284       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
285     }
286     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
287   }
288 
289   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
290     // FP_ROUND's are always exact here.
291     if (ValueVT.bitsLT(Val.getValueType())) {
292 
293       SDValue NoChange =
294           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
295 
296       if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr(
297               llvm::Attribute::StrictFP)) {
298         return DAG.getNode(ISD::STRICT_FP_ROUND, DL,
299                            DAG.getVTList(ValueVT, MVT::Other), InChain, Val,
300                            NoChange);
301       }
302 
303       return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange);
304     }
305 
306     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
307   }
308 
309   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
310   // then truncating.
311   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
312       ValueVT.bitsLT(PartEVT)) {
313     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
314     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
315   }
316 
317   report_fatal_error("Unknown mismatch in getCopyFromParts!");
318 }
319 
320 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
321                                               const Twine &ErrMsg) {
322   const Instruction *I = dyn_cast_or_null<Instruction>(V);
323   if (!V)
324     return Ctx.emitError(ErrMsg);
325 
326   const char *AsmError = ", possible invalid constraint for vector type";
327   if (const CallInst *CI = dyn_cast<CallInst>(I))
328     if (CI->isInlineAsm())
329       return Ctx.emitError(I, ErrMsg + AsmError);
330 
331   return Ctx.emitError(I, ErrMsg);
332 }
333 
334 /// getCopyFromPartsVector - Create a value that contains the specified legal
335 /// parts combined into the value they represent.  If the parts combine to a
336 /// type larger than ValueVT then AssertOp can be used to specify whether the
337 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
338 /// ValueVT (ISD::AssertSext).
339 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
340                                       const SDValue *Parts, unsigned NumParts,
341                                       MVT PartVT, EVT ValueVT, const Value *V,
342                                       SDValue InChain,
343                                       std::optional<CallingConv::ID> CallConv) {
344   assert(ValueVT.isVector() && "Not a vector value");
345   assert(NumParts > 0 && "No parts to assemble!");
346   const bool IsABIRegCopy = CallConv.has_value();
347 
348   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
349   SDValue Val = Parts[0];
350 
351   // Handle a multi-element vector.
352   if (NumParts > 1) {
353     EVT IntermediateVT;
354     MVT RegisterVT;
355     unsigned NumIntermediates;
356     unsigned NumRegs;
357 
358     if (IsABIRegCopy) {
359       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
360           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
361           NumIntermediates, RegisterVT);
362     } else {
363       NumRegs =
364           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
365                                      NumIntermediates, RegisterVT);
366     }
367 
368     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
369     NumParts = NumRegs; // Silence a compiler warning.
370     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
371     assert(RegisterVT.getSizeInBits() ==
372            Parts[0].getSimpleValueType().getSizeInBits() &&
373            "Part type sizes don't match!");
374 
375     // Assemble the parts into intermediate operands.
376     SmallVector<SDValue, 8> Ops(NumIntermediates);
377     if (NumIntermediates == NumParts) {
378       // If the register was not expanded, truncate or copy the value,
379       // as appropriate.
380       for (unsigned i = 0; i != NumParts; ++i)
381         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT,
382                                   V, InChain, CallConv);
383     } else if (NumParts > 0) {
384       // If the intermediate type was expanded, build the intermediate
385       // operands from the parts.
386       assert(NumParts % NumIntermediates == 0 &&
387              "Must expand into a divisible number of parts!");
388       unsigned Factor = NumParts / NumIntermediates;
389       for (unsigned i = 0; i != NumIntermediates; ++i)
390         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT,
391                                   IntermediateVT, V, InChain, CallConv);
392     }
393 
394     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
395     // intermediate operands.
396     EVT BuiltVectorTy =
397         IntermediateVT.isVector()
398             ? EVT::getVectorVT(
399                   *DAG.getContext(), IntermediateVT.getScalarType(),
400                   IntermediateVT.getVectorElementCount() * NumParts)
401             : EVT::getVectorVT(*DAG.getContext(),
402                                IntermediateVT.getScalarType(),
403                                NumIntermediates);
404     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
405                                                 : ISD::BUILD_VECTOR,
406                       DL, BuiltVectorTy, Ops);
407   }
408 
409   // There is now one part, held in Val.  Correct it to match ValueVT.
410   EVT PartEVT = Val.getValueType();
411 
412   if (PartEVT == ValueVT)
413     return Val;
414 
415   if (PartEVT.isVector()) {
416     // Vector/Vector bitcast.
417     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
418       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
419 
420     // If the parts vector has more elements than the value vector, then we
421     // have a vector widening case (e.g. <2 x float> -> <4 x float>).
422     // Extract the elements we want.
423     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
424       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
425               ValueVT.getVectorElementCount().getKnownMinValue()) &&
426              (PartEVT.getVectorElementCount().isScalable() ==
427               ValueVT.getVectorElementCount().isScalable()) &&
428              "Cannot narrow, it would be a lossy transformation");
429       PartEVT =
430           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
431                            ValueVT.getVectorElementCount());
432       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
433                         DAG.getVectorIdxConstant(0, DL));
434       if (PartEVT == ValueVT)
435         return Val;
436       if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
437         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
438 
439       // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>).
440       if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
441         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
442     }
443 
444     // Promoted vector extract
445     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
446   }
447 
448   // Trivial bitcast if the types are the same size and the destination
449   // vector type is legal.
450   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
451       TLI.isTypeLegal(ValueVT))
452     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
453 
454   if (ValueVT.getVectorNumElements() != 1) {
455      // Certain ABIs require that vectors are passed as integers. For vectors
456      // are the same size, this is an obvious bitcast.
457      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
458        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
459      } else if (ValueVT.bitsLT(PartEVT)) {
460        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
461        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
462        // Drop the extra bits.
463        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
464        return DAG.getBitcast(ValueVT, Val);
465      }
466 
467      diagnosePossiblyInvalidConstraint(
468          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
469      return DAG.getUNDEF(ValueVT);
470   }
471 
472   // Handle cases such as i8 -> <1 x i1>
473   EVT ValueSVT = ValueVT.getVectorElementType();
474   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
475     unsigned ValueSize = ValueSVT.getSizeInBits();
476     if (ValueSize == PartEVT.getSizeInBits()) {
477       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
478     } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
479       // It's possible a scalar floating point type gets softened to integer and
480       // then promoted to a larger integer. If PartEVT is the larger integer
481       // we need to truncate it and then bitcast to the FP type.
482       assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
483       EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
484       Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
485       Val = DAG.getBitcast(ValueSVT, Val);
486     } else {
487       Val = ValueVT.isFloatingPoint()
488                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
489                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
490     }
491   }
492 
493   return DAG.getBuildVector(ValueVT, DL, Val);
494 }
495 
496 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
497                                  SDValue Val, SDValue *Parts, unsigned NumParts,
498                                  MVT PartVT, const Value *V,
499                                  std::optional<CallingConv::ID> CallConv);
500 
501 /// getCopyToParts - Create a series of nodes that contain the specified value
502 /// split into legal parts.  If the parts contain more bits than Val, then, for
503 /// integers, ExtendKind can be used to specify how to generate the extra bits.
504 static void
505 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
506                unsigned NumParts, MVT PartVT, const Value *V,
507                std::optional<CallingConv::ID> CallConv = std::nullopt,
508                ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
509   // Let the target split the parts if it wants to
510   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
511   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
512                                       CallConv))
513     return;
514   EVT ValueVT = Val.getValueType();
515 
516   // Handle the vector case separately.
517   if (ValueVT.isVector())
518     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
519                                 CallConv);
520 
521   unsigned OrigNumParts = NumParts;
522   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
523          "Copying to an illegal type!");
524 
525   if (NumParts == 0)
526     return;
527 
528   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
529   EVT PartEVT = PartVT;
530   if (PartEVT == ValueVT) {
531     assert(NumParts == 1 && "No-op copy with multiple parts!");
532     Parts[0] = Val;
533     return;
534   }
535 
536   unsigned PartBits = PartVT.getSizeInBits();
537   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
538     // If the parts cover more bits than the value has, promote the value.
539     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
540       assert(NumParts == 1 && "Do not know what to promote to!");
541       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
542     } else {
543       if (ValueVT.isFloatingPoint()) {
544         // FP values need to be bitcast, then extended if they are being put
545         // into a larger container.
546         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
547         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
548       }
549       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
550              ValueVT.isInteger() &&
551              "Unknown mismatch!");
552       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
553       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
554       if (PartVT == MVT::x86mmx)
555         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
556     }
557   } else if (PartBits == ValueVT.getSizeInBits()) {
558     // Different types of the same size.
559     assert(NumParts == 1 && PartEVT != ValueVT);
560     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
561   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
562     // If the parts cover less bits than value has, truncate the value.
563     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
564            ValueVT.isInteger() &&
565            "Unknown mismatch!");
566     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
567     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
568     if (PartVT == MVT::x86mmx)
569       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
570   }
571 
572   // The value may have changed - recompute ValueVT.
573   ValueVT = Val.getValueType();
574   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
575          "Failed to tile the value with PartVT!");
576 
577   if (NumParts == 1) {
578     if (PartEVT != ValueVT) {
579       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
580                                         "scalar-to-vector conversion failed");
581       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
582     }
583 
584     Parts[0] = Val;
585     return;
586   }
587 
588   // Expand the value into multiple parts.
589   if (NumParts & (NumParts - 1)) {
590     // The number of parts is not a power of 2.  Split off and copy the tail.
591     assert(PartVT.isInteger() && ValueVT.isInteger() &&
592            "Do not know what to expand to!");
593     unsigned RoundParts = llvm::bit_floor(NumParts);
594     unsigned RoundBits = RoundParts * PartBits;
595     unsigned OddParts = NumParts - RoundParts;
596     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
597       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
598 
599     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
600                    CallConv);
601 
602     if (DAG.getDataLayout().isBigEndian())
603       // The odd parts were reversed by getCopyToParts - unreverse them.
604       std::reverse(Parts + RoundParts, Parts + NumParts);
605 
606     NumParts = RoundParts;
607     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
608     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
609   }
610 
611   // The number of parts is a power of 2.  Repeatedly bisect the value using
612   // EXTRACT_ELEMENT.
613   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
614                          EVT::getIntegerVT(*DAG.getContext(),
615                                            ValueVT.getSizeInBits()),
616                          Val);
617 
618   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
619     for (unsigned i = 0; i < NumParts; i += StepSize) {
620       unsigned ThisBits = StepSize * PartBits / 2;
621       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
622       SDValue &Part0 = Parts[i];
623       SDValue &Part1 = Parts[i+StepSize/2];
624 
625       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
626                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
627       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
628                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
629 
630       if (ThisBits == PartBits && ThisVT != PartVT) {
631         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
632         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
633       }
634     }
635   }
636 
637   if (DAG.getDataLayout().isBigEndian())
638     std::reverse(Parts, Parts + OrigNumParts);
639 }
640 
641 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
642                                      const SDLoc &DL, EVT PartVT) {
643   if (!PartVT.isVector())
644     return SDValue();
645 
646   EVT ValueVT = Val.getValueType();
647   EVT PartEVT = PartVT.getVectorElementType();
648   EVT ValueEVT = ValueVT.getVectorElementType();
649   ElementCount PartNumElts = PartVT.getVectorElementCount();
650   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
651 
652   // We only support widening vectors with equivalent element types and
653   // fixed/scalable properties. If a target needs to widen a fixed-length type
654   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
655   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
656       PartNumElts.isScalable() != ValueNumElts.isScalable())
657     return SDValue();
658 
659   // Have a try for bf16 because some targets share its ABI with fp16.
660   if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) {
661     assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
662            "Cannot widen to illegal type");
663     Val = DAG.getNode(ISD::BITCAST, DL,
664                       ValueVT.changeVectorElementType(MVT::f16), Val);
665   } else if (PartEVT != ValueEVT) {
666     return SDValue();
667   }
668 
669   // Widening a scalable vector to another scalable vector is done by inserting
670   // the vector into a larger undef one.
671   if (PartNumElts.isScalable())
672     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
673                        Val, DAG.getVectorIdxConstant(0, DL));
674 
675   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
676   // undef elements.
677   SmallVector<SDValue, 16> Ops;
678   DAG.ExtractVectorElements(Val, Ops);
679   SDValue EltUndef = DAG.getUNDEF(PartEVT);
680   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
681 
682   // FIXME: Use CONCAT for 2x -> 4x.
683   return DAG.getBuildVector(PartVT, DL, Ops);
684 }
685 
686 /// getCopyToPartsVector - Create a series of nodes that contain the specified
687 /// value split into legal parts.
688 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
689                                  SDValue Val, SDValue *Parts, unsigned NumParts,
690                                  MVT PartVT, const Value *V,
691                                  std::optional<CallingConv::ID> CallConv) {
692   EVT ValueVT = Val.getValueType();
693   assert(ValueVT.isVector() && "Not a vector");
694   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
695   const bool IsABIRegCopy = CallConv.has_value();
696 
697   if (NumParts == 1) {
698     EVT PartEVT = PartVT;
699     if (PartEVT == ValueVT) {
700       // Nothing to do.
701     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
702       // Bitconvert vector->vector case.
703       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
704     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
705       Val = Widened;
706     } else if (PartVT.isVector() &&
707                PartEVT.getVectorElementType().bitsGE(
708                    ValueVT.getVectorElementType()) &&
709                PartEVT.getVectorElementCount() ==
710                    ValueVT.getVectorElementCount()) {
711 
712       // Promoted vector extract
713       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
714     } else if (PartEVT.isVector() &&
715                PartEVT.getVectorElementType() !=
716                    ValueVT.getVectorElementType() &&
717                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
718                    TargetLowering::TypeWidenVector) {
719       // Combination of widening and promotion.
720       EVT WidenVT =
721           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
722                            PartVT.getVectorElementCount());
723       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
724       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
725     } else {
726       // Don't extract an integer from a float vector. This can happen if the
727       // FP type gets softened to integer and then promoted. The promotion
728       // prevents it from being picked up by the earlier bitcast case.
729       if (ValueVT.getVectorElementCount().isScalar() &&
730           (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
731         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
732                           DAG.getVectorIdxConstant(0, DL));
733       } else {
734         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
735         assert(PartVT.getFixedSizeInBits() > ValueSize &&
736                "lossy conversion of vector to scalar type");
737         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
738         Val = DAG.getBitcast(IntermediateType, Val);
739         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
740       }
741     }
742 
743     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
744     Parts[0] = Val;
745     return;
746   }
747 
748   // Handle a multi-element vector.
749   EVT IntermediateVT;
750   MVT RegisterVT;
751   unsigned NumIntermediates;
752   unsigned NumRegs;
753   if (IsABIRegCopy) {
754     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
755         *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
756         RegisterVT);
757   } else {
758     NumRegs =
759         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
760                                    NumIntermediates, RegisterVT);
761   }
762 
763   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
764   NumParts = NumRegs; // Silence a compiler warning.
765   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
766 
767   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
768          "Mixing scalable and fixed vectors when copying in parts");
769 
770   std::optional<ElementCount> DestEltCnt;
771 
772   if (IntermediateVT.isVector())
773     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
774   else
775     DestEltCnt = ElementCount::getFixed(NumIntermediates);
776 
777   EVT BuiltVectorTy = EVT::getVectorVT(
778       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
779 
780   if (ValueVT == BuiltVectorTy) {
781     // Nothing to do.
782   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
783     // Bitconvert vector->vector case.
784     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
785   } else {
786     if (BuiltVectorTy.getVectorElementType().bitsGT(
787             ValueVT.getVectorElementType())) {
788       // Integer promotion.
789       ValueVT = EVT::getVectorVT(*DAG.getContext(),
790                                  BuiltVectorTy.getVectorElementType(),
791                                  ValueVT.getVectorElementCount());
792       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
793     }
794 
795     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
796       Val = Widened;
797     }
798   }
799 
800   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
801 
802   // Split the vector into intermediate operands.
803   SmallVector<SDValue, 8> Ops(NumIntermediates);
804   for (unsigned i = 0; i != NumIntermediates; ++i) {
805     if (IntermediateVT.isVector()) {
806       // This does something sensible for scalable vectors - see the
807       // definition of EXTRACT_SUBVECTOR for further details.
808       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
809       Ops[i] =
810           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
811                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
812     } else {
813       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
814                            DAG.getVectorIdxConstant(i, DL));
815     }
816   }
817 
818   // Split the intermediate operands into legal parts.
819   if (NumParts == NumIntermediates) {
820     // If the register was not expanded, promote or copy the value,
821     // as appropriate.
822     for (unsigned i = 0; i != NumParts; ++i)
823       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
824   } else if (NumParts > 0) {
825     // If the intermediate type was expanded, split each the value into
826     // legal parts.
827     assert(NumIntermediates != 0 && "division by zero");
828     assert(NumParts % NumIntermediates == 0 &&
829            "Must expand into a divisible number of parts!");
830     unsigned Factor = NumParts / NumIntermediates;
831     for (unsigned i = 0; i != NumIntermediates; ++i)
832       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
833                      CallConv);
834   }
835 }
836 
837 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
838                            EVT valuevt, std::optional<CallingConv::ID> CC)
839     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
840       RegCount(1, regs.size()), CallConv(CC) {}
841 
842 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
843                            const DataLayout &DL, unsigned Reg, Type *Ty,
844                            std::optional<CallingConv::ID> CC) {
845   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
846 
847   CallConv = CC;
848 
849   for (EVT ValueVT : ValueVTs) {
850     unsigned NumRegs =
851         isABIMangled()
852             ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
853             : TLI.getNumRegisters(Context, ValueVT);
854     MVT RegisterVT =
855         isABIMangled()
856             ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
857             : TLI.getRegisterType(Context, ValueVT);
858     for (unsigned i = 0; i != NumRegs; ++i)
859       Regs.push_back(Reg + i);
860     RegVTs.push_back(RegisterVT);
861     RegCount.push_back(NumRegs);
862     Reg += NumRegs;
863   }
864 }
865 
866 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
867                                       FunctionLoweringInfo &FuncInfo,
868                                       const SDLoc &dl, SDValue &Chain,
869                                       SDValue *Glue, const Value *V) const {
870   // A Value with type {} or [0 x %t] needs no registers.
871   if (ValueVTs.empty())
872     return SDValue();
873 
874   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
875 
876   // Assemble the legal parts into the final values.
877   SmallVector<SDValue, 4> Values(ValueVTs.size());
878   SmallVector<SDValue, 8> Parts;
879   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
880     // Copy the legal parts from the registers.
881     EVT ValueVT = ValueVTs[Value];
882     unsigned NumRegs = RegCount[Value];
883     MVT RegisterVT = isABIMangled()
884                          ? TLI.getRegisterTypeForCallingConv(
885                                *DAG.getContext(), *CallConv, RegVTs[Value])
886                          : RegVTs[Value];
887 
888     Parts.resize(NumRegs);
889     for (unsigned i = 0; i != NumRegs; ++i) {
890       SDValue P;
891       if (!Glue) {
892         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
893       } else {
894         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue);
895         *Glue = P.getValue(2);
896       }
897 
898       Chain = P.getValue(1);
899       Parts[i] = P;
900 
901       // If the source register was virtual and if we know something about it,
902       // add an assert node.
903       if (!Register::isVirtualRegister(Regs[Part + i]) ||
904           !RegisterVT.isInteger())
905         continue;
906 
907       const FunctionLoweringInfo::LiveOutInfo *LOI =
908         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
909       if (!LOI)
910         continue;
911 
912       unsigned RegSize = RegisterVT.getScalarSizeInBits();
913       unsigned NumSignBits = LOI->NumSignBits;
914       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
915 
916       if (NumZeroBits == RegSize) {
917         // The current value is a zero.
918         // Explicitly express that as it would be easier for
919         // optimizations to kick in.
920         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
921         continue;
922       }
923 
924       // FIXME: We capture more information than the dag can represent.  For
925       // now, just use the tightest assertzext/assertsext possible.
926       bool isSExt;
927       EVT FromVT(MVT::Other);
928       if (NumZeroBits) {
929         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
930         isSExt = false;
931       } else if (NumSignBits > 1) {
932         FromVT =
933             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
934         isSExt = true;
935       } else {
936         continue;
937       }
938       // Add an assertion node.
939       assert(FromVT != MVT::Other);
940       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
941                              RegisterVT, P, DAG.getValueType(FromVT));
942     }
943 
944     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
945                                      RegisterVT, ValueVT, V, Chain, CallConv);
946     Part += NumRegs;
947     Parts.clear();
948   }
949 
950   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
951 }
952 
953 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
954                                  const SDLoc &dl, SDValue &Chain, SDValue *Glue,
955                                  const Value *V,
956                                  ISD::NodeType PreferredExtendType) const {
957   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
958   ISD::NodeType ExtendKind = PreferredExtendType;
959 
960   // Get the list of the values's legal parts.
961   unsigned NumRegs = Regs.size();
962   SmallVector<SDValue, 8> Parts(NumRegs);
963   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
964     unsigned NumParts = RegCount[Value];
965 
966     MVT RegisterVT = isABIMangled()
967                          ? TLI.getRegisterTypeForCallingConv(
968                                *DAG.getContext(), *CallConv, RegVTs[Value])
969                          : RegVTs[Value];
970 
971     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
972       ExtendKind = ISD::ZERO_EXTEND;
973 
974     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
975                    NumParts, RegisterVT, V, CallConv, ExtendKind);
976     Part += NumParts;
977   }
978 
979   // Copy the parts into the registers.
980   SmallVector<SDValue, 8> Chains(NumRegs);
981   for (unsigned i = 0; i != NumRegs; ++i) {
982     SDValue Part;
983     if (!Glue) {
984       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
985     } else {
986       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue);
987       *Glue = Part.getValue(1);
988     }
989 
990     Chains[i] = Part.getValue(0);
991   }
992 
993   if (NumRegs == 1 || Glue)
994     // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is
995     // flagged to it. That is the CopyToReg nodes and the user are considered
996     // a single scheduling unit. If we create a TokenFactor and return it as
997     // chain, then the TokenFactor is both a predecessor (operand) of the
998     // user as well as a successor (the TF operands are flagged to the user).
999     // c1, f1 = CopyToReg
1000     // c2, f2 = CopyToReg
1001     // c3     = TokenFactor c1, c2
1002     // ...
1003     //        = op c3, ..., f2
1004     Chain = Chains[NumRegs-1];
1005   else
1006     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
1007 }
1008 
1009 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching,
1010                                         unsigned MatchingIdx, const SDLoc &dl,
1011                                         SelectionDAG &DAG,
1012                                         std::vector<SDValue> &Ops) const {
1013   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1014 
1015   InlineAsm::Flag Flag(Code, Regs.size());
1016   if (HasMatching)
1017     Flag.setMatchingOp(MatchingIdx);
1018   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
1019     // Put the register class of the virtual registers in the flag word.  That
1020     // way, later passes can recompute register class constraints for inline
1021     // assembly as well as normal instructions.
1022     // Don't do this for tied operands that can use the regclass information
1023     // from the def.
1024     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1025     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
1026     Flag.setRegClass(RC->getID());
1027   }
1028 
1029   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
1030   Ops.push_back(Res);
1031 
1032   if (Code == InlineAsm::Kind::Clobber) {
1033     // Clobbers should always have a 1:1 mapping with registers, and may
1034     // reference registers that have illegal (e.g. vector) types. Hence, we
1035     // shouldn't try to apply any sort of splitting logic to them.
1036     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1037            "No 1:1 mapping from clobbers to regs?");
1038     Register SP = TLI.getStackPointerRegisterToSaveRestore();
1039     (void)SP;
1040     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1041       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1042       assert(
1043           (Regs[I] != SP ||
1044            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1045           "If we clobbered the stack pointer, MFI should know about it.");
1046     }
1047     return;
1048   }
1049 
1050   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1051     MVT RegisterVT = RegVTs[Value];
1052     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1053                                            RegisterVT);
1054     for (unsigned i = 0; i != NumRegs; ++i) {
1055       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1056       unsigned TheReg = Regs[Reg++];
1057       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1058     }
1059   }
1060 }
1061 
1062 SmallVector<std::pair<unsigned, TypeSize>, 4>
1063 RegsForValue::getRegsAndSizes() const {
1064   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1065   unsigned I = 0;
1066   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1067     unsigned RegCount = std::get<0>(CountAndVT);
1068     MVT RegisterVT = std::get<1>(CountAndVT);
1069     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1070     for (unsigned E = I + RegCount; I != E; ++I)
1071       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1072   }
1073   return OutVec;
1074 }
1075 
1076 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1077                                AssumptionCache *ac,
1078                                const TargetLibraryInfo *li) {
1079   AA = aa;
1080   AC = ac;
1081   GFI = gfi;
1082   LibInfo = li;
1083   Context = DAG.getContext();
1084   LPadToCallSiteMap.clear();
1085   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1086   AssignmentTrackingEnabled = isAssignmentTrackingEnabled(
1087       *DAG.getMachineFunction().getFunction().getParent());
1088 }
1089 
1090 void SelectionDAGBuilder::clear() {
1091   NodeMap.clear();
1092   UnusedArgNodeMap.clear();
1093   PendingLoads.clear();
1094   PendingExports.clear();
1095   PendingConstrainedFP.clear();
1096   PendingConstrainedFPStrict.clear();
1097   CurInst = nullptr;
1098   HasTailCall = false;
1099   SDNodeOrder = LowestSDNodeOrder;
1100   StatepointLowering.clear();
1101 }
1102 
1103 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1104   DanglingDebugInfoMap.clear();
1105 }
1106 
1107 // Update DAG root to include dependencies on Pending chains.
1108 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1109   SDValue Root = DAG.getRoot();
1110 
1111   if (Pending.empty())
1112     return Root;
1113 
1114   // Add current root to PendingChains, unless we already indirectly
1115   // depend on it.
1116   if (Root.getOpcode() != ISD::EntryToken) {
1117     unsigned i = 0, e = Pending.size();
1118     for (; i != e; ++i) {
1119       assert(Pending[i].getNode()->getNumOperands() > 1);
1120       if (Pending[i].getNode()->getOperand(0) == Root)
1121         break;  // Don't add the root if we already indirectly depend on it.
1122     }
1123 
1124     if (i == e)
1125       Pending.push_back(Root);
1126   }
1127 
1128   if (Pending.size() == 1)
1129     Root = Pending[0];
1130   else
1131     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1132 
1133   DAG.setRoot(Root);
1134   Pending.clear();
1135   return Root;
1136 }
1137 
1138 SDValue SelectionDAGBuilder::getMemoryRoot() {
1139   return updateRoot(PendingLoads);
1140 }
1141 
1142 SDValue SelectionDAGBuilder::getRoot() {
1143   // Chain up all pending constrained intrinsics together with all
1144   // pending loads, by simply appending them to PendingLoads and
1145   // then calling getMemoryRoot().
1146   PendingLoads.reserve(PendingLoads.size() +
1147                        PendingConstrainedFP.size() +
1148                        PendingConstrainedFPStrict.size());
1149   PendingLoads.append(PendingConstrainedFP.begin(),
1150                       PendingConstrainedFP.end());
1151   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1152                       PendingConstrainedFPStrict.end());
1153   PendingConstrainedFP.clear();
1154   PendingConstrainedFPStrict.clear();
1155   return getMemoryRoot();
1156 }
1157 
1158 SDValue SelectionDAGBuilder::getControlRoot() {
1159   // We need to emit pending fpexcept.strict constrained intrinsics,
1160   // so append them to the PendingExports list.
1161   PendingExports.append(PendingConstrainedFPStrict.begin(),
1162                         PendingConstrainedFPStrict.end());
1163   PendingConstrainedFPStrict.clear();
1164   return updateRoot(PendingExports);
1165 }
1166 
1167 void SelectionDAGBuilder::handleDebugDeclare(Value *Address,
1168                                              DILocalVariable *Variable,
1169                                              DIExpression *Expression,
1170                                              DebugLoc DL) {
1171   assert(Variable && "Missing variable");
1172 
1173   // Check if address has undef value.
1174   if (!Address || isa<UndefValue>(Address) ||
1175       (Address->use_empty() && !isa<Argument>(Address))) {
1176     LLVM_DEBUG(
1177         dbgs()
1178         << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n");
1179     return;
1180   }
1181 
1182   bool IsParameter = Variable->isParameter() || isa<Argument>(Address);
1183 
1184   SDValue &N = NodeMap[Address];
1185   if (!N.getNode() && isa<Argument>(Address))
1186     // Check unused arguments map.
1187     N = UnusedArgNodeMap[Address];
1188   SDDbgValue *SDV;
1189   if (N.getNode()) {
1190     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
1191       Address = BCI->getOperand(0);
1192     // Parameters are handled specially.
1193     auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
1194     if (IsParameter && FINode) {
1195       // Byval parameter. We have a frame index at this point.
1196       SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
1197                                       /*IsIndirect*/ true, DL, SDNodeOrder);
1198     } else if (isa<Argument>(Address)) {
1199       // Address is an argument, so try to emit its dbg value using
1200       // virtual register info from the FuncInfo.ValueMap.
1201       EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1202                                FuncArgumentDbgValueKind::Declare, N);
1203       return;
1204     } else {
1205       SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
1206                             true, DL, SDNodeOrder);
1207     }
1208     DAG.AddDbgValue(SDV, IsParameter);
1209   } else {
1210     // If Address is an argument then try to emit its dbg value using
1211     // virtual register info from the FuncInfo.ValueMap.
1212     if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1213                                   FuncArgumentDbgValueKind::Declare, N)) {
1214       LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info"
1215                         << " (could not emit func-arg dbg_value)\n");
1216     }
1217   }
1218   return;
1219 }
1220 
1221 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) {
1222   // Add SDDbgValue nodes for any var locs here. Do so before updating
1223   // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1224   if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1225     // Add SDDbgValue nodes for any var locs here. Do so before updating
1226     // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1227     for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1228          It != End; ++It) {
1229       auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1230       dropDanglingDebugInfo(Var, It->Expr);
1231       if (It->Values.isKillLocation(It->Expr)) {
1232         handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder);
1233         continue;
1234       }
1235       SmallVector<Value *> Values(It->Values.location_ops());
1236       if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder,
1237                             It->Values.hasArgList())) {
1238         SmallVector<Value *, 4> Vals;
1239         for (Value *V : It->Values.location_ops())
1240           Vals.push_back(V);
1241         addDanglingDebugInfo(Vals,
1242                              FnVarLocs->getDILocalVariable(It->VariableID),
1243                              It->Expr, Vals.size() > 1, It->DL, SDNodeOrder);
1244       }
1245     }
1246   }
1247 
1248   // We must skip DbgVariableRecords if they've already been processed above as
1249   // we have just emitted the debug values resulting from assignment tracking
1250   // analysis, making any existing DbgVariableRecords redundant (and probably
1251   // less correct). We still need to process DbgLabelRecords. This does sink
1252   // DbgLabelRecords to the bottom of the group of debug records. That sholdn't
1253   // be important as it does so deterministcally and ordering between
1254   // DbgLabelRecords and DbgVariableRecords is immaterial (other than for MIR/IR
1255   // printing).
1256   bool SkipDbgVariableRecords = DAG.getFunctionVarLocs();
1257   // Is there is any debug-info attached to this instruction, in the form of
1258   // DbgRecord non-instruction debug-info records.
1259   for (DbgRecord &DR : I.getDbgRecordRange()) {
1260     if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
1261       assert(DLR->getLabel() && "Missing label");
1262       SDDbgLabel *SDV =
1263           DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder);
1264       DAG.AddDbgLabel(SDV);
1265       continue;
1266     }
1267 
1268     if (SkipDbgVariableRecords)
1269       continue;
1270     DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR);
1271     DILocalVariable *Variable = DVR.getVariable();
1272     DIExpression *Expression = DVR.getExpression();
1273     dropDanglingDebugInfo(Variable, Expression);
1274 
1275     if (DVR.getType() == DbgVariableRecord::LocationType::Declare) {
1276       if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR))
1277         continue;
1278       LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DVR
1279                         << "\n");
1280       handleDebugDeclare(DVR.getVariableLocationOp(0), Variable, Expression,
1281                          DVR.getDebugLoc());
1282       continue;
1283     }
1284 
1285     // A DbgVariableRecord with no locations is a kill location.
1286     SmallVector<Value *, 4> Values(DVR.location_ops());
1287     if (Values.empty()) {
1288       handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(),
1289                            SDNodeOrder);
1290       continue;
1291     }
1292 
1293     // A DbgVariableRecord with an undef or absent location is also a kill
1294     // location.
1295     if (llvm::any_of(Values,
1296                      [](Value *V) { return !V || isa<UndefValue>(V); })) {
1297       handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(),
1298                            SDNodeOrder);
1299       continue;
1300     }
1301 
1302     bool IsVariadic = DVR.hasArgList();
1303     if (!handleDebugValue(Values, Variable, Expression, DVR.getDebugLoc(),
1304                           SDNodeOrder, IsVariadic)) {
1305       addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
1306                            DVR.getDebugLoc(), SDNodeOrder);
1307     }
1308   }
1309 }
1310 
1311 void SelectionDAGBuilder::visit(const Instruction &I) {
1312   visitDbgInfo(I);
1313 
1314   // Set up outgoing PHI node register values before emitting the terminator.
1315   if (I.isTerminator()) {
1316     HandlePHINodesInSuccessorBlocks(I.getParent());
1317   }
1318 
1319   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1320   if (!isa<DbgInfoIntrinsic>(I))
1321     ++SDNodeOrder;
1322 
1323   CurInst = &I;
1324 
1325   // Set inserted listener only if required.
1326   bool NodeInserted = false;
1327   std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1328   MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1329   if (PCSectionsMD) {
1330     InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1331         DAG, [&](SDNode *) { NodeInserted = true; });
1332   }
1333 
1334   visit(I.getOpcode(), I);
1335 
1336   if (!I.isTerminator() && !HasTailCall &&
1337       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1338     CopyToExportRegsIfNeeded(&I);
1339 
1340   // Handle metadata.
1341   if (PCSectionsMD) {
1342     auto It = NodeMap.find(&I);
1343     if (It != NodeMap.end()) {
1344       DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1345     } else if (NodeInserted) {
1346       // This should not happen; if it does, don't let it go unnoticed so we can
1347       // fix it. Relevant visit*() function is probably missing a setValue().
1348       errs() << "warning: loosing !pcsections metadata ["
1349              << I.getModule()->getName() << "]\n";
1350       LLVM_DEBUG(I.dump());
1351       assert(false);
1352     }
1353   }
1354 
1355   CurInst = nullptr;
1356 }
1357 
1358 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1359   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1360 }
1361 
1362 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1363   // Note: this doesn't use InstVisitor, because it has to work with
1364   // ConstantExpr's in addition to instructions.
1365   switch (Opcode) {
1366   default: llvm_unreachable("Unknown instruction type encountered!");
1367     // Build the switch statement using the Instruction.def file.
1368 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1369     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1370 #include "llvm/IR/Instruction.def"
1371   }
1372 }
1373 
1374 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG,
1375                                             DILocalVariable *Variable,
1376                                             DebugLoc DL, unsigned Order,
1377                                             SmallVectorImpl<Value *> &Values,
1378                                             DIExpression *Expression) {
1379   // For variadic dbg_values we will now insert an undef.
1380   // FIXME: We can potentially recover these!
1381   SmallVector<SDDbgOperand, 2> Locs;
1382   for (const Value *V : Values) {
1383     auto *Undef = UndefValue::get(V->getType());
1384     Locs.push_back(SDDbgOperand::fromConst(Undef));
1385   }
1386   SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {},
1387                                         /*IsIndirect=*/false, DL, Order,
1388                                         /*IsVariadic=*/true);
1389   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1390   return true;
1391 }
1392 
1393 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values,
1394                                                DILocalVariable *Var,
1395                                                DIExpression *Expr,
1396                                                bool IsVariadic, DebugLoc DL,
1397                                                unsigned Order) {
1398   if (IsVariadic) {
1399     handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr);
1400     return;
1401   }
1402   // TODO: Dangling debug info will eventually either be resolved or produce
1403   // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1404   // between the original dbg.value location and its resolved DBG_VALUE,
1405   // which we should ideally fill with an extra Undef DBG_VALUE.
1406   assert(Values.size() == 1);
1407   DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order);
1408 }
1409 
1410 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1411                                                 const DIExpression *Expr) {
1412   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1413     DIVariable *DanglingVariable = DDI.getVariable();
1414     DIExpression *DanglingExpr = DDI.getExpression();
1415     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1416       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for "
1417                         << printDDI(nullptr, DDI) << "\n");
1418       return true;
1419     }
1420     return false;
1421   };
1422 
1423   for (auto &DDIMI : DanglingDebugInfoMap) {
1424     DanglingDebugInfoVector &DDIV = DDIMI.second;
1425 
1426     // If debug info is to be dropped, run it through final checks to see
1427     // whether it can be salvaged.
1428     for (auto &DDI : DDIV)
1429       if (isMatchingDbgValue(DDI))
1430         salvageUnresolvedDbgValue(DDIMI.first, DDI);
1431 
1432     erase_if(DDIV, isMatchingDbgValue);
1433   }
1434 }
1435 
1436 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1437 // generate the debug data structures now that we've seen its definition.
1438 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1439                                                    SDValue Val) {
1440   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1441   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1442     return;
1443 
1444   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1445   for (auto &DDI : DDIV) {
1446     DebugLoc DL = DDI.getDebugLoc();
1447     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1448     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1449     DILocalVariable *Variable = DDI.getVariable();
1450     DIExpression *Expr = DDI.getExpression();
1451     assert(Variable->isValidLocationForIntrinsic(DL) &&
1452            "Expected inlined-at fields to agree");
1453     SDDbgValue *SDV;
1454     if (Val.getNode()) {
1455       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1456       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1457       // we couldn't resolve it directly when examining the DbgValue intrinsic
1458       // in the first place we should not be more successful here). Unless we
1459       // have some test case that prove this to be correct we should avoid
1460       // calling EmitFuncArgumentDbgValue here.
1461       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1462                                     FuncArgumentDbgValueKind::Value, Val)) {
1463         LLVM_DEBUG(dbgs() << "Resolve dangling debug info for "
1464                           << printDDI(V, DDI) << "\n");
1465         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1466         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1467         // inserted after the definition of Val when emitting the instructions
1468         // after ISel. An alternative could be to teach
1469         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1470         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1471                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1472                    << ValSDNodeOrder << "\n");
1473         SDV = getDbgValue(Val, Variable, Expr, DL,
1474                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1475         DAG.AddDbgValue(SDV, false);
1476       } else
1477         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1478                           << printDDI(V, DDI)
1479                           << " in EmitFuncArgumentDbgValue\n");
1480     } else {
1481       LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI)
1482                         << "\n");
1483       auto Undef = UndefValue::get(V->getType());
1484       auto SDV =
1485           DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder);
1486       DAG.AddDbgValue(SDV, false);
1487     }
1488   }
1489   DDIV.clear();
1490 }
1491 
1492 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V,
1493                                                     DanglingDebugInfo &DDI) {
1494   // TODO: For the variadic implementation, instead of only checking the fail
1495   // state of `handleDebugValue`, we need know specifically which values were
1496   // invalid, so that we attempt to salvage only those values when processing
1497   // a DIArgList.
1498   const Value *OrigV = V;
1499   DILocalVariable *Var = DDI.getVariable();
1500   DIExpression *Expr = DDI.getExpression();
1501   DebugLoc DL = DDI.getDebugLoc();
1502   unsigned SDOrder = DDI.getSDNodeOrder();
1503 
1504   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1505   // that DW_OP_stack_value is desired.
1506   bool StackValue = true;
1507 
1508   // Can this Value can be encoded without any further work?
1509   if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1510     return;
1511 
1512   // Attempt to salvage back through as many instructions as possible. Bail if
1513   // a non-instruction is seen, such as a constant expression or global
1514   // variable. FIXME: Further work could recover those too.
1515   while (isa<Instruction>(V)) {
1516     const Instruction &VAsInst = *cast<const Instruction>(V);
1517     // Temporary "0", awaiting real implementation.
1518     SmallVector<uint64_t, 16> Ops;
1519     SmallVector<Value *, 4> AdditionalValues;
1520     V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst),
1521                              Expr->getNumLocationOperands(), Ops,
1522                              AdditionalValues);
1523     // If we cannot salvage any further, and haven't yet found a suitable debug
1524     // expression, bail out.
1525     if (!V)
1526       break;
1527 
1528     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1529     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1530     // here for variadic dbg_values, remove that condition.
1531     if (!AdditionalValues.empty())
1532       break;
1533 
1534     // New value and expr now represent this debuginfo.
1535     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1536 
1537     // Some kind of simplification occurred: check whether the operand of the
1538     // salvaged debug expression can be encoded in this DAG.
1539     if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1540       LLVM_DEBUG(
1541           dbgs() << "Salvaged debug location info for:\n  " << *Var << "\n"
1542                  << *OrigV << "\nBy stripping back to:\n  " << *V << "\n");
1543       return;
1544     }
1545   }
1546 
1547   // This was the final opportunity to salvage this debug information, and it
1548   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1549   // any earlier variable location.
1550   assert(OrigV && "V shouldn't be null");
1551   auto *Undef = UndefValue::get(OrigV->getType());
1552   auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1553   DAG.AddDbgValue(SDV, false);
1554   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  "
1555                     << printDDI(OrigV, DDI) << "\n");
1556 }
1557 
1558 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var,
1559                                                DIExpression *Expr,
1560                                                DebugLoc DbgLoc,
1561                                                unsigned Order) {
1562   Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context));
1563   DIExpression *NewExpr =
1564       const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr));
1565   handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order,
1566                    /*IsVariadic*/ false);
1567 }
1568 
1569 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1570                                            DILocalVariable *Var,
1571                                            DIExpression *Expr, DebugLoc DbgLoc,
1572                                            unsigned Order, bool IsVariadic) {
1573   if (Values.empty())
1574     return true;
1575 
1576   // Filter EntryValue locations out early.
1577   if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc))
1578     return true;
1579 
1580   SmallVector<SDDbgOperand> LocationOps;
1581   SmallVector<SDNode *> Dependencies;
1582   for (const Value *V : Values) {
1583     // Constant value.
1584     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1585         isa<ConstantPointerNull>(V)) {
1586       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1587       continue;
1588     }
1589 
1590     // Look through IntToPtr constants.
1591     if (auto *CE = dyn_cast<ConstantExpr>(V))
1592       if (CE->getOpcode() == Instruction::IntToPtr) {
1593         LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1594         continue;
1595       }
1596 
1597     // If the Value is a frame index, we can create a FrameIndex debug value
1598     // without relying on the DAG at all.
1599     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1600       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1601       if (SI != FuncInfo.StaticAllocaMap.end()) {
1602         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1603         continue;
1604       }
1605     }
1606 
1607     // Do not use getValue() in here; we don't want to generate code at
1608     // this point if it hasn't been done yet.
1609     SDValue N = NodeMap[V];
1610     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1611       N = UnusedArgNodeMap[V];
1612     if (N.getNode()) {
1613       // Only emit func arg dbg value for non-variadic dbg.values for now.
1614       if (!IsVariadic &&
1615           EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1616                                    FuncArgumentDbgValueKind::Value, N))
1617         return true;
1618       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1619         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1620         // describe stack slot locations.
1621         //
1622         // Consider "int x = 0; int *px = &x;". There are two kinds of
1623         // interesting debug values here after optimization:
1624         //
1625         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1626         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1627         //
1628         // Both describe the direct values of their associated variables.
1629         Dependencies.push_back(N.getNode());
1630         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1631         continue;
1632       }
1633       LocationOps.emplace_back(
1634           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1635       continue;
1636     }
1637 
1638     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1639     // Special rules apply for the first dbg.values of parameter variables in a
1640     // function. Identify them by the fact they reference Argument Values, that
1641     // they're parameters, and they are parameters of the current function. We
1642     // need to let them dangle until they get an SDNode.
1643     bool IsParamOfFunc =
1644         isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1645     if (IsParamOfFunc)
1646       return false;
1647 
1648     // The value is not used in this block yet (or it would have an SDNode).
1649     // We still want the value to appear for the user if possible -- if it has
1650     // an associated VReg, we can refer to that instead.
1651     auto VMI = FuncInfo.ValueMap.find(V);
1652     if (VMI != FuncInfo.ValueMap.end()) {
1653       unsigned Reg = VMI->second;
1654       // If this is a PHI node, it may be split up into several MI PHI nodes
1655       // (in FunctionLoweringInfo::set).
1656       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1657                        V->getType(), std::nullopt);
1658       if (RFV.occupiesMultipleRegs()) {
1659         // FIXME: We could potentially support variadic dbg_values here.
1660         if (IsVariadic)
1661           return false;
1662         unsigned Offset = 0;
1663         unsigned BitsToDescribe = 0;
1664         if (auto VarSize = Var->getSizeInBits())
1665           BitsToDescribe = *VarSize;
1666         if (auto Fragment = Expr->getFragmentInfo())
1667           BitsToDescribe = Fragment->SizeInBits;
1668         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1669           // Bail out if all bits are described already.
1670           if (Offset >= BitsToDescribe)
1671             break;
1672           // TODO: handle scalable vectors.
1673           unsigned RegisterSize = RegAndSize.second;
1674           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1675                                       ? BitsToDescribe - Offset
1676                                       : RegisterSize;
1677           auto FragmentExpr = DIExpression::createFragmentExpression(
1678               Expr, Offset, FragmentSize);
1679           if (!FragmentExpr)
1680             continue;
1681           SDDbgValue *SDV = DAG.getVRegDbgValue(
1682               Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder);
1683           DAG.AddDbgValue(SDV, false);
1684           Offset += RegisterSize;
1685         }
1686         return true;
1687       }
1688       // We can use simple vreg locations for variadic dbg_values as well.
1689       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1690       continue;
1691     }
1692     // We failed to create a SDDbgOperand for V.
1693     return false;
1694   }
1695 
1696   // We have created a SDDbgOperand for each Value in Values.
1697   // Should use Order instead of SDNodeOrder?
1698   assert(!LocationOps.empty());
1699   SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1700                                         /*IsIndirect=*/false, DbgLoc,
1701                                         SDNodeOrder, IsVariadic);
1702   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1703   return true;
1704 }
1705 
1706 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1707   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1708   for (auto &Pair : DanglingDebugInfoMap)
1709     for (auto &DDI : Pair.second)
1710       salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI);
1711   clearDanglingDebugInfo();
1712 }
1713 
1714 /// getCopyFromRegs - If there was virtual register allocated for the value V
1715 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1716 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1717   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1718   SDValue Result;
1719 
1720   if (It != FuncInfo.ValueMap.end()) {
1721     Register InReg = It->second;
1722 
1723     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1724                      DAG.getDataLayout(), InReg, Ty,
1725                      std::nullopt); // This is not an ABI copy.
1726     SDValue Chain = DAG.getEntryNode();
1727     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1728                                  V);
1729     resolveDanglingDebugInfo(V, Result);
1730   }
1731 
1732   return Result;
1733 }
1734 
1735 /// getValue - Return an SDValue for the given Value.
1736 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1737   // If we already have an SDValue for this value, use it. It's important
1738   // to do this first, so that we don't create a CopyFromReg if we already
1739   // have a regular SDValue.
1740   SDValue &N = NodeMap[V];
1741   if (N.getNode()) return N;
1742 
1743   // If there's a virtual register allocated and initialized for this
1744   // value, use it.
1745   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1746     return copyFromReg;
1747 
1748   // Otherwise create a new SDValue and remember it.
1749   SDValue Val = getValueImpl(V);
1750   NodeMap[V] = Val;
1751   resolveDanglingDebugInfo(V, Val);
1752   return Val;
1753 }
1754 
1755 /// getNonRegisterValue - Return an SDValue for the given Value, but
1756 /// don't look in FuncInfo.ValueMap for a virtual register.
1757 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1758   // If we already have an SDValue for this value, use it.
1759   SDValue &N = NodeMap[V];
1760   if (N.getNode()) {
1761     if (isIntOrFPConstant(N)) {
1762       // Remove the debug location from the node as the node is about to be used
1763       // in a location which may differ from the original debug location.  This
1764       // is relevant to Constant and ConstantFP nodes because they can appear
1765       // as constant expressions inside PHI nodes.
1766       N->setDebugLoc(DebugLoc());
1767     }
1768     return N;
1769   }
1770 
1771   // Otherwise create a new SDValue and remember it.
1772   SDValue Val = getValueImpl(V);
1773   NodeMap[V] = Val;
1774   resolveDanglingDebugInfo(V, Val);
1775   return Val;
1776 }
1777 
1778 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1779 /// Create an SDValue for the given value.
1780 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1781   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1782 
1783   if (const Constant *C = dyn_cast<Constant>(V)) {
1784     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1785 
1786     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1787       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1788 
1789     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1790       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1791 
1792     if (isa<ConstantPointerNull>(C)) {
1793       unsigned AS = V->getType()->getPointerAddressSpace();
1794       return DAG.getConstant(0, getCurSDLoc(),
1795                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1796     }
1797 
1798     if (match(C, m_VScale()))
1799       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1800 
1801     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1802       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1803 
1804     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1805       return DAG.getUNDEF(VT);
1806 
1807     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1808       visit(CE->getOpcode(), *CE);
1809       SDValue N1 = NodeMap[V];
1810       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1811       return N1;
1812     }
1813 
1814     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1815       SmallVector<SDValue, 4> Constants;
1816       for (const Use &U : C->operands()) {
1817         SDNode *Val = getValue(U).getNode();
1818         // If the operand is an empty aggregate, there are no values.
1819         if (!Val) continue;
1820         // Add each leaf value from the operand to the Constants list
1821         // to form a flattened list of all the values.
1822         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1823           Constants.push_back(SDValue(Val, i));
1824       }
1825 
1826       return DAG.getMergeValues(Constants, getCurSDLoc());
1827     }
1828 
1829     if (const ConstantDataSequential *CDS =
1830           dyn_cast<ConstantDataSequential>(C)) {
1831       SmallVector<SDValue, 4> Ops;
1832       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1833         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1834         // Add each leaf value from the operand to the Constants list
1835         // to form a flattened list of all the values.
1836         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1837           Ops.push_back(SDValue(Val, i));
1838       }
1839 
1840       if (isa<ArrayType>(CDS->getType()))
1841         return DAG.getMergeValues(Ops, getCurSDLoc());
1842       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1843     }
1844 
1845     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1846       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1847              "Unknown struct or array constant!");
1848 
1849       SmallVector<EVT, 4> ValueVTs;
1850       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1851       unsigned NumElts = ValueVTs.size();
1852       if (NumElts == 0)
1853         return SDValue(); // empty struct
1854       SmallVector<SDValue, 4> Constants(NumElts);
1855       for (unsigned i = 0; i != NumElts; ++i) {
1856         EVT EltVT = ValueVTs[i];
1857         if (isa<UndefValue>(C))
1858           Constants[i] = DAG.getUNDEF(EltVT);
1859         else if (EltVT.isFloatingPoint())
1860           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1861         else
1862           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1863       }
1864 
1865       return DAG.getMergeValues(Constants, getCurSDLoc());
1866     }
1867 
1868     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1869       return DAG.getBlockAddress(BA, VT);
1870 
1871     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1872       return getValue(Equiv->getGlobalValue());
1873 
1874     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1875       return getValue(NC->getGlobalValue());
1876 
1877     if (VT == MVT::aarch64svcount) {
1878       assert(C->isNullValue() && "Can only zero this target type!");
1879       return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT,
1880                          DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1));
1881     }
1882 
1883     VectorType *VecTy = cast<VectorType>(V->getType());
1884 
1885     // Now that we know the number and type of the elements, get that number of
1886     // elements into the Ops array based on what kind of constant it is.
1887     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1888       SmallVector<SDValue, 16> Ops;
1889       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1890       for (unsigned i = 0; i != NumElements; ++i)
1891         Ops.push_back(getValue(CV->getOperand(i)));
1892 
1893       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1894     }
1895 
1896     if (isa<ConstantAggregateZero>(C)) {
1897       EVT EltVT =
1898           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1899 
1900       SDValue Op;
1901       if (EltVT.isFloatingPoint())
1902         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1903       else
1904         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1905 
1906       return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op);
1907     }
1908 
1909     llvm_unreachable("Unknown vector constant");
1910   }
1911 
1912   // If this is a static alloca, generate it as the frameindex instead of
1913   // computation.
1914   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1915     DenseMap<const AllocaInst*, int>::iterator SI =
1916       FuncInfo.StaticAllocaMap.find(AI);
1917     if (SI != FuncInfo.StaticAllocaMap.end())
1918       return DAG.getFrameIndex(
1919           SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
1920   }
1921 
1922   // If this is an instruction which fast-isel has deferred, select it now.
1923   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1924     Register InReg = FuncInfo.InitializeRegForValue(Inst);
1925 
1926     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1927                      Inst->getType(), std::nullopt);
1928     SDValue Chain = DAG.getEntryNode();
1929     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1930   }
1931 
1932   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1933     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1934 
1935   if (const auto *BB = dyn_cast<BasicBlock>(V))
1936     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1937 
1938   llvm_unreachable("Can't get register for value!");
1939 }
1940 
1941 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1942   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1943   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1944   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1945   bool IsSEH = isAsynchronousEHPersonality(Pers);
1946   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1947   if (!IsSEH)
1948     CatchPadMBB->setIsEHScopeEntry();
1949   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1950   if (IsMSVCCXX || IsCoreCLR)
1951     CatchPadMBB->setIsEHFuncletEntry();
1952 }
1953 
1954 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1955   // Update machine-CFG edge.
1956   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1957   FuncInfo.MBB->addSuccessor(TargetMBB);
1958   TargetMBB->setIsEHCatchretTarget(true);
1959   DAG.getMachineFunction().setHasEHCatchret(true);
1960 
1961   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1962   bool IsSEH = isAsynchronousEHPersonality(Pers);
1963   if (IsSEH) {
1964     // If this is not a fall-through branch or optimizations are switched off,
1965     // emit the branch.
1966     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1967         TM.getOptLevel() == CodeGenOptLevel::None)
1968       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1969                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1970     return;
1971   }
1972 
1973   // Figure out the funclet membership for the catchret's successor.
1974   // This will be used by the FuncletLayout pass to determine how to order the
1975   // BB's.
1976   // A 'catchret' returns to the outer scope's color.
1977   Value *ParentPad = I.getCatchSwitchParentPad();
1978   const BasicBlock *SuccessorColor;
1979   if (isa<ConstantTokenNone>(ParentPad))
1980     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1981   else
1982     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1983   assert(SuccessorColor && "No parent funclet for catchret!");
1984   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1985   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1986 
1987   // Create the terminator node.
1988   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1989                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1990                             DAG.getBasicBlock(SuccessorColorMBB));
1991   DAG.setRoot(Ret);
1992 }
1993 
1994 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1995   // Don't emit any special code for the cleanuppad instruction. It just marks
1996   // the start of an EH scope/funclet.
1997   FuncInfo.MBB->setIsEHScopeEntry();
1998   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1999   if (Pers != EHPersonality::Wasm_CXX) {
2000     FuncInfo.MBB->setIsEHFuncletEntry();
2001     FuncInfo.MBB->setIsCleanupFuncletEntry();
2002   }
2003 }
2004 
2005 // In wasm EH, even though a catchpad may not catch an exception if a tag does
2006 // not match, it is OK to add only the first unwind destination catchpad to the
2007 // successors, because there will be at least one invoke instruction within the
2008 // catch scope that points to the next unwind destination, if one exists, so
2009 // CFGSort cannot mess up with BB sorting order.
2010 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
2011 // call within them, and catchpads only consisting of 'catch (...)' have a
2012 // '__cxa_end_catch' call within them, both of which generate invokes in case
2013 // the next unwind destination exists, i.e., the next unwind destination is not
2014 // the caller.)
2015 //
2016 // Having at most one EH pad successor is also simpler and helps later
2017 // transformations.
2018 //
2019 // For example,
2020 // current:
2021 //   invoke void @foo to ... unwind label %catch.dispatch
2022 // catch.dispatch:
2023 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
2024 // catch.start:
2025 //   ...
2026 //   ... in this BB or some other child BB dominated by this BB there will be an
2027 //   invoke that points to 'next' BB as an unwind destination
2028 //
2029 // next: ; We don't need to add this to 'current' BB's successor
2030 //   ...
2031 static void findWasmUnwindDestinations(
2032     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2033     BranchProbability Prob,
2034     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2035         &UnwindDests) {
2036   while (EHPadBB) {
2037     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2038     if (isa<CleanupPadInst>(Pad)) {
2039       // Stop on cleanup pads.
2040       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2041       UnwindDests.back().first->setIsEHScopeEntry();
2042       break;
2043     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2044       // Add the catchpad handlers to the possible destinations. We don't
2045       // continue to the unwind destination of the catchswitch for wasm.
2046       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2047         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
2048         UnwindDests.back().first->setIsEHScopeEntry();
2049       }
2050       break;
2051     } else {
2052       continue;
2053     }
2054   }
2055 }
2056 
2057 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
2058 /// many places it could ultimately go. In the IR, we have a single unwind
2059 /// destination, but in the machine CFG, we enumerate all the possible blocks.
2060 /// This function skips over imaginary basic blocks that hold catchswitch
2061 /// instructions, and finds all the "real" machine
2062 /// basic block destinations. As those destinations may not be successors of
2063 /// EHPadBB, here we also calculate the edge probability to those destinations.
2064 /// The passed-in Prob is the edge probability to EHPadBB.
2065 static void findUnwindDestinations(
2066     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2067     BranchProbability Prob,
2068     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2069         &UnwindDests) {
2070   EHPersonality Personality =
2071     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2072   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2073   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2074   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2075   bool IsSEH = isAsynchronousEHPersonality(Personality);
2076 
2077   if (IsWasmCXX) {
2078     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
2079     assert(UnwindDests.size() <= 1 &&
2080            "There should be at most one unwind destination for wasm");
2081     return;
2082   }
2083 
2084   while (EHPadBB) {
2085     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2086     BasicBlock *NewEHPadBB = nullptr;
2087     if (isa<LandingPadInst>(Pad)) {
2088       // Stop on landingpads. They are not funclets.
2089       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2090       break;
2091     } else if (isa<CleanupPadInst>(Pad)) {
2092       // Stop on cleanup pads. Cleanups are always funclet entries for all known
2093       // personalities.
2094       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2095       UnwindDests.back().first->setIsEHScopeEntry();
2096       UnwindDests.back().first->setIsEHFuncletEntry();
2097       break;
2098     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2099       // Add the catchpad handlers to the possible destinations.
2100       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2101         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
2102         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2103         if (IsMSVCCXX || IsCoreCLR)
2104           UnwindDests.back().first->setIsEHFuncletEntry();
2105         if (!IsSEH)
2106           UnwindDests.back().first->setIsEHScopeEntry();
2107       }
2108       NewEHPadBB = CatchSwitch->getUnwindDest();
2109     } else {
2110       continue;
2111     }
2112 
2113     BranchProbabilityInfo *BPI = FuncInfo.BPI;
2114     if (BPI && NewEHPadBB)
2115       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2116     EHPadBB = NewEHPadBB;
2117   }
2118 }
2119 
2120 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
2121   // Update successor info.
2122   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2123   auto UnwindDest = I.getUnwindDest();
2124   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2125   BranchProbability UnwindDestProb =
2126       (BPI && UnwindDest)
2127           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
2128           : BranchProbability::getZero();
2129   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
2130   for (auto &UnwindDest : UnwindDests) {
2131     UnwindDest.first->setIsEHPad();
2132     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
2133   }
2134   FuncInfo.MBB->normalizeSuccProbs();
2135 
2136   // Create the terminator node.
2137   SDValue Ret =
2138       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
2139   DAG.setRoot(Ret);
2140 }
2141 
2142 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
2143   report_fatal_error("visitCatchSwitch not yet implemented!");
2144 }
2145 
2146 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
2147   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2148   auto &DL = DAG.getDataLayout();
2149   SDValue Chain = getControlRoot();
2150   SmallVector<ISD::OutputArg, 8> Outs;
2151   SmallVector<SDValue, 8> OutVals;
2152 
2153   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
2154   // lower
2155   //
2156   //   %val = call <ty> @llvm.experimental.deoptimize()
2157   //   ret <ty> %val
2158   //
2159   // differently.
2160   if (I.getParent()->getTerminatingDeoptimizeCall()) {
2161     LowerDeoptimizingReturn();
2162     return;
2163   }
2164 
2165   if (!FuncInfo.CanLowerReturn) {
2166     unsigned DemoteReg = FuncInfo.DemoteRegister;
2167     const Function *F = I.getParent()->getParent();
2168 
2169     // Emit a store of the return value through the virtual register.
2170     // Leave Outs empty so that LowerReturn won't try to load return
2171     // registers the usual way.
2172     SmallVector<EVT, 1> PtrValueVTs;
2173     ComputeValueVTs(TLI, DL,
2174                     PointerType::get(F->getContext(),
2175                                      DAG.getDataLayout().getAllocaAddrSpace()),
2176                     PtrValueVTs);
2177 
2178     SDValue RetPtr =
2179         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
2180     SDValue RetOp = getValue(I.getOperand(0));
2181 
2182     SmallVector<EVT, 4> ValueVTs, MemVTs;
2183     SmallVector<uint64_t, 4> Offsets;
2184     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
2185                     &Offsets, 0);
2186     unsigned NumValues = ValueVTs.size();
2187 
2188     SmallVector<SDValue, 4> Chains(NumValues);
2189     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
2190     for (unsigned i = 0; i != NumValues; ++i) {
2191       // An aggregate return value cannot wrap around the address space, so
2192       // offsets to its parts don't wrap either.
2193       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
2194                                            TypeSize::getFixed(Offsets[i]));
2195 
2196       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2197       if (MemVTs[i] != ValueVTs[i])
2198         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2199       Chains[i] = DAG.getStore(
2200           Chain, getCurSDLoc(), Val,
2201           // FIXME: better loc info would be nice.
2202           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2203           commonAlignment(BaseAlign, Offsets[i]));
2204     }
2205 
2206     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2207                         MVT::Other, Chains);
2208   } else if (I.getNumOperands() != 0) {
2209     SmallVector<EVT, 4> ValueVTs;
2210     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
2211     unsigned NumValues = ValueVTs.size();
2212     if (NumValues) {
2213       SDValue RetOp = getValue(I.getOperand(0));
2214 
2215       const Function *F = I.getParent()->getParent();
2216 
2217       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2218           I.getOperand(0)->getType(), F->getCallingConv(),
2219           /*IsVarArg*/ false, DL);
2220 
2221       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2222       if (F->getAttributes().hasRetAttr(Attribute::SExt))
2223         ExtendKind = ISD::SIGN_EXTEND;
2224       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2225         ExtendKind = ISD::ZERO_EXTEND;
2226 
2227       LLVMContext &Context = F->getContext();
2228       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2229 
2230       for (unsigned j = 0; j != NumValues; ++j) {
2231         EVT VT = ValueVTs[j];
2232 
2233         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2234           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2235 
2236         CallingConv::ID CC = F->getCallingConv();
2237 
2238         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2239         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2240         SmallVector<SDValue, 4> Parts(NumParts);
2241         getCopyToParts(DAG, getCurSDLoc(),
2242                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2243                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2244 
2245         // 'inreg' on function refers to return value
2246         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2247         if (RetInReg)
2248           Flags.setInReg();
2249 
2250         if (I.getOperand(0)->getType()->isPointerTy()) {
2251           Flags.setPointer();
2252           Flags.setPointerAddrSpace(
2253               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2254         }
2255 
2256         if (NeedsRegBlock) {
2257           Flags.setInConsecutiveRegs();
2258           if (j == NumValues - 1)
2259             Flags.setInConsecutiveRegsLast();
2260         }
2261 
2262         // Propagate extension type if any
2263         if (ExtendKind == ISD::SIGN_EXTEND)
2264           Flags.setSExt();
2265         else if (ExtendKind == ISD::ZERO_EXTEND)
2266           Flags.setZExt();
2267 
2268         for (unsigned i = 0; i < NumParts; ++i) {
2269           Outs.push_back(ISD::OutputArg(Flags,
2270                                         Parts[i].getValueType().getSimpleVT(),
2271                                         VT, /*isfixed=*/true, 0, 0));
2272           OutVals.push_back(Parts[i]);
2273         }
2274       }
2275     }
2276   }
2277 
2278   // Push in swifterror virtual register as the last element of Outs. This makes
2279   // sure swifterror virtual register will be returned in the swifterror
2280   // physical register.
2281   const Function *F = I.getParent()->getParent();
2282   if (TLI.supportSwiftError() &&
2283       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2284     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2285     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2286     Flags.setSwiftError();
2287     Outs.push_back(ISD::OutputArg(
2288         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2289         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2290     // Create SDNode for the swifterror virtual register.
2291     OutVals.push_back(
2292         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2293                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2294                         EVT(TLI.getPointerTy(DL))));
2295   }
2296 
2297   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2298   CallingConv::ID CallConv =
2299     DAG.getMachineFunction().getFunction().getCallingConv();
2300   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2301       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2302 
2303   // Verify that the target's LowerReturn behaved as expected.
2304   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2305          "LowerReturn didn't return a valid chain!");
2306 
2307   // Update the DAG with the new chain value resulting from return lowering.
2308   DAG.setRoot(Chain);
2309 }
2310 
2311 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2312 /// created for it, emit nodes to copy the value into the virtual
2313 /// registers.
2314 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2315   // Skip empty types
2316   if (V->getType()->isEmptyTy())
2317     return;
2318 
2319   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2320   if (VMI != FuncInfo.ValueMap.end()) {
2321     assert((!V->use_empty() || isa<CallBrInst>(V)) &&
2322            "Unused value assigned virtual registers!");
2323     CopyValueToVirtualRegister(V, VMI->second);
2324   }
2325 }
2326 
2327 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2328 /// the current basic block, add it to ValueMap now so that we'll get a
2329 /// CopyTo/FromReg.
2330 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2331   // No need to export constants.
2332   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2333 
2334   // Already exported?
2335   if (FuncInfo.isExportedInst(V)) return;
2336 
2337   Register Reg = FuncInfo.InitializeRegForValue(V);
2338   CopyValueToVirtualRegister(V, Reg);
2339 }
2340 
2341 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2342                                                      const BasicBlock *FromBB) {
2343   // The operands of the setcc have to be in this block.  We don't know
2344   // how to export them from some other block.
2345   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2346     // Can export from current BB.
2347     if (VI->getParent() == FromBB)
2348       return true;
2349 
2350     // Is already exported, noop.
2351     return FuncInfo.isExportedInst(V);
2352   }
2353 
2354   // If this is an argument, we can export it if the BB is the entry block or
2355   // if it is already exported.
2356   if (isa<Argument>(V)) {
2357     if (FromBB->isEntryBlock())
2358       return true;
2359 
2360     // Otherwise, can only export this if it is already exported.
2361     return FuncInfo.isExportedInst(V);
2362   }
2363 
2364   // Otherwise, constants can always be exported.
2365   return true;
2366 }
2367 
2368 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2369 BranchProbability
2370 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2371                                         const MachineBasicBlock *Dst) const {
2372   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2373   const BasicBlock *SrcBB = Src->getBasicBlock();
2374   const BasicBlock *DstBB = Dst->getBasicBlock();
2375   if (!BPI) {
2376     // If BPI is not available, set the default probability as 1 / N, where N is
2377     // the number of successors.
2378     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2379     return BranchProbability(1, SuccSize);
2380   }
2381   return BPI->getEdgeProbability(SrcBB, DstBB);
2382 }
2383 
2384 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2385                                                MachineBasicBlock *Dst,
2386                                                BranchProbability Prob) {
2387   if (!FuncInfo.BPI)
2388     Src->addSuccessorWithoutProb(Dst);
2389   else {
2390     if (Prob.isUnknown())
2391       Prob = getEdgeProbability(Src, Dst);
2392     Src->addSuccessor(Dst, Prob);
2393   }
2394 }
2395 
2396 static bool InBlock(const Value *V, const BasicBlock *BB) {
2397   if (const Instruction *I = dyn_cast<Instruction>(V))
2398     return I->getParent() == BB;
2399   return true;
2400 }
2401 
2402 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2403 /// This function emits a branch and is used at the leaves of an OR or an
2404 /// AND operator tree.
2405 void
2406 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2407                                                   MachineBasicBlock *TBB,
2408                                                   MachineBasicBlock *FBB,
2409                                                   MachineBasicBlock *CurBB,
2410                                                   MachineBasicBlock *SwitchBB,
2411                                                   BranchProbability TProb,
2412                                                   BranchProbability FProb,
2413                                                   bool InvertCond) {
2414   const BasicBlock *BB = CurBB->getBasicBlock();
2415 
2416   // If the leaf of the tree is a comparison, merge the condition into
2417   // the caseblock.
2418   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2419     // The operands of the cmp have to be in this block.  We don't know
2420     // how to export them from some other block.  If this is the first block
2421     // of the sequence, no exporting is needed.
2422     if (CurBB == SwitchBB ||
2423         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2424          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2425       ISD::CondCode Condition;
2426       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2427         ICmpInst::Predicate Pred =
2428             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2429         Condition = getICmpCondCode(Pred);
2430       } else {
2431         const FCmpInst *FC = cast<FCmpInst>(Cond);
2432         FCmpInst::Predicate Pred =
2433             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2434         Condition = getFCmpCondCode(Pred);
2435         if (TM.Options.NoNaNsFPMath)
2436           Condition = getFCmpCodeWithoutNaN(Condition);
2437       }
2438 
2439       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2440                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2441       SL->SwitchCases.push_back(CB);
2442       return;
2443     }
2444   }
2445 
2446   // Create a CaseBlock record representing this branch.
2447   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2448   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2449                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2450   SL->SwitchCases.push_back(CB);
2451 }
2452 
2453 // Collect dependencies on V recursively. This is used for the cost analysis in
2454 // `shouldKeepJumpConditionsTogether`.
2455 static bool collectInstructionDeps(
2456     SmallMapVector<const Instruction *, bool, 8> *Deps, const Value *V,
2457     SmallMapVector<const Instruction *, bool, 8> *Necessary = nullptr,
2458     unsigned Depth = 0) {
2459   // Return false if we have an incomplete count.
2460   if (Depth >= SelectionDAG::MaxRecursionDepth)
2461     return false;
2462 
2463   auto *I = dyn_cast<Instruction>(V);
2464   if (I == nullptr)
2465     return true;
2466 
2467   if (Necessary != nullptr) {
2468     // This instruction is necessary for the other side of the condition so
2469     // don't count it.
2470     if (Necessary->contains(I))
2471       return true;
2472   }
2473 
2474   // Already added this dep.
2475   if (!Deps->try_emplace(I, false).second)
2476     return true;
2477 
2478   for (unsigned OpIdx = 0, E = I->getNumOperands(); OpIdx < E; ++OpIdx)
2479     if (!collectInstructionDeps(Deps, I->getOperand(OpIdx), Necessary,
2480                                 Depth + 1))
2481       return false;
2482   return true;
2483 }
2484 
2485 bool SelectionDAGBuilder::shouldKeepJumpConditionsTogether(
2486     const FunctionLoweringInfo &FuncInfo, const BranchInst &I,
2487     Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs,
2488     TargetLoweringBase::CondMergingParams Params) const {
2489   if (I.getNumSuccessors() != 2)
2490     return false;
2491 
2492   if (!I.isConditional())
2493     return false;
2494 
2495   if (Params.BaseCost < 0)
2496     return false;
2497 
2498   // Baseline cost.
2499   InstructionCost CostThresh = Params.BaseCost;
2500 
2501   BranchProbabilityInfo *BPI = nullptr;
2502   if (Params.LikelyBias || Params.UnlikelyBias)
2503     BPI = FuncInfo.BPI;
2504   if (BPI != nullptr) {
2505     // See if we are either likely to get an early out or compute both lhs/rhs
2506     // of the condition.
2507     BasicBlock *IfFalse = I.getSuccessor(0);
2508     BasicBlock *IfTrue = I.getSuccessor(1);
2509 
2510     std::optional<bool> Likely;
2511     if (BPI->isEdgeHot(I.getParent(), IfTrue))
2512       Likely = true;
2513     else if (BPI->isEdgeHot(I.getParent(), IfFalse))
2514       Likely = false;
2515 
2516     if (Likely) {
2517       if (Opc == (*Likely ? Instruction::And : Instruction::Or))
2518         // Its likely we will have to compute both lhs and rhs of condition
2519         CostThresh += Params.LikelyBias;
2520       else {
2521         if (Params.UnlikelyBias < 0)
2522           return false;
2523         // Its likely we will get an early out.
2524         CostThresh -= Params.UnlikelyBias;
2525       }
2526     }
2527   }
2528 
2529   if (CostThresh <= 0)
2530     return false;
2531 
2532   // Collect "all" instructions that lhs condition is dependent on.
2533   // Use map for stable iteration (to avoid non-determanism of iteration of
2534   // SmallPtrSet). The `bool` value is just a dummy.
2535   SmallMapVector<const Instruction *, bool, 8> LhsDeps, RhsDeps;
2536   collectInstructionDeps(&LhsDeps, Lhs);
2537   // Collect "all" instructions that rhs condition is dependent on AND are
2538   // dependencies of lhs. This gives us an estimate on which instructions we
2539   // stand to save by splitting the condition.
2540   if (!collectInstructionDeps(&RhsDeps, Rhs, &LhsDeps))
2541     return false;
2542   // Add the compare instruction itself unless its a dependency on the LHS.
2543   if (const auto *RhsI = dyn_cast<Instruction>(Rhs))
2544     if (!LhsDeps.contains(RhsI))
2545       RhsDeps.try_emplace(RhsI, false);
2546 
2547   const auto &TLI = DAG.getTargetLoweringInfo();
2548   const auto &TTI =
2549       TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction());
2550 
2551   InstructionCost CostOfIncluding = 0;
2552   // See if this instruction will need to computed independently of whether RHS
2553   // is.
2554   Value *BrCond = I.getCondition();
2555   auto ShouldCountInsn = [&RhsDeps, &BrCond](const Instruction *Ins) {
2556     for (const auto *U : Ins->users()) {
2557       // If user is independent of RHS calculation we don't need to count it.
2558       if (auto *UIns = dyn_cast<Instruction>(U))
2559         if (UIns != BrCond && !RhsDeps.contains(UIns))
2560           return false;
2561     }
2562     return true;
2563   };
2564 
2565   // Prune instructions from RHS Deps that are dependencies of unrelated
2566   // instructions. The value (SelectionDAG::MaxRecursionDepth) is fairly
2567   // arbitrary and just meant to cap the how much time we spend in the pruning
2568   // loop. Its highly unlikely to come into affect.
2569   const unsigned MaxPruneIters = SelectionDAG::MaxRecursionDepth;
2570   // Stop after a certain point. No incorrectness from including too many
2571   // instructions.
2572   for (unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) {
2573     const Instruction *ToDrop = nullptr;
2574     for (const auto &InsPair : RhsDeps) {
2575       if (!ShouldCountInsn(InsPair.first)) {
2576         ToDrop = InsPair.first;
2577         break;
2578       }
2579     }
2580     if (ToDrop == nullptr)
2581       break;
2582     RhsDeps.erase(ToDrop);
2583   }
2584 
2585   for (const auto &InsPair : RhsDeps) {
2586     // Finally accumulate latency that we can only attribute to computing the
2587     // RHS condition. Use latency because we are essentially trying to calculate
2588     // the cost of the dependency chain.
2589     // Possible TODO: We could try to estimate ILP and make this more precise.
2590     CostOfIncluding +=
2591         TTI.getInstructionCost(InsPair.first, TargetTransformInfo::TCK_Latency);
2592 
2593     if (CostOfIncluding > CostThresh)
2594       return false;
2595   }
2596   return true;
2597 }
2598 
2599 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2600                                                MachineBasicBlock *TBB,
2601                                                MachineBasicBlock *FBB,
2602                                                MachineBasicBlock *CurBB,
2603                                                MachineBasicBlock *SwitchBB,
2604                                                Instruction::BinaryOps Opc,
2605                                                BranchProbability TProb,
2606                                                BranchProbability FProb,
2607                                                bool InvertCond) {
2608   // Skip over not part of the tree and remember to invert op and operands at
2609   // next level.
2610   Value *NotCond;
2611   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2612       InBlock(NotCond, CurBB->getBasicBlock())) {
2613     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2614                          !InvertCond);
2615     return;
2616   }
2617 
2618   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2619   const Value *BOpOp0, *BOpOp1;
2620   // Compute the effective opcode for Cond, taking into account whether it needs
2621   // to be inverted, e.g.
2622   //   and (not (or A, B)), C
2623   // gets lowered as
2624   //   and (and (not A, not B), C)
2625   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2626   if (BOp) {
2627     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2628                ? Instruction::And
2629                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2630                       ? Instruction::Or
2631                       : (Instruction::BinaryOps)0);
2632     if (InvertCond) {
2633       if (BOpc == Instruction::And)
2634         BOpc = Instruction::Or;
2635       else if (BOpc == Instruction::Or)
2636         BOpc = Instruction::And;
2637     }
2638   }
2639 
2640   // If this node is not part of the or/and tree, emit it as a branch.
2641   // Note that all nodes in the tree should have same opcode.
2642   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2643   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2644       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2645       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2646     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2647                                  TProb, FProb, InvertCond);
2648     return;
2649   }
2650 
2651   //  Create TmpBB after CurBB.
2652   MachineFunction::iterator BBI(CurBB);
2653   MachineFunction &MF = DAG.getMachineFunction();
2654   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2655   CurBB->getParent()->insert(++BBI, TmpBB);
2656 
2657   if (Opc == Instruction::Or) {
2658     // Codegen X | Y as:
2659     // BB1:
2660     //   jmp_if_X TBB
2661     //   jmp TmpBB
2662     // TmpBB:
2663     //   jmp_if_Y TBB
2664     //   jmp FBB
2665     //
2666 
2667     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2668     // The requirement is that
2669     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2670     //     = TrueProb for original BB.
2671     // Assuming the original probabilities are A and B, one choice is to set
2672     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2673     // A/(1+B) and 2B/(1+B). This choice assumes that
2674     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2675     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2676     // TmpBB, but the math is more complicated.
2677 
2678     auto NewTrueProb = TProb / 2;
2679     auto NewFalseProb = TProb / 2 + FProb;
2680     // Emit the LHS condition.
2681     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2682                          NewFalseProb, InvertCond);
2683 
2684     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2685     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2686     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2687     // Emit the RHS condition into TmpBB.
2688     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2689                          Probs[1], InvertCond);
2690   } else {
2691     assert(Opc == Instruction::And && "Unknown merge op!");
2692     // Codegen X & Y as:
2693     // BB1:
2694     //   jmp_if_X TmpBB
2695     //   jmp FBB
2696     // TmpBB:
2697     //   jmp_if_Y TBB
2698     //   jmp FBB
2699     //
2700     //  This requires creation of TmpBB after CurBB.
2701 
2702     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2703     // The requirement is that
2704     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2705     //     = FalseProb for original BB.
2706     // Assuming the original probabilities are A and B, one choice is to set
2707     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2708     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2709     // TrueProb for BB1 * FalseProb for TmpBB.
2710 
2711     auto NewTrueProb = TProb + FProb / 2;
2712     auto NewFalseProb = FProb / 2;
2713     // Emit the LHS condition.
2714     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2715                          NewFalseProb, InvertCond);
2716 
2717     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2718     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2719     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2720     // Emit the RHS condition into TmpBB.
2721     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2722                          Probs[1], InvertCond);
2723   }
2724 }
2725 
2726 /// If the set of cases should be emitted as a series of branches, return true.
2727 /// If we should emit this as a bunch of and/or'd together conditions, return
2728 /// false.
2729 bool
2730 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2731   if (Cases.size() != 2) return true;
2732 
2733   // If this is two comparisons of the same values or'd or and'd together, they
2734   // will get folded into a single comparison, so don't emit two blocks.
2735   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2736        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2737       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2738        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2739     return false;
2740   }
2741 
2742   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2743   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2744   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2745       Cases[0].CC == Cases[1].CC &&
2746       isa<Constant>(Cases[0].CmpRHS) &&
2747       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2748     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2749       return false;
2750     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2751       return false;
2752   }
2753 
2754   return true;
2755 }
2756 
2757 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2758   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2759 
2760   // Update machine-CFG edges.
2761   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2762 
2763   if (I.isUnconditional()) {
2764     // Update machine-CFG edges.
2765     BrMBB->addSuccessor(Succ0MBB);
2766 
2767     // If this is not a fall-through branch or optimizations are switched off,
2768     // emit the branch.
2769     if (Succ0MBB != NextBlock(BrMBB) ||
2770         TM.getOptLevel() == CodeGenOptLevel::None) {
2771       auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2772                             getControlRoot(), DAG.getBasicBlock(Succ0MBB));
2773       setValue(&I, Br);
2774       DAG.setRoot(Br);
2775     }
2776 
2777     return;
2778   }
2779 
2780   // If this condition is one of the special cases we handle, do special stuff
2781   // now.
2782   const Value *CondVal = I.getCondition();
2783   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2784 
2785   // If this is a series of conditions that are or'd or and'd together, emit
2786   // this as a sequence of branches instead of setcc's with and/or operations.
2787   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2788   // unpredictable branches, and vector extracts because those jumps are likely
2789   // expensive for any target), this should improve performance.
2790   // For example, instead of something like:
2791   //     cmp A, B
2792   //     C = seteq
2793   //     cmp D, E
2794   //     F = setle
2795   //     or C, F
2796   //     jnz foo
2797   // Emit:
2798   //     cmp A, B
2799   //     je foo
2800   //     cmp D, E
2801   //     jle foo
2802   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2803   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2804       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2805     Value *Vec;
2806     const Value *BOp0, *BOp1;
2807     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2808     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2809       Opcode = Instruction::And;
2810     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2811       Opcode = Instruction::Or;
2812 
2813     if (Opcode &&
2814         !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2815           match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value()))) &&
2816         !shouldKeepJumpConditionsTogether(
2817             FuncInfo, I, Opcode, BOp0, BOp1,
2818             DAG.getTargetLoweringInfo().getJumpConditionMergingParams(
2819                 Opcode, BOp0, BOp1))) {
2820       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2821                            getEdgeProbability(BrMBB, Succ0MBB),
2822                            getEdgeProbability(BrMBB, Succ1MBB),
2823                            /*InvertCond=*/false);
2824       // If the compares in later blocks need to use values not currently
2825       // exported from this block, export them now.  This block should always
2826       // be the first entry.
2827       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2828 
2829       // Allow some cases to be rejected.
2830       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2831         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2832           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2833           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2834         }
2835 
2836         // Emit the branch for this block.
2837         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2838         SL->SwitchCases.erase(SL->SwitchCases.begin());
2839         return;
2840       }
2841 
2842       // Okay, we decided not to do this, remove any inserted MBB's and clear
2843       // SwitchCases.
2844       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2845         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2846 
2847       SL->SwitchCases.clear();
2848     }
2849   }
2850 
2851   // Create a CaseBlock record representing this branch.
2852   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2853                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2854 
2855   // Use visitSwitchCase to actually insert the fast branch sequence for this
2856   // cond branch.
2857   visitSwitchCase(CB, BrMBB);
2858 }
2859 
2860 /// visitSwitchCase - Emits the necessary code to represent a single node in
2861 /// the binary search tree resulting from lowering a switch instruction.
2862 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2863                                           MachineBasicBlock *SwitchBB) {
2864   SDValue Cond;
2865   SDValue CondLHS = getValue(CB.CmpLHS);
2866   SDLoc dl = CB.DL;
2867 
2868   if (CB.CC == ISD::SETTRUE) {
2869     // Branch or fall through to TrueBB.
2870     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2871     SwitchBB->normalizeSuccProbs();
2872     if (CB.TrueBB != NextBlock(SwitchBB)) {
2873       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2874                               DAG.getBasicBlock(CB.TrueBB)));
2875     }
2876     return;
2877   }
2878 
2879   auto &TLI = DAG.getTargetLoweringInfo();
2880   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2881 
2882   // Build the setcc now.
2883   if (!CB.CmpMHS) {
2884     // Fold "(X == true)" to X and "(X == false)" to !X to
2885     // handle common cases produced by branch lowering.
2886     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2887         CB.CC == ISD::SETEQ)
2888       Cond = CondLHS;
2889     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2890              CB.CC == ISD::SETEQ) {
2891       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2892       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2893     } else {
2894       SDValue CondRHS = getValue(CB.CmpRHS);
2895 
2896       // If a pointer's DAG type is larger than its memory type then the DAG
2897       // values are zero-extended. This breaks signed comparisons so truncate
2898       // back to the underlying type before doing the compare.
2899       if (CondLHS.getValueType() != MemVT) {
2900         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2901         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2902       }
2903       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2904     }
2905   } else {
2906     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2907 
2908     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2909     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2910 
2911     SDValue CmpOp = getValue(CB.CmpMHS);
2912     EVT VT = CmpOp.getValueType();
2913 
2914     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2915       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2916                           ISD::SETLE);
2917     } else {
2918       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2919                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2920       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2921                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2922     }
2923   }
2924 
2925   // Update successor info
2926   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2927   // TrueBB and FalseBB are always different unless the incoming IR is
2928   // degenerate. This only happens when running llc on weird IR.
2929   if (CB.TrueBB != CB.FalseBB)
2930     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2931   SwitchBB->normalizeSuccProbs();
2932 
2933   // If the lhs block is the next block, invert the condition so that we can
2934   // fall through to the lhs instead of the rhs block.
2935   if (CB.TrueBB == NextBlock(SwitchBB)) {
2936     std::swap(CB.TrueBB, CB.FalseBB);
2937     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2938     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2939   }
2940 
2941   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2942                                MVT::Other, getControlRoot(), Cond,
2943                                DAG.getBasicBlock(CB.TrueBB));
2944 
2945   setValue(CurInst, BrCond);
2946 
2947   // Insert the false branch. Do this even if it's a fall through branch,
2948   // this makes it easier to do DAG optimizations which require inverting
2949   // the branch condition.
2950   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2951                        DAG.getBasicBlock(CB.FalseBB));
2952 
2953   DAG.setRoot(BrCond);
2954 }
2955 
2956 /// visitJumpTable - Emit JumpTable node in the current MBB
2957 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2958   // Emit the code for the jump table
2959   assert(JT.SL && "Should set SDLoc for SelectionDAG!");
2960   assert(JT.Reg != -1U && "Should lower JT Header first!");
2961   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2962   SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy);
2963   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2964   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other,
2965                                     Index.getValue(1), Table, Index);
2966   DAG.setRoot(BrJumpTable);
2967 }
2968 
2969 /// visitJumpTableHeader - This function emits necessary code to produce index
2970 /// in the JumpTable from switch case.
2971 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2972                                                JumpTableHeader &JTH,
2973                                                MachineBasicBlock *SwitchBB) {
2974   assert(JT.SL && "Should set SDLoc for SelectionDAG!");
2975   const SDLoc &dl = *JT.SL;
2976 
2977   // Subtract the lowest switch case value from the value being switched on.
2978   SDValue SwitchOp = getValue(JTH.SValue);
2979   EVT VT = SwitchOp.getValueType();
2980   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2981                             DAG.getConstant(JTH.First, dl, VT));
2982 
2983   // The SDNode we just created, which holds the value being switched on minus
2984   // the smallest case value, needs to be copied to a virtual register so it
2985   // can be used as an index into the jump table in a subsequent basic block.
2986   // This value may be smaller or larger than the target's pointer type, and
2987   // therefore require extension or truncating.
2988   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2989   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2990 
2991   unsigned JumpTableReg =
2992       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2993   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2994                                     JumpTableReg, SwitchOp);
2995   JT.Reg = JumpTableReg;
2996 
2997   if (!JTH.FallthroughUnreachable) {
2998     // Emit the range check for the jump table, and branch to the default block
2999     // for the switch statement if the value being switched on exceeds the
3000     // largest case in the switch.
3001     SDValue CMP = DAG.getSetCC(
3002         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3003                                    Sub.getValueType()),
3004         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
3005 
3006     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3007                                  MVT::Other, CopyTo, CMP,
3008                                  DAG.getBasicBlock(JT.Default));
3009 
3010     // Avoid emitting unnecessary branches to the next block.
3011     if (JT.MBB != NextBlock(SwitchBB))
3012       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
3013                            DAG.getBasicBlock(JT.MBB));
3014 
3015     DAG.setRoot(BrCond);
3016   } else {
3017     // Avoid emitting unnecessary branches to the next block.
3018     if (JT.MBB != NextBlock(SwitchBB))
3019       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
3020                               DAG.getBasicBlock(JT.MBB)));
3021     else
3022       DAG.setRoot(CopyTo);
3023   }
3024 }
3025 
3026 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
3027 /// variable if there exists one.
3028 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
3029                                  SDValue &Chain) {
3030   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3031   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
3032   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
3033   MachineFunction &MF = DAG.getMachineFunction();
3034   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
3035   MachineSDNode *Node =
3036       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
3037   if (Global) {
3038     MachinePointerInfo MPInfo(Global);
3039     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
3040                  MachineMemOperand::MODereferenceable;
3041     MachineMemOperand *MemRef = MF.getMachineMemOperand(
3042         MPInfo, Flags, LocationSize::precise(PtrTy.getSizeInBits() / 8),
3043         DAG.getEVTAlign(PtrTy));
3044     DAG.setNodeMemRefs(Node, {MemRef});
3045   }
3046   if (PtrTy != PtrMemTy)
3047     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
3048   return SDValue(Node, 0);
3049 }
3050 
3051 /// Codegen a new tail for a stack protector check ParentMBB which has had its
3052 /// tail spliced into a stack protector check success bb.
3053 ///
3054 /// For a high level explanation of how this fits into the stack protector
3055 /// generation see the comment on the declaration of class
3056 /// StackProtectorDescriptor.
3057 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
3058                                                   MachineBasicBlock *ParentBB) {
3059 
3060   // First create the loads to the guard/stack slot for the comparison.
3061   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3062   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
3063   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
3064 
3065   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
3066   int FI = MFI.getStackProtectorIndex();
3067 
3068   SDValue Guard;
3069   SDLoc dl = getCurSDLoc();
3070   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
3071   const Module &M = *ParentBB->getParent()->getFunction().getParent();
3072   Align Align =
3073       DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0));
3074 
3075   // Generate code to load the content of the guard slot.
3076   SDValue GuardVal = DAG.getLoad(
3077       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
3078       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
3079       MachineMemOperand::MOVolatile);
3080 
3081   if (TLI.useStackGuardXorFP())
3082     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
3083 
3084   // Retrieve guard check function, nullptr if instrumentation is inlined.
3085   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
3086     // The target provides a guard check function to validate the guard value.
3087     // Generate a call to that function with the content of the guard slot as
3088     // argument.
3089     FunctionType *FnTy = GuardCheckFn->getFunctionType();
3090     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
3091 
3092     TargetLowering::ArgListTy Args;
3093     TargetLowering::ArgListEntry Entry;
3094     Entry.Node = GuardVal;
3095     Entry.Ty = FnTy->getParamType(0);
3096     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
3097       Entry.IsInReg = true;
3098     Args.push_back(Entry);
3099 
3100     TargetLowering::CallLoweringInfo CLI(DAG);
3101     CLI.setDebugLoc(getCurSDLoc())
3102         .setChain(DAG.getEntryNode())
3103         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
3104                    getValue(GuardCheckFn), std::move(Args));
3105 
3106     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
3107     DAG.setRoot(Result.second);
3108     return;
3109   }
3110 
3111   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
3112   // Otherwise, emit a volatile load to retrieve the stack guard value.
3113   SDValue Chain = DAG.getEntryNode();
3114   if (TLI.useLoadStackGuardNode()) {
3115     Guard = getLoadStackGuard(DAG, dl, Chain);
3116   } else {
3117     const Value *IRGuard = TLI.getSDagStackGuard(M);
3118     SDValue GuardPtr = getValue(IRGuard);
3119 
3120     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
3121                         MachinePointerInfo(IRGuard, 0), Align,
3122                         MachineMemOperand::MOVolatile);
3123   }
3124 
3125   // Perform the comparison via a getsetcc.
3126   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
3127                                                         *DAG.getContext(),
3128                                                         Guard.getValueType()),
3129                              Guard, GuardVal, ISD::SETNE);
3130 
3131   // If the guard/stackslot do not equal, branch to failure MBB.
3132   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3133                                MVT::Other, GuardVal.getOperand(0),
3134                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
3135   // Otherwise branch to success MBB.
3136   SDValue Br = DAG.getNode(ISD::BR, dl,
3137                            MVT::Other, BrCond,
3138                            DAG.getBasicBlock(SPD.getSuccessMBB()));
3139 
3140   DAG.setRoot(Br);
3141 }
3142 
3143 /// Codegen the failure basic block for a stack protector check.
3144 ///
3145 /// A failure stack protector machine basic block consists simply of a call to
3146 /// __stack_chk_fail().
3147 ///
3148 /// For a high level explanation of how this fits into the stack protector
3149 /// generation see the comment on the declaration of class
3150 /// StackProtectorDescriptor.
3151 void
3152 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
3153   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3154   TargetLowering::MakeLibCallOptions CallOptions;
3155   CallOptions.setDiscardResult(true);
3156   SDValue Chain =
3157       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
3158                       std::nullopt, CallOptions, getCurSDLoc())
3159           .second;
3160   // On PS4/PS5, the "return address" must still be within the calling
3161   // function, even if it's at the very end, so emit an explicit TRAP here.
3162   // Passing 'true' for doesNotReturn above won't generate the trap for us.
3163   if (TM.getTargetTriple().isPS())
3164     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
3165   // WebAssembly needs an unreachable instruction after a non-returning call,
3166   // because the function return type can be different from __stack_chk_fail's
3167   // return type (void).
3168   if (TM.getTargetTriple().isWasm())
3169     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
3170 
3171   DAG.setRoot(Chain);
3172 }
3173 
3174 /// visitBitTestHeader - This function emits necessary code to produce value
3175 /// suitable for "bit tests"
3176 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
3177                                              MachineBasicBlock *SwitchBB) {
3178   SDLoc dl = getCurSDLoc();
3179 
3180   // Subtract the minimum value.
3181   SDValue SwitchOp = getValue(B.SValue);
3182   EVT VT = SwitchOp.getValueType();
3183   SDValue RangeSub =
3184       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
3185 
3186   // Determine the type of the test operands.
3187   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3188   bool UsePtrType = false;
3189   if (!TLI.isTypeLegal(VT)) {
3190     UsePtrType = true;
3191   } else {
3192     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
3193       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
3194         // Switch table case range are encoded into series of masks.
3195         // Just use pointer type, it's guaranteed to fit.
3196         UsePtrType = true;
3197         break;
3198       }
3199   }
3200   SDValue Sub = RangeSub;
3201   if (UsePtrType) {
3202     VT = TLI.getPointerTy(DAG.getDataLayout());
3203     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
3204   }
3205 
3206   B.RegVT = VT.getSimpleVT();
3207   B.Reg = FuncInfo.CreateReg(B.RegVT);
3208   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
3209 
3210   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
3211 
3212   if (!B.FallthroughUnreachable)
3213     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
3214   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
3215   SwitchBB->normalizeSuccProbs();
3216 
3217   SDValue Root = CopyTo;
3218   if (!B.FallthroughUnreachable) {
3219     // Conditional branch to the default block.
3220     SDValue RangeCmp = DAG.getSetCC(dl,
3221         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3222                                RangeSub.getValueType()),
3223         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
3224         ISD::SETUGT);
3225 
3226     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
3227                        DAG.getBasicBlock(B.Default));
3228   }
3229 
3230   // Avoid emitting unnecessary branches to the next block.
3231   if (MBB != NextBlock(SwitchBB))
3232     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
3233 
3234   DAG.setRoot(Root);
3235 }
3236 
3237 /// visitBitTestCase - this function produces one "bit test"
3238 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
3239                                            MachineBasicBlock* NextMBB,
3240                                            BranchProbability BranchProbToNext,
3241                                            unsigned Reg,
3242                                            BitTestCase &B,
3243                                            MachineBasicBlock *SwitchBB) {
3244   SDLoc dl = getCurSDLoc();
3245   MVT VT = BB.RegVT;
3246   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
3247   SDValue Cmp;
3248   unsigned PopCount = llvm::popcount(B.Mask);
3249   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3250   if (PopCount == 1) {
3251     // Testing for a single bit; just compare the shift count with what it
3252     // would need to be to shift a 1 bit in that position.
3253     Cmp = DAG.getSetCC(
3254         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3255         ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT),
3256         ISD::SETEQ);
3257   } else if (PopCount == BB.Range) {
3258     // There is only one zero bit in the range, test for it directly.
3259     Cmp = DAG.getSetCC(
3260         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3261         ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE);
3262   } else {
3263     // Make desired shift
3264     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
3265                                     DAG.getConstant(1, dl, VT), ShiftOp);
3266 
3267     // Emit bit tests and jumps
3268     SDValue AndOp = DAG.getNode(ISD::AND, dl,
3269                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
3270     Cmp = DAG.getSetCC(
3271         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3272         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
3273   }
3274 
3275   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
3276   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
3277   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
3278   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
3279   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
3280   // one as they are relative probabilities (and thus work more like weights),
3281   // and hence we need to normalize them to let the sum of them become one.
3282   SwitchBB->normalizeSuccProbs();
3283 
3284   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
3285                               MVT::Other, getControlRoot(),
3286                               Cmp, DAG.getBasicBlock(B.TargetBB));
3287 
3288   // Avoid emitting unnecessary branches to the next block.
3289   if (NextMBB != NextBlock(SwitchBB))
3290     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
3291                         DAG.getBasicBlock(NextMBB));
3292 
3293   DAG.setRoot(BrAnd);
3294 }
3295 
3296 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
3297   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
3298 
3299   // Retrieve successors. Look through artificial IR level blocks like
3300   // catchswitch for successors.
3301   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
3302   const BasicBlock *EHPadBB = I.getSuccessor(1);
3303   MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB];
3304 
3305   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3306   // have to do anything here to lower funclet bundles.
3307   assert(!I.hasOperandBundlesOtherThan(
3308              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
3309               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
3310               LLVMContext::OB_cfguardtarget,
3311               LLVMContext::OB_clang_arc_attachedcall}) &&
3312          "Cannot lower invokes with arbitrary operand bundles yet!");
3313 
3314   const Value *Callee(I.getCalledOperand());
3315   const Function *Fn = dyn_cast<Function>(Callee);
3316   if (isa<InlineAsm>(Callee))
3317     visitInlineAsm(I, EHPadBB);
3318   else if (Fn && Fn->isIntrinsic()) {
3319     switch (Fn->getIntrinsicID()) {
3320     default:
3321       llvm_unreachable("Cannot invoke this intrinsic");
3322     case Intrinsic::donothing:
3323       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
3324     case Intrinsic::seh_try_begin:
3325     case Intrinsic::seh_scope_begin:
3326     case Intrinsic::seh_try_end:
3327     case Intrinsic::seh_scope_end:
3328       if (EHPadMBB)
3329           // a block referenced by EH table
3330           // so dtor-funclet not removed by opts
3331           EHPadMBB->setMachineBlockAddressTaken();
3332       break;
3333     case Intrinsic::experimental_patchpoint_void:
3334     case Intrinsic::experimental_patchpoint:
3335       visitPatchpoint(I, EHPadBB);
3336       break;
3337     case Intrinsic::experimental_gc_statepoint:
3338       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
3339       break;
3340     case Intrinsic::wasm_rethrow: {
3341       // This is usually done in visitTargetIntrinsic, but this intrinsic is
3342       // special because it can be invoked, so we manually lower it to a DAG
3343       // node here.
3344       SmallVector<SDValue, 8> Ops;
3345       Ops.push_back(getRoot()); // inchain
3346       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3347       Ops.push_back(
3348           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
3349                                 TLI.getPointerTy(DAG.getDataLayout())));
3350       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3351       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3352       break;
3353     }
3354     }
3355   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
3356     // Currently we do not lower any intrinsic calls with deopt operand bundles.
3357     // Eventually we will support lowering the @llvm.experimental.deoptimize
3358     // intrinsic, and right now there are no plans to support other intrinsics
3359     // with deopt state.
3360     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3361   } else {
3362     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3363   }
3364 
3365   // If the value of the invoke is used outside of its defining block, make it
3366   // available as a virtual register.
3367   // We already took care of the exported value for the statepoint instruction
3368   // during call to the LowerStatepoint.
3369   if (!isa<GCStatepointInst>(I)) {
3370     CopyToExportRegsIfNeeded(&I);
3371   }
3372 
3373   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
3374   BranchProbabilityInfo *BPI = FuncInfo.BPI;
3375   BranchProbability EHPadBBProb =
3376       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3377           : BranchProbability::getZero();
3378   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3379 
3380   // Update successor info.
3381   addSuccessorWithProb(InvokeMBB, Return);
3382   for (auto &UnwindDest : UnwindDests) {
3383     UnwindDest.first->setIsEHPad();
3384     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3385   }
3386   InvokeMBB->normalizeSuccProbs();
3387 
3388   // Drop into normal successor.
3389   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3390                           DAG.getBasicBlock(Return)));
3391 }
3392 
3393 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3394   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3395 
3396   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3397   // have to do anything here to lower funclet bundles.
3398   assert(!I.hasOperandBundlesOtherThan(
3399              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
3400          "Cannot lower callbrs with arbitrary operand bundles yet!");
3401 
3402   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3403   visitInlineAsm(I);
3404   CopyToExportRegsIfNeeded(&I);
3405 
3406   // Retrieve successors.
3407   SmallPtrSet<BasicBlock *, 8> Dests;
3408   Dests.insert(I.getDefaultDest());
3409   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
3410 
3411   // Update successor info.
3412   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3413   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3414     BasicBlock *Dest = I.getIndirectDest(i);
3415     MachineBasicBlock *Target = FuncInfo.MBBMap[Dest];
3416     Target->setIsInlineAsmBrIndirectTarget();
3417     Target->setMachineBlockAddressTaken();
3418     Target->setLabelMustBeEmitted();
3419     // Don't add duplicate machine successors.
3420     if (Dests.insert(Dest).second)
3421       addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3422   }
3423   CallBrMBB->normalizeSuccProbs();
3424 
3425   // Drop into default successor.
3426   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3427                           MVT::Other, getControlRoot(),
3428                           DAG.getBasicBlock(Return)));
3429 }
3430 
3431 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3432   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3433 }
3434 
3435 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3436   assert(FuncInfo.MBB->isEHPad() &&
3437          "Call to landingpad not in landing pad!");
3438 
3439   // If there aren't registers to copy the values into (e.g., during SjLj
3440   // exceptions), then don't bother to create these DAG nodes.
3441   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3442   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3443   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3444       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3445     return;
3446 
3447   // If landingpad's return type is token type, we don't create DAG nodes
3448   // for its exception pointer and selector value. The extraction of exception
3449   // pointer or selector value from token type landingpads is not currently
3450   // supported.
3451   if (LP.getType()->isTokenTy())
3452     return;
3453 
3454   SmallVector<EVT, 2> ValueVTs;
3455   SDLoc dl = getCurSDLoc();
3456   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3457   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3458 
3459   // Get the two live-in registers as SDValues. The physregs have already been
3460   // copied into virtual registers.
3461   SDValue Ops[2];
3462   if (FuncInfo.ExceptionPointerVirtReg) {
3463     Ops[0] = DAG.getZExtOrTrunc(
3464         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3465                            FuncInfo.ExceptionPointerVirtReg,
3466                            TLI.getPointerTy(DAG.getDataLayout())),
3467         dl, ValueVTs[0]);
3468   } else {
3469     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3470   }
3471   Ops[1] = DAG.getZExtOrTrunc(
3472       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3473                          FuncInfo.ExceptionSelectorVirtReg,
3474                          TLI.getPointerTy(DAG.getDataLayout())),
3475       dl, ValueVTs[1]);
3476 
3477   // Merge into one.
3478   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3479                             DAG.getVTList(ValueVTs), Ops);
3480   setValue(&LP, Res);
3481 }
3482 
3483 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3484                                            MachineBasicBlock *Last) {
3485   // Update JTCases.
3486   for (JumpTableBlock &JTB : SL->JTCases)
3487     if (JTB.first.HeaderBB == First)
3488       JTB.first.HeaderBB = Last;
3489 
3490   // Update BitTestCases.
3491   for (BitTestBlock &BTB : SL->BitTestCases)
3492     if (BTB.Parent == First)
3493       BTB.Parent = Last;
3494 }
3495 
3496 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3497   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3498 
3499   // Update machine-CFG edges with unique successors.
3500   SmallSet<BasicBlock*, 32> Done;
3501   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3502     BasicBlock *BB = I.getSuccessor(i);
3503     bool Inserted = Done.insert(BB).second;
3504     if (!Inserted)
3505         continue;
3506 
3507     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3508     addSuccessorWithProb(IndirectBrMBB, Succ);
3509   }
3510   IndirectBrMBB->normalizeSuccProbs();
3511 
3512   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3513                           MVT::Other, getControlRoot(),
3514                           getValue(I.getAddress())));
3515 }
3516 
3517 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3518   if (!DAG.getTarget().Options.TrapUnreachable)
3519     return;
3520 
3521   // We may be able to ignore unreachable behind a noreturn call.
3522   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3523     if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode())) {
3524       if (Call->doesNotReturn())
3525         return;
3526     }
3527   }
3528 
3529   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3530 }
3531 
3532 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3533   SDNodeFlags Flags;
3534   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3535     Flags.copyFMF(*FPOp);
3536 
3537   SDValue Op = getValue(I.getOperand(0));
3538   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3539                                     Op, Flags);
3540   setValue(&I, UnNodeValue);
3541 }
3542 
3543 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3544   SDNodeFlags Flags;
3545   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3546     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3547     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3548   }
3549   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3550     Flags.setExact(ExactOp->isExact());
3551   if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I))
3552     Flags.setDisjoint(DisjointOp->isDisjoint());
3553   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3554     Flags.copyFMF(*FPOp);
3555 
3556   SDValue Op1 = getValue(I.getOperand(0));
3557   SDValue Op2 = getValue(I.getOperand(1));
3558   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3559                                      Op1, Op2, Flags);
3560   setValue(&I, BinNodeValue);
3561 }
3562 
3563 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3564   SDValue Op1 = getValue(I.getOperand(0));
3565   SDValue Op2 = getValue(I.getOperand(1));
3566 
3567   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3568       Op1.getValueType(), DAG.getDataLayout());
3569 
3570   // Coerce the shift amount to the right type if we can. This exposes the
3571   // truncate or zext to optimization early.
3572   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3573     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3574            "Unexpected shift type");
3575     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3576   }
3577 
3578   bool nuw = false;
3579   bool nsw = false;
3580   bool exact = false;
3581 
3582   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3583 
3584     if (const OverflowingBinaryOperator *OFBinOp =
3585             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3586       nuw = OFBinOp->hasNoUnsignedWrap();
3587       nsw = OFBinOp->hasNoSignedWrap();
3588     }
3589     if (const PossiblyExactOperator *ExactOp =
3590             dyn_cast<const PossiblyExactOperator>(&I))
3591       exact = ExactOp->isExact();
3592   }
3593   SDNodeFlags Flags;
3594   Flags.setExact(exact);
3595   Flags.setNoSignedWrap(nsw);
3596   Flags.setNoUnsignedWrap(nuw);
3597   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3598                             Flags);
3599   setValue(&I, Res);
3600 }
3601 
3602 void SelectionDAGBuilder::visitSDiv(const User &I) {
3603   SDValue Op1 = getValue(I.getOperand(0));
3604   SDValue Op2 = getValue(I.getOperand(1));
3605 
3606   SDNodeFlags Flags;
3607   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3608                  cast<PossiblyExactOperator>(&I)->isExact());
3609   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3610                            Op2, Flags));
3611 }
3612 
3613 void SelectionDAGBuilder::visitICmp(const User &I) {
3614   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3615   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3616     predicate = IC->getPredicate();
3617   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3618     predicate = ICmpInst::Predicate(IC->getPredicate());
3619   SDValue Op1 = getValue(I.getOperand(0));
3620   SDValue Op2 = getValue(I.getOperand(1));
3621   ISD::CondCode Opcode = getICmpCondCode(predicate);
3622 
3623   auto &TLI = DAG.getTargetLoweringInfo();
3624   EVT MemVT =
3625       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3626 
3627   // If a pointer's DAG type is larger than its memory type then the DAG values
3628   // are zero-extended. This breaks signed comparisons so truncate back to the
3629   // underlying type before doing the compare.
3630   if (Op1.getValueType() != MemVT) {
3631     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3632     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3633   }
3634 
3635   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3636                                                         I.getType());
3637   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3638 }
3639 
3640 void SelectionDAGBuilder::visitFCmp(const User &I) {
3641   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3642   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3643     predicate = FC->getPredicate();
3644   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3645     predicate = FCmpInst::Predicate(FC->getPredicate());
3646   SDValue Op1 = getValue(I.getOperand(0));
3647   SDValue Op2 = getValue(I.getOperand(1));
3648 
3649   ISD::CondCode Condition = getFCmpCondCode(predicate);
3650   auto *FPMO = cast<FPMathOperator>(&I);
3651   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3652     Condition = getFCmpCodeWithoutNaN(Condition);
3653 
3654   SDNodeFlags Flags;
3655   Flags.copyFMF(*FPMO);
3656   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3657 
3658   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3659                                                         I.getType());
3660   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3661 }
3662 
3663 // Check if the condition of the select has one use or two users that are both
3664 // selects with the same condition.
3665 static bool hasOnlySelectUsers(const Value *Cond) {
3666   return llvm::all_of(Cond->users(), [](const Value *V) {
3667     return isa<SelectInst>(V);
3668   });
3669 }
3670 
3671 void SelectionDAGBuilder::visitSelect(const User &I) {
3672   SmallVector<EVT, 4> ValueVTs;
3673   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3674                   ValueVTs);
3675   unsigned NumValues = ValueVTs.size();
3676   if (NumValues == 0) return;
3677 
3678   SmallVector<SDValue, 4> Values(NumValues);
3679   SDValue Cond     = getValue(I.getOperand(0));
3680   SDValue LHSVal   = getValue(I.getOperand(1));
3681   SDValue RHSVal   = getValue(I.getOperand(2));
3682   SmallVector<SDValue, 1> BaseOps(1, Cond);
3683   ISD::NodeType OpCode =
3684       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3685 
3686   bool IsUnaryAbs = false;
3687   bool Negate = false;
3688 
3689   SDNodeFlags Flags;
3690   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3691     Flags.copyFMF(*FPOp);
3692 
3693   Flags.setUnpredictable(
3694       cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable));
3695 
3696   // Min/max matching is only viable if all output VTs are the same.
3697   if (all_equal(ValueVTs)) {
3698     EVT VT = ValueVTs[0];
3699     LLVMContext &Ctx = *DAG.getContext();
3700     auto &TLI = DAG.getTargetLoweringInfo();
3701 
3702     // We care about the legality of the operation after it has been type
3703     // legalized.
3704     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3705       VT = TLI.getTypeToTransformTo(Ctx, VT);
3706 
3707     // If the vselect is legal, assume we want to leave this as a vector setcc +
3708     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3709     // min/max is legal on the scalar type.
3710     bool UseScalarMinMax = VT.isVector() &&
3711       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3712 
3713     // ValueTracking's select pattern matching does not account for -0.0,
3714     // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that
3715     // -0.0 is less than +0.0.
3716     Value *LHS, *RHS;
3717     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3718     ISD::NodeType Opc = ISD::DELETED_NODE;
3719     switch (SPR.Flavor) {
3720     case SPF_UMAX:    Opc = ISD::UMAX; break;
3721     case SPF_UMIN:    Opc = ISD::UMIN; break;
3722     case SPF_SMAX:    Opc = ISD::SMAX; break;
3723     case SPF_SMIN:    Opc = ISD::SMIN; break;
3724     case SPF_FMINNUM:
3725       switch (SPR.NaNBehavior) {
3726       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3727       case SPNB_RETURNS_NAN: break;
3728       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3729       case SPNB_RETURNS_ANY:
3730         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ||
3731             (UseScalarMinMax &&
3732              TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType())))
3733           Opc = ISD::FMINNUM;
3734         break;
3735       }
3736       break;
3737     case SPF_FMAXNUM:
3738       switch (SPR.NaNBehavior) {
3739       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3740       case SPNB_RETURNS_NAN: break;
3741       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3742       case SPNB_RETURNS_ANY:
3743         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ||
3744             (UseScalarMinMax &&
3745              TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType())))
3746           Opc = ISD::FMAXNUM;
3747         break;
3748       }
3749       break;
3750     case SPF_NABS:
3751       Negate = true;
3752       [[fallthrough]];
3753     case SPF_ABS:
3754       IsUnaryAbs = true;
3755       Opc = ISD::ABS;
3756       break;
3757     default: break;
3758     }
3759 
3760     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3761         (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) ||
3762          (UseScalarMinMax &&
3763           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3764         // If the underlying comparison instruction is used by any other
3765         // instruction, the consumed instructions won't be destroyed, so it is
3766         // not profitable to convert to a min/max.
3767         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3768       OpCode = Opc;
3769       LHSVal = getValue(LHS);
3770       RHSVal = getValue(RHS);
3771       BaseOps.clear();
3772     }
3773 
3774     if (IsUnaryAbs) {
3775       OpCode = Opc;
3776       LHSVal = getValue(LHS);
3777       BaseOps.clear();
3778     }
3779   }
3780 
3781   if (IsUnaryAbs) {
3782     for (unsigned i = 0; i != NumValues; ++i) {
3783       SDLoc dl = getCurSDLoc();
3784       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3785       Values[i] =
3786           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3787       if (Negate)
3788         Values[i] = DAG.getNegative(Values[i], dl, VT);
3789     }
3790   } else {
3791     for (unsigned i = 0; i != NumValues; ++i) {
3792       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3793       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3794       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3795       Values[i] = DAG.getNode(
3796           OpCode, getCurSDLoc(),
3797           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3798     }
3799   }
3800 
3801   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3802                            DAG.getVTList(ValueVTs), Values));
3803 }
3804 
3805 void SelectionDAGBuilder::visitTrunc(const User &I) {
3806   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3807   SDValue N = getValue(I.getOperand(0));
3808   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3809                                                         I.getType());
3810   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3811 }
3812 
3813 void SelectionDAGBuilder::visitZExt(const User &I) {
3814   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3815   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3816   SDValue N = getValue(I.getOperand(0));
3817   auto &TLI = DAG.getTargetLoweringInfo();
3818   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3819 
3820   SDNodeFlags Flags;
3821   if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
3822     Flags.setNonNeg(PNI->hasNonNeg());
3823 
3824   // Eagerly use nonneg information to canonicalize towards sign_extend if
3825   // that is the target's preference.
3826   // TODO: Let the target do this later.
3827   if (Flags.hasNonNeg() &&
3828       TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) {
3829     setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3830     return;
3831   }
3832 
3833   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags));
3834 }
3835 
3836 void SelectionDAGBuilder::visitSExt(const User &I) {
3837   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3838   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3839   SDValue N = getValue(I.getOperand(0));
3840   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3841                                                         I.getType());
3842   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3843 }
3844 
3845 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3846   // FPTrunc is never a no-op cast, no need to check
3847   SDValue N = getValue(I.getOperand(0));
3848   SDLoc dl = getCurSDLoc();
3849   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3850   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3851   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3852                            DAG.getTargetConstant(
3853                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3854 }
3855 
3856 void SelectionDAGBuilder::visitFPExt(const User &I) {
3857   // FPExt is never a no-op cast, no need to check
3858   SDValue N = getValue(I.getOperand(0));
3859   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3860                                                         I.getType());
3861   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3862 }
3863 
3864 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3865   // FPToUI is never a no-op cast, no need to check
3866   SDValue N = getValue(I.getOperand(0));
3867   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3868                                                         I.getType());
3869   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3870 }
3871 
3872 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3873   // FPToSI is never a no-op cast, no need to check
3874   SDValue N = getValue(I.getOperand(0));
3875   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3876                                                         I.getType());
3877   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3878 }
3879 
3880 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3881   // UIToFP is never a no-op cast, no need to check
3882   SDValue N = getValue(I.getOperand(0));
3883   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3884                                                         I.getType());
3885   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3886 }
3887 
3888 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3889   // SIToFP is never a no-op cast, no need to check
3890   SDValue N = getValue(I.getOperand(0));
3891   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3892                                                         I.getType());
3893   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3894 }
3895 
3896 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3897   // What to do depends on the size of the integer and the size of the pointer.
3898   // We can either truncate, zero extend, or no-op, accordingly.
3899   SDValue N = getValue(I.getOperand(0));
3900   auto &TLI = DAG.getTargetLoweringInfo();
3901   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3902                                                         I.getType());
3903   EVT PtrMemVT =
3904       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3905   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3906   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3907   setValue(&I, N);
3908 }
3909 
3910 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3911   // What to do depends on the size of the integer and the size of the pointer.
3912   // We can either truncate, zero extend, or no-op, accordingly.
3913   SDValue N = getValue(I.getOperand(0));
3914   auto &TLI = DAG.getTargetLoweringInfo();
3915   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3916   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3917   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3918   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3919   setValue(&I, N);
3920 }
3921 
3922 void SelectionDAGBuilder::visitBitCast(const User &I) {
3923   SDValue N = getValue(I.getOperand(0));
3924   SDLoc dl = getCurSDLoc();
3925   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3926                                                         I.getType());
3927 
3928   // BitCast assures us that source and destination are the same size so this is
3929   // either a BITCAST or a no-op.
3930   if (DestVT != N.getValueType())
3931     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3932                              DestVT, N)); // convert types.
3933   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3934   // might fold any kind of constant expression to an integer constant and that
3935   // is not what we are looking for. Only recognize a bitcast of a genuine
3936   // constant integer as an opaque constant.
3937   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3938     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3939                                  /*isOpaque*/true));
3940   else
3941     setValue(&I, N);            // noop cast.
3942 }
3943 
3944 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3945   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3946   const Value *SV = I.getOperand(0);
3947   SDValue N = getValue(SV);
3948   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3949 
3950   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3951   unsigned DestAS = I.getType()->getPointerAddressSpace();
3952 
3953   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3954     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3955 
3956   setValue(&I, N);
3957 }
3958 
3959 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3960   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3961   SDValue InVec = getValue(I.getOperand(0));
3962   SDValue InVal = getValue(I.getOperand(1));
3963   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3964                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3965   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3966                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3967                            InVec, InVal, InIdx));
3968 }
3969 
3970 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3971   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3972   SDValue InVec = getValue(I.getOperand(0));
3973   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3974                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3975   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3976                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3977                            InVec, InIdx));
3978 }
3979 
3980 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3981   SDValue Src1 = getValue(I.getOperand(0));
3982   SDValue Src2 = getValue(I.getOperand(1));
3983   ArrayRef<int> Mask;
3984   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3985     Mask = SVI->getShuffleMask();
3986   else
3987     Mask = cast<ConstantExpr>(I).getShuffleMask();
3988   SDLoc DL = getCurSDLoc();
3989   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3990   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3991   EVT SrcVT = Src1.getValueType();
3992 
3993   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3994       VT.isScalableVector()) {
3995     // Canonical splat form of first element of first input vector.
3996     SDValue FirstElt =
3997         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3998                     DAG.getVectorIdxConstant(0, DL));
3999     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
4000     return;
4001   }
4002 
4003   // For now, we only handle splats for scalable vectors.
4004   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
4005   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
4006   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
4007 
4008   unsigned SrcNumElts = SrcVT.getVectorNumElements();
4009   unsigned MaskNumElts = Mask.size();
4010 
4011   if (SrcNumElts == MaskNumElts) {
4012     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
4013     return;
4014   }
4015 
4016   // Normalize the shuffle vector since mask and vector length don't match.
4017   if (SrcNumElts < MaskNumElts) {
4018     // Mask is longer than the source vectors. We can use concatenate vector to
4019     // make the mask and vectors lengths match.
4020 
4021     if (MaskNumElts % SrcNumElts == 0) {
4022       // Mask length is a multiple of the source vector length.
4023       // Check if the shuffle is some kind of concatenation of the input
4024       // vectors.
4025       unsigned NumConcat = MaskNumElts / SrcNumElts;
4026       bool IsConcat = true;
4027       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
4028       for (unsigned i = 0; i != MaskNumElts; ++i) {
4029         int Idx = Mask[i];
4030         if (Idx < 0)
4031           continue;
4032         // Ensure the indices in each SrcVT sized piece are sequential and that
4033         // the same source is used for the whole piece.
4034         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
4035             (ConcatSrcs[i / SrcNumElts] >= 0 &&
4036              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
4037           IsConcat = false;
4038           break;
4039         }
4040         // Remember which source this index came from.
4041         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
4042       }
4043 
4044       // The shuffle is concatenating multiple vectors together. Just emit
4045       // a CONCAT_VECTORS operation.
4046       if (IsConcat) {
4047         SmallVector<SDValue, 8> ConcatOps;
4048         for (auto Src : ConcatSrcs) {
4049           if (Src < 0)
4050             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
4051           else if (Src == 0)
4052             ConcatOps.push_back(Src1);
4053           else
4054             ConcatOps.push_back(Src2);
4055         }
4056         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
4057         return;
4058       }
4059     }
4060 
4061     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
4062     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
4063     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
4064                                     PaddedMaskNumElts);
4065 
4066     // Pad both vectors with undefs to make them the same length as the mask.
4067     SDValue UndefVal = DAG.getUNDEF(SrcVT);
4068 
4069     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
4070     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
4071     MOps1[0] = Src1;
4072     MOps2[0] = Src2;
4073 
4074     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
4075     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
4076 
4077     // Readjust mask for new input vector length.
4078     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
4079     for (unsigned i = 0; i != MaskNumElts; ++i) {
4080       int Idx = Mask[i];
4081       if (Idx >= (int)SrcNumElts)
4082         Idx -= SrcNumElts - PaddedMaskNumElts;
4083       MappedOps[i] = Idx;
4084     }
4085 
4086     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
4087 
4088     // If the concatenated vector was padded, extract a subvector with the
4089     // correct number of elements.
4090     if (MaskNumElts != PaddedMaskNumElts)
4091       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
4092                            DAG.getVectorIdxConstant(0, DL));
4093 
4094     setValue(&I, Result);
4095     return;
4096   }
4097 
4098   if (SrcNumElts > MaskNumElts) {
4099     // Analyze the access pattern of the vector to see if we can extract
4100     // two subvectors and do the shuffle.
4101     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
4102     bool CanExtract = true;
4103     for (int Idx : Mask) {
4104       unsigned Input = 0;
4105       if (Idx < 0)
4106         continue;
4107 
4108       if (Idx >= (int)SrcNumElts) {
4109         Input = 1;
4110         Idx -= SrcNumElts;
4111       }
4112 
4113       // If all the indices come from the same MaskNumElts sized portion of
4114       // the sources we can use extract. Also make sure the extract wouldn't
4115       // extract past the end of the source.
4116       int NewStartIdx = alignDown(Idx, MaskNumElts);
4117       if (NewStartIdx + MaskNumElts > SrcNumElts ||
4118           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
4119         CanExtract = false;
4120       // Make sure we always update StartIdx as we use it to track if all
4121       // elements are undef.
4122       StartIdx[Input] = NewStartIdx;
4123     }
4124 
4125     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
4126       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
4127       return;
4128     }
4129     if (CanExtract) {
4130       // Extract appropriate subvector and generate a vector shuffle
4131       for (unsigned Input = 0; Input < 2; ++Input) {
4132         SDValue &Src = Input == 0 ? Src1 : Src2;
4133         if (StartIdx[Input] < 0)
4134           Src = DAG.getUNDEF(VT);
4135         else {
4136           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
4137                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
4138         }
4139       }
4140 
4141       // Calculate new mask.
4142       SmallVector<int, 8> MappedOps(Mask);
4143       for (int &Idx : MappedOps) {
4144         if (Idx >= (int)SrcNumElts)
4145           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
4146         else if (Idx >= 0)
4147           Idx -= StartIdx[0];
4148       }
4149 
4150       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
4151       return;
4152     }
4153   }
4154 
4155   // We can't use either concat vectors or extract subvectors so fall back to
4156   // replacing the shuffle with extract and build vector.
4157   // to insert and build vector.
4158   EVT EltVT = VT.getVectorElementType();
4159   SmallVector<SDValue,8> Ops;
4160   for (int Idx : Mask) {
4161     SDValue Res;
4162 
4163     if (Idx < 0) {
4164       Res = DAG.getUNDEF(EltVT);
4165     } else {
4166       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
4167       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
4168 
4169       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
4170                         DAG.getVectorIdxConstant(Idx, DL));
4171     }
4172 
4173     Ops.push_back(Res);
4174   }
4175 
4176   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
4177 }
4178 
4179 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
4180   ArrayRef<unsigned> Indices = I.getIndices();
4181   const Value *Op0 = I.getOperand(0);
4182   const Value *Op1 = I.getOperand(1);
4183   Type *AggTy = I.getType();
4184   Type *ValTy = Op1->getType();
4185   bool IntoUndef = isa<UndefValue>(Op0);
4186   bool FromUndef = isa<UndefValue>(Op1);
4187 
4188   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4189 
4190   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4191   SmallVector<EVT, 4> AggValueVTs;
4192   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
4193   SmallVector<EVT, 4> ValValueVTs;
4194   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4195 
4196   unsigned NumAggValues = AggValueVTs.size();
4197   unsigned NumValValues = ValValueVTs.size();
4198   SmallVector<SDValue, 4> Values(NumAggValues);
4199 
4200   // Ignore an insertvalue that produces an empty object
4201   if (!NumAggValues) {
4202     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4203     return;
4204   }
4205 
4206   SDValue Agg = getValue(Op0);
4207   unsigned i = 0;
4208   // Copy the beginning value(s) from the original aggregate.
4209   for (; i != LinearIndex; ++i)
4210     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4211                 SDValue(Agg.getNode(), Agg.getResNo() + i);
4212   // Copy values from the inserted value(s).
4213   if (NumValValues) {
4214     SDValue Val = getValue(Op1);
4215     for (; i != LinearIndex + NumValValues; ++i)
4216       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4217                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
4218   }
4219   // Copy remaining value(s) from the original aggregate.
4220   for (; i != NumAggValues; ++i)
4221     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4222                 SDValue(Agg.getNode(), Agg.getResNo() + i);
4223 
4224   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
4225                            DAG.getVTList(AggValueVTs), Values));
4226 }
4227 
4228 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
4229   ArrayRef<unsigned> Indices = I.getIndices();
4230   const Value *Op0 = I.getOperand(0);
4231   Type *AggTy = Op0->getType();
4232   Type *ValTy = I.getType();
4233   bool OutOfUndef = isa<UndefValue>(Op0);
4234 
4235   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4236 
4237   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4238   SmallVector<EVT, 4> ValValueVTs;
4239   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4240 
4241   unsigned NumValValues = ValValueVTs.size();
4242 
4243   // Ignore a extractvalue that produces an empty object
4244   if (!NumValValues) {
4245     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4246     return;
4247   }
4248 
4249   SmallVector<SDValue, 4> Values(NumValValues);
4250 
4251   SDValue Agg = getValue(Op0);
4252   // Copy out the selected value(s).
4253   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
4254     Values[i - LinearIndex] =
4255       OutOfUndef ?
4256         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
4257         SDValue(Agg.getNode(), Agg.getResNo() + i);
4258 
4259   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
4260                            DAG.getVTList(ValValueVTs), Values));
4261 }
4262 
4263 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
4264   Value *Op0 = I.getOperand(0);
4265   // Note that the pointer operand may be a vector of pointers. Take the scalar
4266   // element which holds a pointer.
4267   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
4268   SDValue N = getValue(Op0);
4269   SDLoc dl = getCurSDLoc();
4270   auto &TLI = DAG.getTargetLoweringInfo();
4271 
4272   // Normalize Vector GEP - all scalar operands should be converted to the
4273   // splat vector.
4274   bool IsVectorGEP = I.getType()->isVectorTy();
4275   ElementCount VectorElementCount =
4276       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
4277                   : ElementCount::getFixed(0);
4278 
4279   if (IsVectorGEP && !N.getValueType().isVector()) {
4280     LLVMContext &Context = *DAG.getContext();
4281     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
4282     N = DAG.getSplat(VT, dl, N);
4283   }
4284 
4285   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
4286        GTI != E; ++GTI) {
4287     const Value *Idx = GTI.getOperand();
4288     if (StructType *StTy = GTI.getStructTypeOrNull()) {
4289       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
4290       if (Field) {
4291         // N = N + Offset
4292         uint64_t Offset =
4293             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
4294 
4295         // In an inbounds GEP with an offset that is nonnegative even when
4296         // interpreted as signed, assume there is no unsigned overflow.
4297         SDNodeFlags Flags;
4298         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
4299           Flags.setNoUnsignedWrap(true);
4300 
4301         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
4302                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
4303       }
4304     } else {
4305       // IdxSize is the width of the arithmetic according to IR semantics.
4306       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
4307       // (and fix up the result later).
4308       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
4309       MVT IdxTy = MVT::getIntegerVT(IdxSize);
4310       TypeSize ElementSize =
4311           GTI.getSequentialElementStride(DAG.getDataLayout());
4312       // We intentionally mask away the high bits here; ElementSize may not
4313       // fit in IdxTy.
4314       APInt ElementMul(IdxSize, ElementSize.getKnownMinValue());
4315       bool ElementScalable = ElementSize.isScalable();
4316 
4317       // If this is a scalar constant or a splat vector of constants,
4318       // handle it quickly.
4319       const auto *C = dyn_cast<Constant>(Idx);
4320       if (C && isa<VectorType>(C->getType()))
4321         C = C->getSplatValue();
4322 
4323       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
4324       if (CI && CI->isZero())
4325         continue;
4326       if (CI && !ElementScalable) {
4327         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
4328         LLVMContext &Context = *DAG.getContext();
4329         SDValue OffsVal;
4330         if (IsVectorGEP)
4331           OffsVal = DAG.getConstant(
4332               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
4333         else
4334           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
4335 
4336         // In an inbounds GEP with an offset that is nonnegative even when
4337         // interpreted as signed, assume there is no unsigned overflow.
4338         SDNodeFlags Flags;
4339         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
4340           Flags.setNoUnsignedWrap(true);
4341 
4342         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
4343 
4344         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
4345         continue;
4346       }
4347 
4348       // N = N + Idx * ElementMul;
4349       SDValue IdxN = getValue(Idx);
4350 
4351       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
4352         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
4353                                   VectorElementCount);
4354         IdxN = DAG.getSplat(VT, dl, IdxN);
4355       }
4356 
4357       // If the index is smaller or larger than intptr_t, truncate or extend
4358       // it.
4359       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
4360 
4361       if (ElementScalable) {
4362         EVT VScaleTy = N.getValueType().getScalarType();
4363         SDValue VScale = DAG.getNode(
4364             ISD::VSCALE, dl, VScaleTy,
4365             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4366         if (IsVectorGEP)
4367           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4368         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
4369       } else {
4370         // If this is a multiply by a power of two, turn it into a shl
4371         // immediately.  This is a very common case.
4372         if (ElementMul != 1) {
4373           if (ElementMul.isPowerOf2()) {
4374             unsigned Amt = ElementMul.logBase2();
4375             IdxN = DAG.getNode(ISD::SHL, dl,
4376                                N.getValueType(), IdxN,
4377                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
4378           } else {
4379             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4380                                             IdxN.getValueType());
4381             IdxN = DAG.getNode(ISD::MUL, dl,
4382                                N.getValueType(), IdxN, Scale);
4383           }
4384         }
4385       }
4386 
4387       N = DAG.getNode(ISD::ADD, dl,
4388                       N.getValueType(), N, IdxN);
4389     }
4390   }
4391 
4392   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4393   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4394   if (IsVectorGEP) {
4395     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4396     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4397   }
4398 
4399   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4400     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4401 
4402   setValue(&I, N);
4403 }
4404 
4405 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4406   // If this is a fixed sized alloca in the entry block of the function,
4407   // allocate it statically on the stack.
4408   if (FuncInfo.StaticAllocaMap.count(&I))
4409     return;   // getValue will auto-populate this.
4410 
4411   SDLoc dl = getCurSDLoc();
4412   Type *Ty = I.getAllocatedType();
4413   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4414   auto &DL = DAG.getDataLayout();
4415   TypeSize TySize = DL.getTypeAllocSize(Ty);
4416   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4417 
4418   SDValue AllocSize = getValue(I.getArraySize());
4419 
4420   EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace());
4421   if (AllocSize.getValueType() != IntPtr)
4422     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4423 
4424   if (TySize.isScalable())
4425     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4426                             DAG.getVScale(dl, IntPtr,
4427                                           APInt(IntPtr.getScalarSizeInBits(),
4428                                                 TySize.getKnownMinValue())));
4429   else {
4430     SDValue TySizeValue =
4431         DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64));
4432     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4433                             DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr));
4434   }
4435 
4436   // Handle alignment.  If the requested alignment is less than or equal to
4437   // the stack alignment, ignore it.  If the size is greater than or equal to
4438   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4439   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4440   if (*Alignment <= StackAlign)
4441     Alignment = std::nullopt;
4442 
4443   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4444   // Round the size of the allocation up to the stack alignment size
4445   // by add SA-1 to the size. This doesn't overflow because we're computing
4446   // an address inside an alloca.
4447   SDNodeFlags Flags;
4448   Flags.setNoUnsignedWrap(true);
4449   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4450                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4451 
4452   // Mask out the low bits for alignment purposes.
4453   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4454                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4455 
4456   SDValue Ops[] = {
4457       getRoot(), AllocSize,
4458       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4459   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4460   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4461   setValue(&I, DSA);
4462   DAG.setRoot(DSA.getValue(1));
4463 
4464   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4465 }
4466 
4467 static const MDNode *getRangeMetadata(const Instruction &I) {
4468   // If !noundef is not present, then !range violation results in a poison
4469   // value rather than immediate undefined behavior. In theory, transferring
4470   // these annotations to SDAG is fine, but in practice there are key SDAG
4471   // transforms that are known not to be poison-safe, such as folding logical
4472   // and/or to bitwise and/or. For now, only transfer !range if !noundef is
4473   // also present.
4474   if (!I.hasMetadata(LLVMContext::MD_noundef))
4475     return nullptr;
4476   return I.getMetadata(LLVMContext::MD_range);
4477 }
4478 
4479 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4480   if (I.isAtomic())
4481     return visitAtomicLoad(I);
4482 
4483   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4484   const Value *SV = I.getOperand(0);
4485   if (TLI.supportSwiftError()) {
4486     // Swifterror values can come from either a function parameter with
4487     // swifterror attribute or an alloca with swifterror attribute.
4488     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4489       if (Arg->hasSwiftErrorAttr())
4490         return visitLoadFromSwiftError(I);
4491     }
4492 
4493     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4494       if (Alloca->isSwiftError())
4495         return visitLoadFromSwiftError(I);
4496     }
4497   }
4498 
4499   SDValue Ptr = getValue(SV);
4500 
4501   Type *Ty = I.getType();
4502   SmallVector<EVT, 4> ValueVTs, MemVTs;
4503   SmallVector<TypeSize, 4> Offsets;
4504   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4505   unsigned NumValues = ValueVTs.size();
4506   if (NumValues == 0)
4507     return;
4508 
4509   Align Alignment = I.getAlign();
4510   AAMDNodes AAInfo = I.getAAMetadata();
4511   const MDNode *Ranges = getRangeMetadata(I);
4512   bool isVolatile = I.isVolatile();
4513   MachineMemOperand::Flags MMOFlags =
4514       TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4515 
4516   SDValue Root;
4517   bool ConstantMemory = false;
4518   if (isVolatile)
4519     // Serialize volatile loads with other side effects.
4520     Root = getRoot();
4521   else if (NumValues > MaxParallelChains)
4522     Root = getMemoryRoot();
4523   else if (AA &&
4524            AA->pointsToConstantMemory(MemoryLocation(
4525                SV,
4526                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4527                AAInfo))) {
4528     // Do not serialize (non-volatile) loads of constant memory with anything.
4529     Root = DAG.getEntryNode();
4530     ConstantMemory = true;
4531     MMOFlags |= MachineMemOperand::MOInvariant;
4532   } else {
4533     // Do not serialize non-volatile loads against each other.
4534     Root = DAG.getRoot();
4535   }
4536 
4537   SDLoc dl = getCurSDLoc();
4538 
4539   if (isVolatile)
4540     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4541 
4542   SmallVector<SDValue, 4> Values(NumValues);
4543   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4544 
4545   unsigned ChainI = 0;
4546   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4547     // Serializing loads here may result in excessive register pressure, and
4548     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4549     // could recover a bit by hoisting nodes upward in the chain by recognizing
4550     // they are side-effect free or do not alias. The optimizer should really
4551     // avoid this case by converting large object/array copies to llvm.memcpy
4552     // (MaxParallelChains should always remain as failsafe).
4553     if (ChainI == MaxParallelChains) {
4554       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4555       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4556                                   ArrayRef(Chains.data(), ChainI));
4557       Root = Chain;
4558       ChainI = 0;
4559     }
4560 
4561     // TODO: MachinePointerInfo only supports a fixed length offset.
4562     MachinePointerInfo PtrInfo =
4563         !Offsets[i].isScalable() || Offsets[i].isZero()
4564             ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue())
4565             : MachinePointerInfo();
4566 
4567     SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4568     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment,
4569                             MMOFlags, AAInfo, Ranges);
4570     Chains[ChainI] = L.getValue(1);
4571 
4572     if (MemVTs[i] != ValueVTs[i])
4573       L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]);
4574 
4575     Values[i] = L;
4576   }
4577 
4578   if (!ConstantMemory) {
4579     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4580                                 ArrayRef(Chains.data(), ChainI));
4581     if (isVolatile)
4582       DAG.setRoot(Chain);
4583     else
4584       PendingLoads.push_back(Chain);
4585   }
4586 
4587   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4588                            DAG.getVTList(ValueVTs), Values));
4589 }
4590 
4591 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4592   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4593          "call visitStoreToSwiftError when backend supports swifterror");
4594 
4595   SmallVector<EVT, 4> ValueVTs;
4596   SmallVector<uint64_t, 4> Offsets;
4597   const Value *SrcV = I.getOperand(0);
4598   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4599                   SrcV->getType(), ValueVTs, &Offsets, 0);
4600   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4601          "expect a single EVT for swifterror");
4602 
4603   SDValue Src = getValue(SrcV);
4604   // Create a virtual register, then update the virtual register.
4605   Register VReg =
4606       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4607   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4608   // Chain can be getRoot or getControlRoot.
4609   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4610                                       SDValue(Src.getNode(), Src.getResNo()));
4611   DAG.setRoot(CopyNode);
4612 }
4613 
4614 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4615   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4616          "call visitLoadFromSwiftError when backend supports swifterror");
4617 
4618   assert(!I.isVolatile() &&
4619          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4620          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4621          "Support volatile, non temporal, invariant for load_from_swift_error");
4622 
4623   const Value *SV = I.getOperand(0);
4624   Type *Ty = I.getType();
4625   assert(
4626       (!AA ||
4627        !AA->pointsToConstantMemory(MemoryLocation(
4628            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4629            I.getAAMetadata()))) &&
4630       "load_from_swift_error should not be constant memory");
4631 
4632   SmallVector<EVT, 4> ValueVTs;
4633   SmallVector<uint64_t, 4> Offsets;
4634   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4635                   ValueVTs, &Offsets, 0);
4636   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4637          "expect a single EVT for swifterror");
4638 
4639   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4640   SDValue L = DAG.getCopyFromReg(
4641       getRoot(), getCurSDLoc(),
4642       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4643 
4644   setValue(&I, L);
4645 }
4646 
4647 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4648   if (I.isAtomic())
4649     return visitAtomicStore(I);
4650 
4651   const Value *SrcV = I.getOperand(0);
4652   const Value *PtrV = I.getOperand(1);
4653 
4654   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4655   if (TLI.supportSwiftError()) {
4656     // Swifterror values can come from either a function parameter with
4657     // swifterror attribute or an alloca with swifterror attribute.
4658     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4659       if (Arg->hasSwiftErrorAttr())
4660         return visitStoreToSwiftError(I);
4661     }
4662 
4663     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4664       if (Alloca->isSwiftError())
4665         return visitStoreToSwiftError(I);
4666     }
4667   }
4668 
4669   SmallVector<EVT, 4> ValueVTs, MemVTs;
4670   SmallVector<TypeSize, 4> Offsets;
4671   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4672                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4673   unsigned NumValues = ValueVTs.size();
4674   if (NumValues == 0)
4675     return;
4676 
4677   // Get the lowered operands. Note that we do this after
4678   // checking if NumResults is zero, because with zero results
4679   // the operands won't have values in the map.
4680   SDValue Src = getValue(SrcV);
4681   SDValue Ptr = getValue(PtrV);
4682 
4683   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4684   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4685   SDLoc dl = getCurSDLoc();
4686   Align Alignment = I.getAlign();
4687   AAMDNodes AAInfo = I.getAAMetadata();
4688 
4689   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4690 
4691   unsigned ChainI = 0;
4692   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4693     // See visitLoad comments.
4694     if (ChainI == MaxParallelChains) {
4695       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4696                                   ArrayRef(Chains.data(), ChainI));
4697       Root = Chain;
4698       ChainI = 0;
4699     }
4700 
4701     // TODO: MachinePointerInfo only supports a fixed length offset.
4702     MachinePointerInfo PtrInfo =
4703         !Offsets[i].isScalable() || Offsets[i].isZero()
4704             ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue())
4705             : MachinePointerInfo();
4706 
4707     SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4708     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4709     if (MemVTs[i] != ValueVTs[i])
4710       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4711     SDValue St =
4712         DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo);
4713     Chains[ChainI] = St;
4714   }
4715 
4716   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4717                                   ArrayRef(Chains.data(), ChainI));
4718   setValue(&I, StoreNode);
4719   DAG.setRoot(StoreNode);
4720 }
4721 
4722 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4723                                            bool IsCompressing) {
4724   SDLoc sdl = getCurSDLoc();
4725 
4726   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4727                                Align &Alignment) {
4728     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4729     Src0 = I.getArgOperand(0);
4730     Ptr = I.getArgOperand(1);
4731     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getAlignValue();
4732     Mask = I.getArgOperand(3);
4733   };
4734   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4735                                     Align &Alignment) {
4736     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4737     Src0 = I.getArgOperand(0);
4738     Ptr = I.getArgOperand(1);
4739     Mask = I.getArgOperand(2);
4740     Alignment = I.getParamAlign(1).valueOrOne();
4741   };
4742 
4743   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4744   Align Alignment;
4745   if (IsCompressing)
4746     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4747   else
4748     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4749 
4750   SDValue Ptr = getValue(PtrOperand);
4751   SDValue Src0 = getValue(Src0Operand);
4752   SDValue Mask = getValue(MaskOperand);
4753   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4754 
4755   EVT VT = Src0.getValueType();
4756 
4757   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4758       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4759       LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
4760   SDValue StoreNode =
4761       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4762                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4763   DAG.setRoot(StoreNode);
4764   setValue(&I, StoreNode);
4765 }
4766 
4767 // Get a uniform base for the Gather/Scatter intrinsic.
4768 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4769 // We try to represent it as a base pointer + vector of indices.
4770 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4771 // The first operand of the GEP may be a single pointer or a vector of pointers
4772 // Example:
4773 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4774 //  or
4775 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4776 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4777 //
4778 // When the first GEP operand is a single pointer - it is the uniform base we
4779 // are looking for. If first operand of the GEP is a splat vector - we
4780 // extract the splat value and use it as a uniform base.
4781 // In all other cases the function returns 'false'.
4782 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4783                            ISD::MemIndexType &IndexType, SDValue &Scale,
4784                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4785                            uint64_t ElemSize) {
4786   SelectionDAG& DAG = SDB->DAG;
4787   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4788   const DataLayout &DL = DAG.getDataLayout();
4789 
4790   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4791 
4792   // Handle splat constant pointer.
4793   if (auto *C = dyn_cast<Constant>(Ptr)) {
4794     C = C->getSplatValue();
4795     if (!C)
4796       return false;
4797 
4798     Base = SDB->getValue(C);
4799 
4800     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4801     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4802     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4803     IndexType = ISD::SIGNED_SCALED;
4804     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4805     return true;
4806   }
4807 
4808   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4809   if (!GEP || GEP->getParent() != CurBB)
4810     return false;
4811 
4812   if (GEP->getNumOperands() != 2)
4813     return false;
4814 
4815   const Value *BasePtr = GEP->getPointerOperand();
4816   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4817 
4818   // Make sure the base is scalar and the index is a vector.
4819   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4820     return false;
4821 
4822   TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4823   if (ScaleVal.isScalable())
4824     return false;
4825 
4826   // Target may not support the required addressing mode.
4827   if (ScaleVal != 1 &&
4828       !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize))
4829     return false;
4830 
4831   Base = SDB->getValue(BasePtr);
4832   Index = SDB->getValue(IndexVal);
4833   IndexType = ISD::SIGNED_SCALED;
4834 
4835   Scale =
4836       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4837   return true;
4838 }
4839 
4840 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4841   SDLoc sdl = getCurSDLoc();
4842 
4843   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4844   const Value *Ptr = I.getArgOperand(1);
4845   SDValue Src0 = getValue(I.getArgOperand(0));
4846   SDValue Mask = getValue(I.getArgOperand(3));
4847   EVT VT = Src0.getValueType();
4848   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4849                         ->getMaybeAlignValue()
4850                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4851   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4852 
4853   SDValue Base;
4854   SDValue Index;
4855   ISD::MemIndexType IndexType;
4856   SDValue Scale;
4857   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4858                                     I.getParent(), VT.getScalarStoreSize());
4859 
4860   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4861   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4862       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4863       LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
4864   if (!UniformBase) {
4865     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4866     Index = getValue(Ptr);
4867     IndexType = ISD::SIGNED_SCALED;
4868     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4869   }
4870 
4871   EVT IdxVT = Index.getValueType();
4872   EVT EltTy = IdxVT.getVectorElementType();
4873   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4874     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4875     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4876   }
4877 
4878   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4879   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4880                                          Ops, MMO, IndexType, false);
4881   DAG.setRoot(Scatter);
4882   setValue(&I, Scatter);
4883 }
4884 
4885 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4886   SDLoc sdl = getCurSDLoc();
4887 
4888   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4889                               Align &Alignment) {
4890     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4891     Ptr = I.getArgOperand(0);
4892     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getAlignValue();
4893     Mask = I.getArgOperand(2);
4894     Src0 = I.getArgOperand(3);
4895   };
4896   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4897                                  Align &Alignment) {
4898     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4899     Ptr = I.getArgOperand(0);
4900     Alignment = I.getParamAlign(0).valueOrOne();
4901     Mask = I.getArgOperand(1);
4902     Src0 = I.getArgOperand(2);
4903   };
4904 
4905   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4906   Align Alignment;
4907   if (IsExpanding)
4908     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4909   else
4910     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4911 
4912   SDValue Ptr = getValue(PtrOperand);
4913   SDValue Src0 = getValue(Src0Operand);
4914   SDValue Mask = getValue(MaskOperand);
4915   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4916 
4917   EVT VT = Src0.getValueType();
4918   AAMDNodes AAInfo = I.getAAMetadata();
4919   const MDNode *Ranges = getRangeMetadata(I);
4920 
4921   // Do not serialize masked loads of constant memory with anything.
4922   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4923   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4924 
4925   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4926 
4927   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4928       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4929       LocationSize::beforeOrAfterPointer(), Alignment, AAInfo, Ranges);
4930 
4931   SDValue Load =
4932       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4933                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4934   if (AddToChain)
4935     PendingLoads.push_back(Load.getValue(1));
4936   setValue(&I, Load);
4937 }
4938 
4939 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4940   SDLoc sdl = getCurSDLoc();
4941 
4942   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4943   const Value *Ptr = I.getArgOperand(0);
4944   SDValue Src0 = getValue(I.getArgOperand(3));
4945   SDValue Mask = getValue(I.getArgOperand(2));
4946 
4947   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4948   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4949   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4950                         ->getMaybeAlignValue()
4951                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4952 
4953   const MDNode *Ranges = getRangeMetadata(I);
4954 
4955   SDValue Root = DAG.getRoot();
4956   SDValue Base;
4957   SDValue Index;
4958   ISD::MemIndexType IndexType;
4959   SDValue Scale;
4960   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4961                                     I.getParent(), VT.getScalarStoreSize());
4962   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4963   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4964       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4965       LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata(),
4966       Ranges);
4967 
4968   if (!UniformBase) {
4969     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4970     Index = getValue(Ptr);
4971     IndexType = ISD::SIGNED_SCALED;
4972     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4973   }
4974 
4975   EVT IdxVT = Index.getValueType();
4976   EVT EltTy = IdxVT.getVectorElementType();
4977   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4978     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4979     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4980   }
4981 
4982   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4983   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4984                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4985 
4986   PendingLoads.push_back(Gather.getValue(1));
4987   setValue(&I, Gather);
4988 }
4989 
4990 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4991   SDLoc dl = getCurSDLoc();
4992   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4993   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4994   SyncScope::ID SSID = I.getSyncScopeID();
4995 
4996   SDValue InChain = getRoot();
4997 
4998   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4999   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
5000 
5001   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5002   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5003 
5004   MachineFunction &MF = DAG.getMachineFunction();
5005   MachineMemOperand *MMO = MF.getMachineMemOperand(
5006       MachinePointerInfo(I.getPointerOperand()), Flags,
5007       LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT),
5008       AAMDNodes(), nullptr, SSID, SuccessOrdering, FailureOrdering);
5009 
5010   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
5011                                    dl, MemVT, VTs, InChain,
5012                                    getValue(I.getPointerOperand()),
5013                                    getValue(I.getCompareOperand()),
5014                                    getValue(I.getNewValOperand()), MMO);
5015 
5016   SDValue OutChain = L.getValue(2);
5017 
5018   setValue(&I, L);
5019   DAG.setRoot(OutChain);
5020 }
5021 
5022 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
5023   SDLoc dl = getCurSDLoc();
5024   ISD::NodeType NT;
5025   switch (I.getOperation()) {
5026   default: llvm_unreachable("Unknown atomicrmw operation");
5027   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
5028   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
5029   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
5030   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
5031   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
5032   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
5033   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
5034   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
5035   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
5036   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
5037   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
5038   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
5039   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
5040   case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
5041   case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
5042   case AtomicRMWInst::UIncWrap:
5043     NT = ISD::ATOMIC_LOAD_UINC_WRAP;
5044     break;
5045   case AtomicRMWInst::UDecWrap:
5046     NT = ISD::ATOMIC_LOAD_UDEC_WRAP;
5047     break;
5048   }
5049   AtomicOrdering Ordering = I.getOrdering();
5050   SyncScope::ID SSID = I.getSyncScopeID();
5051 
5052   SDValue InChain = getRoot();
5053 
5054   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
5055   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5056   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5057 
5058   MachineFunction &MF = DAG.getMachineFunction();
5059   MachineMemOperand *MMO = MF.getMachineMemOperand(
5060       MachinePointerInfo(I.getPointerOperand()), Flags,
5061       LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT),
5062       AAMDNodes(), nullptr, SSID, Ordering);
5063 
5064   SDValue L =
5065     DAG.getAtomic(NT, dl, MemVT, InChain,
5066                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
5067                   MMO);
5068 
5069   SDValue OutChain = L.getValue(1);
5070 
5071   setValue(&I, L);
5072   DAG.setRoot(OutChain);
5073 }
5074 
5075 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
5076   SDLoc dl = getCurSDLoc();
5077   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5078   SDValue Ops[3];
5079   Ops[0] = getRoot();
5080   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
5081                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
5082   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
5083                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
5084   SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
5085   setValue(&I, N);
5086   DAG.setRoot(N);
5087 }
5088 
5089 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
5090   SDLoc dl = getCurSDLoc();
5091   AtomicOrdering Order = I.getOrdering();
5092   SyncScope::ID SSID = I.getSyncScopeID();
5093 
5094   SDValue InChain = getRoot();
5095 
5096   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5097   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5098   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
5099 
5100   if (!TLI.supportsUnalignedAtomics() &&
5101       I.getAlign().value() < MemVT.getSizeInBits() / 8)
5102     report_fatal_error("Cannot generate unaligned atomic load");
5103 
5104   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
5105 
5106   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5107       MachinePointerInfo(I.getPointerOperand()), Flags,
5108       LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(),
5109       nullptr, SSID, Order);
5110 
5111   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
5112 
5113   SDValue Ptr = getValue(I.getPointerOperand());
5114   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
5115                             Ptr, MMO);
5116 
5117   SDValue OutChain = L.getValue(1);
5118   if (MemVT != VT)
5119     L = DAG.getPtrExtOrTrunc(L, dl, VT);
5120 
5121   setValue(&I, L);
5122   DAG.setRoot(OutChain);
5123 }
5124 
5125 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
5126   SDLoc dl = getCurSDLoc();
5127 
5128   AtomicOrdering Ordering = I.getOrdering();
5129   SyncScope::ID SSID = I.getSyncScopeID();
5130 
5131   SDValue InChain = getRoot();
5132 
5133   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5134   EVT MemVT =
5135       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
5136 
5137   if (!TLI.supportsUnalignedAtomics() &&
5138       I.getAlign().value() < MemVT.getSizeInBits() / 8)
5139     report_fatal_error("Cannot generate unaligned atomic store");
5140 
5141   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
5142 
5143   MachineFunction &MF = DAG.getMachineFunction();
5144   MachineMemOperand *MMO = MF.getMachineMemOperand(
5145       MachinePointerInfo(I.getPointerOperand()), Flags,
5146       LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(),
5147       nullptr, SSID, Ordering);
5148 
5149   SDValue Val = getValue(I.getValueOperand());
5150   if (Val.getValueType() != MemVT)
5151     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
5152   SDValue Ptr = getValue(I.getPointerOperand());
5153 
5154   SDValue OutChain =
5155       DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO);
5156 
5157   setValue(&I, OutChain);
5158   DAG.setRoot(OutChain);
5159 }
5160 
5161 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
5162 /// node.
5163 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
5164                                                unsigned Intrinsic) {
5165   // Ignore the callsite's attributes. A specific call site may be marked with
5166   // readnone, but the lowering code will expect the chain based on the
5167   // definition.
5168   const Function *F = I.getCalledFunction();
5169   bool HasChain = !F->doesNotAccessMemory();
5170   bool OnlyLoad = HasChain && F->onlyReadsMemory();
5171 
5172   // Build the operand list.
5173   SmallVector<SDValue, 8> Ops;
5174   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
5175     if (OnlyLoad) {
5176       // We don't need to serialize loads against other loads.
5177       Ops.push_back(DAG.getRoot());
5178     } else {
5179       Ops.push_back(getRoot());
5180     }
5181   }
5182 
5183   // Info is set by getTgtMemIntrinsic
5184   TargetLowering::IntrinsicInfo Info;
5185   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5186   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
5187                                                DAG.getMachineFunction(),
5188                                                Intrinsic);
5189 
5190   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
5191   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
5192       Info.opc == ISD::INTRINSIC_W_CHAIN)
5193     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
5194                                         TLI.getPointerTy(DAG.getDataLayout())));
5195 
5196   // Add all operands of the call to the operand list.
5197   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
5198     const Value *Arg = I.getArgOperand(i);
5199     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
5200       Ops.push_back(getValue(Arg));
5201       continue;
5202     }
5203 
5204     // Use TargetConstant instead of a regular constant for immarg.
5205     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
5206     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
5207       assert(CI->getBitWidth() <= 64 &&
5208              "large intrinsic immediates not handled");
5209       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
5210     } else {
5211       Ops.push_back(
5212           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
5213     }
5214   }
5215 
5216   SmallVector<EVT, 4> ValueVTs;
5217   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
5218 
5219   if (HasChain)
5220     ValueVTs.push_back(MVT::Other);
5221 
5222   SDVTList VTs = DAG.getVTList(ValueVTs);
5223 
5224   // Propagate fast-math-flags from IR to node(s).
5225   SDNodeFlags Flags;
5226   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
5227     Flags.copyFMF(*FPMO);
5228   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
5229 
5230   // Create the node.
5231   SDValue Result;
5232 
5233   if (auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl)) {
5234     auto *Token = Bundle->Inputs[0].get();
5235     SDValue ConvControlToken = getValue(Token);
5236     assert(Ops.back().getValueType() != MVT::Glue &&
5237            "Did not expected another glue node here.");
5238     ConvControlToken =
5239         DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken);
5240     Ops.push_back(ConvControlToken);
5241   }
5242 
5243   // In some cases, custom collection of operands from CallInst I may be needed.
5244   TLI.CollectTargetIntrinsicOperands(I, Ops, DAG);
5245   if (IsTgtIntrinsic) {
5246     // This is target intrinsic that touches memory
5247     //
5248     // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
5249     //       didn't yield anything useful.
5250     MachinePointerInfo MPI;
5251     if (Info.ptrVal)
5252       MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
5253     else if (Info.fallbackAddressSpace)
5254       MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
5255     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops,
5256                                      Info.memVT, MPI, Info.align, Info.flags,
5257                                      Info.size, I.getAAMetadata());
5258   } else if (!HasChain) {
5259     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
5260   } else if (!I.getType()->isVoidTy()) {
5261     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
5262   } else {
5263     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
5264   }
5265 
5266   if (HasChain) {
5267     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
5268     if (OnlyLoad)
5269       PendingLoads.push_back(Chain);
5270     else
5271       DAG.setRoot(Chain);
5272   }
5273 
5274   if (!I.getType()->isVoidTy()) {
5275     if (!isa<VectorType>(I.getType()))
5276       Result = lowerRangeToAssertZExt(DAG, I, Result);
5277 
5278     MaybeAlign Alignment = I.getRetAlign();
5279 
5280     // Insert `assertalign` node if there's an alignment.
5281     if (InsertAssertAlign && Alignment) {
5282       Result =
5283           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
5284     }
5285 
5286     setValue(&I, Result);
5287   }
5288 }
5289 
5290 /// GetSignificand - Get the significand and build it into a floating-point
5291 /// number with exponent of 1:
5292 ///
5293 ///   Op = (Op & 0x007fffff) | 0x3f800000;
5294 ///
5295 /// where Op is the hexadecimal representation of floating point value.
5296 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
5297   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5298                            DAG.getConstant(0x007fffff, dl, MVT::i32));
5299   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
5300                            DAG.getConstant(0x3f800000, dl, MVT::i32));
5301   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
5302 }
5303 
5304 /// GetExponent - Get the exponent:
5305 ///
5306 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
5307 ///
5308 /// where Op is the hexadecimal representation of floating point value.
5309 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
5310                            const TargetLowering &TLI, const SDLoc &dl) {
5311   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5312                            DAG.getConstant(0x7f800000, dl, MVT::i32));
5313   SDValue t1 = DAG.getNode(
5314       ISD::SRL, dl, MVT::i32, t0,
5315       DAG.getConstant(23, dl,
5316                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
5317   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
5318                            DAG.getConstant(127, dl, MVT::i32));
5319   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
5320 }
5321 
5322 /// getF32Constant - Get 32-bit floating point constant.
5323 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
5324                               const SDLoc &dl) {
5325   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
5326                            MVT::f32);
5327 }
5328 
5329 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
5330                                        SelectionDAG &DAG) {
5331   // TODO: What fast-math-flags should be set on the floating-point nodes?
5332 
5333   //   IntegerPartOfX = ((int32_t)(t0);
5334   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
5335 
5336   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
5337   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
5338   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
5339 
5340   //   IntegerPartOfX <<= 23;
5341   IntegerPartOfX =
5342       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
5343                   DAG.getConstant(23, dl,
5344                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
5345                                       MVT::i32, DAG.getDataLayout())));
5346 
5347   SDValue TwoToFractionalPartOfX;
5348   if (LimitFloatPrecision <= 6) {
5349     // For floating-point precision of 6:
5350     //
5351     //   TwoToFractionalPartOfX =
5352     //     0.997535578f +
5353     //       (0.735607626f + 0.252464424f * x) * x;
5354     //
5355     // error 0.0144103317, which is 6 bits
5356     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5357                              getF32Constant(DAG, 0x3e814304, dl));
5358     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5359                              getF32Constant(DAG, 0x3f3c50c8, dl));
5360     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5361     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5362                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
5363   } else if (LimitFloatPrecision <= 12) {
5364     // For floating-point precision of 12:
5365     //
5366     //   TwoToFractionalPartOfX =
5367     //     0.999892986f +
5368     //       (0.696457318f +
5369     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
5370     //
5371     // error 0.000107046256, which is 13 to 14 bits
5372     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5373                              getF32Constant(DAG, 0x3da235e3, dl));
5374     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5375                              getF32Constant(DAG, 0x3e65b8f3, dl));
5376     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5377     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5378                              getF32Constant(DAG, 0x3f324b07, dl));
5379     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5380     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5381                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
5382   } else { // LimitFloatPrecision <= 18
5383     // For floating-point precision of 18:
5384     //
5385     //   TwoToFractionalPartOfX =
5386     //     0.999999982f +
5387     //       (0.693148872f +
5388     //         (0.240227044f +
5389     //           (0.554906021e-1f +
5390     //             (0.961591928e-2f +
5391     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5392     // error 2.47208000*10^(-7), which is better than 18 bits
5393     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5394                              getF32Constant(DAG, 0x3924b03e, dl));
5395     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5396                              getF32Constant(DAG, 0x3ab24b87, dl));
5397     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5398     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5399                              getF32Constant(DAG, 0x3c1d8c17, dl));
5400     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5401     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5402                              getF32Constant(DAG, 0x3d634a1d, dl));
5403     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5404     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5405                              getF32Constant(DAG, 0x3e75fe14, dl));
5406     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5407     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5408                               getF32Constant(DAG, 0x3f317234, dl));
5409     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5410     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5411                                          getF32Constant(DAG, 0x3f800000, dl));
5412   }
5413 
5414   // Add the exponent into the result in integer domain.
5415   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5416   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5417                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5418 }
5419 
5420 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5421 /// limited-precision mode.
5422 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5423                          const TargetLowering &TLI, SDNodeFlags Flags) {
5424   if (Op.getValueType() == MVT::f32 &&
5425       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5426 
5427     // Put the exponent in the right bit position for later addition to the
5428     // final result:
5429     //
5430     // t0 = Op * log2(e)
5431 
5432     // TODO: What fast-math-flags should be set here?
5433     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5434                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5435     return getLimitedPrecisionExp2(t0, dl, DAG);
5436   }
5437 
5438   // No special expansion.
5439   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5440 }
5441 
5442 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5443 /// limited-precision mode.
5444 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5445                          const TargetLowering &TLI, SDNodeFlags Flags) {
5446   // TODO: What fast-math-flags should be set on the floating-point nodes?
5447 
5448   if (Op.getValueType() == MVT::f32 &&
5449       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5450     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5451 
5452     // Scale the exponent by log(2).
5453     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5454     SDValue LogOfExponent =
5455         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5456                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5457 
5458     // Get the significand and build it into a floating-point number with
5459     // exponent of 1.
5460     SDValue X = GetSignificand(DAG, Op1, dl);
5461 
5462     SDValue LogOfMantissa;
5463     if (LimitFloatPrecision <= 6) {
5464       // For floating-point precision of 6:
5465       //
5466       //   LogofMantissa =
5467       //     -1.1609546f +
5468       //       (1.4034025f - 0.23903021f * x) * x;
5469       //
5470       // error 0.0034276066, which is better than 8 bits
5471       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5472                                getF32Constant(DAG, 0xbe74c456, dl));
5473       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5474                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5475       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5476       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5477                                   getF32Constant(DAG, 0x3f949a29, dl));
5478     } else if (LimitFloatPrecision <= 12) {
5479       // For floating-point precision of 12:
5480       //
5481       //   LogOfMantissa =
5482       //     -1.7417939f +
5483       //       (2.8212026f +
5484       //         (-1.4699568f +
5485       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5486       //
5487       // error 0.000061011436, which is 14 bits
5488       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5489                                getF32Constant(DAG, 0xbd67b6d6, dl));
5490       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5491                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5492       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5493       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5494                                getF32Constant(DAG, 0x3fbc278b, dl));
5495       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5496       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5497                                getF32Constant(DAG, 0x40348e95, dl));
5498       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5499       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5500                                   getF32Constant(DAG, 0x3fdef31a, dl));
5501     } else { // LimitFloatPrecision <= 18
5502       // For floating-point precision of 18:
5503       //
5504       //   LogOfMantissa =
5505       //     -2.1072184f +
5506       //       (4.2372794f +
5507       //         (-3.7029485f +
5508       //           (2.2781945f +
5509       //             (-0.87823314f +
5510       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5511       //
5512       // error 0.0000023660568, which is better than 18 bits
5513       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5514                                getF32Constant(DAG, 0xbc91e5ac, dl));
5515       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5516                                getF32Constant(DAG, 0x3e4350aa, dl));
5517       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5518       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5519                                getF32Constant(DAG, 0x3f60d3e3, dl));
5520       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5521       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5522                                getF32Constant(DAG, 0x4011cdf0, dl));
5523       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5524       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5525                                getF32Constant(DAG, 0x406cfd1c, dl));
5526       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5527       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5528                                getF32Constant(DAG, 0x408797cb, dl));
5529       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5530       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5531                                   getF32Constant(DAG, 0x4006dcab, dl));
5532     }
5533 
5534     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5535   }
5536 
5537   // No special expansion.
5538   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5539 }
5540 
5541 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5542 /// limited-precision mode.
5543 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5544                           const TargetLowering &TLI, SDNodeFlags Flags) {
5545   // TODO: What fast-math-flags should be set on the floating-point nodes?
5546 
5547   if (Op.getValueType() == MVT::f32 &&
5548       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5549     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5550 
5551     // Get the exponent.
5552     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5553 
5554     // Get the significand and build it into a floating-point number with
5555     // exponent of 1.
5556     SDValue X = GetSignificand(DAG, Op1, dl);
5557 
5558     // Different possible minimax approximations of significand in
5559     // floating-point for various degrees of accuracy over [1,2].
5560     SDValue Log2ofMantissa;
5561     if (LimitFloatPrecision <= 6) {
5562       // For floating-point precision of 6:
5563       //
5564       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5565       //
5566       // error 0.0049451742, which is more than 7 bits
5567       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5568                                getF32Constant(DAG, 0xbeb08fe0, dl));
5569       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5570                                getF32Constant(DAG, 0x40019463, dl));
5571       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5572       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5573                                    getF32Constant(DAG, 0x3fd6633d, dl));
5574     } else if (LimitFloatPrecision <= 12) {
5575       // For floating-point precision of 12:
5576       //
5577       //   Log2ofMantissa =
5578       //     -2.51285454f +
5579       //       (4.07009056f +
5580       //         (-2.12067489f +
5581       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5582       //
5583       // error 0.0000876136000, which is better than 13 bits
5584       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5585                                getF32Constant(DAG, 0xbda7262e, dl));
5586       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5587                                getF32Constant(DAG, 0x3f25280b, dl));
5588       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5589       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5590                                getF32Constant(DAG, 0x4007b923, dl));
5591       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5592       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5593                                getF32Constant(DAG, 0x40823e2f, dl));
5594       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5595       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5596                                    getF32Constant(DAG, 0x4020d29c, dl));
5597     } else { // LimitFloatPrecision <= 18
5598       // For floating-point precision of 18:
5599       //
5600       //   Log2ofMantissa =
5601       //     -3.0400495f +
5602       //       (6.1129976f +
5603       //         (-5.3420409f +
5604       //           (3.2865683f +
5605       //             (-1.2669343f +
5606       //               (0.27515199f -
5607       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5608       //
5609       // error 0.0000018516, which is better than 18 bits
5610       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5611                                getF32Constant(DAG, 0xbcd2769e, dl));
5612       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5613                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5614       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5615       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5616                                getF32Constant(DAG, 0x3fa22ae7, dl));
5617       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5618       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5619                                getF32Constant(DAG, 0x40525723, dl));
5620       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5621       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5622                                getF32Constant(DAG, 0x40aaf200, dl));
5623       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5624       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5625                                getF32Constant(DAG, 0x40c39dad, dl));
5626       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5627       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5628                                    getF32Constant(DAG, 0x4042902c, dl));
5629     }
5630 
5631     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5632   }
5633 
5634   // No special expansion.
5635   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5636 }
5637 
5638 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5639 /// limited-precision mode.
5640 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5641                            const TargetLowering &TLI, SDNodeFlags Flags) {
5642   // TODO: What fast-math-flags should be set on the floating-point nodes?
5643 
5644   if (Op.getValueType() == MVT::f32 &&
5645       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5646     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5647 
5648     // Scale the exponent by log10(2) [0.30102999f].
5649     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5650     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5651                                         getF32Constant(DAG, 0x3e9a209a, dl));
5652 
5653     // Get the significand and build it into a floating-point number with
5654     // exponent of 1.
5655     SDValue X = GetSignificand(DAG, Op1, dl);
5656 
5657     SDValue Log10ofMantissa;
5658     if (LimitFloatPrecision <= 6) {
5659       // For floating-point precision of 6:
5660       //
5661       //   Log10ofMantissa =
5662       //     -0.50419619f +
5663       //       (0.60948995f - 0.10380950f * x) * x;
5664       //
5665       // error 0.0014886165, which is 6 bits
5666       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5667                                getF32Constant(DAG, 0xbdd49a13, dl));
5668       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5669                                getF32Constant(DAG, 0x3f1c0789, dl));
5670       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5671       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5672                                     getF32Constant(DAG, 0x3f011300, dl));
5673     } else if (LimitFloatPrecision <= 12) {
5674       // For floating-point precision of 12:
5675       //
5676       //   Log10ofMantissa =
5677       //     -0.64831180f +
5678       //       (0.91751397f +
5679       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5680       //
5681       // error 0.00019228036, which is better than 12 bits
5682       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5683                                getF32Constant(DAG, 0x3d431f31, dl));
5684       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5685                                getF32Constant(DAG, 0x3ea21fb2, dl));
5686       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5687       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5688                                getF32Constant(DAG, 0x3f6ae232, dl));
5689       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5690       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5691                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5692     } else { // LimitFloatPrecision <= 18
5693       // For floating-point precision of 18:
5694       //
5695       //   Log10ofMantissa =
5696       //     -0.84299375f +
5697       //       (1.5327582f +
5698       //         (-1.0688956f +
5699       //           (0.49102474f +
5700       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5701       //
5702       // error 0.0000037995730, which is better than 18 bits
5703       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5704                                getF32Constant(DAG, 0x3c5d51ce, dl));
5705       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5706                                getF32Constant(DAG, 0x3e00685a, dl));
5707       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5708       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5709                                getF32Constant(DAG, 0x3efb6798, dl));
5710       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5711       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5712                                getF32Constant(DAG, 0x3f88d192, dl));
5713       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5714       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5715                                getF32Constant(DAG, 0x3fc4316c, dl));
5716       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5717       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5718                                     getF32Constant(DAG, 0x3f57ce70, dl));
5719     }
5720 
5721     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5722   }
5723 
5724   // No special expansion.
5725   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5726 }
5727 
5728 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5729 /// limited-precision mode.
5730 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5731                           const TargetLowering &TLI, SDNodeFlags Flags) {
5732   if (Op.getValueType() == MVT::f32 &&
5733       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5734     return getLimitedPrecisionExp2(Op, dl, DAG);
5735 
5736   // No special expansion.
5737   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5738 }
5739 
5740 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5741 /// limited-precision mode with x == 10.0f.
5742 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5743                          SelectionDAG &DAG, const TargetLowering &TLI,
5744                          SDNodeFlags Flags) {
5745   bool IsExp10 = false;
5746   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5747       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5748     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5749       APFloat Ten(10.0f);
5750       IsExp10 = LHSC->isExactlyValue(Ten);
5751     }
5752   }
5753 
5754   // TODO: What fast-math-flags should be set on the FMUL node?
5755   if (IsExp10) {
5756     // Put the exponent in the right bit position for later addition to the
5757     // final result:
5758     //
5759     //   #define LOG2OF10 3.3219281f
5760     //   t0 = Op * LOG2OF10;
5761     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5762                              getF32Constant(DAG, 0x40549a78, dl));
5763     return getLimitedPrecisionExp2(t0, dl, DAG);
5764   }
5765 
5766   // No special expansion.
5767   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5768 }
5769 
5770 /// ExpandPowI - Expand a llvm.powi intrinsic.
5771 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5772                           SelectionDAG &DAG) {
5773   // If RHS is a constant, we can expand this out to a multiplication tree if
5774   // it's beneficial on the target, otherwise we end up lowering to a call to
5775   // __powidf2 (for example).
5776   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5777     unsigned Val = RHSC->getSExtValue();
5778 
5779     // powi(x, 0) -> 1.0
5780     if (Val == 0)
5781       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5782 
5783     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5784             Val, DAG.shouldOptForSize())) {
5785       // Get the exponent as a positive value.
5786       if ((int)Val < 0)
5787         Val = -Val;
5788       // We use the simple binary decomposition method to generate the multiply
5789       // sequence.  There are more optimal ways to do this (for example,
5790       // powi(x,15) generates one more multiply than it should), but this has
5791       // the benefit of being both really simple and much better than a libcall.
5792       SDValue Res; // Logically starts equal to 1.0
5793       SDValue CurSquare = LHS;
5794       // TODO: Intrinsics should have fast-math-flags that propagate to these
5795       // nodes.
5796       while (Val) {
5797         if (Val & 1) {
5798           if (Res.getNode())
5799             Res =
5800                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5801           else
5802             Res = CurSquare; // 1.0*CurSquare.
5803         }
5804 
5805         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5806                                 CurSquare, CurSquare);
5807         Val >>= 1;
5808       }
5809 
5810       // If the original was negative, invert the result, producing 1/(x*x*x).
5811       if (RHSC->getSExtValue() < 0)
5812         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5813                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5814       return Res;
5815     }
5816   }
5817 
5818   // Otherwise, expand to a libcall.
5819   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5820 }
5821 
5822 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5823                             SDValue LHS, SDValue RHS, SDValue Scale,
5824                             SelectionDAG &DAG, const TargetLowering &TLI) {
5825   EVT VT = LHS.getValueType();
5826   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5827   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5828   LLVMContext &Ctx = *DAG.getContext();
5829 
5830   // If the type is legal but the operation isn't, this node might survive all
5831   // the way to operation legalization. If we end up there and we do not have
5832   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5833   // node.
5834 
5835   // Coax the legalizer into expanding the node during type legalization instead
5836   // by bumping the size by one bit. This will force it to Promote, enabling the
5837   // early expansion and avoiding the need to expand later.
5838 
5839   // We don't have to do this if Scale is 0; that can always be expanded, unless
5840   // it's a saturating signed operation. Those can experience true integer
5841   // division overflow, a case which we must avoid.
5842 
5843   // FIXME: We wouldn't have to do this (or any of the early
5844   // expansion/promotion) if it was possible to expand a libcall of an
5845   // illegal type during operation legalization. But it's not, so things
5846   // get a bit hacky.
5847   unsigned ScaleInt = Scale->getAsZExtVal();
5848   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5849       (TLI.isTypeLegal(VT) ||
5850        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5851     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5852         Opcode, VT, ScaleInt);
5853     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5854       EVT PromVT;
5855       if (VT.isScalarInteger())
5856         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5857       else if (VT.isVector()) {
5858         PromVT = VT.getVectorElementType();
5859         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5860         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5861       } else
5862         llvm_unreachable("Wrong VT for DIVFIX?");
5863       LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT);
5864       RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT);
5865       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5866       // For saturating operations, we need to shift up the LHS to get the
5867       // proper saturation width, and then shift down again afterwards.
5868       if (Saturating)
5869         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5870                           DAG.getConstant(1, DL, ShiftTy));
5871       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5872       if (Saturating)
5873         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5874                           DAG.getConstant(1, DL, ShiftTy));
5875       return DAG.getZExtOrTrunc(Res, DL, VT);
5876     }
5877   }
5878 
5879   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5880 }
5881 
5882 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5883 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5884 static void
5885 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5886                      const SDValue &N) {
5887   switch (N.getOpcode()) {
5888   case ISD::CopyFromReg: {
5889     SDValue Op = N.getOperand(1);
5890     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5891                       Op.getValueType().getSizeInBits());
5892     return;
5893   }
5894   case ISD::BITCAST:
5895   case ISD::AssertZext:
5896   case ISD::AssertSext:
5897   case ISD::TRUNCATE:
5898     getUnderlyingArgRegs(Regs, N.getOperand(0));
5899     return;
5900   case ISD::BUILD_PAIR:
5901   case ISD::BUILD_VECTOR:
5902   case ISD::CONCAT_VECTORS:
5903     for (SDValue Op : N->op_values())
5904       getUnderlyingArgRegs(Regs, Op);
5905     return;
5906   default:
5907     return;
5908   }
5909 }
5910 
5911 /// If the DbgValueInst is a dbg_value of a function argument, create the
5912 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5913 /// instruction selection, they will be inserted to the entry BB.
5914 /// We don't currently support this for variadic dbg_values, as they shouldn't
5915 /// appear for function arguments or in the prologue.
5916 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5917     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5918     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5919   const Argument *Arg = dyn_cast<Argument>(V);
5920   if (!Arg)
5921     return false;
5922 
5923   MachineFunction &MF = DAG.getMachineFunction();
5924   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5925 
5926   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5927   // we've been asked to pursue.
5928   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5929                               bool Indirect) {
5930     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5931       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5932       // pointing at the VReg, which will be patched up later.
5933       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5934       SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
5935           /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
5936           /* isKill */ false, /* isDead */ false,
5937           /* isUndef */ false, /* isEarlyClobber */ false,
5938           /* SubReg */ 0, /* isDebug */ true)});
5939 
5940       auto *NewDIExpr = FragExpr;
5941       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5942       // the DIExpression.
5943       if (Indirect)
5944         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5945       SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
5946       NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
5947       return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
5948     } else {
5949       // Create a completely standard DBG_VALUE.
5950       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5951       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5952     }
5953   };
5954 
5955   if (Kind == FuncArgumentDbgValueKind::Value) {
5956     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5957     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5958     // the entry block.
5959     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5960     if (!IsInEntryBlock)
5961       return false;
5962 
5963     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5964     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5965     // variable that also is a param.
5966     //
5967     // Although, if we are at the top of the entry block already, we can still
5968     // emit using ArgDbgValue. This might catch some situations when the
5969     // dbg.value refers to an argument that isn't used in the entry block, so
5970     // any CopyToReg node would be optimized out and the only way to express
5971     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5972     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5973     // we should only emit as ArgDbgValue if the Variable is an argument to the
5974     // current function, and the dbg.value intrinsic is found in the entry
5975     // block.
5976     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5977         !DL->getInlinedAt();
5978     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5979     if (!IsInPrologue && !VariableIsFunctionInputArg)
5980       return false;
5981 
5982     // Here we assume that a function argument on IR level only can be used to
5983     // describe one input parameter on source level. If we for example have
5984     // source code like this
5985     //
5986     //    struct A { long x, y; };
5987     //    void foo(struct A a, long b) {
5988     //      ...
5989     //      b = a.x;
5990     //      ...
5991     //    }
5992     //
5993     // and IR like this
5994     //
5995     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5996     //  entry:
5997     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5998     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5999     //    call void @llvm.dbg.value(metadata i32 %b, "b",
6000     //    ...
6001     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
6002     //    ...
6003     //
6004     // then the last dbg.value is describing a parameter "b" using a value that
6005     // is an argument. But since we already has used %a1 to describe a parameter
6006     // we should not handle that last dbg.value here (that would result in an
6007     // incorrect hoisting of the DBG_VALUE to the function entry).
6008     // Notice that we allow one dbg.value per IR level argument, to accommodate
6009     // for the situation with fragments above.
6010     if (VariableIsFunctionInputArg) {
6011       unsigned ArgNo = Arg->getArgNo();
6012       if (ArgNo >= FuncInfo.DescribedArgs.size())
6013         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
6014       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
6015         return false;
6016       FuncInfo.DescribedArgs.set(ArgNo);
6017     }
6018   }
6019 
6020   bool IsIndirect = false;
6021   std::optional<MachineOperand> Op;
6022   // Some arguments' frame index is recorded during argument lowering.
6023   int FI = FuncInfo.getArgumentFrameIndex(Arg);
6024   if (FI != std::numeric_limits<int>::max())
6025     Op = MachineOperand::CreateFI(FI);
6026 
6027   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
6028   if (!Op && N.getNode()) {
6029     getUnderlyingArgRegs(ArgRegsAndSizes, N);
6030     Register Reg;
6031     if (ArgRegsAndSizes.size() == 1)
6032       Reg = ArgRegsAndSizes.front().first;
6033 
6034     if (Reg && Reg.isVirtual()) {
6035       MachineRegisterInfo &RegInfo = MF.getRegInfo();
6036       Register PR = RegInfo.getLiveInPhysReg(Reg);
6037       if (PR)
6038         Reg = PR;
6039     }
6040     if (Reg) {
6041       Op = MachineOperand::CreateReg(Reg, false);
6042       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6043     }
6044   }
6045 
6046   if (!Op && N.getNode()) {
6047     // Check if frame index is available.
6048     SDValue LCandidate = peekThroughBitcasts(N);
6049     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
6050       if (FrameIndexSDNode *FINode =
6051           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6052         Op = MachineOperand::CreateFI(FINode->getIndex());
6053   }
6054 
6055   if (!Op) {
6056     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
6057     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
6058                                          SplitRegs) {
6059       unsigned Offset = 0;
6060       for (const auto &RegAndSize : SplitRegs) {
6061         // If the expression is already a fragment, the current register
6062         // offset+size might extend beyond the fragment. In this case, only
6063         // the register bits that are inside the fragment are relevant.
6064         int RegFragmentSizeInBits = RegAndSize.second;
6065         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
6066           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
6067           // The register is entirely outside the expression fragment,
6068           // so is irrelevant for debug info.
6069           if (Offset >= ExprFragmentSizeInBits)
6070             break;
6071           // The register is partially outside the expression fragment, only
6072           // the low bits within the fragment are relevant for debug info.
6073           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
6074             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
6075           }
6076         }
6077 
6078         auto FragmentExpr = DIExpression::createFragmentExpression(
6079             Expr, Offset, RegFragmentSizeInBits);
6080         Offset += RegAndSize.second;
6081         // If a valid fragment expression cannot be created, the variable's
6082         // correct value cannot be determined and so it is set as Undef.
6083         if (!FragmentExpr) {
6084           SDDbgValue *SDV = DAG.getConstantDbgValue(
6085               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
6086           DAG.AddDbgValue(SDV, false);
6087           continue;
6088         }
6089         MachineInstr *NewMI =
6090             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
6091                              Kind != FuncArgumentDbgValueKind::Value);
6092         FuncInfo.ArgDbgValues.push_back(NewMI);
6093       }
6094     };
6095 
6096     // Check if ValueMap has reg number.
6097     DenseMap<const Value *, Register>::const_iterator
6098       VMI = FuncInfo.ValueMap.find(V);
6099     if (VMI != FuncInfo.ValueMap.end()) {
6100       const auto &TLI = DAG.getTargetLoweringInfo();
6101       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
6102                        V->getType(), std::nullopt);
6103       if (RFV.occupiesMultipleRegs()) {
6104         splitMultiRegDbgValue(RFV.getRegsAndSizes());
6105         return true;
6106       }
6107 
6108       Op = MachineOperand::CreateReg(VMI->second, false);
6109       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6110     } else if (ArgRegsAndSizes.size() > 1) {
6111       // This was split due to the calling convention, and no virtual register
6112       // mapping exists for the value.
6113       splitMultiRegDbgValue(ArgRegsAndSizes);
6114       return true;
6115     }
6116   }
6117 
6118   if (!Op)
6119     return false;
6120 
6121   assert(Variable->isValidLocationForIntrinsic(DL) &&
6122          "Expected inlined-at fields to agree");
6123   MachineInstr *NewMI = nullptr;
6124 
6125   if (Op->isReg())
6126     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
6127   else
6128     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
6129                     Variable, Expr);
6130 
6131   // Otherwise, use ArgDbgValues.
6132   FuncInfo.ArgDbgValues.push_back(NewMI);
6133   return true;
6134 }
6135 
6136 /// Return the appropriate SDDbgValue based on N.
6137 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
6138                                              DILocalVariable *Variable,
6139                                              DIExpression *Expr,
6140                                              const DebugLoc &dl,
6141                                              unsigned DbgSDNodeOrder) {
6142   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
6143     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
6144     // stack slot locations.
6145     //
6146     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
6147     // debug values here after optimization:
6148     //
6149     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
6150     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
6151     //
6152     // Both describe the direct values of their associated variables.
6153     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
6154                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6155   }
6156   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
6157                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6158 }
6159 
6160 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
6161   switch (Intrinsic) {
6162   case Intrinsic::smul_fix:
6163     return ISD::SMULFIX;
6164   case Intrinsic::umul_fix:
6165     return ISD::UMULFIX;
6166   case Intrinsic::smul_fix_sat:
6167     return ISD::SMULFIXSAT;
6168   case Intrinsic::umul_fix_sat:
6169     return ISD::UMULFIXSAT;
6170   case Intrinsic::sdiv_fix:
6171     return ISD::SDIVFIX;
6172   case Intrinsic::udiv_fix:
6173     return ISD::UDIVFIX;
6174   case Intrinsic::sdiv_fix_sat:
6175     return ISD::SDIVFIXSAT;
6176   case Intrinsic::udiv_fix_sat:
6177     return ISD::UDIVFIXSAT;
6178   default:
6179     llvm_unreachable("Unhandled fixed point intrinsic");
6180   }
6181 }
6182 
6183 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
6184                                            const char *FunctionName) {
6185   assert(FunctionName && "FunctionName must not be nullptr");
6186   SDValue Callee = DAG.getExternalSymbol(
6187       FunctionName,
6188       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6189   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
6190 }
6191 
6192 /// Given a @llvm.call.preallocated.setup, return the corresponding
6193 /// preallocated call.
6194 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
6195   assert(cast<CallBase>(PreallocatedSetup)
6196                  ->getCalledFunction()
6197                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
6198          "expected call_preallocated_setup Value");
6199   for (const auto *U : PreallocatedSetup->users()) {
6200     auto *UseCall = cast<CallBase>(U);
6201     const Function *Fn = UseCall->getCalledFunction();
6202     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
6203       return UseCall;
6204     }
6205   }
6206   llvm_unreachable("expected corresponding call to preallocated setup/arg");
6207 }
6208 
6209 /// If DI is a debug value with an EntryValue expression, lower it using the
6210 /// corresponding physical register of the associated Argument value
6211 /// (guaranteed to exist by the verifier).
6212 bool SelectionDAGBuilder::visitEntryValueDbgValue(
6213     ArrayRef<const Value *> Values, DILocalVariable *Variable,
6214     DIExpression *Expr, DebugLoc DbgLoc) {
6215   if (!Expr->isEntryValue() || !hasSingleElement(Values))
6216     return false;
6217 
6218   // These properties are guaranteed by the verifier.
6219   const Argument *Arg = cast<Argument>(Values[0]);
6220   assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync));
6221 
6222   auto ArgIt = FuncInfo.ValueMap.find(Arg);
6223   if (ArgIt == FuncInfo.ValueMap.end()) {
6224     LLVM_DEBUG(
6225         dbgs() << "Dropping dbg.value: expression is entry_value but "
6226                   "couldn't find an associated register for the Argument\n");
6227     return true;
6228   }
6229   Register ArgVReg = ArgIt->getSecond();
6230 
6231   for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
6232     if (ArgVReg == VirtReg || ArgVReg == PhysReg) {
6233       SDDbgValue *SDV = DAG.getVRegDbgValue(
6234           Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder);
6235       DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/);
6236       return true;
6237     }
6238   LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
6239                        "couldn't find a physical register\n");
6240   return true;
6241 }
6242 
6243 /// Lower the call to the specified intrinsic function.
6244 void SelectionDAGBuilder::visitConvergenceControl(const CallInst &I,
6245                                                   unsigned Intrinsic) {
6246   SDLoc sdl = getCurSDLoc();
6247   switch (Intrinsic) {
6248   case Intrinsic::experimental_convergence_anchor:
6249     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped));
6250     break;
6251   case Intrinsic::experimental_convergence_entry:
6252     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped));
6253     break;
6254   case Intrinsic::experimental_convergence_loop: {
6255     auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl);
6256     auto *Token = Bundle->Inputs[0].get();
6257     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped,
6258                              getValue(Token)));
6259     break;
6260   }
6261   }
6262 }
6263 
6264 /// Lower the call to the specified intrinsic function.
6265 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
6266                                              unsigned Intrinsic) {
6267   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6268   SDLoc sdl = getCurSDLoc();
6269   DebugLoc dl = getCurDebugLoc();
6270   SDValue Res;
6271 
6272   SDNodeFlags Flags;
6273   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
6274     Flags.copyFMF(*FPOp);
6275 
6276   switch (Intrinsic) {
6277   default:
6278     // By default, turn this into a target intrinsic node.
6279     visitTargetIntrinsic(I, Intrinsic);
6280     return;
6281   case Intrinsic::vscale: {
6282     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6283     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
6284     return;
6285   }
6286   case Intrinsic::vastart:  visitVAStart(I); return;
6287   case Intrinsic::vaend:    visitVAEnd(I); return;
6288   case Intrinsic::vacopy:   visitVACopy(I); return;
6289   case Intrinsic::returnaddress:
6290     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
6291                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6292                              getValue(I.getArgOperand(0))));
6293     return;
6294   case Intrinsic::addressofreturnaddress:
6295     setValue(&I,
6296              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
6297                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
6298     return;
6299   case Intrinsic::sponentry:
6300     setValue(&I,
6301              DAG.getNode(ISD::SPONENTRY, sdl,
6302                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
6303     return;
6304   case Intrinsic::frameaddress:
6305     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
6306                              TLI.getFrameIndexTy(DAG.getDataLayout()),
6307                              getValue(I.getArgOperand(0))));
6308     return;
6309   case Intrinsic::read_volatile_register:
6310   case Intrinsic::read_register: {
6311     Value *Reg = I.getArgOperand(0);
6312     SDValue Chain = getRoot();
6313     SDValue RegName =
6314         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6315     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6316     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
6317       DAG.getVTList(VT, MVT::Other), Chain, RegName);
6318     setValue(&I, Res);
6319     DAG.setRoot(Res.getValue(1));
6320     return;
6321   }
6322   case Intrinsic::write_register: {
6323     Value *Reg = I.getArgOperand(0);
6324     Value *RegValue = I.getArgOperand(1);
6325     SDValue Chain = getRoot();
6326     SDValue RegName =
6327         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6328     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
6329                             RegName, getValue(RegValue)));
6330     return;
6331   }
6332   case Intrinsic::memcpy: {
6333     const auto &MCI = cast<MemCpyInst>(I);
6334     SDValue Op1 = getValue(I.getArgOperand(0));
6335     SDValue Op2 = getValue(I.getArgOperand(1));
6336     SDValue Op3 = getValue(I.getArgOperand(2));
6337     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
6338     Align DstAlign = MCI.getDestAlign().valueOrOne();
6339     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6340     Align Alignment = std::min(DstAlign, SrcAlign);
6341     bool isVol = MCI.isVolatile();
6342     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6343     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6344     // node.
6345     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6346     SDValue MC = DAG.getMemcpy(
6347         Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6348         /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)),
6349         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
6350     updateDAGForMaybeTailCall(MC);
6351     return;
6352   }
6353   case Intrinsic::memcpy_inline: {
6354     const auto &MCI = cast<MemCpyInlineInst>(I);
6355     SDValue Dst = getValue(I.getArgOperand(0));
6356     SDValue Src = getValue(I.getArgOperand(1));
6357     SDValue Size = getValue(I.getArgOperand(2));
6358     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
6359     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
6360     Align DstAlign = MCI.getDestAlign().valueOrOne();
6361     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6362     Align Alignment = std::min(DstAlign, SrcAlign);
6363     bool isVol = MCI.isVolatile();
6364     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6365     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6366     // node.
6367     SDValue MC = DAG.getMemcpy(
6368         getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
6369         /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)),
6370         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
6371     updateDAGForMaybeTailCall(MC);
6372     return;
6373   }
6374   case Intrinsic::memset: {
6375     const auto &MSI = cast<MemSetInst>(I);
6376     SDValue Op1 = getValue(I.getArgOperand(0));
6377     SDValue Op2 = getValue(I.getArgOperand(1));
6378     SDValue Op3 = getValue(I.getArgOperand(2));
6379     // @llvm.memset defines 0 and 1 to both mean no alignment.
6380     Align Alignment = MSI.getDestAlign().valueOrOne();
6381     bool isVol = MSI.isVolatile();
6382     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6383     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6384     SDValue MS = DAG.getMemset(
6385         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
6386         isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
6387     updateDAGForMaybeTailCall(MS);
6388     return;
6389   }
6390   case Intrinsic::memset_inline: {
6391     const auto &MSII = cast<MemSetInlineInst>(I);
6392     SDValue Dst = getValue(I.getArgOperand(0));
6393     SDValue Value = getValue(I.getArgOperand(1));
6394     SDValue Size = getValue(I.getArgOperand(2));
6395     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
6396     // @llvm.memset defines 0 and 1 to both mean no alignment.
6397     Align DstAlign = MSII.getDestAlign().valueOrOne();
6398     bool isVol = MSII.isVolatile();
6399     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6400     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6401     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
6402                                /* AlwaysInline */ true, isTC,
6403                                MachinePointerInfo(I.getArgOperand(0)),
6404                                I.getAAMetadata());
6405     updateDAGForMaybeTailCall(MC);
6406     return;
6407   }
6408   case Intrinsic::memmove: {
6409     const auto &MMI = cast<MemMoveInst>(I);
6410     SDValue Op1 = getValue(I.getArgOperand(0));
6411     SDValue Op2 = getValue(I.getArgOperand(1));
6412     SDValue Op3 = getValue(I.getArgOperand(2));
6413     // @llvm.memmove defines 0 and 1 to both mean no alignment.
6414     Align DstAlign = MMI.getDestAlign().valueOrOne();
6415     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6416     Align Alignment = std::min(DstAlign, SrcAlign);
6417     bool isVol = MMI.isVolatile();
6418     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6419     // FIXME: Support passing different dest/src alignments to the memmove DAG
6420     // node.
6421     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6422     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6423                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
6424                                 MachinePointerInfo(I.getArgOperand(1)),
6425                                 I.getAAMetadata(), AA);
6426     updateDAGForMaybeTailCall(MM);
6427     return;
6428   }
6429   case Intrinsic::memcpy_element_unordered_atomic: {
6430     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
6431     SDValue Dst = getValue(MI.getRawDest());
6432     SDValue Src = getValue(MI.getRawSource());
6433     SDValue Length = getValue(MI.getLength());
6434 
6435     Type *LengthTy = MI.getLength()->getType();
6436     unsigned ElemSz = MI.getElementSizeInBytes();
6437     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6438     SDValue MC =
6439         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6440                             isTC, MachinePointerInfo(MI.getRawDest()),
6441                             MachinePointerInfo(MI.getRawSource()));
6442     updateDAGForMaybeTailCall(MC);
6443     return;
6444   }
6445   case Intrinsic::memmove_element_unordered_atomic: {
6446     auto &MI = cast<AtomicMemMoveInst>(I);
6447     SDValue Dst = getValue(MI.getRawDest());
6448     SDValue Src = getValue(MI.getRawSource());
6449     SDValue Length = getValue(MI.getLength());
6450 
6451     Type *LengthTy = MI.getLength()->getType();
6452     unsigned ElemSz = MI.getElementSizeInBytes();
6453     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6454     SDValue MC =
6455         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6456                              isTC, MachinePointerInfo(MI.getRawDest()),
6457                              MachinePointerInfo(MI.getRawSource()));
6458     updateDAGForMaybeTailCall(MC);
6459     return;
6460   }
6461   case Intrinsic::memset_element_unordered_atomic: {
6462     auto &MI = cast<AtomicMemSetInst>(I);
6463     SDValue Dst = getValue(MI.getRawDest());
6464     SDValue Val = getValue(MI.getValue());
6465     SDValue Length = getValue(MI.getLength());
6466 
6467     Type *LengthTy = MI.getLength()->getType();
6468     unsigned ElemSz = MI.getElementSizeInBytes();
6469     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6470     SDValue MC =
6471         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6472                             isTC, MachinePointerInfo(MI.getRawDest()));
6473     updateDAGForMaybeTailCall(MC);
6474     return;
6475   }
6476   case Intrinsic::call_preallocated_setup: {
6477     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6478     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6479     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6480                               getRoot(), SrcValue);
6481     setValue(&I, Res);
6482     DAG.setRoot(Res);
6483     return;
6484   }
6485   case Intrinsic::call_preallocated_arg: {
6486     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6487     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6488     SDValue Ops[3];
6489     Ops[0] = getRoot();
6490     Ops[1] = SrcValue;
6491     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6492                                    MVT::i32); // arg index
6493     SDValue Res = DAG.getNode(
6494         ISD::PREALLOCATED_ARG, sdl,
6495         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6496     setValue(&I, Res);
6497     DAG.setRoot(Res.getValue(1));
6498     return;
6499   }
6500   case Intrinsic::dbg_declare: {
6501     const auto &DI = cast<DbgDeclareInst>(I);
6502     // Debug intrinsics are handled separately in assignment tracking mode.
6503     // Some intrinsics are handled right after Argument lowering.
6504     if (AssignmentTrackingEnabled ||
6505         FuncInfo.PreprocessedDbgDeclares.count(&DI))
6506       return;
6507     LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n");
6508     DILocalVariable *Variable = DI.getVariable();
6509     DIExpression *Expression = DI.getExpression();
6510     dropDanglingDebugInfo(Variable, Expression);
6511     // Assume dbg.declare can not currently use DIArgList, i.e.
6512     // it is non-variadic.
6513     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6514     handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression,
6515                        DI.getDebugLoc());
6516     return;
6517   }
6518   case Intrinsic::dbg_label: {
6519     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6520     DILabel *Label = DI.getLabel();
6521     assert(Label && "Missing label");
6522 
6523     SDDbgLabel *SDV;
6524     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6525     DAG.AddDbgLabel(SDV);
6526     return;
6527   }
6528   case Intrinsic::dbg_assign: {
6529     // Debug intrinsics are handled seperately in assignment tracking mode.
6530     if (AssignmentTrackingEnabled)
6531       return;
6532     // If assignment tracking hasn't been enabled then fall through and treat
6533     // the dbg.assign as a dbg.value.
6534     [[fallthrough]];
6535   }
6536   case Intrinsic::dbg_value: {
6537     // Debug intrinsics are handled seperately in assignment tracking mode.
6538     if (AssignmentTrackingEnabled)
6539       return;
6540     const DbgValueInst &DI = cast<DbgValueInst>(I);
6541     assert(DI.getVariable() && "Missing variable");
6542 
6543     DILocalVariable *Variable = DI.getVariable();
6544     DIExpression *Expression = DI.getExpression();
6545     dropDanglingDebugInfo(Variable, Expression);
6546 
6547     if (DI.isKillLocation()) {
6548       handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder);
6549       return;
6550     }
6551 
6552     SmallVector<Value *, 4> Values(DI.getValues());
6553     if (Values.empty())
6554       return;
6555 
6556     bool IsVariadic = DI.hasArgList();
6557     if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(),
6558                           SDNodeOrder, IsVariadic))
6559       addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
6560                            DI.getDebugLoc(), SDNodeOrder);
6561     return;
6562   }
6563 
6564   case Intrinsic::eh_typeid_for: {
6565     // Find the type id for the given typeinfo.
6566     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6567     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6568     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6569     setValue(&I, Res);
6570     return;
6571   }
6572 
6573   case Intrinsic::eh_return_i32:
6574   case Intrinsic::eh_return_i64:
6575     DAG.getMachineFunction().setCallsEHReturn(true);
6576     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6577                             MVT::Other,
6578                             getControlRoot(),
6579                             getValue(I.getArgOperand(0)),
6580                             getValue(I.getArgOperand(1))));
6581     return;
6582   case Intrinsic::eh_unwind_init:
6583     DAG.getMachineFunction().setCallsUnwindInit(true);
6584     return;
6585   case Intrinsic::eh_dwarf_cfa:
6586     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6587                              TLI.getPointerTy(DAG.getDataLayout()),
6588                              getValue(I.getArgOperand(0))));
6589     return;
6590   case Intrinsic::eh_sjlj_callsite: {
6591     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6592     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6593     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6594 
6595     MMI.setCurrentCallSite(CI->getZExtValue());
6596     return;
6597   }
6598   case Intrinsic::eh_sjlj_functioncontext: {
6599     // Get and store the index of the function context.
6600     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6601     AllocaInst *FnCtx =
6602       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6603     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6604     MFI.setFunctionContextIndex(FI);
6605     return;
6606   }
6607   case Intrinsic::eh_sjlj_setjmp: {
6608     SDValue Ops[2];
6609     Ops[0] = getRoot();
6610     Ops[1] = getValue(I.getArgOperand(0));
6611     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6612                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6613     setValue(&I, Op.getValue(0));
6614     DAG.setRoot(Op.getValue(1));
6615     return;
6616   }
6617   case Intrinsic::eh_sjlj_longjmp:
6618     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6619                             getRoot(), getValue(I.getArgOperand(0))));
6620     return;
6621   case Intrinsic::eh_sjlj_setup_dispatch:
6622     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6623                             getRoot()));
6624     return;
6625   case Intrinsic::masked_gather:
6626     visitMaskedGather(I);
6627     return;
6628   case Intrinsic::masked_load:
6629     visitMaskedLoad(I);
6630     return;
6631   case Intrinsic::masked_scatter:
6632     visitMaskedScatter(I);
6633     return;
6634   case Intrinsic::masked_store:
6635     visitMaskedStore(I);
6636     return;
6637   case Intrinsic::masked_expandload:
6638     visitMaskedLoad(I, true /* IsExpanding */);
6639     return;
6640   case Intrinsic::masked_compressstore:
6641     visitMaskedStore(I, true /* IsCompressing */);
6642     return;
6643   case Intrinsic::powi:
6644     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6645                             getValue(I.getArgOperand(1)), DAG));
6646     return;
6647   case Intrinsic::log:
6648     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6649     return;
6650   case Intrinsic::log2:
6651     setValue(&I,
6652              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6653     return;
6654   case Intrinsic::log10:
6655     setValue(&I,
6656              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6657     return;
6658   case Intrinsic::exp:
6659     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6660     return;
6661   case Intrinsic::exp2:
6662     setValue(&I,
6663              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6664     return;
6665   case Intrinsic::pow:
6666     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6667                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6668     return;
6669   case Intrinsic::sqrt:
6670   case Intrinsic::fabs:
6671   case Intrinsic::sin:
6672   case Intrinsic::cos:
6673   case Intrinsic::exp10:
6674   case Intrinsic::floor:
6675   case Intrinsic::ceil:
6676   case Intrinsic::trunc:
6677   case Intrinsic::rint:
6678   case Intrinsic::nearbyint:
6679   case Intrinsic::round:
6680   case Intrinsic::roundeven:
6681   case Intrinsic::canonicalize: {
6682     unsigned Opcode;
6683     switch (Intrinsic) {
6684     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6685     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6686     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6687     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6688     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6689     case Intrinsic::exp10:     Opcode = ISD::FEXP10;     break;
6690     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6691     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6692     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6693     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6694     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6695     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6696     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6697     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6698     }
6699 
6700     setValue(&I, DAG.getNode(Opcode, sdl,
6701                              getValue(I.getArgOperand(0)).getValueType(),
6702                              getValue(I.getArgOperand(0)), Flags));
6703     return;
6704   }
6705   case Intrinsic::lround:
6706   case Intrinsic::llround:
6707   case Intrinsic::lrint:
6708   case Intrinsic::llrint: {
6709     unsigned Opcode;
6710     switch (Intrinsic) {
6711     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6712     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6713     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6714     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6715     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6716     }
6717 
6718     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6719     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6720                              getValue(I.getArgOperand(0))));
6721     return;
6722   }
6723   case Intrinsic::minnum:
6724     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6725                              getValue(I.getArgOperand(0)).getValueType(),
6726                              getValue(I.getArgOperand(0)),
6727                              getValue(I.getArgOperand(1)), Flags));
6728     return;
6729   case Intrinsic::maxnum:
6730     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6731                              getValue(I.getArgOperand(0)).getValueType(),
6732                              getValue(I.getArgOperand(0)),
6733                              getValue(I.getArgOperand(1)), Flags));
6734     return;
6735   case Intrinsic::minimum:
6736     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6737                              getValue(I.getArgOperand(0)).getValueType(),
6738                              getValue(I.getArgOperand(0)),
6739                              getValue(I.getArgOperand(1)), Flags));
6740     return;
6741   case Intrinsic::maximum:
6742     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6743                              getValue(I.getArgOperand(0)).getValueType(),
6744                              getValue(I.getArgOperand(0)),
6745                              getValue(I.getArgOperand(1)), Flags));
6746     return;
6747   case Intrinsic::copysign:
6748     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6749                              getValue(I.getArgOperand(0)).getValueType(),
6750                              getValue(I.getArgOperand(0)),
6751                              getValue(I.getArgOperand(1)), Flags));
6752     return;
6753   case Intrinsic::ldexp:
6754     setValue(&I, DAG.getNode(ISD::FLDEXP, sdl,
6755                              getValue(I.getArgOperand(0)).getValueType(),
6756                              getValue(I.getArgOperand(0)),
6757                              getValue(I.getArgOperand(1)), Flags));
6758     return;
6759   case Intrinsic::frexp: {
6760     SmallVector<EVT, 2> ValueVTs;
6761     ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
6762     SDVTList VTs = DAG.getVTList(ValueVTs);
6763     setValue(&I,
6764              DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0))));
6765     return;
6766   }
6767   case Intrinsic::arithmetic_fence: {
6768     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6769                              getValue(I.getArgOperand(0)).getValueType(),
6770                              getValue(I.getArgOperand(0)), Flags));
6771     return;
6772   }
6773   case Intrinsic::fma:
6774     setValue(&I, DAG.getNode(
6775                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6776                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6777                      getValue(I.getArgOperand(2)), Flags));
6778     return;
6779 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6780   case Intrinsic::INTRINSIC:
6781 #include "llvm/IR/ConstrainedOps.def"
6782     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6783     return;
6784 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6785 #include "llvm/IR/VPIntrinsics.def"
6786     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6787     return;
6788   case Intrinsic::fptrunc_round: {
6789     // Get the last argument, the metadata and convert it to an integer in the
6790     // call
6791     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6792     std::optional<RoundingMode> RoundMode =
6793         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6794 
6795     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6796 
6797     // Propagate fast-math-flags from IR to node(s).
6798     SDNodeFlags Flags;
6799     Flags.copyFMF(*cast<FPMathOperator>(&I));
6800     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6801 
6802     SDValue Result;
6803     Result = DAG.getNode(
6804         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6805         DAG.getTargetConstant((int)*RoundMode, sdl,
6806                               TLI.getPointerTy(DAG.getDataLayout())));
6807     setValue(&I, Result);
6808 
6809     return;
6810   }
6811   case Intrinsic::fmuladd: {
6812     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6813     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6814         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6815       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6816                                getValue(I.getArgOperand(0)).getValueType(),
6817                                getValue(I.getArgOperand(0)),
6818                                getValue(I.getArgOperand(1)),
6819                                getValue(I.getArgOperand(2)), Flags));
6820     } else {
6821       // TODO: Intrinsic calls should have fast-math-flags.
6822       SDValue Mul = DAG.getNode(
6823           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6824           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6825       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6826                                 getValue(I.getArgOperand(0)).getValueType(),
6827                                 Mul, getValue(I.getArgOperand(2)), Flags);
6828       setValue(&I, Add);
6829     }
6830     return;
6831   }
6832   case Intrinsic::convert_to_fp16:
6833     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6834                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6835                                          getValue(I.getArgOperand(0)),
6836                                          DAG.getTargetConstant(0, sdl,
6837                                                                MVT::i32))));
6838     return;
6839   case Intrinsic::convert_from_fp16:
6840     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6841                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6842                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6843                                          getValue(I.getArgOperand(0)))));
6844     return;
6845   case Intrinsic::fptosi_sat: {
6846     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6847     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6848                              getValue(I.getArgOperand(0)),
6849                              DAG.getValueType(VT.getScalarType())));
6850     return;
6851   }
6852   case Intrinsic::fptoui_sat: {
6853     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6854     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6855                              getValue(I.getArgOperand(0)),
6856                              DAG.getValueType(VT.getScalarType())));
6857     return;
6858   }
6859   case Intrinsic::set_rounding:
6860     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6861                       {getRoot(), getValue(I.getArgOperand(0))});
6862     setValue(&I, Res);
6863     DAG.setRoot(Res.getValue(0));
6864     return;
6865   case Intrinsic::is_fpclass: {
6866     const DataLayout DLayout = DAG.getDataLayout();
6867     EVT DestVT = TLI.getValueType(DLayout, I.getType());
6868     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
6869     FPClassTest Test = static_cast<FPClassTest>(
6870         cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
6871     MachineFunction &MF = DAG.getMachineFunction();
6872     const Function &F = MF.getFunction();
6873     SDValue Op = getValue(I.getArgOperand(0));
6874     SDNodeFlags Flags;
6875     Flags.setNoFPExcept(
6876         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
6877     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
6878     // expansion can use illegal types. Making expansion early allows
6879     // legalizing these types prior to selection.
6880     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
6881       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
6882       setValue(&I, Result);
6883       return;
6884     }
6885 
6886     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
6887     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
6888     setValue(&I, V);
6889     return;
6890   }
6891   case Intrinsic::get_fpenv: {
6892     const DataLayout DLayout = DAG.getDataLayout();
6893     EVT EnvVT = TLI.getValueType(DLayout, I.getType());
6894     Align TempAlign = DAG.getEVTAlign(EnvVT);
6895     SDValue Chain = getRoot();
6896     // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node
6897     // and temporary storage in stack.
6898     if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) {
6899       Res = DAG.getNode(
6900           ISD::GET_FPENV, sdl,
6901           DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
6902                         MVT::Other),
6903           Chain);
6904     } else {
6905       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
6906       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
6907       auto MPI =
6908           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
6909       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6910           MPI, MachineMemOperand::MOStore, LocationSize::beforeOrAfterPointer(),
6911           TempAlign);
6912       Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
6913       Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI);
6914     }
6915     setValue(&I, Res);
6916     DAG.setRoot(Res.getValue(1));
6917     return;
6918   }
6919   case Intrinsic::set_fpenv: {
6920     const DataLayout DLayout = DAG.getDataLayout();
6921     SDValue Env = getValue(I.getArgOperand(0));
6922     EVT EnvVT = Env.getValueType();
6923     Align TempAlign = DAG.getEVTAlign(EnvVT);
6924     SDValue Chain = getRoot();
6925     // If SET_FPENV is custom or legal, use it. Otherwise use loading
6926     // environment from memory.
6927     if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) {
6928       Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env);
6929     } else {
6930       // Allocate space in stack, copy environment bits into it and use this
6931       // memory in SET_FPENV_MEM.
6932       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
6933       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
6934       auto MPI =
6935           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
6936       Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign,
6937                            MachineMemOperand::MOStore);
6938       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6939           MPI, MachineMemOperand::MOLoad, LocationSize::beforeOrAfterPointer(),
6940           TempAlign);
6941       Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
6942     }
6943     DAG.setRoot(Chain);
6944     return;
6945   }
6946   case Intrinsic::reset_fpenv:
6947     DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot()));
6948     return;
6949   case Intrinsic::get_fpmode:
6950     Res = DAG.getNode(
6951         ISD::GET_FPMODE, sdl,
6952         DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
6953                       MVT::Other),
6954         DAG.getRoot());
6955     setValue(&I, Res);
6956     DAG.setRoot(Res.getValue(1));
6957     return;
6958   case Intrinsic::set_fpmode:
6959     Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()},
6960                       getValue(I.getArgOperand(0)));
6961     DAG.setRoot(Res);
6962     return;
6963   case Intrinsic::reset_fpmode: {
6964     Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot());
6965     DAG.setRoot(Res);
6966     return;
6967   }
6968   case Intrinsic::pcmarker: {
6969     SDValue Tmp = getValue(I.getArgOperand(0));
6970     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6971     return;
6972   }
6973   case Intrinsic::readcyclecounter: {
6974     SDValue Op = getRoot();
6975     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6976                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6977     setValue(&I, Res);
6978     DAG.setRoot(Res.getValue(1));
6979     return;
6980   }
6981   case Intrinsic::readsteadycounter: {
6982     SDValue Op = getRoot();
6983     Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl,
6984                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6985     setValue(&I, Res);
6986     DAG.setRoot(Res.getValue(1));
6987     return;
6988   }
6989   case Intrinsic::bitreverse:
6990     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6991                              getValue(I.getArgOperand(0)).getValueType(),
6992                              getValue(I.getArgOperand(0))));
6993     return;
6994   case Intrinsic::bswap:
6995     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6996                              getValue(I.getArgOperand(0)).getValueType(),
6997                              getValue(I.getArgOperand(0))));
6998     return;
6999   case Intrinsic::cttz: {
7000     SDValue Arg = getValue(I.getArgOperand(0));
7001     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7002     EVT Ty = Arg.getValueType();
7003     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
7004                              sdl, Ty, Arg));
7005     return;
7006   }
7007   case Intrinsic::ctlz: {
7008     SDValue Arg = getValue(I.getArgOperand(0));
7009     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7010     EVT Ty = Arg.getValueType();
7011     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
7012                              sdl, Ty, Arg));
7013     return;
7014   }
7015   case Intrinsic::ctpop: {
7016     SDValue Arg = getValue(I.getArgOperand(0));
7017     EVT Ty = Arg.getValueType();
7018     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
7019     return;
7020   }
7021   case Intrinsic::fshl:
7022   case Intrinsic::fshr: {
7023     bool IsFSHL = Intrinsic == Intrinsic::fshl;
7024     SDValue X = getValue(I.getArgOperand(0));
7025     SDValue Y = getValue(I.getArgOperand(1));
7026     SDValue Z = getValue(I.getArgOperand(2));
7027     EVT VT = X.getValueType();
7028 
7029     if (X == Y) {
7030       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
7031       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
7032     } else {
7033       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
7034       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
7035     }
7036     return;
7037   }
7038   case Intrinsic::sadd_sat: {
7039     SDValue Op1 = getValue(I.getArgOperand(0));
7040     SDValue Op2 = getValue(I.getArgOperand(1));
7041     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7042     return;
7043   }
7044   case Intrinsic::uadd_sat: {
7045     SDValue Op1 = getValue(I.getArgOperand(0));
7046     SDValue Op2 = getValue(I.getArgOperand(1));
7047     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7048     return;
7049   }
7050   case Intrinsic::ssub_sat: {
7051     SDValue Op1 = getValue(I.getArgOperand(0));
7052     SDValue Op2 = getValue(I.getArgOperand(1));
7053     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7054     return;
7055   }
7056   case Intrinsic::usub_sat: {
7057     SDValue Op1 = getValue(I.getArgOperand(0));
7058     SDValue Op2 = getValue(I.getArgOperand(1));
7059     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7060     return;
7061   }
7062   case Intrinsic::sshl_sat: {
7063     SDValue Op1 = getValue(I.getArgOperand(0));
7064     SDValue Op2 = getValue(I.getArgOperand(1));
7065     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
7066     return;
7067   }
7068   case Intrinsic::ushl_sat: {
7069     SDValue Op1 = getValue(I.getArgOperand(0));
7070     SDValue Op2 = getValue(I.getArgOperand(1));
7071     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
7072     return;
7073   }
7074   case Intrinsic::smul_fix:
7075   case Intrinsic::umul_fix:
7076   case Intrinsic::smul_fix_sat:
7077   case Intrinsic::umul_fix_sat: {
7078     SDValue Op1 = getValue(I.getArgOperand(0));
7079     SDValue Op2 = getValue(I.getArgOperand(1));
7080     SDValue Op3 = getValue(I.getArgOperand(2));
7081     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
7082                              Op1.getValueType(), Op1, Op2, Op3));
7083     return;
7084   }
7085   case Intrinsic::sdiv_fix:
7086   case Intrinsic::udiv_fix:
7087   case Intrinsic::sdiv_fix_sat:
7088   case Intrinsic::udiv_fix_sat: {
7089     SDValue Op1 = getValue(I.getArgOperand(0));
7090     SDValue Op2 = getValue(I.getArgOperand(1));
7091     SDValue Op3 = getValue(I.getArgOperand(2));
7092     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
7093                               Op1, Op2, Op3, DAG, TLI));
7094     return;
7095   }
7096   case Intrinsic::smax: {
7097     SDValue Op1 = getValue(I.getArgOperand(0));
7098     SDValue Op2 = getValue(I.getArgOperand(1));
7099     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
7100     return;
7101   }
7102   case Intrinsic::smin: {
7103     SDValue Op1 = getValue(I.getArgOperand(0));
7104     SDValue Op2 = getValue(I.getArgOperand(1));
7105     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
7106     return;
7107   }
7108   case Intrinsic::umax: {
7109     SDValue Op1 = getValue(I.getArgOperand(0));
7110     SDValue Op2 = getValue(I.getArgOperand(1));
7111     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
7112     return;
7113   }
7114   case Intrinsic::umin: {
7115     SDValue Op1 = getValue(I.getArgOperand(0));
7116     SDValue Op2 = getValue(I.getArgOperand(1));
7117     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
7118     return;
7119   }
7120   case Intrinsic::abs: {
7121     // TODO: Preserve "int min is poison" arg in SDAG?
7122     SDValue Op1 = getValue(I.getArgOperand(0));
7123     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
7124     return;
7125   }
7126   case Intrinsic::stacksave: {
7127     SDValue Op = getRoot();
7128     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7129     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
7130     setValue(&I, Res);
7131     DAG.setRoot(Res.getValue(1));
7132     return;
7133   }
7134   case Intrinsic::stackrestore:
7135     Res = getValue(I.getArgOperand(0));
7136     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
7137     return;
7138   case Intrinsic::get_dynamic_area_offset: {
7139     SDValue Op = getRoot();
7140     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
7141     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7142     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
7143     // target.
7144     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
7145       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
7146                          " intrinsic!");
7147     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
7148                       Op);
7149     DAG.setRoot(Op);
7150     setValue(&I, Res);
7151     return;
7152   }
7153   case Intrinsic::stackguard: {
7154     MachineFunction &MF = DAG.getMachineFunction();
7155     const Module &M = *MF.getFunction().getParent();
7156     EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7157     SDValue Chain = getRoot();
7158     if (TLI.useLoadStackGuardNode()) {
7159       Res = getLoadStackGuard(DAG, sdl, Chain);
7160       Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy);
7161     } else {
7162       const Value *Global = TLI.getSDagStackGuard(M);
7163       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
7164       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
7165                         MachinePointerInfo(Global, 0), Align,
7166                         MachineMemOperand::MOVolatile);
7167     }
7168     if (TLI.useStackGuardXorFP())
7169       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
7170     DAG.setRoot(Chain);
7171     setValue(&I, Res);
7172     return;
7173   }
7174   case Intrinsic::stackprotector: {
7175     // Emit code into the DAG to store the stack guard onto the stack.
7176     MachineFunction &MF = DAG.getMachineFunction();
7177     MachineFrameInfo &MFI = MF.getFrameInfo();
7178     SDValue Src, Chain = getRoot();
7179 
7180     if (TLI.useLoadStackGuardNode())
7181       Src = getLoadStackGuard(DAG, sdl, Chain);
7182     else
7183       Src = getValue(I.getArgOperand(0));   // The guard's value.
7184 
7185     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
7186 
7187     int FI = FuncInfo.StaticAllocaMap[Slot];
7188     MFI.setStackProtectorIndex(FI);
7189     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
7190 
7191     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
7192 
7193     // Store the stack protector onto the stack.
7194     Res = DAG.getStore(
7195         Chain, sdl, Src, FIN,
7196         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
7197         MaybeAlign(), MachineMemOperand::MOVolatile);
7198     setValue(&I, Res);
7199     DAG.setRoot(Res);
7200     return;
7201   }
7202   case Intrinsic::objectsize:
7203     llvm_unreachable("llvm.objectsize.* should have been lowered already");
7204 
7205   case Intrinsic::is_constant:
7206     llvm_unreachable("llvm.is.constant.* should have been lowered already");
7207 
7208   case Intrinsic::annotation:
7209   case Intrinsic::ptr_annotation:
7210   case Intrinsic::launder_invariant_group:
7211   case Intrinsic::strip_invariant_group:
7212     // Drop the intrinsic, but forward the value
7213     setValue(&I, getValue(I.getOperand(0)));
7214     return;
7215 
7216   case Intrinsic::assume:
7217   case Intrinsic::experimental_noalias_scope_decl:
7218   case Intrinsic::var_annotation:
7219   case Intrinsic::sideeffect:
7220     // Discard annotate attributes, noalias scope declarations, assumptions, and
7221     // artificial side-effects.
7222     return;
7223 
7224   case Intrinsic::codeview_annotation: {
7225     // Emit a label associated with this metadata.
7226     MachineFunction &MF = DAG.getMachineFunction();
7227     MCSymbol *Label =
7228         MF.getMMI().getContext().createTempSymbol("annotation", true);
7229     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
7230     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
7231     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
7232     DAG.setRoot(Res);
7233     return;
7234   }
7235 
7236   case Intrinsic::init_trampoline: {
7237     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
7238 
7239     SDValue Ops[6];
7240     Ops[0] = getRoot();
7241     Ops[1] = getValue(I.getArgOperand(0));
7242     Ops[2] = getValue(I.getArgOperand(1));
7243     Ops[3] = getValue(I.getArgOperand(2));
7244     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
7245     Ops[5] = DAG.getSrcValue(F);
7246 
7247     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
7248 
7249     DAG.setRoot(Res);
7250     return;
7251   }
7252   case Intrinsic::adjust_trampoline:
7253     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
7254                              TLI.getPointerTy(DAG.getDataLayout()),
7255                              getValue(I.getArgOperand(0))));
7256     return;
7257   case Intrinsic::gcroot: {
7258     assert(DAG.getMachineFunction().getFunction().hasGC() &&
7259            "only valid in functions with gc specified, enforced by Verifier");
7260     assert(GFI && "implied by previous");
7261     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
7262     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
7263 
7264     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
7265     GFI->addStackRoot(FI->getIndex(), TypeMap);
7266     return;
7267   }
7268   case Intrinsic::gcread:
7269   case Intrinsic::gcwrite:
7270     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
7271   case Intrinsic::get_rounding:
7272     Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
7273     setValue(&I, Res);
7274     DAG.setRoot(Res.getValue(1));
7275     return;
7276 
7277   case Intrinsic::expect:
7278     // Just replace __builtin_expect(exp, c) with EXP.
7279     setValue(&I, getValue(I.getArgOperand(0)));
7280     return;
7281 
7282   case Intrinsic::ubsantrap:
7283   case Intrinsic::debugtrap:
7284   case Intrinsic::trap: {
7285     StringRef TrapFuncName =
7286         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
7287     if (TrapFuncName.empty()) {
7288       switch (Intrinsic) {
7289       case Intrinsic::trap:
7290         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
7291         break;
7292       case Intrinsic::debugtrap:
7293         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
7294         break;
7295       case Intrinsic::ubsantrap:
7296         DAG.setRoot(DAG.getNode(
7297             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
7298             DAG.getTargetConstant(
7299                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
7300                 MVT::i32)));
7301         break;
7302       default: llvm_unreachable("unknown trap intrinsic");
7303       }
7304       return;
7305     }
7306     TargetLowering::ArgListTy Args;
7307     if (Intrinsic == Intrinsic::ubsantrap) {
7308       Args.push_back(TargetLoweringBase::ArgListEntry());
7309       Args[0].Val = I.getArgOperand(0);
7310       Args[0].Node = getValue(Args[0].Val);
7311       Args[0].Ty = Args[0].Val->getType();
7312     }
7313 
7314     TargetLowering::CallLoweringInfo CLI(DAG);
7315     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
7316         CallingConv::C, I.getType(),
7317         DAG.getExternalSymbol(TrapFuncName.data(),
7318                               TLI.getPointerTy(DAG.getDataLayout())),
7319         std::move(Args));
7320 
7321     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7322     DAG.setRoot(Result.second);
7323     return;
7324   }
7325 
7326   case Intrinsic::uadd_with_overflow:
7327   case Intrinsic::sadd_with_overflow:
7328   case Intrinsic::usub_with_overflow:
7329   case Intrinsic::ssub_with_overflow:
7330   case Intrinsic::umul_with_overflow:
7331   case Intrinsic::smul_with_overflow: {
7332     ISD::NodeType Op;
7333     switch (Intrinsic) {
7334     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7335     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
7336     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
7337     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
7338     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
7339     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
7340     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
7341     }
7342     SDValue Op1 = getValue(I.getArgOperand(0));
7343     SDValue Op2 = getValue(I.getArgOperand(1));
7344 
7345     EVT ResultVT = Op1.getValueType();
7346     EVT OverflowVT = MVT::i1;
7347     if (ResultVT.isVector())
7348       OverflowVT = EVT::getVectorVT(
7349           *Context, OverflowVT, ResultVT.getVectorElementCount());
7350 
7351     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
7352     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
7353     return;
7354   }
7355   case Intrinsic::prefetch: {
7356     SDValue Ops[5];
7357     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7358     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
7359     Ops[0] = DAG.getRoot();
7360     Ops[1] = getValue(I.getArgOperand(0));
7361     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
7362                                    MVT::i32);
7363     Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl,
7364                                    MVT::i32);
7365     Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl,
7366                                    MVT::i32);
7367     SDValue Result = DAG.getMemIntrinsicNode(
7368         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
7369         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
7370         /* align */ std::nullopt, Flags);
7371 
7372     // Chain the prefetch in parallel with any pending loads, to stay out of
7373     // the way of later optimizations.
7374     PendingLoads.push_back(Result);
7375     Result = getRoot();
7376     DAG.setRoot(Result);
7377     return;
7378   }
7379   case Intrinsic::lifetime_start:
7380   case Intrinsic::lifetime_end: {
7381     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
7382     // Stack coloring is not enabled in O0, discard region information.
7383     if (TM.getOptLevel() == CodeGenOptLevel::None)
7384       return;
7385 
7386     const int64_t ObjectSize =
7387         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
7388     Value *const ObjectPtr = I.getArgOperand(1);
7389     SmallVector<const Value *, 4> Allocas;
7390     getUnderlyingObjects(ObjectPtr, Allocas);
7391 
7392     for (const Value *Alloca : Allocas) {
7393       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
7394 
7395       // Could not find an Alloca.
7396       if (!LifetimeObject)
7397         continue;
7398 
7399       // First check that the Alloca is static, otherwise it won't have a
7400       // valid frame index.
7401       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
7402       if (SI == FuncInfo.StaticAllocaMap.end())
7403         return;
7404 
7405       const int FrameIndex = SI->second;
7406       int64_t Offset;
7407       if (GetPointerBaseWithConstantOffset(
7408               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
7409         Offset = -1; // Cannot determine offset from alloca to lifetime object.
7410       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
7411                                 Offset);
7412       DAG.setRoot(Res);
7413     }
7414     return;
7415   }
7416   case Intrinsic::pseudoprobe: {
7417     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
7418     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7419     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
7420     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
7421     DAG.setRoot(Res);
7422     return;
7423   }
7424   case Intrinsic::invariant_start:
7425     // Discard region information.
7426     setValue(&I,
7427              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
7428     return;
7429   case Intrinsic::invariant_end:
7430     // Discard region information.
7431     return;
7432   case Intrinsic::clear_cache:
7433     /// FunctionName may be null.
7434     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
7435       lowerCallToExternalSymbol(I, FunctionName);
7436     return;
7437   case Intrinsic::donothing:
7438   case Intrinsic::seh_try_begin:
7439   case Intrinsic::seh_scope_begin:
7440   case Intrinsic::seh_try_end:
7441   case Intrinsic::seh_scope_end:
7442     // ignore
7443     return;
7444   case Intrinsic::experimental_stackmap:
7445     visitStackmap(I);
7446     return;
7447   case Intrinsic::experimental_patchpoint_void:
7448   case Intrinsic::experimental_patchpoint:
7449     visitPatchpoint(I);
7450     return;
7451   case Intrinsic::experimental_gc_statepoint:
7452     LowerStatepoint(cast<GCStatepointInst>(I));
7453     return;
7454   case Intrinsic::experimental_gc_result:
7455     visitGCResult(cast<GCResultInst>(I));
7456     return;
7457   case Intrinsic::experimental_gc_relocate:
7458     visitGCRelocate(cast<GCRelocateInst>(I));
7459     return;
7460   case Intrinsic::instrprof_cover:
7461     llvm_unreachable("instrprof failed to lower a cover");
7462   case Intrinsic::instrprof_increment:
7463     llvm_unreachable("instrprof failed to lower an increment");
7464   case Intrinsic::instrprof_timestamp:
7465     llvm_unreachable("instrprof failed to lower a timestamp");
7466   case Intrinsic::instrprof_value_profile:
7467     llvm_unreachable("instrprof failed to lower a value profiling call");
7468   case Intrinsic::instrprof_mcdc_parameters:
7469     llvm_unreachable("instrprof failed to lower mcdc parameters");
7470   case Intrinsic::instrprof_mcdc_tvbitmap_update:
7471     llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update");
7472   case Intrinsic::instrprof_mcdc_condbitmap_update:
7473     llvm_unreachable("instrprof failed to lower an mcdc condbitmap update");
7474   case Intrinsic::localescape: {
7475     MachineFunction &MF = DAG.getMachineFunction();
7476     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7477 
7478     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7479     // is the same on all targets.
7480     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7481       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7482       if (isa<ConstantPointerNull>(Arg))
7483         continue; // Skip null pointers. They represent a hole in index space.
7484       AllocaInst *Slot = cast<AllocaInst>(Arg);
7485       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7486              "can only escape static allocas");
7487       int FI = FuncInfo.StaticAllocaMap[Slot];
7488       MCSymbol *FrameAllocSym =
7489           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7490               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
7491       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7492               TII->get(TargetOpcode::LOCAL_ESCAPE))
7493           .addSym(FrameAllocSym)
7494           .addFrameIndex(FI);
7495     }
7496 
7497     return;
7498   }
7499 
7500   case Intrinsic::localrecover: {
7501     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7502     MachineFunction &MF = DAG.getMachineFunction();
7503 
7504     // Get the symbol that defines the frame offset.
7505     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7506     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7507     unsigned IdxVal =
7508         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7509     MCSymbol *FrameAllocSym =
7510         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7511             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
7512 
7513     Value *FP = I.getArgOperand(1);
7514     SDValue FPVal = getValue(FP);
7515     EVT PtrVT = FPVal.getValueType();
7516 
7517     // Create a MCSymbol for the label to avoid any target lowering
7518     // that would make this PC relative.
7519     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7520     SDValue OffsetVal =
7521         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7522 
7523     // Add the offset to the FP.
7524     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7525     setValue(&I, Add);
7526 
7527     return;
7528   }
7529 
7530   case Intrinsic::eh_exceptionpointer:
7531   case Intrinsic::eh_exceptioncode: {
7532     // Get the exception pointer vreg, copy from it, and resize it to fit.
7533     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7534     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7535     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7536     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7537     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7538     if (Intrinsic == Intrinsic::eh_exceptioncode)
7539       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7540     setValue(&I, N);
7541     return;
7542   }
7543   case Intrinsic::xray_customevent: {
7544     // Here we want to make sure that the intrinsic behaves as if it has a
7545     // specific calling convention.
7546     const auto &Triple = DAG.getTarget().getTargetTriple();
7547     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7548       return;
7549 
7550     SmallVector<SDValue, 8> Ops;
7551 
7552     // We want to say that we always want the arguments in registers.
7553     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7554     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7555     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7556     SDValue Chain = getRoot();
7557     Ops.push_back(LogEntryVal);
7558     Ops.push_back(StrSizeVal);
7559     Ops.push_back(Chain);
7560 
7561     // We need to enforce the calling convention for the callsite, so that
7562     // argument ordering is enforced correctly, and that register allocation can
7563     // see that some registers may be assumed clobbered and have to preserve
7564     // them across calls to the intrinsic.
7565     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7566                                            sdl, NodeTys, Ops);
7567     SDValue patchableNode = SDValue(MN, 0);
7568     DAG.setRoot(patchableNode);
7569     setValue(&I, patchableNode);
7570     return;
7571   }
7572   case Intrinsic::xray_typedevent: {
7573     // Here we want to make sure that the intrinsic behaves as if it has a
7574     // specific calling convention.
7575     const auto &Triple = DAG.getTarget().getTargetTriple();
7576     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7577       return;
7578 
7579     SmallVector<SDValue, 8> Ops;
7580 
7581     // We want to say that we always want the arguments in registers.
7582     // It's unclear to me how manipulating the selection DAG here forces callers
7583     // to provide arguments in registers instead of on the stack.
7584     SDValue LogTypeId = getValue(I.getArgOperand(0));
7585     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7586     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7587     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7588     SDValue Chain = getRoot();
7589     Ops.push_back(LogTypeId);
7590     Ops.push_back(LogEntryVal);
7591     Ops.push_back(StrSizeVal);
7592     Ops.push_back(Chain);
7593 
7594     // We need to enforce the calling convention for the callsite, so that
7595     // argument ordering is enforced correctly, and that register allocation can
7596     // see that some registers may be assumed clobbered and have to preserve
7597     // them across calls to the intrinsic.
7598     MachineSDNode *MN = DAG.getMachineNode(
7599         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7600     SDValue patchableNode = SDValue(MN, 0);
7601     DAG.setRoot(patchableNode);
7602     setValue(&I, patchableNode);
7603     return;
7604   }
7605   case Intrinsic::experimental_deoptimize:
7606     LowerDeoptimizeCall(&I);
7607     return;
7608   case Intrinsic::experimental_stepvector:
7609     visitStepVector(I);
7610     return;
7611   case Intrinsic::vector_reduce_fadd:
7612   case Intrinsic::vector_reduce_fmul:
7613   case Intrinsic::vector_reduce_add:
7614   case Intrinsic::vector_reduce_mul:
7615   case Intrinsic::vector_reduce_and:
7616   case Intrinsic::vector_reduce_or:
7617   case Intrinsic::vector_reduce_xor:
7618   case Intrinsic::vector_reduce_smax:
7619   case Intrinsic::vector_reduce_smin:
7620   case Intrinsic::vector_reduce_umax:
7621   case Intrinsic::vector_reduce_umin:
7622   case Intrinsic::vector_reduce_fmax:
7623   case Intrinsic::vector_reduce_fmin:
7624   case Intrinsic::vector_reduce_fmaximum:
7625   case Intrinsic::vector_reduce_fminimum:
7626     visitVectorReduce(I, Intrinsic);
7627     return;
7628 
7629   case Intrinsic::icall_branch_funnel: {
7630     SmallVector<SDValue, 16> Ops;
7631     Ops.push_back(getValue(I.getArgOperand(0)));
7632 
7633     int64_t Offset;
7634     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7635         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7636     if (!Base)
7637       report_fatal_error(
7638           "llvm.icall.branch.funnel operand must be a GlobalValue");
7639     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7640 
7641     struct BranchFunnelTarget {
7642       int64_t Offset;
7643       SDValue Target;
7644     };
7645     SmallVector<BranchFunnelTarget, 8> Targets;
7646 
7647     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7648       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7649           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7650       if (ElemBase != Base)
7651         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7652                            "to the same GlobalValue");
7653 
7654       SDValue Val = getValue(I.getArgOperand(Op + 1));
7655       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7656       if (!GA)
7657         report_fatal_error(
7658             "llvm.icall.branch.funnel operand must be a GlobalValue");
7659       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7660                                      GA->getGlobal(), sdl, Val.getValueType(),
7661                                      GA->getOffset())});
7662     }
7663     llvm::sort(Targets,
7664                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7665                  return T1.Offset < T2.Offset;
7666                });
7667 
7668     for (auto &T : Targets) {
7669       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7670       Ops.push_back(T.Target);
7671     }
7672 
7673     Ops.push_back(DAG.getRoot()); // Chain
7674     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7675                                  MVT::Other, Ops),
7676               0);
7677     DAG.setRoot(N);
7678     setValue(&I, N);
7679     HasTailCall = true;
7680     return;
7681   }
7682 
7683   case Intrinsic::wasm_landingpad_index:
7684     // Information this intrinsic contained has been transferred to
7685     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7686     // delete it now.
7687     return;
7688 
7689   case Intrinsic::aarch64_settag:
7690   case Intrinsic::aarch64_settag_zero: {
7691     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7692     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7693     SDValue Val = TSI.EmitTargetCodeForSetTag(
7694         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7695         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7696         ZeroMemory);
7697     DAG.setRoot(Val);
7698     setValue(&I, Val);
7699     return;
7700   }
7701   case Intrinsic::amdgcn_cs_chain: {
7702     assert(I.arg_size() == 5 && "Additional args not supported yet");
7703     assert(cast<ConstantInt>(I.getOperand(4))->isZero() &&
7704            "Non-zero flags not supported yet");
7705 
7706     // At this point we don't care if it's amdgpu_cs_chain or
7707     // amdgpu_cs_chain_preserve.
7708     CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain;
7709 
7710     Type *RetTy = I.getType();
7711     assert(RetTy->isVoidTy() && "Should not return");
7712 
7713     SDValue Callee = getValue(I.getOperand(0));
7714 
7715     // We only have 2 actual args: one for the SGPRs and one for the VGPRs.
7716     // We'll also tack the value of the EXEC mask at the end.
7717     TargetLowering::ArgListTy Args;
7718     Args.reserve(3);
7719 
7720     for (unsigned Idx : {2, 3, 1}) {
7721       TargetLowering::ArgListEntry Arg;
7722       Arg.Node = getValue(I.getOperand(Idx));
7723       Arg.Ty = I.getOperand(Idx)->getType();
7724       Arg.setAttributes(&I, Idx);
7725       Args.push_back(Arg);
7726     }
7727 
7728     assert(Args[0].IsInReg && "SGPR args should be marked inreg");
7729     assert(!Args[1].IsInReg && "VGPR args should not be marked inreg");
7730     Args[2].IsInReg = true; // EXEC should be inreg
7731 
7732     TargetLowering::CallLoweringInfo CLI(DAG);
7733     CLI.setDebugLoc(getCurSDLoc())
7734         .setChain(getRoot())
7735         .setCallee(CC, RetTy, Callee, std::move(Args))
7736         .setNoReturn(true)
7737         .setTailCall(true)
7738         .setConvergent(I.isConvergent());
7739     CLI.CB = &I;
7740     std::pair<SDValue, SDValue> Result =
7741         lowerInvokable(CLI, /*EHPadBB*/ nullptr);
7742     (void)Result;
7743     assert(!Result.first.getNode() && !Result.second.getNode() &&
7744            "Should've lowered as tail call");
7745 
7746     HasTailCall = true;
7747     return;
7748   }
7749   case Intrinsic::ptrmask: {
7750     SDValue Ptr = getValue(I.getOperand(0));
7751     SDValue Mask = getValue(I.getOperand(1));
7752 
7753     EVT PtrVT = Ptr.getValueType();
7754     assert(PtrVT == Mask.getValueType() &&
7755            "Pointers with different index type are not supported by SDAG");
7756     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask));
7757     return;
7758   }
7759   case Intrinsic::threadlocal_address: {
7760     setValue(&I, getValue(I.getOperand(0)));
7761     return;
7762   }
7763   case Intrinsic::get_active_lane_mask: {
7764     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7765     SDValue Index = getValue(I.getOperand(0));
7766     EVT ElementVT = Index.getValueType();
7767 
7768     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7769       visitTargetIntrinsic(I, Intrinsic);
7770       return;
7771     }
7772 
7773     SDValue TripCount = getValue(I.getOperand(1));
7774     EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT,
7775                                  CCVT.getVectorElementCount());
7776 
7777     SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
7778     SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
7779     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7780     SDValue VectorInduction = DAG.getNode(
7781         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7782     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7783                                  VectorTripCount, ISD::CondCode::SETULT);
7784     setValue(&I, SetCC);
7785     return;
7786   }
7787   case Intrinsic::experimental_get_vector_length: {
7788     assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 &&
7789            "Expected positive VF");
7790     unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue();
7791     bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne();
7792 
7793     SDValue Count = getValue(I.getOperand(0));
7794     EVT CountVT = Count.getValueType();
7795 
7796     if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) {
7797       visitTargetIntrinsic(I, Intrinsic);
7798       return;
7799     }
7800 
7801     // Expand to a umin between the trip count and the maximum elements the type
7802     // can hold.
7803     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7804 
7805     // Extend the trip count to at least the result VT.
7806     if (CountVT.bitsLT(VT)) {
7807       Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count);
7808       CountVT = VT;
7809     }
7810 
7811     SDValue MaxEVL = DAG.getElementCount(sdl, CountVT,
7812                                          ElementCount::get(VF, IsScalable));
7813 
7814     SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL);
7815     // Clip to the result type if needed.
7816     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin);
7817 
7818     setValue(&I, Trunc);
7819     return;
7820   }
7821   case Intrinsic::experimental_cttz_elts: {
7822     auto DL = getCurSDLoc();
7823     SDValue Op = getValue(I.getOperand(0));
7824     EVT OpVT = Op.getValueType();
7825 
7826     if (!TLI.shouldExpandCttzElements(OpVT)) {
7827       visitTargetIntrinsic(I, Intrinsic);
7828       return;
7829     }
7830 
7831     if (OpVT.getScalarType() != MVT::i1) {
7832       // Compare the input vector elements to zero & use to count trailing zeros
7833       SDValue AllZero = DAG.getConstant(0, DL, OpVT);
7834       OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
7835                               OpVT.getVectorElementCount());
7836       Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE);
7837     }
7838 
7839     // Find the smallest "sensible" element type to use for the expansion.
7840     ConstantRange CR(
7841         APInt(64, OpVT.getVectorElementCount().getKnownMinValue()));
7842     if (OpVT.isScalableVT())
7843       CR = CR.umul_sat(getVScaleRange(I.getCaller(), 64));
7844 
7845     // If the zero-is-poison flag is set, we can assume the upper limit
7846     // of the result is VF-1.
7847     if (!cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero())
7848       CR = CR.subtract(APInt(64, 1));
7849 
7850     unsigned EltWidth = I.getType()->getScalarSizeInBits();
7851     EltWidth = std::min(EltWidth, (unsigned)CR.getActiveBits());
7852     EltWidth = std::max(llvm::bit_ceil(EltWidth), (unsigned)8);
7853 
7854     MVT NewEltTy = MVT::getIntegerVT(EltWidth);
7855 
7856     // Create the new vector type & get the vector length
7857     EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy,
7858                                  OpVT.getVectorElementCount());
7859 
7860     SDValue VL =
7861         DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount());
7862 
7863     SDValue StepVec = DAG.getStepVector(DL, NewVT);
7864     SDValue SplatVL = DAG.getSplat(NewVT, DL, VL);
7865     SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec);
7866     SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op);
7867     SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext);
7868     SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And);
7869     SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max);
7870 
7871     EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7872     SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy);
7873 
7874     setValue(&I, Ret);
7875     return;
7876   }
7877   case Intrinsic::vector_insert: {
7878     SDValue Vec = getValue(I.getOperand(0));
7879     SDValue SubVec = getValue(I.getOperand(1));
7880     SDValue Index = getValue(I.getOperand(2));
7881 
7882     // The intrinsic's index type is i64, but the SDNode requires an index type
7883     // suitable for the target. Convert the index as required.
7884     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7885     if (Index.getValueType() != VectorIdxTy)
7886       Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
7887 
7888     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7889     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7890                              Index));
7891     return;
7892   }
7893   case Intrinsic::vector_extract: {
7894     SDValue Vec = getValue(I.getOperand(0));
7895     SDValue Index = getValue(I.getOperand(1));
7896     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7897 
7898     // The intrinsic's index type is i64, but the SDNode requires an index type
7899     // suitable for the target. Convert the index as required.
7900     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7901     if (Index.getValueType() != VectorIdxTy)
7902       Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
7903 
7904     setValue(&I,
7905              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7906     return;
7907   }
7908   case Intrinsic::experimental_vector_reverse:
7909     visitVectorReverse(I);
7910     return;
7911   case Intrinsic::experimental_vector_splice:
7912     visitVectorSplice(I);
7913     return;
7914   case Intrinsic::callbr_landingpad:
7915     visitCallBrLandingPad(I);
7916     return;
7917   case Intrinsic::experimental_vector_interleave2:
7918     visitVectorInterleave(I);
7919     return;
7920   case Intrinsic::experimental_vector_deinterleave2:
7921     visitVectorDeinterleave(I);
7922     return;
7923   case Intrinsic::experimental_convergence_anchor:
7924   case Intrinsic::experimental_convergence_entry:
7925   case Intrinsic::experimental_convergence_loop:
7926     visitConvergenceControl(I, Intrinsic);
7927   }
7928 }
7929 
7930 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7931     const ConstrainedFPIntrinsic &FPI) {
7932   SDLoc sdl = getCurSDLoc();
7933 
7934   // We do not need to serialize constrained FP intrinsics against
7935   // each other or against (nonvolatile) loads, so they can be
7936   // chained like loads.
7937   SDValue Chain = DAG.getRoot();
7938   SmallVector<SDValue, 4> Opers;
7939   Opers.push_back(Chain);
7940   if (FPI.isUnaryOp()) {
7941     Opers.push_back(getValue(FPI.getArgOperand(0)));
7942   } else if (FPI.isTernaryOp()) {
7943     Opers.push_back(getValue(FPI.getArgOperand(0)));
7944     Opers.push_back(getValue(FPI.getArgOperand(1)));
7945     Opers.push_back(getValue(FPI.getArgOperand(2)));
7946   } else {
7947     Opers.push_back(getValue(FPI.getArgOperand(0)));
7948     Opers.push_back(getValue(FPI.getArgOperand(1)));
7949   }
7950 
7951   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7952     assert(Result.getNode()->getNumValues() == 2);
7953 
7954     // Push node to the appropriate list so that future instructions can be
7955     // chained up correctly.
7956     SDValue OutChain = Result.getValue(1);
7957     switch (EB) {
7958     case fp::ExceptionBehavior::ebIgnore:
7959       // The only reason why ebIgnore nodes still need to be chained is that
7960       // they might depend on the current rounding mode, and therefore must
7961       // not be moved across instruction that may change that mode.
7962       [[fallthrough]];
7963     case fp::ExceptionBehavior::ebMayTrap:
7964       // These must not be moved across calls or instructions that may change
7965       // floating-point exception masks.
7966       PendingConstrainedFP.push_back(OutChain);
7967       break;
7968     case fp::ExceptionBehavior::ebStrict:
7969       // These must not be moved across calls or instructions that may change
7970       // floating-point exception masks or read floating-point exception flags.
7971       // In addition, they cannot be optimized out even if unused.
7972       PendingConstrainedFPStrict.push_back(OutChain);
7973       break;
7974     }
7975   };
7976 
7977   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7978   EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
7979   SDVTList VTs = DAG.getVTList(VT, MVT::Other);
7980   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
7981 
7982   SDNodeFlags Flags;
7983   if (EB == fp::ExceptionBehavior::ebIgnore)
7984     Flags.setNoFPExcept(true);
7985 
7986   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7987     Flags.copyFMF(*FPOp);
7988 
7989   unsigned Opcode;
7990   switch (FPI.getIntrinsicID()) {
7991   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7992 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7993   case Intrinsic::INTRINSIC:                                                   \
7994     Opcode = ISD::STRICT_##DAGN;                                               \
7995     break;
7996 #include "llvm/IR/ConstrainedOps.def"
7997   case Intrinsic::experimental_constrained_fmuladd: {
7998     Opcode = ISD::STRICT_FMA;
7999     // Break fmuladd into fmul and fadd.
8000     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
8001         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
8002       Opers.pop_back();
8003       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
8004       pushOutChain(Mul, EB);
8005       Opcode = ISD::STRICT_FADD;
8006       Opers.clear();
8007       Opers.push_back(Mul.getValue(1));
8008       Opers.push_back(Mul.getValue(0));
8009       Opers.push_back(getValue(FPI.getArgOperand(2)));
8010     }
8011     break;
8012   }
8013   }
8014 
8015   // A few strict DAG nodes carry additional operands that are not
8016   // set up by the default code above.
8017   switch (Opcode) {
8018   default: break;
8019   case ISD::STRICT_FP_ROUND:
8020     Opers.push_back(
8021         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
8022     break;
8023   case ISD::STRICT_FSETCC:
8024   case ISD::STRICT_FSETCCS: {
8025     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
8026     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
8027     if (TM.Options.NoNaNsFPMath)
8028       Condition = getFCmpCodeWithoutNaN(Condition);
8029     Opers.push_back(DAG.getCondCode(Condition));
8030     break;
8031   }
8032   }
8033 
8034   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
8035   pushOutChain(Result, EB);
8036 
8037   SDValue FPResult = Result.getValue(0);
8038   setValue(&FPI, FPResult);
8039 }
8040 
8041 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
8042   std::optional<unsigned> ResOPC;
8043   switch (VPIntrin.getIntrinsicID()) {
8044   case Intrinsic::vp_ctlz: {
8045     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8046     ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
8047     break;
8048   }
8049   case Intrinsic::vp_cttz: {
8050     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8051     ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
8052     break;
8053   }
8054 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
8055   case Intrinsic::VPID:                                                        \
8056     ResOPC = ISD::VPSD;                                                        \
8057     break;
8058 #include "llvm/IR/VPIntrinsics.def"
8059   }
8060 
8061   if (!ResOPC)
8062     llvm_unreachable(
8063         "Inconsistency: no SDNode available for this VPIntrinsic!");
8064 
8065   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
8066       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
8067     if (VPIntrin.getFastMathFlags().allowReassoc())
8068       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
8069                                                 : ISD::VP_REDUCE_FMUL;
8070   }
8071 
8072   return *ResOPC;
8073 }
8074 
8075 void SelectionDAGBuilder::visitVPLoad(
8076     const VPIntrinsic &VPIntrin, EVT VT,
8077     const SmallVectorImpl<SDValue> &OpValues) {
8078   SDLoc DL = getCurSDLoc();
8079   Value *PtrOperand = VPIntrin.getArgOperand(0);
8080   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8081   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8082   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8083   SDValue LD;
8084   // Do not serialize variable-length loads of constant memory with
8085   // anything.
8086   if (!Alignment)
8087     Alignment = DAG.getEVTAlign(VT);
8088   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8089   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
8090   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8091   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8092       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
8093       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8094   LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
8095                      MMO, false /*IsExpanding */);
8096   if (AddToChain)
8097     PendingLoads.push_back(LD.getValue(1));
8098   setValue(&VPIntrin, LD);
8099 }
8100 
8101 void SelectionDAGBuilder::visitVPGather(
8102     const VPIntrinsic &VPIntrin, EVT VT,
8103     const SmallVectorImpl<SDValue> &OpValues) {
8104   SDLoc DL = getCurSDLoc();
8105   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8106   Value *PtrOperand = VPIntrin.getArgOperand(0);
8107   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8108   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8109   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8110   SDValue LD;
8111   if (!Alignment)
8112     Alignment = DAG.getEVTAlign(VT.getScalarType());
8113   unsigned AS =
8114     PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8115   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8116       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
8117       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8118   SDValue Base, Index, Scale;
8119   ISD::MemIndexType IndexType;
8120   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
8121                                     this, VPIntrin.getParent(),
8122                                     VT.getScalarStoreSize());
8123   if (!UniformBase) {
8124     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8125     Index = getValue(PtrOperand);
8126     IndexType = ISD::SIGNED_SCALED;
8127     Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8128   }
8129   EVT IdxVT = Index.getValueType();
8130   EVT EltTy = IdxVT.getVectorElementType();
8131   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8132     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
8133     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8134   }
8135   LD = DAG.getGatherVP(
8136       DAG.getVTList(VT, MVT::Other), VT, DL,
8137       {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
8138       IndexType);
8139   PendingLoads.push_back(LD.getValue(1));
8140   setValue(&VPIntrin, LD);
8141 }
8142 
8143 void SelectionDAGBuilder::visitVPStore(
8144     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8145   SDLoc DL = getCurSDLoc();
8146   Value *PtrOperand = VPIntrin.getArgOperand(1);
8147   EVT VT = OpValues[0].getValueType();
8148   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8149   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8150   SDValue ST;
8151   if (!Alignment)
8152     Alignment = DAG.getEVTAlign(VT);
8153   SDValue Ptr = OpValues[1];
8154   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
8155   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8156       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
8157       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8158   ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
8159                       OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
8160                       /* IsTruncating */ false, /*IsCompressing*/ false);
8161   DAG.setRoot(ST);
8162   setValue(&VPIntrin, ST);
8163 }
8164 
8165 void SelectionDAGBuilder::visitVPScatter(
8166     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8167   SDLoc DL = getCurSDLoc();
8168   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8169   Value *PtrOperand = VPIntrin.getArgOperand(1);
8170   EVT VT = OpValues[0].getValueType();
8171   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8172   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8173   SDValue ST;
8174   if (!Alignment)
8175     Alignment = DAG.getEVTAlign(VT.getScalarType());
8176   unsigned AS =
8177       PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8178   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8179       MachinePointerInfo(AS), MachineMemOperand::MOStore,
8180       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8181   SDValue Base, Index, Scale;
8182   ISD::MemIndexType IndexType;
8183   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
8184                                     this, VPIntrin.getParent(),
8185                                     VT.getScalarStoreSize());
8186   if (!UniformBase) {
8187     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8188     Index = getValue(PtrOperand);
8189     IndexType = ISD::SIGNED_SCALED;
8190     Scale =
8191       DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8192   }
8193   EVT IdxVT = Index.getValueType();
8194   EVT EltTy = IdxVT.getVectorElementType();
8195   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8196     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
8197     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8198   }
8199   ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
8200                         {getMemoryRoot(), OpValues[0], Base, Index, Scale,
8201                          OpValues[2], OpValues[3]},
8202                         MMO, IndexType);
8203   DAG.setRoot(ST);
8204   setValue(&VPIntrin, ST);
8205 }
8206 
8207 void SelectionDAGBuilder::visitVPStridedLoad(
8208     const VPIntrinsic &VPIntrin, EVT VT,
8209     const SmallVectorImpl<SDValue> &OpValues) {
8210   SDLoc DL = getCurSDLoc();
8211   Value *PtrOperand = VPIntrin.getArgOperand(0);
8212   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8213   if (!Alignment)
8214     Alignment = DAG.getEVTAlign(VT.getScalarType());
8215   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8216   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8217   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8218   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
8219   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8220   unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8221   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8222       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
8223       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8224 
8225   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
8226                                     OpValues[2], OpValues[3], MMO,
8227                                     false /*IsExpanding*/);
8228 
8229   if (AddToChain)
8230     PendingLoads.push_back(LD.getValue(1));
8231   setValue(&VPIntrin, LD);
8232 }
8233 
8234 void SelectionDAGBuilder::visitVPStridedStore(
8235     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8236   SDLoc DL = getCurSDLoc();
8237   Value *PtrOperand = VPIntrin.getArgOperand(1);
8238   EVT VT = OpValues[0].getValueType();
8239   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8240   if (!Alignment)
8241     Alignment = DAG.getEVTAlign(VT.getScalarType());
8242   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8243   unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8244   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8245       MachinePointerInfo(AS), MachineMemOperand::MOStore,
8246       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8247 
8248   SDValue ST = DAG.getStridedStoreVP(
8249       getMemoryRoot(), DL, OpValues[0], OpValues[1],
8250       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
8251       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
8252       /*IsCompressing*/ false);
8253 
8254   DAG.setRoot(ST);
8255   setValue(&VPIntrin, ST);
8256 }
8257 
8258 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
8259   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8260   SDLoc DL = getCurSDLoc();
8261 
8262   ISD::CondCode Condition;
8263   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
8264   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
8265   if (IsFP) {
8266     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
8267     // flags, but calls that don't return floating-point types can't be
8268     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
8269     Condition = getFCmpCondCode(CondCode);
8270     if (TM.Options.NoNaNsFPMath)
8271       Condition = getFCmpCodeWithoutNaN(Condition);
8272   } else {
8273     Condition = getICmpCondCode(CondCode);
8274   }
8275 
8276   SDValue Op1 = getValue(VPIntrin.getOperand(0));
8277   SDValue Op2 = getValue(VPIntrin.getOperand(1));
8278   // #2 is the condition code
8279   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
8280   SDValue EVL = getValue(VPIntrin.getOperand(4));
8281   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8282   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8283          "Unexpected target EVL type");
8284   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
8285 
8286   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8287                                                         VPIntrin.getType());
8288   setValue(&VPIntrin,
8289            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
8290 }
8291 
8292 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
8293     const VPIntrinsic &VPIntrin) {
8294   SDLoc DL = getCurSDLoc();
8295   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
8296 
8297   auto IID = VPIntrin.getIntrinsicID();
8298 
8299   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
8300     return visitVPCmp(*CmpI);
8301 
8302   SmallVector<EVT, 4> ValueVTs;
8303   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8304   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
8305   SDVTList VTs = DAG.getVTList(ValueVTs);
8306 
8307   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
8308 
8309   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8310   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8311          "Unexpected target EVL type");
8312 
8313   // Request operands.
8314   SmallVector<SDValue, 7> OpValues;
8315   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
8316     auto Op = getValue(VPIntrin.getArgOperand(I));
8317     if (I == EVLParamPos)
8318       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
8319     OpValues.push_back(Op);
8320   }
8321 
8322   switch (Opcode) {
8323   default: {
8324     SDNodeFlags SDFlags;
8325     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8326       SDFlags.copyFMF(*FPMO);
8327     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
8328     setValue(&VPIntrin, Result);
8329     break;
8330   }
8331   case ISD::VP_LOAD:
8332     visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
8333     break;
8334   case ISD::VP_GATHER:
8335     visitVPGather(VPIntrin, ValueVTs[0], OpValues);
8336     break;
8337   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
8338     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
8339     break;
8340   case ISD::VP_STORE:
8341     visitVPStore(VPIntrin, OpValues);
8342     break;
8343   case ISD::VP_SCATTER:
8344     visitVPScatter(VPIntrin, OpValues);
8345     break;
8346   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
8347     visitVPStridedStore(VPIntrin, OpValues);
8348     break;
8349   case ISD::VP_FMULADD: {
8350     assert(OpValues.size() == 5 && "Unexpected number of operands");
8351     SDNodeFlags SDFlags;
8352     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8353       SDFlags.copyFMF(*FPMO);
8354     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
8355         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
8356       setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
8357     } else {
8358       SDValue Mul = DAG.getNode(
8359           ISD::VP_FMUL, DL, VTs,
8360           {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
8361       SDValue Add =
8362           DAG.getNode(ISD::VP_FADD, DL, VTs,
8363                       {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
8364       setValue(&VPIntrin, Add);
8365     }
8366     break;
8367   }
8368   case ISD::VP_IS_FPCLASS: {
8369     const DataLayout DLayout = DAG.getDataLayout();
8370     EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType());
8371     auto Constant = OpValues[1]->getAsZExtVal();
8372     SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32);
8373     SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT,
8374                             {OpValues[0], Check, OpValues[2], OpValues[3]});
8375     setValue(&VPIntrin, V);
8376     return;
8377   }
8378   case ISD::VP_INTTOPTR: {
8379     SDValue N = OpValues[0];
8380     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
8381     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
8382     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8383                                OpValues[2]);
8384     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8385                              OpValues[2]);
8386     setValue(&VPIntrin, N);
8387     break;
8388   }
8389   case ISD::VP_PTRTOINT: {
8390     SDValue N = OpValues[0];
8391     EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8392                                                           VPIntrin.getType());
8393     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
8394                                        VPIntrin.getOperand(0)->getType());
8395     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8396                                OpValues[2]);
8397     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8398                              OpValues[2]);
8399     setValue(&VPIntrin, N);
8400     break;
8401   }
8402   case ISD::VP_ABS:
8403   case ISD::VP_CTLZ:
8404   case ISD::VP_CTLZ_ZERO_UNDEF:
8405   case ISD::VP_CTTZ:
8406   case ISD::VP_CTTZ_ZERO_UNDEF: {
8407     SDValue Result =
8408         DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]});
8409     setValue(&VPIntrin, Result);
8410     break;
8411   }
8412   }
8413 }
8414 
8415 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
8416                                           const BasicBlock *EHPadBB,
8417                                           MCSymbol *&BeginLabel) {
8418   MachineFunction &MF = DAG.getMachineFunction();
8419   MachineModuleInfo &MMI = MF.getMMI();
8420 
8421   // Insert a label before the invoke call to mark the try range.  This can be
8422   // used to detect deletion of the invoke via the MachineModuleInfo.
8423   BeginLabel = MMI.getContext().createTempSymbol();
8424 
8425   // For SjLj, keep track of which landing pads go with which invokes
8426   // so as to maintain the ordering of pads in the LSDA.
8427   unsigned CallSiteIndex = MMI.getCurrentCallSite();
8428   if (CallSiteIndex) {
8429     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
8430     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
8431 
8432     // Now that the call site is handled, stop tracking it.
8433     MMI.setCurrentCallSite(0);
8434   }
8435 
8436   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
8437 }
8438 
8439 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
8440                                         const BasicBlock *EHPadBB,
8441                                         MCSymbol *BeginLabel) {
8442   assert(BeginLabel && "BeginLabel should've been set");
8443 
8444   MachineFunction &MF = DAG.getMachineFunction();
8445   MachineModuleInfo &MMI = MF.getMMI();
8446 
8447   // Insert a label at the end of the invoke call to mark the try range.  This
8448   // can be used to detect deletion of the invoke via the MachineModuleInfo.
8449   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
8450   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
8451 
8452   // Inform MachineModuleInfo of range.
8453   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
8454   // There is a platform (e.g. wasm) that uses funclet style IR but does not
8455   // actually use outlined funclets and their LSDA info style.
8456   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
8457     assert(II && "II should've been set");
8458     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
8459     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
8460   } else if (!isScopedEHPersonality(Pers)) {
8461     assert(EHPadBB);
8462     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
8463   }
8464 
8465   return Chain;
8466 }
8467 
8468 std::pair<SDValue, SDValue>
8469 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
8470                                     const BasicBlock *EHPadBB) {
8471   MCSymbol *BeginLabel = nullptr;
8472 
8473   if (EHPadBB) {
8474     // Both PendingLoads and PendingExports must be flushed here;
8475     // this call might not return.
8476     (void)getRoot();
8477     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
8478     CLI.setChain(getRoot());
8479   }
8480 
8481   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8482   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
8483 
8484   assert((CLI.IsTailCall || Result.second.getNode()) &&
8485          "Non-null chain expected with non-tail call!");
8486   assert((Result.second.getNode() || !Result.first.getNode()) &&
8487          "Null value expected with tail call!");
8488 
8489   if (!Result.second.getNode()) {
8490     // As a special case, a null chain means that a tail call has been emitted
8491     // and the DAG root is already updated.
8492     HasTailCall = true;
8493 
8494     // Since there's no actual continuation from this block, nothing can be
8495     // relying on us setting vregs for them.
8496     PendingExports.clear();
8497   } else {
8498     DAG.setRoot(Result.second);
8499   }
8500 
8501   if (EHPadBB) {
8502     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
8503                            BeginLabel));
8504   }
8505 
8506   return Result;
8507 }
8508 
8509 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
8510                                       bool isTailCall,
8511                                       bool isMustTailCall,
8512                                       const BasicBlock *EHPadBB) {
8513   auto &DL = DAG.getDataLayout();
8514   FunctionType *FTy = CB.getFunctionType();
8515   Type *RetTy = CB.getType();
8516 
8517   TargetLowering::ArgListTy Args;
8518   Args.reserve(CB.arg_size());
8519 
8520   const Value *SwiftErrorVal = nullptr;
8521   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8522 
8523   if (isTailCall) {
8524     // Avoid emitting tail calls in functions with the disable-tail-calls
8525     // attribute.
8526     auto *Caller = CB.getParent()->getParent();
8527     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
8528         "true" && !isMustTailCall)
8529       isTailCall = false;
8530 
8531     // We can't tail call inside a function with a swifterror argument. Lowering
8532     // does not support this yet. It would have to move into the swifterror
8533     // register before the call.
8534     if (TLI.supportSwiftError() &&
8535         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
8536       isTailCall = false;
8537   }
8538 
8539   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
8540     TargetLowering::ArgListEntry Entry;
8541     const Value *V = *I;
8542 
8543     // Skip empty types
8544     if (V->getType()->isEmptyTy())
8545       continue;
8546 
8547     SDValue ArgNode = getValue(V);
8548     Entry.Node = ArgNode; Entry.Ty = V->getType();
8549 
8550     Entry.setAttributes(&CB, I - CB.arg_begin());
8551 
8552     // Use swifterror virtual register as input to the call.
8553     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
8554       SwiftErrorVal = V;
8555       // We find the virtual register for the actual swifterror argument.
8556       // Instead of using the Value, we use the virtual register instead.
8557       Entry.Node =
8558           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
8559                           EVT(TLI.getPointerTy(DL)));
8560     }
8561 
8562     Args.push_back(Entry);
8563 
8564     // If we have an explicit sret argument that is an Instruction, (i.e., it
8565     // might point to function-local memory), we can't meaningfully tail-call.
8566     if (Entry.IsSRet && isa<Instruction>(V))
8567       isTailCall = false;
8568   }
8569 
8570   // If call site has a cfguardtarget operand bundle, create and add an
8571   // additional ArgListEntry.
8572   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
8573     TargetLowering::ArgListEntry Entry;
8574     Value *V = Bundle->Inputs[0];
8575     SDValue ArgNode = getValue(V);
8576     Entry.Node = ArgNode;
8577     Entry.Ty = V->getType();
8578     Entry.IsCFGuardTarget = true;
8579     Args.push_back(Entry);
8580   }
8581 
8582   // Check if target-independent constraints permit a tail call here.
8583   // Target-dependent constraints are checked within TLI->LowerCallTo.
8584   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
8585     isTailCall = false;
8586 
8587   // Disable tail calls if there is an swifterror argument. Targets have not
8588   // been updated to support tail calls.
8589   if (TLI.supportSwiftError() && SwiftErrorVal)
8590     isTailCall = false;
8591 
8592   ConstantInt *CFIType = nullptr;
8593   if (CB.isIndirectCall()) {
8594     if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
8595       if (!TLI.supportKCFIBundles())
8596         report_fatal_error(
8597             "Target doesn't support calls with kcfi operand bundles.");
8598       CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
8599       assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
8600     }
8601   }
8602 
8603   SDValue ConvControlToken;
8604   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) {
8605     auto *Token = Bundle->Inputs[0].get();
8606     ConvControlToken = getValue(Token);
8607   } else {
8608     ConvControlToken = DAG.getUNDEF(MVT::Untyped);
8609   }
8610 
8611   TargetLowering::CallLoweringInfo CLI(DAG);
8612   CLI.setDebugLoc(getCurSDLoc())
8613       .setChain(getRoot())
8614       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
8615       .setTailCall(isTailCall)
8616       .setConvergent(CB.isConvergent())
8617       .setIsPreallocated(
8618           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
8619       .setCFIType(CFIType)
8620       .setConvergenceControlToken(ConvControlToken);
8621   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8622 
8623   if (Result.first.getNode()) {
8624     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
8625     setValue(&CB, Result.first);
8626   }
8627 
8628   // The last element of CLI.InVals has the SDValue for swifterror return.
8629   // Here we copy it to a virtual register and update SwiftErrorMap for
8630   // book-keeping.
8631   if (SwiftErrorVal && TLI.supportSwiftError()) {
8632     // Get the last element of InVals.
8633     SDValue Src = CLI.InVals.back();
8634     Register VReg =
8635         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
8636     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
8637     DAG.setRoot(CopyNode);
8638   }
8639 }
8640 
8641 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
8642                              SelectionDAGBuilder &Builder) {
8643   // Check to see if this load can be trivially constant folded, e.g. if the
8644   // input is from a string literal.
8645   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
8646     // Cast pointer to the type we really want to load.
8647     Type *LoadTy =
8648         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
8649     if (LoadVT.isVector())
8650       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
8651 
8652     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
8653                                          PointerType::getUnqual(LoadTy));
8654 
8655     if (const Constant *LoadCst =
8656             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
8657                                          LoadTy, Builder.DAG.getDataLayout()))
8658       return Builder.getValue(LoadCst);
8659   }
8660 
8661   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
8662   // still constant memory, the input chain can be the entry node.
8663   SDValue Root;
8664   bool ConstantMemory = false;
8665 
8666   // Do not serialize (non-volatile) loads of constant memory with anything.
8667   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
8668     Root = Builder.DAG.getEntryNode();
8669     ConstantMemory = true;
8670   } else {
8671     // Do not serialize non-volatile loads against each other.
8672     Root = Builder.DAG.getRoot();
8673   }
8674 
8675   SDValue Ptr = Builder.getValue(PtrVal);
8676   SDValue LoadVal =
8677       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
8678                           MachinePointerInfo(PtrVal), Align(1));
8679 
8680   if (!ConstantMemory)
8681     Builder.PendingLoads.push_back(LoadVal.getValue(1));
8682   return LoadVal;
8683 }
8684 
8685 /// Record the value for an instruction that produces an integer result,
8686 /// converting the type where necessary.
8687 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
8688                                                   SDValue Value,
8689                                                   bool IsSigned) {
8690   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8691                                                     I.getType(), true);
8692   Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT);
8693   setValue(&I, Value);
8694 }
8695 
8696 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
8697 /// true and lower it. Otherwise return false, and it will be lowered like a
8698 /// normal call.
8699 /// The caller already checked that \p I calls the appropriate LibFunc with a
8700 /// correct prototype.
8701 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
8702   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
8703   const Value *Size = I.getArgOperand(2);
8704   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
8705   if (CSize && CSize->getZExtValue() == 0) {
8706     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8707                                                           I.getType(), true);
8708     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
8709     return true;
8710   }
8711 
8712   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8713   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
8714       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
8715       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
8716   if (Res.first.getNode()) {
8717     processIntegerCallValue(I, Res.first, true);
8718     PendingLoads.push_back(Res.second);
8719     return true;
8720   }
8721 
8722   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
8723   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
8724   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
8725     return false;
8726 
8727   // If the target has a fast compare for the given size, it will return a
8728   // preferred load type for that size. Require that the load VT is legal and
8729   // that the target supports unaligned loads of that type. Otherwise, return
8730   // INVALID.
8731   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
8732     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8733     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
8734     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
8735       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
8736       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
8737       // TODO: Check alignment of src and dest ptrs.
8738       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
8739       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
8740       if (!TLI.isTypeLegal(LVT) ||
8741           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
8742           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
8743         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
8744     }
8745 
8746     return LVT;
8747   };
8748 
8749   // This turns into unaligned loads. We only do this if the target natively
8750   // supports the MVT we'll be loading or if it is small enough (<= 4) that
8751   // we'll only produce a small number of byte loads.
8752   MVT LoadVT;
8753   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
8754   switch (NumBitsToCompare) {
8755   default:
8756     return false;
8757   case 16:
8758     LoadVT = MVT::i16;
8759     break;
8760   case 32:
8761     LoadVT = MVT::i32;
8762     break;
8763   case 64:
8764   case 128:
8765   case 256:
8766     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
8767     break;
8768   }
8769 
8770   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
8771     return false;
8772 
8773   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
8774   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
8775 
8776   // Bitcast to a wide integer type if the loads are vectors.
8777   if (LoadVT.isVector()) {
8778     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
8779     LoadL = DAG.getBitcast(CmpVT, LoadL);
8780     LoadR = DAG.getBitcast(CmpVT, LoadR);
8781   }
8782 
8783   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
8784   processIntegerCallValue(I, Cmp, false);
8785   return true;
8786 }
8787 
8788 /// See if we can lower a memchr call into an optimized form. If so, return
8789 /// true and lower it. Otherwise return false, and it will be lowered like a
8790 /// normal call.
8791 /// The caller already checked that \p I calls the appropriate LibFunc with a
8792 /// correct prototype.
8793 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
8794   const Value *Src = I.getArgOperand(0);
8795   const Value *Char = I.getArgOperand(1);
8796   const Value *Length = I.getArgOperand(2);
8797 
8798   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8799   std::pair<SDValue, SDValue> Res =
8800     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
8801                                 getValue(Src), getValue(Char), getValue(Length),
8802                                 MachinePointerInfo(Src));
8803   if (Res.first.getNode()) {
8804     setValue(&I, Res.first);
8805     PendingLoads.push_back(Res.second);
8806     return true;
8807   }
8808 
8809   return false;
8810 }
8811 
8812 /// See if we can lower a mempcpy call into an optimized form. If so, return
8813 /// true and lower it. Otherwise return false, and it will be lowered like a
8814 /// normal call.
8815 /// The caller already checked that \p I calls the appropriate LibFunc with a
8816 /// correct prototype.
8817 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
8818   SDValue Dst = getValue(I.getArgOperand(0));
8819   SDValue Src = getValue(I.getArgOperand(1));
8820   SDValue Size = getValue(I.getArgOperand(2));
8821 
8822   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
8823   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
8824   // DAG::getMemcpy needs Alignment to be defined.
8825   Align Alignment = std::min(DstAlign, SrcAlign);
8826 
8827   SDLoc sdl = getCurSDLoc();
8828 
8829   // In the mempcpy context we need to pass in a false value for isTailCall
8830   // because the return pointer needs to be adjusted by the size of
8831   // the copied memory.
8832   SDValue Root = getMemoryRoot();
8833   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false,
8834                              /*isTailCall=*/false,
8835                              MachinePointerInfo(I.getArgOperand(0)),
8836                              MachinePointerInfo(I.getArgOperand(1)),
8837                              I.getAAMetadata());
8838   assert(MC.getNode() != nullptr &&
8839          "** memcpy should not be lowered as TailCall in mempcpy context **");
8840   DAG.setRoot(MC);
8841 
8842   // Check if Size needs to be truncated or extended.
8843   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
8844 
8845   // Adjust return pointer to point just past the last dst byte.
8846   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
8847                                     Dst, Size);
8848   setValue(&I, DstPlusSize);
8849   return true;
8850 }
8851 
8852 /// See if we can lower a strcpy call into an optimized form.  If so, return
8853 /// true and lower it, otherwise return false and it will be lowered like a
8854 /// normal call.
8855 /// The caller already checked that \p I calls the appropriate LibFunc with a
8856 /// correct prototype.
8857 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
8858   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8859 
8860   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8861   std::pair<SDValue, SDValue> Res =
8862     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
8863                                 getValue(Arg0), getValue(Arg1),
8864                                 MachinePointerInfo(Arg0),
8865                                 MachinePointerInfo(Arg1), isStpcpy);
8866   if (Res.first.getNode()) {
8867     setValue(&I, Res.first);
8868     DAG.setRoot(Res.second);
8869     return true;
8870   }
8871 
8872   return false;
8873 }
8874 
8875 /// See if we can lower a strcmp call into an optimized form.  If so, return
8876 /// true and lower it, otherwise return false and it will be lowered like a
8877 /// normal call.
8878 /// The caller already checked that \p I calls the appropriate LibFunc with a
8879 /// correct prototype.
8880 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
8881   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8882 
8883   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8884   std::pair<SDValue, SDValue> Res =
8885     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
8886                                 getValue(Arg0), getValue(Arg1),
8887                                 MachinePointerInfo(Arg0),
8888                                 MachinePointerInfo(Arg1));
8889   if (Res.first.getNode()) {
8890     processIntegerCallValue(I, Res.first, true);
8891     PendingLoads.push_back(Res.second);
8892     return true;
8893   }
8894 
8895   return false;
8896 }
8897 
8898 /// See if we can lower a strlen call into an optimized form.  If so, return
8899 /// true and lower it, otherwise return false and it will be lowered like a
8900 /// normal call.
8901 /// The caller already checked that \p I calls the appropriate LibFunc with a
8902 /// correct prototype.
8903 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
8904   const Value *Arg0 = I.getArgOperand(0);
8905 
8906   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8907   std::pair<SDValue, SDValue> Res =
8908     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
8909                                 getValue(Arg0), MachinePointerInfo(Arg0));
8910   if (Res.first.getNode()) {
8911     processIntegerCallValue(I, Res.first, false);
8912     PendingLoads.push_back(Res.second);
8913     return true;
8914   }
8915 
8916   return false;
8917 }
8918 
8919 /// See if we can lower a strnlen call into an optimized form.  If so, return
8920 /// true and lower it, otherwise return false and it will be lowered like a
8921 /// normal call.
8922 /// The caller already checked that \p I calls the appropriate LibFunc with a
8923 /// correct prototype.
8924 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
8925   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8926 
8927   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8928   std::pair<SDValue, SDValue> Res =
8929     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
8930                                  getValue(Arg0), getValue(Arg1),
8931                                  MachinePointerInfo(Arg0));
8932   if (Res.first.getNode()) {
8933     processIntegerCallValue(I, Res.first, false);
8934     PendingLoads.push_back(Res.second);
8935     return true;
8936   }
8937 
8938   return false;
8939 }
8940 
8941 /// See if we can lower a unary floating-point operation into an SDNode with
8942 /// the specified Opcode.  If so, return true and lower it, otherwise return
8943 /// false and it will be lowered like a normal call.
8944 /// The caller already checked that \p I calls the appropriate LibFunc with a
8945 /// correct prototype.
8946 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
8947                                               unsigned Opcode) {
8948   // We already checked this call's prototype; verify it doesn't modify errno.
8949   if (!I.onlyReadsMemory())
8950     return false;
8951 
8952   SDNodeFlags Flags;
8953   Flags.copyFMF(cast<FPMathOperator>(I));
8954 
8955   SDValue Tmp = getValue(I.getArgOperand(0));
8956   setValue(&I,
8957            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
8958   return true;
8959 }
8960 
8961 /// See if we can lower a binary floating-point operation into an SDNode with
8962 /// the specified Opcode. If so, return true and lower it. Otherwise return
8963 /// false, and it will be lowered like a normal call.
8964 /// The caller already checked that \p I calls the appropriate LibFunc with a
8965 /// correct prototype.
8966 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
8967                                                unsigned Opcode) {
8968   // We already checked this call's prototype; verify it doesn't modify errno.
8969   if (!I.onlyReadsMemory())
8970     return false;
8971 
8972   SDNodeFlags Flags;
8973   Flags.copyFMF(cast<FPMathOperator>(I));
8974 
8975   SDValue Tmp0 = getValue(I.getArgOperand(0));
8976   SDValue Tmp1 = getValue(I.getArgOperand(1));
8977   EVT VT = Tmp0.getValueType();
8978   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
8979   return true;
8980 }
8981 
8982 void SelectionDAGBuilder::visitCall(const CallInst &I) {
8983   // Handle inline assembly differently.
8984   if (I.isInlineAsm()) {
8985     visitInlineAsm(I);
8986     return;
8987   }
8988 
8989   diagnoseDontCall(I);
8990 
8991   if (Function *F = I.getCalledFunction()) {
8992     if (F->isDeclaration()) {
8993       // Is this an LLVM intrinsic or a target-specific intrinsic?
8994       unsigned IID = F->getIntrinsicID();
8995       if (!IID)
8996         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
8997           IID = II->getIntrinsicID(F);
8998 
8999       if (IID) {
9000         visitIntrinsicCall(I, IID);
9001         return;
9002       }
9003     }
9004 
9005     // Check for well-known libc/libm calls.  If the function is internal, it
9006     // can't be a library call.  Don't do the check if marked as nobuiltin for
9007     // some reason or the call site requires strict floating point semantics.
9008     LibFunc Func;
9009     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
9010         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
9011         LibInfo->hasOptimizedCodeGen(Func)) {
9012       switch (Func) {
9013       default: break;
9014       case LibFunc_bcmp:
9015         if (visitMemCmpBCmpCall(I))
9016           return;
9017         break;
9018       case LibFunc_copysign:
9019       case LibFunc_copysignf:
9020       case LibFunc_copysignl:
9021         // We already checked this call's prototype; verify it doesn't modify
9022         // errno.
9023         if (I.onlyReadsMemory()) {
9024           SDValue LHS = getValue(I.getArgOperand(0));
9025           SDValue RHS = getValue(I.getArgOperand(1));
9026           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
9027                                    LHS.getValueType(), LHS, RHS));
9028           return;
9029         }
9030         break;
9031       case LibFunc_fabs:
9032       case LibFunc_fabsf:
9033       case LibFunc_fabsl:
9034         if (visitUnaryFloatCall(I, ISD::FABS))
9035           return;
9036         break;
9037       case LibFunc_fmin:
9038       case LibFunc_fminf:
9039       case LibFunc_fminl:
9040         if (visitBinaryFloatCall(I, ISD::FMINNUM))
9041           return;
9042         break;
9043       case LibFunc_fmax:
9044       case LibFunc_fmaxf:
9045       case LibFunc_fmaxl:
9046         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
9047           return;
9048         break;
9049       case LibFunc_sin:
9050       case LibFunc_sinf:
9051       case LibFunc_sinl:
9052         if (visitUnaryFloatCall(I, ISD::FSIN))
9053           return;
9054         break;
9055       case LibFunc_cos:
9056       case LibFunc_cosf:
9057       case LibFunc_cosl:
9058         if (visitUnaryFloatCall(I, ISD::FCOS))
9059           return;
9060         break;
9061       case LibFunc_sqrt:
9062       case LibFunc_sqrtf:
9063       case LibFunc_sqrtl:
9064       case LibFunc_sqrt_finite:
9065       case LibFunc_sqrtf_finite:
9066       case LibFunc_sqrtl_finite:
9067         if (visitUnaryFloatCall(I, ISD::FSQRT))
9068           return;
9069         break;
9070       case LibFunc_floor:
9071       case LibFunc_floorf:
9072       case LibFunc_floorl:
9073         if (visitUnaryFloatCall(I, ISD::FFLOOR))
9074           return;
9075         break;
9076       case LibFunc_nearbyint:
9077       case LibFunc_nearbyintf:
9078       case LibFunc_nearbyintl:
9079         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
9080           return;
9081         break;
9082       case LibFunc_ceil:
9083       case LibFunc_ceilf:
9084       case LibFunc_ceill:
9085         if (visitUnaryFloatCall(I, ISD::FCEIL))
9086           return;
9087         break;
9088       case LibFunc_rint:
9089       case LibFunc_rintf:
9090       case LibFunc_rintl:
9091         if (visitUnaryFloatCall(I, ISD::FRINT))
9092           return;
9093         break;
9094       case LibFunc_round:
9095       case LibFunc_roundf:
9096       case LibFunc_roundl:
9097         if (visitUnaryFloatCall(I, ISD::FROUND))
9098           return;
9099         break;
9100       case LibFunc_trunc:
9101       case LibFunc_truncf:
9102       case LibFunc_truncl:
9103         if (visitUnaryFloatCall(I, ISD::FTRUNC))
9104           return;
9105         break;
9106       case LibFunc_log2:
9107       case LibFunc_log2f:
9108       case LibFunc_log2l:
9109         if (visitUnaryFloatCall(I, ISD::FLOG2))
9110           return;
9111         break;
9112       case LibFunc_exp2:
9113       case LibFunc_exp2f:
9114       case LibFunc_exp2l:
9115         if (visitUnaryFloatCall(I, ISD::FEXP2))
9116           return;
9117         break;
9118       case LibFunc_exp10:
9119       case LibFunc_exp10f:
9120       case LibFunc_exp10l:
9121         if (visitUnaryFloatCall(I, ISD::FEXP10))
9122           return;
9123         break;
9124       case LibFunc_ldexp:
9125       case LibFunc_ldexpf:
9126       case LibFunc_ldexpl:
9127         if (visitBinaryFloatCall(I, ISD::FLDEXP))
9128           return;
9129         break;
9130       case LibFunc_memcmp:
9131         if (visitMemCmpBCmpCall(I))
9132           return;
9133         break;
9134       case LibFunc_mempcpy:
9135         if (visitMemPCpyCall(I))
9136           return;
9137         break;
9138       case LibFunc_memchr:
9139         if (visitMemChrCall(I))
9140           return;
9141         break;
9142       case LibFunc_strcpy:
9143         if (visitStrCpyCall(I, false))
9144           return;
9145         break;
9146       case LibFunc_stpcpy:
9147         if (visitStrCpyCall(I, true))
9148           return;
9149         break;
9150       case LibFunc_strcmp:
9151         if (visitStrCmpCall(I))
9152           return;
9153         break;
9154       case LibFunc_strlen:
9155         if (visitStrLenCall(I))
9156           return;
9157         break;
9158       case LibFunc_strnlen:
9159         if (visitStrNLenCall(I))
9160           return;
9161         break;
9162       }
9163     }
9164   }
9165 
9166   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
9167   // have to do anything here to lower funclet bundles.
9168   // CFGuardTarget bundles are lowered in LowerCallTo.
9169   assert(!I.hasOperandBundlesOtherThan(
9170              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
9171               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
9172               LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi,
9173               LLVMContext::OB_convergencectrl}) &&
9174          "Cannot lower calls with arbitrary operand bundles!");
9175 
9176   SDValue Callee = getValue(I.getCalledOperand());
9177 
9178   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
9179     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
9180   else
9181     // Check if we can potentially perform a tail call. More detailed checking
9182     // is be done within LowerCallTo, after more information about the call is
9183     // known.
9184     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
9185 }
9186 
9187 namespace {
9188 
9189 /// AsmOperandInfo - This contains information for each constraint that we are
9190 /// lowering.
9191 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
9192 public:
9193   /// CallOperand - If this is the result output operand or a clobber
9194   /// this is null, otherwise it is the incoming operand to the CallInst.
9195   /// This gets modified as the asm is processed.
9196   SDValue CallOperand;
9197 
9198   /// AssignedRegs - If this is a register or register class operand, this
9199   /// contains the set of register corresponding to the operand.
9200   RegsForValue AssignedRegs;
9201 
9202   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
9203     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
9204   }
9205 
9206   /// Whether or not this operand accesses memory
9207   bool hasMemory(const TargetLowering &TLI) const {
9208     // Indirect operand accesses access memory.
9209     if (isIndirect)
9210       return true;
9211 
9212     for (const auto &Code : Codes)
9213       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
9214         return true;
9215 
9216     return false;
9217   }
9218 };
9219 
9220 
9221 } // end anonymous namespace
9222 
9223 /// Make sure that the output operand \p OpInfo and its corresponding input
9224 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
9225 /// out).
9226 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
9227                                SDISelAsmOperandInfo &MatchingOpInfo,
9228                                SelectionDAG &DAG) {
9229   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
9230     return;
9231 
9232   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
9233   const auto &TLI = DAG.getTargetLoweringInfo();
9234 
9235   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
9236       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
9237                                        OpInfo.ConstraintVT);
9238   std::pair<unsigned, const TargetRegisterClass *> InputRC =
9239       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
9240                                        MatchingOpInfo.ConstraintVT);
9241   if ((OpInfo.ConstraintVT.isInteger() !=
9242        MatchingOpInfo.ConstraintVT.isInteger()) ||
9243       (MatchRC.second != InputRC.second)) {
9244     // FIXME: error out in a more elegant fashion
9245     report_fatal_error("Unsupported asm: input constraint"
9246                        " with a matching output constraint of"
9247                        " incompatible type!");
9248   }
9249   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
9250 }
9251 
9252 /// Get a direct memory input to behave well as an indirect operand.
9253 /// This may introduce stores, hence the need for a \p Chain.
9254 /// \return The (possibly updated) chain.
9255 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
9256                                         SDISelAsmOperandInfo &OpInfo,
9257                                         SelectionDAG &DAG) {
9258   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9259 
9260   // If we don't have an indirect input, put it in the constpool if we can,
9261   // otherwise spill it to a stack slot.
9262   // TODO: This isn't quite right. We need to handle these according to
9263   // the addressing mode that the constraint wants. Also, this may take
9264   // an additional register for the computation and we don't want that
9265   // either.
9266 
9267   // If the operand is a float, integer, or vector constant, spill to a
9268   // constant pool entry to get its address.
9269   const Value *OpVal = OpInfo.CallOperandVal;
9270   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
9271       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
9272     OpInfo.CallOperand = DAG.getConstantPool(
9273         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
9274     return Chain;
9275   }
9276 
9277   // Otherwise, create a stack slot and emit a store to it before the asm.
9278   Type *Ty = OpVal->getType();
9279   auto &DL = DAG.getDataLayout();
9280   uint64_t TySize = DL.getTypeAllocSize(Ty);
9281   MachineFunction &MF = DAG.getMachineFunction();
9282   int SSFI = MF.getFrameInfo().CreateStackObject(
9283       TySize, DL.getPrefTypeAlign(Ty), false);
9284   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
9285   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
9286                             MachinePointerInfo::getFixedStack(MF, SSFI),
9287                             TLI.getMemValueType(DL, Ty));
9288   OpInfo.CallOperand = StackSlot;
9289 
9290   return Chain;
9291 }
9292 
9293 /// GetRegistersForValue - Assign registers (virtual or physical) for the
9294 /// specified operand.  We prefer to assign virtual registers, to allow the
9295 /// register allocator to handle the assignment process.  However, if the asm
9296 /// uses features that we can't model on machineinstrs, we have SDISel do the
9297 /// allocation.  This produces generally horrible, but correct, code.
9298 ///
9299 ///   OpInfo describes the operand
9300 ///   RefOpInfo describes the matching operand if any, the operand otherwise
9301 static std::optional<unsigned>
9302 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
9303                      SDISelAsmOperandInfo &OpInfo,
9304                      SDISelAsmOperandInfo &RefOpInfo) {
9305   LLVMContext &Context = *DAG.getContext();
9306   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9307 
9308   MachineFunction &MF = DAG.getMachineFunction();
9309   SmallVector<unsigned, 4> Regs;
9310   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9311 
9312   // No work to do for memory/address operands.
9313   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9314       OpInfo.ConstraintType == TargetLowering::C_Address)
9315     return std::nullopt;
9316 
9317   // If this is a constraint for a single physreg, or a constraint for a
9318   // register class, find it.
9319   unsigned AssignedReg;
9320   const TargetRegisterClass *RC;
9321   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
9322       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
9323   // RC is unset only on failure. Return immediately.
9324   if (!RC)
9325     return std::nullopt;
9326 
9327   // Get the actual register value type.  This is important, because the user
9328   // may have asked for (e.g.) the AX register in i32 type.  We need to
9329   // remember that AX is actually i16 to get the right extension.
9330   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
9331 
9332   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
9333     // If this is an FP operand in an integer register (or visa versa), or more
9334     // generally if the operand value disagrees with the register class we plan
9335     // to stick it in, fix the operand type.
9336     //
9337     // If this is an input value, the bitcast to the new type is done now.
9338     // Bitcast for output value is done at the end of visitInlineAsm().
9339     if ((OpInfo.Type == InlineAsm::isOutput ||
9340          OpInfo.Type == InlineAsm::isInput) &&
9341         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
9342       // Try to convert to the first EVT that the reg class contains.  If the
9343       // types are identical size, use a bitcast to convert (e.g. two differing
9344       // vector types).  Note: output bitcast is done at the end of
9345       // visitInlineAsm().
9346       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
9347         // Exclude indirect inputs while they are unsupported because the code
9348         // to perform the load is missing and thus OpInfo.CallOperand still
9349         // refers to the input address rather than the pointed-to value.
9350         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
9351           OpInfo.CallOperand =
9352               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
9353         OpInfo.ConstraintVT = RegVT;
9354         // If the operand is an FP value and we want it in integer registers,
9355         // use the corresponding integer type. This turns an f64 value into
9356         // i64, which can be passed with two i32 values on a 32-bit machine.
9357       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
9358         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
9359         if (OpInfo.Type == InlineAsm::isInput)
9360           OpInfo.CallOperand =
9361               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
9362         OpInfo.ConstraintVT = VT;
9363       }
9364     }
9365   }
9366 
9367   // No need to allocate a matching input constraint since the constraint it's
9368   // matching to has already been allocated.
9369   if (OpInfo.isMatchingInputConstraint())
9370     return std::nullopt;
9371 
9372   EVT ValueVT = OpInfo.ConstraintVT;
9373   if (OpInfo.ConstraintVT == MVT::Other)
9374     ValueVT = RegVT;
9375 
9376   // Initialize NumRegs.
9377   unsigned NumRegs = 1;
9378   if (OpInfo.ConstraintVT != MVT::Other)
9379     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
9380 
9381   // If this is a constraint for a specific physical register, like {r17},
9382   // assign it now.
9383 
9384   // If this associated to a specific register, initialize iterator to correct
9385   // place. If virtual, make sure we have enough registers
9386 
9387   // Initialize iterator if necessary
9388   TargetRegisterClass::iterator I = RC->begin();
9389   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9390 
9391   // Do not check for single registers.
9392   if (AssignedReg) {
9393     I = std::find(I, RC->end(), AssignedReg);
9394     if (I == RC->end()) {
9395       // RC does not contain the selected register, which indicates a
9396       // mismatch between the register and the required type/bitwidth.
9397       return {AssignedReg};
9398     }
9399   }
9400 
9401   for (; NumRegs; --NumRegs, ++I) {
9402     assert(I != RC->end() && "Ran out of registers to allocate!");
9403     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
9404     Regs.push_back(R);
9405   }
9406 
9407   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
9408   return std::nullopt;
9409 }
9410 
9411 static unsigned
9412 findMatchingInlineAsmOperand(unsigned OperandNo,
9413                              const std::vector<SDValue> &AsmNodeOperands) {
9414   // Scan until we find the definition we already emitted of this operand.
9415   unsigned CurOp = InlineAsm::Op_FirstOperand;
9416   for (; OperandNo; --OperandNo) {
9417     // Advance to the next operand.
9418     unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal();
9419     const InlineAsm::Flag F(OpFlag);
9420     assert(
9421         (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) &&
9422         "Skipped past definitions?");
9423     CurOp += F.getNumOperandRegisters() + 1;
9424   }
9425   return CurOp;
9426 }
9427 
9428 namespace {
9429 
9430 class ExtraFlags {
9431   unsigned Flags = 0;
9432 
9433 public:
9434   explicit ExtraFlags(const CallBase &Call) {
9435     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9436     if (IA->hasSideEffects())
9437       Flags |= InlineAsm::Extra_HasSideEffects;
9438     if (IA->isAlignStack())
9439       Flags |= InlineAsm::Extra_IsAlignStack;
9440     if (Call.isConvergent())
9441       Flags |= InlineAsm::Extra_IsConvergent;
9442     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
9443   }
9444 
9445   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
9446     // Ideally, we would only check against memory constraints.  However, the
9447     // meaning of an Other constraint can be target-specific and we can't easily
9448     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
9449     // for Other constraints as well.
9450     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9451         OpInfo.ConstraintType == TargetLowering::C_Other) {
9452       if (OpInfo.Type == InlineAsm::isInput)
9453         Flags |= InlineAsm::Extra_MayLoad;
9454       else if (OpInfo.Type == InlineAsm::isOutput)
9455         Flags |= InlineAsm::Extra_MayStore;
9456       else if (OpInfo.Type == InlineAsm::isClobber)
9457         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
9458     }
9459   }
9460 
9461   unsigned get() const { return Flags; }
9462 };
9463 
9464 } // end anonymous namespace
9465 
9466 static bool isFunction(SDValue Op) {
9467   if (Op && Op.getOpcode() == ISD::GlobalAddress) {
9468     if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
9469       auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
9470 
9471       // In normal "call dllimport func" instruction (non-inlineasm) it force
9472       // indirect access by specifing call opcode. And usually specially print
9473       // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
9474       // not do in this way now. (In fact, this is similar with "Data Access"
9475       // action). So here we ignore dllimport function.
9476       if (Fn && !Fn->hasDLLImportStorageClass())
9477         return true;
9478     }
9479   }
9480   return false;
9481 }
9482 
9483 /// visitInlineAsm - Handle a call to an InlineAsm object.
9484 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
9485                                          const BasicBlock *EHPadBB) {
9486   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9487 
9488   /// ConstraintOperands - Information about all of the constraints.
9489   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
9490 
9491   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9492   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
9493       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
9494 
9495   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
9496   // AsmDialect, MayLoad, MayStore).
9497   bool HasSideEffect = IA->hasSideEffects();
9498   ExtraFlags ExtraInfo(Call);
9499 
9500   for (auto &T : TargetConstraints) {
9501     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
9502     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
9503 
9504     if (OpInfo.CallOperandVal)
9505       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
9506 
9507     if (!HasSideEffect)
9508       HasSideEffect = OpInfo.hasMemory(TLI);
9509 
9510     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
9511     // FIXME: Could we compute this on OpInfo rather than T?
9512 
9513     // Compute the constraint code and ConstraintType to use.
9514     TLI.ComputeConstraintToUse(T, SDValue());
9515 
9516     if (T.ConstraintType == TargetLowering::C_Immediate &&
9517         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
9518       // We've delayed emitting a diagnostic like the "n" constraint because
9519       // inlining could cause an integer showing up.
9520       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
9521                                           "' expects an integer constant "
9522                                           "expression");
9523 
9524     ExtraInfo.update(T);
9525   }
9526 
9527   // We won't need to flush pending loads if this asm doesn't touch
9528   // memory and is nonvolatile.
9529   SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
9530 
9531   bool EmitEHLabels = isa<InvokeInst>(Call);
9532   if (EmitEHLabels) {
9533     assert(EHPadBB && "InvokeInst must have an EHPadBB");
9534   }
9535   bool IsCallBr = isa<CallBrInst>(Call);
9536 
9537   if (IsCallBr || EmitEHLabels) {
9538     // If this is a callbr or invoke we need to flush pending exports since
9539     // inlineasm_br and invoke are terminators.
9540     // We need to do this before nodes are glued to the inlineasm_br node.
9541     Chain = getControlRoot();
9542   }
9543 
9544   MCSymbol *BeginLabel = nullptr;
9545   if (EmitEHLabels) {
9546     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
9547   }
9548 
9549   int OpNo = -1;
9550   SmallVector<StringRef> AsmStrs;
9551   IA->collectAsmStrs(AsmStrs);
9552 
9553   // Second pass over the constraints: compute which constraint option to use.
9554   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9555     if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
9556       OpNo++;
9557 
9558     // If this is an output operand with a matching input operand, look up the
9559     // matching input. If their types mismatch, e.g. one is an integer, the
9560     // other is floating point, or their sizes are different, flag it as an
9561     // error.
9562     if (OpInfo.hasMatchingInput()) {
9563       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
9564       patchMatchingInput(OpInfo, Input, DAG);
9565     }
9566 
9567     // Compute the constraint code and ConstraintType to use.
9568     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
9569 
9570     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
9571          OpInfo.Type == InlineAsm::isClobber) ||
9572         OpInfo.ConstraintType == TargetLowering::C_Address)
9573       continue;
9574 
9575     // In Linux PIC model, there are 4 cases about value/label addressing:
9576     //
9577     // 1: Function call or Label jmp inside the module.
9578     // 2: Data access (such as global variable, static variable) inside module.
9579     // 3: Function call or Label jmp outside the module.
9580     // 4: Data access (such as global variable) outside the module.
9581     //
9582     // Due to current llvm inline asm architecture designed to not "recognize"
9583     // the asm code, there are quite troubles for us to treat mem addressing
9584     // differently for same value/adress used in different instuctions.
9585     // For example, in pic model, call a func may in plt way or direclty
9586     // pc-related, but lea/mov a function adress may use got.
9587     //
9588     // Here we try to "recognize" function call for the case 1 and case 3 in
9589     // inline asm. And try to adjust the constraint for them.
9590     //
9591     // TODO: Due to current inline asm didn't encourage to jmp to the outsider
9592     // label, so here we don't handle jmp function label now, but we need to
9593     // enhance it (especilly in PIC model) if we meet meaningful requirements.
9594     if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
9595         TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
9596         TM.getCodeModel() != CodeModel::Large) {
9597       OpInfo.isIndirect = false;
9598       OpInfo.ConstraintType = TargetLowering::C_Address;
9599     }
9600 
9601     // If this is a memory input, and if the operand is not indirect, do what we
9602     // need to provide an address for the memory input.
9603     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
9604         !OpInfo.isIndirect) {
9605       assert((OpInfo.isMultipleAlternative ||
9606               (OpInfo.Type == InlineAsm::isInput)) &&
9607              "Can only indirectify direct input operands!");
9608 
9609       // Memory operands really want the address of the value.
9610       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
9611 
9612       // There is no longer a Value* corresponding to this operand.
9613       OpInfo.CallOperandVal = nullptr;
9614 
9615       // It is now an indirect operand.
9616       OpInfo.isIndirect = true;
9617     }
9618 
9619   }
9620 
9621   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
9622   std::vector<SDValue> AsmNodeOperands;
9623   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
9624   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
9625       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
9626 
9627   // If we have a !srcloc metadata node associated with it, we want to attach
9628   // this to the ultimately generated inline asm machineinstr.  To do this, we
9629   // pass in the third operand as this (potentially null) inline asm MDNode.
9630   const MDNode *SrcLoc = Call.getMetadata("srcloc");
9631   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
9632 
9633   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
9634   // bits as operand 3.
9635   AsmNodeOperands.push_back(DAG.getTargetConstant(
9636       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9637 
9638   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
9639   // this, assign virtual and physical registers for inputs and otput.
9640   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9641     // Assign Registers.
9642     SDISelAsmOperandInfo &RefOpInfo =
9643         OpInfo.isMatchingInputConstraint()
9644             ? ConstraintOperands[OpInfo.getMatchedOperand()]
9645             : OpInfo;
9646     const auto RegError =
9647         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
9648     if (RegError) {
9649       const MachineFunction &MF = DAG.getMachineFunction();
9650       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9651       const char *RegName = TRI.getName(*RegError);
9652       emitInlineAsmError(Call, "register '" + Twine(RegName) +
9653                                    "' allocated for constraint '" +
9654                                    Twine(OpInfo.ConstraintCode) +
9655                                    "' does not match required type");
9656       return;
9657     }
9658 
9659     auto DetectWriteToReservedRegister = [&]() {
9660       const MachineFunction &MF = DAG.getMachineFunction();
9661       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9662       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
9663         if (Register::isPhysicalRegister(Reg) &&
9664             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
9665           const char *RegName = TRI.getName(Reg);
9666           emitInlineAsmError(Call, "write to reserved register '" +
9667                                        Twine(RegName) + "'");
9668           return true;
9669         }
9670       }
9671       return false;
9672     };
9673     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
9674             (OpInfo.Type == InlineAsm::isInput &&
9675              !OpInfo.isMatchingInputConstraint())) &&
9676            "Only address as input operand is allowed.");
9677 
9678     switch (OpInfo.Type) {
9679     case InlineAsm::isOutput:
9680       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9681         const InlineAsm::ConstraintCode ConstraintID =
9682             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9683         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
9684                "Failed to convert memory constraint code to constraint id.");
9685 
9686         // Add information to the INLINEASM node to know about this output.
9687         InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1);
9688         OpFlags.setMemConstraint(ConstraintID);
9689         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
9690                                                         MVT::i32));
9691         AsmNodeOperands.push_back(OpInfo.CallOperand);
9692       } else {
9693         // Otherwise, this outputs to a register (directly for C_Register /
9694         // C_RegisterClass, and a target-defined fashion for
9695         // C_Immediate/C_Other). Find a register that we can use.
9696         if (OpInfo.AssignedRegs.Regs.empty()) {
9697           emitInlineAsmError(
9698               Call, "couldn't allocate output register for constraint '" +
9699                         Twine(OpInfo.ConstraintCode) + "'");
9700           return;
9701         }
9702 
9703         if (DetectWriteToReservedRegister())
9704           return;
9705 
9706         // Add information to the INLINEASM node to know that this register is
9707         // set.
9708         OpInfo.AssignedRegs.AddInlineAsmOperands(
9709             OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber
9710                                   : InlineAsm::Kind::RegDef,
9711             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
9712       }
9713       break;
9714 
9715     case InlineAsm::isInput:
9716     case InlineAsm::isLabel: {
9717       SDValue InOperandVal = OpInfo.CallOperand;
9718 
9719       if (OpInfo.isMatchingInputConstraint()) {
9720         // If this is required to match an output register we have already set,
9721         // just use its register.
9722         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
9723                                                   AsmNodeOperands);
9724         InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal());
9725         if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) {
9726           if (OpInfo.isIndirect) {
9727             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
9728             emitInlineAsmError(Call, "inline asm not supported yet: "
9729                                      "don't know how to handle tied "
9730                                      "indirect register inputs");
9731             return;
9732           }
9733 
9734           SmallVector<unsigned, 4> Regs;
9735           MachineFunction &MF = DAG.getMachineFunction();
9736           MachineRegisterInfo &MRI = MF.getRegInfo();
9737           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9738           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
9739           Register TiedReg = R->getReg();
9740           MVT RegVT = R->getSimpleValueType(0);
9741           const TargetRegisterClass *RC =
9742               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
9743               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
9744                                       : TRI.getMinimalPhysRegClass(TiedReg);
9745           for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i)
9746             Regs.push_back(MRI.createVirtualRegister(RC));
9747 
9748           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
9749 
9750           SDLoc dl = getCurSDLoc();
9751           // Use the produced MatchedRegs object to
9752           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call);
9753           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true,
9754                                            OpInfo.getMatchedOperand(), dl, DAG,
9755                                            AsmNodeOperands);
9756           break;
9757         }
9758 
9759         assert(Flag.isMemKind() && "Unknown matching constraint!");
9760         assert(Flag.getNumOperandRegisters() == 1 &&
9761                "Unexpected number of operands");
9762         // Add information to the INLINEASM node to know about this input.
9763         // See InlineAsm.h isUseOperandTiedToDef.
9764         Flag.clearMemConstraint();
9765         Flag.setMatchingOp(OpInfo.getMatchedOperand());
9766         AsmNodeOperands.push_back(DAG.getTargetConstant(
9767             Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9768         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
9769         break;
9770       }
9771 
9772       // Treat indirect 'X' constraint as memory.
9773       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
9774           OpInfo.isIndirect)
9775         OpInfo.ConstraintType = TargetLowering::C_Memory;
9776 
9777       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
9778           OpInfo.ConstraintType == TargetLowering::C_Other) {
9779         std::vector<SDValue> Ops;
9780         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
9781                                           Ops, DAG);
9782         if (Ops.empty()) {
9783           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
9784             if (isa<ConstantSDNode>(InOperandVal)) {
9785               emitInlineAsmError(Call, "value out of range for constraint '" +
9786                                            Twine(OpInfo.ConstraintCode) + "'");
9787               return;
9788             }
9789 
9790           emitInlineAsmError(Call,
9791                              "invalid operand for inline asm constraint '" +
9792                                  Twine(OpInfo.ConstraintCode) + "'");
9793           return;
9794         }
9795 
9796         // Add information to the INLINEASM node to know about this input.
9797         InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size());
9798         AsmNodeOperands.push_back(DAG.getTargetConstant(
9799             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9800         llvm::append_range(AsmNodeOperands, Ops);
9801         break;
9802       }
9803 
9804       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9805         assert((OpInfo.isIndirect ||
9806                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
9807                "Operand must be indirect to be a mem!");
9808         assert(InOperandVal.getValueType() ==
9809                    TLI.getPointerTy(DAG.getDataLayout()) &&
9810                "Memory operands expect pointer values");
9811 
9812         const InlineAsm::ConstraintCode ConstraintID =
9813             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9814         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
9815                "Failed to convert memory constraint code to constraint id.");
9816 
9817         // Add information to the INLINEASM node to know about this input.
9818         InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
9819         ResOpType.setMemConstraint(ConstraintID);
9820         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
9821                                                         getCurSDLoc(),
9822                                                         MVT::i32));
9823         AsmNodeOperands.push_back(InOperandVal);
9824         break;
9825       }
9826 
9827       if (OpInfo.ConstraintType == TargetLowering::C_Address) {
9828         const InlineAsm::ConstraintCode ConstraintID =
9829             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9830         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
9831                "Failed to convert memory constraint code to constraint id.");
9832 
9833         InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
9834 
9835         SDValue AsmOp = InOperandVal;
9836         if (isFunction(InOperandVal)) {
9837           auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
9838           ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1);
9839           AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
9840                                              InOperandVal.getValueType(),
9841                                              GA->getOffset());
9842         }
9843 
9844         // Add information to the INLINEASM node to know about this input.
9845         ResOpType.setMemConstraint(ConstraintID);
9846 
9847         AsmNodeOperands.push_back(
9848             DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
9849 
9850         AsmNodeOperands.push_back(AsmOp);
9851         break;
9852       }
9853 
9854       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
9855               OpInfo.ConstraintType == TargetLowering::C_Register) &&
9856              "Unknown constraint type!");
9857 
9858       // TODO: Support this.
9859       if (OpInfo.isIndirect) {
9860         emitInlineAsmError(
9861             Call, "Don't know how to handle indirect register inputs yet "
9862                   "for constraint '" +
9863                       Twine(OpInfo.ConstraintCode) + "'");
9864         return;
9865       }
9866 
9867       // Copy the input into the appropriate registers.
9868       if (OpInfo.AssignedRegs.Regs.empty()) {
9869         emitInlineAsmError(Call,
9870                            "couldn't allocate input reg for constraint '" +
9871                                Twine(OpInfo.ConstraintCode) + "'");
9872         return;
9873       }
9874 
9875       if (DetectWriteToReservedRegister())
9876         return;
9877 
9878       SDLoc dl = getCurSDLoc();
9879 
9880       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue,
9881                                         &Call);
9882 
9883       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false,
9884                                                0, dl, DAG, AsmNodeOperands);
9885       break;
9886     }
9887     case InlineAsm::isClobber:
9888       // Add the clobbered value to the operand list, so that the register
9889       // allocator is aware that the physreg got clobbered.
9890       if (!OpInfo.AssignedRegs.Regs.empty())
9891         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber,
9892                                                  false, 0, getCurSDLoc(), DAG,
9893                                                  AsmNodeOperands);
9894       break;
9895     }
9896   }
9897 
9898   // Finish up input operands.  Set the input chain and add the flag last.
9899   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
9900   if (Glue.getNode()) AsmNodeOperands.push_back(Glue);
9901 
9902   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
9903   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
9904                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
9905   Glue = Chain.getValue(1);
9906 
9907   // Do additional work to generate outputs.
9908 
9909   SmallVector<EVT, 1> ResultVTs;
9910   SmallVector<SDValue, 1> ResultValues;
9911   SmallVector<SDValue, 8> OutChains;
9912 
9913   llvm::Type *CallResultType = Call.getType();
9914   ArrayRef<Type *> ResultTypes;
9915   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
9916     ResultTypes = StructResult->elements();
9917   else if (!CallResultType->isVoidTy())
9918     ResultTypes = ArrayRef(CallResultType);
9919 
9920   auto CurResultType = ResultTypes.begin();
9921   auto handleRegAssign = [&](SDValue V) {
9922     assert(CurResultType != ResultTypes.end() && "Unexpected value");
9923     assert((*CurResultType)->isSized() && "Unexpected unsized type");
9924     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
9925     ++CurResultType;
9926     // If the type of the inline asm call site return value is different but has
9927     // same size as the type of the asm output bitcast it.  One example of this
9928     // is for vectors with different width / number of elements.  This can
9929     // happen for register classes that can contain multiple different value
9930     // types.  The preg or vreg allocated may not have the same VT as was
9931     // expected.
9932     //
9933     // This can also happen for a return value that disagrees with the register
9934     // class it is put in, eg. a double in a general-purpose register on a
9935     // 32-bit machine.
9936     if (ResultVT != V.getValueType() &&
9937         ResultVT.getSizeInBits() == V.getValueSizeInBits())
9938       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
9939     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
9940              V.getValueType().isInteger()) {
9941       // If a result value was tied to an input value, the computed result
9942       // may have a wider width than the expected result.  Extract the
9943       // relevant portion.
9944       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
9945     }
9946     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
9947     ResultVTs.push_back(ResultVT);
9948     ResultValues.push_back(V);
9949   };
9950 
9951   // Deal with output operands.
9952   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9953     if (OpInfo.Type == InlineAsm::isOutput) {
9954       SDValue Val;
9955       // Skip trivial output operands.
9956       if (OpInfo.AssignedRegs.Regs.empty())
9957         continue;
9958 
9959       switch (OpInfo.ConstraintType) {
9960       case TargetLowering::C_Register:
9961       case TargetLowering::C_RegisterClass:
9962         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
9963                                                   Chain, &Glue, &Call);
9964         break;
9965       case TargetLowering::C_Immediate:
9966       case TargetLowering::C_Other:
9967         Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(),
9968                                               OpInfo, DAG);
9969         break;
9970       case TargetLowering::C_Memory:
9971         break; // Already handled.
9972       case TargetLowering::C_Address:
9973         break; // Silence warning.
9974       case TargetLowering::C_Unknown:
9975         assert(false && "Unexpected unknown constraint");
9976       }
9977 
9978       // Indirect output manifest as stores. Record output chains.
9979       if (OpInfo.isIndirect) {
9980         const Value *Ptr = OpInfo.CallOperandVal;
9981         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
9982         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
9983                                      MachinePointerInfo(Ptr));
9984         OutChains.push_back(Store);
9985       } else {
9986         // generate CopyFromRegs to associated registers.
9987         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
9988         if (Val.getOpcode() == ISD::MERGE_VALUES) {
9989           for (const SDValue &V : Val->op_values())
9990             handleRegAssign(V);
9991         } else
9992           handleRegAssign(Val);
9993       }
9994     }
9995   }
9996 
9997   // Set results.
9998   if (!ResultValues.empty()) {
9999     assert(CurResultType == ResultTypes.end() &&
10000            "Mismatch in number of ResultTypes");
10001     assert(ResultValues.size() == ResultTypes.size() &&
10002            "Mismatch in number of output operands in asm result");
10003 
10004     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
10005                             DAG.getVTList(ResultVTs), ResultValues);
10006     setValue(&Call, V);
10007   }
10008 
10009   // Collect store chains.
10010   if (!OutChains.empty())
10011     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
10012 
10013   if (EmitEHLabels) {
10014     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
10015   }
10016 
10017   // Only Update Root if inline assembly has a memory effect.
10018   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
10019       EmitEHLabels)
10020     DAG.setRoot(Chain);
10021 }
10022 
10023 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
10024                                              const Twine &Message) {
10025   LLVMContext &Ctx = *DAG.getContext();
10026   Ctx.emitError(&Call, Message);
10027 
10028   // Make sure we leave the DAG in a valid state
10029   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10030   SmallVector<EVT, 1> ValueVTs;
10031   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
10032 
10033   if (ValueVTs.empty())
10034     return;
10035 
10036   SmallVector<SDValue, 1> Ops;
10037   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
10038     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
10039 
10040   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
10041 }
10042 
10043 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
10044   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
10045                           MVT::Other, getRoot(),
10046                           getValue(I.getArgOperand(0)),
10047                           DAG.getSrcValue(I.getArgOperand(0))));
10048 }
10049 
10050 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
10051   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10052   const DataLayout &DL = DAG.getDataLayout();
10053   SDValue V = DAG.getVAArg(
10054       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
10055       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
10056       DL.getABITypeAlign(I.getType()).value());
10057   DAG.setRoot(V.getValue(1));
10058 
10059   if (I.getType()->isPointerTy())
10060     V = DAG.getPtrExtOrTrunc(
10061         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
10062   setValue(&I, V);
10063 }
10064 
10065 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
10066   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
10067                           MVT::Other, getRoot(),
10068                           getValue(I.getArgOperand(0)),
10069                           DAG.getSrcValue(I.getArgOperand(0))));
10070 }
10071 
10072 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
10073   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
10074                           MVT::Other, getRoot(),
10075                           getValue(I.getArgOperand(0)),
10076                           getValue(I.getArgOperand(1)),
10077                           DAG.getSrcValue(I.getArgOperand(0)),
10078                           DAG.getSrcValue(I.getArgOperand(1))));
10079 }
10080 
10081 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
10082                                                     const Instruction &I,
10083                                                     SDValue Op) {
10084   const MDNode *Range = getRangeMetadata(I);
10085   if (!Range)
10086     return Op;
10087 
10088   ConstantRange CR = getConstantRangeFromMetadata(*Range);
10089   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
10090     return Op;
10091 
10092   APInt Lo = CR.getUnsignedMin();
10093   if (!Lo.isMinValue())
10094     return Op;
10095 
10096   APInt Hi = CR.getUnsignedMax();
10097   unsigned Bits = std::max(Hi.getActiveBits(),
10098                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
10099 
10100   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
10101 
10102   SDLoc SL = getCurSDLoc();
10103 
10104   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
10105                              DAG.getValueType(SmallVT));
10106   unsigned NumVals = Op.getNode()->getNumValues();
10107   if (NumVals == 1)
10108     return ZExt;
10109 
10110   SmallVector<SDValue, 4> Ops;
10111 
10112   Ops.push_back(ZExt);
10113   for (unsigned I = 1; I != NumVals; ++I)
10114     Ops.push_back(Op.getValue(I));
10115 
10116   return DAG.getMergeValues(Ops, SL);
10117 }
10118 
10119 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
10120 /// the call being lowered.
10121 ///
10122 /// This is a helper for lowering intrinsics that follow a target calling
10123 /// convention or require stack pointer adjustment. Only a subset of the
10124 /// intrinsic's operands need to participate in the calling convention.
10125 void SelectionDAGBuilder::populateCallLoweringInfo(
10126     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
10127     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
10128     AttributeSet RetAttrs, bool IsPatchPoint) {
10129   TargetLowering::ArgListTy Args;
10130   Args.reserve(NumArgs);
10131 
10132   // Populate the argument list.
10133   // Attributes for args start at offset 1, after the return attribute.
10134   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
10135        ArgI != ArgE; ++ArgI) {
10136     const Value *V = Call->getOperand(ArgI);
10137 
10138     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
10139 
10140     TargetLowering::ArgListEntry Entry;
10141     Entry.Node = getValue(V);
10142     Entry.Ty = V->getType();
10143     Entry.setAttributes(Call, ArgI);
10144     Args.push_back(Entry);
10145   }
10146 
10147   CLI.setDebugLoc(getCurSDLoc())
10148       .setChain(getRoot())
10149       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args),
10150                  RetAttrs)
10151       .setDiscardResult(Call->use_empty())
10152       .setIsPatchPoint(IsPatchPoint)
10153       .setIsPreallocated(
10154           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
10155 }
10156 
10157 /// Add a stack map intrinsic call's live variable operands to a stackmap
10158 /// or patchpoint target node's operand list.
10159 ///
10160 /// Constants are converted to TargetConstants purely as an optimization to
10161 /// avoid constant materialization and register allocation.
10162 ///
10163 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
10164 /// generate addess computation nodes, and so FinalizeISel can convert the
10165 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
10166 /// address materialization and register allocation, but may also be required
10167 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
10168 /// alloca in the entry block, then the runtime may assume that the alloca's
10169 /// StackMap location can be read immediately after compilation and that the
10170 /// location is valid at any point during execution (this is similar to the
10171 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
10172 /// only available in a register, then the runtime would need to trap when
10173 /// execution reaches the StackMap in order to read the alloca's location.
10174 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
10175                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
10176                                 SelectionDAGBuilder &Builder) {
10177   SelectionDAG &DAG = Builder.DAG;
10178   for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
10179     SDValue Op = Builder.getValue(Call.getArgOperand(I));
10180 
10181     // Things on the stack are pointer-typed, meaning that they are already
10182     // legal and can be emitted directly to target nodes.
10183     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
10184       Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
10185     } else {
10186       // Otherwise emit a target independent node to be legalised.
10187       Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
10188     }
10189   }
10190 }
10191 
10192 /// Lower llvm.experimental.stackmap.
10193 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
10194   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
10195   //                                  [live variables...])
10196 
10197   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
10198 
10199   SDValue Chain, InGlue, Callee;
10200   SmallVector<SDValue, 32> Ops;
10201 
10202   SDLoc DL = getCurSDLoc();
10203   Callee = getValue(CI.getCalledOperand());
10204 
10205   // The stackmap intrinsic only records the live variables (the arguments
10206   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
10207   // intrinsic, this won't be lowered to a function call. This means we don't
10208   // have to worry about calling conventions and target specific lowering code.
10209   // Instead we perform the call lowering right here.
10210   //
10211   // chain, flag = CALLSEQ_START(chain, 0, 0)
10212   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
10213   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
10214   //
10215   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
10216   InGlue = Chain.getValue(1);
10217 
10218   // Add the STACKMAP operands, starting with DAG house-keeping.
10219   Ops.push_back(Chain);
10220   Ops.push_back(InGlue);
10221 
10222   // Add the <id>, <numShadowBytes> operands.
10223   //
10224   // These do not require legalisation, and can be emitted directly to target
10225   // constant nodes.
10226   SDValue ID = getValue(CI.getArgOperand(0));
10227   assert(ID.getValueType() == MVT::i64);
10228   SDValue IDConst =
10229       DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType());
10230   Ops.push_back(IDConst);
10231 
10232   SDValue Shad = getValue(CI.getArgOperand(1));
10233   assert(Shad.getValueType() == MVT::i32);
10234   SDValue ShadConst =
10235       DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType());
10236   Ops.push_back(ShadConst);
10237 
10238   // Add the live variables.
10239   addStackMapLiveVars(CI, 2, DL, Ops, *this);
10240 
10241   // Create the STACKMAP node.
10242   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10243   Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
10244   InGlue = Chain.getValue(1);
10245 
10246   Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL);
10247 
10248   // Stackmaps don't generate values, so nothing goes into the NodeMap.
10249 
10250   // Set the root to the target-lowered call chain.
10251   DAG.setRoot(Chain);
10252 
10253   // Inform the Frame Information that we have a stackmap in this function.
10254   FuncInfo.MF->getFrameInfo().setHasStackMap();
10255 }
10256 
10257 /// Lower llvm.experimental.patchpoint directly to its target opcode.
10258 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
10259                                           const BasicBlock *EHPadBB) {
10260   // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>,
10261   //                                         i32 <numBytes>,
10262   //                                         i8* <target>,
10263   //                                         i32 <numArgs>,
10264   //                                         [Args...],
10265   //                                         [live variables...])
10266 
10267   CallingConv::ID CC = CB.getCallingConv();
10268   bool IsAnyRegCC = CC == CallingConv::AnyReg;
10269   bool HasDef = !CB.getType()->isVoidTy();
10270   SDLoc dl = getCurSDLoc();
10271   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
10272 
10273   // Handle immediate and symbolic callees.
10274   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
10275     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
10276                                    /*isTarget=*/true);
10277   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
10278     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
10279                                          SDLoc(SymbolicCallee),
10280                                          SymbolicCallee->getValueType(0));
10281 
10282   // Get the real number of arguments participating in the call <numArgs>
10283   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
10284   unsigned NumArgs = NArgVal->getAsZExtVal();
10285 
10286   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
10287   // Intrinsics include all meta-operands up to but not including CC.
10288   unsigned NumMetaOpers = PatchPointOpers::CCPos;
10289   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
10290          "Not enough arguments provided to the patchpoint intrinsic");
10291 
10292   // For AnyRegCC the arguments are lowered later on manually.
10293   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
10294   Type *ReturnTy =
10295       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
10296 
10297   TargetLowering::CallLoweringInfo CLI(DAG);
10298   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
10299                            ReturnTy, CB.getAttributes().getRetAttrs(), true);
10300   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
10301 
10302   SDNode *CallEnd = Result.second.getNode();
10303   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
10304     CallEnd = CallEnd->getOperand(0).getNode();
10305 
10306   /// Get a call instruction from the call sequence chain.
10307   /// Tail calls are not allowed.
10308   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
10309          "Expected a callseq node.");
10310   SDNode *Call = CallEnd->getOperand(0).getNode();
10311   bool HasGlue = Call->getGluedNode();
10312 
10313   // Replace the target specific call node with the patchable intrinsic.
10314   SmallVector<SDValue, 8> Ops;
10315 
10316   // Push the chain.
10317   Ops.push_back(*(Call->op_begin()));
10318 
10319   // Optionally, push the glue (if any).
10320   if (HasGlue)
10321     Ops.push_back(*(Call->op_end() - 1));
10322 
10323   // Push the register mask info.
10324   if (HasGlue)
10325     Ops.push_back(*(Call->op_end() - 2));
10326   else
10327     Ops.push_back(*(Call->op_end() - 1));
10328 
10329   // Add the <id> and <numBytes> constants.
10330   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
10331   Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64));
10332   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
10333   Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32));
10334 
10335   // Add the callee.
10336   Ops.push_back(Callee);
10337 
10338   // Adjust <numArgs> to account for any arguments that have been passed on the
10339   // stack instead.
10340   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
10341   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
10342   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
10343   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
10344 
10345   // Add the calling convention
10346   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
10347 
10348   // Add the arguments we omitted previously. The register allocator should
10349   // place these in any free register.
10350   if (IsAnyRegCC)
10351     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
10352       Ops.push_back(getValue(CB.getArgOperand(i)));
10353 
10354   // Push the arguments from the call instruction.
10355   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
10356   Ops.append(Call->op_begin() + 2, e);
10357 
10358   // Push live variables for the stack map.
10359   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
10360 
10361   SDVTList NodeTys;
10362   if (IsAnyRegCC && HasDef) {
10363     // Create the return types based on the intrinsic definition
10364     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10365     SmallVector<EVT, 3> ValueVTs;
10366     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
10367     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
10368 
10369     // There is always a chain and a glue type at the end
10370     ValueVTs.push_back(MVT::Other);
10371     ValueVTs.push_back(MVT::Glue);
10372     NodeTys = DAG.getVTList(ValueVTs);
10373   } else
10374     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10375 
10376   // Replace the target specific call node with a PATCHPOINT node.
10377   SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
10378 
10379   // Update the NodeMap.
10380   if (HasDef) {
10381     if (IsAnyRegCC)
10382       setValue(&CB, SDValue(PPV.getNode(), 0));
10383     else
10384       setValue(&CB, Result.first);
10385   }
10386 
10387   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
10388   // call sequence. Furthermore the location of the chain and glue can change
10389   // when the AnyReg calling convention is used and the intrinsic returns a
10390   // value.
10391   if (IsAnyRegCC && HasDef) {
10392     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
10393     SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
10394     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
10395   } else
10396     DAG.ReplaceAllUsesWith(Call, PPV.getNode());
10397   DAG.DeleteNode(Call);
10398 
10399   // Inform the Frame Information that we have a patchpoint in this function.
10400   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
10401 }
10402 
10403 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
10404                                             unsigned Intrinsic) {
10405   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10406   SDValue Op1 = getValue(I.getArgOperand(0));
10407   SDValue Op2;
10408   if (I.arg_size() > 1)
10409     Op2 = getValue(I.getArgOperand(1));
10410   SDLoc dl = getCurSDLoc();
10411   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
10412   SDValue Res;
10413   SDNodeFlags SDFlags;
10414   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
10415     SDFlags.copyFMF(*FPMO);
10416 
10417   switch (Intrinsic) {
10418   case Intrinsic::vector_reduce_fadd:
10419     if (SDFlags.hasAllowReassociation())
10420       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
10421                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
10422                         SDFlags);
10423     else
10424       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
10425     break;
10426   case Intrinsic::vector_reduce_fmul:
10427     if (SDFlags.hasAllowReassociation())
10428       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
10429                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
10430                         SDFlags);
10431     else
10432       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
10433     break;
10434   case Intrinsic::vector_reduce_add:
10435     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
10436     break;
10437   case Intrinsic::vector_reduce_mul:
10438     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
10439     break;
10440   case Intrinsic::vector_reduce_and:
10441     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
10442     break;
10443   case Intrinsic::vector_reduce_or:
10444     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
10445     break;
10446   case Intrinsic::vector_reduce_xor:
10447     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
10448     break;
10449   case Intrinsic::vector_reduce_smax:
10450     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
10451     break;
10452   case Intrinsic::vector_reduce_smin:
10453     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
10454     break;
10455   case Intrinsic::vector_reduce_umax:
10456     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
10457     break;
10458   case Intrinsic::vector_reduce_umin:
10459     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
10460     break;
10461   case Intrinsic::vector_reduce_fmax:
10462     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
10463     break;
10464   case Intrinsic::vector_reduce_fmin:
10465     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
10466     break;
10467   case Intrinsic::vector_reduce_fmaximum:
10468     Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags);
10469     break;
10470   case Intrinsic::vector_reduce_fminimum:
10471     Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags);
10472     break;
10473   default:
10474     llvm_unreachable("Unhandled vector reduce intrinsic");
10475   }
10476   setValue(&I, Res);
10477 }
10478 
10479 /// Returns an AttributeList representing the attributes applied to the return
10480 /// value of the given call.
10481 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
10482   SmallVector<Attribute::AttrKind, 2> Attrs;
10483   if (CLI.RetSExt)
10484     Attrs.push_back(Attribute::SExt);
10485   if (CLI.RetZExt)
10486     Attrs.push_back(Attribute::ZExt);
10487   if (CLI.IsInReg)
10488     Attrs.push_back(Attribute::InReg);
10489 
10490   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
10491                             Attrs);
10492 }
10493 
10494 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
10495 /// implementation, which just calls LowerCall.
10496 /// FIXME: When all targets are
10497 /// migrated to using LowerCall, this hook should be integrated into SDISel.
10498 std::pair<SDValue, SDValue>
10499 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
10500   // Handle the incoming return values from the call.
10501   CLI.Ins.clear();
10502   Type *OrigRetTy = CLI.RetTy;
10503   SmallVector<EVT, 4> RetTys;
10504   SmallVector<TypeSize, 4> Offsets;
10505   auto &DL = CLI.DAG.getDataLayout();
10506   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
10507 
10508   if (CLI.IsPostTypeLegalization) {
10509     // If we are lowering a libcall after legalization, split the return type.
10510     SmallVector<EVT, 4> OldRetTys;
10511     SmallVector<TypeSize, 4> OldOffsets;
10512     RetTys.swap(OldRetTys);
10513     Offsets.swap(OldOffsets);
10514 
10515     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
10516       EVT RetVT = OldRetTys[i];
10517       uint64_t Offset = OldOffsets[i];
10518       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
10519       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
10520       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
10521       RetTys.append(NumRegs, RegisterVT);
10522       for (unsigned j = 0; j != NumRegs; ++j)
10523         Offsets.push_back(TypeSize::getFixed(Offset + j * RegisterVTByteSZ));
10524     }
10525   }
10526 
10527   SmallVector<ISD::OutputArg, 4> Outs;
10528   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
10529 
10530   bool CanLowerReturn =
10531       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
10532                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
10533 
10534   SDValue DemoteStackSlot;
10535   int DemoteStackIdx = -100;
10536   if (!CanLowerReturn) {
10537     // FIXME: equivalent assert?
10538     // assert(!CS.hasInAllocaArgument() &&
10539     //        "sret demotion is incompatible with inalloca");
10540     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
10541     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
10542     MachineFunction &MF = CLI.DAG.getMachineFunction();
10543     DemoteStackIdx =
10544         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
10545     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
10546                                               DL.getAllocaAddrSpace());
10547 
10548     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
10549     ArgListEntry Entry;
10550     Entry.Node = DemoteStackSlot;
10551     Entry.Ty = StackSlotPtrType;
10552     Entry.IsSExt = false;
10553     Entry.IsZExt = false;
10554     Entry.IsInReg = false;
10555     Entry.IsSRet = true;
10556     Entry.IsNest = false;
10557     Entry.IsByVal = false;
10558     Entry.IsByRef = false;
10559     Entry.IsReturned = false;
10560     Entry.IsSwiftSelf = false;
10561     Entry.IsSwiftAsync = false;
10562     Entry.IsSwiftError = false;
10563     Entry.IsCFGuardTarget = false;
10564     Entry.Alignment = Alignment;
10565     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
10566     CLI.NumFixedArgs += 1;
10567     CLI.getArgs()[0].IndirectType = CLI.RetTy;
10568     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
10569 
10570     // sret demotion isn't compatible with tail-calls, since the sret argument
10571     // points into the callers stack frame.
10572     CLI.IsTailCall = false;
10573   } else {
10574     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10575         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
10576     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10577       ISD::ArgFlagsTy Flags;
10578       if (NeedsRegBlock) {
10579         Flags.setInConsecutiveRegs();
10580         if (I == RetTys.size() - 1)
10581           Flags.setInConsecutiveRegsLast();
10582       }
10583       EVT VT = RetTys[I];
10584       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10585                                                      CLI.CallConv, VT);
10586       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10587                                                        CLI.CallConv, VT);
10588       for (unsigned i = 0; i != NumRegs; ++i) {
10589         ISD::InputArg MyFlags;
10590         MyFlags.Flags = Flags;
10591         MyFlags.VT = RegisterVT;
10592         MyFlags.ArgVT = VT;
10593         MyFlags.Used = CLI.IsReturnValueUsed;
10594         if (CLI.RetTy->isPointerTy()) {
10595           MyFlags.Flags.setPointer();
10596           MyFlags.Flags.setPointerAddrSpace(
10597               cast<PointerType>(CLI.RetTy)->getAddressSpace());
10598         }
10599         if (CLI.RetSExt)
10600           MyFlags.Flags.setSExt();
10601         if (CLI.RetZExt)
10602           MyFlags.Flags.setZExt();
10603         if (CLI.IsInReg)
10604           MyFlags.Flags.setInReg();
10605         CLI.Ins.push_back(MyFlags);
10606       }
10607     }
10608   }
10609 
10610   // We push in swifterror return as the last element of CLI.Ins.
10611   ArgListTy &Args = CLI.getArgs();
10612   if (supportSwiftError()) {
10613     for (const ArgListEntry &Arg : Args) {
10614       if (Arg.IsSwiftError) {
10615         ISD::InputArg MyFlags;
10616         MyFlags.VT = getPointerTy(DL);
10617         MyFlags.ArgVT = EVT(getPointerTy(DL));
10618         MyFlags.Flags.setSwiftError();
10619         CLI.Ins.push_back(MyFlags);
10620       }
10621     }
10622   }
10623 
10624   // Handle all of the outgoing arguments.
10625   CLI.Outs.clear();
10626   CLI.OutVals.clear();
10627   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
10628     SmallVector<EVT, 4> ValueVTs;
10629     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
10630     // FIXME: Split arguments if CLI.IsPostTypeLegalization
10631     Type *FinalType = Args[i].Ty;
10632     if (Args[i].IsByVal)
10633       FinalType = Args[i].IndirectType;
10634     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10635         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
10636     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
10637          ++Value) {
10638       EVT VT = ValueVTs[Value];
10639       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
10640       SDValue Op = SDValue(Args[i].Node.getNode(),
10641                            Args[i].Node.getResNo() + Value);
10642       ISD::ArgFlagsTy Flags;
10643 
10644       // Certain targets (such as MIPS), may have a different ABI alignment
10645       // for a type depending on the context. Give the target a chance to
10646       // specify the alignment it wants.
10647       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
10648       Flags.setOrigAlign(OriginalAlignment);
10649 
10650       if (Args[i].Ty->isPointerTy()) {
10651         Flags.setPointer();
10652         Flags.setPointerAddrSpace(
10653             cast<PointerType>(Args[i].Ty)->getAddressSpace());
10654       }
10655       if (Args[i].IsZExt)
10656         Flags.setZExt();
10657       if (Args[i].IsSExt)
10658         Flags.setSExt();
10659       if (Args[i].IsInReg) {
10660         // If we are using vectorcall calling convention, a structure that is
10661         // passed InReg - is surely an HVA
10662         if (CLI.CallConv == CallingConv::X86_VectorCall &&
10663             isa<StructType>(FinalType)) {
10664           // The first value of a structure is marked
10665           if (0 == Value)
10666             Flags.setHvaStart();
10667           Flags.setHva();
10668         }
10669         // Set InReg Flag
10670         Flags.setInReg();
10671       }
10672       if (Args[i].IsSRet)
10673         Flags.setSRet();
10674       if (Args[i].IsSwiftSelf)
10675         Flags.setSwiftSelf();
10676       if (Args[i].IsSwiftAsync)
10677         Flags.setSwiftAsync();
10678       if (Args[i].IsSwiftError)
10679         Flags.setSwiftError();
10680       if (Args[i].IsCFGuardTarget)
10681         Flags.setCFGuardTarget();
10682       if (Args[i].IsByVal)
10683         Flags.setByVal();
10684       if (Args[i].IsByRef)
10685         Flags.setByRef();
10686       if (Args[i].IsPreallocated) {
10687         Flags.setPreallocated();
10688         // Set the byval flag for CCAssignFn callbacks that don't know about
10689         // preallocated.  This way we can know how many bytes we should've
10690         // allocated and how many bytes a callee cleanup function will pop.  If
10691         // we port preallocated to more targets, we'll have to add custom
10692         // preallocated handling in the various CC lowering callbacks.
10693         Flags.setByVal();
10694       }
10695       if (Args[i].IsInAlloca) {
10696         Flags.setInAlloca();
10697         // Set the byval flag for CCAssignFn callbacks that don't know about
10698         // inalloca.  This way we can know how many bytes we should've allocated
10699         // and how many bytes a callee cleanup function will pop.  If we port
10700         // inalloca to more targets, we'll have to add custom inalloca handling
10701         // in the various CC lowering callbacks.
10702         Flags.setByVal();
10703       }
10704       Align MemAlign;
10705       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
10706         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
10707         Flags.setByValSize(FrameSize);
10708 
10709         // info is not there but there are cases it cannot get right.
10710         if (auto MA = Args[i].Alignment)
10711           MemAlign = *MA;
10712         else
10713           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
10714       } else if (auto MA = Args[i].Alignment) {
10715         MemAlign = *MA;
10716       } else {
10717         MemAlign = OriginalAlignment;
10718       }
10719       Flags.setMemAlign(MemAlign);
10720       if (Args[i].IsNest)
10721         Flags.setNest();
10722       if (NeedsRegBlock)
10723         Flags.setInConsecutiveRegs();
10724 
10725       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10726                                                  CLI.CallConv, VT);
10727       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10728                                                         CLI.CallConv, VT);
10729       SmallVector<SDValue, 4> Parts(NumParts);
10730       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
10731 
10732       if (Args[i].IsSExt)
10733         ExtendKind = ISD::SIGN_EXTEND;
10734       else if (Args[i].IsZExt)
10735         ExtendKind = ISD::ZERO_EXTEND;
10736 
10737       // Conservatively only handle 'returned' on non-vectors that can be lowered,
10738       // for now.
10739       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
10740           CanLowerReturn) {
10741         assert((CLI.RetTy == Args[i].Ty ||
10742                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
10743                  CLI.RetTy->getPointerAddressSpace() ==
10744                      Args[i].Ty->getPointerAddressSpace())) &&
10745                RetTys.size() == NumValues && "unexpected use of 'returned'");
10746         // Before passing 'returned' to the target lowering code, ensure that
10747         // either the register MVT and the actual EVT are the same size or that
10748         // the return value and argument are extended in the same way; in these
10749         // cases it's safe to pass the argument register value unchanged as the
10750         // return register value (although it's at the target's option whether
10751         // to do so)
10752         // TODO: allow code generation to take advantage of partially preserved
10753         // registers rather than clobbering the entire register when the
10754         // parameter extension method is not compatible with the return
10755         // extension method
10756         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
10757             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
10758              CLI.RetZExt == Args[i].IsZExt))
10759           Flags.setReturned();
10760       }
10761 
10762       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
10763                      CLI.CallConv, ExtendKind);
10764 
10765       for (unsigned j = 0; j != NumParts; ++j) {
10766         // if it isn't first piece, alignment must be 1
10767         // For scalable vectors the scalable part is currently handled
10768         // by individual targets, so we just use the known minimum size here.
10769         ISD::OutputArg MyFlags(
10770             Flags, Parts[j].getValueType().getSimpleVT(), VT,
10771             i < CLI.NumFixedArgs, i,
10772             j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
10773         if (NumParts > 1 && j == 0)
10774           MyFlags.Flags.setSplit();
10775         else if (j != 0) {
10776           MyFlags.Flags.setOrigAlign(Align(1));
10777           if (j == NumParts - 1)
10778             MyFlags.Flags.setSplitEnd();
10779         }
10780 
10781         CLI.Outs.push_back(MyFlags);
10782         CLI.OutVals.push_back(Parts[j]);
10783       }
10784 
10785       if (NeedsRegBlock && Value == NumValues - 1)
10786         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
10787     }
10788   }
10789 
10790   SmallVector<SDValue, 4> InVals;
10791   CLI.Chain = LowerCall(CLI, InVals);
10792 
10793   // Update CLI.InVals to use outside of this function.
10794   CLI.InVals = InVals;
10795 
10796   // Verify that the target's LowerCall behaved as expected.
10797   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
10798          "LowerCall didn't return a valid chain!");
10799   assert((!CLI.IsTailCall || InVals.empty()) &&
10800          "LowerCall emitted a return value for a tail call!");
10801   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
10802          "LowerCall didn't emit the correct number of values!");
10803 
10804   // For a tail call, the return value is merely live-out and there aren't
10805   // any nodes in the DAG representing it. Return a special value to
10806   // indicate that a tail call has been emitted and no more Instructions
10807   // should be processed in the current block.
10808   if (CLI.IsTailCall) {
10809     CLI.DAG.setRoot(CLI.Chain);
10810     return std::make_pair(SDValue(), SDValue());
10811   }
10812 
10813 #ifndef NDEBUG
10814   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
10815     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
10816     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
10817            "LowerCall emitted a value with the wrong type!");
10818   }
10819 #endif
10820 
10821   SmallVector<SDValue, 4> ReturnValues;
10822   if (!CanLowerReturn) {
10823     // The instruction result is the result of loading from the
10824     // hidden sret parameter.
10825     SmallVector<EVT, 1> PVTs;
10826     Type *PtrRetTy =
10827         PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace());
10828 
10829     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
10830     assert(PVTs.size() == 1 && "Pointers should fit in one register");
10831     EVT PtrVT = PVTs[0];
10832 
10833     unsigned NumValues = RetTys.size();
10834     ReturnValues.resize(NumValues);
10835     SmallVector<SDValue, 4> Chains(NumValues);
10836 
10837     // An aggregate return value cannot wrap around the address space, so
10838     // offsets to its parts don't wrap either.
10839     SDNodeFlags Flags;
10840     Flags.setNoUnsignedWrap(true);
10841 
10842     MachineFunction &MF = CLI.DAG.getMachineFunction();
10843     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
10844     for (unsigned i = 0; i < NumValues; ++i) {
10845       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
10846                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
10847                                                         PtrVT), Flags);
10848       SDValue L = CLI.DAG.getLoad(
10849           RetTys[i], CLI.DL, CLI.Chain, Add,
10850           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
10851                                             DemoteStackIdx, Offsets[i]),
10852           HiddenSRetAlign);
10853       ReturnValues[i] = L;
10854       Chains[i] = L.getValue(1);
10855     }
10856 
10857     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
10858   } else {
10859     // Collect the legal value parts into potentially illegal values
10860     // that correspond to the original function's return values.
10861     std::optional<ISD::NodeType> AssertOp;
10862     if (CLI.RetSExt)
10863       AssertOp = ISD::AssertSext;
10864     else if (CLI.RetZExt)
10865       AssertOp = ISD::AssertZext;
10866     unsigned CurReg = 0;
10867     for (EVT VT : RetTys) {
10868       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10869                                                      CLI.CallConv, VT);
10870       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10871                                                        CLI.CallConv, VT);
10872 
10873       ReturnValues.push_back(getCopyFromParts(
10874           CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr,
10875           CLI.Chain, CLI.CallConv, AssertOp));
10876       CurReg += NumRegs;
10877     }
10878 
10879     // For a function returning void, there is no return value. We can't create
10880     // such a node, so we just return a null return value in that case. In
10881     // that case, nothing will actually look at the value.
10882     if (ReturnValues.empty())
10883       return std::make_pair(SDValue(), CLI.Chain);
10884   }
10885 
10886   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
10887                                 CLI.DAG.getVTList(RetTys), ReturnValues);
10888   return std::make_pair(Res, CLI.Chain);
10889 }
10890 
10891 /// Places new result values for the node in Results (their number
10892 /// and types must exactly match those of the original return values of
10893 /// the node), or leaves Results empty, which indicates that the node is not
10894 /// to be custom lowered after all.
10895 void TargetLowering::LowerOperationWrapper(SDNode *N,
10896                                            SmallVectorImpl<SDValue> &Results,
10897                                            SelectionDAG &DAG) const {
10898   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
10899 
10900   if (!Res.getNode())
10901     return;
10902 
10903   // If the original node has one result, take the return value from
10904   // LowerOperation as is. It might not be result number 0.
10905   if (N->getNumValues() == 1) {
10906     Results.push_back(Res);
10907     return;
10908   }
10909 
10910   // If the original node has multiple results, then the return node should
10911   // have the same number of results.
10912   assert((N->getNumValues() == Res->getNumValues()) &&
10913       "Lowering returned the wrong number of results!");
10914 
10915   // Places new result values base on N result number.
10916   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
10917     Results.push_back(Res.getValue(I));
10918 }
10919 
10920 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10921   llvm_unreachable("LowerOperation not implemented for this target!");
10922 }
10923 
10924 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
10925                                                      unsigned Reg,
10926                                                      ISD::NodeType ExtendType) {
10927   SDValue Op = getNonRegisterValue(V);
10928   assert((Op.getOpcode() != ISD::CopyFromReg ||
10929           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
10930          "Copy from a reg to the same reg!");
10931   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
10932 
10933   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10934   // If this is an InlineAsm we have to match the registers required, not the
10935   // notional registers required by the type.
10936 
10937   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
10938                    std::nullopt); // This is not an ABI copy.
10939   SDValue Chain = DAG.getEntryNode();
10940 
10941   if (ExtendType == ISD::ANY_EXTEND) {
10942     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
10943     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
10944       ExtendType = PreferredExtendIt->second;
10945   }
10946   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
10947   PendingExports.push_back(Chain);
10948 }
10949 
10950 #include "llvm/CodeGen/SelectionDAGISel.h"
10951 
10952 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
10953 /// entry block, return true.  This includes arguments used by switches, since
10954 /// the switch may expand into multiple basic blocks.
10955 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
10956   // With FastISel active, we may be splitting blocks, so force creation
10957   // of virtual registers for all non-dead arguments.
10958   if (FastISel)
10959     return A->use_empty();
10960 
10961   const BasicBlock &Entry = A->getParent()->front();
10962   for (const User *U : A->users())
10963     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
10964       return false;  // Use not in entry block.
10965 
10966   return true;
10967 }
10968 
10969 using ArgCopyElisionMapTy =
10970     DenseMap<const Argument *,
10971              std::pair<const AllocaInst *, const StoreInst *>>;
10972 
10973 /// Scan the entry block of the function in FuncInfo for arguments that look
10974 /// like copies into a local alloca. Record any copied arguments in
10975 /// ArgCopyElisionCandidates.
10976 static void
10977 findArgumentCopyElisionCandidates(const DataLayout &DL,
10978                                   FunctionLoweringInfo *FuncInfo,
10979                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
10980   // Record the state of every static alloca used in the entry block. Argument
10981   // allocas are all used in the entry block, so we need approximately as many
10982   // entries as we have arguments.
10983   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
10984   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
10985   unsigned NumArgs = FuncInfo->Fn->arg_size();
10986   StaticAllocas.reserve(NumArgs * 2);
10987 
10988   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
10989     if (!V)
10990       return nullptr;
10991     V = V->stripPointerCasts();
10992     const auto *AI = dyn_cast<AllocaInst>(V);
10993     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
10994       return nullptr;
10995     auto Iter = StaticAllocas.insert({AI, Unknown});
10996     return &Iter.first->second;
10997   };
10998 
10999   // Look for stores of arguments to static allocas. Look through bitcasts and
11000   // GEPs to handle type coercions, as long as the alloca is fully initialized
11001   // by the store. Any non-store use of an alloca escapes it and any subsequent
11002   // unanalyzed store might write it.
11003   // FIXME: Handle structs initialized with multiple stores.
11004   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
11005     // Look for stores, and handle non-store uses conservatively.
11006     const auto *SI = dyn_cast<StoreInst>(&I);
11007     if (!SI) {
11008       // We will look through cast uses, so ignore them completely.
11009       if (I.isCast())
11010         continue;
11011       // Ignore debug info and pseudo op intrinsics, they don't escape or store
11012       // to allocas.
11013       if (I.isDebugOrPseudoInst())
11014         continue;
11015       // This is an unknown instruction. Assume it escapes or writes to all
11016       // static alloca operands.
11017       for (const Use &U : I.operands()) {
11018         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
11019           *Info = StaticAllocaInfo::Clobbered;
11020       }
11021       continue;
11022     }
11023 
11024     // If the stored value is a static alloca, mark it as escaped.
11025     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
11026       *Info = StaticAllocaInfo::Clobbered;
11027 
11028     // Check if the destination is a static alloca.
11029     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
11030     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
11031     if (!Info)
11032       continue;
11033     const AllocaInst *AI = cast<AllocaInst>(Dst);
11034 
11035     // Skip allocas that have been initialized or clobbered.
11036     if (*Info != StaticAllocaInfo::Unknown)
11037       continue;
11038 
11039     // Check if the stored value is an argument, and that this store fully
11040     // initializes the alloca.
11041     // If the argument type has padding bits we can't directly forward a pointer
11042     // as the upper bits may contain garbage.
11043     // Don't elide copies from the same argument twice.
11044     const Value *Val = SI->getValueOperand()->stripPointerCasts();
11045     const auto *Arg = dyn_cast<Argument>(Val);
11046     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
11047         Arg->getType()->isEmptyTy() ||
11048         DL.getTypeStoreSize(Arg->getType()) !=
11049             DL.getTypeAllocSize(AI->getAllocatedType()) ||
11050         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
11051         ArgCopyElisionCandidates.count(Arg)) {
11052       *Info = StaticAllocaInfo::Clobbered;
11053       continue;
11054     }
11055 
11056     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
11057                       << '\n');
11058 
11059     // Mark this alloca and store for argument copy elision.
11060     *Info = StaticAllocaInfo::Elidable;
11061     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
11062 
11063     // Stop scanning if we've seen all arguments. This will happen early in -O0
11064     // builds, which is useful, because -O0 builds have large entry blocks and
11065     // many allocas.
11066     if (ArgCopyElisionCandidates.size() == NumArgs)
11067       break;
11068   }
11069 }
11070 
11071 /// Try to elide argument copies from memory into a local alloca. Succeeds if
11072 /// ArgVal is a load from a suitable fixed stack object.
11073 static void tryToElideArgumentCopy(
11074     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
11075     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
11076     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
11077     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
11078     ArrayRef<SDValue> ArgVals, bool &ArgHasUses) {
11079   // Check if this is a load from a fixed stack object.
11080   auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]);
11081   if (!LNode)
11082     return;
11083   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
11084   if (!FINode)
11085     return;
11086 
11087   // Check that the fixed stack object is the right size and alignment.
11088   // Look at the alignment that the user wrote on the alloca instead of looking
11089   // at the stack object.
11090   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
11091   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
11092   const AllocaInst *AI = ArgCopyIter->second.first;
11093   int FixedIndex = FINode->getIndex();
11094   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
11095   int OldIndex = AllocaIndex;
11096   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
11097   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
11098     LLVM_DEBUG(
11099         dbgs() << "  argument copy elision failed due to bad fixed stack "
11100                   "object size\n");
11101     return;
11102   }
11103   Align RequiredAlignment = AI->getAlign();
11104   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
11105     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
11106                          "greater than stack argument alignment ("
11107                       << DebugStr(RequiredAlignment) << " vs "
11108                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
11109     return;
11110   }
11111 
11112   // Perform the elision. Delete the old stack object and replace its only use
11113   // in the variable info map. Mark the stack object as mutable.
11114   LLVM_DEBUG({
11115     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
11116            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
11117            << '\n';
11118   });
11119   MFI.RemoveStackObject(OldIndex);
11120   MFI.setIsImmutableObjectIndex(FixedIndex, false);
11121   AllocaIndex = FixedIndex;
11122   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
11123   for (SDValue ArgVal : ArgVals)
11124     Chains.push_back(ArgVal.getValue(1));
11125 
11126   // Avoid emitting code for the store implementing the copy.
11127   const StoreInst *SI = ArgCopyIter->second.second;
11128   ElidedArgCopyInstrs.insert(SI);
11129 
11130   // Check for uses of the argument again so that we can avoid exporting ArgVal
11131   // if it is't used by anything other than the store.
11132   for (const Value *U : Arg.users()) {
11133     if (U != SI) {
11134       ArgHasUses = true;
11135       break;
11136     }
11137   }
11138 }
11139 
11140 void SelectionDAGISel::LowerArguments(const Function &F) {
11141   SelectionDAG &DAG = SDB->DAG;
11142   SDLoc dl = SDB->getCurSDLoc();
11143   const DataLayout &DL = DAG.getDataLayout();
11144   SmallVector<ISD::InputArg, 16> Ins;
11145 
11146   // In Naked functions we aren't going to save any registers.
11147   if (F.hasFnAttribute(Attribute::Naked))
11148     return;
11149 
11150   if (!FuncInfo->CanLowerReturn) {
11151     // Put in an sret pointer parameter before all the other parameters.
11152     SmallVector<EVT, 1> ValueVTs;
11153     ComputeValueVTs(*TLI, DAG.getDataLayout(),
11154                     PointerType::get(F.getContext(),
11155                                      DAG.getDataLayout().getAllocaAddrSpace()),
11156                     ValueVTs);
11157 
11158     // NOTE: Assuming that a pointer will never break down to more than one VT
11159     // or one register.
11160     ISD::ArgFlagsTy Flags;
11161     Flags.setSRet();
11162     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
11163     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
11164                          ISD::InputArg::NoArgIndex, 0);
11165     Ins.push_back(RetArg);
11166   }
11167 
11168   // Look for stores of arguments to static allocas. Mark such arguments with a
11169   // flag to ask the target to give us the memory location of that argument if
11170   // available.
11171   ArgCopyElisionMapTy ArgCopyElisionCandidates;
11172   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
11173                                     ArgCopyElisionCandidates);
11174 
11175   // Set up the incoming argument description vector.
11176   for (const Argument &Arg : F.args()) {
11177     unsigned ArgNo = Arg.getArgNo();
11178     SmallVector<EVT, 4> ValueVTs;
11179     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
11180     bool isArgValueUsed = !Arg.use_empty();
11181     unsigned PartBase = 0;
11182     Type *FinalType = Arg.getType();
11183     if (Arg.hasAttribute(Attribute::ByVal))
11184       FinalType = Arg.getParamByValType();
11185     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
11186         FinalType, F.getCallingConv(), F.isVarArg(), DL);
11187     for (unsigned Value = 0, NumValues = ValueVTs.size();
11188          Value != NumValues; ++Value) {
11189       EVT VT = ValueVTs[Value];
11190       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
11191       ISD::ArgFlagsTy Flags;
11192 
11193 
11194       if (Arg.getType()->isPointerTy()) {
11195         Flags.setPointer();
11196         Flags.setPointerAddrSpace(
11197             cast<PointerType>(Arg.getType())->getAddressSpace());
11198       }
11199       if (Arg.hasAttribute(Attribute::ZExt))
11200         Flags.setZExt();
11201       if (Arg.hasAttribute(Attribute::SExt))
11202         Flags.setSExt();
11203       if (Arg.hasAttribute(Attribute::InReg)) {
11204         // If we are using vectorcall calling convention, a structure that is
11205         // passed InReg - is surely an HVA
11206         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
11207             isa<StructType>(Arg.getType())) {
11208           // The first value of a structure is marked
11209           if (0 == Value)
11210             Flags.setHvaStart();
11211           Flags.setHva();
11212         }
11213         // Set InReg Flag
11214         Flags.setInReg();
11215       }
11216       if (Arg.hasAttribute(Attribute::StructRet))
11217         Flags.setSRet();
11218       if (Arg.hasAttribute(Attribute::SwiftSelf))
11219         Flags.setSwiftSelf();
11220       if (Arg.hasAttribute(Attribute::SwiftAsync))
11221         Flags.setSwiftAsync();
11222       if (Arg.hasAttribute(Attribute::SwiftError))
11223         Flags.setSwiftError();
11224       if (Arg.hasAttribute(Attribute::ByVal))
11225         Flags.setByVal();
11226       if (Arg.hasAttribute(Attribute::ByRef))
11227         Flags.setByRef();
11228       if (Arg.hasAttribute(Attribute::InAlloca)) {
11229         Flags.setInAlloca();
11230         // Set the byval flag for CCAssignFn callbacks that don't know about
11231         // inalloca.  This way we can know how many bytes we should've allocated
11232         // and how many bytes a callee cleanup function will pop.  If we port
11233         // inalloca to more targets, we'll have to add custom inalloca handling
11234         // in the various CC lowering callbacks.
11235         Flags.setByVal();
11236       }
11237       if (Arg.hasAttribute(Attribute::Preallocated)) {
11238         Flags.setPreallocated();
11239         // Set the byval flag for CCAssignFn callbacks that don't know about
11240         // preallocated.  This way we can know how many bytes we should've
11241         // allocated and how many bytes a callee cleanup function will pop.  If
11242         // we port preallocated to more targets, we'll have to add custom
11243         // preallocated handling in the various CC lowering callbacks.
11244         Flags.setByVal();
11245       }
11246 
11247       // Certain targets (such as MIPS), may have a different ABI alignment
11248       // for a type depending on the context. Give the target a chance to
11249       // specify the alignment it wants.
11250       const Align OriginalAlignment(
11251           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
11252       Flags.setOrigAlign(OriginalAlignment);
11253 
11254       Align MemAlign;
11255       Type *ArgMemTy = nullptr;
11256       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
11257           Flags.isByRef()) {
11258         if (!ArgMemTy)
11259           ArgMemTy = Arg.getPointeeInMemoryValueType();
11260 
11261         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
11262 
11263         // For in-memory arguments, size and alignment should be passed from FE.
11264         // BE will guess if this info is not there but there are cases it cannot
11265         // get right.
11266         if (auto ParamAlign = Arg.getParamStackAlign())
11267           MemAlign = *ParamAlign;
11268         else if ((ParamAlign = Arg.getParamAlign()))
11269           MemAlign = *ParamAlign;
11270         else
11271           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
11272         if (Flags.isByRef())
11273           Flags.setByRefSize(MemSize);
11274         else
11275           Flags.setByValSize(MemSize);
11276       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
11277         MemAlign = *ParamAlign;
11278       } else {
11279         MemAlign = OriginalAlignment;
11280       }
11281       Flags.setMemAlign(MemAlign);
11282 
11283       if (Arg.hasAttribute(Attribute::Nest))
11284         Flags.setNest();
11285       if (NeedsRegBlock)
11286         Flags.setInConsecutiveRegs();
11287       if (ArgCopyElisionCandidates.count(&Arg))
11288         Flags.setCopyElisionCandidate();
11289       if (Arg.hasAttribute(Attribute::Returned))
11290         Flags.setReturned();
11291 
11292       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
11293           *CurDAG->getContext(), F.getCallingConv(), VT);
11294       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
11295           *CurDAG->getContext(), F.getCallingConv(), VT);
11296       for (unsigned i = 0; i != NumRegs; ++i) {
11297         // For scalable vectors, use the minimum size; individual targets
11298         // are responsible for handling scalable vector arguments and
11299         // return values.
11300         ISD::InputArg MyFlags(
11301             Flags, RegisterVT, VT, isArgValueUsed, ArgNo,
11302             PartBase + i * RegisterVT.getStoreSize().getKnownMinValue());
11303         if (NumRegs > 1 && i == 0)
11304           MyFlags.Flags.setSplit();
11305         // if it isn't first piece, alignment must be 1
11306         else if (i > 0) {
11307           MyFlags.Flags.setOrigAlign(Align(1));
11308           if (i == NumRegs - 1)
11309             MyFlags.Flags.setSplitEnd();
11310         }
11311         Ins.push_back(MyFlags);
11312       }
11313       if (NeedsRegBlock && Value == NumValues - 1)
11314         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
11315       PartBase += VT.getStoreSize().getKnownMinValue();
11316     }
11317   }
11318 
11319   // Call the target to set up the argument values.
11320   SmallVector<SDValue, 8> InVals;
11321   SDValue NewRoot = TLI->LowerFormalArguments(
11322       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
11323 
11324   // Verify that the target's LowerFormalArguments behaved as expected.
11325   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
11326          "LowerFormalArguments didn't return a valid chain!");
11327   assert(InVals.size() == Ins.size() &&
11328          "LowerFormalArguments didn't emit the correct number of values!");
11329   LLVM_DEBUG({
11330     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
11331       assert(InVals[i].getNode() &&
11332              "LowerFormalArguments emitted a null value!");
11333       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
11334              "LowerFormalArguments emitted a value with the wrong type!");
11335     }
11336   });
11337 
11338   // Update the DAG with the new chain value resulting from argument lowering.
11339   DAG.setRoot(NewRoot);
11340 
11341   // Set up the argument values.
11342   unsigned i = 0;
11343   if (!FuncInfo->CanLowerReturn) {
11344     // Create a virtual register for the sret pointer, and put in a copy
11345     // from the sret argument into it.
11346     SmallVector<EVT, 1> ValueVTs;
11347     ComputeValueVTs(*TLI, DAG.getDataLayout(),
11348                     PointerType::get(F.getContext(),
11349                                      DAG.getDataLayout().getAllocaAddrSpace()),
11350                     ValueVTs);
11351     MVT VT = ValueVTs[0].getSimpleVT();
11352     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
11353     std::optional<ISD::NodeType> AssertOp;
11354     SDValue ArgValue =
11355         getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot,
11356                          F.getCallingConv(), AssertOp);
11357 
11358     MachineFunction& MF = SDB->DAG.getMachineFunction();
11359     MachineRegisterInfo& RegInfo = MF.getRegInfo();
11360     Register SRetReg =
11361         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
11362     FuncInfo->DemoteRegister = SRetReg;
11363     NewRoot =
11364         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
11365     DAG.setRoot(NewRoot);
11366 
11367     // i indexes lowered arguments.  Bump it past the hidden sret argument.
11368     ++i;
11369   }
11370 
11371   SmallVector<SDValue, 4> Chains;
11372   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
11373   for (const Argument &Arg : F.args()) {
11374     SmallVector<SDValue, 4> ArgValues;
11375     SmallVector<EVT, 4> ValueVTs;
11376     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
11377     unsigned NumValues = ValueVTs.size();
11378     if (NumValues == 0)
11379       continue;
11380 
11381     bool ArgHasUses = !Arg.use_empty();
11382 
11383     // Elide the copying store if the target loaded this argument from a
11384     // suitable fixed stack object.
11385     if (Ins[i].Flags.isCopyElisionCandidate()) {
11386       unsigned NumParts = 0;
11387       for (EVT VT : ValueVTs)
11388         NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(),
11389                                                        F.getCallingConv(), VT);
11390 
11391       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
11392                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
11393                              ArrayRef(&InVals[i], NumParts), ArgHasUses);
11394     }
11395 
11396     // If this argument is unused then remember its value. It is used to generate
11397     // debugging information.
11398     bool isSwiftErrorArg =
11399         TLI->supportSwiftError() &&
11400         Arg.hasAttribute(Attribute::SwiftError);
11401     if (!ArgHasUses && !isSwiftErrorArg) {
11402       SDB->setUnusedArgValue(&Arg, InVals[i]);
11403 
11404       // Also remember any frame index for use in FastISel.
11405       if (FrameIndexSDNode *FI =
11406           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
11407         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11408     }
11409 
11410     for (unsigned Val = 0; Val != NumValues; ++Val) {
11411       EVT VT = ValueVTs[Val];
11412       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
11413                                                       F.getCallingConv(), VT);
11414       unsigned NumParts = TLI->getNumRegistersForCallingConv(
11415           *CurDAG->getContext(), F.getCallingConv(), VT);
11416 
11417       // Even an apparent 'unused' swifterror argument needs to be returned. So
11418       // we do generate a copy for it that can be used on return from the
11419       // function.
11420       if (ArgHasUses || isSwiftErrorArg) {
11421         std::optional<ISD::NodeType> AssertOp;
11422         if (Arg.hasAttribute(Attribute::SExt))
11423           AssertOp = ISD::AssertSext;
11424         else if (Arg.hasAttribute(Attribute::ZExt))
11425           AssertOp = ISD::AssertZext;
11426 
11427         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
11428                                              PartVT, VT, nullptr, NewRoot,
11429                                              F.getCallingConv(), AssertOp));
11430       }
11431 
11432       i += NumParts;
11433     }
11434 
11435     // We don't need to do anything else for unused arguments.
11436     if (ArgValues.empty())
11437       continue;
11438 
11439     // Note down frame index.
11440     if (FrameIndexSDNode *FI =
11441         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
11442       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11443 
11444     SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
11445                                      SDB->getCurSDLoc());
11446 
11447     SDB->setValue(&Arg, Res);
11448     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
11449       // We want to associate the argument with the frame index, among
11450       // involved operands, that correspond to the lowest address. The
11451       // getCopyFromParts function, called earlier, is swapping the order of
11452       // the operands to BUILD_PAIR depending on endianness. The result of
11453       // that swapping is that the least significant bits of the argument will
11454       // be in the first operand of the BUILD_PAIR node, and the most
11455       // significant bits will be in the second operand.
11456       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
11457       if (LoadSDNode *LNode =
11458           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
11459         if (FrameIndexSDNode *FI =
11460             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
11461           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11462     }
11463 
11464     // Analyses past this point are naive and don't expect an assertion.
11465     if (Res.getOpcode() == ISD::AssertZext)
11466       Res = Res.getOperand(0);
11467 
11468     // Update the SwiftErrorVRegDefMap.
11469     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
11470       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11471       if (Register::isVirtualRegister(Reg))
11472         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
11473                                    Reg);
11474     }
11475 
11476     // If this argument is live outside of the entry block, insert a copy from
11477     // wherever we got it to the vreg that other BB's will reference it as.
11478     if (Res.getOpcode() == ISD::CopyFromReg) {
11479       // If we can, though, try to skip creating an unnecessary vreg.
11480       // FIXME: This isn't very clean... it would be nice to make this more
11481       // general.
11482       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11483       if (Register::isVirtualRegister(Reg)) {
11484         FuncInfo->ValueMap[&Arg] = Reg;
11485         continue;
11486       }
11487     }
11488     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
11489       FuncInfo->InitializeRegForValue(&Arg);
11490       SDB->CopyToExportRegsIfNeeded(&Arg);
11491     }
11492   }
11493 
11494   if (!Chains.empty()) {
11495     Chains.push_back(NewRoot);
11496     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
11497   }
11498 
11499   DAG.setRoot(NewRoot);
11500 
11501   assert(i == InVals.size() && "Argument register count mismatch!");
11502 
11503   // If any argument copy elisions occurred and we have debug info, update the
11504   // stale frame indices used in the dbg.declare variable info table.
11505   if (!ArgCopyElisionFrameIndexMap.empty()) {
11506     for (MachineFunction::VariableDbgInfo &VI :
11507          MF->getInStackSlotVariableDbgInfo()) {
11508       auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot());
11509       if (I != ArgCopyElisionFrameIndexMap.end())
11510         VI.updateStackSlot(I->second);
11511     }
11512   }
11513 
11514   // Finally, if the target has anything special to do, allow it to do so.
11515   emitFunctionEntryCode();
11516 }
11517 
11518 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
11519 /// ensure constants are generated when needed.  Remember the virtual registers
11520 /// that need to be added to the Machine PHI nodes as input.  We cannot just
11521 /// directly add them, because expansion might result in multiple MBB's for one
11522 /// BB.  As such, the start of the BB might correspond to a different MBB than
11523 /// the end.
11524 void
11525 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
11526   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11527 
11528   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
11529 
11530   // Check PHI nodes in successors that expect a value to be available from this
11531   // block.
11532   for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
11533     if (!isa<PHINode>(SuccBB->begin())) continue;
11534     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
11535 
11536     // If this terminator has multiple identical successors (common for
11537     // switches), only handle each succ once.
11538     if (!SuccsHandled.insert(SuccMBB).second)
11539       continue;
11540 
11541     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
11542 
11543     // At this point we know that there is a 1-1 correspondence between LLVM PHI
11544     // nodes and Machine PHI nodes, but the incoming operands have not been
11545     // emitted yet.
11546     for (const PHINode &PN : SuccBB->phis()) {
11547       // Ignore dead phi's.
11548       if (PN.use_empty())
11549         continue;
11550 
11551       // Skip empty types
11552       if (PN.getType()->isEmptyTy())
11553         continue;
11554 
11555       unsigned Reg;
11556       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
11557 
11558       if (const auto *C = dyn_cast<Constant>(PHIOp)) {
11559         unsigned &RegOut = ConstantsOut[C];
11560         if (RegOut == 0) {
11561           RegOut = FuncInfo.CreateRegs(C);
11562           // We need to zero/sign extend ConstantInt phi operands to match
11563           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
11564           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
11565           if (auto *CI = dyn_cast<ConstantInt>(C))
11566             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
11567                                                     : ISD::ZERO_EXTEND;
11568           CopyValueToVirtualRegister(C, RegOut, ExtendType);
11569         }
11570         Reg = RegOut;
11571       } else {
11572         DenseMap<const Value *, Register>::iterator I =
11573           FuncInfo.ValueMap.find(PHIOp);
11574         if (I != FuncInfo.ValueMap.end())
11575           Reg = I->second;
11576         else {
11577           assert(isa<AllocaInst>(PHIOp) &&
11578                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
11579                  "Didn't codegen value into a register!??");
11580           Reg = FuncInfo.CreateRegs(PHIOp);
11581           CopyValueToVirtualRegister(PHIOp, Reg);
11582         }
11583       }
11584 
11585       // Remember that this register needs to added to the machine PHI node as
11586       // the input for this MBB.
11587       SmallVector<EVT, 4> ValueVTs;
11588       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
11589       for (EVT VT : ValueVTs) {
11590         const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
11591         for (unsigned i = 0; i != NumRegisters; ++i)
11592           FuncInfo.PHINodesToUpdate.push_back(
11593               std::make_pair(&*MBBI++, Reg + i));
11594         Reg += NumRegisters;
11595       }
11596     }
11597   }
11598 
11599   ConstantsOut.clear();
11600 }
11601 
11602 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
11603   MachineFunction::iterator I(MBB);
11604   if (++I == FuncInfo.MF->end())
11605     return nullptr;
11606   return &*I;
11607 }
11608 
11609 /// During lowering new call nodes can be created (such as memset, etc.).
11610 /// Those will become new roots of the current DAG, but complications arise
11611 /// when they are tail calls. In such cases, the call lowering will update
11612 /// the root, but the builder still needs to know that a tail call has been
11613 /// lowered in order to avoid generating an additional return.
11614 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
11615   // If the node is null, we do have a tail call.
11616   if (MaybeTC.getNode() != nullptr)
11617     DAG.setRoot(MaybeTC);
11618   else
11619     HasTailCall = true;
11620 }
11621 
11622 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
11623                                         MachineBasicBlock *SwitchMBB,
11624                                         MachineBasicBlock *DefaultMBB) {
11625   MachineFunction *CurMF = FuncInfo.MF;
11626   MachineBasicBlock *NextMBB = nullptr;
11627   MachineFunction::iterator BBI(W.MBB);
11628   if (++BBI != FuncInfo.MF->end())
11629     NextMBB = &*BBI;
11630 
11631   unsigned Size = W.LastCluster - W.FirstCluster + 1;
11632 
11633   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11634 
11635   if (Size == 2 && W.MBB == SwitchMBB) {
11636     // If any two of the cases has the same destination, and if one value
11637     // is the same as the other, but has one bit unset that the other has set,
11638     // use bit manipulation to do two compares at once.  For example:
11639     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
11640     // TODO: This could be extended to merge any 2 cases in switches with 3
11641     // cases.
11642     // TODO: Handle cases where W.CaseBB != SwitchBB.
11643     CaseCluster &Small = *W.FirstCluster;
11644     CaseCluster &Big = *W.LastCluster;
11645 
11646     if (Small.Low == Small.High && Big.Low == Big.High &&
11647         Small.MBB == Big.MBB) {
11648       const APInt &SmallValue = Small.Low->getValue();
11649       const APInt &BigValue = Big.Low->getValue();
11650 
11651       // Check that there is only one bit different.
11652       APInt CommonBit = BigValue ^ SmallValue;
11653       if (CommonBit.isPowerOf2()) {
11654         SDValue CondLHS = getValue(Cond);
11655         EVT VT = CondLHS.getValueType();
11656         SDLoc DL = getCurSDLoc();
11657 
11658         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
11659                                  DAG.getConstant(CommonBit, DL, VT));
11660         SDValue Cond = DAG.getSetCC(
11661             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
11662             ISD::SETEQ);
11663 
11664         // Update successor info.
11665         // Both Small and Big will jump to Small.BB, so we sum up the
11666         // probabilities.
11667         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
11668         if (BPI)
11669           addSuccessorWithProb(
11670               SwitchMBB, DefaultMBB,
11671               // The default destination is the first successor in IR.
11672               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
11673         else
11674           addSuccessorWithProb(SwitchMBB, DefaultMBB);
11675 
11676         // Insert the true branch.
11677         SDValue BrCond =
11678             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
11679                         DAG.getBasicBlock(Small.MBB));
11680         // Insert the false branch.
11681         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
11682                              DAG.getBasicBlock(DefaultMBB));
11683 
11684         DAG.setRoot(BrCond);
11685         return;
11686       }
11687     }
11688   }
11689 
11690   if (TM.getOptLevel() != CodeGenOptLevel::None) {
11691     // Here, we order cases by probability so the most likely case will be
11692     // checked first. However, two clusters can have the same probability in
11693     // which case their relative ordering is non-deterministic. So we use Low
11694     // as a tie-breaker as clusters are guaranteed to never overlap.
11695     llvm::sort(W.FirstCluster, W.LastCluster + 1,
11696                [](const CaseCluster &a, const CaseCluster &b) {
11697       return a.Prob != b.Prob ?
11698              a.Prob > b.Prob :
11699              a.Low->getValue().slt(b.Low->getValue());
11700     });
11701 
11702     // Rearrange the case blocks so that the last one falls through if possible
11703     // without changing the order of probabilities.
11704     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
11705       --I;
11706       if (I->Prob > W.LastCluster->Prob)
11707         break;
11708       if (I->Kind == CC_Range && I->MBB == NextMBB) {
11709         std::swap(*I, *W.LastCluster);
11710         break;
11711       }
11712     }
11713   }
11714 
11715   // Compute total probability.
11716   BranchProbability DefaultProb = W.DefaultProb;
11717   BranchProbability UnhandledProbs = DefaultProb;
11718   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
11719     UnhandledProbs += I->Prob;
11720 
11721   MachineBasicBlock *CurMBB = W.MBB;
11722   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
11723     bool FallthroughUnreachable = false;
11724     MachineBasicBlock *Fallthrough;
11725     if (I == W.LastCluster) {
11726       // For the last cluster, fall through to the default destination.
11727       Fallthrough = DefaultMBB;
11728       FallthroughUnreachable = isa<UnreachableInst>(
11729           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
11730     } else {
11731       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
11732       CurMF->insert(BBI, Fallthrough);
11733       // Put Cond in a virtual register to make it available from the new blocks.
11734       ExportFromCurrentBlock(Cond);
11735     }
11736     UnhandledProbs -= I->Prob;
11737 
11738     switch (I->Kind) {
11739       case CC_JumpTable: {
11740         // FIXME: Optimize away range check based on pivot comparisons.
11741         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
11742         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
11743 
11744         // The jump block hasn't been inserted yet; insert it here.
11745         MachineBasicBlock *JumpMBB = JT->MBB;
11746         CurMF->insert(BBI, JumpMBB);
11747 
11748         auto JumpProb = I->Prob;
11749         auto FallthroughProb = UnhandledProbs;
11750 
11751         // If the default statement is a target of the jump table, we evenly
11752         // distribute the default probability to successors of CurMBB. Also
11753         // update the probability on the edge from JumpMBB to Fallthrough.
11754         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
11755                                               SE = JumpMBB->succ_end();
11756              SI != SE; ++SI) {
11757           if (*SI == DefaultMBB) {
11758             JumpProb += DefaultProb / 2;
11759             FallthroughProb -= DefaultProb / 2;
11760             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
11761             JumpMBB->normalizeSuccProbs();
11762             break;
11763           }
11764         }
11765 
11766         // If the default clause is unreachable, propagate that knowledge into
11767         // JTH->FallthroughUnreachable which will use it to suppress the range
11768         // check.
11769         //
11770         // However, don't do this if we're doing branch target enforcement,
11771         // because a table branch _without_ a range check can be a tempting JOP
11772         // gadget - out-of-bounds inputs that are impossible in correct
11773         // execution become possible again if an attacker can influence the
11774         // control flow. So if an attacker doesn't already have a BTI bypass
11775         // available, we don't want them to be able to get one out of this
11776         // table branch.
11777         if (FallthroughUnreachable) {
11778           Function &CurFunc = CurMF->getFunction();
11779           bool HasBranchTargetEnforcement = false;
11780           if (CurFunc.hasFnAttribute("branch-target-enforcement")) {
11781             HasBranchTargetEnforcement =
11782                 CurFunc.getFnAttribute("branch-target-enforcement")
11783                     .getValueAsBool();
11784           } else {
11785             HasBranchTargetEnforcement =
11786                 CurMF->getMMI().getModule()->getModuleFlag(
11787                     "branch-target-enforcement");
11788           }
11789           if (!HasBranchTargetEnforcement)
11790             JTH->FallthroughUnreachable = true;
11791         }
11792 
11793         if (!JTH->FallthroughUnreachable)
11794           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
11795         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
11796         CurMBB->normalizeSuccProbs();
11797 
11798         // The jump table header will be inserted in our current block, do the
11799         // range check, and fall through to our fallthrough block.
11800         JTH->HeaderBB = CurMBB;
11801         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
11802 
11803         // If we're in the right place, emit the jump table header right now.
11804         if (CurMBB == SwitchMBB) {
11805           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
11806           JTH->Emitted = true;
11807         }
11808         break;
11809       }
11810       case CC_BitTests: {
11811         // FIXME: Optimize away range check based on pivot comparisons.
11812         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
11813 
11814         // The bit test blocks haven't been inserted yet; insert them here.
11815         for (BitTestCase &BTC : BTB->Cases)
11816           CurMF->insert(BBI, BTC.ThisBB);
11817 
11818         // Fill in fields of the BitTestBlock.
11819         BTB->Parent = CurMBB;
11820         BTB->Default = Fallthrough;
11821 
11822         BTB->DefaultProb = UnhandledProbs;
11823         // If the cases in bit test don't form a contiguous range, we evenly
11824         // distribute the probability on the edge to Fallthrough to two
11825         // successors of CurMBB.
11826         if (!BTB->ContiguousRange) {
11827           BTB->Prob += DefaultProb / 2;
11828           BTB->DefaultProb -= DefaultProb / 2;
11829         }
11830 
11831         if (FallthroughUnreachable)
11832           BTB->FallthroughUnreachable = true;
11833 
11834         // If we're in the right place, emit the bit test header right now.
11835         if (CurMBB == SwitchMBB) {
11836           visitBitTestHeader(*BTB, SwitchMBB);
11837           BTB->Emitted = true;
11838         }
11839         break;
11840       }
11841       case CC_Range: {
11842         const Value *RHS, *LHS, *MHS;
11843         ISD::CondCode CC;
11844         if (I->Low == I->High) {
11845           // Check Cond == I->Low.
11846           CC = ISD::SETEQ;
11847           LHS = Cond;
11848           RHS=I->Low;
11849           MHS = nullptr;
11850         } else {
11851           // Check I->Low <= Cond <= I->High.
11852           CC = ISD::SETLE;
11853           LHS = I->Low;
11854           MHS = Cond;
11855           RHS = I->High;
11856         }
11857 
11858         // If Fallthrough is unreachable, fold away the comparison.
11859         if (FallthroughUnreachable)
11860           CC = ISD::SETTRUE;
11861 
11862         // The false probability is the sum of all unhandled cases.
11863         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
11864                      getCurSDLoc(), I->Prob, UnhandledProbs);
11865 
11866         if (CurMBB == SwitchMBB)
11867           visitSwitchCase(CB, SwitchMBB);
11868         else
11869           SL->SwitchCases.push_back(CB);
11870 
11871         break;
11872       }
11873     }
11874     CurMBB = Fallthrough;
11875   }
11876 }
11877 
11878 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
11879                                         const SwitchWorkListItem &W,
11880                                         Value *Cond,
11881                                         MachineBasicBlock *SwitchMBB) {
11882   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
11883          "Clusters not sorted?");
11884   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
11885 
11886   auto [LastLeft, FirstRight, LeftProb, RightProb] =
11887       SL->computeSplitWorkItemInfo(W);
11888 
11889   // Use the first element on the right as pivot since we will make less-than
11890   // comparisons against it.
11891   CaseClusterIt PivotCluster = FirstRight;
11892   assert(PivotCluster > W.FirstCluster);
11893   assert(PivotCluster <= W.LastCluster);
11894 
11895   CaseClusterIt FirstLeft = W.FirstCluster;
11896   CaseClusterIt LastRight = W.LastCluster;
11897 
11898   const ConstantInt *Pivot = PivotCluster->Low;
11899 
11900   // New blocks will be inserted immediately after the current one.
11901   MachineFunction::iterator BBI(W.MBB);
11902   ++BBI;
11903 
11904   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
11905   // we can branch to its destination directly if it's squeezed exactly in
11906   // between the known lower bound and Pivot - 1.
11907   MachineBasicBlock *LeftMBB;
11908   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
11909       FirstLeft->Low == W.GE &&
11910       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
11911     LeftMBB = FirstLeft->MBB;
11912   } else {
11913     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11914     FuncInfo.MF->insert(BBI, LeftMBB);
11915     WorkList.push_back(
11916         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
11917     // Put Cond in a virtual register to make it available from the new blocks.
11918     ExportFromCurrentBlock(Cond);
11919   }
11920 
11921   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
11922   // single cluster, RHS.Low == Pivot, and we can branch to its destination
11923   // directly if RHS.High equals the current upper bound.
11924   MachineBasicBlock *RightMBB;
11925   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
11926       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
11927     RightMBB = FirstRight->MBB;
11928   } else {
11929     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11930     FuncInfo.MF->insert(BBI, RightMBB);
11931     WorkList.push_back(
11932         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
11933     // Put Cond in a virtual register to make it available from the new blocks.
11934     ExportFromCurrentBlock(Cond);
11935   }
11936 
11937   // Create the CaseBlock record that will be used to lower the branch.
11938   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
11939                getCurSDLoc(), LeftProb, RightProb);
11940 
11941   if (W.MBB == SwitchMBB)
11942     visitSwitchCase(CB, SwitchMBB);
11943   else
11944     SL->SwitchCases.push_back(CB);
11945 }
11946 
11947 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
11948 // from the swith statement.
11949 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
11950                                             BranchProbability PeeledCaseProb) {
11951   if (PeeledCaseProb == BranchProbability::getOne())
11952     return BranchProbability::getZero();
11953   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
11954 
11955   uint32_t Numerator = CaseProb.getNumerator();
11956   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
11957   return BranchProbability(Numerator, std::max(Numerator, Denominator));
11958 }
11959 
11960 // Try to peel the top probability case if it exceeds the threshold.
11961 // Return current MachineBasicBlock for the switch statement if the peeling
11962 // does not occur.
11963 // If the peeling is performed, return the newly created MachineBasicBlock
11964 // for the peeled switch statement. Also update Clusters to remove the peeled
11965 // case. PeeledCaseProb is the BranchProbability for the peeled case.
11966 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
11967     const SwitchInst &SI, CaseClusterVector &Clusters,
11968     BranchProbability &PeeledCaseProb) {
11969   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11970   // Don't perform if there is only one cluster or optimizing for size.
11971   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
11972       TM.getOptLevel() == CodeGenOptLevel::None ||
11973       SwitchMBB->getParent()->getFunction().hasMinSize())
11974     return SwitchMBB;
11975 
11976   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
11977   unsigned PeeledCaseIndex = 0;
11978   bool SwitchPeeled = false;
11979   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
11980     CaseCluster &CC = Clusters[Index];
11981     if (CC.Prob < TopCaseProb)
11982       continue;
11983     TopCaseProb = CC.Prob;
11984     PeeledCaseIndex = Index;
11985     SwitchPeeled = true;
11986   }
11987   if (!SwitchPeeled)
11988     return SwitchMBB;
11989 
11990   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
11991                     << TopCaseProb << "\n");
11992 
11993   // Record the MBB for the peeled switch statement.
11994   MachineFunction::iterator BBI(SwitchMBB);
11995   ++BBI;
11996   MachineBasicBlock *PeeledSwitchMBB =
11997       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
11998   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
11999 
12000   ExportFromCurrentBlock(SI.getCondition());
12001   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
12002   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
12003                           nullptr,   nullptr,      TopCaseProb.getCompl()};
12004   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
12005 
12006   Clusters.erase(PeeledCaseIt);
12007   for (CaseCluster &CC : Clusters) {
12008     LLVM_DEBUG(
12009         dbgs() << "Scale the probablity for one cluster, before scaling: "
12010                << CC.Prob << "\n");
12011     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
12012     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
12013   }
12014   PeeledCaseProb = TopCaseProb;
12015   return PeeledSwitchMBB;
12016 }
12017 
12018 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
12019   // Extract cases from the switch.
12020   BranchProbabilityInfo *BPI = FuncInfo.BPI;
12021   CaseClusterVector Clusters;
12022   Clusters.reserve(SI.getNumCases());
12023   for (auto I : SI.cases()) {
12024     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
12025     const ConstantInt *CaseVal = I.getCaseValue();
12026     BranchProbability Prob =
12027         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
12028             : BranchProbability(1, SI.getNumCases() + 1);
12029     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
12030   }
12031 
12032   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
12033 
12034   // Cluster adjacent cases with the same destination. We do this at all
12035   // optimization levels because it's cheap to do and will make codegen faster
12036   // if there are many clusters.
12037   sortAndRangeify(Clusters);
12038 
12039   // The branch probablity of the peeled case.
12040   BranchProbability PeeledCaseProb = BranchProbability::getZero();
12041   MachineBasicBlock *PeeledSwitchMBB =
12042       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
12043 
12044   // If there is only the default destination, jump there directly.
12045   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
12046   if (Clusters.empty()) {
12047     assert(PeeledSwitchMBB == SwitchMBB);
12048     SwitchMBB->addSuccessor(DefaultMBB);
12049     if (DefaultMBB != NextBlock(SwitchMBB)) {
12050       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
12051                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
12052     }
12053     return;
12054   }
12055 
12056   SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(),
12057                      DAG.getBFI());
12058   SL->findBitTestClusters(Clusters, &SI);
12059 
12060   LLVM_DEBUG({
12061     dbgs() << "Case clusters: ";
12062     for (const CaseCluster &C : Clusters) {
12063       if (C.Kind == CC_JumpTable)
12064         dbgs() << "JT:";
12065       if (C.Kind == CC_BitTests)
12066         dbgs() << "BT:";
12067 
12068       C.Low->getValue().print(dbgs(), true);
12069       if (C.Low != C.High) {
12070         dbgs() << '-';
12071         C.High->getValue().print(dbgs(), true);
12072       }
12073       dbgs() << ' ';
12074     }
12075     dbgs() << '\n';
12076   });
12077 
12078   assert(!Clusters.empty());
12079   SwitchWorkList WorkList;
12080   CaseClusterIt First = Clusters.begin();
12081   CaseClusterIt Last = Clusters.end() - 1;
12082   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
12083   // Scale the branchprobability for DefaultMBB if the peel occurs and
12084   // DefaultMBB is not replaced.
12085   if (PeeledCaseProb != BranchProbability::getZero() &&
12086       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
12087     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
12088   WorkList.push_back(
12089       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
12090 
12091   while (!WorkList.empty()) {
12092     SwitchWorkListItem W = WorkList.pop_back_val();
12093     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
12094 
12095     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None &&
12096         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
12097       // For optimized builds, lower large range as a balanced binary tree.
12098       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
12099       continue;
12100     }
12101 
12102     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
12103   }
12104 }
12105 
12106 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
12107   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12108   auto DL = getCurSDLoc();
12109   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12110   setValue(&I, DAG.getStepVector(DL, ResultVT));
12111 }
12112 
12113 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
12114   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12115   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12116 
12117   SDLoc DL = getCurSDLoc();
12118   SDValue V = getValue(I.getOperand(0));
12119   assert(VT == V.getValueType() && "Malformed vector.reverse!");
12120 
12121   if (VT.isScalableVector()) {
12122     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
12123     return;
12124   }
12125 
12126   // Use VECTOR_SHUFFLE for the fixed-length vector
12127   // to maintain existing behavior.
12128   SmallVector<int, 8> Mask;
12129   unsigned NumElts = VT.getVectorMinNumElements();
12130   for (unsigned i = 0; i != NumElts; ++i)
12131     Mask.push_back(NumElts - 1 - i);
12132 
12133   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
12134 }
12135 
12136 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) {
12137   auto DL = getCurSDLoc();
12138   SDValue InVec = getValue(I.getOperand(0));
12139   EVT OutVT =
12140       InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
12141 
12142   unsigned OutNumElts = OutVT.getVectorMinNumElements();
12143 
12144   // ISD Node needs the input vectors split into two equal parts
12145   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
12146                            DAG.getVectorIdxConstant(0, DL));
12147   SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
12148                            DAG.getVectorIdxConstant(OutNumElts, DL));
12149 
12150   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
12151   // legalisation and combines.
12152   if (OutVT.isFixedLengthVector()) {
12153     SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
12154                                         createStrideMask(0, 2, OutNumElts));
12155     SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
12156                                        createStrideMask(1, 2, OutNumElts));
12157     SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc());
12158     setValue(&I, Res);
12159     return;
12160   }
12161 
12162   SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL,
12163                             DAG.getVTList(OutVT, OutVT), Lo, Hi);
12164   setValue(&I, Res);
12165 }
12166 
12167 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) {
12168   auto DL = getCurSDLoc();
12169   EVT InVT = getValue(I.getOperand(0)).getValueType();
12170   SDValue InVec0 = getValue(I.getOperand(0));
12171   SDValue InVec1 = getValue(I.getOperand(1));
12172   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12173   EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12174 
12175   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
12176   // legalisation and combines.
12177   if (OutVT.isFixedLengthVector()) {
12178     unsigned NumElts = InVT.getVectorMinNumElements();
12179     SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1);
12180     setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT),
12181                                       createInterleaveMask(NumElts, 2)));
12182     return;
12183   }
12184 
12185   SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL,
12186                             DAG.getVTList(InVT, InVT), InVec0, InVec1);
12187   Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0),
12188                     Res.getValue(1));
12189   setValue(&I, Res);
12190 }
12191 
12192 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
12193   SmallVector<EVT, 4> ValueVTs;
12194   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
12195                   ValueVTs);
12196   unsigned NumValues = ValueVTs.size();
12197   if (NumValues == 0) return;
12198 
12199   SmallVector<SDValue, 4> Values(NumValues);
12200   SDValue Op = getValue(I.getOperand(0));
12201 
12202   for (unsigned i = 0; i != NumValues; ++i)
12203     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
12204                             SDValue(Op.getNode(), Op.getResNo() + i));
12205 
12206   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
12207                            DAG.getVTList(ValueVTs), Values));
12208 }
12209 
12210 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
12211   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12212   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12213 
12214   SDLoc DL = getCurSDLoc();
12215   SDValue V1 = getValue(I.getOperand(0));
12216   SDValue V2 = getValue(I.getOperand(1));
12217   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
12218 
12219   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
12220   if (VT.isScalableVector()) {
12221     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
12222     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
12223                              DAG.getConstant(Imm, DL, IdxVT)));
12224     return;
12225   }
12226 
12227   unsigned NumElts = VT.getVectorNumElements();
12228 
12229   uint64_t Idx = (NumElts + Imm) % NumElts;
12230 
12231   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
12232   SmallVector<int, 8> Mask;
12233   for (unsigned i = 0; i < NumElts; ++i)
12234     Mask.push_back(Idx + i);
12235   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
12236 }
12237 
12238 // Consider the following MIR after SelectionDAG, which produces output in
12239 // phyregs in the first case or virtregs in the second case.
12240 //
12241 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx
12242 // %5:gr32 = COPY $ebx
12243 // %6:gr32 = COPY $edx
12244 // %1:gr32 = COPY %6:gr32
12245 // %0:gr32 = COPY %5:gr32
12246 //
12247 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32
12248 // %1:gr32 = COPY %6:gr32
12249 // %0:gr32 = COPY %5:gr32
12250 //
12251 // Given %0, we'd like to return $ebx in the first case and %5 in the second.
12252 // Given %1, we'd like to return $edx in the first case and %6 in the second.
12253 //
12254 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap
12255 // to a single virtreg (such as %0). The remaining outputs monotonically
12256 // increase in virtreg number from there. If a callbr has no outputs, then it
12257 // should not have a corresponding callbr landingpad; in fact, the callbr
12258 // landingpad would not even be able to refer to such a callbr.
12259 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) {
12260   MachineInstr *MI = MRI.def_begin(Reg)->getParent();
12261   // There is definitely at least one copy.
12262   assert(MI->getOpcode() == TargetOpcode::COPY &&
12263          "start of copy chain MUST be COPY");
12264   Reg = MI->getOperand(1).getReg();
12265   MI = MRI.def_begin(Reg)->getParent();
12266   // There may be an optional second copy.
12267   if (MI->getOpcode() == TargetOpcode::COPY) {
12268     assert(Reg.isVirtual() && "expected COPY of virtual register");
12269     Reg = MI->getOperand(1).getReg();
12270     assert(Reg.isPhysical() && "expected COPY of physical register");
12271     MI = MRI.def_begin(Reg)->getParent();
12272   }
12273   // The start of the chain must be an INLINEASM_BR.
12274   assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR &&
12275          "end of copy chain MUST be INLINEASM_BR");
12276   return Reg;
12277 }
12278 
12279 // We must do this walk rather than the simpler
12280 //   setValue(&I, getCopyFromRegs(CBR, CBR->getType()));
12281 // otherwise we will end up with copies of virtregs only valid along direct
12282 // edges.
12283 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) {
12284   SmallVector<EVT, 8> ResultVTs;
12285   SmallVector<SDValue, 8> ResultValues;
12286   const auto *CBR =
12287       cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator());
12288 
12289   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12290   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
12291   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
12292 
12293   unsigned InitialDef = FuncInfo.ValueMap[CBR];
12294   SDValue Chain = DAG.getRoot();
12295 
12296   // Re-parse the asm constraints string.
12297   TargetLowering::AsmOperandInfoVector TargetConstraints =
12298       TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR);
12299   for (auto &T : TargetConstraints) {
12300     SDISelAsmOperandInfo OpInfo(T);
12301     if (OpInfo.Type != InlineAsm::isOutput)
12302       continue;
12303 
12304     // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the
12305     // individual constraint.
12306     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
12307 
12308     switch (OpInfo.ConstraintType) {
12309     case TargetLowering::C_Register:
12310     case TargetLowering::C_RegisterClass: {
12311       // Fill in OpInfo.AssignedRegs.Regs.
12312       getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo);
12313 
12314       // getRegistersForValue may produce 1 to many registers based on whether
12315       // the OpInfo.ConstraintVT is legal on the target or not.
12316       for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) {
12317         Register OriginalDef = FollowCopyChain(MRI, InitialDef++);
12318         if (Register::isPhysicalRegister(OriginalDef))
12319           FuncInfo.MBB->addLiveIn(OriginalDef);
12320         // Update the assigned registers to use the original defs.
12321         OpInfo.AssignedRegs.Regs[i] = OriginalDef;
12322       }
12323 
12324       SDValue V = OpInfo.AssignedRegs.getCopyFromRegs(
12325           DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR);
12326       ResultValues.push_back(V);
12327       ResultVTs.push_back(OpInfo.ConstraintVT);
12328       break;
12329     }
12330     case TargetLowering::C_Other: {
12331       SDValue Flag;
12332       SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
12333                                                   OpInfo, DAG);
12334       ++InitialDef;
12335       ResultValues.push_back(V);
12336       ResultVTs.push_back(OpInfo.ConstraintVT);
12337       break;
12338     }
12339     default:
12340       break;
12341     }
12342   }
12343   SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
12344                           DAG.getVTList(ResultVTs), ResultValues);
12345   setValue(&I, V);
12346 }
12347