xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 2fad6e69851ecbaf01553cd5790e4575290bf0a9)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
33 #include "llvm/CodeGen/CodeGenCommonISel.h"
34 #include "llvm/CodeGen/FunctionLoweringInfo.h"
35 #include "llvm/CodeGen/GCMetadata.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
42 #include "llvm/CodeGen/MachineMemOperand.h"
43 #include "llvm/CodeGen/MachineModuleInfo.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/CodeGen/RuntimeLibcalls.h"
47 #include "llvm/CodeGen/SelectionDAG.h"
48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
49 #include "llvm/CodeGen/StackMaps.h"
50 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
51 #include "llvm/CodeGen/TargetFrameLowering.h"
52 #include "llvm/CodeGen/TargetInstrInfo.h"
53 #include "llvm/CodeGen/TargetOpcodes.h"
54 #include "llvm/CodeGen/TargetRegisterInfo.h"
55 #include "llvm/CodeGen/TargetSubtargetInfo.h"
56 #include "llvm/CodeGen/WinEHFuncInfo.h"
57 #include "llvm/IR/Argument.h"
58 #include "llvm/IR/Attributes.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/CFG.h"
61 #include "llvm/IR/CallingConv.h"
62 #include "llvm/IR/Constant.h"
63 #include "llvm/IR/ConstantRange.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfo.h"
67 #include "llvm/IR/DebugInfoMetadata.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/DiagnosticInfo.h"
70 #include "llvm/IR/EHPersonalities.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GetElementPtrTypeIterator.h"
73 #include "llvm/IR/InlineAsm.h"
74 #include "llvm/IR/InstrTypes.h"
75 #include "llvm/IR/Instructions.h"
76 #include "llvm/IR/IntrinsicInst.h"
77 #include "llvm/IR/Intrinsics.h"
78 #include "llvm/IR/IntrinsicsAArch64.h"
79 #include "llvm/IR/IntrinsicsWebAssembly.h"
80 #include "llvm/IR/LLVMContext.h"
81 #include "llvm/IR/Metadata.h"
82 #include "llvm/IR/Module.h"
83 #include "llvm/IR/Operator.h"
84 #include "llvm/IR/PatternMatch.h"
85 #include "llvm/IR/Statepoint.h"
86 #include "llvm/IR/Type.h"
87 #include "llvm/IR/User.h"
88 #include "llvm/IR/Value.h"
89 #include "llvm/MC/MCContext.h"
90 #include "llvm/Support/AtomicOrdering.h"
91 #include "llvm/Support/Casting.h"
92 #include "llvm/Support/CommandLine.h"
93 #include "llvm/Support/Compiler.h"
94 #include "llvm/Support/Debug.h"
95 #include "llvm/Support/MathExtras.h"
96 #include "llvm/Support/raw_ostream.h"
97 #include "llvm/Target/TargetIntrinsicInfo.h"
98 #include "llvm/Target/TargetMachine.h"
99 #include "llvm/Target/TargetOptions.h"
100 #include "llvm/TargetParser/Triple.h"
101 #include "llvm/Transforms/Utils/Local.h"
102 #include <cstddef>
103 #include <iterator>
104 #include <limits>
105 #include <optional>
106 #include <tuple>
107 
108 using namespace llvm;
109 using namespace PatternMatch;
110 using namespace SwitchCG;
111 
112 #define DEBUG_TYPE "isel"
113 
114 /// LimitFloatPrecision - Generate low-precision inline sequences for
115 /// some float libcalls (6, 8 or 12 bits).
116 static unsigned LimitFloatPrecision;
117 
118 static cl::opt<bool>
119     InsertAssertAlign("insert-assert-align", cl::init(true),
120                       cl::desc("Insert the experimental `assertalign` node."),
121                       cl::ReallyHidden);
122 
123 static cl::opt<unsigned, true>
124     LimitFPPrecision("limit-float-precision",
125                      cl::desc("Generate low-precision inline sequences "
126                               "for some float libcalls"),
127                      cl::location(LimitFloatPrecision), cl::Hidden,
128                      cl::init(0));
129 
130 static cl::opt<unsigned> SwitchPeelThreshold(
131     "switch-peel-threshold", cl::Hidden, cl::init(66),
132     cl::desc("Set the case probability threshold for peeling the case from a "
133              "switch statement. A value greater than 100 will void this "
134              "optimization"));
135 
136 // Limit the width of DAG chains. This is important in general to prevent
137 // DAG-based analysis from blowing up. For example, alias analysis and
138 // load clustering may not complete in reasonable time. It is difficult to
139 // recognize and avoid this situation within each individual analysis, and
140 // future analyses are likely to have the same behavior. Limiting DAG width is
141 // the safe approach and will be especially important with global DAGs.
142 //
143 // MaxParallelChains default is arbitrarily high to avoid affecting
144 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
145 // sequence over this should have been converted to llvm.memcpy by the
146 // frontend. It is easy to induce this behavior with .ll code such as:
147 // %buffer = alloca [4096 x i8]
148 // %data = load [4096 x i8]* %argPtr
149 // store [4096 x i8] %data, [4096 x i8]* %buffer
150 static const unsigned MaxParallelChains = 64;
151 
152 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
153                                       const SDValue *Parts, unsigned NumParts,
154                                       MVT PartVT, EVT ValueVT, const Value *V,
155                                       std::optional<CallingConv::ID> CC);
156 
157 /// getCopyFromParts - Create a value that contains the specified legal parts
158 /// combined into the value they represent.  If the parts combine to a type
159 /// larger than ValueVT then AssertOp can be used to specify whether the extra
160 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
161 /// (ISD::AssertSext).
162 static SDValue
163 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
164                  unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
165                  std::optional<CallingConv::ID> CC = std::nullopt,
166                  std::optional<ISD::NodeType> AssertOp = std::nullopt) {
167   // Let the target assemble the parts if it wants to
168   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
169   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
170                                                    PartVT, ValueVT, CC))
171     return Val;
172 
173   if (ValueVT.isVector())
174     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
175                                   CC);
176 
177   assert(NumParts > 0 && "No parts to assemble!");
178   SDValue Val = Parts[0];
179 
180   if (NumParts > 1) {
181     // Assemble the value from multiple parts.
182     if (ValueVT.isInteger()) {
183       unsigned PartBits = PartVT.getSizeInBits();
184       unsigned ValueBits = ValueVT.getSizeInBits();
185 
186       // Assemble the power of 2 part.
187       unsigned RoundParts = llvm::bit_floor(NumParts);
188       unsigned RoundBits = PartBits * RoundParts;
189       EVT RoundVT = RoundBits == ValueBits ?
190         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
191       SDValue Lo, Hi;
192 
193       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
194 
195       if (RoundParts > 2) {
196         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
197                               PartVT, HalfVT, V);
198         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
199                               RoundParts / 2, PartVT, HalfVT, V);
200       } else {
201         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
202         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
203       }
204 
205       if (DAG.getDataLayout().isBigEndian())
206         std::swap(Lo, Hi);
207 
208       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
209 
210       if (RoundParts < NumParts) {
211         // Assemble the trailing non-power-of-2 part.
212         unsigned OddParts = NumParts - RoundParts;
213         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
214         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
215                               OddVT, V, CC);
216 
217         // Combine the round and odd parts.
218         Lo = Val;
219         if (DAG.getDataLayout().isBigEndian())
220           std::swap(Lo, Hi);
221         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
222         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
223         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
224                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
225                                          TLI.getShiftAmountTy(
226                                              TotalVT, DAG.getDataLayout())));
227         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
228         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
229       }
230     } else if (PartVT.isFloatingPoint()) {
231       // FP split into multiple FP parts (for ppcf128)
232       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
233              "Unexpected split");
234       SDValue Lo, Hi;
235       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
236       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
237       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
238         std::swap(Lo, Hi);
239       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
240     } else {
241       // FP split into integer parts (soft fp)
242       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
243              !PartVT.isVector() && "Unexpected split");
244       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
245       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
246     }
247   }
248 
249   // There is now one part, held in Val.  Correct it to match ValueVT.
250   // PartEVT is the type of the register class that holds the value.
251   // ValueVT is the type of the inline asm operation.
252   EVT PartEVT = Val.getValueType();
253 
254   if (PartEVT == ValueVT)
255     return Val;
256 
257   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
258       ValueVT.bitsLT(PartEVT)) {
259     // For an FP value in an integer part, we need to truncate to the right
260     // width first.
261     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
262     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
263   }
264 
265   // Handle types that have the same size.
266   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
267     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
268 
269   // Handle types with different sizes.
270   if (PartEVT.isInteger() && ValueVT.isInteger()) {
271     if (ValueVT.bitsLT(PartEVT)) {
272       // For a truncate, see if we have any information to
273       // indicate whether the truncated bits will always be
274       // zero or sign-extension.
275       if (AssertOp)
276         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
277                           DAG.getValueType(ValueVT));
278       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
279     }
280     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
281   }
282 
283   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
284     // FP_ROUND's are always exact here.
285     if (ValueVT.bitsLT(Val.getValueType()))
286       return DAG.getNode(
287           ISD::FP_ROUND, DL, ValueVT, Val,
288           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
289 
290     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
291   }
292 
293   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
294   // then truncating.
295   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
296       ValueVT.bitsLT(PartEVT)) {
297     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
298     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
299   }
300 
301   report_fatal_error("Unknown mismatch in getCopyFromParts!");
302 }
303 
304 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
305                                               const Twine &ErrMsg) {
306   const Instruction *I = dyn_cast_or_null<Instruction>(V);
307   if (!V)
308     return Ctx.emitError(ErrMsg);
309 
310   const char *AsmError = ", possible invalid constraint for vector type";
311   if (const CallInst *CI = dyn_cast<CallInst>(I))
312     if (CI->isInlineAsm())
313       return Ctx.emitError(I, ErrMsg + AsmError);
314 
315   return Ctx.emitError(I, ErrMsg);
316 }
317 
318 /// getCopyFromPartsVector - Create a value that contains the specified legal
319 /// parts combined into the value they represent.  If the parts combine to a
320 /// type larger than ValueVT then AssertOp can be used to specify whether the
321 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
322 /// ValueVT (ISD::AssertSext).
323 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
324                                       const SDValue *Parts, unsigned NumParts,
325                                       MVT PartVT, EVT ValueVT, const Value *V,
326                                       std::optional<CallingConv::ID> CallConv) {
327   assert(ValueVT.isVector() && "Not a vector value");
328   assert(NumParts > 0 && "No parts to assemble!");
329   const bool IsABIRegCopy = CallConv.has_value();
330 
331   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
332   SDValue Val = Parts[0];
333 
334   // Handle a multi-element vector.
335   if (NumParts > 1) {
336     EVT IntermediateVT;
337     MVT RegisterVT;
338     unsigned NumIntermediates;
339     unsigned NumRegs;
340 
341     if (IsABIRegCopy) {
342       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
343           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
344           NumIntermediates, RegisterVT);
345     } else {
346       NumRegs =
347           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
348                                      NumIntermediates, RegisterVT);
349     }
350 
351     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
352     NumParts = NumRegs; // Silence a compiler warning.
353     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
354     assert(RegisterVT.getSizeInBits() ==
355            Parts[0].getSimpleValueType().getSizeInBits() &&
356            "Part type sizes don't match!");
357 
358     // Assemble the parts into intermediate operands.
359     SmallVector<SDValue, 8> Ops(NumIntermediates);
360     if (NumIntermediates == NumParts) {
361       // If the register was not expanded, truncate or copy the value,
362       // as appropriate.
363       for (unsigned i = 0; i != NumParts; ++i)
364         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
365                                   PartVT, IntermediateVT, V, CallConv);
366     } else if (NumParts > 0) {
367       // If the intermediate type was expanded, build the intermediate
368       // operands from the parts.
369       assert(NumParts % NumIntermediates == 0 &&
370              "Must expand into a divisible number of parts!");
371       unsigned Factor = NumParts / NumIntermediates;
372       for (unsigned i = 0; i != NumIntermediates; ++i)
373         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
374                                   PartVT, IntermediateVT, V, CallConv);
375     }
376 
377     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
378     // intermediate operands.
379     EVT BuiltVectorTy =
380         IntermediateVT.isVector()
381             ? EVT::getVectorVT(
382                   *DAG.getContext(), IntermediateVT.getScalarType(),
383                   IntermediateVT.getVectorElementCount() * NumParts)
384             : EVT::getVectorVT(*DAG.getContext(),
385                                IntermediateVT.getScalarType(),
386                                NumIntermediates);
387     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
388                                                 : ISD::BUILD_VECTOR,
389                       DL, BuiltVectorTy, Ops);
390   }
391 
392   // There is now one part, held in Val.  Correct it to match ValueVT.
393   EVT PartEVT = Val.getValueType();
394 
395   if (PartEVT == ValueVT)
396     return Val;
397 
398   if (PartEVT.isVector()) {
399     // Vector/Vector bitcast.
400     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
401       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
402 
403     // If the parts vector has more elements than the value vector, then we
404     // have a vector widening case (e.g. <2 x float> -> <4 x float>).
405     // Extract the elements we want.
406     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
407       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
408               ValueVT.getVectorElementCount().getKnownMinValue()) &&
409              (PartEVT.getVectorElementCount().isScalable() ==
410               ValueVT.getVectorElementCount().isScalable()) &&
411              "Cannot narrow, it would be a lossy transformation");
412       PartEVT =
413           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
414                            ValueVT.getVectorElementCount());
415       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
416                         DAG.getVectorIdxConstant(0, DL));
417       if (PartEVT == ValueVT)
418         return Val;
419       if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
420         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
421 
422       // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>).
423       if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
424         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
425     }
426 
427     // Promoted vector extract
428     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
429   }
430 
431   // Trivial bitcast if the types are the same size and the destination
432   // vector type is legal.
433   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
434       TLI.isTypeLegal(ValueVT))
435     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
436 
437   if (ValueVT.getVectorNumElements() != 1) {
438      // Certain ABIs require that vectors are passed as integers. For vectors
439      // are the same size, this is an obvious bitcast.
440      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
441        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
442      } else if (ValueVT.bitsLT(PartEVT)) {
443        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
444        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
445        // Drop the extra bits.
446        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
447        return DAG.getBitcast(ValueVT, Val);
448      }
449 
450      diagnosePossiblyInvalidConstraint(
451          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
452      return DAG.getUNDEF(ValueVT);
453   }
454 
455   // Handle cases such as i8 -> <1 x i1>
456   EVT ValueSVT = ValueVT.getVectorElementType();
457   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
458     unsigned ValueSize = ValueSVT.getSizeInBits();
459     if (ValueSize == PartEVT.getSizeInBits()) {
460       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
461     } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
462       // It's possible a scalar floating point type gets softened to integer and
463       // then promoted to a larger integer. If PartEVT is the larger integer
464       // we need to truncate it and then bitcast to the FP type.
465       assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
466       EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
467       Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
468       Val = DAG.getBitcast(ValueSVT, Val);
469     } else {
470       Val = ValueVT.isFloatingPoint()
471                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
472                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
473     }
474   }
475 
476   return DAG.getBuildVector(ValueVT, DL, Val);
477 }
478 
479 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
480                                  SDValue Val, SDValue *Parts, unsigned NumParts,
481                                  MVT PartVT, const Value *V,
482                                  std::optional<CallingConv::ID> CallConv);
483 
484 /// getCopyToParts - Create a series of nodes that contain the specified value
485 /// split into legal parts.  If the parts contain more bits than Val, then, for
486 /// integers, ExtendKind can be used to specify how to generate the extra bits.
487 static void
488 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
489                unsigned NumParts, MVT PartVT, const Value *V,
490                std::optional<CallingConv::ID> CallConv = std::nullopt,
491                ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
492   // Let the target split the parts if it wants to
493   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
494   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
495                                       CallConv))
496     return;
497   EVT ValueVT = Val.getValueType();
498 
499   // Handle the vector case separately.
500   if (ValueVT.isVector())
501     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
502                                 CallConv);
503 
504   unsigned OrigNumParts = NumParts;
505   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
506          "Copying to an illegal type!");
507 
508   if (NumParts == 0)
509     return;
510 
511   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
512   EVT PartEVT = PartVT;
513   if (PartEVT == ValueVT) {
514     assert(NumParts == 1 && "No-op copy with multiple parts!");
515     Parts[0] = Val;
516     return;
517   }
518 
519   unsigned PartBits = PartVT.getSizeInBits();
520   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
521     // If the parts cover more bits than the value has, promote the value.
522     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
523       assert(NumParts == 1 && "Do not know what to promote to!");
524       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
525     } else {
526       if (ValueVT.isFloatingPoint()) {
527         // FP values need to be bitcast, then extended if they are being put
528         // into a larger container.
529         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
530         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
531       }
532       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
533              ValueVT.isInteger() &&
534              "Unknown mismatch!");
535       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
536       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
537       if (PartVT == MVT::x86mmx)
538         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
539     }
540   } else if (PartBits == ValueVT.getSizeInBits()) {
541     // Different types of the same size.
542     assert(NumParts == 1 && PartEVT != ValueVT);
543     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
544   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
545     // If the parts cover less bits than value has, truncate the value.
546     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
547            ValueVT.isInteger() &&
548            "Unknown mismatch!");
549     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
550     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
551     if (PartVT == MVT::x86mmx)
552       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
553   }
554 
555   // The value may have changed - recompute ValueVT.
556   ValueVT = Val.getValueType();
557   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
558          "Failed to tile the value with PartVT!");
559 
560   if (NumParts == 1) {
561     if (PartEVT != ValueVT) {
562       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
563                                         "scalar-to-vector conversion failed");
564       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
565     }
566 
567     Parts[0] = Val;
568     return;
569   }
570 
571   // Expand the value into multiple parts.
572   if (NumParts & (NumParts - 1)) {
573     // The number of parts is not a power of 2.  Split off and copy the tail.
574     assert(PartVT.isInteger() && ValueVT.isInteger() &&
575            "Do not know what to expand to!");
576     unsigned RoundParts = llvm::bit_floor(NumParts);
577     unsigned RoundBits = RoundParts * PartBits;
578     unsigned OddParts = NumParts - RoundParts;
579     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
580       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
581 
582     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
583                    CallConv);
584 
585     if (DAG.getDataLayout().isBigEndian())
586       // The odd parts were reversed by getCopyToParts - unreverse them.
587       std::reverse(Parts + RoundParts, Parts + NumParts);
588 
589     NumParts = RoundParts;
590     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
591     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
592   }
593 
594   // The number of parts is a power of 2.  Repeatedly bisect the value using
595   // EXTRACT_ELEMENT.
596   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
597                          EVT::getIntegerVT(*DAG.getContext(),
598                                            ValueVT.getSizeInBits()),
599                          Val);
600 
601   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
602     for (unsigned i = 0; i < NumParts; i += StepSize) {
603       unsigned ThisBits = StepSize * PartBits / 2;
604       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
605       SDValue &Part0 = Parts[i];
606       SDValue &Part1 = Parts[i+StepSize/2];
607 
608       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
609                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
610       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
611                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
612 
613       if (ThisBits == PartBits && ThisVT != PartVT) {
614         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
615         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
616       }
617     }
618   }
619 
620   if (DAG.getDataLayout().isBigEndian())
621     std::reverse(Parts, Parts + OrigNumParts);
622 }
623 
624 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
625                                      const SDLoc &DL, EVT PartVT) {
626   if (!PartVT.isVector())
627     return SDValue();
628 
629   EVT ValueVT = Val.getValueType();
630   EVT PartEVT = PartVT.getVectorElementType();
631   EVT ValueEVT = ValueVT.getVectorElementType();
632   ElementCount PartNumElts = PartVT.getVectorElementCount();
633   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
634 
635   // We only support widening vectors with equivalent element types and
636   // fixed/scalable properties. If a target needs to widen a fixed-length type
637   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
638   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
639       PartNumElts.isScalable() != ValueNumElts.isScalable())
640     return SDValue();
641 
642   // Have a try for bf16 because some targets share its ABI with fp16.
643   if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) {
644     assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
645            "Cannot widen to illegal type");
646     Val = DAG.getNode(ISD::BITCAST, DL,
647                       ValueVT.changeVectorElementType(MVT::f16), Val);
648   } else if (PartEVT != ValueEVT) {
649     return SDValue();
650   }
651 
652   // Widening a scalable vector to another scalable vector is done by inserting
653   // the vector into a larger undef one.
654   if (PartNumElts.isScalable())
655     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
656                        Val, DAG.getVectorIdxConstant(0, DL));
657 
658   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
659   // undef elements.
660   SmallVector<SDValue, 16> Ops;
661   DAG.ExtractVectorElements(Val, Ops);
662   SDValue EltUndef = DAG.getUNDEF(PartEVT);
663   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
664 
665   // FIXME: Use CONCAT for 2x -> 4x.
666   return DAG.getBuildVector(PartVT, DL, Ops);
667 }
668 
669 /// getCopyToPartsVector - Create a series of nodes that contain the specified
670 /// value split into legal parts.
671 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
672                                  SDValue Val, SDValue *Parts, unsigned NumParts,
673                                  MVT PartVT, const Value *V,
674                                  std::optional<CallingConv::ID> CallConv) {
675   EVT ValueVT = Val.getValueType();
676   assert(ValueVT.isVector() && "Not a vector");
677   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
678   const bool IsABIRegCopy = CallConv.has_value();
679 
680   if (NumParts == 1) {
681     EVT PartEVT = PartVT;
682     if (PartEVT == ValueVT) {
683       // Nothing to do.
684     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
685       // Bitconvert vector->vector case.
686       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
687     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
688       Val = Widened;
689     } else if (PartVT.isVector() &&
690                PartEVT.getVectorElementType().bitsGE(
691                    ValueVT.getVectorElementType()) &&
692                PartEVT.getVectorElementCount() ==
693                    ValueVT.getVectorElementCount()) {
694 
695       // Promoted vector extract
696       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
697     } else if (PartEVT.isVector() &&
698                PartEVT.getVectorElementType() !=
699                    ValueVT.getVectorElementType() &&
700                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
701                    TargetLowering::TypeWidenVector) {
702       // Combination of widening and promotion.
703       EVT WidenVT =
704           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
705                            PartVT.getVectorElementCount());
706       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
707       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
708     } else {
709       // Don't extract an integer from a float vector. This can happen if the
710       // FP type gets softened to integer and then promoted. The promotion
711       // prevents it from being picked up by the earlier bitcast case.
712       if (ValueVT.getVectorElementCount().isScalar() &&
713           (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
714         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
715                           DAG.getVectorIdxConstant(0, DL));
716       } else {
717         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
718         assert(PartVT.getFixedSizeInBits() > ValueSize &&
719                "lossy conversion of vector to scalar type");
720         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
721         Val = DAG.getBitcast(IntermediateType, Val);
722         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
723       }
724     }
725 
726     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
727     Parts[0] = Val;
728     return;
729   }
730 
731   // Handle a multi-element vector.
732   EVT IntermediateVT;
733   MVT RegisterVT;
734   unsigned NumIntermediates;
735   unsigned NumRegs;
736   if (IsABIRegCopy) {
737     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
738         *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
739         RegisterVT);
740   } else {
741     NumRegs =
742         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
743                                    NumIntermediates, RegisterVT);
744   }
745 
746   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
747   NumParts = NumRegs; // Silence a compiler warning.
748   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
749 
750   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
751          "Mixing scalable and fixed vectors when copying in parts");
752 
753   std::optional<ElementCount> DestEltCnt;
754 
755   if (IntermediateVT.isVector())
756     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
757   else
758     DestEltCnt = ElementCount::getFixed(NumIntermediates);
759 
760   EVT BuiltVectorTy = EVT::getVectorVT(
761       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
762 
763   if (ValueVT == BuiltVectorTy) {
764     // Nothing to do.
765   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
766     // Bitconvert vector->vector case.
767     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
768   } else {
769     if (BuiltVectorTy.getVectorElementType().bitsGT(
770             ValueVT.getVectorElementType())) {
771       // Integer promotion.
772       ValueVT = EVT::getVectorVT(*DAG.getContext(),
773                                  BuiltVectorTy.getVectorElementType(),
774                                  ValueVT.getVectorElementCount());
775       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
776     }
777 
778     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
779       Val = Widened;
780     }
781   }
782 
783   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
784 
785   // Split the vector into intermediate operands.
786   SmallVector<SDValue, 8> Ops(NumIntermediates);
787   for (unsigned i = 0; i != NumIntermediates; ++i) {
788     if (IntermediateVT.isVector()) {
789       // This does something sensible for scalable vectors - see the
790       // definition of EXTRACT_SUBVECTOR for further details.
791       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
792       Ops[i] =
793           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
794                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
795     } else {
796       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
797                            DAG.getVectorIdxConstant(i, DL));
798     }
799   }
800 
801   // Split the intermediate operands into legal parts.
802   if (NumParts == NumIntermediates) {
803     // If the register was not expanded, promote or copy the value,
804     // as appropriate.
805     for (unsigned i = 0; i != NumParts; ++i)
806       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
807   } else if (NumParts > 0) {
808     // If the intermediate type was expanded, split each the value into
809     // legal parts.
810     assert(NumIntermediates != 0 && "division by zero");
811     assert(NumParts % NumIntermediates == 0 &&
812            "Must expand into a divisible number of parts!");
813     unsigned Factor = NumParts / NumIntermediates;
814     for (unsigned i = 0; i != NumIntermediates; ++i)
815       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
816                      CallConv);
817   }
818 }
819 
820 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
821                            EVT valuevt, std::optional<CallingConv::ID> CC)
822     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
823       RegCount(1, regs.size()), CallConv(CC) {}
824 
825 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
826                            const DataLayout &DL, unsigned Reg, Type *Ty,
827                            std::optional<CallingConv::ID> CC) {
828   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
829 
830   CallConv = CC;
831 
832   for (EVT ValueVT : ValueVTs) {
833     unsigned NumRegs =
834         isABIMangled()
835             ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
836             : TLI.getNumRegisters(Context, ValueVT);
837     MVT RegisterVT =
838         isABIMangled()
839             ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
840             : TLI.getRegisterType(Context, ValueVT);
841     for (unsigned i = 0; i != NumRegs; ++i)
842       Regs.push_back(Reg + i);
843     RegVTs.push_back(RegisterVT);
844     RegCount.push_back(NumRegs);
845     Reg += NumRegs;
846   }
847 }
848 
849 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
850                                       FunctionLoweringInfo &FuncInfo,
851                                       const SDLoc &dl, SDValue &Chain,
852                                       SDValue *Glue, const Value *V) const {
853   // A Value with type {} or [0 x %t] needs no registers.
854   if (ValueVTs.empty())
855     return SDValue();
856 
857   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
858 
859   // Assemble the legal parts into the final values.
860   SmallVector<SDValue, 4> Values(ValueVTs.size());
861   SmallVector<SDValue, 8> Parts;
862   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
863     // Copy the legal parts from the registers.
864     EVT ValueVT = ValueVTs[Value];
865     unsigned NumRegs = RegCount[Value];
866     MVT RegisterVT = isABIMangled()
867                          ? TLI.getRegisterTypeForCallingConv(
868                                *DAG.getContext(), *CallConv, RegVTs[Value])
869                          : RegVTs[Value];
870 
871     Parts.resize(NumRegs);
872     for (unsigned i = 0; i != NumRegs; ++i) {
873       SDValue P;
874       if (!Glue) {
875         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
876       } else {
877         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue);
878         *Glue = P.getValue(2);
879       }
880 
881       Chain = P.getValue(1);
882       Parts[i] = P;
883 
884       // If the source register was virtual and if we know something about it,
885       // add an assert node.
886       if (!Register::isVirtualRegister(Regs[Part + i]) ||
887           !RegisterVT.isInteger())
888         continue;
889 
890       const FunctionLoweringInfo::LiveOutInfo *LOI =
891         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
892       if (!LOI)
893         continue;
894 
895       unsigned RegSize = RegisterVT.getScalarSizeInBits();
896       unsigned NumSignBits = LOI->NumSignBits;
897       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
898 
899       if (NumZeroBits == RegSize) {
900         // The current value is a zero.
901         // Explicitly express that as it would be easier for
902         // optimizations to kick in.
903         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
904         continue;
905       }
906 
907       // FIXME: We capture more information than the dag can represent.  For
908       // now, just use the tightest assertzext/assertsext possible.
909       bool isSExt;
910       EVT FromVT(MVT::Other);
911       if (NumZeroBits) {
912         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
913         isSExt = false;
914       } else if (NumSignBits > 1) {
915         FromVT =
916             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
917         isSExt = true;
918       } else {
919         continue;
920       }
921       // Add an assertion node.
922       assert(FromVT != MVT::Other);
923       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
924                              RegisterVT, P, DAG.getValueType(FromVT));
925     }
926 
927     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
928                                      RegisterVT, ValueVT, V, CallConv);
929     Part += NumRegs;
930     Parts.clear();
931   }
932 
933   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
934 }
935 
936 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
937                                  const SDLoc &dl, SDValue &Chain, SDValue *Glue,
938                                  const Value *V,
939                                  ISD::NodeType PreferredExtendType) const {
940   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
941   ISD::NodeType ExtendKind = PreferredExtendType;
942 
943   // Get the list of the values's legal parts.
944   unsigned NumRegs = Regs.size();
945   SmallVector<SDValue, 8> Parts(NumRegs);
946   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
947     unsigned NumParts = RegCount[Value];
948 
949     MVT RegisterVT = isABIMangled()
950                          ? TLI.getRegisterTypeForCallingConv(
951                                *DAG.getContext(), *CallConv, RegVTs[Value])
952                          : RegVTs[Value];
953 
954     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
955       ExtendKind = ISD::ZERO_EXTEND;
956 
957     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
958                    NumParts, RegisterVT, V, CallConv, ExtendKind);
959     Part += NumParts;
960   }
961 
962   // Copy the parts into the registers.
963   SmallVector<SDValue, 8> Chains(NumRegs);
964   for (unsigned i = 0; i != NumRegs; ++i) {
965     SDValue Part;
966     if (!Glue) {
967       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
968     } else {
969       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue);
970       *Glue = Part.getValue(1);
971     }
972 
973     Chains[i] = Part.getValue(0);
974   }
975 
976   if (NumRegs == 1 || Glue)
977     // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is
978     // flagged to it. That is the CopyToReg nodes and the user are considered
979     // a single scheduling unit. If we create a TokenFactor and return it as
980     // chain, then the TokenFactor is both a predecessor (operand) of the
981     // user as well as a successor (the TF operands are flagged to the user).
982     // c1, f1 = CopyToReg
983     // c2, f2 = CopyToReg
984     // c3     = TokenFactor c1, c2
985     // ...
986     //        = op c3, ..., f2
987     Chain = Chains[NumRegs-1];
988   else
989     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
990 }
991 
992 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching,
993                                         unsigned MatchingIdx, const SDLoc &dl,
994                                         SelectionDAG &DAG,
995                                         std::vector<SDValue> &Ops) const {
996   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
997 
998   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
999   if (HasMatching)
1000     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
1001   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
1002     // Put the register class of the virtual registers in the flag word.  That
1003     // way, later passes can recompute register class constraints for inline
1004     // assembly as well as normal instructions.
1005     // Don't do this for tied operands that can use the regclass information
1006     // from the def.
1007     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1008     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
1009     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
1010   }
1011 
1012   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
1013   Ops.push_back(Res);
1014 
1015   if (Code == InlineAsm::Kind::Clobber) {
1016     // Clobbers should always have a 1:1 mapping with registers, and may
1017     // reference registers that have illegal (e.g. vector) types. Hence, we
1018     // shouldn't try to apply any sort of splitting logic to them.
1019     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1020            "No 1:1 mapping from clobbers to regs?");
1021     Register SP = TLI.getStackPointerRegisterToSaveRestore();
1022     (void)SP;
1023     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1024       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1025       assert(
1026           (Regs[I] != SP ||
1027            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1028           "If we clobbered the stack pointer, MFI should know about it.");
1029     }
1030     return;
1031   }
1032 
1033   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1034     MVT RegisterVT = RegVTs[Value];
1035     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1036                                            RegisterVT);
1037     for (unsigned i = 0; i != NumRegs; ++i) {
1038       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1039       unsigned TheReg = Regs[Reg++];
1040       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1041     }
1042   }
1043 }
1044 
1045 SmallVector<std::pair<unsigned, TypeSize>, 4>
1046 RegsForValue::getRegsAndSizes() const {
1047   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1048   unsigned I = 0;
1049   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1050     unsigned RegCount = std::get<0>(CountAndVT);
1051     MVT RegisterVT = std::get<1>(CountAndVT);
1052     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1053     for (unsigned E = I + RegCount; I != E; ++I)
1054       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1055   }
1056   return OutVec;
1057 }
1058 
1059 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1060                                AssumptionCache *ac,
1061                                const TargetLibraryInfo *li) {
1062   AA = aa;
1063   AC = ac;
1064   GFI = gfi;
1065   LibInfo = li;
1066   Context = DAG.getContext();
1067   LPadToCallSiteMap.clear();
1068   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1069   AssignmentTrackingEnabled = isAssignmentTrackingEnabled(
1070       *DAG.getMachineFunction().getFunction().getParent());
1071 }
1072 
1073 void SelectionDAGBuilder::clear() {
1074   NodeMap.clear();
1075   UnusedArgNodeMap.clear();
1076   PendingLoads.clear();
1077   PendingExports.clear();
1078   PendingConstrainedFP.clear();
1079   PendingConstrainedFPStrict.clear();
1080   CurInst = nullptr;
1081   HasTailCall = false;
1082   SDNodeOrder = LowestSDNodeOrder;
1083   StatepointLowering.clear();
1084 }
1085 
1086 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1087   DanglingDebugInfoMap.clear();
1088 }
1089 
1090 // Update DAG root to include dependencies on Pending chains.
1091 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1092   SDValue Root = DAG.getRoot();
1093 
1094   if (Pending.empty())
1095     return Root;
1096 
1097   // Add current root to PendingChains, unless we already indirectly
1098   // depend on it.
1099   if (Root.getOpcode() != ISD::EntryToken) {
1100     unsigned i = 0, e = Pending.size();
1101     for (; i != e; ++i) {
1102       assert(Pending[i].getNode()->getNumOperands() > 1);
1103       if (Pending[i].getNode()->getOperand(0) == Root)
1104         break;  // Don't add the root if we already indirectly depend on it.
1105     }
1106 
1107     if (i == e)
1108       Pending.push_back(Root);
1109   }
1110 
1111   if (Pending.size() == 1)
1112     Root = Pending[0];
1113   else
1114     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1115 
1116   DAG.setRoot(Root);
1117   Pending.clear();
1118   return Root;
1119 }
1120 
1121 SDValue SelectionDAGBuilder::getMemoryRoot() {
1122   return updateRoot(PendingLoads);
1123 }
1124 
1125 SDValue SelectionDAGBuilder::getRoot() {
1126   // Chain up all pending constrained intrinsics together with all
1127   // pending loads, by simply appending them to PendingLoads and
1128   // then calling getMemoryRoot().
1129   PendingLoads.reserve(PendingLoads.size() +
1130                        PendingConstrainedFP.size() +
1131                        PendingConstrainedFPStrict.size());
1132   PendingLoads.append(PendingConstrainedFP.begin(),
1133                       PendingConstrainedFP.end());
1134   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1135                       PendingConstrainedFPStrict.end());
1136   PendingConstrainedFP.clear();
1137   PendingConstrainedFPStrict.clear();
1138   return getMemoryRoot();
1139 }
1140 
1141 SDValue SelectionDAGBuilder::getControlRoot() {
1142   // We need to emit pending fpexcept.strict constrained intrinsics,
1143   // so append them to the PendingExports list.
1144   PendingExports.append(PendingConstrainedFPStrict.begin(),
1145                         PendingConstrainedFPStrict.end());
1146   PendingConstrainedFPStrict.clear();
1147   return updateRoot(PendingExports);
1148 }
1149 
1150 void SelectionDAGBuilder::visit(const Instruction &I) {
1151   // Set up outgoing PHI node register values before emitting the terminator.
1152   if (I.isTerminator()) {
1153     HandlePHINodesInSuccessorBlocks(I.getParent());
1154   }
1155 
1156   // Add SDDbgValue nodes for any var locs here. Do so before updating
1157   // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1158   if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1159     // Add SDDbgValue nodes for any var locs here. Do so before updating
1160     // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1161     for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1162          It != End; ++It) {
1163       auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1164       dropDanglingDebugInfo(Var, It->Expr);
1165       if (It->Values.isKillLocation(It->Expr)) {
1166         handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder);
1167         continue;
1168       }
1169       SmallVector<Value *> Values(It->Values.location_ops());
1170       if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder,
1171                             It->Values.hasArgList()))
1172         addDanglingDebugInfo(It, SDNodeOrder);
1173     }
1174   }
1175 
1176   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1177   if (!isa<DbgInfoIntrinsic>(I))
1178     ++SDNodeOrder;
1179 
1180   CurInst = &I;
1181 
1182   // Set inserted listener only if required.
1183   bool NodeInserted = false;
1184   std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1185   MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1186   if (PCSectionsMD) {
1187     InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1188         DAG, [&](SDNode *) { NodeInserted = true; });
1189   }
1190 
1191   visit(I.getOpcode(), I);
1192 
1193   if (!I.isTerminator() && !HasTailCall &&
1194       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1195     CopyToExportRegsIfNeeded(&I);
1196 
1197   // Handle metadata.
1198   if (PCSectionsMD) {
1199     auto It = NodeMap.find(&I);
1200     if (It != NodeMap.end()) {
1201       DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1202     } else if (NodeInserted) {
1203       // This should not happen; if it does, don't let it go unnoticed so we can
1204       // fix it. Relevant visit*() function is probably missing a setValue().
1205       errs() << "warning: loosing !pcsections metadata ["
1206              << I.getModule()->getName() << "]\n";
1207       LLVM_DEBUG(I.dump());
1208       assert(false);
1209     }
1210   }
1211 
1212   CurInst = nullptr;
1213 }
1214 
1215 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1216   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1217 }
1218 
1219 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1220   // Note: this doesn't use InstVisitor, because it has to work with
1221   // ConstantExpr's in addition to instructions.
1222   switch (Opcode) {
1223   default: llvm_unreachable("Unknown instruction type encountered!");
1224     // Build the switch statement using the Instruction.def file.
1225 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1226     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1227 #include "llvm/IR/Instruction.def"
1228   }
1229 }
1230 
1231 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG,
1232                                             DILocalVariable *Variable,
1233                                             DebugLoc DL, unsigned Order,
1234                                             RawLocationWrapper Values,
1235                                             DIExpression *Expression) {
1236   if (!Values.hasArgList())
1237     return false;
1238   // For variadic dbg_values we will now insert an undef.
1239   // FIXME: We can potentially recover these!
1240   SmallVector<SDDbgOperand, 2> Locs;
1241   for (const Value *V : Values.location_ops()) {
1242     auto *Undef = UndefValue::get(V->getType());
1243     Locs.push_back(SDDbgOperand::fromConst(Undef));
1244   }
1245   SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {},
1246                                         /*IsIndirect=*/false, DL, Order,
1247                                         /*IsVariadic=*/true);
1248   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1249   return true;
1250 }
1251 
1252 void SelectionDAGBuilder::addDanglingDebugInfo(const VarLocInfo *VarLoc,
1253                                                unsigned Order) {
1254   if (!handleDanglingVariadicDebugInfo(
1255           DAG,
1256           const_cast<DILocalVariable *>(DAG.getFunctionVarLocs()
1257                                             ->getVariable(VarLoc->VariableID)
1258                                             .getVariable()),
1259           VarLoc->DL, Order, VarLoc->Values, VarLoc->Expr)) {
1260     DanglingDebugInfoMap[VarLoc->Values.getVariableLocationOp(0)].emplace_back(
1261         VarLoc, Order);
1262   }
1263 }
1264 
1265 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
1266                                                unsigned Order) {
1267   // We treat variadic dbg_values differently at this stage.
1268   if (!handleDanglingVariadicDebugInfo(
1269           DAG, DI->getVariable(), DI->getDebugLoc(), Order,
1270           DI->getWrappedLocation(), DI->getExpression())) {
1271     // TODO: Dangling debug info will eventually either be resolved or produce
1272     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1273     // between the original dbg.value location and its resolved DBG_VALUE,
1274     // which we should ideally fill with an extra Undef DBG_VALUE.
1275     assert(DI->getNumVariableLocationOps() == 1 &&
1276            "DbgValueInst without an ArgList should have a single location "
1277            "operand.");
1278     DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, Order);
1279   }
1280 }
1281 
1282 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1283                                                 const DIExpression *Expr) {
1284   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1285     DIVariable *DanglingVariable = DDI.getVariable(DAG.getFunctionVarLocs());
1286     DIExpression *DanglingExpr = DDI.getExpression();
1287     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1288       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << printDDI(DDI)
1289                         << "\n");
1290       return true;
1291     }
1292     return false;
1293   };
1294 
1295   for (auto &DDIMI : DanglingDebugInfoMap) {
1296     DanglingDebugInfoVector &DDIV = DDIMI.second;
1297 
1298     // If debug info is to be dropped, run it through final checks to see
1299     // whether it can be salvaged.
1300     for (auto &DDI : DDIV)
1301       if (isMatchingDbgValue(DDI))
1302         salvageUnresolvedDbgValue(DDI);
1303 
1304     erase_if(DDIV, isMatchingDbgValue);
1305   }
1306 }
1307 
1308 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1309 // generate the debug data structures now that we've seen its definition.
1310 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1311                                                    SDValue Val) {
1312   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1313   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1314     return;
1315 
1316   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1317   for (auto &DDI : DDIV) {
1318     DebugLoc DL = DDI.getDebugLoc();
1319     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1320     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1321     DILocalVariable *Variable = DDI.getVariable(DAG.getFunctionVarLocs());
1322     DIExpression *Expr = DDI.getExpression();
1323     assert(Variable->isValidLocationForIntrinsic(DL) &&
1324            "Expected inlined-at fields to agree");
1325     SDDbgValue *SDV;
1326     if (Val.getNode()) {
1327       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1328       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1329       // we couldn't resolve it directly when examining the DbgValue intrinsic
1330       // in the first place we should not be more successful here). Unless we
1331       // have some test case that prove this to be correct we should avoid
1332       // calling EmitFuncArgumentDbgValue here.
1333       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1334                                     FuncArgumentDbgValueKind::Value, Val)) {
1335         LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " << printDDI(DDI)
1336                           << "\n");
1337         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1338         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1339         // inserted after the definition of Val when emitting the instructions
1340         // after ISel. An alternative could be to teach
1341         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1342         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1343                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1344                    << ValSDNodeOrder << "\n");
1345         SDV = getDbgValue(Val, Variable, Expr, DL,
1346                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1347         DAG.AddDbgValue(SDV, false);
1348       } else
1349         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1350                           << printDDI(DDI) << " in EmitFuncArgumentDbgValue\n");
1351     } else {
1352       LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(DDI) << "\n");
1353       auto Undef = UndefValue::get(V->getType());
1354       auto SDV =
1355           DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder);
1356       DAG.AddDbgValue(SDV, false);
1357     }
1358   }
1359   DDIV.clear();
1360 }
1361 
1362 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1363   // TODO: For the variadic implementation, instead of only checking the fail
1364   // state of `handleDebugValue`, we need know specifically which values were
1365   // invalid, so that we attempt to salvage only those values when processing
1366   // a DIArgList.
1367   Value *V = DDI.getVariableLocationOp(0);
1368   Value *OrigV = V;
1369   DILocalVariable *Var = DDI.getVariable(DAG.getFunctionVarLocs());
1370   DIExpression *Expr = DDI.getExpression();
1371   DebugLoc DL = DDI.getDebugLoc();
1372   unsigned SDOrder = DDI.getSDNodeOrder();
1373 
1374   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1375   // that DW_OP_stack_value is desired.
1376   bool StackValue = true;
1377 
1378   // Can this Value can be encoded without any further work?
1379   if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1380     return;
1381 
1382   // Attempt to salvage back through as many instructions as possible. Bail if
1383   // a non-instruction is seen, such as a constant expression or global
1384   // variable. FIXME: Further work could recover those too.
1385   while (isa<Instruction>(V)) {
1386     Instruction &VAsInst = *cast<Instruction>(V);
1387     // Temporary "0", awaiting real implementation.
1388     SmallVector<uint64_t, 16> Ops;
1389     SmallVector<Value *, 4> AdditionalValues;
1390     V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops,
1391                              AdditionalValues);
1392     // If we cannot salvage any further, and haven't yet found a suitable debug
1393     // expression, bail out.
1394     if (!V)
1395       break;
1396 
1397     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1398     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1399     // here for variadic dbg_values, remove that condition.
1400     if (!AdditionalValues.empty())
1401       break;
1402 
1403     // New value and expr now represent this debuginfo.
1404     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1405 
1406     // Some kind of simplification occurred: check whether the operand of the
1407     // salvaged debug expression can be encoded in this DAG.
1408     if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1409       LLVM_DEBUG(
1410           dbgs() << "Salvaged debug location info for:\n  " << *Var << "\n"
1411                  << *OrigV << "\nBy stripping back to:\n  " << *V << "\n");
1412       return;
1413     }
1414   }
1415 
1416   // This was the final opportunity to salvage this debug information, and it
1417   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1418   // any earlier variable location.
1419   assert(OrigV && "V shouldn't be null");
1420   auto *Undef = UndefValue::get(OrigV->getType());
1421   auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1422   DAG.AddDbgValue(SDV, false);
1423   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << printDDI(DDI)
1424                     << "\n");
1425 }
1426 
1427 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var,
1428                                                DIExpression *Expr,
1429                                                DebugLoc DbgLoc,
1430                                                unsigned Order) {
1431   Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context));
1432   DIExpression *NewExpr =
1433       const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr));
1434   handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order,
1435                    /*IsVariadic*/ false);
1436 }
1437 
1438 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1439                                            DILocalVariable *Var,
1440                                            DIExpression *Expr, DebugLoc DbgLoc,
1441                                            unsigned Order, bool IsVariadic) {
1442   if (Values.empty())
1443     return true;
1444   SmallVector<SDDbgOperand> LocationOps;
1445   SmallVector<SDNode *> Dependencies;
1446   for (const Value *V : Values) {
1447     // Constant value.
1448     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1449         isa<ConstantPointerNull>(V)) {
1450       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1451       continue;
1452     }
1453 
1454     // Look through IntToPtr constants.
1455     if (auto *CE = dyn_cast<ConstantExpr>(V))
1456       if (CE->getOpcode() == Instruction::IntToPtr) {
1457         LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1458         continue;
1459       }
1460 
1461     // If the Value is a frame index, we can create a FrameIndex debug value
1462     // without relying on the DAG at all.
1463     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1464       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1465       if (SI != FuncInfo.StaticAllocaMap.end()) {
1466         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1467         continue;
1468       }
1469     }
1470 
1471     // Do not use getValue() in here; we don't want to generate code at
1472     // this point if it hasn't been done yet.
1473     SDValue N = NodeMap[V];
1474     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1475       N = UnusedArgNodeMap[V];
1476     if (N.getNode()) {
1477       // Only emit func arg dbg value for non-variadic dbg.values for now.
1478       if (!IsVariadic &&
1479           EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1480                                    FuncArgumentDbgValueKind::Value, N))
1481         return true;
1482       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1483         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1484         // describe stack slot locations.
1485         //
1486         // Consider "int x = 0; int *px = &x;". There are two kinds of
1487         // interesting debug values here after optimization:
1488         //
1489         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1490         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1491         //
1492         // Both describe the direct values of their associated variables.
1493         Dependencies.push_back(N.getNode());
1494         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1495         continue;
1496       }
1497       LocationOps.emplace_back(
1498           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1499       continue;
1500     }
1501 
1502     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1503     // Special rules apply for the first dbg.values of parameter variables in a
1504     // function. Identify them by the fact they reference Argument Values, that
1505     // they're parameters, and they are parameters of the current function. We
1506     // need to let them dangle until they get an SDNode.
1507     bool IsParamOfFunc =
1508         isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1509     if (IsParamOfFunc)
1510       return false;
1511 
1512     // The value is not used in this block yet (or it would have an SDNode).
1513     // We still want the value to appear for the user if possible -- if it has
1514     // an associated VReg, we can refer to that instead.
1515     auto VMI = FuncInfo.ValueMap.find(V);
1516     if (VMI != FuncInfo.ValueMap.end()) {
1517       unsigned Reg = VMI->second;
1518       // If this is a PHI node, it may be split up into several MI PHI nodes
1519       // (in FunctionLoweringInfo::set).
1520       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1521                        V->getType(), std::nullopt);
1522       if (RFV.occupiesMultipleRegs()) {
1523         // FIXME: We could potentially support variadic dbg_values here.
1524         if (IsVariadic)
1525           return false;
1526         unsigned Offset = 0;
1527         unsigned BitsToDescribe = 0;
1528         if (auto VarSize = Var->getSizeInBits())
1529           BitsToDescribe = *VarSize;
1530         if (auto Fragment = Expr->getFragmentInfo())
1531           BitsToDescribe = Fragment->SizeInBits;
1532         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1533           // Bail out if all bits are described already.
1534           if (Offset >= BitsToDescribe)
1535             break;
1536           // TODO: handle scalable vectors.
1537           unsigned RegisterSize = RegAndSize.second;
1538           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1539                                       ? BitsToDescribe - Offset
1540                                       : RegisterSize;
1541           auto FragmentExpr = DIExpression::createFragmentExpression(
1542               Expr, Offset, FragmentSize);
1543           if (!FragmentExpr)
1544             continue;
1545           SDDbgValue *SDV = DAG.getVRegDbgValue(
1546               Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder);
1547           DAG.AddDbgValue(SDV, false);
1548           Offset += RegisterSize;
1549         }
1550         return true;
1551       }
1552       // We can use simple vreg locations for variadic dbg_values as well.
1553       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1554       continue;
1555     }
1556     // We failed to create a SDDbgOperand for V.
1557     return false;
1558   }
1559 
1560   // We have created a SDDbgOperand for each Value in Values.
1561   // Should use Order instead of SDNodeOrder?
1562   assert(!LocationOps.empty());
1563   SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1564                                         /*IsIndirect=*/false, DbgLoc,
1565                                         SDNodeOrder, IsVariadic);
1566   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1567   return true;
1568 }
1569 
1570 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1571   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1572   for (auto &Pair : DanglingDebugInfoMap)
1573     for (auto &DDI : Pair.second)
1574       salvageUnresolvedDbgValue(DDI);
1575   clearDanglingDebugInfo();
1576 }
1577 
1578 /// getCopyFromRegs - If there was virtual register allocated for the value V
1579 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1580 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1581   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1582   SDValue Result;
1583 
1584   if (It != FuncInfo.ValueMap.end()) {
1585     Register InReg = It->second;
1586 
1587     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1588                      DAG.getDataLayout(), InReg, Ty,
1589                      std::nullopt); // This is not an ABI copy.
1590     SDValue Chain = DAG.getEntryNode();
1591     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1592                                  V);
1593     resolveDanglingDebugInfo(V, Result);
1594   }
1595 
1596   return Result;
1597 }
1598 
1599 /// getValue - Return an SDValue for the given Value.
1600 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1601   // If we already have an SDValue for this value, use it. It's important
1602   // to do this first, so that we don't create a CopyFromReg if we already
1603   // have a regular SDValue.
1604   SDValue &N = NodeMap[V];
1605   if (N.getNode()) return N;
1606 
1607   // If there's a virtual register allocated and initialized for this
1608   // value, use it.
1609   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1610     return copyFromReg;
1611 
1612   // Otherwise create a new SDValue and remember it.
1613   SDValue Val = getValueImpl(V);
1614   NodeMap[V] = Val;
1615   resolveDanglingDebugInfo(V, Val);
1616   return Val;
1617 }
1618 
1619 /// getNonRegisterValue - Return an SDValue for the given Value, but
1620 /// don't look in FuncInfo.ValueMap for a virtual register.
1621 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1622   // If we already have an SDValue for this value, use it.
1623   SDValue &N = NodeMap[V];
1624   if (N.getNode()) {
1625     if (isIntOrFPConstant(N)) {
1626       // Remove the debug location from the node as the node is about to be used
1627       // in a location which may differ from the original debug location.  This
1628       // is relevant to Constant and ConstantFP nodes because they can appear
1629       // as constant expressions inside PHI nodes.
1630       N->setDebugLoc(DebugLoc());
1631     }
1632     return N;
1633   }
1634 
1635   // Otherwise create a new SDValue and remember it.
1636   SDValue Val = getValueImpl(V);
1637   NodeMap[V] = Val;
1638   resolveDanglingDebugInfo(V, Val);
1639   return Val;
1640 }
1641 
1642 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1643 /// Create an SDValue for the given value.
1644 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1645   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1646 
1647   if (const Constant *C = dyn_cast<Constant>(V)) {
1648     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1649 
1650     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1651       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1652 
1653     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1654       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1655 
1656     if (isa<ConstantPointerNull>(C)) {
1657       unsigned AS = V->getType()->getPointerAddressSpace();
1658       return DAG.getConstant(0, getCurSDLoc(),
1659                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1660     }
1661 
1662     if (match(C, m_VScale()))
1663       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1664 
1665     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1666       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1667 
1668     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1669       return DAG.getUNDEF(VT);
1670 
1671     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1672       visit(CE->getOpcode(), *CE);
1673       SDValue N1 = NodeMap[V];
1674       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1675       return N1;
1676     }
1677 
1678     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1679       SmallVector<SDValue, 4> Constants;
1680       for (const Use &U : C->operands()) {
1681         SDNode *Val = getValue(U).getNode();
1682         // If the operand is an empty aggregate, there are no values.
1683         if (!Val) continue;
1684         // Add each leaf value from the operand to the Constants list
1685         // to form a flattened list of all the values.
1686         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1687           Constants.push_back(SDValue(Val, i));
1688       }
1689 
1690       return DAG.getMergeValues(Constants, getCurSDLoc());
1691     }
1692 
1693     if (const ConstantDataSequential *CDS =
1694           dyn_cast<ConstantDataSequential>(C)) {
1695       SmallVector<SDValue, 4> Ops;
1696       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1697         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1698         // Add each leaf value from the operand to the Constants list
1699         // to form a flattened list of all the values.
1700         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1701           Ops.push_back(SDValue(Val, i));
1702       }
1703 
1704       if (isa<ArrayType>(CDS->getType()))
1705         return DAG.getMergeValues(Ops, getCurSDLoc());
1706       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1707     }
1708 
1709     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1710       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1711              "Unknown struct or array constant!");
1712 
1713       SmallVector<EVT, 4> ValueVTs;
1714       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1715       unsigned NumElts = ValueVTs.size();
1716       if (NumElts == 0)
1717         return SDValue(); // empty struct
1718       SmallVector<SDValue, 4> Constants(NumElts);
1719       for (unsigned i = 0; i != NumElts; ++i) {
1720         EVT EltVT = ValueVTs[i];
1721         if (isa<UndefValue>(C))
1722           Constants[i] = DAG.getUNDEF(EltVT);
1723         else if (EltVT.isFloatingPoint())
1724           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1725         else
1726           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1727       }
1728 
1729       return DAG.getMergeValues(Constants, getCurSDLoc());
1730     }
1731 
1732     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1733       return DAG.getBlockAddress(BA, VT);
1734 
1735     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1736       return getValue(Equiv->getGlobalValue());
1737 
1738     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1739       return getValue(NC->getGlobalValue());
1740 
1741     VectorType *VecTy = cast<VectorType>(V->getType());
1742 
1743     // Now that we know the number and type of the elements, get that number of
1744     // elements into the Ops array based on what kind of constant it is.
1745     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1746       SmallVector<SDValue, 16> Ops;
1747       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1748       for (unsigned i = 0; i != NumElements; ++i)
1749         Ops.push_back(getValue(CV->getOperand(i)));
1750 
1751       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1752     }
1753 
1754     if (isa<ConstantAggregateZero>(C)) {
1755       EVT EltVT =
1756           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1757 
1758       SDValue Op;
1759       if (EltVT.isFloatingPoint())
1760         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1761       else
1762         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1763 
1764       return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op);
1765     }
1766 
1767     llvm_unreachable("Unknown vector constant");
1768   }
1769 
1770   // If this is a static alloca, generate it as the frameindex instead of
1771   // computation.
1772   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1773     DenseMap<const AllocaInst*, int>::iterator SI =
1774       FuncInfo.StaticAllocaMap.find(AI);
1775     if (SI != FuncInfo.StaticAllocaMap.end())
1776       return DAG.getFrameIndex(
1777           SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
1778   }
1779 
1780   // If this is an instruction which fast-isel has deferred, select it now.
1781   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1782     Register InReg = FuncInfo.InitializeRegForValue(Inst);
1783 
1784     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1785                      Inst->getType(), std::nullopt);
1786     SDValue Chain = DAG.getEntryNode();
1787     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1788   }
1789 
1790   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1791     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1792 
1793   if (const auto *BB = dyn_cast<BasicBlock>(V))
1794     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1795 
1796   llvm_unreachable("Can't get register for value!");
1797 }
1798 
1799 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1800   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1801   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1802   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1803   bool IsSEH = isAsynchronousEHPersonality(Pers);
1804   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1805   if (!IsSEH)
1806     CatchPadMBB->setIsEHScopeEntry();
1807   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1808   if (IsMSVCCXX || IsCoreCLR)
1809     CatchPadMBB->setIsEHFuncletEntry();
1810 }
1811 
1812 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1813   // Update machine-CFG edge.
1814   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1815   FuncInfo.MBB->addSuccessor(TargetMBB);
1816   TargetMBB->setIsEHCatchretTarget(true);
1817   DAG.getMachineFunction().setHasEHCatchret(true);
1818 
1819   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1820   bool IsSEH = isAsynchronousEHPersonality(Pers);
1821   if (IsSEH) {
1822     // If this is not a fall-through branch or optimizations are switched off,
1823     // emit the branch.
1824     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1825         TM.getOptLevel() == CodeGenOpt::None)
1826       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1827                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1828     return;
1829   }
1830 
1831   // Figure out the funclet membership for the catchret's successor.
1832   // This will be used by the FuncletLayout pass to determine how to order the
1833   // BB's.
1834   // A 'catchret' returns to the outer scope's color.
1835   Value *ParentPad = I.getCatchSwitchParentPad();
1836   const BasicBlock *SuccessorColor;
1837   if (isa<ConstantTokenNone>(ParentPad))
1838     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1839   else
1840     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1841   assert(SuccessorColor && "No parent funclet for catchret!");
1842   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1843   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1844 
1845   // Create the terminator node.
1846   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1847                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1848                             DAG.getBasicBlock(SuccessorColorMBB));
1849   DAG.setRoot(Ret);
1850 }
1851 
1852 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1853   // Don't emit any special code for the cleanuppad instruction. It just marks
1854   // the start of an EH scope/funclet.
1855   FuncInfo.MBB->setIsEHScopeEntry();
1856   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1857   if (Pers != EHPersonality::Wasm_CXX) {
1858     FuncInfo.MBB->setIsEHFuncletEntry();
1859     FuncInfo.MBB->setIsCleanupFuncletEntry();
1860   }
1861 }
1862 
1863 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1864 // not match, it is OK to add only the first unwind destination catchpad to the
1865 // successors, because there will be at least one invoke instruction within the
1866 // catch scope that points to the next unwind destination, if one exists, so
1867 // CFGSort cannot mess up with BB sorting order.
1868 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1869 // call within them, and catchpads only consisting of 'catch (...)' have a
1870 // '__cxa_end_catch' call within them, both of which generate invokes in case
1871 // the next unwind destination exists, i.e., the next unwind destination is not
1872 // the caller.)
1873 //
1874 // Having at most one EH pad successor is also simpler and helps later
1875 // transformations.
1876 //
1877 // For example,
1878 // current:
1879 //   invoke void @foo to ... unwind label %catch.dispatch
1880 // catch.dispatch:
1881 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1882 // catch.start:
1883 //   ...
1884 //   ... in this BB or some other child BB dominated by this BB there will be an
1885 //   invoke that points to 'next' BB as an unwind destination
1886 //
1887 // next: ; We don't need to add this to 'current' BB's successor
1888 //   ...
1889 static void findWasmUnwindDestinations(
1890     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1891     BranchProbability Prob,
1892     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1893         &UnwindDests) {
1894   while (EHPadBB) {
1895     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1896     if (isa<CleanupPadInst>(Pad)) {
1897       // Stop on cleanup pads.
1898       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1899       UnwindDests.back().first->setIsEHScopeEntry();
1900       break;
1901     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1902       // Add the catchpad handlers to the possible destinations. We don't
1903       // continue to the unwind destination of the catchswitch for wasm.
1904       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1905         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1906         UnwindDests.back().first->setIsEHScopeEntry();
1907       }
1908       break;
1909     } else {
1910       continue;
1911     }
1912   }
1913 }
1914 
1915 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1916 /// many places it could ultimately go. In the IR, we have a single unwind
1917 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1918 /// This function skips over imaginary basic blocks that hold catchswitch
1919 /// instructions, and finds all the "real" machine
1920 /// basic block destinations. As those destinations may not be successors of
1921 /// EHPadBB, here we also calculate the edge probability to those destinations.
1922 /// The passed-in Prob is the edge probability to EHPadBB.
1923 static void findUnwindDestinations(
1924     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1925     BranchProbability Prob,
1926     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1927         &UnwindDests) {
1928   EHPersonality Personality =
1929     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1930   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1931   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1932   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1933   bool IsSEH = isAsynchronousEHPersonality(Personality);
1934 
1935   if (IsWasmCXX) {
1936     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1937     assert(UnwindDests.size() <= 1 &&
1938            "There should be at most one unwind destination for wasm");
1939     return;
1940   }
1941 
1942   while (EHPadBB) {
1943     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1944     BasicBlock *NewEHPadBB = nullptr;
1945     if (isa<LandingPadInst>(Pad)) {
1946       // Stop on landingpads. They are not funclets.
1947       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1948       break;
1949     } else if (isa<CleanupPadInst>(Pad)) {
1950       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1951       // personalities.
1952       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1953       UnwindDests.back().first->setIsEHScopeEntry();
1954       UnwindDests.back().first->setIsEHFuncletEntry();
1955       break;
1956     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1957       // Add the catchpad handlers to the possible destinations.
1958       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1959         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1960         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1961         if (IsMSVCCXX || IsCoreCLR)
1962           UnwindDests.back().first->setIsEHFuncletEntry();
1963         if (!IsSEH)
1964           UnwindDests.back().first->setIsEHScopeEntry();
1965       }
1966       NewEHPadBB = CatchSwitch->getUnwindDest();
1967     } else {
1968       continue;
1969     }
1970 
1971     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1972     if (BPI && NewEHPadBB)
1973       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1974     EHPadBB = NewEHPadBB;
1975   }
1976 }
1977 
1978 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1979   // Update successor info.
1980   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1981   auto UnwindDest = I.getUnwindDest();
1982   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1983   BranchProbability UnwindDestProb =
1984       (BPI && UnwindDest)
1985           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1986           : BranchProbability::getZero();
1987   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1988   for (auto &UnwindDest : UnwindDests) {
1989     UnwindDest.first->setIsEHPad();
1990     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1991   }
1992   FuncInfo.MBB->normalizeSuccProbs();
1993 
1994   // Create the terminator node.
1995   SDValue Ret =
1996       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1997   DAG.setRoot(Ret);
1998 }
1999 
2000 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
2001   report_fatal_error("visitCatchSwitch not yet implemented!");
2002 }
2003 
2004 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
2005   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2006   auto &DL = DAG.getDataLayout();
2007   SDValue Chain = getControlRoot();
2008   SmallVector<ISD::OutputArg, 8> Outs;
2009   SmallVector<SDValue, 8> OutVals;
2010 
2011   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
2012   // lower
2013   //
2014   //   %val = call <ty> @llvm.experimental.deoptimize()
2015   //   ret <ty> %val
2016   //
2017   // differently.
2018   if (I.getParent()->getTerminatingDeoptimizeCall()) {
2019     LowerDeoptimizingReturn();
2020     return;
2021   }
2022 
2023   if (!FuncInfo.CanLowerReturn) {
2024     unsigned DemoteReg = FuncInfo.DemoteRegister;
2025     const Function *F = I.getParent()->getParent();
2026 
2027     // Emit a store of the return value through the virtual register.
2028     // Leave Outs empty so that LowerReturn won't try to load return
2029     // registers the usual way.
2030     SmallVector<EVT, 1> PtrValueVTs;
2031     ComputeValueVTs(TLI, DL,
2032                     PointerType::get(F->getContext(),
2033                                      DAG.getDataLayout().getAllocaAddrSpace()),
2034                     PtrValueVTs);
2035 
2036     SDValue RetPtr =
2037         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
2038     SDValue RetOp = getValue(I.getOperand(0));
2039 
2040     SmallVector<EVT, 4> ValueVTs, MemVTs;
2041     SmallVector<uint64_t, 4> Offsets;
2042     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
2043                     &Offsets, 0);
2044     unsigned NumValues = ValueVTs.size();
2045 
2046     SmallVector<SDValue, 4> Chains(NumValues);
2047     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
2048     for (unsigned i = 0; i != NumValues; ++i) {
2049       // An aggregate return value cannot wrap around the address space, so
2050       // offsets to its parts don't wrap either.
2051       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
2052                                            TypeSize::Fixed(Offsets[i]));
2053 
2054       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2055       if (MemVTs[i] != ValueVTs[i])
2056         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2057       Chains[i] = DAG.getStore(
2058           Chain, getCurSDLoc(), Val,
2059           // FIXME: better loc info would be nice.
2060           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2061           commonAlignment(BaseAlign, Offsets[i]));
2062     }
2063 
2064     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2065                         MVT::Other, Chains);
2066   } else if (I.getNumOperands() != 0) {
2067     SmallVector<EVT, 4> ValueVTs;
2068     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
2069     unsigned NumValues = ValueVTs.size();
2070     if (NumValues) {
2071       SDValue RetOp = getValue(I.getOperand(0));
2072 
2073       const Function *F = I.getParent()->getParent();
2074 
2075       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2076           I.getOperand(0)->getType(), F->getCallingConv(),
2077           /*IsVarArg*/ false, DL);
2078 
2079       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2080       if (F->getAttributes().hasRetAttr(Attribute::SExt))
2081         ExtendKind = ISD::SIGN_EXTEND;
2082       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2083         ExtendKind = ISD::ZERO_EXTEND;
2084 
2085       LLVMContext &Context = F->getContext();
2086       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2087 
2088       for (unsigned j = 0; j != NumValues; ++j) {
2089         EVT VT = ValueVTs[j];
2090 
2091         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2092           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2093 
2094         CallingConv::ID CC = F->getCallingConv();
2095 
2096         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2097         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2098         SmallVector<SDValue, 4> Parts(NumParts);
2099         getCopyToParts(DAG, getCurSDLoc(),
2100                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2101                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2102 
2103         // 'inreg' on function refers to return value
2104         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2105         if (RetInReg)
2106           Flags.setInReg();
2107 
2108         if (I.getOperand(0)->getType()->isPointerTy()) {
2109           Flags.setPointer();
2110           Flags.setPointerAddrSpace(
2111               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2112         }
2113 
2114         if (NeedsRegBlock) {
2115           Flags.setInConsecutiveRegs();
2116           if (j == NumValues - 1)
2117             Flags.setInConsecutiveRegsLast();
2118         }
2119 
2120         // Propagate extension type if any
2121         if (ExtendKind == ISD::SIGN_EXTEND)
2122           Flags.setSExt();
2123         else if (ExtendKind == ISD::ZERO_EXTEND)
2124           Flags.setZExt();
2125 
2126         for (unsigned i = 0; i < NumParts; ++i) {
2127           Outs.push_back(ISD::OutputArg(Flags,
2128                                         Parts[i].getValueType().getSimpleVT(),
2129                                         VT, /*isfixed=*/true, 0, 0));
2130           OutVals.push_back(Parts[i]);
2131         }
2132       }
2133     }
2134   }
2135 
2136   // Push in swifterror virtual register as the last element of Outs. This makes
2137   // sure swifterror virtual register will be returned in the swifterror
2138   // physical register.
2139   const Function *F = I.getParent()->getParent();
2140   if (TLI.supportSwiftError() &&
2141       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2142     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2143     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2144     Flags.setSwiftError();
2145     Outs.push_back(ISD::OutputArg(
2146         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2147         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2148     // Create SDNode for the swifterror virtual register.
2149     OutVals.push_back(
2150         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2151                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2152                         EVT(TLI.getPointerTy(DL))));
2153   }
2154 
2155   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2156   CallingConv::ID CallConv =
2157     DAG.getMachineFunction().getFunction().getCallingConv();
2158   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2159       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2160 
2161   // Verify that the target's LowerReturn behaved as expected.
2162   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2163          "LowerReturn didn't return a valid chain!");
2164 
2165   // Update the DAG with the new chain value resulting from return lowering.
2166   DAG.setRoot(Chain);
2167 }
2168 
2169 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2170 /// created for it, emit nodes to copy the value into the virtual
2171 /// registers.
2172 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2173   // Skip empty types
2174   if (V->getType()->isEmptyTy())
2175     return;
2176 
2177   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2178   if (VMI != FuncInfo.ValueMap.end()) {
2179     assert((!V->use_empty() || isa<CallBrInst>(V)) &&
2180            "Unused value assigned virtual registers!");
2181     CopyValueToVirtualRegister(V, VMI->second);
2182   }
2183 }
2184 
2185 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2186 /// the current basic block, add it to ValueMap now so that we'll get a
2187 /// CopyTo/FromReg.
2188 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2189   // No need to export constants.
2190   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2191 
2192   // Already exported?
2193   if (FuncInfo.isExportedInst(V)) return;
2194 
2195   Register Reg = FuncInfo.InitializeRegForValue(V);
2196   CopyValueToVirtualRegister(V, Reg);
2197 }
2198 
2199 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2200                                                      const BasicBlock *FromBB) {
2201   // The operands of the setcc have to be in this block.  We don't know
2202   // how to export them from some other block.
2203   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2204     // Can export from current BB.
2205     if (VI->getParent() == FromBB)
2206       return true;
2207 
2208     // Is already exported, noop.
2209     return FuncInfo.isExportedInst(V);
2210   }
2211 
2212   // If this is an argument, we can export it if the BB is the entry block or
2213   // if it is already exported.
2214   if (isa<Argument>(V)) {
2215     if (FromBB->isEntryBlock())
2216       return true;
2217 
2218     // Otherwise, can only export this if it is already exported.
2219     return FuncInfo.isExportedInst(V);
2220   }
2221 
2222   // Otherwise, constants can always be exported.
2223   return true;
2224 }
2225 
2226 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2227 BranchProbability
2228 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2229                                         const MachineBasicBlock *Dst) const {
2230   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2231   const BasicBlock *SrcBB = Src->getBasicBlock();
2232   const BasicBlock *DstBB = Dst->getBasicBlock();
2233   if (!BPI) {
2234     // If BPI is not available, set the default probability as 1 / N, where N is
2235     // the number of successors.
2236     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2237     return BranchProbability(1, SuccSize);
2238   }
2239   return BPI->getEdgeProbability(SrcBB, DstBB);
2240 }
2241 
2242 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2243                                                MachineBasicBlock *Dst,
2244                                                BranchProbability Prob) {
2245   if (!FuncInfo.BPI)
2246     Src->addSuccessorWithoutProb(Dst);
2247   else {
2248     if (Prob.isUnknown())
2249       Prob = getEdgeProbability(Src, Dst);
2250     Src->addSuccessor(Dst, Prob);
2251   }
2252 }
2253 
2254 static bool InBlock(const Value *V, const BasicBlock *BB) {
2255   if (const Instruction *I = dyn_cast<Instruction>(V))
2256     return I->getParent() == BB;
2257   return true;
2258 }
2259 
2260 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2261 /// This function emits a branch and is used at the leaves of an OR or an
2262 /// AND operator tree.
2263 void
2264 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2265                                                   MachineBasicBlock *TBB,
2266                                                   MachineBasicBlock *FBB,
2267                                                   MachineBasicBlock *CurBB,
2268                                                   MachineBasicBlock *SwitchBB,
2269                                                   BranchProbability TProb,
2270                                                   BranchProbability FProb,
2271                                                   bool InvertCond) {
2272   const BasicBlock *BB = CurBB->getBasicBlock();
2273 
2274   // If the leaf of the tree is a comparison, merge the condition into
2275   // the caseblock.
2276   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2277     // The operands of the cmp have to be in this block.  We don't know
2278     // how to export them from some other block.  If this is the first block
2279     // of the sequence, no exporting is needed.
2280     if (CurBB == SwitchBB ||
2281         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2282          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2283       ISD::CondCode Condition;
2284       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2285         ICmpInst::Predicate Pred =
2286             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2287         Condition = getICmpCondCode(Pred);
2288       } else {
2289         const FCmpInst *FC = cast<FCmpInst>(Cond);
2290         FCmpInst::Predicate Pred =
2291             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2292         Condition = getFCmpCondCode(Pred);
2293         if (TM.Options.NoNaNsFPMath)
2294           Condition = getFCmpCodeWithoutNaN(Condition);
2295       }
2296 
2297       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2298                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2299       SL->SwitchCases.push_back(CB);
2300       return;
2301     }
2302   }
2303 
2304   // Create a CaseBlock record representing this branch.
2305   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2306   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2307                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2308   SL->SwitchCases.push_back(CB);
2309 }
2310 
2311 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2312                                                MachineBasicBlock *TBB,
2313                                                MachineBasicBlock *FBB,
2314                                                MachineBasicBlock *CurBB,
2315                                                MachineBasicBlock *SwitchBB,
2316                                                Instruction::BinaryOps Opc,
2317                                                BranchProbability TProb,
2318                                                BranchProbability FProb,
2319                                                bool InvertCond) {
2320   // Skip over not part of the tree and remember to invert op and operands at
2321   // next level.
2322   Value *NotCond;
2323   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2324       InBlock(NotCond, CurBB->getBasicBlock())) {
2325     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2326                          !InvertCond);
2327     return;
2328   }
2329 
2330   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2331   const Value *BOpOp0, *BOpOp1;
2332   // Compute the effective opcode for Cond, taking into account whether it needs
2333   // to be inverted, e.g.
2334   //   and (not (or A, B)), C
2335   // gets lowered as
2336   //   and (and (not A, not B), C)
2337   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2338   if (BOp) {
2339     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2340                ? Instruction::And
2341                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2342                       ? Instruction::Or
2343                       : (Instruction::BinaryOps)0);
2344     if (InvertCond) {
2345       if (BOpc == Instruction::And)
2346         BOpc = Instruction::Or;
2347       else if (BOpc == Instruction::Or)
2348         BOpc = Instruction::And;
2349     }
2350   }
2351 
2352   // If this node is not part of the or/and tree, emit it as a branch.
2353   // Note that all nodes in the tree should have same opcode.
2354   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2355   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2356       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2357       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2358     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2359                                  TProb, FProb, InvertCond);
2360     return;
2361   }
2362 
2363   //  Create TmpBB after CurBB.
2364   MachineFunction::iterator BBI(CurBB);
2365   MachineFunction &MF = DAG.getMachineFunction();
2366   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2367   CurBB->getParent()->insert(++BBI, TmpBB);
2368 
2369   if (Opc == Instruction::Or) {
2370     // Codegen X | Y as:
2371     // BB1:
2372     //   jmp_if_X TBB
2373     //   jmp TmpBB
2374     // TmpBB:
2375     //   jmp_if_Y TBB
2376     //   jmp FBB
2377     //
2378 
2379     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2380     // The requirement is that
2381     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2382     //     = TrueProb for original BB.
2383     // Assuming the original probabilities are A and B, one choice is to set
2384     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2385     // A/(1+B) and 2B/(1+B). This choice assumes that
2386     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2387     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2388     // TmpBB, but the math is more complicated.
2389 
2390     auto NewTrueProb = TProb / 2;
2391     auto NewFalseProb = TProb / 2 + FProb;
2392     // Emit the LHS condition.
2393     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2394                          NewFalseProb, InvertCond);
2395 
2396     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2397     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2398     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2399     // Emit the RHS condition into TmpBB.
2400     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2401                          Probs[1], InvertCond);
2402   } else {
2403     assert(Opc == Instruction::And && "Unknown merge op!");
2404     // Codegen X & Y as:
2405     // BB1:
2406     //   jmp_if_X TmpBB
2407     //   jmp FBB
2408     // TmpBB:
2409     //   jmp_if_Y TBB
2410     //   jmp FBB
2411     //
2412     //  This requires creation of TmpBB after CurBB.
2413 
2414     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2415     // The requirement is that
2416     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2417     //     = FalseProb for original BB.
2418     // Assuming the original probabilities are A and B, one choice is to set
2419     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2420     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2421     // TrueProb for BB1 * FalseProb for TmpBB.
2422 
2423     auto NewTrueProb = TProb + FProb / 2;
2424     auto NewFalseProb = FProb / 2;
2425     // Emit the LHS condition.
2426     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2427                          NewFalseProb, InvertCond);
2428 
2429     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2430     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2431     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2432     // Emit the RHS condition into TmpBB.
2433     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2434                          Probs[1], InvertCond);
2435   }
2436 }
2437 
2438 /// If the set of cases should be emitted as a series of branches, return true.
2439 /// If we should emit this as a bunch of and/or'd together conditions, return
2440 /// false.
2441 bool
2442 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2443   if (Cases.size() != 2) return true;
2444 
2445   // If this is two comparisons of the same values or'd or and'd together, they
2446   // will get folded into a single comparison, so don't emit two blocks.
2447   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2448        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2449       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2450        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2451     return false;
2452   }
2453 
2454   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2455   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2456   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2457       Cases[0].CC == Cases[1].CC &&
2458       isa<Constant>(Cases[0].CmpRHS) &&
2459       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2460     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2461       return false;
2462     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2463       return false;
2464   }
2465 
2466   return true;
2467 }
2468 
2469 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2470   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2471 
2472   // Update machine-CFG edges.
2473   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2474 
2475   if (I.isUnconditional()) {
2476     // Update machine-CFG edges.
2477     BrMBB->addSuccessor(Succ0MBB);
2478 
2479     // If this is not a fall-through branch or optimizations are switched off,
2480     // emit the branch.
2481     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) {
2482       auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2483                             getControlRoot(), DAG.getBasicBlock(Succ0MBB));
2484       setValue(&I, Br);
2485       DAG.setRoot(Br);
2486     }
2487 
2488     return;
2489   }
2490 
2491   // If this condition is one of the special cases we handle, do special stuff
2492   // now.
2493   const Value *CondVal = I.getCondition();
2494   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2495 
2496   // If this is a series of conditions that are or'd or and'd together, emit
2497   // this as a sequence of branches instead of setcc's with and/or operations.
2498   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2499   // unpredictable branches, and vector extracts because those jumps are likely
2500   // expensive for any target), this should improve performance.
2501   // For example, instead of something like:
2502   //     cmp A, B
2503   //     C = seteq
2504   //     cmp D, E
2505   //     F = setle
2506   //     or C, F
2507   //     jnz foo
2508   // Emit:
2509   //     cmp A, B
2510   //     je foo
2511   //     cmp D, E
2512   //     jle foo
2513   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2514   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2515       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2516     Value *Vec;
2517     const Value *BOp0, *BOp1;
2518     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2519     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2520       Opcode = Instruction::And;
2521     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2522       Opcode = Instruction::Or;
2523 
2524     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2525                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2526       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2527                            getEdgeProbability(BrMBB, Succ0MBB),
2528                            getEdgeProbability(BrMBB, Succ1MBB),
2529                            /*InvertCond=*/false);
2530       // If the compares in later blocks need to use values not currently
2531       // exported from this block, export them now.  This block should always
2532       // be the first entry.
2533       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2534 
2535       // Allow some cases to be rejected.
2536       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2537         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2538           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2539           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2540         }
2541 
2542         // Emit the branch for this block.
2543         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2544         SL->SwitchCases.erase(SL->SwitchCases.begin());
2545         return;
2546       }
2547 
2548       // Okay, we decided not to do this, remove any inserted MBB's and clear
2549       // SwitchCases.
2550       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2551         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2552 
2553       SL->SwitchCases.clear();
2554     }
2555   }
2556 
2557   // Create a CaseBlock record representing this branch.
2558   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2559                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2560 
2561   // Use visitSwitchCase to actually insert the fast branch sequence for this
2562   // cond branch.
2563   visitSwitchCase(CB, BrMBB);
2564 }
2565 
2566 /// visitSwitchCase - Emits the necessary code to represent a single node in
2567 /// the binary search tree resulting from lowering a switch instruction.
2568 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2569                                           MachineBasicBlock *SwitchBB) {
2570   SDValue Cond;
2571   SDValue CondLHS = getValue(CB.CmpLHS);
2572   SDLoc dl = CB.DL;
2573 
2574   if (CB.CC == ISD::SETTRUE) {
2575     // Branch or fall through to TrueBB.
2576     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2577     SwitchBB->normalizeSuccProbs();
2578     if (CB.TrueBB != NextBlock(SwitchBB)) {
2579       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2580                               DAG.getBasicBlock(CB.TrueBB)));
2581     }
2582     return;
2583   }
2584 
2585   auto &TLI = DAG.getTargetLoweringInfo();
2586   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2587 
2588   // Build the setcc now.
2589   if (!CB.CmpMHS) {
2590     // Fold "(X == true)" to X and "(X == false)" to !X to
2591     // handle common cases produced by branch lowering.
2592     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2593         CB.CC == ISD::SETEQ)
2594       Cond = CondLHS;
2595     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2596              CB.CC == ISD::SETEQ) {
2597       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2598       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2599     } else {
2600       SDValue CondRHS = getValue(CB.CmpRHS);
2601 
2602       // If a pointer's DAG type is larger than its memory type then the DAG
2603       // values are zero-extended. This breaks signed comparisons so truncate
2604       // back to the underlying type before doing the compare.
2605       if (CondLHS.getValueType() != MemVT) {
2606         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2607         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2608       }
2609       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2610     }
2611   } else {
2612     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2613 
2614     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2615     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2616 
2617     SDValue CmpOp = getValue(CB.CmpMHS);
2618     EVT VT = CmpOp.getValueType();
2619 
2620     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2621       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2622                           ISD::SETLE);
2623     } else {
2624       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2625                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2626       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2627                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2628     }
2629   }
2630 
2631   // Update successor info
2632   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2633   // TrueBB and FalseBB are always different unless the incoming IR is
2634   // degenerate. This only happens when running llc on weird IR.
2635   if (CB.TrueBB != CB.FalseBB)
2636     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2637   SwitchBB->normalizeSuccProbs();
2638 
2639   // If the lhs block is the next block, invert the condition so that we can
2640   // fall through to the lhs instead of the rhs block.
2641   if (CB.TrueBB == NextBlock(SwitchBB)) {
2642     std::swap(CB.TrueBB, CB.FalseBB);
2643     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2644     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2645   }
2646 
2647   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2648                                MVT::Other, getControlRoot(), Cond,
2649                                DAG.getBasicBlock(CB.TrueBB));
2650 
2651   setValue(CurInst, BrCond);
2652 
2653   // Insert the false branch. Do this even if it's a fall through branch,
2654   // this makes it easier to do DAG optimizations which require inverting
2655   // the branch condition.
2656   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2657                        DAG.getBasicBlock(CB.FalseBB));
2658 
2659   DAG.setRoot(BrCond);
2660 }
2661 
2662 /// visitJumpTable - Emit JumpTable node in the current MBB
2663 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2664   // Emit the code for the jump table
2665   assert(JT.Reg != -1U && "Should lower JT Header first!");
2666   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2667   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2668                                      JT.Reg, PTy);
2669   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2670   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2671                                     MVT::Other, Index.getValue(1),
2672                                     Table, Index);
2673   DAG.setRoot(BrJumpTable);
2674 }
2675 
2676 /// visitJumpTableHeader - This function emits necessary code to produce index
2677 /// in the JumpTable from switch case.
2678 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2679                                                JumpTableHeader &JTH,
2680                                                MachineBasicBlock *SwitchBB) {
2681   SDLoc dl = getCurSDLoc();
2682 
2683   // Subtract the lowest switch case value from the value being switched on.
2684   SDValue SwitchOp = getValue(JTH.SValue);
2685   EVT VT = SwitchOp.getValueType();
2686   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2687                             DAG.getConstant(JTH.First, dl, VT));
2688 
2689   // The SDNode we just created, which holds the value being switched on minus
2690   // the smallest case value, needs to be copied to a virtual register so it
2691   // can be used as an index into the jump table in a subsequent basic block.
2692   // This value may be smaller or larger than the target's pointer type, and
2693   // therefore require extension or truncating.
2694   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2695   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2696 
2697   unsigned JumpTableReg =
2698       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2699   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2700                                     JumpTableReg, SwitchOp);
2701   JT.Reg = JumpTableReg;
2702 
2703   if (!JTH.FallthroughUnreachable) {
2704     // Emit the range check for the jump table, and branch to the default block
2705     // for the switch statement if the value being switched on exceeds the
2706     // largest case in the switch.
2707     SDValue CMP = DAG.getSetCC(
2708         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2709                                    Sub.getValueType()),
2710         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2711 
2712     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2713                                  MVT::Other, CopyTo, CMP,
2714                                  DAG.getBasicBlock(JT.Default));
2715 
2716     // Avoid emitting unnecessary branches to the next block.
2717     if (JT.MBB != NextBlock(SwitchBB))
2718       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2719                            DAG.getBasicBlock(JT.MBB));
2720 
2721     DAG.setRoot(BrCond);
2722   } else {
2723     // Avoid emitting unnecessary branches to the next block.
2724     if (JT.MBB != NextBlock(SwitchBB))
2725       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2726                               DAG.getBasicBlock(JT.MBB)));
2727     else
2728       DAG.setRoot(CopyTo);
2729   }
2730 }
2731 
2732 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2733 /// variable if there exists one.
2734 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2735                                  SDValue &Chain) {
2736   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2737   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2738   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2739   MachineFunction &MF = DAG.getMachineFunction();
2740   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2741   MachineSDNode *Node =
2742       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2743   if (Global) {
2744     MachinePointerInfo MPInfo(Global);
2745     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2746                  MachineMemOperand::MODereferenceable;
2747     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2748         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2749     DAG.setNodeMemRefs(Node, {MemRef});
2750   }
2751   if (PtrTy != PtrMemTy)
2752     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2753   return SDValue(Node, 0);
2754 }
2755 
2756 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2757 /// tail spliced into a stack protector check success bb.
2758 ///
2759 /// For a high level explanation of how this fits into the stack protector
2760 /// generation see the comment on the declaration of class
2761 /// StackProtectorDescriptor.
2762 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2763                                                   MachineBasicBlock *ParentBB) {
2764 
2765   // First create the loads to the guard/stack slot for the comparison.
2766   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2767   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2768   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2769 
2770   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2771   int FI = MFI.getStackProtectorIndex();
2772 
2773   SDValue Guard;
2774   SDLoc dl = getCurSDLoc();
2775   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2776   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2777   Align Align =
2778       DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0));
2779 
2780   // Generate code to load the content of the guard slot.
2781   SDValue GuardVal = DAG.getLoad(
2782       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2783       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2784       MachineMemOperand::MOVolatile);
2785 
2786   if (TLI.useStackGuardXorFP())
2787     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2788 
2789   // Retrieve guard check function, nullptr if instrumentation is inlined.
2790   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2791     // The target provides a guard check function to validate the guard value.
2792     // Generate a call to that function with the content of the guard slot as
2793     // argument.
2794     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2795     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2796 
2797     TargetLowering::ArgListTy Args;
2798     TargetLowering::ArgListEntry Entry;
2799     Entry.Node = GuardVal;
2800     Entry.Ty = FnTy->getParamType(0);
2801     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
2802       Entry.IsInReg = true;
2803     Args.push_back(Entry);
2804 
2805     TargetLowering::CallLoweringInfo CLI(DAG);
2806     CLI.setDebugLoc(getCurSDLoc())
2807         .setChain(DAG.getEntryNode())
2808         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2809                    getValue(GuardCheckFn), std::move(Args));
2810 
2811     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2812     DAG.setRoot(Result.second);
2813     return;
2814   }
2815 
2816   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2817   // Otherwise, emit a volatile load to retrieve the stack guard value.
2818   SDValue Chain = DAG.getEntryNode();
2819   if (TLI.useLoadStackGuardNode()) {
2820     Guard = getLoadStackGuard(DAG, dl, Chain);
2821   } else {
2822     const Value *IRGuard = TLI.getSDagStackGuard(M);
2823     SDValue GuardPtr = getValue(IRGuard);
2824 
2825     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2826                         MachinePointerInfo(IRGuard, 0), Align,
2827                         MachineMemOperand::MOVolatile);
2828   }
2829 
2830   // Perform the comparison via a getsetcc.
2831   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2832                                                         *DAG.getContext(),
2833                                                         Guard.getValueType()),
2834                              Guard, GuardVal, ISD::SETNE);
2835 
2836   // If the guard/stackslot do not equal, branch to failure MBB.
2837   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2838                                MVT::Other, GuardVal.getOperand(0),
2839                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2840   // Otherwise branch to success MBB.
2841   SDValue Br = DAG.getNode(ISD::BR, dl,
2842                            MVT::Other, BrCond,
2843                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2844 
2845   DAG.setRoot(Br);
2846 }
2847 
2848 /// Codegen the failure basic block for a stack protector check.
2849 ///
2850 /// A failure stack protector machine basic block consists simply of a call to
2851 /// __stack_chk_fail().
2852 ///
2853 /// For a high level explanation of how this fits into the stack protector
2854 /// generation see the comment on the declaration of class
2855 /// StackProtectorDescriptor.
2856 void
2857 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2858   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2859   TargetLowering::MakeLibCallOptions CallOptions;
2860   CallOptions.setDiscardResult(true);
2861   SDValue Chain =
2862       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2863                       std::nullopt, CallOptions, getCurSDLoc())
2864           .second;
2865   // On PS4/PS5, the "return address" must still be within the calling
2866   // function, even if it's at the very end, so emit an explicit TRAP here.
2867   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2868   if (TM.getTargetTriple().isPS())
2869     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2870   // WebAssembly needs an unreachable instruction after a non-returning call,
2871   // because the function return type can be different from __stack_chk_fail's
2872   // return type (void).
2873   if (TM.getTargetTriple().isWasm())
2874     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2875 
2876   DAG.setRoot(Chain);
2877 }
2878 
2879 /// visitBitTestHeader - This function emits necessary code to produce value
2880 /// suitable for "bit tests"
2881 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2882                                              MachineBasicBlock *SwitchBB) {
2883   SDLoc dl = getCurSDLoc();
2884 
2885   // Subtract the minimum value.
2886   SDValue SwitchOp = getValue(B.SValue);
2887   EVT VT = SwitchOp.getValueType();
2888   SDValue RangeSub =
2889       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2890 
2891   // Determine the type of the test operands.
2892   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2893   bool UsePtrType = false;
2894   if (!TLI.isTypeLegal(VT)) {
2895     UsePtrType = true;
2896   } else {
2897     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2898       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2899         // Switch table case range are encoded into series of masks.
2900         // Just use pointer type, it's guaranteed to fit.
2901         UsePtrType = true;
2902         break;
2903       }
2904   }
2905   SDValue Sub = RangeSub;
2906   if (UsePtrType) {
2907     VT = TLI.getPointerTy(DAG.getDataLayout());
2908     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2909   }
2910 
2911   B.RegVT = VT.getSimpleVT();
2912   B.Reg = FuncInfo.CreateReg(B.RegVT);
2913   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2914 
2915   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2916 
2917   if (!B.FallthroughUnreachable)
2918     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2919   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2920   SwitchBB->normalizeSuccProbs();
2921 
2922   SDValue Root = CopyTo;
2923   if (!B.FallthroughUnreachable) {
2924     // Conditional branch to the default block.
2925     SDValue RangeCmp = DAG.getSetCC(dl,
2926         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2927                                RangeSub.getValueType()),
2928         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2929         ISD::SETUGT);
2930 
2931     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2932                        DAG.getBasicBlock(B.Default));
2933   }
2934 
2935   // Avoid emitting unnecessary branches to the next block.
2936   if (MBB != NextBlock(SwitchBB))
2937     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2938 
2939   DAG.setRoot(Root);
2940 }
2941 
2942 /// visitBitTestCase - this function produces one "bit test"
2943 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2944                                            MachineBasicBlock* NextMBB,
2945                                            BranchProbability BranchProbToNext,
2946                                            unsigned Reg,
2947                                            BitTestCase &B,
2948                                            MachineBasicBlock *SwitchBB) {
2949   SDLoc dl = getCurSDLoc();
2950   MVT VT = BB.RegVT;
2951   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2952   SDValue Cmp;
2953   unsigned PopCount = llvm::popcount(B.Mask);
2954   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2955   if (PopCount == 1) {
2956     // Testing for a single bit; just compare the shift count with what it
2957     // would need to be to shift a 1 bit in that position.
2958     Cmp = DAG.getSetCC(
2959         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2960         ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT),
2961         ISD::SETEQ);
2962   } else if (PopCount == BB.Range) {
2963     // There is only one zero bit in the range, test for it directly.
2964     Cmp = DAG.getSetCC(
2965         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2966         ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE);
2967   } else {
2968     // Make desired shift
2969     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2970                                     DAG.getConstant(1, dl, VT), ShiftOp);
2971 
2972     // Emit bit tests and jumps
2973     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2974                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2975     Cmp = DAG.getSetCC(
2976         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2977         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2978   }
2979 
2980   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2981   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2982   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2983   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2984   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2985   // one as they are relative probabilities (and thus work more like weights),
2986   // and hence we need to normalize them to let the sum of them become one.
2987   SwitchBB->normalizeSuccProbs();
2988 
2989   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2990                               MVT::Other, getControlRoot(),
2991                               Cmp, DAG.getBasicBlock(B.TargetBB));
2992 
2993   // Avoid emitting unnecessary branches to the next block.
2994   if (NextMBB != NextBlock(SwitchBB))
2995     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2996                         DAG.getBasicBlock(NextMBB));
2997 
2998   DAG.setRoot(BrAnd);
2999 }
3000 
3001 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
3002   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
3003 
3004   // Retrieve successors. Look through artificial IR level blocks like
3005   // catchswitch for successors.
3006   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
3007   const BasicBlock *EHPadBB = I.getSuccessor(1);
3008   MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB];
3009 
3010   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3011   // have to do anything here to lower funclet bundles.
3012   assert(!I.hasOperandBundlesOtherThan(
3013              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
3014               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
3015               LLVMContext::OB_cfguardtarget,
3016               LLVMContext::OB_clang_arc_attachedcall}) &&
3017          "Cannot lower invokes with arbitrary operand bundles yet!");
3018 
3019   const Value *Callee(I.getCalledOperand());
3020   const Function *Fn = dyn_cast<Function>(Callee);
3021   if (isa<InlineAsm>(Callee))
3022     visitInlineAsm(I, EHPadBB);
3023   else if (Fn && Fn->isIntrinsic()) {
3024     switch (Fn->getIntrinsicID()) {
3025     default:
3026       llvm_unreachable("Cannot invoke this intrinsic");
3027     case Intrinsic::donothing:
3028       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
3029     case Intrinsic::seh_try_begin:
3030     case Intrinsic::seh_scope_begin:
3031     case Intrinsic::seh_try_end:
3032     case Intrinsic::seh_scope_end:
3033       if (EHPadMBB)
3034           // a block referenced by EH table
3035           // so dtor-funclet not removed by opts
3036           EHPadMBB->setMachineBlockAddressTaken();
3037       break;
3038     case Intrinsic::experimental_patchpoint_void:
3039     case Intrinsic::experimental_patchpoint_i64:
3040       visitPatchpoint(I, EHPadBB);
3041       break;
3042     case Intrinsic::experimental_gc_statepoint:
3043       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
3044       break;
3045     case Intrinsic::wasm_rethrow: {
3046       // This is usually done in visitTargetIntrinsic, but this intrinsic is
3047       // special because it can be invoked, so we manually lower it to a DAG
3048       // node here.
3049       SmallVector<SDValue, 8> Ops;
3050       Ops.push_back(getRoot()); // inchain
3051       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3052       Ops.push_back(
3053           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
3054                                 TLI.getPointerTy(DAG.getDataLayout())));
3055       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3056       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3057       break;
3058     }
3059     }
3060   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
3061     // Currently we do not lower any intrinsic calls with deopt operand bundles.
3062     // Eventually we will support lowering the @llvm.experimental.deoptimize
3063     // intrinsic, and right now there are no plans to support other intrinsics
3064     // with deopt state.
3065     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3066   } else {
3067     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3068   }
3069 
3070   // If the value of the invoke is used outside of its defining block, make it
3071   // available as a virtual register.
3072   // We already took care of the exported value for the statepoint instruction
3073   // during call to the LowerStatepoint.
3074   if (!isa<GCStatepointInst>(I)) {
3075     CopyToExportRegsIfNeeded(&I);
3076   }
3077 
3078   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
3079   BranchProbabilityInfo *BPI = FuncInfo.BPI;
3080   BranchProbability EHPadBBProb =
3081       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3082           : BranchProbability::getZero();
3083   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3084 
3085   // Update successor info.
3086   addSuccessorWithProb(InvokeMBB, Return);
3087   for (auto &UnwindDest : UnwindDests) {
3088     UnwindDest.first->setIsEHPad();
3089     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3090   }
3091   InvokeMBB->normalizeSuccProbs();
3092 
3093   // Drop into normal successor.
3094   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3095                           DAG.getBasicBlock(Return)));
3096 }
3097 
3098 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3099   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3100 
3101   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3102   // have to do anything here to lower funclet bundles.
3103   assert(!I.hasOperandBundlesOtherThan(
3104              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
3105          "Cannot lower callbrs with arbitrary operand bundles yet!");
3106 
3107   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3108   visitInlineAsm(I);
3109   CopyToExportRegsIfNeeded(&I);
3110 
3111   // Retrieve successors.
3112   SmallPtrSet<BasicBlock *, 8> Dests;
3113   Dests.insert(I.getDefaultDest());
3114   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
3115 
3116   // Update successor info.
3117   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3118   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3119     BasicBlock *Dest = I.getIndirectDest(i);
3120     MachineBasicBlock *Target = FuncInfo.MBBMap[Dest];
3121     Target->setIsInlineAsmBrIndirectTarget();
3122     Target->setMachineBlockAddressTaken();
3123     Target->setLabelMustBeEmitted();
3124     // Don't add duplicate machine successors.
3125     if (Dests.insert(Dest).second)
3126       addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3127   }
3128   CallBrMBB->normalizeSuccProbs();
3129 
3130   // Drop into default successor.
3131   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3132                           MVT::Other, getControlRoot(),
3133                           DAG.getBasicBlock(Return)));
3134 }
3135 
3136 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3137   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3138 }
3139 
3140 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3141   assert(FuncInfo.MBB->isEHPad() &&
3142          "Call to landingpad not in landing pad!");
3143 
3144   // If there aren't registers to copy the values into (e.g., during SjLj
3145   // exceptions), then don't bother to create these DAG nodes.
3146   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3147   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3148   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3149       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3150     return;
3151 
3152   // If landingpad's return type is token type, we don't create DAG nodes
3153   // for its exception pointer and selector value. The extraction of exception
3154   // pointer or selector value from token type landingpads is not currently
3155   // supported.
3156   if (LP.getType()->isTokenTy())
3157     return;
3158 
3159   SmallVector<EVT, 2> ValueVTs;
3160   SDLoc dl = getCurSDLoc();
3161   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3162   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3163 
3164   // Get the two live-in registers as SDValues. The physregs have already been
3165   // copied into virtual registers.
3166   SDValue Ops[2];
3167   if (FuncInfo.ExceptionPointerVirtReg) {
3168     Ops[0] = DAG.getZExtOrTrunc(
3169         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3170                            FuncInfo.ExceptionPointerVirtReg,
3171                            TLI.getPointerTy(DAG.getDataLayout())),
3172         dl, ValueVTs[0]);
3173   } else {
3174     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3175   }
3176   Ops[1] = DAG.getZExtOrTrunc(
3177       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3178                          FuncInfo.ExceptionSelectorVirtReg,
3179                          TLI.getPointerTy(DAG.getDataLayout())),
3180       dl, ValueVTs[1]);
3181 
3182   // Merge into one.
3183   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3184                             DAG.getVTList(ValueVTs), Ops);
3185   setValue(&LP, Res);
3186 }
3187 
3188 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3189                                            MachineBasicBlock *Last) {
3190   // Update JTCases.
3191   for (JumpTableBlock &JTB : SL->JTCases)
3192     if (JTB.first.HeaderBB == First)
3193       JTB.first.HeaderBB = Last;
3194 
3195   // Update BitTestCases.
3196   for (BitTestBlock &BTB : SL->BitTestCases)
3197     if (BTB.Parent == First)
3198       BTB.Parent = Last;
3199 }
3200 
3201 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3202   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3203 
3204   // Update machine-CFG edges with unique successors.
3205   SmallSet<BasicBlock*, 32> Done;
3206   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3207     BasicBlock *BB = I.getSuccessor(i);
3208     bool Inserted = Done.insert(BB).second;
3209     if (!Inserted)
3210         continue;
3211 
3212     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3213     addSuccessorWithProb(IndirectBrMBB, Succ);
3214   }
3215   IndirectBrMBB->normalizeSuccProbs();
3216 
3217   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3218                           MVT::Other, getControlRoot(),
3219                           getValue(I.getAddress())));
3220 }
3221 
3222 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3223   if (!DAG.getTarget().Options.TrapUnreachable)
3224     return;
3225 
3226   // We may be able to ignore unreachable behind a noreturn call.
3227   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3228     const BasicBlock &BB = *I.getParent();
3229     if (&I != &BB.front()) {
3230       BasicBlock::const_iterator PredI =
3231         std::prev(BasicBlock::const_iterator(&I));
3232       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3233         if (Call->doesNotReturn())
3234           return;
3235       }
3236     }
3237   }
3238 
3239   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3240 }
3241 
3242 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3243   SDNodeFlags Flags;
3244   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3245     Flags.copyFMF(*FPOp);
3246 
3247   SDValue Op = getValue(I.getOperand(0));
3248   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3249                                     Op, Flags);
3250   setValue(&I, UnNodeValue);
3251 }
3252 
3253 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3254   SDNodeFlags Flags;
3255   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3256     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3257     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3258   }
3259   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3260     Flags.setExact(ExactOp->isExact());
3261   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3262     Flags.copyFMF(*FPOp);
3263 
3264   SDValue Op1 = getValue(I.getOperand(0));
3265   SDValue Op2 = getValue(I.getOperand(1));
3266   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3267                                      Op1, Op2, Flags);
3268   setValue(&I, BinNodeValue);
3269 }
3270 
3271 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3272   SDValue Op1 = getValue(I.getOperand(0));
3273   SDValue Op2 = getValue(I.getOperand(1));
3274 
3275   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3276       Op1.getValueType(), DAG.getDataLayout());
3277 
3278   // Coerce the shift amount to the right type if we can. This exposes the
3279   // truncate or zext to optimization early.
3280   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3281     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3282            "Unexpected shift type");
3283     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3284   }
3285 
3286   bool nuw = false;
3287   bool nsw = false;
3288   bool exact = false;
3289 
3290   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3291 
3292     if (const OverflowingBinaryOperator *OFBinOp =
3293             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3294       nuw = OFBinOp->hasNoUnsignedWrap();
3295       nsw = OFBinOp->hasNoSignedWrap();
3296     }
3297     if (const PossiblyExactOperator *ExactOp =
3298             dyn_cast<const PossiblyExactOperator>(&I))
3299       exact = ExactOp->isExact();
3300   }
3301   SDNodeFlags Flags;
3302   Flags.setExact(exact);
3303   Flags.setNoSignedWrap(nsw);
3304   Flags.setNoUnsignedWrap(nuw);
3305   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3306                             Flags);
3307   setValue(&I, Res);
3308 }
3309 
3310 void SelectionDAGBuilder::visitSDiv(const User &I) {
3311   SDValue Op1 = getValue(I.getOperand(0));
3312   SDValue Op2 = getValue(I.getOperand(1));
3313 
3314   SDNodeFlags Flags;
3315   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3316                  cast<PossiblyExactOperator>(&I)->isExact());
3317   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3318                            Op2, Flags));
3319 }
3320 
3321 void SelectionDAGBuilder::visitICmp(const User &I) {
3322   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3323   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3324     predicate = IC->getPredicate();
3325   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3326     predicate = ICmpInst::Predicate(IC->getPredicate());
3327   SDValue Op1 = getValue(I.getOperand(0));
3328   SDValue Op2 = getValue(I.getOperand(1));
3329   ISD::CondCode Opcode = getICmpCondCode(predicate);
3330 
3331   auto &TLI = DAG.getTargetLoweringInfo();
3332   EVT MemVT =
3333       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3334 
3335   // If a pointer's DAG type is larger than its memory type then the DAG values
3336   // are zero-extended. This breaks signed comparisons so truncate back to the
3337   // underlying type before doing the compare.
3338   if (Op1.getValueType() != MemVT) {
3339     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3340     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3341   }
3342 
3343   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3344                                                         I.getType());
3345   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3346 }
3347 
3348 void SelectionDAGBuilder::visitFCmp(const User &I) {
3349   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3350   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3351     predicate = FC->getPredicate();
3352   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3353     predicate = FCmpInst::Predicate(FC->getPredicate());
3354   SDValue Op1 = getValue(I.getOperand(0));
3355   SDValue Op2 = getValue(I.getOperand(1));
3356 
3357   ISD::CondCode Condition = getFCmpCondCode(predicate);
3358   auto *FPMO = cast<FPMathOperator>(&I);
3359   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3360     Condition = getFCmpCodeWithoutNaN(Condition);
3361 
3362   SDNodeFlags Flags;
3363   Flags.copyFMF(*FPMO);
3364   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3365 
3366   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3367                                                         I.getType());
3368   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3369 }
3370 
3371 // Check if the condition of the select has one use or two users that are both
3372 // selects with the same condition.
3373 static bool hasOnlySelectUsers(const Value *Cond) {
3374   return llvm::all_of(Cond->users(), [](const Value *V) {
3375     return isa<SelectInst>(V);
3376   });
3377 }
3378 
3379 void SelectionDAGBuilder::visitSelect(const User &I) {
3380   SmallVector<EVT, 4> ValueVTs;
3381   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3382                   ValueVTs);
3383   unsigned NumValues = ValueVTs.size();
3384   if (NumValues == 0) return;
3385 
3386   SmallVector<SDValue, 4> Values(NumValues);
3387   SDValue Cond     = getValue(I.getOperand(0));
3388   SDValue LHSVal   = getValue(I.getOperand(1));
3389   SDValue RHSVal   = getValue(I.getOperand(2));
3390   SmallVector<SDValue, 1> BaseOps(1, Cond);
3391   ISD::NodeType OpCode =
3392       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3393 
3394   bool IsUnaryAbs = false;
3395   bool Negate = false;
3396 
3397   SDNodeFlags Flags;
3398   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3399     Flags.copyFMF(*FPOp);
3400 
3401   Flags.setUnpredictable(
3402       cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable));
3403 
3404   // Min/max matching is only viable if all output VTs are the same.
3405   if (all_equal(ValueVTs)) {
3406     EVT VT = ValueVTs[0];
3407     LLVMContext &Ctx = *DAG.getContext();
3408     auto &TLI = DAG.getTargetLoweringInfo();
3409 
3410     // We care about the legality of the operation after it has been type
3411     // legalized.
3412     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3413       VT = TLI.getTypeToTransformTo(Ctx, VT);
3414 
3415     // If the vselect is legal, assume we want to leave this as a vector setcc +
3416     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3417     // min/max is legal on the scalar type.
3418     bool UseScalarMinMax = VT.isVector() &&
3419       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3420 
3421     // ValueTracking's select pattern matching does not account for -0.0,
3422     // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that
3423     // -0.0 is less than +0.0.
3424     Value *LHS, *RHS;
3425     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3426     ISD::NodeType Opc = ISD::DELETED_NODE;
3427     switch (SPR.Flavor) {
3428     case SPF_UMAX:    Opc = ISD::UMAX; break;
3429     case SPF_UMIN:    Opc = ISD::UMIN; break;
3430     case SPF_SMAX:    Opc = ISD::SMAX; break;
3431     case SPF_SMIN:    Opc = ISD::SMIN; break;
3432     case SPF_FMINNUM:
3433       switch (SPR.NaNBehavior) {
3434       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3435       case SPNB_RETURNS_NAN: break;
3436       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3437       case SPNB_RETURNS_ANY:
3438         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ||
3439             (UseScalarMinMax &&
3440              TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType())))
3441           Opc = ISD::FMINNUM;
3442         break;
3443       }
3444       break;
3445     case SPF_FMAXNUM:
3446       switch (SPR.NaNBehavior) {
3447       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3448       case SPNB_RETURNS_NAN: break;
3449       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3450       case SPNB_RETURNS_ANY:
3451         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ||
3452             (UseScalarMinMax &&
3453              TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType())))
3454           Opc = ISD::FMAXNUM;
3455         break;
3456       }
3457       break;
3458     case SPF_NABS:
3459       Negate = true;
3460       [[fallthrough]];
3461     case SPF_ABS:
3462       IsUnaryAbs = true;
3463       Opc = ISD::ABS;
3464       break;
3465     default: break;
3466     }
3467 
3468     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3469         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3470          (UseScalarMinMax &&
3471           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3472         // If the underlying comparison instruction is used by any other
3473         // instruction, the consumed instructions won't be destroyed, so it is
3474         // not profitable to convert to a min/max.
3475         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3476       OpCode = Opc;
3477       LHSVal = getValue(LHS);
3478       RHSVal = getValue(RHS);
3479       BaseOps.clear();
3480     }
3481 
3482     if (IsUnaryAbs) {
3483       OpCode = Opc;
3484       LHSVal = getValue(LHS);
3485       BaseOps.clear();
3486     }
3487   }
3488 
3489   if (IsUnaryAbs) {
3490     for (unsigned i = 0; i != NumValues; ++i) {
3491       SDLoc dl = getCurSDLoc();
3492       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3493       Values[i] =
3494           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3495       if (Negate)
3496         Values[i] = DAG.getNegative(Values[i], dl, VT);
3497     }
3498   } else {
3499     for (unsigned i = 0; i != NumValues; ++i) {
3500       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3501       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3502       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3503       Values[i] = DAG.getNode(
3504           OpCode, getCurSDLoc(),
3505           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3506     }
3507   }
3508 
3509   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3510                            DAG.getVTList(ValueVTs), Values));
3511 }
3512 
3513 void SelectionDAGBuilder::visitTrunc(const User &I) {
3514   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3515   SDValue N = getValue(I.getOperand(0));
3516   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3517                                                         I.getType());
3518   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3519 }
3520 
3521 void SelectionDAGBuilder::visitZExt(const User &I) {
3522   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3523   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3524   SDValue N = getValue(I.getOperand(0));
3525   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3526                                                         I.getType());
3527   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3528 }
3529 
3530 void SelectionDAGBuilder::visitSExt(const User &I) {
3531   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3532   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3533   SDValue N = getValue(I.getOperand(0));
3534   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3535                                                         I.getType());
3536   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3537 }
3538 
3539 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3540   // FPTrunc is never a no-op cast, no need to check
3541   SDValue N = getValue(I.getOperand(0));
3542   SDLoc dl = getCurSDLoc();
3543   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3544   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3545   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3546                            DAG.getTargetConstant(
3547                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3548 }
3549 
3550 void SelectionDAGBuilder::visitFPExt(const User &I) {
3551   // FPExt is never a no-op cast, no need to check
3552   SDValue N = getValue(I.getOperand(0));
3553   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3554                                                         I.getType());
3555   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3556 }
3557 
3558 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3559   // FPToUI is never a no-op cast, no need to check
3560   SDValue N = getValue(I.getOperand(0));
3561   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3562                                                         I.getType());
3563   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3564 }
3565 
3566 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3567   // FPToSI is never a no-op cast, no need to check
3568   SDValue N = getValue(I.getOperand(0));
3569   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3570                                                         I.getType());
3571   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3572 }
3573 
3574 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3575   // UIToFP is never a no-op cast, no need to check
3576   SDValue N = getValue(I.getOperand(0));
3577   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3578                                                         I.getType());
3579   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3580 }
3581 
3582 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3583   // SIToFP is never a no-op cast, no need to check
3584   SDValue N = getValue(I.getOperand(0));
3585   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3586                                                         I.getType());
3587   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3588 }
3589 
3590 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3591   // What to do depends on the size of the integer and the size of the pointer.
3592   // We can either truncate, zero extend, or no-op, accordingly.
3593   SDValue N = getValue(I.getOperand(0));
3594   auto &TLI = DAG.getTargetLoweringInfo();
3595   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3596                                                         I.getType());
3597   EVT PtrMemVT =
3598       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3599   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3600   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3601   setValue(&I, N);
3602 }
3603 
3604 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3605   // What to do depends on the size of the integer and the size of the pointer.
3606   // We can either truncate, zero extend, or no-op, accordingly.
3607   SDValue N = getValue(I.getOperand(0));
3608   auto &TLI = DAG.getTargetLoweringInfo();
3609   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3610   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3611   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3612   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3613   setValue(&I, N);
3614 }
3615 
3616 void SelectionDAGBuilder::visitBitCast(const User &I) {
3617   SDValue N = getValue(I.getOperand(0));
3618   SDLoc dl = getCurSDLoc();
3619   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3620                                                         I.getType());
3621 
3622   // BitCast assures us that source and destination are the same size so this is
3623   // either a BITCAST or a no-op.
3624   if (DestVT != N.getValueType())
3625     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3626                              DestVT, N)); // convert types.
3627   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3628   // might fold any kind of constant expression to an integer constant and that
3629   // is not what we are looking for. Only recognize a bitcast of a genuine
3630   // constant integer as an opaque constant.
3631   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3632     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3633                                  /*isOpaque*/true));
3634   else
3635     setValue(&I, N);            // noop cast.
3636 }
3637 
3638 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3639   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3640   const Value *SV = I.getOperand(0);
3641   SDValue N = getValue(SV);
3642   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3643 
3644   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3645   unsigned DestAS = I.getType()->getPointerAddressSpace();
3646 
3647   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3648     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3649 
3650   setValue(&I, N);
3651 }
3652 
3653 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3654   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3655   SDValue InVec = getValue(I.getOperand(0));
3656   SDValue InVal = getValue(I.getOperand(1));
3657   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3658                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3659   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3660                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3661                            InVec, InVal, InIdx));
3662 }
3663 
3664 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3665   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3666   SDValue InVec = getValue(I.getOperand(0));
3667   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3668                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3669   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3670                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3671                            InVec, InIdx));
3672 }
3673 
3674 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3675   SDValue Src1 = getValue(I.getOperand(0));
3676   SDValue Src2 = getValue(I.getOperand(1));
3677   ArrayRef<int> Mask;
3678   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3679     Mask = SVI->getShuffleMask();
3680   else
3681     Mask = cast<ConstantExpr>(I).getShuffleMask();
3682   SDLoc DL = getCurSDLoc();
3683   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3684   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3685   EVT SrcVT = Src1.getValueType();
3686 
3687   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3688       VT.isScalableVector()) {
3689     // Canonical splat form of first element of first input vector.
3690     SDValue FirstElt =
3691         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3692                     DAG.getVectorIdxConstant(0, DL));
3693     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3694     return;
3695   }
3696 
3697   // For now, we only handle splats for scalable vectors.
3698   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3699   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3700   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3701 
3702   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3703   unsigned MaskNumElts = Mask.size();
3704 
3705   if (SrcNumElts == MaskNumElts) {
3706     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3707     return;
3708   }
3709 
3710   // Normalize the shuffle vector since mask and vector length don't match.
3711   if (SrcNumElts < MaskNumElts) {
3712     // Mask is longer than the source vectors. We can use concatenate vector to
3713     // make the mask and vectors lengths match.
3714 
3715     if (MaskNumElts % SrcNumElts == 0) {
3716       // Mask length is a multiple of the source vector length.
3717       // Check if the shuffle is some kind of concatenation of the input
3718       // vectors.
3719       unsigned NumConcat = MaskNumElts / SrcNumElts;
3720       bool IsConcat = true;
3721       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3722       for (unsigned i = 0; i != MaskNumElts; ++i) {
3723         int Idx = Mask[i];
3724         if (Idx < 0)
3725           continue;
3726         // Ensure the indices in each SrcVT sized piece are sequential and that
3727         // the same source is used for the whole piece.
3728         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3729             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3730              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3731           IsConcat = false;
3732           break;
3733         }
3734         // Remember which source this index came from.
3735         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3736       }
3737 
3738       // The shuffle is concatenating multiple vectors together. Just emit
3739       // a CONCAT_VECTORS operation.
3740       if (IsConcat) {
3741         SmallVector<SDValue, 8> ConcatOps;
3742         for (auto Src : ConcatSrcs) {
3743           if (Src < 0)
3744             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3745           else if (Src == 0)
3746             ConcatOps.push_back(Src1);
3747           else
3748             ConcatOps.push_back(Src2);
3749         }
3750         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3751         return;
3752       }
3753     }
3754 
3755     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3756     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3757     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3758                                     PaddedMaskNumElts);
3759 
3760     // Pad both vectors with undefs to make them the same length as the mask.
3761     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3762 
3763     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3764     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3765     MOps1[0] = Src1;
3766     MOps2[0] = Src2;
3767 
3768     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3769     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3770 
3771     // Readjust mask for new input vector length.
3772     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3773     for (unsigned i = 0; i != MaskNumElts; ++i) {
3774       int Idx = Mask[i];
3775       if (Idx >= (int)SrcNumElts)
3776         Idx -= SrcNumElts - PaddedMaskNumElts;
3777       MappedOps[i] = Idx;
3778     }
3779 
3780     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3781 
3782     // If the concatenated vector was padded, extract a subvector with the
3783     // correct number of elements.
3784     if (MaskNumElts != PaddedMaskNumElts)
3785       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3786                            DAG.getVectorIdxConstant(0, DL));
3787 
3788     setValue(&I, Result);
3789     return;
3790   }
3791 
3792   if (SrcNumElts > MaskNumElts) {
3793     // Analyze the access pattern of the vector to see if we can extract
3794     // two subvectors and do the shuffle.
3795     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3796     bool CanExtract = true;
3797     for (int Idx : Mask) {
3798       unsigned Input = 0;
3799       if (Idx < 0)
3800         continue;
3801 
3802       if (Idx >= (int)SrcNumElts) {
3803         Input = 1;
3804         Idx -= SrcNumElts;
3805       }
3806 
3807       // If all the indices come from the same MaskNumElts sized portion of
3808       // the sources we can use extract. Also make sure the extract wouldn't
3809       // extract past the end of the source.
3810       int NewStartIdx = alignDown(Idx, MaskNumElts);
3811       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3812           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3813         CanExtract = false;
3814       // Make sure we always update StartIdx as we use it to track if all
3815       // elements are undef.
3816       StartIdx[Input] = NewStartIdx;
3817     }
3818 
3819     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3820       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3821       return;
3822     }
3823     if (CanExtract) {
3824       // Extract appropriate subvector and generate a vector shuffle
3825       for (unsigned Input = 0; Input < 2; ++Input) {
3826         SDValue &Src = Input == 0 ? Src1 : Src2;
3827         if (StartIdx[Input] < 0)
3828           Src = DAG.getUNDEF(VT);
3829         else {
3830           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3831                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3832         }
3833       }
3834 
3835       // Calculate new mask.
3836       SmallVector<int, 8> MappedOps(Mask);
3837       for (int &Idx : MappedOps) {
3838         if (Idx >= (int)SrcNumElts)
3839           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3840         else if (Idx >= 0)
3841           Idx -= StartIdx[0];
3842       }
3843 
3844       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3845       return;
3846     }
3847   }
3848 
3849   // We can't use either concat vectors or extract subvectors so fall back to
3850   // replacing the shuffle with extract and build vector.
3851   // to insert and build vector.
3852   EVT EltVT = VT.getVectorElementType();
3853   SmallVector<SDValue,8> Ops;
3854   for (int Idx : Mask) {
3855     SDValue Res;
3856 
3857     if (Idx < 0) {
3858       Res = DAG.getUNDEF(EltVT);
3859     } else {
3860       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3861       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3862 
3863       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3864                         DAG.getVectorIdxConstant(Idx, DL));
3865     }
3866 
3867     Ops.push_back(Res);
3868   }
3869 
3870   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3871 }
3872 
3873 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3874   ArrayRef<unsigned> Indices = I.getIndices();
3875   const Value *Op0 = I.getOperand(0);
3876   const Value *Op1 = I.getOperand(1);
3877   Type *AggTy = I.getType();
3878   Type *ValTy = Op1->getType();
3879   bool IntoUndef = isa<UndefValue>(Op0);
3880   bool FromUndef = isa<UndefValue>(Op1);
3881 
3882   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3883 
3884   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3885   SmallVector<EVT, 4> AggValueVTs;
3886   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3887   SmallVector<EVT, 4> ValValueVTs;
3888   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3889 
3890   unsigned NumAggValues = AggValueVTs.size();
3891   unsigned NumValValues = ValValueVTs.size();
3892   SmallVector<SDValue, 4> Values(NumAggValues);
3893 
3894   // Ignore an insertvalue that produces an empty object
3895   if (!NumAggValues) {
3896     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3897     return;
3898   }
3899 
3900   SDValue Agg = getValue(Op0);
3901   unsigned i = 0;
3902   // Copy the beginning value(s) from the original aggregate.
3903   for (; i != LinearIndex; ++i)
3904     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3905                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3906   // Copy values from the inserted value(s).
3907   if (NumValValues) {
3908     SDValue Val = getValue(Op1);
3909     for (; i != LinearIndex + NumValValues; ++i)
3910       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3911                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3912   }
3913   // Copy remaining value(s) from the original aggregate.
3914   for (; i != NumAggValues; ++i)
3915     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3916                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3917 
3918   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3919                            DAG.getVTList(AggValueVTs), Values));
3920 }
3921 
3922 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3923   ArrayRef<unsigned> Indices = I.getIndices();
3924   const Value *Op0 = I.getOperand(0);
3925   Type *AggTy = Op0->getType();
3926   Type *ValTy = I.getType();
3927   bool OutOfUndef = isa<UndefValue>(Op0);
3928 
3929   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3930 
3931   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3932   SmallVector<EVT, 4> ValValueVTs;
3933   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3934 
3935   unsigned NumValValues = ValValueVTs.size();
3936 
3937   // Ignore a extractvalue that produces an empty object
3938   if (!NumValValues) {
3939     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3940     return;
3941   }
3942 
3943   SmallVector<SDValue, 4> Values(NumValValues);
3944 
3945   SDValue Agg = getValue(Op0);
3946   // Copy out the selected value(s).
3947   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3948     Values[i - LinearIndex] =
3949       OutOfUndef ?
3950         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3951         SDValue(Agg.getNode(), Agg.getResNo() + i);
3952 
3953   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3954                            DAG.getVTList(ValValueVTs), Values));
3955 }
3956 
3957 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3958   Value *Op0 = I.getOperand(0);
3959   // Note that the pointer operand may be a vector of pointers. Take the scalar
3960   // element which holds a pointer.
3961   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3962   SDValue N = getValue(Op0);
3963   SDLoc dl = getCurSDLoc();
3964   auto &TLI = DAG.getTargetLoweringInfo();
3965 
3966   // Normalize Vector GEP - all scalar operands should be converted to the
3967   // splat vector.
3968   bool IsVectorGEP = I.getType()->isVectorTy();
3969   ElementCount VectorElementCount =
3970       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3971                   : ElementCount::getFixed(0);
3972 
3973   if (IsVectorGEP && !N.getValueType().isVector()) {
3974     LLVMContext &Context = *DAG.getContext();
3975     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3976     N = DAG.getSplat(VT, dl, N);
3977   }
3978 
3979   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3980        GTI != E; ++GTI) {
3981     const Value *Idx = GTI.getOperand();
3982     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3983       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3984       if (Field) {
3985         // N = N + Offset
3986         uint64_t Offset =
3987             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
3988 
3989         // In an inbounds GEP with an offset that is nonnegative even when
3990         // interpreted as signed, assume there is no unsigned overflow.
3991         SDNodeFlags Flags;
3992         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3993           Flags.setNoUnsignedWrap(true);
3994 
3995         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3996                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3997       }
3998     } else {
3999       // IdxSize is the width of the arithmetic according to IR semantics.
4000       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
4001       // (and fix up the result later).
4002       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
4003       MVT IdxTy = MVT::getIntegerVT(IdxSize);
4004       TypeSize ElementSize =
4005           DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType());
4006       // We intentionally mask away the high bits here; ElementSize may not
4007       // fit in IdxTy.
4008       APInt ElementMul(IdxSize, ElementSize.getKnownMinValue());
4009       bool ElementScalable = ElementSize.isScalable();
4010 
4011       // If this is a scalar constant or a splat vector of constants,
4012       // handle it quickly.
4013       const auto *C = dyn_cast<Constant>(Idx);
4014       if (C && isa<VectorType>(C->getType()))
4015         C = C->getSplatValue();
4016 
4017       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
4018       if (CI && CI->isZero())
4019         continue;
4020       if (CI && !ElementScalable) {
4021         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
4022         LLVMContext &Context = *DAG.getContext();
4023         SDValue OffsVal;
4024         if (IsVectorGEP)
4025           OffsVal = DAG.getConstant(
4026               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
4027         else
4028           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
4029 
4030         // In an inbounds GEP with an offset that is nonnegative even when
4031         // interpreted as signed, assume there is no unsigned overflow.
4032         SDNodeFlags Flags;
4033         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
4034           Flags.setNoUnsignedWrap(true);
4035 
4036         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
4037 
4038         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
4039         continue;
4040       }
4041 
4042       // N = N + Idx * ElementMul;
4043       SDValue IdxN = getValue(Idx);
4044 
4045       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
4046         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
4047                                   VectorElementCount);
4048         IdxN = DAG.getSplat(VT, dl, IdxN);
4049       }
4050 
4051       // If the index is smaller or larger than intptr_t, truncate or extend
4052       // it.
4053       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
4054 
4055       if (ElementScalable) {
4056         EVT VScaleTy = N.getValueType().getScalarType();
4057         SDValue VScale = DAG.getNode(
4058             ISD::VSCALE, dl, VScaleTy,
4059             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4060         if (IsVectorGEP)
4061           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4062         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
4063       } else {
4064         // If this is a multiply by a power of two, turn it into a shl
4065         // immediately.  This is a very common case.
4066         if (ElementMul != 1) {
4067           if (ElementMul.isPowerOf2()) {
4068             unsigned Amt = ElementMul.logBase2();
4069             IdxN = DAG.getNode(ISD::SHL, dl,
4070                                N.getValueType(), IdxN,
4071                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
4072           } else {
4073             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4074                                             IdxN.getValueType());
4075             IdxN = DAG.getNode(ISD::MUL, dl,
4076                                N.getValueType(), IdxN, Scale);
4077           }
4078         }
4079       }
4080 
4081       N = DAG.getNode(ISD::ADD, dl,
4082                       N.getValueType(), N, IdxN);
4083     }
4084   }
4085 
4086   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4087   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4088   if (IsVectorGEP) {
4089     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4090     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4091   }
4092 
4093   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4094     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4095 
4096   setValue(&I, N);
4097 }
4098 
4099 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4100   // If this is a fixed sized alloca in the entry block of the function,
4101   // allocate it statically on the stack.
4102   if (FuncInfo.StaticAllocaMap.count(&I))
4103     return;   // getValue will auto-populate this.
4104 
4105   SDLoc dl = getCurSDLoc();
4106   Type *Ty = I.getAllocatedType();
4107   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4108   auto &DL = DAG.getDataLayout();
4109   TypeSize TySize = DL.getTypeAllocSize(Ty);
4110   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4111 
4112   SDValue AllocSize = getValue(I.getArraySize());
4113 
4114   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), I.getAddressSpace());
4115   if (AllocSize.getValueType() != IntPtr)
4116     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4117 
4118   if (TySize.isScalable())
4119     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4120                             DAG.getVScale(dl, IntPtr,
4121                                           APInt(IntPtr.getScalarSizeInBits(),
4122                                                 TySize.getKnownMinValue())));
4123   else
4124     AllocSize =
4125         DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4126                     DAG.getConstant(TySize.getFixedValue(), dl, IntPtr));
4127 
4128   // Handle alignment.  If the requested alignment is less than or equal to
4129   // the stack alignment, ignore it.  If the size is greater than or equal to
4130   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4131   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4132   if (*Alignment <= StackAlign)
4133     Alignment = std::nullopt;
4134 
4135   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4136   // Round the size of the allocation up to the stack alignment size
4137   // by add SA-1 to the size. This doesn't overflow because we're computing
4138   // an address inside an alloca.
4139   SDNodeFlags Flags;
4140   Flags.setNoUnsignedWrap(true);
4141   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4142                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4143 
4144   // Mask out the low bits for alignment purposes.
4145   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4146                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4147 
4148   SDValue Ops[] = {
4149       getRoot(), AllocSize,
4150       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4151   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4152   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4153   setValue(&I, DSA);
4154   DAG.setRoot(DSA.getValue(1));
4155 
4156   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4157 }
4158 
4159 static const MDNode *getRangeMetadata(const Instruction &I) {
4160   // If !noundef is not present, then !range violation results in a poison
4161   // value rather than immediate undefined behavior. In theory, transferring
4162   // these annotations to SDAG is fine, but in practice there are key SDAG
4163   // transforms that are known not to be poison-safe, such as folding logical
4164   // and/or to bitwise and/or. For now, only transfer !range if !noundef is
4165   // also present.
4166   if (!I.hasMetadata(LLVMContext::MD_noundef))
4167     return nullptr;
4168   return I.getMetadata(LLVMContext::MD_range);
4169 }
4170 
4171 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4172   if (I.isAtomic())
4173     return visitAtomicLoad(I);
4174 
4175   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4176   const Value *SV = I.getOperand(0);
4177   if (TLI.supportSwiftError()) {
4178     // Swifterror values can come from either a function parameter with
4179     // swifterror attribute or an alloca with swifterror attribute.
4180     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4181       if (Arg->hasSwiftErrorAttr())
4182         return visitLoadFromSwiftError(I);
4183     }
4184 
4185     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4186       if (Alloca->isSwiftError())
4187         return visitLoadFromSwiftError(I);
4188     }
4189   }
4190 
4191   SDValue Ptr = getValue(SV);
4192 
4193   Type *Ty = I.getType();
4194   SmallVector<EVT, 4> ValueVTs, MemVTs;
4195   SmallVector<TypeSize, 4> Offsets;
4196   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets, 0);
4197   unsigned NumValues = ValueVTs.size();
4198   if (NumValues == 0)
4199     return;
4200 
4201   Align Alignment = I.getAlign();
4202   AAMDNodes AAInfo = I.getAAMetadata();
4203   const MDNode *Ranges = getRangeMetadata(I);
4204   bool isVolatile = I.isVolatile();
4205   MachineMemOperand::Flags MMOFlags =
4206       TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4207 
4208   SDValue Root;
4209   bool ConstantMemory = false;
4210   if (isVolatile)
4211     // Serialize volatile loads with other side effects.
4212     Root = getRoot();
4213   else if (NumValues > MaxParallelChains)
4214     Root = getMemoryRoot();
4215   else if (AA &&
4216            AA->pointsToConstantMemory(MemoryLocation(
4217                SV,
4218                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4219                AAInfo))) {
4220     // Do not serialize (non-volatile) loads of constant memory with anything.
4221     Root = DAG.getEntryNode();
4222     ConstantMemory = true;
4223     MMOFlags |= MachineMemOperand::MOInvariant;
4224   } else {
4225     // Do not serialize non-volatile loads against each other.
4226     Root = DAG.getRoot();
4227   }
4228 
4229   SDLoc dl = getCurSDLoc();
4230 
4231   if (isVolatile)
4232     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4233 
4234   SmallVector<SDValue, 4> Values(NumValues);
4235   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4236 
4237   unsigned ChainI = 0;
4238   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4239     // Serializing loads here may result in excessive register pressure, and
4240     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4241     // could recover a bit by hoisting nodes upward in the chain by recognizing
4242     // they are side-effect free or do not alias. The optimizer should really
4243     // avoid this case by converting large object/array copies to llvm.memcpy
4244     // (MaxParallelChains should always remain as failsafe).
4245     if (ChainI == MaxParallelChains) {
4246       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4247       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4248                                   ArrayRef(Chains.data(), ChainI));
4249       Root = Chain;
4250       ChainI = 0;
4251     }
4252 
4253     // TODO: MachinePointerInfo only supports a fixed length offset.
4254     MachinePointerInfo PtrInfo =
4255         !Offsets[i].isScalable() || Offsets[i].isZero()
4256             ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue())
4257             : MachinePointerInfo();
4258 
4259     SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4260     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment,
4261                             MMOFlags, AAInfo, Ranges);
4262     Chains[ChainI] = L.getValue(1);
4263 
4264     if (MemVTs[i] != ValueVTs[i])
4265       L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]);
4266 
4267     Values[i] = L;
4268   }
4269 
4270   if (!ConstantMemory) {
4271     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4272                                 ArrayRef(Chains.data(), ChainI));
4273     if (isVolatile)
4274       DAG.setRoot(Chain);
4275     else
4276       PendingLoads.push_back(Chain);
4277   }
4278 
4279   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4280                            DAG.getVTList(ValueVTs), Values));
4281 }
4282 
4283 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4284   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4285          "call visitStoreToSwiftError when backend supports swifterror");
4286 
4287   SmallVector<EVT, 4> ValueVTs;
4288   SmallVector<uint64_t, 4> Offsets;
4289   const Value *SrcV = I.getOperand(0);
4290   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4291                   SrcV->getType(), ValueVTs, &Offsets, 0);
4292   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4293          "expect a single EVT for swifterror");
4294 
4295   SDValue Src = getValue(SrcV);
4296   // Create a virtual register, then update the virtual register.
4297   Register VReg =
4298       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4299   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4300   // Chain can be getRoot or getControlRoot.
4301   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4302                                       SDValue(Src.getNode(), Src.getResNo()));
4303   DAG.setRoot(CopyNode);
4304 }
4305 
4306 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4307   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4308          "call visitLoadFromSwiftError when backend supports swifterror");
4309 
4310   assert(!I.isVolatile() &&
4311          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4312          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4313          "Support volatile, non temporal, invariant for load_from_swift_error");
4314 
4315   const Value *SV = I.getOperand(0);
4316   Type *Ty = I.getType();
4317   assert(
4318       (!AA ||
4319        !AA->pointsToConstantMemory(MemoryLocation(
4320            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4321            I.getAAMetadata()))) &&
4322       "load_from_swift_error should not be constant memory");
4323 
4324   SmallVector<EVT, 4> ValueVTs;
4325   SmallVector<uint64_t, 4> Offsets;
4326   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4327                   ValueVTs, &Offsets, 0);
4328   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4329          "expect a single EVT for swifterror");
4330 
4331   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4332   SDValue L = DAG.getCopyFromReg(
4333       getRoot(), getCurSDLoc(),
4334       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4335 
4336   setValue(&I, L);
4337 }
4338 
4339 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4340   if (I.isAtomic())
4341     return visitAtomicStore(I);
4342 
4343   const Value *SrcV = I.getOperand(0);
4344   const Value *PtrV = I.getOperand(1);
4345 
4346   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4347   if (TLI.supportSwiftError()) {
4348     // Swifterror values can come from either a function parameter with
4349     // swifterror attribute or an alloca with swifterror attribute.
4350     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4351       if (Arg->hasSwiftErrorAttr())
4352         return visitStoreToSwiftError(I);
4353     }
4354 
4355     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4356       if (Alloca->isSwiftError())
4357         return visitStoreToSwiftError(I);
4358     }
4359   }
4360 
4361   SmallVector<EVT, 4> ValueVTs, MemVTs;
4362   SmallVector<TypeSize, 4> Offsets;
4363   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4364                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets, 0);
4365   unsigned NumValues = ValueVTs.size();
4366   if (NumValues == 0)
4367     return;
4368 
4369   // Get the lowered operands. Note that we do this after
4370   // checking if NumResults is zero, because with zero results
4371   // the operands won't have values in the map.
4372   SDValue Src = getValue(SrcV);
4373   SDValue Ptr = getValue(PtrV);
4374 
4375   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4376   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4377   SDLoc dl = getCurSDLoc();
4378   Align Alignment = I.getAlign();
4379   AAMDNodes AAInfo = I.getAAMetadata();
4380 
4381   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4382 
4383   unsigned ChainI = 0;
4384   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4385     // See visitLoad comments.
4386     if (ChainI == MaxParallelChains) {
4387       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4388                                   ArrayRef(Chains.data(), ChainI));
4389       Root = Chain;
4390       ChainI = 0;
4391     }
4392 
4393     // TODO: MachinePointerInfo only supports a fixed length offset.
4394     MachinePointerInfo PtrInfo =
4395         !Offsets[i].isScalable() || Offsets[i].isZero()
4396             ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue())
4397             : MachinePointerInfo();
4398 
4399     SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4400     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4401     if (MemVTs[i] != ValueVTs[i])
4402       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4403     SDValue St =
4404         DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo);
4405     Chains[ChainI] = St;
4406   }
4407 
4408   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4409                                   ArrayRef(Chains.data(), ChainI));
4410   setValue(&I, StoreNode);
4411   DAG.setRoot(StoreNode);
4412 }
4413 
4414 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4415                                            bool IsCompressing) {
4416   SDLoc sdl = getCurSDLoc();
4417 
4418   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4419                                MaybeAlign &Alignment) {
4420     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4421     Src0 = I.getArgOperand(0);
4422     Ptr = I.getArgOperand(1);
4423     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4424     Mask = I.getArgOperand(3);
4425   };
4426   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4427                                     MaybeAlign &Alignment) {
4428     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4429     Src0 = I.getArgOperand(0);
4430     Ptr = I.getArgOperand(1);
4431     Mask = I.getArgOperand(2);
4432     Alignment = std::nullopt;
4433   };
4434 
4435   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4436   MaybeAlign Alignment;
4437   if (IsCompressing)
4438     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4439   else
4440     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4441 
4442   SDValue Ptr = getValue(PtrOperand);
4443   SDValue Src0 = getValue(Src0Operand);
4444   SDValue Mask = getValue(MaskOperand);
4445   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4446 
4447   EVT VT = Src0.getValueType();
4448   if (!Alignment)
4449     Alignment = DAG.getEVTAlign(VT);
4450 
4451   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4452       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4453       MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata());
4454   SDValue StoreNode =
4455       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4456                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4457   DAG.setRoot(StoreNode);
4458   setValue(&I, StoreNode);
4459 }
4460 
4461 // Get a uniform base for the Gather/Scatter intrinsic.
4462 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4463 // We try to represent it as a base pointer + vector of indices.
4464 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4465 // The first operand of the GEP may be a single pointer or a vector of pointers
4466 // Example:
4467 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4468 //  or
4469 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4470 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4471 //
4472 // When the first GEP operand is a single pointer - it is the uniform base we
4473 // are looking for. If first operand of the GEP is a splat vector - we
4474 // extract the splat value and use it as a uniform base.
4475 // In all other cases the function returns 'false'.
4476 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4477                            ISD::MemIndexType &IndexType, SDValue &Scale,
4478                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4479                            uint64_t ElemSize) {
4480   SelectionDAG& DAG = SDB->DAG;
4481   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4482   const DataLayout &DL = DAG.getDataLayout();
4483 
4484   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4485 
4486   // Handle splat constant pointer.
4487   if (auto *C = dyn_cast<Constant>(Ptr)) {
4488     C = C->getSplatValue();
4489     if (!C)
4490       return false;
4491 
4492     Base = SDB->getValue(C);
4493 
4494     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4495     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4496     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4497     IndexType = ISD::SIGNED_SCALED;
4498     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4499     return true;
4500   }
4501 
4502   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4503   if (!GEP || GEP->getParent() != CurBB)
4504     return false;
4505 
4506   if (GEP->getNumOperands() != 2)
4507     return false;
4508 
4509   const Value *BasePtr = GEP->getPointerOperand();
4510   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4511 
4512   // Make sure the base is scalar and the index is a vector.
4513   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4514     return false;
4515 
4516   TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4517   if (ScaleVal.isScalable())
4518     return false;
4519 
4520   // Target may not support the required addressing mode.
4521   if (ScaleVal != 1 &&
4522       !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize))
4523     return false;
4524 
4525   Base = SDB->getValue(BasePtr);
4526   Index = SDB->getValue(IndexVal);
4527   IndexType = ISD::SIGNED_SCALED;
4528 
4529   Scale =
4530       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4531   return true;
4532 }
4533 
4534 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4535   SDLoc sdl = getCurSDLoc();
4536 
4537   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4538   const Value *Ptr = I.getArgOperand(1);
4539   SDValue Src0 = getValue(I.getArgOperand(0));
4540   SDValue Mask = getValue(I.getArgOperand(3));
4541   EVT VT = Src0.getValueType();
4542   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4543                         ->getMaybeAlignValue()
4544                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4545   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4546 
4547   SDValue Base;
4548   SDValue Index;
4549   ISD::MemIndexType IndexType;
4550   SDValue Scale;
4551   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4552                                     I.getParent(), VT.getScalarStoreSize());
4553 
4554   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4555   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4556       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4557       // TODO: Make MachineMemOperands aware of scalable
4558       // vectors.
4559       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata());
4560   if (!UniformBase) {
4561     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4562     Index = getValue(Ptr);
4563     IndexType = ISD::SIGNED_SCALED;
4564     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4565   }
4566 
4567   EVT IdxVT = Index.getValueType();
4568   EVT EltTy = IdxVT.getVectorElementType();
4569   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4570     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4571     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4572   }
4573 
4574   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4575   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4576                                          Ops, MMO, IndexType, false);
4577   DAG.setRoot(Scatter);
4578   setValue(&I, Scatter);
4579 }
4580 
4581 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4582   SDLoc sdl = getCurSDLoc();
4583 
4584   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4585                               MaybeAlign &Alignment) {
4586     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4587     Ptr = I.getArgOperand(0);
4588     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4589     Mask = I.getArgOperand(2);
4590     Src0 = I.getArgOperand(3);
4591   };
4592   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4593                                  MaybeAlign &Alignment) {
4594     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4595     Ptr = I.getArgOperand(0);
4596     Alignment = std::nullopt;
4597     Mask = I.getArgOperand(1);
4598     Src0 = I.getArgOperand(2);
4599   };
4600 
4601   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4602   MaybeAlign Alignment;
4603   if (IsExpanding)
4604     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4605   else
4606     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4607 
4608   SDValue Ptr = getValue(PtrOperand);
4609   SDValue Src0 = getValue(Src0Operand);
4610   SDValue Mask = getValue(MaskOperand);
4611   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4612 
4613   EVT VT = Src0.getValueType();
4614   if (!Alignment)
4615     Alignment = DAG.getEVTAlign(VT);
4616 
4617   AAMDNodes AAInfo = I.getAAMetadata();
4618   const MDNode *Ranges = getRangeMetadata(I);
4619 
4620   // Do not serialize masked loads of constant memory with anything.
4621   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4622   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4623 
4624   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4625 
4626   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4627       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4628       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
4629 
4630   SDValue Load =
4631       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4632                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4633   if (AddToChain)
4634     PendingLoads.push_back(Load.getValue(1));
4635   setValue(&I, Load);
4636 }
4637 
4638 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4639   SDLoc sdl = getCurSDLoc();
4640 
4641   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4642   const Value *Ptr = I.getArgOperand(0);
4643   SDValue Src0 = getValue(I.getArgOperand(3));
4644   SDValue Mask = getValue(I.getArgOperand(2));
4645 
4646   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4647   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4648   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4649                         ->getMaybeAlignValue()
4650                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4651 
4652   const MDNode *Ranges = getRangeMetadata(I);
4653 
4654   SDValue Root = DAG.getRoot();
4655   SDValue Base;
4656   SDValue Index;
4657   ISD::MemIndexType IndexType;
4658   SDValue Scale;
4659   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4660                                     I.getParent(), VT.getScalarStoreSize());
4661   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4662   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4663       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4664       // TODO: Make MachineMemOperands aware of scalable
4665       // vectors.
4666       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
4667 
4668   if (!UniformBase) {
4669     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4670     Index = getValue(Ptr);
4671     IndexType = ISD::SIGNED_SCALED;
4672     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4673   }
4674 
4675   EVT IdxVT = Index.getValueType();
4676   EVT EltTy = IdxVT.getVectorElementType();
4677   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4678     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4679     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4680   }
4681 
4682   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4683   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4684                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4685 
4686   PendingLoads.push_back(Gather.getValue(1));
4687   setValue(&I, Gather);
4688 }
4689 
4690 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4691   SDLoc dl = getCurSDLoc();
4692   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4693   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4694   SyncScope::ID SSID = I.getSyncScopeID();
4695 
4696   SDValue InChain = getRoot();
4697 
4698   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4699   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4700 
4701   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4702   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4703 
4704   MachineFunction &MF = DAG.getMachineFunction();
4705   MachineMemOperand *MMO = MF.getMachineMemOperand(
4706       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4707       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4708       FailureOrdering);
4709 
4710   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4711                                    dl, MemVT, VTs, InChain,
4712                                    getValue(I.getPointerOperand()),
4713                                    getValue(I.getCompareOperand()),
4714                                    getValue(I.getNewValOperand()), MMO);
4715 
4716   SDValue OutChain = L.getValue(2);
4717 
4718   setValue(&I, L);
4719   DAG.setRoot(OutChain);
4720 }
4721 
4722 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4723   SDLoc dl = getCurSDLoc();
4724   ISD::NodeType NT;
4725   switch (I.getOperation()) {
4726   default: llvm_unreachable("Unknown atomicrmw operation");
4727   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4728   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4729   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4730   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4731   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4732   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4733   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4734   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4735   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4736   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4737   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4738   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4739   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4740   case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
4741   case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
4742   case AtomicRMWInst::UIncWrap:
4743     NT = ISD::ATOMIC_LOAD_UINC_WRAP;
4744     break;
4745   case AtomicRMWInst::UDecWrap:
4746     NT = ISD::ATOMIC_LOAD_UDEC_WRAP;
4747     break;
4748   }
4749   AtomicOrdering Ordering = I.getOrdering();
4750   SyncScope::ID SSID = I.getSyncScopeID();
4751 
4752   SDValue InChain = getRoot();
4753 
4754   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4755   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4756   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4757 
4758   MachineFunction &MF = DAG.getMachineFunction();
4759   MachineMemOperand *MMO = MF.getMachineMemOperand(
4760       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4761       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4762 
4763   SDValue L =
4764     DAG.getAtomic(NT, dl, MemVT, InChain,
4765                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4766                   MMO);
4767 
4768   SDValue OutChain = L.getValue(1);
4769 
4770   setValue(&I, L);
4771   DAG.setRoot(OutChain);
4772 }
4773 
4774 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4775   SDLoc dl = getCurSDLoc();
4776   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4777   SDValue Ops[3];
4778   Ops[0] = getRoot();
4779   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4780                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4781   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4782                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4783   SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
4784   setValue(&I, N);
4785   DAG.setRoot(N);
4786 }
4787 
4788 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4789   SDLoc dl = getCurSDLoc();
4790   AtomicOrdering Order = I.getOrdering();
4791   SyncScope::ID SSID = I.getSyncScopeID();
4792 
4793   SDValue InChain = getRoot();
4794 
4795   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4796   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4797   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4798 
4799   if (!TLI.supportsUnalignedAtomics() &&
4800       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4801     report_fatal_error("Cannot generate unaligned atomic load");
4802 
4803   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4804 
4805   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4806       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4807       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4808 
4809   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4810 
4811   SDValue Ptr = getValue(I.getPointerOperand());
4812 
4813   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4814     // TODO: Once this is better exercised by tests, it should be merged with
4815     // the normal path for loads to prevent future divergence.
4816     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4817     if (MemVT != VT)
4818       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4819 
4820     setValue(&I, L);
4821     SDValue OutChain = L.getValue(1);
4822     if (!I.isUnordered())
4823       DAG.setRoot(OutChain);
4824     else
4825       PendingLoads.push_back(OutChain);
4826     return;
4827   }
4828 
4829   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4830                             Ptr, MMO);
4831 
4832   SDValue OutChain = L.getValue(1);
4833   if (MemVT != VT)
4834     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4835 
4836   setValue(&I, L);
4837   DAG.setRoot(OutChain);
4838 }
4839 
4840 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4841   SDLoc dl = getCurSDLoc();
4842 
4843   AtomicOrdering Ordering = I.getOrdering();
4844   SyncScope::ID SSID = I.getSyncScopeID();
4845 
4846   SDValue InChain = getRoot();
4847 
4848   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4849   EVT MemVT =
4850       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4851 
4852   if (!TLI.supportsUnalignedAtomics() &&
4853       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4854     report_fatal_error("Cannot generate unaligned atomic store");
4855 
4856   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4857 
4858   MachineFunction &MF = DAG.getMachineFunction();
4859   MachineMemOperand *MMO = MF.getMachineMemOperand(
4860       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4861       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4862 
4863   SDValue Val = getValue(I.getValueOperand());
4864   if (Val.getValueType() != MemVT)
4865     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4866   SDValue Ptr = getValue(I.getPointerOperand());
4867 
4868   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4869     // TODO: Once this is better exercised by tests, it should be merged with
4870     // the normal path for stores to prevent future divergence.
4871     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4872     setValue(&I, S);
4873     DAG.setRoot(S);
4874     return;
4875   }
4876   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4877                                    Ptr, Val, MMO);
4878 
4879   setValue(&I, OutChain);
4880   DAG.setRoot(OutChain);
4881 }
4882 
4883 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4884 /// node.
4885 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4886                                                unsigned Intrinsic) {
4887   // Ignore the callsite's attributes. A specific call site may be marked with
4888   // readnone, but the lowering code will expect the chain based on the
4889   // definition.
4890   const Function *F = I.getCalledFunction();
4891   bool HasChain = !F->doesNotAccessMemory();
4892   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4893 
4894   // Build the operand list.
4895   SmallVector<SDValue, 8> Ops;
4896   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4897     if (OnlyLoad) {
4898       // We don't need to serialize loads against other loads.
4899       Ops.push_back(DAG.getRoot());
4900     } else {
4901       Ops.push_back(getRoot());
4902     }
4903   }
4904 
4905   // Info is set by getTgtMemIntrinsic
4906   TargetLowering::IntrinsicInfo Info;
4907   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4908   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4909                                                DAG.getMachineFunction(),
4910                                                Intrinsic);
4911 
4912   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4913   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4914       Info.opc == ISD::INTRINSIC_W_CHAIN)
4915     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4916                                         TLI.getPointerTy(DAG.getDataLayout())));
4917 
4918   // Add all operands of the call to the operand list.
4919   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
4920     const Value *Arg = I.getArgOperand(i);
4921     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4922       Ops.push_back(getValue(Arg));
4923       continue;
4924     }
4925 
4926     // Use TargetConstant instead of a regular constant for immarg.
4927     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
4928     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4929       assert(CI->getBitWidth() <= 64 &&
4930              "large intrinsic immediates not handled");
4931       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4932     } else {
4933       Ops.push_back(
4934           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4935     }
4936   }
4937 
4938   SmallVector<EVT, 4> ValueVTs;
4939   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4940 
4941   if (HasChain)
4942     ValueVTs.push_back(MVT::Other);
4943 
4944   SDVTList VTs = DAG.getVTList(ValueVTs);
4945 
4946   // Propagate fast-math-flags from IR to node(s).
4947   SDNodeFlags Flags;
4948   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
4949     Flags.copyFMF(*FPMO);
4950   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
4951 
4952   // Create the node.
4953   SDValue Result;
4954   // In some cases, custom collection of operands from CallInst I may be needed.
4955   TLI.CollectTargetIntrinsicOperands(I, Ops, DAG);
4956   if (IsTgtIntrinsic) {
4957     // This is target intrinsic that touches memory
4958     //
4959     // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
4960     //       didn't yield anything useful.
4961     MachinePointerInfo MPI;
4962     if (Info.ptrVal)
4963       MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
4964     else if (Info.fallbackAddressSpace)
4965       MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
4966     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops,
4967                                      Info.memVT, MPI, Info.align, Info.flags,
4968                                      Info.size, I.getAAMetadata());
4969   } else if (!HasChain) {
4970     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4971   } else if (!I.getType()->isVoidTy()) {
4972     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4973   } else {
4974     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4975   }
4976 
4977   if (HasChain) {
4978     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4979     if (OnlyLoad)
4980       PendingLoads.push_back(Chain);
4981     else
4982       DAG.setRoot(Chain);
4983   }
4984 
4985   if (!I.getType()->isVoidTy()) {
4986     if (!isa<VectorType>(I.getType()))
4987       Result = lowerRangeToAssertZExt(DAG, I, Result);
4988 
4989     MaybeAlign Alignment = I.getRetAlign();
4990 
4991     // Insert `assertalign` node if there's an alignment.
4992     if (InsertAssertAlign && Alignment) {
4993       Result =
4994           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4995     }
4996 
4997     setValue(&I, Result);
4998   }
4999 }
5000 
5001 /// GetSignificand - Get the significand and build it into a floating-point
5002 /// number with exponent of 1:
5003 ///
5004 ///   Op = (Op & 0x007fffff) | 0x3f800000;
5005 ///
5006 /// where Op is the hexadecimal representation of floating point value.
5007 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
5008   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5009                            DAG.getConstant(0x007fffff, dl, MVT::i32));
5010   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
5011                            DAG.getConstant(0x3f800000, dl, MVT::i32));
5012   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
5013 }
5014 
5015 /// GetExponent - Get the exponent:
5016 ///
5017 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
5018 ///
5019 /// where Op is the hexadecimal representation of floating point value.
5020 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
5021                            const TargetLowering &TLI, const SDLoc &dl) {
5022   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5023                            DAG.getConstant(0x7f800000, dl, MVT::i32));
5024   SDValue t1 = DAG.getNode(
5025       ISD::SRL, dl, MVT::i32, t0,
5026       DAG.getConstant(23, dl,
5027                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
5028   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
5029                            DAG.getConstant(127, dl, MVT::i32));
5030   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
5031 }
5032 
5033 /// getF32Constant - Get 32-bit floating point constant.
5034 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
5035                               const SDLoc &dl) {
5036   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
5037                            MVT::f32);
5038 }
5039 
5040 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
5041                                        SelectionDAG &DAG) {
5042   // TODO: What fast-math-flags should be set on the floating-point nodes?
5043 
5044   //   IntegerPartOfX = ((int32_t)(t0);
5045   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
5046 
5047   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
5048   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
5049   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
5050 
5051   //   IntegerPartOfX <<= 23;
5052   IntegerPartOfX =
5053       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
5054                   DAG.getConstant(23, dl,
5055                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
5056                                       MVT::i32, DAG.getDataLayout())));
5057 
5058   SDValue TwoToFractionalPartOfX;
5059   if (LimitFloatPrecision <= 6) {
5060     // For floating-point precision of 6:
5061     //
5062     //   TwoToFractionalPartOfX =
5063     //     0.997535578f +
5064     //       (0.735607626f + 0.252464424f * x) * x;
5065     //
5066     // error 0.0144103317, which is 6 bits
5067     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5068                              getF32Constant(DAG, 0x3e814304, dl));
5069     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5070                              getF32Constant(DAG, 0x3f3c50c8, dl));
5071     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5072     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5073                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
5074   } else if (LimitFloatPrecision <= 12) {
5075     // For floating-point precision of 12:
5076     //
5077     //   TwoToFractionalPartOfX =
5078     //     0.999892986f +
5079     //       (0.696457318f +
5080     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
5081     //
5082     // error 0.000107046256, which is 13 to 14 bits
5083     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5084                              getF32Constant(DAG, 0x3da235e3, dl));
5085     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5086                              getF32Constant(DAG, 0x3e65b8f3, dl));
5087     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5088     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5089                              getF32Constant(DAG, 0x3f324b07, dl));
5090     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5091     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5092                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
5093   } else { // LimitFloatPrecision <= 18
5094     // For floating-point precision of 18:
5095     //
5096     //   TwoToFractionalPartOfX =
5097     //     0.999999982f +
5098     //       (0.693148872f +
5099     //         (0.240227044f +
5100     //           (0.554906021e-1f +
5101     //             (0.961591928e-2f +
5102     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5103     // error 2.47208000*10^(-7), which is better than 18 bits
5104     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5105                              getF32Constant(DAG, 0x3924b03e, dl));
5106     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5107                              getF32Constant(DAG, 0x3ab24b87, dl));
5108     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5109     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5110                              getF32Constant(DAG, 0x3c1d8c17, dl));
5111     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5112     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5113                              getF32Constant(DAG, 0x3d634a1d, dl));
5114     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5115     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5116                              getF32Constant(DAG, 0x3e75fe14, dl));
5117     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5118     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5119                               getF32Constant(DAG, 0x3f317234, dl));
5120     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5121     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5122                                          getF32Constant(DAG, 0x3f800000, dl));
5123   }
5124 
5125   // Add the exponent into the result in integer domain.
5126   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5127   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5128                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5129 }
5130 
5131 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5132 /// limited-precision mode.
5133 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5134                          const TargetLowering &TLI, SDNodeFlags Flags) {
5135   if (Op.getValueType() == MVT::f32 &&
5136       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5137 
5138     // Put the exponent in the right bit position for later addition to the
5139     // final result:
5140     //
5141     // t0 = Op * log2(e)
5142 
5143     // TODO: What fast-math-flags should be set here?
5144     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5145                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5146     return getLimitedPrecisionExp2(t0, dl, DAG);
5147   }
5148 
5149   // No special expansion.
5150   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5151 }
5152 
5153 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5154 /// limited-precision mode.
5155 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5156                          const TargetLowering &TLI, SDNodeFlags Flags) {
5157   // TODO: What fast-math-flags should be set on the floating-point nodes?
5158 
5159   if (Op.getValueType() == MVT::f32 &&
5160       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5161     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5162 
5163     // Scale the exponent by log(2).
5164     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5165     SDValue LogOfExponent =
5166         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5167                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5168 
5169     // Get the significand and build it into a floating-point number with
5170     // exponent of 1.
5171     SDValue X = GetSignificand(DAG, Op1, dl);
5172 
5173     SDValue LogOfMantissa;
5174     if (LimitFloatPrecision <= 6) {
5175       // For floating-point precision of 6:
5176       //
5177       //   LogofMantissa =
5178       //     -1.1609546f +
5179       //       (1.4034025f - 0.23903021f * x) * x;
5180       //
5181       // error 0.0034276066, which is better than 8 bits
5182       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5183                                getF32Constant(DAG, 0xbe74c456, dl));
5184       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5185                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5186       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5187       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5188                                   getF32Constant(DAG, 0x3f949a29, dl));
5189     } else if (LimitFloatPrecision <= 12) {
5190       // For floating-point precision of 12:
5191       //
5192       //   LogOfMantissa =
5193       //     -1.7417939f +
5194       //       (2.8212026f +
5195       //         (-1.4699568f +
5196       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5197       //
5198       // error 0.000061011436, which is 14 bits
5199       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5200                                getF32Constant(DAG, 0xbd67b6d6, dl));
5201       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5202                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5203       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5204       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5205                                getF32Constant(DAG, 0x3fbc278b, dl));
5206       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5207       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5208                                getF32Constant(DAG, 0x40348e95, dl));
5209       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5210       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5211                                   getF32Constant(DAG, 0x3fdef31a, dl));
5212     } else { // LimitFloatPrecision <= 18
5213       // For floating-point precision of 18:
5214       //
5215       //   LogOfMantissa =
5216       //     -2.1072184f +
5217       //       (4.2372794f +
5218       //         (-3.7029485f +
5219       //           (2.2781945f +
5220       //             (-0.87823314f +
5221       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5222       //
5223       // error 0.0000023660568, which is better than 18 bits
5224       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5225                                getF32Constant(DAG, 0xbc91e5ac, dl));
5226       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5227                                getF32Constant(DAG, 0x3e4350aa, dl));
5228       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5229       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5230                                getF32Constant(DAG, 0x3f60d3e3, dl));
5231       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5232       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5233                                getF32Constant(DAG, 0x4011cdf0, dl));
5234       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5235       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5236                                getF32Constant(DAG, 0x406cfd1c, dl));
5237       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5238       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5239                                getF32Constant(DAG, 0x408797cb, dl));
5240       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5241       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5242                                   getF32Constant(DAG, 0x4006dcab, dl));
5243     }
5244 
5245     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5246   }
5247 
5248   // No special expansion.
5249   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5250 }
5251 
5252 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5253 /// limited-precision mode.
5254 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5255                           const TargetLowering &TLI, SDNodeFlags Flags) {
5256   // TODO: What fast-math-flags should be set on the floating-point nodes?
5257 
5258   if (Op.getValueType() == MVT::f32 &&
5259       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5260     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5261 
5262     // Get the exponent.
5263     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5264 
5265     // Get the significand and build it into a floating-point number with
5266     // exponent of 1.
5267     SDValue X = GetSignificand(DAG, Op1, dl);
5268 
5269     // Different possible minimax approximations of significand in
5270     // floating-point for various degrees of accuracy over [1,2].
5271     SDValue Log2ofMantissa;
5272     if (LimitFloatPrecision <= 6) {
5273       // For floating-point precision of 6:
5274       //
5275       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5276       //
5277       // error 0.0049451742, which is more than 7 bits
5278       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5279                                getF32Constant(DAG, 0xbeb08fe0, dl));
5280       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5281                                getF32Constant(DAG, 0x40019463, dl));
5282       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5283       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5284                                    getF32Constant(DAG, 0x3fd6633d, dl));
5285     } else if (LimitFloatPrecision <= 12) {
5286       // For floating-point precision of 12:
5287       //
5288       //   Log2ofMantissa =
5289       //     -2.51285454f +
5290       //       (4.07009056f +
5291       //         (-2.12067489f +
5292       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5293       //
5294       // error 0.0000876136000, which is better than 13 bits
5295       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5296                                getF32Constant(DAG, 0xbda7262e, dl));
5297       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5298                                getF32Constant(DAG, 0x3f25280b, dl));
5299       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5300       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5301                                getF32Constant(DAG, 0x4007b923, dl));
5302       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5303       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5304                                getF32Constant(DAG, 0x40823e2f, dl));
5305       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5306       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5307                                    getF32Constant(DAG, 0x4020d29c, dl));
5308     } else { // LimitFloatPrecision <= 18
5309       // For floating-point precision of 18:
5310       //
5311       //   Log2ofMantissa =
5312       //     -3.0400495f +
5313       //       (6.1129976f +
5314       //         (-5.3420409f +
5315       //           (3.2865683f +
5316       //             (-1.2669343f +
5317       //               (0.27515199f -
5318       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5319       //
5320       // error 0.0000018516, which is better than 18 bits
5321       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5322                                getF32Constant(DAG, 0xbcd2769e, dl));
5323       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5324                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5325       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5326       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5327                                getF32Constant(DAG, 0x3fa22ae7, dl));
5328       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5329       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5330                                getF32Constant(DAG, 0x40525723, dl));
5331       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5332       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5333                                getF32Constant(DAG, 0x40aaf200, dl));
5334       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5335       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5336                                getF32Constant(DAG, 0x40c39dad, dl));
5337       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5338       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5339                                    getF32Constant(DAG, 0x4042902c, dl));
5340     }
5341 
5342     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5343   }
5344 
5345   // No special expansion.
5346   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5347 }
5348 
5349 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5350 /// limited-precision mode.
5351 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5352                            const TargetLowering &TLI, SDNodeFlags Flags) {
5353   // TODO: What fast-math-flags should be set on the floating-point nodes?
5354 
5355   if (Op.getValueType() == MVT::f32 &&
5356       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5357     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5358 
5359     // Scale the exponent by log10(2) [0.30102999f].
5360     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5361     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5362                                         getF32Constant(DAG, 0x3e9a209a, dl));
5363 
5364     // Get the significand and build it into a floating-point number with
5365     // exponent of 1.
5366     SDValue X = GetSignificand(DAG, Op1, dl);
5367 
5368     SDValue Log10ofMantissa;
5369     if (LimitFloatPrecision <= 6) {
5370       // For floating-point precision of 6:
5371       //
5372       //   Log10ofMantissa =
5373       //     -0.50419619f +
5374       //       (0.60948995f - 0.10380950f * x) * x;
5375       //
5376       // error 0.0014886165, which is 6 bits
5377       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5378                                getF32Constant(DAG, 0xbdd49a13, dl));
5379       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5380                                getF32Constant(DAG, 0x3f1c0789, dl));
5381       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5382       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5383                                     getF32Constant(DAG, 0x3f011300, dl));
5384     } else if (LimitFloatPrecision <= 12) {
5385       // For floating-point precision of 12:
5386       //
5387       //   Log10ofMantissa =
5388       //     -0.64831180f +
5389       //       (0.91751397f +
5390       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5391       //
5392       // error 0.00019228036, which is better than 12 bits
5393       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5394                                getF32Constant(DAG, 0x3d431f31, dl));
5395       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5396                                getF32Constant(DAG, 0x3ea21fb2, dl));
5397       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5398       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5399                                getF32Constant(DAG, 0x3f6ae232, dl));
5400       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5401       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5402                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5403     } else { // LimitFloatPrecision <= 18
5404       // For floating-point precision of 18:
5405       //
5406       //   Log10ofMantissa =
5407       //     -0.84299375f +
5408       //       (1.5327582f +
5409       //         (-1.0688956f +
5410       //           (0.49102474f +
5411       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5412       //
5413       // error 0.0000037995730, which is better than 18 bits
5414       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5415                                getF32Constant(DAG, 0x3c5d51ce, dl));
5416       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5417                                getF32Constant(DAG, 0x3e00685a, dl));
5418       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5419       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5420                                getF32Constant(DAG, 0x3efb6798, dl));
5421       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5422       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5423                                getF32Constant(DAG, 0x3f88d192, dl));
5424       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5425       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5426                                getF32Constant(DAG, 0x3fc4316c, dl));
5427       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5428       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5429                                     getF32Constant(DAG, 0x3f57ce70, dl));
5430     }
5431 
5432     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5433   }
5434 
5435   // No special expansion.
5436   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5437 }
5438 
5439 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5440 /// limited-precision mode.
5441 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5442                           const TargetLowering &TLI, SDNodeFlags Flags) {
5443   if (Op.getValueType() == MVT::f32 &&
5444       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5445     return getLimitedPrecisionExp2(Op, dl, DAG);
5446 
5447   // No special expansion.
5448   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5449 }
5450 
5451 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5452 /// limited-precision mode with x == 10.0f.
5453 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5454                          SelectionDAG &DAG, const TargetLowering &TLI,
5455                          SDNodeFlags Flags) {
5456   bool IsExp10 = false;
5457   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5458       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5459     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5460       APFloat Ten(10.0f);
5461       IsExp10 = LHSC->isExactlyValue(Ten);
5462     }
5463   }
5464 
5465   // TODO: What fast-math-flags should be set on the FMUL node?
5466   if (IsExp10) {
5467     // Put the exponent in the right bit position for later addition to the
5468     // final result:
5469     //
5470     //   #define LOG2OF10 3.3219281f
5471     //   t0 = Op * LOG2OF10;
5472     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5473                              getF32Constant(DAG, 0x40549a78, dl));
5474     return getLimitedPrecisionExp2(t0, dl, DAG);
5475   }
5476 
5477   // No special expansion.
5478   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5479 }
5480 
5481 /// ExpandPowI - Expand a llvm.powi intrinsic.
5482 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5483                           SelectionDAG &DAG) {
5484   // If RHS is a constant, we can expand this out to a multiplication tree if
5485   // it's beneficial on the target, otherwise we end up lowering to a call to
5486   // __powidf2 (for example).
5487   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5488     unsigned Val = RHSC->getSExtValue();
5489 
5490     // powi(x, 0) -> 1.0
5491     if (Val == 0)
5492       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5493 
5494     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5495             Val, DAG.shouldOptForSize())) {
5496       // Get the exponent as a positive value.
5497       if ((int)Val < 0)
5498         Val = -Val;
5499       // We use the simple binary decomposition method to generate the multiply
5500       // sequence.  There are more optimal ways to do this (for example,
5501       // powi(x,15) generates one more multiply than it should), but this has
5502       // the benefit of being both really simple and much better than a libcall.
5503       SDValue Res; // Logically starts equal to 1.0
5504       SDValue CurSquare = LHS;
5505       // TODO: Intrinsics should have fast-math-flags that propagate to these
5506       // nodes.
5507       while (Val) {
5508         if (Val & 1) {
5509           if (Res.getNode())
5510             Res =
5511                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5512           else
5513             Res = CurSquare; // 1.0*CurSquare.
5514         }
5515 
5516         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5517                                 CurSquare, CurSquare);
5518         Val >>= 1;
5519       }
5520 
5521       // If the original was negative, invert the result, producing 1/(x*x*x).
5522       if (RHSC->getSExtValue() < 0)
5523         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5524                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5525       return Res;
5526     }
5527   }
5528 
5529   // Otherwise, expand to a libcall.
5530   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5531 }
5532 
5533 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5534                             SDValue LHS, SDValue RHS, SDValue Scale,
5535                             SelectionDAG &DAG, const TargetLowering &TLI) {
5536   EVT VT = LHS.getValueType();
5537   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5538   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5539   LLVMContext &Ctx = *DAG.getContext();
5540 
5541   // If the type is legal but the operation isn't, this node might survive all
5542   // the way to operation legalization. If we end up there and we do not have
5543   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5544   // node.
5545 
5546   // Coax the legalizer into expanding the node during type legalization instead
5547   // by bumping the size by one bit. This will force it to Promote, enabling the
5548   // early expansion and avoiding the need to expand later.
5549 
5550   // We don't have to do this if Scale is 0; that can always be expanded, unless
5551   // it's a saturating signed operation. Those can experience true integer
5552   // division overflow, a case which we must avoid.
5553 
5554   // FIXME: We wouldn't have to do this (or any of the early
5555   // expansion/promotion) if it was possible to expand a libcall of an
5556   // illegal type during operation legalization. But it's not, so things
5557   // get a bit hacky.
5558   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5559   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5560       (TLI.isTypeLegal(VT) ||
5561        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5562     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5563         Opcode, VT, ScaleInt);
5564     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5565       EVT PromVT;
5566       if (VT.isScalarInteger())
5567         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5568       else if (VT.isVector()) {
5569         PromVT = VT.getVectorElementType();
5570         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5571         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5572       } else
5573         llvm_unreachable("Wrong VT for DIVFIX?");
5574       LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT);
5575       RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT);
5576       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5577       // For saturating operations, we need to shift up the LHS to get the
5578       // proper saturation width, and then shift down again afterwards.
5579       if (Saturating)
5580         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5581                           DAG.getConstant(1, DL, ShiftTy));
5582       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5583       if (Saturating)
5584         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5585                           DAG.getConstant(1, DL, ShiftTy));
5586       return DAG.getZExtOrTrunc(Res, DL, VT);
5587     }
5588   }
5589 
5590   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5591 }
5592 
5593 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5594 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5595 static void
5596 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5597                      const SDValue &N) {
5598   switch (N.getOpcode()) {
5599   case ISD::CopyFromReg: {
5600     SDValue Op = N.getOperand(1);
5601     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5602                       Op.getValueType().getSizeInBits());
5603     return;
5604   }
5605   case ISD::BITCAST:
5606   case ISD::AssertZext:
5607   case ISD::AssertSext:
5608   case ISD::TRUNCATE:
5609     getUnderlyingArgRegs(Regs, N.getOperand(0));
5610     return;
5611   case ISD::BUILD_PAIR:
5612   case ISD::BUILD_VECTOR:
5613   case ISD::CONCAT_VECTORS:
5614     for (SDValue Op : N->op_values())
5615       getUnderlyingArgRegs(Regs, Op);
5616     return;
5617   default:
5618     return;
5619   }
5620 }
5621 
5622 /// If the DbgValueInst is a dbg_value of a function argument, create the
5623 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5624 /// instruction selection, they will be inserted to the entry BB.
5625 /// We don't currently support this for variadic dbg_values, as they shouldn't
5626 /// appear for function arguments or in the prologue.
5627 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5628     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5629     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5630   const Argument *Arg = dyn_cast<Argument>(V);
5631   if (!Arg)
5632     return false;
5633 
5634   MachineFunction &MF = DAG.getMachineFunction();
5635   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5636 
5637   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5638   // we've been asked to pursue.
5639   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5640                               bool Indirect) {
5641     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5642       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5643       // pointing at the VReg, which will be patched up later.
5644       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5645       SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
5646           /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
5647           /* isKill */ false, /* isDead */ false,
5648           /* isUndef */ false, /* isEarlyClobber */ false,
5649           /* SubReg */ 0, /* isDebug */ true)});
5650 
5651       auto *NewDIExpr = FragExpr;
5652       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5653       // the DIExpression.
5654       if (Indirect)
5655         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5656       SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
5657       NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
5658       return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
5659     } else {
5660       // Create a completely standard DBG_VALUE.
5661       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5662       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5663     }
5664   };
5665 
5666   if (Kind == FuncArgumentDbgValueKind::Value) {
5667     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5668     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5669     // the entry block.
5670     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5671     if (!IsInEntryBlock)
5672       return false;
5673 
5674     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5675     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5676     // variable that also is a param.
5677     //
5678     // Although, if we are at the top of the entry block already, we can still
5679     // emit using ArgDbgValue. This might catch some situations when the
5680     // dbg.value refers to an argument that isn't used in the entry block, so
5681     // any CopyToReg node would be optimized out and the only way to express
5682     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5683     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5684     // we should only emit as ArgDbgValue if the Variable is an argument to the
5685     // current function, and the dbg.value intrinsic is found in the entry
5686     // block.
5687     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5688         !DL->getInlinedAt();
5689     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5690     if (!IsInPrologue && !VariableIsFunctionInputArg)
5691       return false;
5692 
5693     // Here we assume that a function argument on IR level only can be used to
5694     // describe one input parameter on source level. If we for example have
5695     // source code like this
5696     //
5697     //    struct A { long x, y; };
5698     //    void foo(struct A a, long b) {
5699     //      ...
5700     //      b = a.x;
5701     //      ...
5702     //    }
5703     //
5704     // and IR like this
5705     //
5706     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5707     //  entry:
5708     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5709     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5710     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5711     //    ...
5712     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5713     //    ...
5714     //
5715     // then the last dbg.value is describing a parameter "b" using a value that
5716     // is an argument. But since we already has used %a1 to describe a parameter
5717     // we should not handle that last dbg.value here (that would result in an
5718     // incorrect hoisting of the DBG_VALUE to the function entry).
5719     // Notice that we allow one dbg.value per IR level argument, to accommodate
5720     // for the situation with fragments above.
5721     if (VariableIsFunctionInputArg) {
5722       unsigned ArgNo = Arg->getArgNo();
5723       if (ArgNo >= FuncInfo.DescribedArgs.size())
5724         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5725       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5726         return false;
5727       FuncInfo.DescribedArgs.set(ArgNo);
5728     }
5729   }
5730 
5731   bool IsIndirect = false;
5732   std::optional<MachineOperand> Op;
5733   // Some arguments' frame index is recorded during argument lowering.
5734   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5735   if (FI != std::numeric_limits<int>::max())
5736     Op = MachineOperand::CreateFI(FI);
5737 
5738   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5739   if (!Op && N.getNode()) {
5740     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5741     Register Reg;
5742     if (ArgRegsAndSizes.size() == 1)
5743       Reg = ArgRegsAndSizes.front().first;
5744 
5745     if (Reg && Reg.isVirtual()) {
5746       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5747       Register PR = RegInfo.getLiveInPhysReg(Reg);
5748       if (PR)
5749         Reg = PR;
5750     }
5751     if (Reg) {
5752       Op = MachineOperand::CreateReg(Reg, false);
5753       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5754     }
5755   }
5756 
5757   if (!Op && N.getNode()) {
5758     // Check if frame index is available.
5759     SDValue LCandidate = peekThroughBitcasts(N);
5760     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5761       if (FrameIndexSDNode *FINode =
5762           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5763         Op = MachineOperand::CreateFI(FINode->getIndex());
5764   }
5765 
5766   if (!Op) {
5767     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5768     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5769                                          SplitRegs) {
5770       unsigned Offset = 0;
5771       for (const auto &RegAndSize : SplitRegs) {
5772         // If the expression is already a fragment, the current register
5773         // offset+size might extend beyond the fragment. In this case, only
5774         // the register bits that are inside the fragment are relevant.
5775         int RegFragmentSizeInBits = RegAndSize.second;
5776         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5777           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5778           // The register is entirely outside the expression fragment,
5779           // so is irrelevant for debug info.
5780           if (Offset >= ExprFragmentSizeInBits)
5781             break;
5782           // The register is partially outside the expression fragment, only
5783           // the low bits within the fragment are relevant for debug info.
5784           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5785             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5786           }
5787         }
5788 
5789         auto FragmentExpr = DIExpression::createFragmentExpression(
5790             Expr, Offset, RegFragmentSizeInBits);
5791         Offset += RegAndSize.second;
5792         // If a valid fragment expression cannot be created, the variable's
5793         // correct value cannot be determined and so it is set as Undef.
5794         if (!FragmentExpr) {
5795           SDDbgValue *SDV = DAG.getConstantDbgValue(
5796               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5797           DAG.AddDbgValue(SDV, false);
5798           continue;
5799         }
5800         MachineInstr *NewMI =
5801             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
5802                              Kind != FuncArgumentDbgValueKind::Value);
5803         FuncInfo.ArgDbgValues.push_back(NewMI);
5804       }
5805     };
5806 
5807     // Check if ValueMap has reg number.
5808     DenseMap<const Value *, Register>::const_iterator
5809       VMI = FuncInfo.ValueMap.find(V);
5810     if (VMI != FuncInfo.ValueMap.end()) {
5811       const auto &TLI = DAG.getTargetLoweringInfo();
5812       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5813                        V->getType(), std::nullopt);
5814       if (RFV.occupiesMultipleRegs()) {
5815         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5816         return true;
5817       }
5818 
5819       Op = MachineOperand::CreateReg(VMI->second, false);
5820       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5821     } else if (ArgRegsAndSizes.size() > 1) {
5822       // This was split due to the calling convention, and no virtual register
5823       // mapping exists for the value.
5824       splitMultiRegDbgValue(ArgRegsAndSizes);
5825       return true;
5826     }
5827   }
5828 
5829   if (!Op)
5830     return false;
5831 
5832   assert(Variable->isValidLocationForIntrinsic(DL) &&
5833          "Expected inlined-at fields to agree");
5834   MachineInstr *NewMI = nullptr;
5835 
5836   if (Op->isReg())
5837     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
5838   else
5839     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
5840                     Variable, Expr);
5841 
5842   // Otherwise, use ArgDbgValues.
5843   FuncInfo.ArgDbgValues.push_back(NewMI);
5844   return true;
5845 }
5846 
5847 /// Return the appropriate SDDbgValue based on N.
5848 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5849                                              DILocalVariable *Variable,
5850                                              DIExpression *Expr,
5851                                              const DebugLoc &dl,
5852                                              unsigned DbgSDNodeOrder) {
5853   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5854     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5855     // stack slot locations.
5856     //
5857     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5858     // debug values here after optimization:
5859     //
5860     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5861     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5862     //
5863     // Both describe the direct values of their associated variables.
5864     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5865                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5866   }
5867   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5868                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5869 }
5870 
5871 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5872   switch (Intrinsic) {
5873   case Intrinsic::smul_fix:
5874     return ISD::SMULFIX;
5875   case Intrinsic::umul_fix:
5876     return ISD::UMULFIX;
5877   case Intrinsic::smul_fix_sat:
5878     return ISD::SMULFIXSAT;
5879   case Intrinsic::umul_fix_sat:
5880     return ISD::UMULFIXSAT;
5881   case Intrinsic::sdiv_fix:
5882     return ISD::SDIVFIX;
5883   case Intrinsic::udiv_fix:
5884     return ISD::UDIVFIX;
5885   case Intrinsic::sdiv_fix_sat:
5886     return ISD::SDIVFIXSAT;
5887   case Intrinsic::udiv_fix_sat:
5888     return ISD::UDIVFIXSAT;
5889   default:
5890     llvm_unreachable("Unhandled fixed point intrinsic");
5891   }
5892 }
5893 
5894 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5895                                            const char *FunctionName) {
5896   assert(FunctionName && "FunctionName must not be nullptr");
5897   SDValue Callee = DAG.getExternalSymbol(
5898       FunctionName,
5899       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5900   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
5901 }
5902 
5903 /// Given a @llvm.call.preallocated.setup, return the corresponding
5904 /// preallocated call.
5905 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5906   assert(cast<CallBase>(PreallocatedSetup)
5907                  ->getCalledFunction()
5908                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5909          "expected call_preallocated_setup Value");
5910   for (const auto *U : PreallocatedSetup->users()) {
5911     auto *UseCall = cast<CallBase>(U);
5912     const Function *Fn = UseCall->getCalledFunction();
5913     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5914       return UseCall;
5915     }
5916   }
5917   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5918 }
5919 
5920 /// If DI is a debug value with an EntryValue expression, lower it using the
5921 /// corresponding physical register of the associated Argument value
5922 /// (guaranteed to exist by the verifier).
5923 bool SelectionDAGBuilder::visitEntryValueDbgValue(const DbgValueInst &DI) {
5924   DILocalVariable *Variable = DI.getVariable();
5925   DIExpression *Expr = DI.getExpression();
5926   if (!Expr->isEntryValue() || !hasSingleElement(DI.getValues()))
5927     return false;
5928 
5929   // These properties are guaranteed by the verifier.
5930   Argument *Arg = cast<Argument>(DI.getValue(0));
5931   assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync));
5932 
5933   auto ArgIt = FuncInfo.ValueMap.find(Arg);
5934   if (ArgIt == FuncInfo.ValueMap.end()) {
5935     LLVM_DEBUG(
5936         dbgs() << "Dropping dbg.value: expression is entry_value but "
5937                   "couldn't find an associated register for the Argument\n");
5938     return true;
5939   }
5940   Register ArgVReg = ArgIt->getSecond();
5941 
5942   for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
5943     if (ArgVReg == VirtReg || ArgVReg == PhysReg) {
5944       SDDbgValue *SDV =
5945           DAG.getVRegDbgValue(Variable, Expr, PhysReg, false /*IsIndidrect*/,
5946                               DI.getDebugLoc(), SDNodeOrder);
5947       DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/);
5948       return true;
5949     }
5950   LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
5951                        "couldn't find a physical register\n");
5952   return true;
5953 }
5954 
5955 /// Lower the call to the specified intrinsic function.
5956 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5957                                              unsigned Intrinsic) {
5958   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5959   SDLoc sdl = getCurSDLoc();
5960   DebugLoc dl = getCurDebugLoc();
5961   SDValue Res;
5962 
5963   SDNodeFlags Flags;
5964   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5965     Flags.copyFMF(*FPOp);
5966 
5967   switch (Intrinsic) {
5968   default:
5969     // By default, turn this into a target intrinsic node.
5970     visitTargetIntrinsic(I, Intrinsic);
5971     return;
5972   case Intrinsic::vscale: {
5973     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5974     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
5975     return;
5976   }
5977   case Intrinsic::vastart:  visitVAStart(I); return;
5978   case Intrinsic::vaend:    visitVAEnd(I); return;
5979   case Intrinsic::vacopy:   visitVACopy(I); return;
5980   case Intrinsic::returnaddress:
5981     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5982                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5983                              getValue(I.getArgOperand(0))));
5984     return;
5985   case Intrinsic::addressofreturnaddress:
5986     setValue(&I,
5987              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5988                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5989     return;
5990   case Intrinsic::sponentry:
5991     setValue(&I,
5992              DAG.getNode(ISD::SPONENTRY, sdl,
5993                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5994     return;
5995   case Intrinsic::frameaddress:
5996     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5997                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5998                              getValue(I.getArgOperand(0))));
5999     return;
6000   case Intrinsic::read_volatile_register:
6001   case Intrinsic::read_register: {
6002     Value *Reg = I.getArgOperand(0);
6003     SDValue Chain = getRoot();
6004     SDValue RegName =
6005         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6006     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6007     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
6008       DAG.getVTList(VT, MVT::Other), Chain, RegName);
6009     setValue(&I, Res);
6010     DAG.setRoot(Res.getValue(1));
6011     return;
6012   }
6013   case Intrinsic::write_register: {
6014     Value *Reg = I.getArgOperand(0);
6015     Value *RegValue = I.getArgOperand(1);
6016     SDValue Chain = getRoot();
6017     SDValue RegName =
6018         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6019     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
6020                             RegName, getValue(RegValue)));
6021     return;
6022   }
6023   case Intrinsic::memcpy: {
6024     const auto &MCI = cast<MemCpyInst>(I);
6025     SDValue Op1 = getValue(I.getArgOperand(0));
6026     SDValue Op2 = getValue(I.getArgOperand(1));
6027     SDValue Op3 = getValue(I.getArgOperand(2));
6028     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
6029     Align DstAlign = MCI.getDestAlign().valueOrOne();
6030     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6031     Align Alignment = std::min(DstAlign, SrcAlign);
6032     bool isVol = MCI.isVolatile();
6033     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6034     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6035     // node.
6036     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6037     SDValue MC = DAG.getMemcpy(
6038         Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6039         /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)),
6040         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
6041     updateDAGForMaybeTailCall(MC);
6042     return;
6043   }
6044   case Intrinsic::memcpy_inline: {
6045     const auto &MCI = cast<MemCpyInlineInst>(I);
6046     SDValue Dst = getValue(I.getArgOperand(0));
6047     SDValue Src = getValue(I.getArgOperand(1));
6048     SDValue Size = getValue(I.getArgOperand(2));
6049     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
6050     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
6051     Align DstAlign = MCI.getDestAlign().valueOrOne();
6052     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6053     Align Alignment = std::min(DstAlign, SrcAlign);
6054     bool isVol = MCI.isVolatile();
6055     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6056     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6057     // node.
6058     SDValue MC = DAG.getMemcpy(
6059         getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
6060         /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)),
6061         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
6062     updateDAGForMaybeTailCall(MC);
6063     return;
6064   }
6065   case Intrinsic::memset: {
6066     const auto &MSI = cast<MemSetInst>(I);
6067     SDValue Op1 = getValue(I.getArgOperand(0));
6068     SDValue Op2 = getValue(I.getArgOperand(1));
6069     SDValue Op3 = getValue(I.getArgOperand(2));
6070     // @llvm.memset defines 0 and 1 to both mean no alignment.
6071     Align Alignment = MSI.getDestAlign().valueOrOne();
6072     bool isVol = MSI.isVolatile();
6073     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6074     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6075     SDValue MS = DAG.getMemset(
6076         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
6077         isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
6078     updateDAGForMaybeTailCall(MS);
6079     return;
6080   }
6081   case Intrinsic::memset_inline: {
6082     const auto &MSII = cast<MemSetInlineInst>(I);
6083     SDValue Dst = getValue(I.getArgOperand(0));
6084     SDValue Value = getValue(I.getArgOperand(1));
6085     SDValue Size = getValue(I.getArgOperand(2));
6086     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
6087     // @llvm.memset defines 0 and 1 to both mean no alignment.
6088     Align DstAlign = MSII.getDestAlign().valueOrOne();
6089     bool isVol = MSII.isVolatile();
6090     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6091     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6092     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
6093                                /* AlwaysInline */ true, isTC,
6094                                MachinePointerInfo(I.getArgOperand(0)),
6095                                I.getAAMetadata());
6096     updateDAGForMaybeTailCall(MC);
6097     return;
6098   }
6099   case Intrinsic::memmove: {
6100     const auto &MMI = cast<MemMoveInst>(I);
6101     SDValue Op1 = getValue(I.getArgOperand(0));
6102     SDValue Op2 = getValue(I.getArgOperand(1));
6103     SDValue Op3 = getValue(I.getArgOperand(2));
6104     // @llvm.memmove defines 0 and 1 to both mean no alignment.
6105     Align DstAlign = MMI.getDestAlign().valueOrOne();
6106     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6107     Align Alignment = std::min(DstAlign, SrcAlign);
6108     bool isVol = MMI.isVolatile();
6109     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6110     // FIXME: Support passing different dest/src alignments to the memmove DAG
6111     // node.
6112     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6113     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6114                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
6115                                 MachinePointerInfo(I.getArgOperand(1)),
6116                                 I.getAAMetadata(), AA);
6117     updateDAGForMaybeTailCall(MM);
6118     return;
6119   }
6120   case Intrinsic::memcpy_element_unordered_atomic: {
6121     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
6122     SDValue Dst = getValue(MI.getRawDest());
6123     SDValue Src = getValue(MI.getRawSource());
6124     SDValue Length = getValue(MI.getLength());
6125 
6126     Type *LengthTy = MI.getLength()->getType();
6127     unsigned ElemSz = MI.getElementSizeInBytes();
6128     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6129     SDValue MC =
6130         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6131                             isTC, MachinePointerInfo(MI.getRawDest()),
6132                             MachinePointerInfo(MI.getRawSource()));
6133     updateDAGForMaybeTailCall(MC);
6134     return;
6135   }
6136   case Intrinsic::memmove_element_unordered_atomic: {
6137     auto &MI = cast<AtomicMemMoveInst>(I);
6138     SDValue Dst = getValue(MI.getRawDest());
6139     SDValue Src = getValue(MI.getRawSource());
6140     SDValue Length = getValue(MI.getLength());
6141 
6142     Type *LengthTy = MI.getLength()->getType();
6143     unsigned ElemSz = MI.getElementSizeInBytes();
6144     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6145     SDValue MC =
6146         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6147                              isTC, MachinePointerInfo(MI.getRawDest()),
6148                              MachinePointerInfo(MI.getRawSource()));
6149     updateDAGForMaybeTailCall(MC);
6150     return;
6151   }
6152   case Intrinsic::memset_element_unordered_atomic: {
6153     auto &MI = cast<AtomicMemSetInst>(I);
6154     SDValue Dst = getValue(MI.getRawDest());
6155     SDValue Val = getValue(MI.getValue());
6156     SDValue Length = getValue(MI.getLength());
6157 
6158     Type *LengthTy = MI.getLength()->getType();
6159     unsigned ElemSz = MI.getElementSizeInBytes();
6160     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6161     SDValue MC =
6162         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6163                             isTC, MachinePointerInfo(MI.getRawDest()));
6164     updateDAGForMaybeTailCall(MC);
6165     return;
6166   }
6167   case Intrinsic::call_preallocated_setup: {
6168     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6169     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6170     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6171                               getRoot(), SrcValue);
6172     setValue(&I, Res);
6173     DAG.setRoot(Res);
6174     return;
6175   }
6176   case Intrinsic::call_preallocated_arg: {
6177     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6178     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6179     SDValue Ops[3];
6180     Ops[0] = getRoot();
6181     Ops[1] = SrcValue;
6182     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6183                                    MVT::i32); // arg index
6184     SDValue Res = DAG.getNode(
6185         ISD::PREALLOCATED_ARG, sdl,
6186         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6187     setValue(&I, Res);
6188     DAG.setRoot(Res.getValue(1));
6189     return;
6190   }
6191   case Intrinsic::dbg_declare: {
6192     const auto &DI = cast<DbgDeclareInst>(I);
6193     // Debug intrinsics are handled separately in assignment tracking mode.
6194     // Some intrinsics are handled right after Argument lowering.
6195     if (AssignmentTrackingEnabled ||
6196         FuncInfo.PreprocessedDbgDeclares.count(&DI))
6197       return;
6198     // Assume dbg.declare can not currently use DIArgList, i.e.
6199     // it is non-variadic.
6200     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6201     DILocalVariable *Variable = DI.getVariable();
6202     DIExpression *Expression = DI.getExpression();
6203     dropDanglingDebugInfo(Variable, Expression);
6204     assert(Variable && "Missing variable");
6205     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
6206                       << "\n");
6207     // Check if address has undef value.
6208     const Value *Address = DI.getVariableLocationOp(0);
6209     if (!Address || isa<UndefValue>(Address) ||
6210         (Address->use_empty() && !isa<Argument>(Address))) {
6211       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6212                         << " (bad/undef/unused-arg address)\n");
6213       return;
6214     }
6215 
6216     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
6217 
6218     SDValue &N = NodeMap[Address];
6219     if (!N.getNode() && isa<Argument>(Address))
6220       // Check unused arguments map.
6221       N = UnusedArgNodeMap[Address];
6222     SDDbgValue *SDV;
6223     if (N.getNode()) {
6224       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6225         Address = BCI->getOperand(0);
6226       // Parameters are handled specially.
6227       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6228       if (isParameter && FINode) {
6229         // Byval parameter. We have a frame index at this point.
6230         SDV =
6231             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6232                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6233       } else if (isa<Argument>(Address)) {
6234         // Address is an argument, so try to emit its dbg value using
6235         // virtual register info from the FuncInfo.ValueMap.
6236         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6237                                  FuncArgumentDbgValueKind::Declare, N);
6238         return;
6239       } else {
6240         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6241                               true, dl, SDNodeOrder);
6242       }
6243       DAG.AddDbgValue(SDV, isParameter);
6244     } else {
6245       // If Address is an argument then try to emit its dbg value using
6246       // virtual register info from the FuncInfo.ValueMap.
6247       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6248                                     FuncArgumentDbgValueKind::Declare, N)) {
6249         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6250                           << " (could not emit func-arg dbg_value)\n");
6251       }
6252     }
6253     return;
6254   }
6255   case Intrinsic::dbg_label: {
6256     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6257     DILabel *Label = DI.getLabel();
6258     assert(Label && "Missing label");
6259 
6260     SDDbgLabel *SDV;
6261     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6262     DAG.AddDbgLabel(SDV);
6263     return;
6264   }
6265   case Intrinsic::dbg_assign: {
6266     // Debug intrinsics are handled seperately in assignment tracking mode.
6267     if (AssignmentTrackingEnabled)
6268       return;
6269     // If assignment tracking hasn't been enabled then fall through and treat
6270     // the dbg.assign as a dbg.value.
6271     [[fallthrough]];
6272   }
6273   case Intrinsic::dbg_value: {
6274     // Debug intrinsics are handled seperately in assignment tracking mode.
6275     if (AssignmentTrackingEnabled)
6276       return;
6277     const DbgValueInst &DI = cast<DbgValueInst>(I);
6278     assert(DI.getVariable() && "Missing variable");
6279 
6280     DILocalVariable *Variable = DI.getVariable();
6281     DIExpression *Expression = DI.getExpression();
6282     dropDanglingDebugInfo(Variable, Expression);
6283 
6284     if (visitEntryValueDbgValue(DI))
6285       return;
6286 
6287     if (DI.isKillLocation()) {
6288       handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder);
6289       return;
6290     }
6291 
6292     SmallVector<Value *, 4> Values(DI.getValues());
6293     if (Values.empty())
6294       return;
6295 
6296     bool IsVariadic = DI.hasArgList();
6297     if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(),
6298                           SDNodeOrder, IsVariadic))
6299       addDanglingDebugInfo(&DI, SDNodeOrder);
6300     return;
6301   }
6302 
6303   case Intrinsic::eh_typeid_for: {
6304     // Find the type id for the given typeinfo.
6305     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6306     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6307     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6308     setValue(&I, Res);
6309     return;
6310   }
6311 
6312   case Intrinsic::eh_return_i32:
6313   case Intrinsic::eh_return_i64:
6314     DAG.getMachineFunction().setCallsEHReturn(true);
6315     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6316                             MVT::Other,
6317                             getControlRoot(),
6318                             getValue(I.getArgOperand(0)),
6319                             getValue(I.getArgOperand(1))));
6320     return;
6321   case Intrinsic::eh_unwind_init:
6322     DAG.getMachineFunction().setCallsUnwindInit(true);
6323     return;
6324   case Intrinsic::eh_dwarf_cfa:
6325     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6326                              TLI.getPointerTy(DAG.getDataLayout()),
6327                              getValue(I.getArgOperand(0))));
6328     return;
6329   case Intrinsic::eh_sjlj_callsite: {
6330     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6331     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6332     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6333 
6334     MMI.setCurrentCallSite(CI->getZExtValue());
6335     return;
6336   }
6337   case Intrinsic::eh_sjlj_functioncontext: {
6338     // Get and store the index of the function context.
6339     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6340     AllocaInst *FnCtx =
6341       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6342     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6343     MFI.setFunctionContextIndex(FI);
6344     return;
6345   }
6346   case Intrinsic::eh_sjlj_setjmp: {
6347     SDValue Ops[2];
6348     Ops[0] = getRoot();
6349     Ops[1] = getValue(I.getArgOperand(0));
6350     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6351                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6352     setValue(&I, Op.getValue(0));
6353     DAG.setRoot(Op.getValue(1));
6354     return;
6355   }
6356   case Intrinsic::eh_sjlj_longjmp:
6357     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6358                             getRoot(), getValue(I.getArgOperand(0))));
6359     return;
6360   case Intrinsic::eh_sjlj_setup_dispatch:
6361     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6362                             getRoot()));
6363     return;
6364   case Intrinsic::masked_gather:
6365     visitMaskedGather(I);
6366     return;
6367   case Intrinsic::masked_load:
6368     visitMaskedLoad(I);
6369     return;
6370   case Intrinsic::masked_scatter:
6371     visitMaskedScatter(I);
6372     return;
6373   case Intrinsic::masked_store:
6374     visitMaskedStore(I);
6375     return;
6376   case Intrinsic::masked_expandload:
6377     visitMaskedLoad(I, true /* IsExpanding */);
6378     return;
6379   case Intrinsic::masked_compressstore:
6380     visitMaskedStore(I, true /* IsCompressing */);
6381     return;
6382   case Intrinsic::powi:
6383     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6384                             getValue(I.getArgOperand(1)), DAG));
6385     return;
6386   case Intrinsic::log:
6387     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6388     return;
6389   case Intrinsic::log2:
6390     setValue(&I,
6391              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6392     return;
6393   case Intrinsic::log10:
6394     setValue(&I,
6395              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6396     return;
6397   case Intrinsic::exp:
6398     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6399     return;
6400   case Intrinsic::exp2:
6401     setValue(&I,
6402              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6403     return;
6404   case Intrinsic::pow:
6405     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6406                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6407     return;
6408   case Intrinsic::sqrt:
6409   case Intrinsic::fabs:
6410   case Intrinsic::sin:
6411   case Intrinsic::cos:
6412   case Intrinsic::floor:
6413   case Intrinsic::ceil:
6414   case Intrinsic::trunc:
6415   case Intrinsic::rint:
6416   case Intrinsic::nearbyint:
6417   case Intrinsic::round:
6418   case Intrinsic::roundeven:
6419   case Intrinsic::canonicalize: {
6420     unsigned Opcode;
6421     switch (Intrinsic) {
6422     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6423     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6424     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6425     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6426     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6427     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6428     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6429     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6430     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6431     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6432     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6433     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6434     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6435     }
6436 
6437     setValue(&I, DAG.getNode(Opcode, sdl,
6438                              getValue(I.getArgOperand(0)).getValueType(),
6439                              getValue(I.getArgOperand(0)), Flags));
6440     return;
6441   }
6442   case Intrinsic::lround:
6443   case Intrinsic::llround:
6444   case Intrinsic::lrint:
6445   case Intrinsic::llrint: {
6446     unsigned Opcode;
6447     switch (Intrinsic) {
6448     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6449     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6450     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6451     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6452     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6453     }
6454 
6455     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6456     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6457                              getValue(I.getArgOperand(0))));
6458     return;
6459   }
6460   case Intrinsic::minnum:
6461     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6462                              getValue(I.getArgOperand(0)).getValueType(),
6463                              getValue(I.getArgOperand(0)),
6464                              getValue(I.getArgOperand(1)), Flags));
6465     return;
6466   case Intrinsic::maxnum:
6467     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6468                              getValue(I.getArgOperand(0)).getValueType(),
6469                              getValue(I.getArgOperand(0)),
6470                              getValue(I.getArgOperand(1)), Flags));
6471     return;
6472   case Intrinsic::minimum:
6473     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6474                              getValue(I.getArgOperand(0)).getValueType(),
6475                              getValue(I.getArgOperand(0)),
6476                              getValue(I.getArgOperand(1)), Flags));
6477     return;
6478   case Intrinsic::maximum:
6479     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6480                              getValue(I.getArgOperand(0)).getValueType(),
6481                              getValue(I.getArgOperand(0)),
6482                              getValue(I.getArgOperand(1)), Flags));
6483     return;
6484   case Intrinsic::copysign:
6485     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6486                              getValue(I.getArgOperand(0)).getValueType(),
6487                              getValue(I.getArgOperand(0)),
6488                              getValue(I.getArgOperand(1)), Flags));
6489     return;
6490   case Intrinsic::ldexp:
6491     setValue(&I, DAG.getNode(ISD::FLDEXP, sdl,
6492                              getValue(I.getArgOperand(0)).getValueType(),
6493                              getValue(I.getArgOperand(0)),
6494                              getValue(I.getArgOperand(1)), Flags));
6495     return;
6496   case Intrinsic::frexp: {
6497     SmallVector<EVT, 2> ValueVTs;
6498     ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
6499     SDVTList VTs = DAG.getVTList(ValueVTs);
6500     setValue(&I,
6501              DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0))));
6502     return;
6503   }
6504   case Intrinsic::arithmetic_fence: {
6505     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6506                              getValue(I.getArgOperand(0)).getValueType(),
6507                              getValue(I.getArgOperand(0)), Flags));
6508     return;
6509   }
6510   case Intrinsic::fma:
6511     setValue(&I, DAG.getNode(
6512                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6513                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6514                      getValue(I.getArgOperand(2)), Flags));
6515     return;
6516 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6517   case Intrinsic::INTRINSIC:
6518 #include "llvm/IR/ConstrainedOps.def"
6519     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6520     return;
6521 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6522 #include "llvm/IR/VPIntrinsics.def"
6523     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6524     return;
6525   case Intrinsic::fptrunc_round: {
6526     // Get the last argument, the metadata and convert it to an integer in the
6527     // call
6528     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6529     std::optional<RoundingMode> RoundMode =
6530         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6531 
6532     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6533 
6534     // Propagate fast-math-flags from IR to node(s).
6535     SDNodeFlags Flags;
6536     Flags.copyFMF(*cast<FPMathOperator>(&I));
6537     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6538 
6539     SDValue Result;
6540     Result = DAG.getNode(
6541         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6542         DAG.getTargetConstant((int)*RoundMode, sdl,
6543                               TLI.getPointerTy(DAG.getDataLayout())));
6544     setValue(&I, Result);
6545 
6546     return;
6547   }
6548   case Intrinsic::fmuladd: {
6549     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6550     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6551         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6552       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6553                                getValue(I.getArgOperand(0)).getValueType(),
6554                                getValue(I.getArgOperand(0)),
6555                                getValue(I.getArgOperand(1)),
6556                                getValue(I.getArgOperand(2)), Flags));
6557     } else {
6558       // TODO: Intrinsic calls should have fast-math-flags.
6559       SDValue Mul = DAG.getNode(
6560           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6561           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6562       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6563                                 getValue(I.getArgOperand(0)).getValueType(),
6564                                 Mul, getValue(I.getArgOperand(2)), Flags);
6565       setValue(&I, Add);
6566     }
6567     return;
6568   }
6569   case Intrinsic::convert_to_fp16:
6570     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6571                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6572                                          getValue(I.getArgOperand(0)),
6573                                          DAG.getTargetConstant(0, sdl,
6574                                                                MVT::i32))));
6575     return;
6576   case Intrinsic::convert_from_fp16:
6577     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6578                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6579                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6580                                          getValue(I.getArgOperand(0)))));
6581     return;
6582   case Intrinsic::fptosi_sat: {
6583     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6584     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6585                              getValue(I.getArgOperand(0)),
6586                              DAG.getValueType(VT.getScalarType())));
6587     return;
6588   }
6589   case Intrinsic::fptoui_sat: {
6590     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6591     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6592                              getValue(I.getArgOperand(0)),
6593                              DAG.getValueType(VT.getScalarType())));
6594     return;
6595   }
6596   case Intrinsic::set_rounding:
6597     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6598                       {getRoot(), getValue(I.getArgOperand(0))});
6599     setValue(&I, Res);
6600     DAG.setRoot(Res.getValue(0));
6601     return;
6602   case Intrinsic::is_fpclass: {
6603     const DataLayout DLayout = DAG.getDataLayout();
6604     EVT DestVT = TLI.getValueType(DLayout, I.getType());
6605     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
6606     FPClassTest Test = static_cast<FPClassTest>(
6607         cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
6608     MachineFunction &MF = DAG.getMachineFunction();
6609     const Function &F = MF.getFunction();
6610     SDValue Op = getValue(I.getArgOperand(0));
6611     SDNodeFlags Flags;
6612     Flags.setNoFPExcept(
6613         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
6614     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
6615     // expansion can use illegal types. Making expansion early allows
6616     // legalizing these types prior to selection.
6617     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
6618       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
6619       setValue(&I, Result);
6620       return;
6621     }
6622 
6623     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
6624     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
6625     setValue(&I, V);
6626     return;
6627   }
6628   case Intrinsic::get_fpenv: {
6629     const DataLayout DLayout = DAG.getDataLayout();
6630     EVT EnvVT = TLI.getValueType(DLayout, I.getType());
6631     Align TempAlign = DAG.getEVTAlign(EnvVT);
6632     SDValue Chain = getRoot();
6633     // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node
6634     // and temporary storage in stack.
6635     if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) {
6636       Res = DAG.getNode(
6637           ISD::GET_FPENV, sdl,
6638           DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
6639                         MVT::Other),
6640           Chain);
6641     } else {
6642       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
6643       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
6644       auto MPI =
6645           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
6646       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6647           MPI, MachineMemOperand::MOStore, MemoryLocation::UnknownSize,
6648           TempAlign);
6649       Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
6650       Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI);
6651     }
6652     setValue(&I, Res);
6653     DAG.setRoot(Res.getValue(1));
6654     return;
6655   }
6656   case Intrinsic::set_fpenv: {
6657     const DataLayout DLayout = DAG.getDataLayout();
6658     SDValue Env = getValue(I.getArgOperand(0));
6659     EVT EnvVT = Env.getValueType();
6660     Align TempAlign = DAG.getEVTAlign(EnvVT);
6661     SDValue Chain = getRoot();
6662     // If SET_FPENV is custom or legal, use it. Otherwise use loading
6663     // environment from memory.
6664     if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) {
6665       Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env);
6666     } else {
6667       // Allocate space in stack, copy environment bits into it and use this
6668       // memory in SET_FPENV_MEM.
6669       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
6670       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
6671       auto MPI =
6672           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
6673       Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign,
6674                            MachineMemOperand::MOStore);
6675       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6676           MPI, MachineMemOperand::MOLoad, MemoryLocation::UnknownSize,
6677           TempAlign);
6678       Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
6679     }
6680     DAG.setRoot(Chain);
6681     return;
6682   }
6683   case Intrinsic::reset_fpenv:
6684     DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot()));
6685     return;
6686   case Intrinsic::get_fpmode:
6687     Res = DAG.getNode(
6688         ISD::GET_FPMODE, sdl,
6689         DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
6690                       MVT::Other),
6691         DAG.getRoot());
6692     setValue(&I, Res);
6693     DAG.setRoot(Res.getValue(1));
6694     return;
6695   case Intrinsic::set_fpmode:
6696     Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()},
6697                       getValue(I.getArgOperand(0)));
6698     DAG.setRoot(Res);
6699     return;
6700   case Intrinsic::reset_fpmode: {
6701     Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot());
6702     DAG.setRoot(Res);
6703     return;
6704   }
6705   case Intrinsic::pcmarker: {
6706     SDValue Tmp = getValue(I.getArgOperand(0));
6707     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6708     return;
6709   }
6710   case Intrinsic::readcyclecounter: {
6711     SDValue Op = getRoot();
6712     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6713                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6714     setValue(&I, Res);
6715     DAG.setRoot(Res.getValue(1));
6716     return;
6717   }
6718   case Intrinsic::bitreverse:
6719     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6720                              getValue(I.getArgOperand(0)).getValueType(),
6721                              getValue(I.getArgOperand(0))));
6722     return;
6723   case Intrinsic::bswap:
6724     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6725                              getValue(I.getArgOperand(0)).getValueType(),
6726                              getValue(I.getArgOperand(0))));
6727     return;
6728   case Intrinsic::cttz: {
6729     SDValue Arg = getValue(I.getArgOperand(0));
6730     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6731     EVT Ty = Arg.getValueType();
6732     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6733                              sdl, Ty, Arg));
6734     return;
6735   }
6736   case Intrinsic::ctlz: {
6737     SDValue Arg = getValue(I.getArgOperand(0));
6738     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6739     EVT Ty = Arg.getValueType();
6740     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6741                              sdl, Ty, Arg));
6742     return;
6743   }
6744   case Intrinsic::ctpop: {
6745     SDValue Arg = getValue(I.getArgOperand(0));
6746     EVT Ty = Arg.getValueType();
6747     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6748     return;
6749   }
6750   case Intrinsic::fshl:
6751   case Intrinsic::fshr: {
6752     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6753     SDValue X = getValue(I.getArgOperand(0));
6754     SDValue Y = getValue(I.getArgOperand(1));
6755     SDValue Z = getValue(I.getArgOperand(2));
6756     EVT VT = X.getValueType();
6757 
6758     if (X == Y) {
6759       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6760       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6761     } else {
6762       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6763       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6764     }
6765     return;
6766   }
6767   case Intrinsic::sadd_sat: {
6768     SDValue Op1 = getValue(I.getArgOperand(0));
6769     SDValue Op2 = getValue(I.getArgOperand(1));
6770     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6771     return;
6772   }
6773   case Intrinsic::uadd_sat: {
6774     SDValue Op1 = getValue(I.getArgOperand(0));
6775     SDValue Op2 = getValue(I.getArgOperand(1));
6776     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6777     return;
6778   }
6779   case Intrinsic::ssub_sat: {
6780     SDValue Op1 = getValue(I.getArgOperand(0));
6781     SDValue Op2 = getValue(I.getArgOperand(1));
6782     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6783     return;
6784   }
6785   case Intrinsic::usub_sat: {
6786     SDValue Op1 = getValue(I.getArgOperand(0));
6787     SDValue Op2 = getValue(I.getArgOperand(1));
6788     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6789     return;
6790   }
6791   case Intrinsic::sshl_sat: {
6792     SDValue Op1 = getValue(I.getArgOperand(0));
6793     SDValue Op2 = getValue(I.getArgOperand(1));
6794     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6795     return;
6796   }
6797   case Intrinsic::ushl_sat: {
6798     SDValue Op1 = getValue(I.getArgOperand(0));
6799     SDValue Op2 = getValue(I.getArgOperand(1));
6800     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6801     return;
6802   }
6803   case Intrinsic::smul_fix:
6804   case Intrinsic::umul_fix:
6805   case Intrinsic::smul_fix_sat:
6806   case Intrinsic::umul_fix_sat: {
6807     SDValue Op1 = getValue(I.getArgOperand(0));
6808     SDValue Op2 = getValue(I.getArgOperand(1));
6809     SDValue Op3 = getValue(I.getArgOperand(2));
6810     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6811                              Op1.getValueType(), Op1, Op2, Op3));
6812     return;
6813   }
6814   case Intrinsic::sdiv_fix:
6815   case Intrinsic::udiv_fix:
6816   case Intrinsic::sdiv_fix_sat:
6817   case Intrinsic::udiv_fix_sat: {
6818     SDValue Op1 = getValue(I.getArgOperand(0));
6819     SDValue Op2 = getValue(I.getArgOperand(1));
6820     SDValue Op3 = getValue(I.getArgOperand(2));
6821     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6822                               Op1, Op2, Op3, DAG, TLI));
6823     return;
6824   }
6825   case Intrinsic::smax: {
6826     SDValue Op1 = getValue(I.getArgOperand(0));
6827     SDValue Op2 = getValue(I.getArgOperand(1));
6828     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6829     return;
6830   }
6831   case Intrinsic::smin: {
6832     SDValue Op1 = getValue(I.getArgOperand(0));
6833     SDValue Op2 = getValue(I.getArgOperand(1));
6834     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6835     return;
6836   }
6837   case Intrinsic::umax: {
6838     SDValue Op1 = getValue(I.getArgOperand(0));
6839     SDValue Op2 = getValue(I.getArgOperand(1));
6840     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6841     return;
6842   }
6843   case Intrinsic::umin: {
6844     SDValue Op1 = getValue(I.getArgOperand(0));
6845     SDValue Op2 = getValue(I.getArgOperand(1));
6846     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6847     return;
6848   }
6849   case Intrinsic::abs: {
6850     // TODO: Preserve "int min is poison" arg in SDAG?
6851     SDValue Op1 = getValue(I.getArgOperand(0));
6852     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6853     return;
6854   }
6855   case Intrinsic::stacksave: {
6856     SDValue Op = getRoot();
6857     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6858     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6859     setValue(&I, Res);
6860     DAG.setRoot(Res.getValue(1));
6861     return;
6862   }
6863   case Intrinsic::stackrestore:
6864     Res = getValue(I.getArgOperand(0));
6865     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6866     return;
6867   case Intrinsic::get_dynamic_area_offset: {
6868     SDValue Op = getRoot();
6869     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6870     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6871     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6872     // target.
6873     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6874       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6875                          " intrinsic!");
6876     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6877                       Op);
6878     DAG.setRoot(Op);
6879     setValue(&I, Res);
6880     return;
6881   }
6882   case Intrinsic::stackguard: {
6883     MachineFunction &MF = DAG.getMachineFunction();
6884     const Module &M = *MF.getFunction().getParent();
6885     SDValue Chain = getRoot();
6886     if (TLI.useLoadStackGuardNode()) {
6887       Res = getLoadStackGuard(DAG, sdl, Chain);
6888     } else {
6889       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6890       const Value *Global = TLI.getSDagStackGuard(M);
6891       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
6892       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6893                         MachinePointerInfo(Global, 0), Align,
6894                         MachineMemOperand::MOVolatile);
6895     }
6896     if (TLI.useStackGuardXorFP())
6897       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6898     DAG.setRoot(Chain);
6899     setValue(&I, Res);
6900     return;
6901   }
6902   case Intrinsic::stackprotector: {
6903     // Emit code into the DAG to store the stack guard onto the stack.
6904     MachineFunction &MF = DAG.getMachineFunction();
6905     MachineFrameInfo &MFI = MF.getFrameInfo();
6906     SDValue Src, Chain = getRoot();
6907 
6908     if (TLI.useLoadStackGuardNode())
6909       Src = getLoadStackGuard(DAG, sdl, Chain);
6910     else
6911       Src = getValue(I.getArgOperand(0));   // The guard's value.
6912 
6913     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6914 
6915     int FI = FuncInfo.StaticAllocaMap[Slot];
6916     MFI.setStackProtectorIndex(FI);
6917     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6918 
6919     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6920 
6921     // Store the stack protector onto the stack.
6922     Res = DAG.getStore(
6923         Chain, sdl, Src, FIN,
6924         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6925         MaybeAlign(), MachineMemOperand::MOVolatile);
6926     setValue(&I, Res);
6927     DAG.setRoot(Res);
6928     return;
6929   }
6930   case Intrinsic::objectsize:
6931     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6932 
6933   case Intrinsic::is_constant:
6934     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6935 
6936   case Intrinsic::annotation:
6937   case Intrinsic::ptr_annotation:
6938   case Intrinsic::launder_invariant_group:
6939   case Intrinsic::strip_invariant_group:
6940     // Drop the intrinsic, but forward the value
6941     setValue(&I, getValue(I.getOperand(0)));
6942     return;
6943 
6944   case Intrinsic::assume:
6945   case Intrinsic::experimental_noalias_scope_decl:
6946   case Intrinsic::var_annotation:
6947   case Intrinsic::sideeffect:
6948     // Discard annotate attributes, noalias scope declarations, assumptions, and
6949     // artificial side-effects.
6950     return;
6951 
6952   case Intrinsic::codeview_annotation: {
6953     // Emit a label associated with this metadata.
6954     MachineFunction &MF = DAG.getMachineFunction();
6955     MCSymbol *Label =
6956         MF.getMMI().getContext().createTempSymbol("annotation", true);
6957     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6958     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6959     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6960     DAG.setRoot(Res);
6961     return;
6962   }
6963 
6964   case Intrinsic::init_trampoline: {
6965     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6966 
6967     SDValue Ops[6];
6968     Ops[0] = getRoot();
6969     Ops[1] = getValue(I.getArgOperand(0));
6970     Ops[2] = getValue(I.getArgOperand(1));
6971     Ops[3] = getValue(I.getArgOperand(2));
6972     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6973     Ops[5] = DAG.getSrcValue(F);
6974 
6975     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6976 
6977     DAG.setRoot(Res);
6978     return;
6979   }
6980   case Intrinsic::adjust_trampoline:
6981     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6982                              TLI.getPointerTy(DAG.getDataLayout()),
6983                              getValue(I.getArgOperand(0))));
6984     return;
6985   case Intrinsic::gcroot: {
6986     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6987            "only valid in functions with gc specified, enforced by Verifier");
6988     assert(GFI && "implied by previous");
6989     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6990     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6991 
6992     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6993     GFI->addStackRoot(FI->getIndex(), TypeMap);
6994     return;
6995   }
6996   case Intrinsic::gcread:
6997   case Intrinsic::gcwrite:
6998     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6999   case Intrinsic::get_rounding:
7000     Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
7001     setValue(&I, Res);
7002     DAG.setRoot(Res.getValue(1));
7003     return;
7004 
7005   case Intrinsic::expect:
7006     // Just replace __builtin_expect(exp, c) with EXP.
7007     setValue(&I, getValue(I.getArgOperand(0)));
7008     return;
7009 
7010   case Intrinsic::ubsantrap:
7011   case Intrinsic::debugtrap:
7012   case Intrinsic::trap: {
7013     StringRef TrapFuncName =
7014         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
7015     if (TrapFuncName.empty()) {
7016       switch (Intrinsic) {
7017       case Intrinsic::trap:
7018         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
7019         break;
7020       case Intrinsic::debugtrap:
7021         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
7022         break;
7023       case Intrinsic::ubsantrap:
7024         DAG.setRoot(DAG.getNode(
7025             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
7026             DAG.getTargetConstant(
7027                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
7028                 MVT::i32)));
7029         break;
7030       default: llvm_unreachable("unknown trap intrinsic");
7031       }
7032       return;
7033     }
7034     TargetLowering::ArgListTy Args;
7035     if (Intrinsic == Intrinsic::ubsantrap) {
7036       Args.push_back(TargetLoweringBase::ArgListEntry());
7037       Args[0].Val = I.getArgOperand(0);
7038       Args[0].Node = getValue(Args[0].Val);
7039       Args[0].Ty = Args[0].Val->getType();
7040     }
7041 
7042     TargetLowering::CallLoweringInfo CLI(DAG);
7043     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
7044         CallingConv::C, I.getType(),
7045         DAG.getExternalSymbol(TrapFuncName.data(),
7046                               TLI.getPointerTy(DAG.getDataLayout())),
7047         std::move(Args));
7048 
7049     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7050     DAG.setRoot(Result.second);
7051     return;
7052   }
7053 
7054   case Intrinsic::uadd_with_overflow:
7055   case Intrinsic::sadd_with_overflow:
7056   case Intrinsic::usub_with_overflow:
7057   case Intrinsic::ssub_with_overflow:
7058   case Intrinsic::umul_with_overflow:
7059   case Intrinsic::smul_with_overflow: {
7060     ISD::NodeType Op;
7061     switch (Intrinsic) {
7062     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7063     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
7064     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
7065     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
7066     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
7067     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
7068     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
7069     }
7070     SDValue Op1 = getValue(I.getArgOperand(0));
7071     SDValue Op2 = getValue(I.getArgOperand(1));
7072 
7073     EVT ResultVT = Op1.getValueType();
7074     EVT OverflowVT = MVT::i1;
7075     if (ResultVT.isVector())
7076       OverflowVT = EVT::getVectorVT(
7077           *Context, OverflowVT, ResultVT.getVectorElementCount());
7078 
7079     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
7080     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
7081     return;
7082   }
7083   case Intrinsic::prefetch: {
7084     SDValue Ops[5];
7085     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7086     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
7087     Ops[0] = DAG.getRoot();
7088     Ops[1] = getValue(I.getArgOperand(0));
7089     Ops[2] = getValue(I.getArgOperand(1));
7090     Ops[3] = getValue(I.getArgOperand(2));
7091     Ops[4] = getValue(I.getArgOperand(3));
7092     SDValue Result = DAG.getMemIntrinsicNode(
7093         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
7094         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
7095         /* align */ std::nullopt, Flags);
7096 
7097     // Chain the prefetch in parallell with any pending loads, to stay out of
7098     // the way of later optimizations.
7099     PendingLoads.push_back(Result);
7100     Result = getRoot();
7101     DAG.setRoot(Result);
7102     return;
7103   }
7104   case Intrinsic::lifetime_start:
7105   case Intrinsic::lifetime_end: {
7106     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
7107     // Stack coloring is not enabled in O0, discard region information.
7108     if (TM.getOptLevel() == CodeGenOpt::None)
7109       return;
7110 
7111     const int64_t ObjectSize =
7112         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
7113     Value *const ObjectPtr = I.getArgOperand(1);
7114     SmallVector<const Value *, 4> Allocas;
7115     getUnderlyingObjects(ObjectPtr, Allocas);
7116 
7117     for (const Value *Alloca : Allocas) {
7118       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
7119 
7120       // Could not find an Alloca.
7121       if (!LifetimeObject)
7122         continue;
7123 
7124       // First check that the Alloca is static, otherwise it won't have a
7125       // valid frame index.
7126       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
7127       if (SI == FuncInfo.StaticAllocaMap.end())
7128         return;
7129 
7130       const int FrameIndex = SI->second;
7131       int64_t Offset;
7132       if (GetPointerBaseWithConstantOffset(
7133               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
7134         Offset = -1; // Cannot determine offset from alloca to lifetime object.
7135       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
7136                                 Offset);
7137       DAG.setRoot(Res);
7138     }
7139     return;
7140   }
7141   case Intrinsic::pseudoprobe: {
7142     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
7143     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7144     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
7145     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
7146     DAG.setRoot(Res);
7147     return;
7148   }
7149   case Intrinsic::invariant_start:
7150     // Discard region information.
7151     setValue(&I,
7152              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
7153     return;
7154   case Intrinsic::invariant_end:
7155     // Discard region information.
7156     return;
7157   case Intrinsic::clear_cache:
7158     /// FunctionName may be null.
7159     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
7160       lowerCallToExternalSymbol(I, FunctionName);
7161     return;
7162   case Intrinsic::donothing:
7163   case Intrinsic::seh_try_begin:
7164   case Intrinsic::seh_scope_begin:
7165   case Intrinsic::seh_try_end:
7166   case Intrinsic::seh_scope_end:
7167     // ignore
7168     return;
7169   case Intrinsic::experimental_stackmap:
7170     visitStackmap(I);
7171     return;
7172   case Intrinsic::experimental_patchpoint_void:
7173   case Intrinsic::experimental_patchpoint_i64:
7174     visitPatchpoint(I);
7175     return;
7176   case Intrinsic::experimental_gc_statepoint:
7177     LowerStatepoint(cast<GCStatepointInst>(I));
7178     return;
7179   case Intrinsic::experimental_gc_result:
7180     visitGCResult(cast<GCResultInst>(I));
7181     return;
7182   case Intrinsic::experimental_gc_relocate:
7183     visitGCRelocate(cast<GCRelocateInst>(I));
7184     return;
7185   case Intrinsic::instrprof_cover:
7186     llvm_unreachable("instrprof failed to lower a cover");
7187   case Intrinsic::instrprof_increment:
7188     llvm_unreachable("instrprof failed to lower an increment");
7189   case Intrinsic::instrprof_timestamp:
7190     llvm_unreachable("instrprof failed to lower a timestamp");
7191   case Intrinsic::instrprof_value_profile:
7192     llvm_unreachable("instrprof failed to lower a value profiling call");
7193   case Intrinsic::localescape: {
7194     MachineFunction &MF = DAG.getMachineFunction();
7195     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7196 
7197     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7198     // is the same on all targets.
7199     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7200       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7201       if (isa<ConstantPointerNull>(Arg))
7202         continue; // Skip null pointers. They represent a hole in index space.
7203       AllocaInst *Slot = cast<AllocaInst>(Arg);
7204       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7205              "can only escape static allocas");
7206       int FI = FuncInfo.StaticAllocaMap[Slot];
7207       MCSymbol *FrameAllocSym =
7208           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7209               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
7210       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7211               TII->get(TargetOpcode::LOCAL_ESCAPE))
7212           .addSym(FrameAllocSym)
7213           .addFrameIndex(FI);
7214     }
7215 
7216     return;
7217   }
7218 
7219   case Intrinsic::localrecover: {
7220     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7221     MachineFunction &MF = DAG.getMachineFunction();
7222 
7223     // Get the symbol that defines the frame offset.
7224     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7225     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7226     unsigned IdxVal =
7227         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7228     MCSymbol *FrameAllocSym =
7229         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7230             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
7231 
7232     Value *FP = I.getArgOperand(1);
7233     SDValue FPVal = getValue(FP);
7234     EVT PtrVT = FPVal.getValueType();
7235 
7236     // Create a MCSymbol for the label to avoid any target lowering
7237     // that would make this PC relative.
7238     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7239     SDValue OffsetVal =
7240         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7241 
7242     // Add the offset to the FP.
7243     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7244     setValue(&I, Add);
7245 
7246     return;
7247   }
7248 
7249   case Intrinsic::eh_exceptionpointer:
7250   case Intrinsic::eh_exceptioncode: {
7251     // Get the exception pointer vreg, copy from it, and resize it to fit.
7252     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7253     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7254     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7255     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7256     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7257     if (Intrinsic == Intrinsic::eh_exceptioncode)
7258       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7259     setValue(&I, N);
7260     return;
7261   }
7262   case Intrinsic::xray_customevent: {
7263     // Here we want to make sure that the intrinsic behaves as if it has a
7264     // specific calling convention.
7265     const auto &Triple = DAG.getTarget().getTargetTriple();
7266     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7267       return;
7268 
7269     SmallVector<SDValue, 8> Ops;
7270 
7271     // We want to say that we always want the arguments in registers.
7272     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7273     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7274     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7275     SDValue Chain = getRoot();
7276     Ops.push_back(LogEntryVal);
7277     Ops.push_back(StrSizeVal);
7278     Ops.push_back(Chain);
7279 
7280     // We need to enforce the calling convention for the callsite, so that
7281     // argument ordering is enforced correctly, and that register allocation can
7282     // see that some registers may be assumed clobbered and have to preserve
7283     // them across calls to the intrinsic.
7284     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7285                                            sdl, NodeTys, Ops);
7286     SDValue patchableNode = SDValue(MN, 0);
7287     DAG.setRoot(patchableNode);
7288     setValue(&I, patchableNode);
7289     return;
7290   }
7291   case Intrinsic::xray_typedevent: {
7292     // Here we want to make sure that the intrinsic behaves as if it has a
7293     // specific calling convention.
7294     const auto &Triple = DAG.getTarget().getTargetTriple();
7295     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7296       return;
7297 
7298     SmallVector<SDValue, 8> Ops;
7299 
7300     // We want to say that we always want the arguments in registers.
7301     // It's unclear to me how manipulating the selection DAG here forces callers
7302     // to provide arguments in registers instead of on the stack.
7303     SDValue LogTypeId = getValue(I.getArgOperand(0));
7304     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7305     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7306     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7307     SDValue Chain = getRoot();
7308     Ops.push_back(LogTypeId);
7309     Ops.push_back(LogEntryVal);
7310     Ops.push_back(StrSizeVal);
7311     Ops.push_back(Chain);
7312 
7313     // We need to enforce the calling convention for the callsite, so that
7314     // argument ordering is enforced correctly, and that register allocation can
7315     // see that some registers may be assumed clobbered and have to preserve
7316     // them across calls to the intrinsic.
7317     MachineSDNode *MN = DAG.getMachineNode(
7318         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7319     SDValue patchableNode = SDValue(MN, 0);
7320     DAG.setRoot(patchableNode);
7321     setValue(&I, patchableNode);
7322     return;
7323   }
7324   case Intrinsic::experimental_deoptimize:
7325     LowerDeoptimizeCall(&I);
7326     return;
7327   case Intrinsic::experimental_stepvector:
7328     visitStepVector(I);
7329     return;
7330   case Intrinsic::vector_reduce_fadd:
7331   case Intrinsic::vector_reduce_fmul:
7332   case Intrinsic::vector_reduce_add:
7333   case Intrinsic::vector_reduce_mul:
7334   case Intrinsic::vector_reduce_and:
7335   case Intrinsic::vector_reduce_or:
7336   case Intrinsic::vector_reduce_xor:
7337   case Intrinsic::vector_reduce_smax:
7338   case Intrinsic::vector_reduce_smin:
7339   case Intrinsic::vector_reduce_umax:
7340   case Intrinsic::vector_reduce_umin:
7341   case Intrinsic::vector_reduce_fmax:
7342   case Intrinsic::vector_reduce_fmin:
7343   case Intrinsic::vector_reduce_fmaximum:
7344   case Intrinsic::vector_reduce_fminimum:
7345     visitVectorReduce(I, Intrinsic);
7346     return;
7347 
7348   case Intrinsic::icall_branch_funnel: {
7349     SmallVector<SDValue, 16> Ops;
7350     Ops.push_back(getValue(I.getArgOperand(0)));
7351 
7352     int64_t Offset;
7353     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7354         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7355     if (!Base)
7356       report_fatal_error(
7357           "llvm.icall.branch.funnel operand must be a GlobalValue");
7358     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7359 
7360     struct BranchFunnelTarget {
7361       int64_t Offset;
7362       SDValue Target;
7363     };
7364     SmallVector<BranchFunnelTarget, 8> Targets;
7365 
7366     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7367       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7368           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7369       if (ElemBase != Base)
7370         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7371                            "to the same GlobalValue");
7372 
7373       SDValue Val = getValue(I.getArgOperand(Op + 1));
7374       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7375       if (!GA)
7376         report_fatal_error(
7377             "llvm.icall.branch.funnel operand must be a GlobalValue");
7378       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7379                                      GA->getGlobal(), sdl, Val.getValueType(),
7380                                      GA->getOffset())});
7381     }
7382     llvm::sort(Targets,
7383                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7384                  return T1.Offset < T2.Offset;
7385                });
7386 
7387     for (auto &T : Targets) {
7388       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7389       Ops.push_back(T.Target);
7390     }
7391 
7392     Ops.push_back(DAG.getRoot()); // Chain
7393     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7394                                  MVT::Other, Ops),
7395               0);
7396     DAG.setRoot(N);
7397     setValue(&I, N);
7398     HasTailCall = true;
7399     return;
7400   }
7401 
7402   case Intrinsic::wasm_landingpad_index:
7403     // Information this intrinsic contained has been transferred to
7404     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7405     // delete it now.
7406     return;
7407 
7408   case Intrinsic::aarch64_settag:
7409   case Intrinsic::aarch64_settag_zero: {
7410     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7411     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7412     SDValue Val = TSI.EmitTargetCodeForSetTag(
7413         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7414         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7415         ZeroMemory);
7416     DAG.setRoot(Val);
7417     setValue(&I, Val);
7418     return;
7419   }
7420   case Intrinsic::ptrmask: {
7421     SDValue Ptr = getValue(I.getOperand(0));
7422     SDValue Const = getValue(I.getOperand(1));
7423 
7424     EVT PtrVT = Ptr.getValueType();
7425     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr,
7426                              DAG.getZExtOrTrunc(Const, sdl, PtrVT)));
7427     return;
7428   }
7429   case Intrinsic::threadlocal_address: {
7430     setValue(&I, getValue(I.getOperand(0)));
7431     return;
7432   }
7433   case Intrinsic::get_active_lane_mask: {
7434     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7435     SDValue Index = getValue(I.getOperand(0));
7436     EVT ElementVT = Index.getValueType();
7437 
7438     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7439       visitTargetIntrinsic(I, Intrinsic);
7440       return;
7441     }
7442 
7443     SDValue TripCount = getValue(I.getOperand(1));
7444     EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT,
7445                                  CCVT.getVectorElementCount());
7446 
7447     SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
7448     SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
7449     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7450     SDValue VectorInduction = DAG.getNode(
7451         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7452     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7453                                  VectorTripCount, ISD::CondCode::SETULT);
7454     setValue(&I, SetCC);
7455     return;
7456   }
7457   case Intrinsic::experimental_get_vector_length: {
7458     assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 &&
7459            "Expected positive VF");
7460     unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue();
7461     bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne();
7462 
7463     SDValue Count = getValue(I.getOperand(0));
7464     EVT CountVT = Count.getValueType();
7465 
7466     if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) {
7467       visitTargetIntrinsic(I, Intrinsic);
7468       return;
7469     }
7470 
7471     // Expand to a umin between the trip count and the maximum elements the type
7472     // can hold.
7473     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7474 
7475     // Extend the trip count to at least the result VT.
7476     if (CountVT.bitsLT(VT)) {
7477       Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count);
7478       CountVT = VT;
7479     }
7480 
7481     SDValue MaxEVL = DAG.getElementCount(sdl, CountVT,
7482                                          ElementCount::get(VF, IsScalable));
7483 
7484     SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL);
7485     // Clip to the result type if needed.
7486     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin);
7487 
7488     setValue(&I, Trunc);
7489     return;
7490   }
7491   case Intrinsic::vector_insert: {
7492     SDValue Vec = getValue(I.getOperand(0));
7493     SDValue SubVec = getValue(I.getOperand(1));
7494     SDValue Index = getValue(I.getOperand(2));
7495 
7496     // The intrinsic's index type is i64, but the SDNode requires an index type
7497     // suitable for the target. Convert the index as required.
7498     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7499     if (Index.getValueType() != VectorIdxTy)
7500       Index = DAG.getVectorIdxConstant(
7501           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7502 
7503     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7504     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7505                              Index));
7506     return;
7507   }
7508   case Intrinsic::vector_extract: {
7509     SDValue Vec = getValue(I.getOperand(0));
7510     SDValue Index = getValue(I.getOperand(1));
7511     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7512 
7513     // The intrinsic's index type is i64, but the SDNode requires an index type
7514     // suitable for the target. Convert the index as required.
7515     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7516     if (Index.getValueType() != VectorIdxTy)
7517       Index = DAG.getVectorIdxConstant(
7518           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7519 
7520     setValue(&I,
7521              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7522     return;
7523   }
7524   case Intrinsic::experimental_vector_reverse:
7525     visitVectorReverse(I);
7526     return;
7527   case Intrinsic::experimental_vector_splice:
7528     visitVectorSplice(I);
7529     return;
7530   case Intrinsic::callbr_landingpad:
7531     visitCallBrLandingPad(I);
7532     return;
7533   case Intrinsic::experimental_vector_interleave2:
7534     visitVectorInterleave(I);
7535     return;
7536   case Intrinsic::experimental_vector_deinterleave2:
7537     visitVectorDeinterleave(I);
7538     return;
7539   }
7540 }
7541 
7542 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7543     const ConstrainedFPIntrinsic &FPI) {
7544   SDLoc sdl = getCurSDLoc();
7545 
7546   // We do not need to serialize constrained FP intrinsics against
7547   // each other or against (nonvolatile) loads, so they can be
7548   // chained like loads.
7549   SDValue Chain = DAG.getRoot();
7550   SmallVector<SDValue, 4> Opers;
7551   Opers.push_back(Chain);
7552   if (FPI.isUnaryOp()) {
7553     Opers.push_back(getValue(FPI.getArgOperand(0)));
7554   } else if (FPI.isTernaryOp()) {
7555     Opers.push_back(getValue(FPI.getArgOperand(0)));
7556     Opers.push_back(getValue(FPI.getArgOperand(1)));
7557     Opers.push_back(getValue(FPI.getArgOperand(2)));
7558   } else {
7559     Opers.push_back(getValue(FPI.getArgOperand(0)));
7560     Opers.push_back(getValue(FPI.getArgOperand(1)));
7561   }
7562 
7563   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7564     assert(Result.getNode()->getNumValues() == 2);
7565 
7566     // Push node to the appropriate list so that future instructions can be
7567     // chained up correctly.
7568     SDValue OutChain = Result.getValue(1);
7569     switch (EB) {
7570     case fp::ExceptionBehavior::ebIgnore:
7571       // The only reason why ebIgnore nodes still need to be chained is that
7572       // they might depend on the current rounding mode, and therefore must
7573       // not be moved across instruction that may change that mode.
7574       [[fallthrough]];
7575     case fp::ExceptionBehavior::ebMayTrap:
7576       // These must not be moved across calls or instructions that may change
7577       // floating-point exception masks.
7578       PendingConstrainedFP.push_back(OutChain);
7579       break;
7580     case fp::ExceptionBehavior::ebStrict:
7581       // These must not be moved across calls or instructions that may change
7582       // floating-point exception masks or read floating-point exception flags.
7583       // In addition, they cannot be optimized out even if unused.
7584       PendingConstrainedFPStrict.push_back(OutChain);
7585       break;
7586     }
7587   };
7588 
7589   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7590   EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
7591   SDVTList VTs = DAG.getVTList(VT, MVT::Other);
7592   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
7593 
7594   SDNodeFlags Flags;
7595   if (EB == fp::ExceptionBehavior::ebIgnore)
7596     Flags.setNoFPExcept(true);
7597 
7598   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7599     Flags.copyFMF(*FPOp);
7600 
7601   unsigned Opcode;
7602   switch (FPI.getIntrinsicID()) {
7603   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7604 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7605   case Intrinsic::INTRINSIC:                                                   \
7606     Opcode = ISD::STRICT_##DAGN;                                               \
7607     break;
7608 #include "llvm/IR/ConstrainedOps.def"
7609   case Intrinsic::experimental_constrained_fmuladd: {
7610     Opcode = ISD::STRICT_FMA;
7611     // Break fmuladd into fmul and fadd.
7612     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7613         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
7614       Opers.pop_back();
7615       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7616       pushOutChain(Mul, EB);
7617       Opcode = ISD::STRICT_FADD;
7618       Opers.clear();
7619       Opers.push_back(Mul.getValue(1));
7620       Opers.push_back(Mul.getValue(0));
7621       Opers.push_back(getValue(FPI.getArgOperand(2)));
7622     }
7623     break;
7624   }
7625   }
7626 
7627   // A few strict DAG nodes carry additional operands that are not
7628   // set up by the default code above.
7629   switch (Opcode) {
7630   default: break;
7631   case ISD::STRICT_FP_ROUND:
7632     Opers.push_back(
7633         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7634     break;
7635   case ISD::STRICT_FSETCC:
7636   case ISD::STRICT_FSETCCS: {
7637     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7638     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7639     if (TM.Options.NoNaNsFPMath)
7640       Condition = getFCmpCodeWithoutNaN(Condition);
7641     Opers.push_back(DAG.getCondCode(Condition));
7642     break;
7643   }
7644   }
7645 
7646   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7647   pushOutChain(Result, EB);
7648 
7649   SDValue FPResult = Result.getValue(0);
7650   setValue(&FPI, FPResult);
7651 }
7652 
7653 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7654   std::optional<unsigned> ResOPC;
7655   switch (VPIntrin.getIntrinsicID()) {
7656   case Intrinsic::vp_ctlz: {
7657     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
7658     ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
7659     break;
7660   }
7661   case Intrinsic::vp_cttz: {
7662     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
7663     ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
7664     break;
7665   }
7666 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
7667   case Intrinsic::VPID:                                                        \
7668     ResOPC = ISD::VPSD;                                                        \
7669     break;
7670 #include "llvm/IR/VPIntrinsics.def"
7671   }
7672 
7673   if (!ResOPC)
7674     llvm_unreachable(
7675         "Inconsistency: no SDNode available for this VPIntrinsic!");
7676 
7677   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
7678       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
7679     if (VPIntrin.getFastMathFlags().allowReassoc())
7680       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
7681                                                 : ISD::VP_REDUCE_FMUL;
7682   }
7683 
7684   return *ResOPC;
7685 }
7686 
7687 void SelectionDAGBuilder::visitVPLoad(
7688     const VPIntrinsic &VPIntrin, EVT VT,
7689     const SmallVectorImpl<SDValue> &OpValues) {
7690   SDLoc DL = getCurSDLoc();
7691   Value *PtrOperand = VPIntrin.getArgOperand(0);
7692   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7693   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7694   const MDNode *Ranges = getRangeMetadata(VPIntrin);
7695   SDValue LD;
7696   // Do not serialize variable-length loads of constant memory with
7697   // anything.
7698   if (!Alignment)
7699     Alignment = DAG.getEVTAlign(VT);
7700   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7701   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7702   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7703   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7704       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7705       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7706   LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
7707                      MMO, false /*IsExpanding */);
7708   if (AddToChain)
7709     PendingLoads.push_back(LD.getValue(1));
7710   setValue(&VPIntrin, LD);
7711 }
7712 
7713 void SelectionDAGBuilder::visitVPGather(
7714     const VPIntrinsic &VPIntrin, EVT VT,
7715     const SmallVectorImpl<SDValue> &OpValues) {
7716   SDLoc DL = getCurSDLoc();
7717   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7718   Value *PtrOperand = VPIntrin.getArgOperand(0);
7719   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7720   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7721   const MDNode *Ranges = getRangeMetadata(VPIntrin);
7722   SDValue LD;
7723   if (!Alignment)
7724     Alignment = DAG.getEVTAlign(VT.getScalarType());
7725   unsigned AS =
7726     PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7727   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7728      MachinePointerInfo(AS), MachineMemOperand::MOLoad,
7729      MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7730   SDValue Base, Index, Scale;
7731   ISD::MemIndexType IndexType;
7732   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7733                                     this, VPIntrin.getParent(),
7734                                     VT.getScalarStoreSize());
7735   if (!UniformBase) {
7736     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7737     Index = getValue(PtrOperand);
7738     IndexType = ISD::SIGNED_SCALED;
7739     Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7740   }
7741   EVT IdxVT = Index.getValueType();
7742   EVT EltTy = IdxVT.getVectorElementType();
7743   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7744     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7745     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7746   }
7747   LD = DAG.getGatherVP(
7748       DAG.getVTList(VT, MVT::Other), VT, DL,
7749       {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
7750       IndexType);
7751   PendingLoads.push_back(LD.getValue(1));
7752   setValue(&VPIntrin, LD);
7753 }
7754 
7755 void SelectionDAGBuilder::visitVPStore(
7756     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
7757   SDLoc DL = getCurSDLoc();
7758   Value *PtrOperand = VPIntrin.getArgOperand(1);
7759   EVT VT = OpValues[0].getValueType();
7760   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7761   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7762   SDValue ST;
7763   if (!Alignment)
7764     Alignment = DAG.getEVTAlign(VT);
7765   SDValue Ptr = OpValues[1];
7766   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
7767   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7768       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7769       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7770   ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
7771                       OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
7772                       /* IsTruncating */ false, /*IsCompressing*/ false);
7773   DAG.setRoot(ST);
7774   setValue(&VPIntrin, ST);
7775 }
7776 
7777 void SelectionDAGBuilder::visitVPScatter(
7778     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
7779   SDLoc DL = getCurSDLoc();
7780   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7781   Value *PtrOperand = VPIntrin.getArgOperand(1);
7782   EVT VT = OpValues[0].getValueType();
7783   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7784   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7785   SDValue ST;
7786   if (!Alignment)
7787     Alignment = DAG.getEVTAlign(VT.getScalarType());
7788   unsigned AS =
7789       PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7790   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7791       MachinePointerInfo(AS), MachineMemOperand::MOStore,
7792       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7793   SDValue Base, Index, Scale;
7794   ISD::MemIndexType IndexType;
7795   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7796                                     this, VPIntrin.getParent(),
7797                                     VT.getScalarStoreSize());
7798   if (!UniformBase) {
7799     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7800     Index = getValue(PtrOperand);
7801     IndexType = ISD::SIGNED_SCALED;
7802     Scale =
7803       DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7804   }
7805   EVT IdxVT = Index.getValueType();
7806   EVT EltTy = IdxVT.getVectorElementType();
7807   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7808     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7809     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7810   }
7811   ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
7812                         {getMemoryRoot(), OpValues[0], Base, Index, Scale,
7813                          OpValues[2], OpValues[3]},
7814                         MMO, IndexType);
7815   DAG.setRoot(ST);
7816   setValue(&VPIntrin, ST);
7817 }
7818 
7819 void SelectionDAGBuilder::visitVPStridedLoad(
7820     const VPIntrinsic &VPIntrin, EVT VT,
7821     const SmallVectorImpl<SDValue> &OpValues) {
7822   SDLoc DL = getCurSDLoc();
7823   Value *PtrOperand = VPIntrin.getArgOperand(0);
7824   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7825   if (!Alignment)
7826     Alignment = DAG.getEVTAlign(VT.getScalarType());
7827   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7828   const MDNode *Ranges = getRangeMetadata(VPIntrin);
7829   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7830   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7831   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7832   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7833       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7834       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7835 
7836   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
7837                                     OpValues[2], OpValues[3], MMO,
7838                                     false /*IsExpanding*/);
7839 
7840   if (AddToChain)
7841     PendingLoads.push_back(LD.getValue(1));
7842   setValue(&VPIntrin, LD);
7843 }
7844 
7845 void SelectionDAGBuilder::visitVPStridedStore(
7846     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
7847   SDLoc DL = getCurSDLoc();
7848   Value *PtrOperand = VPIntrin.getArgOperand(1);
7849   EVT VT = OpValues[0].getValueType();
7850   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7851   if (!Alignment)
7852     Alignment = DAG.getEVTAlign(VT.getScalarType());
7853   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7854   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7855       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7856       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7857 
7858   SDValue ST = DAG.getStridedStoreVP(
7859       getMemoryRoot(), DL, OpValues[0], OpValues[1],
7860       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
7861       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
7862       /*IsCompressing*/ false);
7863 
7864   DAG.setRoot(ST);
7865   setValue(&VPIntrin, ST);
7866 }
7867 
7868 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
7869   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7870   SDLoc DL = getCurSDLoc();
7871 
7872   ISD::CondCode Condition;
7873   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
7874   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
7875   if (IsFP) {
7876     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
7877     // flags, but calls that don't return floating-point types can't be
7878     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
7879     Condition = getFCmpCondCode(CondCode);
7880     if (TM.Options.NoNaNsFPMath)
7881       Condition = getFCmpCodeWithoutNaN(Condition);
7882   } else {
7883     Condition = getICmpCondCode(CondCode);
7884   }
7885 
7886   SDValue Op1 = getValue(VPIntrin.getOperand(0));
7887   SDValue Op2 = getValue(VPIntrin.getOperand(1));
7888   // #2 is the condition code
7889   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
7890   SDValue EVL = getValue(VPIntrin.getOperand(4));
7891   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7892   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7893          "Unexpected target EVL type");
7894   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
7895 
7896   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7897                                                         VPIntrin.getType());
7898   setValue(&VPIntrin,
7899            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
7900 }
7901 
7902 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7903     const VPIntrinsic &VPIntrin) {
7904   SDLoc DL = getCurSDLoc();
7905   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7906 
7907   auto IID = VPIntrin.getIntrinsicID();
7908 
7909   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
7910     return visitVPCmp(*CmpI);
7911 
7912   SmallVector<EVT, 4> ValueVTs;
7913   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7914   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7915   SDVTList VTs = DAG.getVTList(ValueVTs);
7916 
7917   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
7918 
7919   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7920   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7921          "Unexpected target EVL type");
7922 
7923   // Request operands.
7924   SmallVector<SDValue, 7> OpValues;
7925   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
7926     auto Op = getValue(VPIntrin.getArgOperand(I));
7927     if (I == EVLParamPos)
7928       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
7929     OpValues.push_back(Op);
7930   }
7931 
7932   switch (Opcode) {
7933   default: {
7934     SDNodeFlags SDFlags;
7935     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7936       SDFlags.copyFMF(*FPMO);
7937     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
7938     setValue(&VPIntrin, Result);
7939     break;
7940   }
7941   case ISD::VP_LOAD:
7942     visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
7943     break;
7944   case ISD::VP_GATHER:
7945     visitVPGather(VPIntrin, ValueVTs[0], OpValues);
7946     break;
7947   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
7948     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
7949     break;
7950   case ISD::VP_STORE:
7951     visitVPStore(VPIntrin, OpValues);
7952     break;
7953   case ISD::VP_SCATTER:
7954     visitVPScatter(VPIntrin, OpValues);
7955     break;
7956   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
7957     visitVPStridedStore(VPIntrin, OpValues);
7958     break;
7959   case ISD::VP_FMULADD: {
7960     assert(OpValues.size() == 5 && "Unexpected number of operands");
7961     SDNodeFlags SDFlags;
7962     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7963       SDFlags.copyFMF(*FPMO);
7964     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
7965         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
7966       setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
7967     } else {
7968       SDValue Mul = DAG.getNode(
7969           ISD::VP_FMUL, DL, VTs,
7970           {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
7971       SDValue Add =
7972           DAG.getNode(ISD::VP_FADD, DL, VTs,
7973                       {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
7974       setValue(&VPIntrin, Add);
7975     }
7976     break;
7977   }
7978   case ISD::VP_IS_FPCLASS: {
7979     const DataLayout DLayout = DAG.getDataLayout();
7980     EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType());
7981     auto Constant = cast<ConstantSDNode>(OpValues[1])->getZExtValue();
7982     SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32);
7983     SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT,
7984                             {OpValues[0], Check, OpValues[2], OpValues[3]});
7985     setValue(&VPIntrin, V);
7986     return;
7987   }
7988   case ISD::VP_INTTOPTR: {
7989     SDValue N = OpValues[0];
7990     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
7991     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
7992     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
7993                                OpValues[2]);
7994     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
7995                              OpValues[2]);
7996     setValue(&VPIntrin, N);
7997     break;
7998   }
7999   case ISD::VP_PTRTOINT: {
8000     SDValue N = OpValues[0];
8001     EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8002                                                           VPIntrin.getType());
8003     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
8004                                        VPIntrin.getOperand(0)->getType());
8005     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8006                                OpValues[2]);
8007     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8008                              OpValues[2]);
8009     setValue(&VPIntrin, N);
8010     break;
8011   }
8012   case ISD::VP_ABS:
8013   case ISD::VP_CTLZ:
8014   case ISD::VP_CTLZ_ZERO_UNDEF:
8015   case ISD::VP_CTTZ:
8016   case ISD::VP_CTTZ_ZERO_UNDEF: {
8017     SDValue Result =
8018         DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]});
8019     setValue(&VPIntrin, Result);
8020     break;
8021   }
8022   }
8023 }
8024 
8025 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
8026                                           const BasicBlock *EHPadBB,
8027                                           MCSymbol *&BeginLabel) {
8028   MachineFunction &MF = DAG.getMachineFunction();
8029   MachineModuleInfo &MMI = MF.getMMI();
8030 
8031   // Insert a label before the invoke call to mark the try range.  This can be
8032   // used to detect deletion of the invoke via the MachineModuleInfo.
8033   BeginLabel = MMI.getContext().createTempSymbol();
8034 
8035   // For SjLj, keep track of which landing pads go with which invokes
8036   // so as to maintain the ordering of pads in the LSDA.
8037   unsigned CallSiteIndex = MMI.getCurrentCallSite();
8038   if (CallSiteIndex) {
8039     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
8040     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
8041 
8042     // Now that the call site is handled, stop tracking it.
8043     MMI.setCurrentCallSite(0);
8044   }
8045 
8046   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
8047 }
8048 
8049 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
8050                                         const BasicBlock *EHPadBB,
8051                                         MCSymbol *BeginLabel) {
8052   assert(BeginLabel && "BeginLabel should've been set");
8053 
8054   MachineFunction &MF = DAG.getMachineFunction();
8055   MachineModuleInfo &MMI = MF.getMMI();
8056 
8057   // Insert a label at the end of the invoke call to mark the try range.  This
8058   // can be used to detect deletion of the invoke via the MachineModuleInfo.
8059   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
8060   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
8061 
8062   // Inform MachineModuleInfo of range.
8063   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
8064   // There is a platform (e.g. wasm) that uses funclet style IR but does not
8065   // actually use outlined funclets and their LSDA info style.
8066   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
8067     assert(II && "II should've been set");
8068     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
8069     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
8070   } else if (!isScopedEHPersonality(Pers)) {
8071     assert(EHPadBB);
8072     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
8073   }
8074 
8075   return Chain;
8076 }
8077 
8078 std::pair<SDValue, SDValue>
8079 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
8080                                     const BasicBlock *EHPadBB) {
8081   MCSymbol *BeginLabel = nullptr;
8082 
8083   if (EHPadBB) {
8084     // Both PendingLoads and PendingExports must be flushed here;
8085     // this call might not return.
8086     (void)getRoot();
8087     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
8088     CLI.setChain(getRoot());
8089   }
8090 
8091   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8092   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
8093 
8094   assert((CLI.IsTailCall || Result.second.getNode()) &&
8095          "Non-null chain expected with non-tail call!");
8096   assert((Result.second.getNode() || !Result.first.getNode()) &&
8097          "Null value expected with tail call!");
8098 
8099   if (!Result.second.getNode()) {
8100     // As a special case, a null chain means that a tail call has been emitted
8101     // and the DAG root is already updated.
8102     HasTailCall = true;
8103 
8104     // Since there's no actual continuation from this block, nothing can be
8105     // relying on us setting vregs for them.
8106     PendingExports.clear();
8107   } else {
8108     DAG.setRoot(Result.second);
8109   }
8110 
8111   if (EHPadBB) {
8112     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
8113                            BeginLabel));
8114   }
8115 
8116   return Result;
8117 }
8118 
8119 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
8120                                       bool isTailCall,
8121                                       bool isMustTailCall,
8122                                       const BasicBlock *EHPadBB) {
8123   auto &DL = DAG.getDataLayout();
8124   FunctionType *FTy = CB.getFunctionType();
8125   Type *RetTy = CB.getType();
8126 
8127   TargetLowering::ArgListTy Args;
8128   Args.reserve(CB.arg_size());
8129 
8130   const Value *SwiftErrorVal = nullptr;
8131   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8132 
8133   if (isTailCall) {
8134     // Avoid emitting tail calls in functions with the disable-tail-calls
8135     // attribute.
8136     auto *Caller = CB.getParent()->getParent();
8137     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
8138         "true" && !isMustTailCall)
8139       isTailCall = false;
8140 
8141     // We can't tail call inside a function with a swifterror argument. Lowering
8142     // does not support this yet. It would have to move into the swifterror
8143     // register before the call.
8144     if (TLI.supportSwiftError() &&
8145         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
8146       isTailCall = false;
8147   }
8148 
8149   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
8150     TargetLowering::ArgListEntry Entry;
8151     const Value *V = *I;
8152 
8153     // Skip empty types
8154     if (V->getType()->isEmptyTy())
8155       continue;
8156 
8157     SDValue ArgNode = getValue(V);
8158     Entry.Node = ArgNode; Entry.Ty = V->getType();
8159 
8160     Entry.setAttributes(&CB, I - CB.arg_begin());
8161 
8162     // Use swifterror virtual register as input to the call.
8163     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
8164       SwiftErrorVal = V;
8165       // We find the virtual register for the actual swifterror argument.
8166       // Instead of using the Value, we use the virtual register instead.
8167       Entry.Node =
8168           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
8169                           EVT(TLI.getPointerTy(DL)));
8170     }
8171 
8172     Args.push_back(Entry);
8173 
8174     // If we have an explicit sret argument that is an Instruction, (i.e., it
8175     // might point to function-local memory), we can't meaningfully tail-call.
8176     if (Entry.IsSRet && isa<Instruction>(V))
8177       isTailCall = false;
8178   }
8179 
8180   // If call site has a cfguardtarget operand bundle, create and add an
8181   // additional ArgListEntry.
8182   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
8183     TargetLowering::ArgListEntry Entry;
8184     Value *V = Bundle->Inputs[0];
8185     SDValue ArgNode = getValue(V);
8186     Entry.Node = ArgNode;
8187     Entry.Ty = V->getType();
8188     Entry.IsCFGuardTarget = true;
8189     Args.push_back(Entry);
8190   }
8191 
8192   // Check if target-independent constraints permit a tail call here.
8193   // Target-dependent constraints are checked within TLI->LowerCallTo.
8194   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
8195     isTailCall = false;
8196 
8197   // Disable tail calls if there is an swifterror argument. Targets have not
8198   // been updated to support tail calls.
8199   if (TLI.supportSwiftError() && SwiftErrorVal)
8200     isTailCall = false;
8201 
8202   ConstantInt *CFIType = nullptr;
8203   if (CB.isIndirectCall()) {
8204     if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
8205       if (!TLI.supportKCFIBundles())
8206         report_fatal_error(
8207             "Target doesn't support calls with kcfi operand bundles.");
8208       CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
8209       assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
8210     }
8211   }
8212 
8213   TargetLowering::CallLoweringInfo CLI(DAG);
8214   CLI.setDebugLoc(getCurSDLoc())
8215       .setChain(getRoot())
8216       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
8217       .setTailCall(isTailCall)
8218       .setConvergent(CB.isConvergent())
8219       .setIsPreallocated(
8220           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
8221       .setCFIType(CFIType);
8222   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8223 
8224   if (Result.first.getNode()) {
8225     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
8226     setValue(&CB, Result.first);
8227   }
8228 
8229   // The last element of CLI.InVals has the SDValue for swifterror return.
8230   // Here we copy it to a virtual register and update SwiftErrorMap for
8231   // book-keeping.
8232   if (SwiftErrorVal && TLI.supportSwiftError()) {
8233     // Get the last element of InVals.
8234     SDValue Src = CLI.InVals.back();
8235     Register VReg =
8236         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
8237     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
8238     DAG.setRoot(CopyNode);
8239   }
8240 }
8241 
8242 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
8243                              SelectionDAGBuilder &Builder) {
8244   // Check to see if this load can be trivially constant folded, e.g. if the
8245   // input is from a string literal.
8246   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
8247     // Cast pointer to the type we really want to load.
8248     Type *LoadTy =
8249         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
8250     if (LoadVT.isVector())
8251       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
8252 
8253     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
8254                                          PointerType::getUnqual(LoadTy));
8255 
8256     if (const Constant *LoadCst =
8257             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
8258                                          LoadTy, Builder.DAG.getDataLayout()))
8259       return Builder.getValue(LoadCst);
8260   }
8261 
8262   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
8263   // still constant memory, the input chain can be the entry node.
8264   SDValue Root;
8265   bool ConstantMemory = false;
8266 
8267   // Do not serialize (non-volatile) loads of constant memory with anything.
8268   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
8269     Root = Builder.DAG.getEntryNode();
8270     ConstantMemory = true;
8271   } else {
8272     // Do not serialize non-volatile loads against each other.
8273     Root = Builder.DAG.getRoot();
8274   }
8275 
8276   SDValue Ptr = Builder.getValue(PtrVal);
8277   SDValue LoadVal =
8278       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
8279                           MachinePointerInfo(PtrVal), Align(1));
8280 
8281   if (!ConstantMemory)
8282     Builder.PendingLoads.push_back(LoadVal.getValue(1));
8283   return LoadVal;
8284 }
8285 
8286 /// Record the value for an instruction that produces an integer result,
8287 /// converting the type where necessary.
8288 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
8289                                                   SDValue Value,
8290                                                   bool IsSigned) {
8291   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8292                                                     I.getType(), true);
8293   Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT);
8294   setValue(&I, Value);
8295 }
8296 
8297 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
8298 /// true and lower it. Otherwise return false, and it will be lowered like a
8299 /// normal call.
8300 /// The caller already checked that \p I calls the appropriate LibFunc with a
8301 /// correct prototype.
8302 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
8303   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
8304   const Value *Size = I.getArgOperand(2);
8305   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
8306   if (CSize && CSize->getZExtValue() == 0) {
8307     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8308                                                           I.getType(), true);
8309     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
8310     return true;
8311   }
8312 
8313   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8314   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
8315       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
8316       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
8317   if (Res.first.getNode()) {
8318     processIntegerCallValue(I, Res.first, true);
8319     PendingLoads.push_back(Res.second);
8320     return true;
8321   }
8322 
8323   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
8324   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
8325   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
8326     return false;
8327 
8328   // If the target has a fast compare for the given size, it will return a
8329   // preferred load type for that size. Require that the load VT is legal and
8330   // that the target supports unaligned loads of that type. Otherwise, return
8331   // INVALID.
8332   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
8333     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8334     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
8335     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
8336       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
8337       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
8338       // TODO: Check alignment of src and dest ptrs.
8339       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
8340       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
8341       if (!TLI.isTypeLegal(LVT) ||
8342           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
8343           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
8344         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
8345     }
8346 
8347     return LVT;
8348   };
8349 
8350   // This turns into unaligned loads. We only do this if the target natively
8351   // supports the MVT we'll be loading or if it is small enough (<= 4) that
8352   // we'll only produce a small number of byte loads.
8353   MVT LoadVT;
8354   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
8355   switch (NumBitsToCompare) {
8356   default:
8357     return false;
8358   case 16:
8359     LoadVT = MVT::i16;
8360     break;
8361   case 32:
8362     LoadVT = MVT::i32;
8363     break;
8364   case 64:
8365   case 128:
8366   case 256:
8367     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
8368     break;
8369   }
8370 
8371   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
8372     return false;
8373 
8374   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
8375   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
8376 
8377   // Bitcast to a wide integer type if the loads are vectors.
8378   if (LoadVT.isVector()) {
8379     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
8380     LoadL = DAG.getBitcast(CmpVT, LoadL);
8381     LoadR = DAG.getBitcast(CmpVT, LoadR);
8382   }
8383 
8384   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
8385   processIntegerCallValue(I, Cmp, false);
8386   return true;
8387 }
8388 
8389 /// See if we can lower a memchr call into an optimized form. If so, return
8390 /// true and lower it. Otherwise return false, and it will be lowered like a
8391 /// normal call.
8392 /// The caller already checked that \p I calls the appropriate LibFunc with a
8393 /// correct prototype.
8394 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
8395   const Value *Src = I.getArgOperand(0);
8396   const Value *Char = I.getArgOperand(1);
8397   const Value *Length = I.getArgOperand(2);
8398 
8399   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8400   std::pair<SDValue, SDValue> Res =
8401     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
8402                                 getValue(Src), getValue(Char), getValue(Length),
8403                                 MachinePointerInfo(Src));
8404   if (Res.first.getNode()) {
8405     setValue(&I, Res.first);
8406     PendingLoads.push_back(Res.second);
8407     return true;
8408   }
8409 
8410   return false;
8411 }
8412 
8413 /// See if we can lower a mempcpy call into an optimized form. If so, return
8414 /// true and lower it. Otherwise return false, and it will be lowered like a
8415 /// normal call.
8416 /// The caller already checked that \p I calls the appropriate LibFunc with a
8417 /// correct prototype.
8418 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
8419   SDValue Dst = getValue(I.getArgOperand(0));
8420   SDValue Src = getValue(I.getArgOperand(1));
8421   SDValue Size = getValue(I.getArgOperand(2));
8422 
8423   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
8424   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
8425   // DAG::getMemcpy needs Alignment to be defined.
8426   Align Alignment = std::min(DstAlign, SrcAlign);
8427 
8428   SDLoc sdl = getCurSDLoc();
8429 
8430   // In the mempcpy context we need to pass in a false value for isTailCall
8431   // because the return pointer needs to be adjusted by the size of
8432   // the copied memory.
8433   SDValue Root = getMemoryRoot();
8434   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false,
8435                              /*isTailCall=*/false,
8436                              MachinePointerInfo(I.getArgOperand(0)),
8437                              MachinePointerInfo(I.getArgOperand(1)),
8438                              I.getAAMetadata());
8439   assert(MC.getNode() != nullptr &&
8440          "** memcpy should not be lowered as TailCall in mempcpy context **");
8441   DAG.setRoot(MC);
8442 
8443   // Check if Size needs to be truncated or extended.
8444   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
8445 
8446   // Adjust return pointer to point just past the last dst byte.
8447   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
8448                                     Dst, Size);
8449   setValue(&I, DstPlusSize);
8450   return true;
8451 }
8452 
8453 /// See if we can lower a strcpy call into an optimized form.  If so, return
8454 /// true and lower it, otherwise return false and it will be lowered like a
8455 /// normal call.
8456 /// The caller already checked that \p I calls the appropriate LibFunc with a
8457 /// correct prototype.
8458 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
8459   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8460 
8461   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8462   std::pair<SDValue, SDValue> Res =
8463     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
8464                                 getValue(Arg0), getValue(Arg1),
8465                                 MachinePointerInfo(Arg0),
8466                                 MachinePointerInfo(Arg1), isStpcpy);
8467   if (Res.first.getNode()) {
8468     setValue(&I, Res.first);
8469     DAG.setRoot(Res.second);
8470     return true;
8471   }
8472 
8473   return false;
8474 }
8475 
8476 /// See if we can lower a strcmp call into an optimized form.  If so, return
8477 /// true and lower it, otherwise return false and it will be lowered like a
8478 /// normal call.
8479 /// The caller already checked that \p I calls the appropriate LibFunc with a
8480 /// correct prototype.
8481 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
8482   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8483 
8484   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8485   std::pair<SDValue, SDValue> Res =
8486     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
8487                                 getValue(Arg0), getValue(Arg1),
8488                                 MachinePointerInfo(Arg0),
8489                                 MachinePointerInfo(Arg1));
8490   if (Res.first.getNode()) {
8491     processIntegerCallValue(I, Res.first, true);
8492     PendingLoads.push_back(Res.second);
8493     return true;
8494   }
8495 
8496   return false;
8497 }
8498 
8499 /// See if we can lower a strlen call into an optimized form.  If so, return
8500 /// true and lower it, otherwise return false and it will be lowered like a
8501 /// normal call.
8502 /// The caller already checked that \p I calls the appropriate LibFunc with a
8503 /// correct prototype.
8504 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
8505   const Value *Arg0 = I.getArgOperand(0);
8506 
8507   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8508   std::pair<SDValue, SDValue> Res =
8509     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
8510                                 getValue(Arg0), MachinePointerInfo(Arg0));
8511   if (Res.first.getNode()) {
8512     processIntegerCallValue(I, Res.first, false);
8513     PendingLoads.push_back(Res.second);
8514     return true;
8515   }
8516 
8517   return false;
8518 }
8519 
8520 /// See if we can lower a strnlen call into an optimized form.  If so, return
8521 /// true and lower it, otherwise return false and it will be lowered like a
8522 /// normal call.
8523 /// The caller already checked that \p I calls the appropriate LibFunc with a
8524 /// correct prototype.
8525 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
8526   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8527 
8528   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8529   std::pair<SDValue, SDValue> Res =
8530     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
8531                                  getValue(Arg0), getValue(Arg1),
8532                                  MachinePointerInfo(Arg0));
8533   if (Res.first.getNode()) {
8534     processIntegerCallValue(I, Res.first, false);
8535     PendingLoads.push_back(Res.second);
8536     return true;
8537   }
8538 
8539   return false;
8540 }
8541 
8542 /// See if we can lower a unary floating-point operation into an SDNode with
8543 /// the specified Opcode.  If so, return true and lower it, otherwise return
8544 /// false and it will be lowered like a normal call.
8545 /// The caller already checked that \p I calls the appropriate LibFunc with a
8546 /// correct prototype.
8547 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
8548                                               unsigned Opcode) {
8549   // We already checked this call's prototype; verify it doesn't modify errno.
8550   if (!I.onlyReadsMemory())
8551     return false;
8552 
8553   SDNodeFlags Flags;
8554   Flags.copyFMF(cast<FPMathOperator>(I));
8555 
8556   SDValue Tmp = getValue(I.getArgOperand(0));
8557   setValue(&I,
8558            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
8559   return true;
8560 }
8561 
8562 /// See if we can lower a binary floating-point operation into an SDNode with
8563 /// the specified Opcode. If so, return true and lower it. Otherwise return
8564 /// false, and it will be lowered like a normal call.
8565 /// The caller already checked that \p I calls the appropriate LibFunc with a
8566 /// correct prototype.
8567 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
8568                                                unsigned Opcode) {
8569   // We already checked this call's prototype; verify it doesn't modify errno.
8570   if (!I.onlyReadsMemory())
8571     return false;
8572 
8573   SDNodeFlags Flags;
8574   Flags.copyFMF(cast<FPMathOperator>(I));
8575 
8576   SDValue Tmp0 = getValue(I.getArgOperand(0));
8577   SDValue Tmp1 = getValue(I.getArgOperand(1));
8578   EVT VT = Tmp0.getValueType();
8579   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
8580   return true;
8581 }
8582 
8583 void SelectionDAGBuilder::visitCall(const CallInst &I) {
8584   // Handle inline assembly differently.
8585   if (I.isInlineAsm()) {
8586     visitInlineAsm(I);
8587     return;
8588   }
8589 
8590   diagnoseDontCall(I);
8591 
8592   if (Function *F = I.getCalledFunction()) {
8593     if (F->isDeclaration()) {
8594       // Is this an LLVM intrinsic or a target-specific intrinsic?
8595       unsigned IID = F->getIntrinsicID();
8596       if (!IID)
8597         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
8598           IID = II->getIntrinsicID(F);
8599 
8600       if (IID) {
8601         visitIntrinsicCall(I, IID);
8602         return;
8603       }
8604     }
8605 
8606     // Check for well-known libc/libm calls.  If the function is internal, it
8607     // can't be a library call.  Don't do the check if marked as nobuiltin for
8608     // some reason or the call site requires strict floating point semantics.
8609     LibFunc Func;
8610     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
8611         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
8612         LibInfo->hasOptimizedCodeGen(Func)) {
8613       switch (Func) {
8614       default: break;
8615       case LibFunc_bcmp:
8616         if (visitMemCmpBCmpCall(I))
8617           return;
8618         break;
8619       case LibFunc_copysign:
8620       case LibFunc_copysignf:
8621       case LibFunc_copysignl:
8622         // We already checked this call's prototype; verify it doesn't modify
8623         // errno.
8624         if (I.onlyReadsMemory()) {
8625           SDValue LHS = getValue(I.getArgOperand(0));
8626           SDValue RHS = getValue(I.getArgOperand(1));
8627           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
8628                                    LHS.getValueType(), LHS, RHS));
8629           return;
8630         }
8631         break;
8632       case LibFunc_fabs:
8633       case LibFunc_fabsf:
8634       case LibFunc_fabsl:
8635         if (visitUnaryFloatCall(I, ISD::FABS))
8636           return;
8637         break;
8638       case LibFunc_fmin:
8639       case LibFunc_fminf:
8640       case LibFunc_fminl:
8641         if (visitBinaryFloatCall(I, ISD::FMINNUM))
8642           return;
8643         break;
8644       case LibFunc_fmax:
8645       case LibFunc_fmaxf:
8646       case LibFunc_fmaxl:
8647         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
8648           return;
8649         break;
8650       case LibFunc_sin:
8651       case LibFunc_sinf:
8652       case LibFunc_sinl:
8653         if (visitUnaryFloatCall(I, ISD::FSIN))
8654           return;
8655         break;
8656       case LibFunc_cos:
8657       case LibFunc_cosf:
8658       case LibFunc_cosl:
8659         if (visitUnaryFloatCall(I, ISD::FCOS))
8660           return;
8661         break;
8662       case LibFunc_sqrt:
8663       case LibFunc_sqrtf:
8664       case LibFunc_sqrtl:
8665       case LibFunc_sqrt_finite:
8666       case LibFunc_sqrtf_finite:
8667       case LibFunc_sqrtl_finite:
8668         if (visitUnaryFloatCall(I, ISD::FSQRT))
8669           return;
8670         break;
8671       case LibFunc_floor:
8672       case LibFunc_floorf:
8673       case LibFunc_floorl:
8674         if (visitUnaryFloatCall(I, ISD::FFLOOR))
8675           return;
8676         break;
8677       case LibFunc_nearbyint:
8678       case LibFunc_nearbyintf:
8679       case LibFunc_nearbyintl:
8680         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
8681           return;
8682         break;
8683       case LibFunc_ceil:
8684       case LibFunc_ceilf:
8685       case LibFunc_ceill:
8686         if (visitUnaryFloatCall(I, ISD::FCEIL))
8687           return;
8688         break;
8689       case LibFunc_rint:
8690       case LibFunc_rintf:
8691       case LibFunc_rintl:
8692         if (visitUnaryFloatCall(I, ISD::FRINT))
8693           return;
8694         break;
8695       case LibFunc_round:
8696       case LibFunc_roundf:
8697       case LibFunc_roundl:
8698         if (visitUnaryFloatCall(I, ISD::FROUND))
8699           return;
8700         break;
8701       case LibFunc_trunc:
8702       case LibFunc_truncf:
8703       case LibFunc_truncl:
8704         if (visitUnaryFloatCall(I, ISD::FTRUNC))
8705           return;
8706         break;
8707       case LibFunc_log2:
8708       case LibFunc_log2f:
8709       case LibFunc_log2l:
8710         if (visitUnaryFloatCall(I, ISD::FLOG2))
8711           return;
8712         break;
8713       case LibFunc_exp2:
8714       case LibFunc_exp2f:
8715       case LibFunc_exp2l:
8716         if (visitUnaryFloatCall(I, ISD::FEXP2))
8717           return;
8718         break;
8719       case LibFunc_ldexp:
8720       case LibFunc_ldexpf:
8721       case LibFunc_ldexpl:
8722         if (visitBinaryFloatCall(I, ISD::FLDEXP))
8723           return;
8724         break;
8725       case LibFunc_memcmp:
8726         if (visitMemCmpBCmpCall(I))
8727           return;
8728         break;
8729       case LibFunc_mempcpy:
8730         if (visitMemPCpyCall(I))
8731           return;
8732         break;
8733       case LibFunc_memchr:
8734         if (visitMemChrCall(I))
8735           return;
8736         break;
8737       case LibFunc_strcpy:
8738         if (visitStrCpyCall(I, false))
8739           return;
8740         break;
8741       case LibFunc_stpcpy:
8742         if (visitStrCpyCall(I, true))
8743           return;
8744         break;
8745       case LibFunc_strcmp:
8746         if (visitStrCmpCall(I))
8747           return;
8748         break;
8749       case LibFunc_strlen:
8750         if (visitStrLenCall(I))
8751           return;
8752         break;
8753       case LibFunc_strnlen:
8754         if (visitStrNLenCall(I))
8755           return;
8756         break;
8757       }
8758     }
8759   }
8760 
8761   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8762   // have to do anything here to lower funclet bundles.
8763   // CFGuardTarget bundles are lowered in LowerCallTo.
8764   assert(!I.hasOperandBundlesOtherThan(
8765              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8766               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8767               LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) &&
8768          "Cannot lower calls with arbitrary operand bundles!");
8769 
8770   SDValue Callee = getValue(I.getCalledOperand());
8771 
8772   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8773     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8774   else
8775     // Check if we can potentially perform a tail call. More detailed checking
8776     // is be done within LowerCallTo, after more information about the call is
8777     // known.
8778     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
8779 }
8780 
8781 namespace {
8782 
8783 /// AsmOperandInfo - This contains information for each constraint that we are
8784 /// lowering.
8785 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8786 public:
8787   /// CallOperand - If this is the result output operand or a clobber
8788   /// this is null, otherwise it is the incoming operand to the CallInst.
8789   /// This gets modified as the asm is processed.
8790   SDValue CallOperand;
8791 
8792   /// AssignedRegs - If this is a register or register class operand, this
8793   /// contains the set of register corresponding to the operand.
8794   RegsForValue AssignedRegs;
8795 
8796   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8797     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8798   }
8799 
8800   /// Whether or not this operand accesses memory
8801   bool hasMemory(const TargetLowering &TLI) const {
8802     // Indirect operand accesses access memory.
8803     if (isIndirect)
8804       return true;
8805 
8806     for (const auto &Code : Codes)
8807       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8808         return true;
8809 
8810     return false;
8811   }
8812 };
8813 
8814 
8815 } // end anonymous namespace
8816 
8817 /// Make sure that the output operand \p OpInfo and its corresponding input
8818 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8819 /// out).
8820 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8821                                SDISelAsmOperandInfo &MatchingOpInfo,
8822                                SelectionDAG &DAG) {
8823   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8824     return;
8825 
8826   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8827   const auto &TLI = DAG.getTargetLoweringInfo();
8828 
8829   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8830       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8831                                        OpInfo.ConstraintVT);
8832   std::pair<unsigned, const TargetRegisterClass *> InputRC =
8833       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8834                                        MatchingOpInfo.ConstraintVT);
8835   if ((OpInfo.ConstraintVT.isInteger() !=
8836        MatchingOpInfo.ConstraintVT.isInteger()) ||
8837       (MatchRC.second != InputRC.second)) {
8838     // FIXME: error out in a more elegant fashion
8839     report_fatal_error("Unsupported asm: input constraint"
8840                        " with a matching output constraint of"
8841                        " incompatible type!");
8842   }
8843   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8844 }
8845 
8846 /// Get a direct memory input to behave well as an indirect operand.
8847 /// This may introduce stores, hence the need for a \p Chain.
8848 /// \return The (possibly updated) chain.
8849 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8850                                         SDISelAsmOperandInfo &OpInfo,
8851                                         SelectionDAG &DAG) {
8852   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8853 
8854   // If we don't have an indirect input, put it in the constpool if we can,
8855   // otherwise spill it to a stack slot.
8856   // TODO: This isn't quite right. We need to handle these according to
8857   // the addressing mode that the constraint wants. Also, this may take
8858   // an additional register for the computation and we don't want that
8859   // either.
8860 
8861   // If the operand is a float, integer, or vector constant, spill to a
8862   // constant pool entry to get its address.
8863   const Value *OpVal = OpInfo.CallOperandVal;
8864   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8865       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8866     OpInfo.CallOperand = DAG.getConstantPool(
8867         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8868     return Chain;
8869   }
8870 
8871   // Otherwise, create a stack slot and emit a store to it before the asm.
8872   Type *Ty = OpVal->getType();
8873   auto &DL = DAG.getDataLayout();
8874   uint64_t TySize = DL.getTypeAllocSize(Ty);
8875   MachineFunction &MF = DAG.getMachineFunction();
8876   int SSFI = MF.getFrameInfo().CreateStackObject(
8877       TySize, DL.getPrefTypeAlign(Ty), false);
8878   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8879   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8880                             MachinePointerInfo::getFixedStack(MF, SSFI),
8881                             TLI.getMemValueType(DL, Ty));
8882   OpInfo.CallOperand = StackSlot;
8883 
8884   return Chain;
8885 }
8886 
8887 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8888 /// specified operand.  We prefer to assign virtual registers, to allow the
8889 /// register allocator to handle the assignment process.  However, if the asm
8890 /// uses features that we can't model on machineinstrs, we have SDISel do the
8891 /// allocation.  This produces generally horrible, but correct, code.
8892 ///
8893 ///   OpInfo describes the operand
8894 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8895 static std::optional<unsigned>
8896 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8897                      SDISelAsmOperandInfo &OpInfo,
8898                      SDISelAsmOperandInfo &RefOpInfo) {
8899   LLVMContext &Context = *DAG.getContext();
8900   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8901 
8902   MachineFunction &MF = DAG.getMachineFunction();
8903   SmallVector<unsigned, 4> Regs;
8904   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8905 
8906   // No work to do for memory/address operands.
8907   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8908       OpInfo.ConstraintType == TargetLowering::C_Address)
8909     return std::nullopt;
8910 
8911   // If this is a constraint for a single physreg, or a constraint for a
8912   // register class, find it.
8913   unsigned AssignedReg;
8914   const TargetRegisterClass *RC;
8915   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8916       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8917   // RC is unset only on failure. Return immediately.
8918   if (!RC)
8919     return std::nullopt;
8920 
8921   // Get the actual register value type.  This is important, because the user
8922   // may have asked for (e.g.) the AX register in i32 type.  We need to
8923   // remember that AX is actually i16 to get the right extension.
8924   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8925 
8926   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
8927     // If this is an FP operand in an integer register (or visa versa), or more
8928     // generally if the operand value disagrees with the register class we plan
8929     // to stick it in, fix the operand type.
8930     //
8931     // If this is an input value, the bitcast to the new type is done now.
8932     // Bitcast for output value is done at the end of visitInlineAsm().
8933     if ((OpInfo.Type == InlineAsm::isOutput ||
8934          OpInfo.Type == InlineAsm::isInput) &&
8935         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8936       // Try to convert to the first EVT that the reg class contains.  If the
8937       // types are identical size, use a bitcast to convert (e.g. two differing
8938       // vector types).  Note: output bitcast is done at the end of
8939       // visitInlineAsm().
8940       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8941         // Exclude indirect inputs while they are unsupported because the code
8942         // to perform the load is missing and thus OpInfo.CallOperand still
8943         // refers to the input address rather than the pointed-to value.
8944         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8945           OpInfo.CallOperand =
8946               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8947         OpInfo.ConstraintVT = RegVT;
8948         // If the operand is an FP value and we want it in integer registers,
8949         // use the corresponding integer type. This turns an f64 value into
8950         // i64, which can be passed with two i32 values on a 32-bit machine.
8951       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8952         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8953         if (OpInfo.Type == InlineAsm::isInput)
8954           OpInfo.CallOperand =
8955               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8956         OpInfo.ConstraintVT = VT;
8957       }
8958     }
8959   }
8960 
8961   // No need to allocate a matching input constraint since the constraint it's
8962   // matching to has already been allocated.
8963   if (OpInfo.isMatchingInputConstraint())
8964     return std::nullopt;
8965 
8966   EVT ValueVT = OpInfo.ConstraintVT;
8967   if (OpInfo.ConstraintVT == MVT::Other)
8968     ValueVT = RegVT;
8969 
8970   // Initialize NumRegs.
8971   unsigned NumRegs = 1;
8972   if (OpInfo.ConstraintVT != MVT::Other)
8973     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
8974 
8975   // If this is a constraint for a specific physical register, like {r17},
8976   // assign it now.
8977 
8978   // If this associated to a specific register, initialize iterator to correct
8979   // place. If virtual, make sure we have enough registers
8980 
8981   // Initialize iterator if necessary
8982   TargetRegisterClass::iterator I = RC->begin();
8983   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8984 
8985   // Do not check for single registers.
8986   if (AssignedReg) {
8987     I = std::find(I, RC->end(), AssignedReg);
8988     if (I == RC->end()) {
8989       // RC does not contain the selected register, which indicates a
8990       // mismatch between the register and the required type/bitwidth.
8991       return {AssignedReg};
8992     }
8993   }
8994 
8995   for (; NumRegs; --NumRegs, ++I) {
8996     assert(I != RC->end() && "Ran out of registers to allocate!");
8997     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8998     Regs.push_back(R);
8999   }
9000 
9001   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
9002   return std::nullopt;
9003 }
9004 
9005 static unsigned
9006 findMatchingInlineAsmOperand(unsigned OperandNo,
9007                              const std::vector<SDValue> &AsmNodeOperands) {
9008   // Scan until we find the definition we already emitted of this operand.
9009   unsigned CurOp = InlineAsm::Op_FirstOperand;
9010   for (; OperandNo; --OperandNo) {
9011     // Advance to the next operand.
9012     unsigned OpFlag =
9013         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
9014     assert((InlineAsm::isRegDefKind(OpFlag) ||
9015             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
9016             InlineAsm::isMemKind(OpFlag)) &&
9017            "Skipped past definitions?");
9018     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
9019   }
9020   return CurOp;
9021 }
9022 
9023 namespace {
9024 
9025 class ExtraFlags {
9026   unsigned Flags = 0;
9027 
9028 public:
9029   explicit ExtraFlags(const CallBase &Call) {
9030     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9031     if (IA->hasSideEffects())
9032       Flags |= InlineAsm::Extra_HasSideEffects;
9033     if (IA->isAlignStack())
9034       Flags |= InlineAsm::Extra_IsAlignStack;
9035     if (Call.isConvergent())
9036       Flags |= InlineAsm::Extra_IsConvergent;
9037     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
9038   }
9039 
9040   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
9041     // Ideally, we would only check against memory constraints.  However, the
9042     // meaning of an Other constraint can be target-specific and we can't easily
9043     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
9044     // for Other constraints as well.
9045     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9046         OpInfo.ConstraintType == TargetLowering::C_Other) {
9047       if (OpInfo.Type == InlineAsm::isInput)
9048         Flags |= InlineAsm::Extra_MayLoad;
9049       else if (OpInfo.Type == InlineAsm::isOutput)
9050         Flags |= InlineAsm::Extra_MayStore;
9051       else if (OpInfo.Type == InlineAsm::isClobber)
9052         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
9053     }
9054   }
9055 
9056   unsigned get() const { return Flags; }
9057 };
9058 
9059 } // end anonymous namespace
9060 
9061 static bool isFunction(SDValue Op) {
9062   if (Op && Op.getOpcode() == ISD::GlobalAddress) {
9063     if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
9064       auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
9065 
9066       // In normal "call dllimport func" instruction (non-inlineasm) it force
9067       // indirect access by specifing call opcode. And usually specially print
9068       // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
9069       // not do in this way now. (In fact, this is similar with "Data Access"
9070       // action). So here we ignore dllimport function.
9071       if (Fn && !Fn->hasDLLImportStorageClass())
9072         return true;
9073     }
9074   }
9075   return false;
9076 }
9077 
9078 /// visitInlineAsm - Handle a call to an InlineAsm object.
9079 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
9080                                          const BasicBlock *EHPadBB) {
9081   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9082 
9083   /// ConstraintOperands - Information about all of the constraints.
9084   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
9085 
9086   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9087   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
9088       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
9089 
9090   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
9091   // AsmDialect, MayLoad, MayStore).
9092   bool HasSideEffect = IA->hasSideEffects();
9093   ExtraFlags ExtraInfo(Call);
9094 
9095   for (auto &T : TargetConstraints) {
9096     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
9097     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
9098 
9099     if (OpInfo.CallOperandVal)
9100       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
9101 
9102     if (!HasSideEffect)
9103       HasSideEffect = OpInfo.hasMemory(TLI);
9104 
9105     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
9106     // FIXME: Could we compute this on OpInfo rather than T?
9107 
9108     // Compute the constraint code and ConstraintType to use.
9109     TLI.ComputeConstraintToUse(T, SDValue());
9110 
9111     if (T.ConstraintType == TargetLowering::C_Immediate &&
9112         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
9113       // We've delayed emitting a diagnostic like the "n" constraint because
9114       // inlining could cause an integer showing up.
9115       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
9116                                           "' expects an integer constant "
9117                                           "expression");
9118 
9119     ExtraInfo.update(T);
9120   }
9121 
9122   // We won't need to flush pending loads if this asm doesn't touch
9123   // memory and is nonvolatile.
9124   SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
9125 
9126   bool EmitEHLabels = isa<InvokeInst>(Call);
9127   if (EmitEHLabels) {
9128     assert(EHPadBB && "InvokeInst must have an EHPadBB");
9129   }
9130   bool IsCallBr = isa<CallBrInst>(Call);
9131 
9132   if (IsCallBr || EmitEHLabels) {
9133     // If this is a callbr or invoke we need to flush pending exports since
9134     // inlineasm_br and invoke are terminators.
9135     // We need to do this before nodes are glued to the inlineasm_br node.
9136     Chain = getControlRoot();
9137   }
9138 
9139   MCSymbol *BeginLabel = nullptr;
9140   if (EmitEHLabels) {
9141     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
9142   }
9143 
9144   int OpNo = -1;
9145   SmallVector<StringRef> AsmStrs;
9146   IA->collectAsmStrs(AsmStrs);
9147 
9148   // Second pass over the constraints: compute which constraint option to use.
9149   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9150     if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
9151       OpNo++;
9152 
9153     // If this is an output operand with a matching input operand, look up the
9154     // matching input. If their types mismatch, e.g. one is an integer, the
9155     // other is floating point, or their sizes are different, flag it as an
9156     // error.
9157     if (OpInfo.hasMatchingInput()) {
9158       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
9159       patchMatchingInput(OpInfo, Input, DAG);
9160     }
9161 
9162     // Compute the constraint code and ConstraintType to use.
9163     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
9164 
9165     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
9166          OpInfo.Type == InlineAsm::isClobber) ||
9167         OpInfo.ConstraintType == TargetLowering::C_Address)
9168       continue;
9169 
9170     // In Linux PIC model, there are 4 cases about value/label addressing:
9171     //
9172     // 1: Function call or Label jmp inside the module.
9173     // 2: Data access (such as global variable, static variable) inside module.
9174     // 3: Function call or Label jmp outside the module.
9175     // 4: Data access (such as global variable) outside the module.
9176     //
9177     // Due to current llvm inline asm architecture designed to not "recognize"
9178     // the asm code, there are quite troubles for us to treat mem addressing
9179     // differently for same value/adress used in different instuctions.
9180     // For example, in pic model, call a func may in plt way or direclty
9181     // pc-related, but lea/mov a function adress may use got.
9182     //
9183     // Here we try to "recognize" function call for the case 1 and case 3 in
9184     // inline asm. And try to adjust the constraint for them.
9185     //
9186     // TODO: Due to current inline asm didn't encourage to jmp to the outsider
9187     // label, so here we don't handle jmp function label now, but we need to
9188     // enhance it (especilly in PIC model) if we meet meaningful requirements.
9189     if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
9190         TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
9191         TM.getCodeModel() != CodeModel::Large) {
9192       OpInfo.isIndirect = false;
9193       OpInfo.ConstraintType = TargetLowering::C_Address;
9194     }
9195 
9196     // If this is a memory input, and if the operand is not indirect, do what we
9197     // need to provide an address for the memory input.
9198     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
9199         !OpInfo.isIndirect) {
9200       assert((OpInfo.isMultipleAlternative ||
9201               (OpInfo.Type == InlineAsm::isInput)) &&
9202              "Can only indirectify direct input operands!");
9203 
9204       // Memory operands really want the address of the value.
9205       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
9206 
9207       // There is no longer a Value* corresponding to this operand.
9208       OpInfo.CallOperandVal = nullptr;
9209 
9210       // It is now an indirect operand.
9211       OpInfo.isIndirect = true;
9212     }
9213 
9214   }
9215 
9216   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
9217   std::vector<SDValue> AsmNodeOperands;
9218   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
9219   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
9220       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
9221 
9222   // If we have a !srcloc metadata node associated with it, we want to attach
9223   // this to the ultimately generated inline asm machineinstr.  To do this, we
9224   // pass in the third operand as this (potentially null) inline asm MDNode.
9225   const MDNode *SrcLoc = Call.getMetadata("srcloc");
9226   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
9227 
9228   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
9229   // bits as operand 3.
9230   AsmNodeOperands.push_back(DAG.getTargetConstant(
9231       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9232 
9233   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
9234   // this, assign virtual and physical registers for inputs and otput.
9235   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9236     // Assign Registers.
9237     SDISelAsmOperandInfo &RefOpInfo =
9238         OpInfo.isMatchingInputConstraint()
9239             ? ConstraintOperands[OpInfo.getMatchedOperand()]
9240             : OpInfo;
9241     const auto RegError =
9242         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
9243     if (RegError) {
9244       const MachineFunction &MF = DAG.getMachineFunction();
9245       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9246       const char *RegName = TRI.getName(*RegError);
9247       emitInlineAsmError(Call, "register '" + Twine(RegName) +
9248                                    "' allocated for constraint '" +
9249                                    Twine(OpInfo.ConstraintCode) +
9250                                    "' does not match required type");
9251       return;
9252     }
9253 
9254     auto DetectWriteToReservedRegister = [&]() {
9255       const MachineFunction &MF = DAG.getMachineFunction();
9256       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9257       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
9258         if (Register::isPhysicalRegister(Reg) &&
9259             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
9260           const char *RegName = TRI.getName(Reg);
9261           emitInlineAsmError(Call, "write to reserved register '" +
9262                                        Twine(RegName) + "'");
9263           return true;
9264         }
9265       }
9266       return false;
9267     };
9268     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
9269             (OpInfo.Type == InlineAsm::isInput &&
9270              !OpInfo.isMatchingInputConstraint())) &&
9271            "Only address as input operand is allowed.");
9272 
9273     switch (OpInfo.Type) {
9274     case InlineAsm::isOutput:
9275       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9276         unsigned ConstraintID =
9277             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9278         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9279                "Failed to convert memory constraint code to constraint id.");
9280 
9281         // Add information to the INLINEASM node to know about this output.
9282         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind::Mem, 1);
9283         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
9284         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
9285                                                         MVT::i32));
9286         AsmNodeOperands.push_back(OpInfo.CallOperand);
9287       } else {
9288         // Otherwise, this outputs to a register (directly for C_Register /
9289         // C_RegisterClass, and a target-defined fashion for
9290         // C_Immediate/C_Other). Find a register that we can use.
9291         if (OpInfo.AssignedRegs.Regs.empty()) {
9292           emitInlineAsmError(
9293               Call, "couldn't allocate output register for constraint '" +
9294                         Twine(OpInfo.ConstraintCode) + "'");
9295           return;
9296         }
9297 
9298         if (DetectWriteToReservedRegister())
9299           return;
9300 
9301         // Add information to the INLINEASM node to know that this register is
9302         // set.
9303         OpInfo.AssignedRegs.AddInlineAsmOperands(
9304             OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber
9305                                   : InlineAsm::Kind::RegDef,
9306             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
9307       }
9308       break;
9309 
9310     case InlineAsm::isInput:
9311     case InlineAsm::isLabel: {
9312       SDValue InOperandVal = OpInfo.CallOperand;
9313 
9314       if (OpInfo.isMatchingInputConstraint()) {
9315         // If this is required to match an output register we have already set,
9316         // just use its register.
9317         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
9318                                                   AsmNodeOperands);
9319         unsigned OpFlag =
9320           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
9321         if (InlineAsm::isRegDefKind(OpFlag) ||
9322             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
9323           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
9324           if (OpInfo.isIndirect) {
9325             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
9326             emitInlineAsmError(Call, "inline asm not supported yet: "
9327                                      "don't know how to handle tied "
9328                                      "indirect register inputs");
9329             return;
9330           }
9331 
9332           SmallVector<unsigned, 4> Regs;
9333           MachineFunction &MF = DAG.getMachineFunction();
9334           MachineRegisterInfo &MRI = MF.getRegInfo();
9335           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9336           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
9337           Register TiedReg = R->getReg();
9338           MVT RegVT = R->getSimpleValueType(0);
9339           const TargetRegisterClass *RC =
9340               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
9341               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
9342                                       : TRI.getMinimalPhysRegClass(TiedReg);
9343           unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
9344           for (unsigned i = 0; i != NumRegs; ++i)
9345             Regs.push_back(MRI.createVirtualRegister(RC));
9346 
9347           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
9348 
9349           SDLoc dl = getCurSDLoc();
9350           // Use the produced MatchedRegs object to
9351           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call);
9352           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true,
9353                                            OpInfo.getMatchedOperand(), dl, DAG,
9354                                            AsmNodeOperands);
9355           break;
9356         }
9357 
9358         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
9359         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
9360                "Unexpected number of operands");
9361         // Add information to the INLINEASM node to know about this input.
9362         // See InlineAsm.h isUseOperandTiedToDef.
9363         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
9364         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
9365                                                     OpInfo.getMatchedOperand());
9366         AsmNodeOperands.push_back(DAG.getTargetConstant(
9367             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9368         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
9369         break;
9370       }
9371 
9372       // Treat indirect 'X' constraint as memory.
9373       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
9374           OpInfo.isIndirect)
9375         OpInfo.ConstraintType = TargetLowering::C_Memory;
9376 
9377       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
9378           OpInfo.ConstraintType == TargetLowering::C_Other) {
9379         std::vector<SDValue> Ops;
9380         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
9381                                           Ops, DAG);
9382         if (Ops.empty()) {
9383           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
9384             if (isa<ConstantSDNode>(InOperandVal)) {
9385               emitInlineAsmError(Call, "value out of range for constraint '" +
9386                                            Twine(OpInfo.ConstraintCode) + "'");
9387               return;
9388             }
9389 
9390           emitInlineAsmError(Call,
9391                              "invalid operand for inline asm constraint '" +
9392                                  Twine(OpInfo.ConstraintCode) + "'");
9393           return;
9394         }
9395 
9396         // Add information to the INLINEASM node to know about this input.
9397         unsigned ResOpType =
9398             InlineAsm::getFlagWord(InlineAsm::Kind::Imm, Ops.size());
9399         AsmNodeOperands.push_back(DAG.getTargetConstant(
9400             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9401         llvm::append_range(AsmNodeOperands, Ops);
9402         break;
9403       }
9404 
9405       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9406         assert((OpInfo.isIndirect ||
9407                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
9408                "Operand must be indirect to be a mem!");
9409         assert(InOperandVal.getValueType() ==
9410                    TLI.getPointerTy(DAG.getDataLayout()) &&
9411                "Memory operands expect pointer values");
9412 
9413         unsigned ConstraintID =
9414             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9415         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9416                "Failed to convert memory constraint code to constraint id.");
9417 
9418         // Add information to the INLINEASM node to know about this input.
9419         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind::Mem, 1);
9420         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
9421         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
9422                                                         getCurSDLoc(),
9423                                                         MVT::i32));
9424         AsmNodeOperands.push_back(InOperandVal);
9425         break;
9426       }
9427 
9428       if (OpInfo.ConstraintType == TargetLowering::C_Address) {
9429         unsigned ConstraintID =
9430             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9431         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9432                "Failed to convert memory constraint code to constraint id.");
9433 
9434         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind::Mem, 1);
9435 
9436         SDValue AsmOp = InOperandVal;
9437         if (isFunction(InOperandVal)) {
9438           auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
9439           ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind::Func, 1);
9440           AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
9441                                              InOperandVal.getValueType(),
9442                                              GA->getOffset());
9443         }
9444 
9445         // Add information to the INLINEASM node to know about this input.
9446         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
9447 
9448         AsmNodeOperands.push_back(
9449             DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
9450 
9451         AsmNodeOperands.push_back(AsmOp);
9452         break;
9453       }
9454 
9455       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
9456               OpInfo.ConstraintType == TargetLowering::C_Register) &&
9457              "Unknown constraint type!");
9458 
9459       // TODO: Support this.
9460       if (OpInfo.isIndirect) {
9461         emitInlineAsmError(
9462             Call, "Don't know how to handle indirect register inputs yet "
9463                   "for constraint '" +
9464                       Twine(OpInfo.ConstraintCode) + "'");
9465         return;
9466       }
9467 
9468       // Copy the input into the appropriate registers.
9469       if (OpInfo.AssignedRegs.Regs.empty()) {
9470         emitInlineAsmError(Call,
9471                            "couldn't allocate input reg for constraint '" +
9472                                Twine(OpInfo.ConstraintCode) + "'");
9473         return;
9474       }
9475 
9476       if (DetectWriteToReservedRegister())
9477         return;
9478 
9479       SDLoc dl = getCurSDLoc();
9480 
9481       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue,
9482                                         &Call);
9483 
9484       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false,
9485                                                0, dl, DAG, AsmNodeOperands);
9486       break;
9487     }
9488     case InlineAsm::isClobber:
9489       // Add the clobbered value to the operand list, so that the register
9490       // allocator is aware that the physreg got clobbered.
9491       if (!OpInfo.AssignedRegs.Regs.empty())
9492         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber,
9493                                                  false, 0, getCurSDLoc(), DAG,
9494                                                  AsmNodeOperands);
9495       break;
9496     }
9497   }
9498 
9499   // Finish up input operands.  Set the input chain and add the flag last.
9500   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
9501   if (Glue.getNode()) AsmNodeOperands.push_back(Glue);
9502 
9503   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
9504   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
9505                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
9506   Glue = Chain.getValue(1);
9507 
9508   // Do additional work to generate outputs.
9509 
9510   SmallVector<EVT, 1> ResultVTs;
9511   SmallVector<SDValue, 1> ResultValues;
9512   SmallVector<SDValue, 8> OutChains;
9513 
9514   llvm::Type *CallResultType = Call.getType();
9515   ArrayRef<Type *> ResultTypes;
9516   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
9517     ResultTypes = StructResult->elements();
9518   else if (!CallResultType->isVoidTy())
9519     ResultTypes = ArrayRef(CallResultType);
9520 
9521   auto CurResultType = ResultTypes.begin();
9522   auto handleRegAssign = [&](SDValue V) {
9523     assert(CurResultType != ResultTypes.end() && "Unexpected value");
9524     assert((*CurResultType)->isSized() && "Unexpected unsized type");
9525     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
9526     ++CurResultType;
9527     // If the type of the inline asm call site return value is different but has
9528     // same size as the type of the asm output bitcast it.  One example of this
9529     // is for vectors with different width / number of elements.  This can
9530     // happen for register classes that can contain multiple different value
9531     // types.  The preg or vreg allocated may not have the same VT as was
9532     // expected.
9533     //
9534     // This can also happen for a return value that disagrees with the register
9535     // class it is put in, eg. a double in a general-purpose register on a
9536     // 32-bit machine.
9537     if (ResultVT != V.getValueType() &&
9538         ResultVT.getSizeInBits() == V.getValueSizeInBits())
9539       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
9540     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
9541              V.getValueType().isInteger()) {
9542       // If a result value was tied to an input value, the computed result
9543       // may have a wider width than the expected result.  Extract the
9544       // relevant portion.
9545       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
9546     }
9547     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
9548     ResultVTs.push_back(ResultVT);
9549     ResultValues.push_back(V);
9550   };
9551 
9552   // Deal with output operands.
9553   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9554     if (OpInfo.Type == InlineAsm::isOutput) {
9555       SDValue Val;
9556       // Skip trivial output operands.
9557       if (OpInfo.AssignedRegs.Regs.empty())
9558         continue;
9559 
9560       switch (OpInfo.ConstraintType) {
9561       case TargetLowering::C_Register:
9562       case TargetLowering::C_RegisterClass:
9563         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
9564                                                   Chain, &Glue, &Call);
9565         break;
9566       case TargetLowering::C_Immediate:
9567       case TargetLowering::C_Other:
9568         Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(),
9569                                               OpInfo, DAG);
9570         break;
9571       case TargetLowering::C_Memory:
9572         break; // Already handled.
9573       case TargetLowering::C_Address:
9574         break; // Silence warning.
9575       case TargetLowering::C_Unknown:
9576         assert(false && "Unexpected unknown constraint");
9577       }
9578 
9579       // Indirect output manifest as stores. Record output chains.
9580       if (OpInfo.isIndirect) {
9581         const Value *Ptr = OpInfo.CallOperandVal;
9582         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
9583         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
9584                                      MachinePointerInfo(Ptr));
9585         OutChains.push_back(Store);
9586       } else {
9587         // generate CopyFromRegs to associated registers.
9588         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
9589         if (Val.getOpcode() == ISD::MERGE_VALUES) {
9590           for (const SDValue &V : Val->op_values())
9591             handleRegAssign(V);
9592         } else
9593           handleRegAssign(Val);
9594       }
9595     }
9596   }
9597 
9598   // Set results.
9599   if (!ResultValues.empty()) {
9600     assert(CurResultType == ResultTypes.end() &&
9601            "Mismatch in number of ResultTypes");
9602     assert(ResultValues.size() == ResultTypes.size() &&
9603            "Mismatch in number of output operands in asm result");
9604 
9605     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
9606                             DAG.getVTList(ResultVTs), ResultValues);
9607     setValue(&Call, V);
9608   }
9609 
9610   // Collect store chains.
9611   if (!OutChains.empty())
9612     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
9613 
9614   if (EmitEHLabels) {
9615     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
9616   }
9617 
9618   // Only Update Root if inline assembly has a memory effect.
9619   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
9620       EmitEHLabels)
9621     DAG.setRoot(Chain);
9622 }
9623 
9624 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
9625                                              const Twine &Message) {
9626   LLVMContext &Ctx = *DAG.getContext();
9627   Ctx.emitError(&Call, Message);
9628 
9629   // Make sure we leave the DAG in a valid state
9630   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9631   SmallVector<EVT, 1> ValueVTs;
9632   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
9633 
9634   if (ValueVTs.empty())
9635     return;
9636 
9637   SmallVector<SDValue, 1> Ops;
9638   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
9639     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
9640 
9641   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
9642 }
9643 
9644 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
9645   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
9646                           MVT::Other, getRoot(),
9647                           getValue(I.getArgOperand(0)),
9648                           DAG.getSrcValue(I.getArgOperand(0))));
9649 }
9650 
9651 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
9652   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9653   const DataLayout &DL = DAG.getDataLayout();
9654   SDValue V = DAG.getVAArg(
9655       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
9656       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
9657       DL.getABITypeAlign(I.getType()).value());
9658   DAG.setRoot(V.getValue(1));
9659 
9660   if (I.getType()->isPointerTy())
9661     V = DAG.getPtrExtOrTrunc(
9662         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
9663   setValue(&I, V);
9664 }
9665 
9666 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
9667   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
9668                           MVT::Other, getRoot(),
9669                           getValue(I.getArgOperand(0)),
9670                           DAG.getSrcValue(I.getArgOperand(0))));
9671 }
9672 
9673 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
9674   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
9675                           MVT::Other, getRoot(),
9676                           getValue(I.getArgOperand(0)),
9677                           getValue(I.getArgOperand(1)),
9678                           DAG.getSrcValue(I.getArgOperand(0)),
9679                           DAG.getSrcValue(I.getArgOperand(1))));
9680 }
9681 
9682 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
9683                                                     const Instruction &I,
9684                                                     SDValue Op) {
9685   const MDNode *Range = getRangeMetadata(I);
9686   if (!Range)
9687     return Op;
9688 
9689   ConstantRange CR = getConstantRangeFromMetadata(*Range);
9690   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
9691     return Op;
9692 
9693   APInt Lo = CR.getUnsignedMin();
9694   if (!Lo.isMinValue())
9695     return Op;
9696 
9697   APInt Hi = CR.getUnsignedMax();
9698   unsigned Bits = std::max(Hi.getActiveBits(),
9699                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
9700 
9701   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9702 
9703   SDLoc SL = getCurSDLoc();
9704 
9705   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
9706                              DAG.getValueType(SmallVT));
9707   unsigned NumVals = Op.getNode()->getNumValues();
9708   if (NumVals == 1)
9709     return ZExt;
9710 
9711   SmallVector<SDValue, 4> Ops;
9712 
9713   Ops.push_back(ZExt);
9714   for (unsigned I = 1; I != NumVals; ++I)
9715     Ops.push_back(Op.getValue(I));
9716 
9717   return DAG.getMergeValues(Ops, SL);
9718 }
9719 
9720 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
9721 /// the call being lowered.
9722 ///
9723 /// This is a helper for lowering intrinsics that follow a target calling
9724 /// convention or require stack pointer adjustment. Only a subset of the
9725 /// intrinsic's operands need to participate in the calling convention.
9726 void SelectionDAGBuilder::populateCallLoweringInfo(
9727     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
9728     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
9729     bool IsPatchPoint) {
9730   TargetLowering::ArgListTy Args;
9731   Args.reserve(NumArgs);
9732 
9733   // Populate the argument list.
9734   // Attributes for args start at offset 1, after the return attribute.
9735   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
9736        ArgI != ArgE; ++ArgI) {
9737     const Value *V = Call->getOperand(ArgI);
9738 
9739     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
9740 
9741     TargetLowering::ArgListEntry Entry;
9742     Entry.Node = getValue(V);
9743     Entry.Ty = V->getType();
9744     Entry.setAttributes(Call, ArgI);
9745     Args.push_back(Entry);
9746   }
9747 
9748   CLI.setDebugLoc(getCurSDLoc())
9749       .setChain(getRoot())
9750       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
9751       .setDiscardResult(Call->use_empty())
9752       .setIsPatchPoint(IsPatchPoint)
9753       .setIsPreallocated(
9754           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
9755 }
9756 
9757 /// Add a stack map intrinsic call's live variable operands to a stackmap
9758 /// or patchpoint target node's operand list.
9759 ///
9760 /// Constants are converted to TargetConstants purely as an optimization to
9761 /// avoid constant materialization and register allocation.
9762 ///
9763 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9764 /// generate addess computation nodes, and so FinalizeISel can convert the
9765 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9766 /// address materialization and register allocation, but may also be required
9767 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9768 /// alloca in the entry block, then the runtime may assume that the alloca's
9769 /// StackMap location can be read immediately after compilation and that the
9770 /// location is valid at any point during execution (this is similar to the
9771 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9772 /// only available in a register, then the runtime would need to trap when
9773 /// execution reaches the StackMap in order to read the alloca's location.
9774 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9775                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9776                                 SelectionDAGBuilder &Builder) {
9777   SelectionDAG &DAG = Builder.DAG;
9778   for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
9779     SDValue Op = Builder.getValue(Call.getArgOperand(I));
9780 
9781     // Things on the stack are pointer-typed, meaning that they are already
9782     // legal and can be emitted directly to target nodes.
9783     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
9784       Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
9785     } else {
9786       // Otherwise emit a target independent node to be legalised.
9787       Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
9788     }
9789   }
9790 }
9791 
9792 /// Lower llvm.experimental.stackmap.
9793 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9794   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
9795   //                                  [live variables...])
9796 
9797   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9798 
9799   SDValue Chain, InGlue, Callee;
9800   SmallVector<SDValue, 32> Ops;
9801 
9802   SDLoc DL = getCurSDLoc();
9803   Callee = getValue(CI.getCalledOperand());
9804 
9805   // The stackmap intrinsic only records the live variables (the arguments
9806   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9807   // intrinsic, this won't be lowered to a function call. This means we don't
9808   // have to worry about calling conventions and target specific lowering code.
9809   // Instead we perform the call lowering right here.
9810   //
9811   // chain, flag = CALLSEQ_START(chain, 0, 0)
9812   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9813   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9814   //
9815   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
9816   InGlue = Chain.getValue(1);
9817 
9818   // Add the STACKMAP operands, starting with DAG house-keeping.
9819   Ops.push_back(Chain);
9820   Ops.push_back(InGlue);
9821 
9822   // Add the <id>, <numShadowBytes> operands.
9823   //
9824   // These do not require legalisation, and can be emitted directly to target
9825   // constant nodes.
9826   SDValue ID = getValue(CI.getArgOperand(0));
9827   assert(ID.getValueType() == MVT::i64);
9828   SDValue IDConst = DAG.getTargetConstant(
9829       cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType());
9830   Ops.push_back(IDConst);
9831 
9832   SDValue Shad = getValue(CI.getArgOperand(1));
9833   assert(Shad.getValueType() == MVT::i32);
9834   SDValue ShadConst = DAG.getTargetConstant(
9835       cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType());
9836   Ops.push_back(ShadConst);
9837 
9838   // Add the live variables.
9839   addStackMapLiveVars(CI, 2, DL, Ops, *this);
9840 
9841   // Create the STACKMAP node.
9842   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9843   Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
9844   InGlue = Chain.getValue(1);
9845 
9846   Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL);
9847 
9848   // Stackmaps don't generate values, so nothing goes into the NodeMap.
9849 
9850   // Set the root to the target-lowered call chain.
9851   DAG.setRoot(Chain);
9852 
9853   // Inform the Frame Information that we have a stackmap in this function.
9854   FuncInfo.MF->getFrameInfo().setHasStackMap();
9855 }
9856 
9857 /// Lower llvm.experimental.patchpoint directly to its target opcode.
9858 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
9859                                           const BasicBlock *EHPadBB) {
9860   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9861   //                                                 i32 <numBytes>,
9862   //                                                 i8* <target>,
9863   //                                                 i32 <numArgs>,
9864   //                                                 [Args...],
9865   //                                                 [live variables...])
9866 
9867   CallingConv::ID CC = CB.getCallingConv();
9868   bool IsAnyRegCC = CC == CallingConv::AnyReg;
9869   bool HasDef = !CB.getType()->isVoidTy();
9870   SDLoc dl = getCurSDLoc();
9871   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
9872 
9873   // Handle immediate and symbolic callees.
9874   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
9875     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
9876                                    /*isTarget=*/true);
9877   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
9878     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
9879                                          SDLoc(SymbolicCallee),
9880                                          SymbolicCallee->getValueType(0));
9881 
9882   // Get the real number of arguments participating in the call <numArgs>
9883   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
9884   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
9885 
9886   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9887   // Intrinsics include all meta-operands up to but not including CC.
9888   unsigned NumMetaOpers = PatchPointOpers::CCPos;
9889   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
9890          "Not enough arguments provided to the patchpoint intrinsic");
9891 
9892   // For AnyRegCC the arguments are lowered later on manually.
9893   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9894   Type *ReturnTy =
9895       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9896 
9897   TargetLowering::CallLoweringInfo CLI(DAG);
9898   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9899                            ReturnTy, true);
9900   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9901 
9902   SDNode *CallEnd = Result.second.getNode();
9903   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9904     CallEnd = CallEnd->getOperand(0).getNode();
9905 
9906   /// Get a call instruction from the call sequence chain.
9907   /// Tail calls are not allowed.
9908   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9909          "Expected a callseq node.");
9910   SDNode *Call = CallEnd->getOperand(0).getNode();
9911   bool HasGlue = Call->getGluedNode();
9912 
9913   // Replace the target specific call node with the patchable intrinsic.
9914   SmallVector<SDValue, 8> Ops;
9915 
9916   // Push the chain.
9917   Ops.push_back(*(Call->op_begin()));
9918 
9919   // Optionally, push the glue (if any).
9920   if (HasGlue)
9921     Ops.push_back(*(Call->op_end() - 1));
9922 
9923   // Push the register mask info.
9924   if (HasGlue)
9925     Ops.push_back(*(Call->op_end() - 2));
9926   else
9927     Ops.push_back(*(Call->op_end() - 1));
9928 
9929   // Add the <id> and <numBytes> constants.
9930   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9931   Ops.push_back(DAG.getTargetConstant(
9932                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9933   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9934   Ops.push_back(DAG.getTargetConstant(
9935                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9936                   MVT::i32));
9937 
9938   // Add the callee.
9939   Ops.push_back(Callee);
9940 
9941   // Adjust <numArgs> to account for any arguments that have been passed on the
9942   // stack instead.
9943   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9944   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9945   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9946   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9947 
9948   // Add the calling convention
9949   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9950 
9951   // Add the arguments we omitted previously. The register allocator should
9952   // place these in any free register.
9953   if (IsAnyRegCC)
9954     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9955       Ops.push_back(getValue(CB.getArgOperand(i)));
9956 
9957   // Push the arguments from the call instruction.
9958   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9959   Ops.append(Call->op_begin() + 2, e);
9960 
9961   // Push live variables for the stack map.
9962   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9963 
9964   SDVTList NodeTys;
9965   if (IsAnyRegCC && HasDef) {
9966     // Create the return types based on the intrinsic definition
9967     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9968     SmallVector<EVT, 3> ValueVTs;
9969     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9970     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9971 
9972     // There is always a chain and a glue type at the end
9973     ValueVTs.push_back(MVT::Other);
9974     ValueVTs.push_back(MVT::Glue);
9975     NodeTys = DAG.getVTList(ValueVTs);
9976   } else
9977     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9978 
9979   // Replace the target specific call node with a PATCHPOINT node.
9980   SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
9981 
9982   // Update the NodeMap.
9983   if (HasDef) {
9984     if (IsAnyRegCC)
9985       setValue(&CB, SDValue(PPV.getNode(), 0));
9986     else
9987       setValue(&CB, Result.first);
9988   }
9989 
9990   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9991   // call sequence. Furthermore the location of the chain and glue can change
9992   // when the AnyReg calling convention is used and the intrinsic returns a
9993   // value.
9994   if (IsAnyRegCC && HasDef) {
9995     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9996     SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
9997     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9998   } else
9999     DAG.ReplaceAllUsesWith(Call, PPV.getNode());
10000   DAG.DeleteNode(Call);
10001 
10002   // Inform the Frame Information that we have a patchpoint in this function.
10003   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
10004 }
10005 
10006 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
10007                                             unsigned Intrinsic) {
10008   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10009   SDValue Op1 = getValue(I.getArgOperand(0));
10010   SDValue Op2;
10011   if (I.arg_size() > 1)
10012     Op2 = getValue(I.getArgOperand(1));
10013   SDLoc dl = getCurSDLoc();
10014   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
10015   SDValue Res;
10016   SDNodeFlags SDFlags;
10017   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
10018     SDFlags.copyFMF(*FPMO);
10019 
10020   switch (Intrinsic) {
10021   case Intrinsic::vector_reduce_fadd:
10022     if (SDFlags.hasAllowReassociation())
10023       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
10024                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
10025                         SDFlags);
10026     else
10027       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
10028     break;
10029   case Intrinsic::vector_reduce_fmul:
10030     if (SDFlags.hasAllowReassociation())
10031       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
10032                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
10033                         SDFlags);
10034     else
10035       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
10036     break;
10037   case Intrinsic::vector_reduce_add:
10038     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
10039     break;
10040   case Intrinsic::vector_reduce_mul:
10041     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
10042     break;
10043   case Intrinsic::vector_reduce_and:
10044     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
10045     break;
10046   case Intrinsic::vector_reduce_or:
10047     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
10048     break;
10049   case Intrinsic::vector_reduce_xor:
10050     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
10051     break;
10052   case Intrinsic::vector_reduce_smax:
10053     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
10054     break;
10055   case Intrinsic::vector_reduce_smin:
10056     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
10057     break;
10058   case Intrinsic::vector_reduce_umax:
10059     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
10060     break;
10061   case Intrinsic::vector_reduce_umin:
10062     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
10063     break;
10064   case Intrinsic::vector_reduce_fmax:
10065     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
10066     break;
10067   case Intrinsic::vector_reduce_fmin:
10068     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
10069     break;
10070   case Intrinsic::vector_reduce_fmaximum:
10071     Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags);
10072     break;
10073   case Intrinsic::vector_reduce_fminimum:
10074     Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags);
10075     break;
10076   default:
10077     llvm_unreachable("Unhandled vector reduce intrinsic");
10078   }
10079   setValue(&I, Res);
10080 }
10081 
10082 /// Returns an AttributeList representing the attributes applied to the return
10083 /// value of the given call.
10084 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
10085   SmallVector<Attribute::AttrKind, 2> Attrs;
10086   if (CLI.RetSExt)
10087     Attrs.push_back(Attribute::SExt);
10088   if (CLI.RetZExt)
10089     Attrs.push_back(Attribute::ZExt);
10090   if (CLI.IsInReg)
10091     Attrs.push_back(Attribute::InReg);
10092 
10093   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
10094                             Attrs);
10095 }
10096 
10097 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
10098 /// implementation, which just calls LowerCall.
10099 /// FIXME: When all targets are
10100 /// migrated to using LowerCall, this hook should be integrated into SDISel.
10101 std::pair<SDValue, SDValue>
10102 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
10103   // Handle the incoming return values from the call.
10104   CLI.Ins.clear();
10105   Type *OrigRetTy = CLI.RetTy;
10106   SmallVector<EVT, 4> RetTys;
10107   SmallVector<uint64_t, 4> Offsets;
10108   auto &DL = CLI.DAG.getDataLayout();
10109   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets, 0);
10110 
10111   if (CLI.IsPostTypeLegalization) {
10112     // If we are lowering a libcall after legalization, split the return type.
10113     SmallVector<EVT, 4> OldRetTys;
10114     SmallVector<uint64_t, 4> OldOffsets;
10115     RetTys.swap(OldRetTys);
10116     Offsets.swap(OldOffsets);
10117 
10118     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
10119       EVT RetVT = OldRetTys[i];
10120       uint64_t Offset = OldOffsets[i];
10121       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
10122       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
10123       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
10124       RetTys.append(NumRegs, RegisterVT);
10125       for (unsigned j = 0; j != NumRegs; ++j)
10126         Offsets.push_back(Offset + j * RegisterVTByteSZ);
10127     }
10128   }
10129 
10130   SmallVector<ISD::OutputArg, 4> Outs;
10131   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
10132 
10133   bool CanLowerReturn =
10134       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
10135                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
10136 
10137   SDValue DemoteStackSlot;
10138   int DemoteStackIdx = -100;
10139   if (!CanLowerReturn) {
10140     // FIXME: equivalent assert?
10141     // assert(!CS.hasInAllocaArgument() &&
10142     //        "sret demotion is incompatible with inalloca");
10143     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
10144     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
10145     MachineFunction &MF = CLI.DAG.getMachineFunction();
10146     DemoteStackIdx =
10147         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
10148     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
10149                                               DL.getAllocaAddrSpace());
10150 
10151     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
10152     ArgListEntry Entry;
10153     Entry.Node = DemoteStackSlot;
10154     Entry.Ty = StackSlotPtrType;
10155     Entry.IsSExt = false;
10156     Entry.IsZExt = false;
10157     Entry.IsInReg = false;
10158     Entry.IsSRet = true;
10159     Entry.IsNest = false;
10160     Entry.IsByVal = false;
10161     Entry.IsByRef = false;
10162     Entry.IsReturned = false;
10163     Entry.IsSwiftSelf = false;
10164     Entry.IsSwiftAsync = false;
10165     Entry.IsSwiftError = false;
10166     Entry.IsCFGuardTarget = false;
10167     Entry.Alignment = Alignment;
10168     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
10169     CLI.NumFixedArgs += 1;
10170     CLI.getArgs()[0].IndirectType = CLI.RetTy;
10171     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
10172 
10173     // sret demotion isn't compatible with tail-calls, since the sret argument
10174     // points into the callers stack frame.
10175     CLI.IsTailCall = false;
10176   } else {
10177     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10178         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
10179     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10180       ISD::ArgFlagsTy Flags;
10181       if (NeedsRegBlock) {
10182         Flags.setInConsecutiveRegs();
10183         if (I == RetTys.size() - 1)
10184           Flags.setInConsecutiveRegsLast();
10185       }
10186       EVT VT = RetTys[I];
10187       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10188                                                      CLI.CallConv, VT);
10189       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10190                                                        CLI.CallConv, VT);
10191       for (unsigned i = 0; i != NumRegs; ++i) {
10192         ISD::InputArg MyFlags;
10193         MyFlags.Flags = Flags;
10194         MyFlags.VT = RegisterVT;
10195         MyFlags.ArgVT = VT;
10196         MyFlags.Used = CLI.IsReturnValueUsed;
10197         if (CLI.RetTy->isPointerTy()) {
10198           MyFlags.Flags.setPointer();
10199           MyFlags.Flags.setPointerAddrSpace(
10200               cast<PointerType>(CLI.RetTy)->getAddressSpace());
10201         }
10202         if (CLI.RetSExt)
10203           MyFlags.Flags.setSExt();
10204         if (CLI.RetZExt)
10205           MyFlags.Flags.setZExt();
10206         if (CLI.IsInReg)
10207           MyFlags.Flags.setInReg();
10208         CLI.Ins.push_back(MyFlags);
10209       }
10210     }
10211   }
10212 
10213   // We push in swifterror return as the last element of CLI.Ins.
10214   ArgListTy &Args = CLI.getArgs();
10215   if (supportSwiftError()) {
10216     for (const ArgListEntry &Arg : Args) {
10217       if (Arg.IsSwiftError) {
10218         ISD::InputArg MyFlags;
10219         MyFlags.VT = getPointerTy(DL);
10220         MyFlags.ArgVT = EVT(getPointerTy(DL));
10221         MyFlags.Flags.setSwiftError();
10222         CLI.Ins.push_back(MyFlags);
10223       }
10224     }
10225   }
10226 
10227   // Handle all of the outgoing arguments.
10228   CLI.Outs.clear();
10229   CLI.OutVals.clear();
10230   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
10231     SmallVector<EVT, 4> ValueVTs;
10232     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
10233     // FIXME: Split arguments if CLI.IsPostTypeLegalization
10234     Type *FinalType = Args[i].Ty;
10235     if (Args[i].IsByVal)
10236       FinalType = Args[i].IndirectType;
10237     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10238         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
10239     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
10240          ++Value) {
10241       EVT VT = ValueVTs[Value];
10242       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
10243       SDValue Op = SDValue(Args[i].Node.getNode(),
10244                            Args[i].Node.getResNo() + Value);
10245       ISD::ArgFlagsTy Flags;
10246 
10247       // Certain targets (such as MIPS), may have a different ABI alignment
10248       // for a type depending on the context. Give the target a chance to
10249       // specify the alignment it wants.
10250       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
10251       Flags.setOrigAlign(OriginalAlignment);
10252 
10253       if (Args[i].Ty->isPointerTy()) {
10254         Flags.setPointer();
10255         Flags.setPointerAddrSpace(
10256             cast<PointerType>(Args[i].Ty)->getAddressSpace());
10257       }
10258       if (Args[i].IsZExt)
10259         Flags.setZExt();
10260       if (Args[i].IsSExt)
10261         Flags.setSExt();
10262       if (Args[i].IsInReg) {
10263         // If we are using vectorcall calling convention, a structure that is
10264         // passed InReg - is surely an HVA
10265         if (CLI.CallConv == CallingConv::X86_VectorCall &&
10266             isa<StructType>(FinalType)) {
10267           // The first value of a structure is marked
10268           if (0 == Value)
10269             Flags.setHvaStart();
10270           Flags.setHva();
10271         }
10272         // Set InReg Flag
10273         Flags.setInReg();
10274       }
10275       if (Args[i].IsSRet)
10276         Flags.setSRet();
10277       if (Args[i].IsSwiftSelf)
10278         Flags.setSwiftSelf();
10279       if (Args[i].IsSwiftAsync)
10280         Flags.setSwiftAsync();
10281       if (Args[i].IsSwiftError)
10282         Flags.setSwiftError();
10283       if (Args[i].IsCFGuardTarget)
10284         Flags.setCFGuardTarget();
10285       if (Args[i].IsByVal)
10286         Flags.setByVal();
10287       if (Args[i].IsByRef)
10288         Flags.setByRef();
10289       if (Args[i].IsPreallocated) {
10290         Flags.setPreallocated();
10291         // Set the byval flag for CCAssignFn callbacks that don't know about
10292         // preallocated.  This way we can know how many bytes we should've
10293         // allocated and how many bytes a callee cleanup function will pop.  If
10294         // we port preallocated to more targets, we'll have to add custom
10295         // preallocated handling in the various CC lowering callbacks.
10296         Flags.setByVal();
10297       }
10298       if (Args[i].IsInAlloca) {
10299         Flags.setInAlloca();
10300         // Set the byval flag for CCAssignFn callbacks that don't know about
10301         // inalloca.  This way we can know how many bytes we should've allocated
10302         // and how many bytes a callee cleanup function will pop.  If we port
10303         // inalloca to more targets, we'll have to add custom inalloca handling
10304         // in the various CC lowering callbacks.
10305         Flags.setByVal();
10306       }
10307       Align MemAlign;
10308       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
10309         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
10310         Flags.setByValSize(FrameSize);
10311 
10312         // info is not there but there are cases it cannot get right.
10313         if (auto MA = Args[i].Alignment)
10314           MemAlign = *MA;
10315         else
10316           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
10317       } else if (auto MA = Args[i].Alignment) {
10318         MemAlign = *MA;
10319       } else {
10320         MemAlign = OriginalAlignment;
10321       }
10322       Flags.setMemAlign(MemAlign);
10323       if (Args[i].IsNest)
10324         Flags.setNest();
10325       if (NeedsRegBlock)
10326         Flags.setInConsecutiveRegs();
10327 
10328       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10329                                                  CLI.CallConv, VT);
10330       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10331                                                         CLI.CallConv, VT);
10332       SmallVector<SDValue, 4> Parts(NumParts);
10333       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
10334 
10335       if (Args[i].IsSExt)
10336         ExtendKind = ISD::SIGN_EXTEND;
10337       else if (Args[i].IsZExt)
10338         ExtendKind = ISD::ZERO_EXTEND;
10339 
10340       // Conservatively only handle 'returned' on non-vectors that can be lowered,
10341       // for now.
10342       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
10343           CanLowerReturn) {
10344         assert((CLI.RetTy == Args[i].Ty ||
10345                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
10346                  CLI.RetTy->getPointerAddressSpace() ==
10347                      Args[i].Ty->getPointerAddressSpace())) &&
10348                RetTys.size() == NumValues && "unexpected use of 'returned'");
10349         // Before passing 'returned' to the target lowering code, ensure that
10350         // either the register MVT and the actual EVT are the same size or that
10351         // the return value and argument are extended in the same way; in these
10352         // cases it's safe to pass the argument register value unchanged as the
10353         // return register value (although it's at the target's option whether
10354         // to do so)
10355         // TODO: allow code generation to take advantage of partially preserved
10356         // registers rather than clobbering the entire register when the
10357         // parameter extension method is not compatible with the return
10358         // extension method
10359         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
10360             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
10361              CLI.RetZExt == Args[i].IsZExt))
10362           Flags.setReturned();
10363       }
10364 
10365       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
10366                      CLI.CallConv, ExtendKind);
10367 
10368       for (unsigned j = 0; j != NumParts; ++j) {
10369         // if it isn't first piece, alignment must be 1
10370         // For scalable vectors the scalable part is currently handled
10371         // by individual targets, so we just use the known minimum size here.
10372         ISD::OutputArg MyFlags(
10373             Flags, Parts[j].getValueType().getSimpleVT(), VT,
10374             i < CLI.NumFixedArgs, i,
10375             j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
10376         if (NumParts > 1 && j == 0)
10377           MyFlags.Flags.setSplit();
10378         else if (j != 0) {
10379           MyFlags.Flags.setOrigAlign(Align(1));
10380           if (j == NumParts - 1)
10381             MyFlags.Flags.setSplitEnd();
10382         }
10383 
10384         CLI.Outs.push_back(MyFlags);
10385         CLI.OutVals.push_back(Parts[j]);
10386       }
10387 
10388       if (NeedsRegBlock && Value == NumValues - 1)
10389         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
10390     }
10391   }
10392 
10393   SmallVector<SDValue, 4> InVals;
10394   CLI.Chain = LowerCall(CLI, InVals);
10395 
10396   // Update CLI.InVals to use outside of this function.
10397   CLI.InVals = InVals;
10398 
10399   // Verify that the target's LowerCall behaved as expected.
10400   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
10401          "LowerCall didn't return a valid chain!");
10402   assert((!CLI.IsTailCall || InVals.empty()) &&
10403          "LowerCall emitted a return value for a tail call!");
10404   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
10405          "LowerCall didn't emit the correct number of values!");
10406 
10407   // For a tail call, the return value is merely live-out and there aren't
10408   // any nodes in the DAG representing it. Return a special value to
10409   // indicate that a tail call has been emitted and no more Instructions
10410   // should be processed in the current block.
10411   if (CLI.IsTailCall) {
10412     CLI.DAG.setRoot(CLI.Chain);
10413     return std::make_pair(SDValue(), SDValue());
10414   }
10415 
10416 #ifndef NDEBUG
10417   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
10418     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
10419     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
10420            "LowerCall emitted a value with the wrong type!");
10421   }
10422 #endif
10423 
10424   SmallVector<SDValue, 4> ReturnValues;
10425   if (!CanLowerReturn) {
10426     // The instruction result is the result of loading from the
10427     // hidden sret parameter.
10428     SmallVector<EVT, 1> PVTs;
10429     Type *PtrRetTy =
10430         PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace());
10431 
10432     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
10433     assert(PVTs.size() == 1 && "Pointers should fit in one register");
10434     EVT PtrVT = PVTs[0];
10435 
10436     unsigned NumValues = RetTys.size();
10437     ReturnValues.resize(NumValues);
10438     SmallVector<SDValue, 4> Chains(NumValues);
10439 
10440     // An aggregate return value cannot wrap around the address space, so
10441     // offsets to its parts don't wrap either.
10442     SDNodeFlags Flags;
10443     Flags.setNoUnsignedWrap(true);
10444 
10445     MachineFunction &MF = CLI.DAG.getMachineFunction();
10446     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
10447     for (unsigned i = 0; i < NumValues; ++i) {
10448       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
10449                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
10450                                                         PtrVT), Flags);
10451       SDValue L = CLI.DAG.getLoad(
10452           RetTys[i], CLI.DL, CLI.Chain, Add,
10453           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
10454                                             DemoteStackIdx, Offsets[i]),
10455           HiddenSRetAlign);
10456       ReturnValues[i] = L;
10457       Chains[i] = L.getValue(1);
10458     }
10459 
10460     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
10461   } else {
10462     // Collect the legal value parts into potentially illegal values
10463     // that correspond to the original function's return values.
10464     std::optional<ISD::NodeType> AssertOp;
10465     if (CLI.RetSExt)
10466       AssertOp = ISD::AssertSext;
10467     else if (CLI.RetZExt)
10468       AssertOp = ISD::AssertZext;
10469     unsigned CurReg = 0;
10470     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10471       EVT VT = RetTys[I];
10472       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10473                                                      CLI.CallConv, VT);
10474       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10475                                                        CLI.CallConv, VT);
10476 
10477       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
10478                                               NumRegs, RegisterVT, VT, nullptr,
10479                                               CLI.CallConv, AssertOp));
10480       CurReg += NumRegs;
10481     }
10482 
10483     // For a function returning void, there is no return value. We can't create
10484     // such a node, so we just return a null return value in that case. In
10485     // that case, nothing will actually look at the value.
10486     if (ReturnValues.empty())
10487       return std::make_pair(SDValue(), CLI.Chain);
10488   }
10489 
10490   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
10491                                 CLI.DAG.getVTList(RetTys), ReturnValues);
10492   return std::make_pair(Res, CLI.Chain);
10493 }
10494 
10495 /// Places new result values for the node in Results (their number
10496 /// and types must exactly match those of the original return values of
10497 /// the node), or leaves Results empty, which indicates that the node is not
10498 /// to be custom lowered after all.
10499 void TargetLowering::LowerOperationWrapper(SDNode *N,
10500                                            SmallVectorImpl<SDValue> &Results,
10501                                            SelectionDAG &DAG) const {
10502   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
10503 
10504   if (!Res.getNode())
10505     return;
10506 
10507   // If the original node has one result, take the return value from
10508   // LowerOperation as is. It might not be result number 0.
10509   if (N->getNumValues() == 1) {
10510     Results.push_back(Res);
10511     return;
10512   }
10513 
10514   // If the original node has multiple results, then the return node should
10515   // have the same number of results.
10516   assert((N->getNumValues() == Res->getNumValues()) &&
10517       "Lowering returned the wrong number of results!");
10518 
10519   // Places new result values base on N result number.
10520   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
10521     Results.push_back(Res.getValue(I));
10522 }
10523 
10524 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10525   llvm_unreachable("LowerOperation not implemented for this target!");
10526 }
10527 
10528 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
10529                                                      unsigned Reg,
10530                                                      ISD::NodeType ExtendType) {
10531   SDValue Op = getNonRegisterValue(V);
10532   assert((Op.getOpcode() != ISD::CopyFromReg ||
10533           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
10534          "Copy from a reg to the same reg!");
10535   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
10536 
10537   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10538   // If this is an InlineAsm we have to match the registers required, not the
10539   // notional registers required by the type.
10540 
10541   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
10542                    std::nullopt); // This is not an ABI copy.
10543   SDValue Chain = DAG.getEntryNode();
10544 
10545   if (ExtendType == ISD::ANY_EXTEND) {
10546     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
10547     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
10548       ExtendType = PreferredExtendIt->second;
10549   }
10550   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
10551   PendingExports.push_back(Chain);
10552 }
10553 
10554 #include "llvm/CodeGen/SelectionDAGISel.h"
10555 
10556 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
10557 /// entry block, return true.  This includes arguments used by switches, since
10558 /// the switch may expand into multiple basic blocks.
10559 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
10560   // With FastISel active, we may be splitting blocks, so force creation
10561   // of virtual registers for all non-dead arguments.
10562   if (FastISel)
10563     return A->use_empty();
10564 
10565   const BasicBlock &Entry = A->getParent()->front();
10566   for (const User *U : A->users())
10567     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
10568       return false;  // Use not in entry block.
10569 
10570   return true;
10571 }
10572 
10573 using ArgCopyElisionMapTy =
10574     DenseMap<const Argument *,
10575              std::pair<const AllocaInst *, const StoreInst *>>;
10576 
10577 /// Scan the entry block of the function in FuncInfo for arguments that look
10578 /// like copies into a local alloca. Record any copied arguments in
10579 /// ArgCopyElisionCandidates.
10580 static void
10581 findArgumentCopyElisionCandidates(const DataLayout &DL,
10582                                   FunctionLoweringInfo *FuncInfo,
10583                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
10584   // Record the state of every static alloca used in the entry block. Argument
10585   // allocas are all used in the entry block, so we need approximately as many
10586   // entries as we have arguments.
10587   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
10588   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
10589   unsigned NumArgs = FuncInfo->Fn->arg_size();
10590   StaticAllocas.reserve(NumArgs * 2);
10591 
10592   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
10593     if (!V)
10594       return nullptr;
10595     V = V->stripPointerCasts();
10596     const auto *AI = dyn_cast<AllocaInst>(V);
10597     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
10598       return nullptr;
10599     auto Iter = StaticAllocas.insert({AI, Unknown});
10600     return &Iter.first->second;
10601   };
10602 
10603   // Look for stores of arguments to static allocas. Look through bitcasts and
10604   // GEPs to handle type coercions, as long as the alloca is fully initialized
10605   // by the store. Any non-store use of an alloca escapes it and any subsequent
10606   // unanalyzed store might write it.
10607   // FIXME: Handle structs initialized with multiple stores.
10608   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
10609     // Look for stores, and handle non-store uses conservatively.
10610     const auto *SI = dyn_cast<StoreInst>(&I);
10611     if (!SI) {
10612       // We will look through cast uses, so ignore them completely.
10613       if (I.isCast())
10614         continue;
10615       // Ignore debug info and pseudo op intrinsics, they don't escape or store
10616       // to allocas.
10617       if (I.isDebugOrPseudoInst())
10618         continue;
10619       // This is an unknown instruction. Assume it escapes or writes to all
10620       // static alloca operands.
10621       for (const Use &U : I.operands()) {
10622         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
10623           *Info = StaticAllocaInfo::Clobbered;
10624       }
10625       continue;
10626     }
10627 
10628     // If the stored value is a static alloca, mark it as escaped.
10629     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
10630       *Info = StaticAllocaInfo::Clobbered;
10631 
10632     // Check if the destination is a static alloca.
10633     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
10634     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
10635     if (!Info)
10636       continue;
10637     const AllocaInst *AI = cast<AllocaInst>(Dst);
10638 
10639     // Skip allocas that have been initialized or clobbered.
10640     if (*Info != StaticAllocaInfo::Unknown)
10641       continue;
10642 
10643     // Check if the stored value is an argument, and that this store fully
10644     // initializes the alloca.
10645     // If the argument type has padding bits we can't directly forward a pointer
10646     // as the upper bits may contain garbage.
10647     // Don't elide copies from the same argument twice.
10648     const Value *Val = SI->getValueOperand()->stripPointerCasts();
10649     const auto *Arg = dyn_cast<Argument>(Val);
10650     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
10651         Arg->getType()->isEmptyTy() ||
10652         DL.getTypeStoreSize(Arg->getType()) !=
10653             DL.getTypeAllocSize(AI->getAllocatedType()) ||
10654         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
10655         ArgCopyElisionCandidates.count(Arg)) {
10656       *Info = StaticAllocaInfo::Clobbered;
10657       continue;
10658     }
10659 
10660     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
10661                       << '\n');
10662 
10663     // Mark this alloca and store for argument copy elision.
10664     *Info = StaticAllocaInfo::Elidable;
10665     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
10666 
10667     // Stop scanning if we've seen all arguments. This will happen early in -O0
10668     // builds, which is useful, because -O0 builds have large entry blocks and
10669     // many allocas.
10670     if (ArgCopyElisionCandidates.size() == NumArgs)
10671       break;
10672   }
10673 }
10674 
10675 /// Try to elide argument copies from memory into a local alloca. Succeeds if
10676 /// ArgVal is a load from a suitable fixed stack object.
10677 static void tryToElideArgumentCopy(
10678     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
10679     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
10680     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
10681     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
10682     ArrayRef<SDValue> ArgVals, bool &ArgHasUses) {
10683   // Check if this is a load from a fixed stack object.
10684   auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]);
10685   if (!LNode)
10686     return;
10687   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
10688   if (!FINode)
10689     return;
10690 
10691   // Check that the fixed stack object is the right size and alignment.
10692   // Look at the alignment that the user wrote on the alloca instead of looking
10693   // at the stack object.
10694   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
10695   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
10696   const AllocaInst *AI = ArgCopyIter->second.first;
10697   int FixedIndex = FINode->getIndex();
10698   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
10699   int OldIndex = AllocaIndex;
10700   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
10701   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
10702     LLVM_DEBUG(
10703         dbgs() << "  argument copy elision failed due to bad fixed stack "
10704                   "object size\n");
10705     return;
10706   }
10707   Align RequiredAlignment = AI->getAlign();
10708   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
10709     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
10710                          "greater than stack argument alignment ("
10711                       << DebugStr(RequiredAlignment) << " vs "
10712                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
10713     return;
10714   }
10715 
10716   // Perform the elision. Delete the old stack object and replace its only use
10717   // in the variable info map. Mark the stack object as mutable.
10718   LLVM_DEBUG({
10719     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
10720            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
10721            << '\n';
10722   });
10723   MFI.RemoveStackObject(OldIndex);
10724   MFI.setIsImmutableObjectIndex(FixedIndex, false);
10725   AllocaIndex = FixedIndex;
10726   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
10727   for (SDValue ArgVal : ArgVals)
10728     Chains.push_back(ArgVal.getValue(1));
10729 
10730   // Avoid emitting code for the store implementing the copy.
10731   const StoreInst *SI = ArgCopyIter->second.second;
10732   ElidedArgCopyInstrs.insert(SI);
10733 
10734   // Check for uses of the argument again so that we can avoid exporting ArgVal
10735   // if it is't used by anything other than the store.
10736   for (const Value *U : Arg.users()) {
10737     if (U != SI) {
10738       ArgHasUses = true;
10739       break;
10740     }
10741   }
10742 }
10743 
10744 void SelectionDAGISel::LowerArguments(const Function &F) {
10745   SelectionDAG &DAG = SDB->DAG;
10746   SDLoc dl = SDB->getCurSDLoc();
10747   const DataLayout &DL = DAG.getDataLayout();
10748   SmallVector<ISD::InputArg, 16> Ins;
10749 
10750   // In Naked functions we aren't going to save any registers.
10751   if (F.hasFnAttribute(Attribute::Naked))
10752     return;
10753 
10754   if (!FuncInfo->CanLowerReturn) {
10755     // Put in an sret pointer parameter before all the other parameters.
10756     SmallVector<EVT, 1> ValueVTs;
10757     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10758                     PointerType::get(F.getContext(),
10759                                      DAG.getDataLayout().getAllocaAddrSpace()),
10760                     ValueVTs);
10761 
10762     // NOTE: Assuming that a pointer will never break down to more than one VT
10763     // or one register.
10764     ISD::ArgFlagsTy Flags;
10765     Flags.setSRet();
10766     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
10767     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
10768                          ISD::InputArg::NoArgIndex, 0);
10769     Ins.push_back(RetArg);
10770   }
10771 
10772   // Look for stores of arguments to static allocas. Mark such arguments with a
10773   // flag to ask the target to give us the memory location of that argument if
10774   // available.
10775   ArgCopyElisionMapTy ArgCopyElisionCandidates;
10776   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10777                                     ArgCopyElisionCandidates);
10778 
10779   // Set up the incoming argument description vector.
10780   for (const Argument &Arg : F.args()) {
10781     unsigned ArgNo = Arg.getArgNo();
10782     SmallVector<EVT, 4> ValueVTs;
10783     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10784     bool isArgValueUsed = !Arg.use_empty();
10785     unsigned PartBase = 0;
10786     Type *FinalType = Arg.getType();
10787     if (Arg.hasAttribute(Attribute::ByVal))
10788       FinalType = Arg.getParamByValType();
10789     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10790         FinalType, F.getCallingConv(), F.isVarArg(), DL);
10791     for (unsigned Value = 0, NumValues = ValueVTs.size();
10792          Value != NumValues; ++Value) {
10793       EVT VT = ValueVTs[Value];
10794       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10795       ISD::ArgFlagsTy Flags;
10796 
10797 
10798       if (Arg.getType()->isPointerTy()) {
10799         Flags.setPointer();
10800         Flags.setPointerAddrSpace(
10801             cast<PointerType>(Arg.getType())->getAddressSpace());
10802       }
10803       if (Arg.hasAttribute(Attribute::ZExt))
10804         Flags.setZExt();
10805       if (Arg.hasAttribute(Attribute::SExt))
10806         Flags.setSExt();
10807       if (Arg.hasAttribute(Attribute::InReg)) {
10808         // If we are using vectorcall calling convention, a structure that is
10809         // passed InReg - is surely an HVA
10810         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10811             isa<StructType>(Arg.getType())) {
10812           // The first value of a structure is marked
10813           if (0 == Value)
10814             Flags.setHvaStart();
10815           Flags.setHva();
10816         }
10817         // Set InReg Flag
10818         Flags.setInReg();
10819       }
10820       if (Arg.hasAttribute(Attribute::StructRet))
10821         Flags.setSRet();
10822       if (Arg.hasAttribute(Attribute::SwiftSelf))
10823         Flags.setSwiftSelf();
10824       if (Arg.hasAttribute(Attribute::SwiftAsync))
10825         Flags.setSwiftAsync();
10826       if (Arg.hasAttribute(Attribute::SwiftError))
10827         Flags.setSwiftError();
10828       if (Arg.hasAttribute(Attribute::ByVal))
10829         Flags.setByVal();
10830       if (Arg.hasAttribute(Attribute::ByRef))
10831         Flags.setByRef();
10832       if (Arg.hasAttribute(Attribute::InAlloca)) {
10833         Flags.setInAlloca();
10834         // Set the byval flag for CCAssignFn callbacks that don't know about
10835         // inalloca.  This way we can know how many bytes we should've allocated
10836         // and how many bytes a callee cleanup function will pop.  If we port
10837         // inalloca to more targets, we'll have to add custom inalloca handling
10838         // in the various CC lowering callbacks.
10839         Flags.setByVal();
10840       }
10841       if (Arg.hasAttribute(Attribute::Preallocated)) {
10842         Flags.setPreallocated();
10843         // Set the byval flag for CCAssignFn callbacks that don't know about
10844         // preallocated.  This way we can know how many bytes we should've
10845         // allocated and how many bytes a callee cleanup function will pop.  If
10846         // we port preallocated to more targets, we'll have to add custom
10847         // preallocated handling in the various CC lowering callbacks.
10848         Flags.setByVal();
10849       }
10850 
10851       // Certain targets (such as MIPS), may have a different ABI alignment
10852       // for a type depending on the context. Give the target a chance to
10853       // specify the alignment it wants.
10854       const Align OriginalAlignment(
10855           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
10856       Flags.setOrigAlign(OriginalAlignment);
10857 
10858       Align MemAlign;
10859       Type *ArgMemTy = nullptr;
10860       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
10861           Flags.isByRef()) {
10862         if (!ArgMemTy)
10863           ArgMemTy = Arg.getPointeeInMemoryValueType();
10864 
10865         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
10866 
10867         // For in-memory arguments, size and alignment should be passed from FE.
10868         // BE will guess if this info is not there but there are cases it cannot
10869         // get right.
10870         if (auto ParamAlign = Arg.getParamStackAlign())
10871           MemAlign = *ParamAlign;
10872         else if ((ParamAlign = Arg.getParamAlign()))
10873           MemAlign = *ParamAlign;
10874         else
10875           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
10876         if (Flags.isByRef())
10877           Flags.setByRefSize(MemSize);
10878         else
10879           Flags.setByValSize(MemSize);
10880       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
10881         MemAlign = *ParamAlign;
10882       } else {
10883         MemAlign = OriginalAlignment;
10884       }
10885       Flags.setMemAlign(MemAlign);
10886 
10887       if (Arg.hasAttribute(Attribute::Nest))
10888         Flags.setNest();
10889       if (NeedsRegBlock)
10890         Flags.setInConsecutiveRegs();
10891       if (ArgCopyElisionCandidates.count(&Arg))
10892         Flags.setCopyElisionCandidate();
10893       if (Arg.hasAttribute(Attribute::Returned))
10894         Flags.setReturned();
10895 
10896       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
10897           *CurDAG->getContext(), F.getCallingConv(), VT);
10898       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
10899           *CurDAG->getContext(), F.getCallingConv(), VT);
10900       for (unsigned i = 0; i != NumRegs; ++i) {
10901         // For scalable vectors, use the minimum size; individual targets
10902         // are responsible for handling scalable vector arguments and
10903         // return values.
10904         ISD::InputArg MyFlags(
10905             Flags, RegisterVT, VT, isArgValueUsed, ArgNo,
10906             PartBase + i * RegisterVT.getStoreSize().getKnownMinValue());
10907         if (NumRegs > 1 && i == 0)
10908           MyFlags.Flags.setSplit();
10909         // if it isn't first piece, alignment must be 1
10910         else if (i > 0) {
10911           MyFlags.Flags.setOrigAlign(Align(1));
10912           if (i == NumRegs - 1)
10913             MyFlags.Flags.setSplitEnd();
10914         }
10915         Ins.push_back(MyFlags);
10916       }
10917       if (NeedsRegBlock && Value == NumValues - 1)
10918         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10919       PartBase += VT.getStoreSize().getKnownMinValue();
10920     }
10921   }
10922 
10923   // Call the target to set up the argument values.
10924   SmallVector<SDValue, 8> InVals;
10925   SDValue NewRoot = TLI->LowerFormalArguments(
10926       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10927 
10928   // Verify that the target's LowerFormalArguments behaved as expected.
10929   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10930          "LowerFormalArguments didn't return a valid chain!");
10931   assert(InVals.size() == Ins.size() &&
10932          "LowerFormalArguments didn't emit the correct number of values!");
10933   LLVM_DEBUG({
10934     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10935       assert(InVals[i].getNode() &&
10936              "LowerFormalArguments emitted a null value!");
10937       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10938              "LowerFormalArguments emitted a value with the wrong type!");
10939     }
10940   });
10941 
10942   // Update the DAG with the new chain value resulting from argument lowering.
10943   DAG.setRoot(NewRoot);
10944 
10945   // Set up the argument values.
10946   unsigned i = 0;
10947   if (!FuncInfo->CanLowerReturn) {
10948     // Create a virtual register for the sret pointer, and put in a copy
10949     // from the sret argument into it.
10950     SmallVector<EVT, 1> ValueVTs;
10951     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10952                     PointerType::get(F.getContext(),
10953                                      DAG.getDataLayout().getAllocaAddrSpace()),
10954                     ValueVTs);
10955     MVT VT = ValueVTs[0].getSimpleVT();
10956     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10957     std::optional<ISD::NodeType> AssertOp;
10958     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10959                                         nullptr, F.getCallingConv(), AssertOp);
10960 
10961     MachineFunction& MF = SDB->DAG.getMachineFunction();
10962     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10963     Register SRetReg =
10964         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10965     FuncInfo->DemoteRegister = SRetReg;
10966     NewRoot =
10967         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10968     DAG.setRoot(NewRoot);
10969 
10970     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10971     ++i;
10972   }
10973 
10974   SmallVector<SDValue, 4> Chains;
10975   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10976   for (const Argument &Arg : F.args()) {
10977     SmallVector<SDValue, 4> ArgValues;
10978     SmallVector<EVT, 4> ValueVTs;
10979     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10980     unsigned NumValues = ValueVTs.size();
10981     if (NumValues == 0)
10982       continue;
10983 
10984     bool ArgHasUses = !Arg.use_empty();
10985 
10986     // Elide the copying store if the target loaded this argument from a
10987     // suitable fixed stack object.
10988     if (Ins[i].Flags.isCopyElisionCandidate()) {
10989       unsigned NumParts = 0;
10990       for (EVT VT : ValueVTs)
10991         NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(),
10992                                                        F.getCallingConv(), VT);
10993 
10994       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10995                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10996                              ArrayRef(&InVals[i], NumParts), ArgHasUses);
10997     }
10998 
10999     // If this argument is unused then remember its value. It is used to generate
11000     // debugging information.
11001     bool isSwiftErrorArg =
11002         TLI->supportSwiftError() &&
11003         Arg.hasAttribute(Attribute::SwiftError);
11004     if (!ArgHasUses && !isSwiftErrorArg) {
11005       SDB->setUnusedArgValue(&Arg, InVals[i]);
11006 
11007       // Also remember any frame index for use in FastISel.
11008       if (FrameIndexSDNode *FI =
11009           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
11010         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11011     }
11012 
11013     for (unsigned Val = 0; Val != NumValues; ++Val) {
11014       EVT VT = ValueVTs[Val];
11015       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
11016                                                       F.getCallingConv(), VT);
11017       unsigned NumParts = TLI->getNumRegistersForCallingConv(
11018           *CurDAG->getContext(), F.getCallingConv(), VT);
11019 
11020       // Even an apparent 'unused' swifterror argument needs to be returned. So
11021       // we do generate a copy for it that can be used on return from the
11022       // function.
11023       if (ArgHasUses || isSwiftErrorArg) {
11024         std::optional<ISD::NodeType> AssertOp;
11025         if (Arg.hasAttribute(Attribute::SExt))
11026           AssertOp = ISD::AssertSext;
11027         else if (Arg.hasAttribute(Attribute::ZExt))
11028           AssertOp = ISD::AssertZext;
11029 
11030         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
11031                                              PartVT, VT, nullptr,
11032                                              F.getCallingConv(), AssertOp));
11033       }
11034 
11035       i += NumParts;
11036     }
11037 
11038     // We don't need to do anything else for unused arguments.
11039     if (ArgValues.empty())
11040       continue;
11041 
11042     // Note down frame index.
11043     if (FrameIndexSDNode *FI =
11044         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
11045       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11046 
11047     SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
11048                                      SDB->getCurSDLoc());
11049 
11050     SDB->setValue(&Arg, Res);
11051     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
11052       // We want to associate the argument with the frame index, among
11053       // involved operands, that correspond to the lowest address. The
11054       // getCopyFromParts function, called earlier, is swapping the order of
11055       // the operands to BUILD_PAIR depending on endianness. The result of
11056       // that swapping is that the least significant bits of the argument will
11057       // be in the first operand of the BUILD_PAIR node, and the most
11058       // significant bits will be in the second operand.
11059       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
11060       if (LoadSDNode *LNode =
11061           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
11062         if (FrameIndexSDNode *FI =
11063             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
11064           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11065     }
11066 
11067     // Analyses past this point are naive and don't expect an assertion.
11068     if (Res.getOpcode() == ISD::AssertZext)
11069       Res = Res.getOperand(0);
11070 
11071     // Update the SwiftErrorVRegDefMap.
11072     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
11073       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11074       if (Register::isVirtualRegister(Reg))
11075         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
11076                                    Reg);
11077     }
11078 
11079     // If this argument is live outside of the entry block, insert a copy from
11080     // wherever we got it to the vreg that other BB's will reference it as.
11081     if (Res.getOpcode() == ISD::CopyFromReg) {
11082       // If we can, though, try to skip creating an unnecessary vreg.
11083       // FIXME: This isn't very clean... it would be nice to make this more
11084       // general.
11085       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11086       if (Register::isVirtualRegister(Reg)) {
11087         FuncInfo->ValueMap[&Arg] = Reg;
11088         continue;
11089       }
11090     }
11091     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
11092       FuncInfo->InitializeRegForValue(&Arg);
11093       SDB->CopyToExportRegsIfNeeded(&Arg);
11094     }
11095   }
11096 
11097   if (!Chains.empty()) {
11098     Chains.push_back(NewRoot);
11099     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
11100   }
11101 
11102   DAG.setRoot(NewRoot);
11103 
11104   assert(i == InVals.size() && "Argument register count mismatch!");
11105 
11106   // If any argument copy elisions occurred and we have debug info, update the
11107   // stale frame indices used in the dbg.declare variable info table.
11108   if (!ArgCopyElisionFrameIndexMap.empty()) {
11109     for (MachineFunction::VariableDbgInfo &VI :
11110          MF->getInStackSlotVariableDbgInfo()) {
11111       auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot());
11112       if (I != ArgCopyElisionFrameIndexMap.end())
11113         VI.updateStackSlot(I->second);
11114     }
11115   }
11116 
11117   // Finally, if the target has anything special to do, allow it to do so.
11118   emitFunctionEntryCode();
11119 }
11120 
11121 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
11122 /// ensure constants are generated when needed.  Remember the virtual registers
11123 /// that need to be added to the Machine PHI nodes as input.  We cannot just
11124 /// directly add them, because expansion might result in multiple MBB's for one
11125 /// BB.  As such, the start of the BB might correspond to a different MBB than
11126 /// the end.
11127 void
11128 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
11129   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11130 
11131   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
11132 
11133   // Check PHI nodes in successors that expect a value to be available from this
11134   // block.
11135   for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
11136     if (!isa<PHINode>(SuccBB->begin())) continue;
11137     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
11138 
11139     // If this terminator has multiple identical successors (common for
11140     // switches), only handle each succ once.
11141     if (!SuccsHandled.insert(SuccMBB).second)
11142       continue;
11143 
11144     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
11145 
11146     // At this point we know that there is a 1-1 correspondence between LLVM PHI
11147     // nodes and Machine PHI nodes, but the incoming operands have not been
11148     // emitted yet.
11149     for (const PHINode &PN : SuccBB->phis()) {
11150       // Ignore dead phi's.
11151       if (PN.use_empty())
11152         continue;
11153 
11154       // Skip empty types
11155       if (PN.getType()->isEmptyTy())
11156         continue;
11157 
11158       unsigned Reg;
11159       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
11160 
11161       if (const auto *C = dyn_cast<Constant>(PHIOp)) {
11162         unsigned &RegOut = ConstantsOut[C];
11163         if (RegOut == 0) {
11164           RegOut = FuncInfo.CreateRegs(C);
11165           // We need to zero/sign extend ConstantInt phi operands to match
11166           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
11167           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
11168           if (auto *CI = dyn_cast<ConstantInt>(C))
11169             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
11170                                                     : ISD::ZERO_EXTEND;
11171           CopyValueToVirtualRegister(C, RegOut, ExtendType);
11172         }
11173         Reg = RegOut;
11174       } else {
11175         DenseMap<const Value *, Register>::iterator I =
11176           FuncInfo.ValueMap.find(PHIOp);
11177         if (I != FuncInfo.ValueMap.end())
11178           Reg = I->second;
11179         else {
11180           assert(isa<AllocaInst>(PHIOp) &&
11181                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
11182                  "Didn't codegen value into a register!??");
11183           Reg = FuncInfo.CreateRegs(PHIOp);
11184           CopyValueToVirtualRegister(PHIOp, Reg);
11185         }
11186       }
11187 
11188       // Remember that this register needs to added to the machine PHI node as
11189       // the input for this MBB.
11190       SmallVector<EVT, 4> ValueVTs;
11191       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
11192       for (EVT VT : ValueVTs) {
11193         const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
11194         for (unsigned i = 0; i != NumRegisters; ++i)
11195           FuncInfo.PHINodesToUpdate.push_back(
11196               std::make_pair(&*MBBI++, Reg + i));
11197         Reg += NumRegisters;
11198       }
11199     }
11200   }
11201 
11202   ConstantsOut.clear();
11203 }
11204 
11205 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
11206   MachineFunction::iterator I(MBB);
11207   if (++I == FuncInfo.MF->end())
11208     return nullptr;
11209   return &*I;
11210 }
11211 
11212 /// During lowering new call nodes can be created (such as memset, etc.).
11213 /// Those will become new roots of the current DAG, but complications arise
11214 /// when they are tail calls. In such cases, the call lowering will update
11215 /// the root, but the builder still needs to know that a tail call has been
11216 /// lowered in order to avoid generating an additional return.
11217 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
11218   // If the node is null, we do have a tail call.
11219   if (MaybeTC.getNode() != nullptr)
11220     DAG.setRoot(MaybeTC);
11221   else
11222     HasTailCall = true;
11223 }
11224 
11225 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
11226                                         MachineBasicBlock *SwitchMBB,
11227                                         MachineBasicBlock *DefaultMBB) {
11228   MachineFunction *CurMF = FuncInfo.MF;
11229   MachineBasicBlock *NextMBB = nullptr;
11230   MachineFunction::iterator BBI(W.MBB);
11231   if (++BBI != FuncInfo.MF->end())
11232     NextMBB = &*BBI;
11233 
11234   unsigned Size = W.LastCluster - W.FirstCluster + 1;
11235 
11236   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11237 
11238   if (Size == 2 && W.MBB == SwitchMBB) {
11239     // If any two of the cases has the same destination, and if one value
11240     // is the same as the other, but has one bit unset that the other has set,
11241     // use bit manipulation to do two compares at once.  For example:
11242     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
11243     // TODO: This could be extended to merge any 2 cases in switches with 3
11244     // cases.
11245     // TODO: Handle cases where W.CaseBB != SwitchBB.
11246     CaseCluster &Small = *W.FirstCluster;
11247     CaseCluster &Big = *W.LastCluster;
11248 
11249     if (Small.Low == Small.High && Big.Low == Big.High &&
11250         Small.MBB == Big.MBB) {
11251       const APInt &SmallValue = Small.Low->getValue();
11252       const APInt &BigValue = Big.Low->getValue();
11253 
11254       // Check that there is only one bit different.
11255       APInt CommonBit = BigValue ^ SmallValue;
11256       if (CommonBit.isPowerOf2()) {
11257         SDValue CondLHS = getValue(Cond);
11258         EVT VT = CondLHS.getValueType();
11259         SDLoc DL = getCurSDLoc();
11260 
11261         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
11262                                  DAG.getConstant(CommonBit, DL, VT));
11263         SDValue Cond = DAG.getSetCC(
11264             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
11265             ISD::SETEQ);
11266 
11267         // Update successor info.
11268         // Both Small and Big will jump to Small.BB, so we sum up the
11269         // probabilities.
11270         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
11271         if (BPI)
11272           addSuccessorWithProb(
11273               SwitchMBB, DefaultMBB,
11274               // The default destination is the first successor in IR.
11275               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
11276         else
11277           addSuccessorWithProb(SwitchMBB, DefaultMBB);
11278 
11279         // Insert the true branch.
11280         SDValue BrCond =
11281             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
11282                         DAG.getBasicBlock(Small.MBB));
11283         // Insert the false branch.
11284         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
11285                              DAG.getBasicBlock(DefaultMBB));
11286 
11287         DAG.setRoot(BrCond);
11288         return;
11289       }
11290     }
11291   }
11292 
11293   if (TM.getOptLevel() != CodeGenOpt::None) {
11294     // Here, we order cases by probability so the most likely case will be
11295     // checked first. However, two clusters can have the same probability in
11296     // which case their relative ordering is non-deterministic. So we use Low
11297     // as a tie-breaker as clusters are guaranteed to never overlap.
11298     llvm::sort(W.FirstCluster, W.LastCluster + 1,
11299                [](const CaseCluster &a, const CaseCluster &b) {
11300       return a.Prob != b.Prob ?
11301              a.Prob > b.Prob :
11302              a.Low->getValue().slt(b.Low->getValue());
11303     });
11304 
11305     // Rearrange the case blocks so that the last one falls through if possible
11306     // without changing the order of probabilities.
11307     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
11308       --I;
11309       if (I->Prob > W.LastCluster->Prob)
11310         break;
11311       if (I->Kind == CC_Range && I->MBB == NextMBB) {
11312         std::swap(*I, *W.LastCluster);
11313         break;
11314       }
11315     }
11316   }
11317 
11318   // Compute total probability.
11319   BranchProbability DefaultProb = W.DefaultProb;
11320   BranchProbability UnhandledProbs = DefaultProb;
11321   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
11322     UnhandledProbs += I->Prob;
11323 
11324   MachineBasicBlock *CurMBB = W.MBB;
11325   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
11326     bool FallthroughUnreachable = false;
11327     MachineBasicBlock *Fallthrough;
11328     if (I == W.LastCluster) {
11329       // For the last cluster, fall through to the default destination.
11330       Fallthrough = DefaultMBB;
11331       FallthroughUnreachable = isa<UnreachableInst>(
11332           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
11333     } else {
11334       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
11335       CurMF->insert(BBI, Fallthrough);
11336       // Put Cond in a virtual register to make it available from the new blocks.
11337       ExportFromCurrentBlock(Cond);
11338     }
11339     UnhandledProbs -= I->Prob;
11340 
11341     switch (I->Kind) {
11342       case CC_JumpTable: {
11343         // FIXME: Optimize away range check based on pivot comparisons.
11344         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
11345         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
11346 
11347         // The jump block hasn't been inserted yet; insert it here.
11348         MachineBasicBlock *JumpMBB = JT->MBB;
11349         CurMF->insert(BBI, JumpMBB);
11350 
11351         auto JumpProb = I->Prob;
11352         auto FallthroughProb = UnhandledProbs;
11353 
11354         // If the default statement is a target of the jump table, we evenly
11355         // distribute the default probability to successors of CurMBB. Also
11356         // update the probability on the edge from JumpMBB to Fallthrough.
11357         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
11358                                               SE = JumpMBB->succ_end();
11359              SI != SE; ++SI) {
11360           if (*SI == DefaultMBB) {
11361             JumpProb += DefaultProb / 2;
11362             FallthroughProb -= DefaultProb / 2;
11363             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
11364             JumpMBB->normalizeSuccProbs();
11365             break;
11366           }
11367         }
11368 
11369         // If the default clause is unreachable, propagate that knowledge into
11370         // JTH->FallthroughUnreachable which will use it to suppress the range
11371         // check.
11372         //
11373         // However, don't do this if we're doing branch target enforcement,
11374         // because a table branch _without_ a range check can be a tempting JOP
11375         // gadget - out-of-bounds inputs that are impossible in correct
11376         // execution become possible again if an attacker can influence the
11377         // control flow. So if an attacker doesn't already have a BTI bypass
11378         // available, we don't want them to be able to get one out of this
11379         // table branch.
11380         if (FallthroughUnreachable) {
11381           Function &CurFunc = CurMF->getFunction();
11382           bool HasBranchTargetEnforcement = false;
11383           if (CurFunc.hasFnAttribute("branch-target-enforcement")) {
11384             HasBranchTargetEnforcement =
11385                 CurFunc.getFnAttribute("branch-target-enforcement")
11386                     .getValueAsBool();
11387           } else {
11388             HasBranchTargetEnforcement =
11389                 CurMF->getMMI().getModule()->getModuleFlag(
11390                     "branch-target-enforcement");
11391           }
11392           if (!HasBranchTargetEnforcement)
11393             JTH->FallthroughUnreachable = true;
11394         }
11395 
11396         if (!JTH->FallthroughUnreachable)
11397           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
11398         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
11399         CurMBB->normalizeSuccProbs();
11400 
11401         // The jump table header will be inserted in our current block, do the
11402         // range check, and fall through to our fallthrough block.
11403         JTH->HeaderBB = CurMBB;
11404         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
11405 
11406         // If we're in the right place, emit the jump table header right now.
11407         if (CurMBB == SwitchMBB) {
11408           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
11409           JTH->Emitted = true;
11410         }
11411         break;
11412       }
11413       case CC_BitTests: {
11414         // FIXME: Optimize away range check based on pivot comparisons.
11415         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
11416 
11417         // The bit test blocks haven't been inserted yet; insert them here.
11418         for (BitTestCase &BTC : BTB->Cases)
11419           CurMF->insert(BBI, BTC.ThisBB);
11420 
11421         // Fill in fields of the BitTestBlock.
11422         BTB->Parent = CurMBB;
11423         BTB->Default = Fallthrough;
11424 
11425         BTB->DefaultProb = UnhandledProbs;
11426         // If the cases in bit test don't form a contiguous range, we evenly
11427         // distribute the probability on the edge to Fallthrough to two
11428         // successors of CurMBB.
11429         if (!BTB->ContiguousRange) {
11430           BTB->Prob += DefaultProb / 2;
11431           BTB->DefaultProb -= DefaultProb / 2;
11432         }
11433 
11434         if (FallthroughUnreachable)
11435           BTB->FallthroughUnreachable = true;
11436 
11437         // If we're in the right place, emit the bit test header right now.
11438         if (CurMBB == SwitchMBB) {
11439           visitBitTestHeader(*BTB, SwitchMBB);
11440           BTB->Emitted = true;
11441         }
11442         break;
11443       }
11444       case CC_Range: {
11445         const Value *RHS, *LHS, *MHS;
11446         ISD::CondCode CC;
11447         if (I->Low == I->High) {
11448           // Check Cond == I->Low.
11449           CC = ISD::SETEQ;
11450           LHS = Cond;
11451           RHS=I->Low;
11452           MHS = nullptr;
11453         } else {
11454           // Check I->Low <= Cond <= I->High.
11455           CC = ISD::SETLE;
11456           LHS = I->Low;
11457           MHS = Cond;
11458           RHS = I->High;
11459         }
11460 
11461         // If Fallthrough is unreachable, fold away the comparison.
11462         if (FallthroughUnreachable)
11463           CC = ISD::SETTRUE;
11464 
11465         // The false probability is the sum of all unhandled cases.
11466         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
11467                      getCurSDLoc(), I->Prob, UnhandledProbs);
11468 
11469         if (CurMBB == SwitchMBB)
11470           visitSwitchCase(CB, SwitchMBB);
11471         else
11472           SL->SwitchCases.push_back(CB);
11473 
11474         break;
11475       }
11476     }
11477     CurMBB = Fallthrough;
11478   }
11479 }
11480 
11481 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
11482                                               CaseClusterIt First,
11483                                               CaseClusterIt Last) {
11484   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
11485     if (X.Prob != CC.Prob)
11486       return X.Prob > CC.Prob;
11487 
11488     // Ties are broken by comparing the case value.
11489     return X.Low->getValue().slt(CC.Low->getValue());
11490   });
11491 }
11492 
11493 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
11494                                         const SwitchWorkListItem &W,
11495                                         Value *Cond,
11496                                         MachineBasicBlock *SwitchMBB) {
11497   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
11498          "Clusters not sorted?");
11499 
11500   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
11501 
11502   // Balance the tree based on branch probabilities to create a near-optimal (in
11503   // terms of search time given key frequency) binary search tree. See e.g. Kurt
11504   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
11505   CaseClusterIt LastLeft = W.FirstCluster;
11506   CaseClusterIt FirstRight = W.LastCluster;
11507   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
11508   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
11509 
11510   // Move LastLeft and FirstRight towards each other from opposite directions to
11511   // find a partitioning of the clusters which balances the probability on both
11512   // sides. If LeftProb and RightProb are equal, alternate which side is
11513   // taken to ensure 0-probability nodes are distributed evenly.
11514   unsigned I = 0;
11515   while (LastLeft + 1 < FirstRight) {
11516     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
11517       LeftProb += (++LastLeft)->Prob;
11518     else
11519       RightProb += (--FirstRight)->Prob;
11520     I++;
11521   }
11522 
11523   while (true) {
11524     // Our binary search tree differs from a typical BST in that ours can have up
11525     // to three values in each leaf. The pivot selection above doesn't take that
11526     // into account, which means the tree might require more nodes and be less
11527     // efficient. We compensate for this here.
11528 
11529     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
11530     unsigned NumRight = W.LastCluster - FirstRight + 1;
11531 
11532     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
11533       // If one side has less than 3 clusters, and the other has more than 3,
11534       // consider taking a cluster from the other side.
11535 
11536       if (NumLeft < NumRight) {
11537         // Consider moving the first cluster on the right to the left side.
11538         CaseCluster &CC = *FirstRight;
11539         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11540         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11541         if (LeftSideRank <= RightSideRank) {
11542           // Moving the cluster to the left does not demote it.
11543           ++LastLeft;
11544           ++FirstRight;
11545           continue;
11546         }
11547       } else {
11548         assert(NumRight < NumLeft);
11549         // Consider moving the last element on the left to the right side.
11550         CaseCluster &CC = *LastLeft;
11551         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11552         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11553         if (RightSideRank <= LeftSideRank) {
11554           // Moving the cluster to the right does not demot it.
11555           --LastLeft;
11556           --FirstRight;
11557           continue;
11558         }
11559       }
11560     }
11561     break;
11562   }
11563 
11564   assert(LastLeft + 1 == FirstRight);
11565   assert(LastLeft >= W.FirstCluster);
11566   assert(FirstRight <= W.LastCluster);
11567 
11568   // Use the first element on the right as pivot since we will make less-than
11569   // comparisons against it.
11570   CaseClusterIt PivotCluster = FirstRight;
11571   assert(PivotCluster > W.FirstCluster);
11572   assert(PivotCluster <= W.LastCluster);
11573 
11574   CaseClusterIt FirstLeft = W.FirstCluster;
11575   CaseClusterIt LastRight = W.LastCluster;
11576 
11577   const ConstantInt *Pivot = PivotCluster->Low;
11578 
11579   // New blocks will be inserted immediately after the current one.
11580   MachineFunction::iterator BBI(W.MBB);
11581   ++BBI;
11582 
11583   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
11584   // we can branch to its destination directly if it's squeezed exactly in
11585   // between the known lower bound and Pivot - 1.
11586   MachineBasicBlock *LeftMBB;
11587   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
11588       FirstLeft->Low == W.GE &&
11589       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
11590     LeftMBB = FirstLeft->MBB;
11591   } else {
11592     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11593     FuncInfo.MF->insert(BBI, LeftMBB);
11594     WorkList.push_back(
11595         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
11596     // Put Cond in a virtual register to make it available from the new blocks.
11597     ExportFromCurrentBlock(Cond);
11598   }
11599 
11600   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
11601   // single cluster, RHS.Low == Pivot, and we can branch to its destination
11602   // directly if RHS.High equals the current upper bound.
11603   MachineBasicBlock *RightMBB;
11604   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
11605       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
11606     RightMBB = FirstRight->MBB;
11607   } else {
11608     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11609     FuncInfo.MF->insert(BBI, RightMBB);
11610     WorkList.push_back(
11611         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
11612     // Put Cond in a virtual register to make it available from the new blocks.
11613     ExportFromCurrentBlock(Cond);
11614   }
11615 
11616   // Create the CaseBlock record that will be used to lower the branch.
11617   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
11618                getCurSDLoc(), LeftProb, RightProb);
11619 
11620   if (W.MBB == SwitchMBB)
11621     visitSwitchCase(CB, SwitchMBB);
11622   else
11623     SL->SwitchCases.push_back(CB);
11624 }
11625 
11626 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
11627 // from the swith statement.
11628 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
11629                                             BranchProbability PeeledCaseProb) {
11630   if (PeeledCaseProb == BranchProbability::getOne())
11631     return BranchProbability::getZero();
11632   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
11633 
11634   uint32_t Numerator = CaseProb.getNumerator();
11635   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
11636   return BranchProbability(Numerator, std::max(Numerator, Denominator));
11637 }
11638 
11639 // Try to peel the top probability case if it exceeds the threshold.
11640 // Return current MachineBasicBlock for the switch statement if the peeling
11641 // does not occur.
11642 // If the peeling is performed, return the newly created MachineBasicBlock
11643 // for the peeled switch statement. Also update Clusters to remove the peeled
11644 // case. PeeledCaseProb is the BranchProbability for the peeled case.
11645 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
11646     const SwitchInst &SI, CaseClusterVector &Clusters,
11647     BranchProbability &PeeledCaseProb) {
11648   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11649   // Don't perform if there is only one cluster or optimizing for size.
11650   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
11651       TM.getOptLevel() == CodeGenOpt::None ||
11652       SwitchMBB->getParent()->getFunction().hasMinSize())
11653     return SwitchMBB;
11654 
11655   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
11656   unsigned PeeledCaseIndex = 0;
11657   bool SwitchPeeled = false;
11658   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
11659     CaseCluster &CC = Clusters[Index];
11660     if (CC.Prob < TopCaseProb)
11661       continue;
11662     TopCaseProb = CC.Prob;
11663     PeeledCaseIndex = Index;
11664     SwitchPeeled = true;
11665   }
11666   if (!SwitchPeeled)
11667     return SwitchMBB;
11668 
11669   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
11670                     << TopCaseProb << "\n");
11671 
11672   // Record the MBB for the peeled switch statement.
11673   MachineFunction::iterator BBI(SwitchMBB);
11674   ++BBI;
11675   MachineBasicBlock *PeeledSwitchMBB =
11676       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
11677   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
11678 
11679   ExportFromCurrentBlock(SI.getCondition());
11680   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
11681   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
11682                           nullptr,   nullptr,      TopCaseProb.getCompl()};
11683   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
11684 
11685   Clusters.erase(PeeledCaseIt);
11686   for (CaseCluster &CC : Clusters) {
11687     LLVM_DEBUG(
11688         dbgs() << "Scale the probablity for one cluster, before scaling: "
11689                << CC.Prob << "\n");
11690     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
11691     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
11692   }
11693   PeeledCaseProb = TopCaseProb;
11694   return PeeledSwitchMBB;
11695 }
11696 
11697 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
11698   // Extract cases from the switch.
11699   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11700   CaseClusterVector Clusters;
11701   Clusters.reserve(SI.getNumCases());
11702   for (auto I : SI.cases()) {
11703     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
11704     const ConstantInt *CaseVal = I.getCaseValue();
11705     BranchProbability Prob =
11706         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
11707             : BranchProbability(1, SI.getNumCases() + 1);
11708     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
11709   }
11710 
11711   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
11712 
11713   // Cluster adjacent cases with the same destination. We do this at all
11714   // optimization levels because it's cheap to do and will make codegen faster
11715   // if there are many clusters.
11716   sortAndRangeify(Clusters);
11717 
11718   // The branch probablity of the peeled case.
11719   BranchProbability PeeledCaseProb = BranchProbability::getZero();
11720   MachineBasicBlock *PeeledSwitchMBB =
11721       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
11722 
11723   // If there is only the default destination, jump there directly.
11724   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11725   if (Clusters.empty()) {
11726     assert(PeeledSwitchMBB == SwitchMBB);
11727     SwitchMBB->addSuccessor(DefaultMBB);
11728     if (DefaultMBB != NextBlock(SwitchMBB)) {
11729       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
11730                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
11731     }
11732     return;
11733   }
11734 
11735   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
11736   SL->findBitTestClusters(Clusters, &SI);
11737 
11738   LLVM_DEBUG({
11739     dbgs() << "Case clusters: ";
11740     for (const CaseCluster &C : Clusters) {
11741       if (C.Kind == CC_JumpTable)
11742         dbgs() << "JT:";
11743       if (C.Kind == CC_BitTests)
11744         dbgs() << "BT:";
11745 
11746       C.Low->getValue().print(dbgs(), true);
11747       if (C.Low != C.High) {
11748         dbgs() << '-';
11749         C.High->getValue().print(dbgs(), true);
11750       }
11751       dbgs() << ' ';
11752     }
11753     dbgs() << '\n';
11754   });
11755 
11756   assert(!Clusters.empty());
11757   SwitchWorkList WorkList;
11758   CaseClusterIt First = Clusters.begin();
11759   CaseClusterIt Last = Clusters.end() - 1;
11760   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
11761   // Scale the branchprobability for DefaultMBB if the peel occurs and
11762   // DefaultMBB is not replaced.
11763   if (PeeledCaseProb != BranchProbability::getZero() &&
11764       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
11765     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
11766   WorkList.push_back(
11767       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
11768 
11769   while (!WorkList.empty()) {
11770     SwitchWorkListItem W = WorkList.pop_back_val();
11771     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
11772 
11773     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
11774         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
11775       // For optimized builds, lower large range as a balanced binary tree.
11776       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11777       continue;
11778     }
11779 
11780     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11781   }
11782 }
11783 
11784 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11785   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11786   auto DL = getCurSDLoc();
11787   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11788   setValue(&I, DAG.getStepVector(DL, ResultVT));
11789 }
11790 
11791 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11792   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11793   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11794 
11795   SDLoc DL = getCurSDLoc();
11796   SDValue V = getValue(I.getOperand(0));
11797   assert(VT == V.getValueType() && "Malformed vector.reverse!");
11798 
11799   if (VT.isScalableVector()) {
11800     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11801     return;
11802   }
11803 
11804   // Use VECTOR_SHUFFLE for the fixed-length vector
11805   // to maintain existing behavior.
11806   SmallVector<int, 8> Mask;
11807   unsigned NumElts = VT.getVectorMinNumElements();
11808   for (unsigned i = 0; i != NumElts; ++i)
11809     Mask.push_back(NumElts - 1 - i);
11810 
11811   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11812 }
11813 
11814 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) {
11815   auto DL = getCurSDLoc();
11816   SDValue InVec = getValue(I.getOperand(0));
11817   EVT OutVT =
11818       InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
11819 
11820   unsigned OutNumElts = OutVT.getVectorMinNumElements();
11821 
11822   // ISD Node needs the input vectors split into two equal parts
11823   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
11824                            DAG.getVectorIdxConstant(0, DL));
11825   SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
11826                            DAG.getVectorIdxConstant(OutNumElts, DL));
11827 
11828   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
11829   // legalisation and combines.
11830   if (OutVT.isFixedLengthVector()) {
11831     SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
11832                                         createStrideMask(0, 2, OutNumElts));
11833     SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
11834                                        createStrideMask(1, 2, OutNumElts));
11835     SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc());
11836     setValue(&I, Res);
11837     return;
11838   }
11839 
11840   SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL,
11841                             DAG.getVTList(OutVT, OutVT), Lo, Hi);
11842   setValue(&I, Res);
11843 }
11844 
11845 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) {
11846   auto DL = getCurSDLoc();
11847   EVT InVT = getValue(I.getOperand(0)).getValueType();
11848   SDValue InVec0 = getValue(I.getOperand(0));
11849   SDValue InVec1 = getValue(I.getOperand(1));
11850   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11851   EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11852 
11853   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
11854   // legalisation and combines.
11855   if (OutVT.isFixedLengthVector()) {
11856     unsigned NumElts = InVT.getVectorMinNumElements();
11857     SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1);
11858     setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT),
11859                                       createInterleaveMask(NumElts, 2)));
11860     return;
11861   }
11862 
11863   SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL,
11864                             DAG.getVTList(InVT, InVT), InVec0, InVec1);
11865   Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0),
11866                     Res.getValue(1));
11867   setValue(&I, Res);
11868 }
11869 
11870 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
11871   SmallVector<EVT, 4> ValueVTs;
11872   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
11873                   ValueVTs);
11874   unsigned NumValues = ValueVTs.size();
11875   if (NumValues == 0) return;
11876 
11877   SmallVector<SDValue, 4> Values(NumValues);
11878   SDValue Op = getValue(I.getOperand(0));
11879 
11880   for (unsigned i = 0; i != NumValues; ++i)
11881     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
11882                             SDValue(Op.getNode(), Op.getResNo() + i));
11883 
11884   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11885                            DAG.getVTList(ValueVTs), Values));
11886 }
11887 
11888 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
11889   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11890   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11891 
11892   SDLoc DL = getCurSDLoc();
11893   SDValue V1 = getValue(I.getOperand(0));
11894   SDValue V2 = getValue(I.getOperand(1));
11895   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
11896 
11897   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
11898   if (VT.isScalableVector()) {
11899     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
11900     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
11901                              DAG.getConstant(Imm, DL, IdxVT)));
11902     return;
11903   }
11904 
11905   unsigned NumElts = VT.getVectorNumElements();
11906 
11907   uint64_t Idx = (NumElts + Imm) % NumElts;
11908 
11909   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
11910   SmallVector<int, 8> Mask;
11911   for (unsigned i = 0; i < NumElts; ++i)
11912     Mask.push_back(Idx + i);
11913   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
11914 }
11915 
11916 // Consider the following MIR after SelectionDAG, which produces output in
11917 // phyregs in the first case or virtregs in the second case.
11918 //
11919 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx
11920 // %5:gr32 = COPY $ebx
11921 // %6:gr32 = COPY $edx
11922 // %1:gr32 = COPY %6:gr32
11923 // %0:gr32 = COPY %5:gr32
11924 //
11925 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32
11926 // %1:gr32 = COPY %6:gr32
11927 // %0:gr32 = COPY %5:gr32
11928 //
11929 // Given %0, we'd like to return $ebx in the first case and %5 in the second.
11930 // Given %1, we'd like to return $edx in the first case and %6 in the second.
11931 //
11932 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap
11933 // to a single virtreg (such as %0). The remaining outputs monotonically
11934 // increase in virtreg number from there. If a callbr has no outputs, then it
11935 // should not have a corresponding callbr landingpad; in fact, the callbr
11936 // landingpad would not even be able to refer to such a callbr.
11937 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) {
11938   MachineInstr *MI = MRI.def_begin(Reg)->getParent();
11939   // There is definitely at least one copy.
11940   assert(MI->getOpcode() == TargetOpcode::COPY &&
11941          "start of copy chain MUST be COPY");
11942   Reg = MI->getOperand(1).getReg();
11943   MI = MRI.def_begin(Reg)->getParent();
11944   // There may be an optional second copy.
11945   if (MI->getOpcode() == TargetOpcode::COPY) {
11946     assert(Reg.isVirtual() && "expected COPY of virtual register");
11947     Reg = MI->getOperand(1).getReg();
11948     assert(Reg.isPhysical() && "expected COPY of physical register");
11949     MI = MRI.def_begin(Reg)->getParent();
11950   }
11951   // The start of the chain must be an INLINEASM_BR.
11952   assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR &&
11953          "end of copy chain MUST be INLINEASM_BR");
11954   return Reg;
11955 }
11956 
11957 // We must do this walk rather than the simpler
11958 //   setValue(&I, getCopyFromRegs(CBR, CBR->getType()));
11959 // otherwise we will end up with copies of virtregs only valid along direct
11960 // edges.
11961 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) {
11962   SmallVector<EVT, 8> ResultVTs;
11963   SmallVector<SDValue, 8> ResultValues;
11964   const auto *CBR =
11965       cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator());
11966 
11967   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11968   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
11969   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11970 
11971   unsigned InitialDef = FuncInfo.ValueMap[CBR];
11972   SDValue Chain = DAG.getRoot();
11973 
11974   // Re-parse the asm constraints string.
11975   TargetLowering::AsmOperandInfoVector TargetConstraints =
11976       TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR);
11977   for (auto &T : TargetConstraints) {
11978     SDISelAsmOperandInfo OpInfo(T);
11979     if (OpInfo.Type != InlineAsm::isOutput)
11980       continue;
11981 
11982     // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the
11983     // individual constraint.
11984     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
11985 
11986     switch (OpInfo.ConstraintType) {
11987     case TargetLowering::C_Register:
11988     case TargetLowering::C_RegisterClass: {
11989       // Fill in OpInfo.AssignedRegs.Regs.
11990       getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo);
11991 
11992       // getRegistersForValue may produce 1 to many registers based on whether
11993       // the OpInfo.ConstraintVT is legal on the target or not.
11994       for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) {
11995         Register OriginalDef = FollowCopyChain(MRI, InitialDef++);
11996         if (Register::isPhysicalRegister(OriginalDef))
11997           FuncInfo.MBB->addLiveIn(OriginalDef);
11998         // Update the assigned registers to use the original defs.
11999         OpInfo.AssignedRegs.Regs[i] = OriginalDef;
12000       }
12001 
12002       SDValue V = OpInfo.AssignedRegs.getCopyFromRegs(
12003           DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR);
12004       ResultValues.push_back(V);
12005       ResultVTs.push_back(OpInfo.ConstraintVT);
12006       break;
12007     }
12008     case TargetLowering::C_Other: {
12009       SDValue Flag;
12010       SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
12011                                                   OpInfo, DAG);
12012       ++InitialDef;
12013       ResultValues.push_back(V);
12014       ResultVTs.push_back(OpInfo.ConstraintVT);
12015       break;
12016     }
12017     default:
12018       break;
12019     }
12020   }
12021   SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
12022                           DAG.getVTList(ResultVTs), ResultValues);
12023   setValue(&I, V);
12024 }
12025