1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SDNodeDbgValue.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/PostOrderIterator.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Constants.h" 23 #include "llvm/CallingConv.h" 24 #include "llvm/DerivedTypes.h" 25 #include "llvm/Function.h" 26 #include "llvm/GlobalVariable.h" 27 #include "llvm/InlineAsm.h" 28 #include "llvm/Instructions.h" 29 #include "llvm/Intrinsics.h" 30 #include "llvm/IntrinsicInst.h" 31 #include "llvm/LLVMContext.h" 32 #include "llvm/Module.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/FastISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCStrategy.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineJumpTableInfo.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/CodeGen/MachineRegisterInfo.h" 44 #include "llvm/CodeGen/PseudoSourceValue.h" 45 #include "llvm/CodeGen/SelectionDAG.h" 46 #include "llvm/Analysis/DebugInfo.h" 47 #include "llvm/Target/TargetData.h" 48 #include "llvm/Target/TargetFrameLowering.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetIntrinsicInfo.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetOptions.h" 53 #include "llvm/Support/Compiler.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 using namespace llvm; 61 62 /// LimitFloatPrecision - Generate low-precision inline sequences for 63 /// some float libcalls (6, 8 or 12 bits). 64 static unsigned LimitFloatPrecision; 65 66 static cl::opt<unsigned, true> 67 LimitFPPrecision("limit-float-precision", 68 cl::desc("Generate low-precision inline sequences " 69 "for some float libcalls"), 70 cl::location(LimitFloatPrecision), 71 cl::init(0)); 72 73 // Limit the width of DAG chains. This is important in general to prevent 74 // prevent DAG-based analysis from blowing up. For example, alias analysis and 75 // load clustering may not complete in reasonable time. It is difficult to 76 // recognize and avoid this situation within each individual analysis, and 77 // future analyses are likely to have the same behavior. Limiting DAG width is 78 // the safe approach, and will be especially important with global DAGs. 79 // 80 // MaxParallelChains default is arbitrarily high to avoid affecting 81 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 82 // sequence over this should have been converted to llvm.memcpy by the 83 // frontend. It easy to induce this behavior with .ll code such as: 84 // %buffer = alloca [4096 x i8] 85 // %data = load [4096 x i8]* %argPtr 86 // store [4096 x i8] %data, [4096 x i8]* %buffer 87 static const unsigned MaxParallelChains = 64; 88 89 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 90 const SDValue *Parts, unsigned NumParts, 91 EVT PartVT, EVT ValueVT); 92 93 /// getCopyFromParts - Create a value that contains the specified legal parts 94 /// combined into the value they represent. If the parts combine to a type 95 /// larger then ValueVT then AssertOp can be used to specify whether the extra 96 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 97 /// (ISD::AssertSext). 98 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL, 99 const SDValue *Parts, 100 unsigned NumParts, EVT PartVT, EVT ValueVT, 101 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 102 if (ValueVT.isVector()) 103 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT); 104 105 assert(NumParts > 0 && "No parts to assemble!"); 106 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 107 SDValue Val = Parts[0]; 108 109 if (NumParts > 1) { 110 // Assemble the value from multiple parts. 111 if (ValueVT.isInteger()) { 112 unsigned PartBits = PartVT.getSizeInBits(); 113 unsigned ValueBits = ValueVT.getSizeInBits(); 114 115 // Assemble the power of 2 part. 116 unsigned RoundParts = NumParts & (NumParts - 1) ? 117 1 << Log2_32(NumParts) : NumParts; 118 unsigned RoundBits = PartBits * RoundParts; 119 EVT RoundVT = RoundBits == ValueBits ? 120 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 121 SDValue Lo, Hi; 122 123 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 124 125 if (RoundParts > 2) { 126 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 127 PartVT, HalfVT); 128 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 129 RoundParts / 2, PartVT, HalfVT); 130 } else { 131 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 132 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 133 } 134 135 if (TLI.isBigEndian()) 136 std::swap(Lo, Hi); 137 138 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 139 140 if (RoundParts < NumParts) { 141 // Assemble the trailing non-power-of-2 part. 142 unsigned OddParts = NumParts - RoundParts; 143 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 144 Hi = getCopyFromParts(DAG, DL, 145 Parts + RoundParts, OddParts, PartVT, OddVT); 146 147 // Combine the round and odd parts. 148 Lo = Val; 149 if (TLI.isBigEndian()) 150 std::swap(Lo, Hi); 151 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 152 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 153 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 154 DAG.getConstant(Lo.getValueType().getSizeInBits(), 155 TLI.getPointerTy())); 156 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 157 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 158 } 159 } else if (PartVT.isFloatingPoint()) { 160 // FP split into multiple FP parts (for ppcf128) 161 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 162 "Unexpected split"); 163 SDValue Lo, Hi; 164 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 165 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 166 if (TLI.isBigEndian()) 167 std::swap(Lo, Hi); 168 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 169 } else { 170 // FP split into integer parts (soft fp) 171 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 172 !PartVT.isVector() && "Unexpected split"); 173 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 174 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT); 175 } 176 } 177 178 // There is now one part, held in Val. Correct it to match ValueVT. 179 PartVT = Val.getValueType(); 180 181 if (PartVT == ValueVT) 182 return Val; 183 184 if (PartVT.isInteger() && ValueVT.isInteger()) { 185 if (ValueVT.bitsLT(PartVT)) { 186 // For a truncate, see if we have any information to 187 // indicate whether the truncated bits will always be 188 // zero or sign-extension. 189 if (AssertOp != ISD::DELETED_NODE) 190 Val = DAG.getNode(AssertOp, DL, PartVT, Val, 191 DAG.getValueType(ValueVT)); 192 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 193 } 194 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 195 } 196 197 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 198 // FP_ROUND's are always exact here. 199 if (ValueVT.bitsLT(Val.getValueType())) 200 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 201 DAG.getIntPtrConstant(1)); 202 203 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 204 } 205 206 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 207 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 208 209 llvm_unreachable("Unknown mismatch!"); 210 return SDValue(); 211 } 212 213 /// getCopyFromParts - Create a value that contains the specified legal parts 214 /// combined into the value they represent. If the parts combine to a type 215 /// larger then ValueVT then AssertOp can be used to specify whether the extra 216 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 217 /// (ISD::AssertSext). 218 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 219 const SDValue *Parts, unsigned NumParts, 220 EVT PartVT, EVT ValueVT) { 221 assert(ValueVT.isVector() && "Not a vector value"); 222 assert(NumParts > 0 && "No parts to assemble!"); 223 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 224 SDValue Val = Parts[0]; 225 226 // Handle a multi-element vector. 227 if (NumParts > 1) { 228 EVT IntermediateVT, RegisterVT; 229 unsigned NumIntermediates; 230 unsigned NumRegs = 231 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 232 NumIntermediates, RegisterVT); 233 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 234 NumParts = NumRegs; // Silence a compiler warning. 235 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 236 assert(RegisterVT == Parts[0].getValueType() && 237 "Part type doesn't match part!"); 238 239 // Assemble the parts into intermediate operands. 240 SmallVector<SDValue, 8> Ops(NumIntermediates); 241 if (NumIntermediates == NumParts) { 242 // If the register was not expanded, truncate or copy the value, 243 // as appropriate. 244 for (unsigned i = 0; i != NumParts; ++i) 245 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 246 PartVT, IntermediateVT); 247 } else if (NumParts > 0) { 248 // If the intermediate type was expanded, build the intermediate 249 // operands from the parts. 250 assert(NumParts % NumIntermediates == 0 && 251 "Must expand into a divisible number of parts!"); 252 unsigned Factor = NumParts / NumIntermediates; 253 for (unsigned i = 0; i != NumIntermediates; ++i) 254 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 255 PartVT, IntermediateVT); 256 } 257 258 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 259 // intermediate operands. 260 Val = DAG.getNode(IntermediateVT.isVector() ? 261 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 262 ValueVT, &Ops[0], NumIntermediates); 263 } 264 265 // There is now one part, held in Val. Correct it to match ValueVT. 266 PartVT = Val.getValueType(); 267 268 if (PartVT == ValueVT) 269 return Val; 270 271 if (PartVT.isVector()) { 272 // If the element type of the source/dest vectors are the same, but the 273 // parts vector has more elements than the value vector, then we have a 274 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 275 // elements we want. 276 if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 277 assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 278 "Cannot narrow, it would be a lossy transformation"); 279 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 280 DAG.getIntPtrConstant(0)); 281 } 282 283 // Vector/Vector bitcast. 284 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 285 } 286 287 assert(ValueVT.getVectorElementType() == PartVT && 288 ValueVT.getVectorNumElements() == 1 && 289 "Only trivial scalar-to-vector conversions should get here!"); 290 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 291 } 292 293 294 295 296 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl, 297 SDValue Val, SDValue *Parts, unsigned NumParts, 298 EVT PartVT); 299 300 /// getCopyToParts - Create a series of nodes that contain the specified value 301 /// split into legal parts. If the parts contain more bits than Val, then, for 302 /// integers, ExtendKind can be used to specify how to generate the extra bits. 303 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL, 304 SDValue Val, SDValue *Parts, unsigned NumParts, 305 EVT PartVT, 306 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 307 EVT ValueVT = Val.getValueType(); 308 309 // Handle the vector case separately. 310 if (ValueVT.isVector()) 311 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT); 312 313 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 314 unsigned PartBits = PartVT.getSizeInBits(); 315 unsigned OrigNumParts = NumParts; 316 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 317 318 if (NumParts == 0) 319 return; 320 321 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 322 if (PartVT == ValueVT) { 323 assert(NumParts == 1 && "No-op copy with multiple parts!"); 324 Parts[0] = Val; 325 return; 326 } 327 328 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 329 // If the parts cover more bits than the value has, promote the value. 330 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 331 assert(NumParts == 1 && "Do not know what to promote to!"); 332 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 333 } else { 334 assert(PartVT.isInteger() && ValueVT.isInteger() && 335 "Unknown mismatch!"); 336 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 337 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 338 } 339 } else if (PartBits == ValueVT.getSizeInBits()) { 340 // Different types of the same size. 341 assert(NumParts == 1 && PartVT != ValueVT); 342 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 343 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 344 // If the parts cover less bits than value has, truncate the value. 345 assert(PartVT.isInteger() && ValueVT.isInteger() && 346 "Unknown mismatch!"); 347 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 348 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 349 } 350 351 // The value may have changed - recompute ValueVT. 352 ValueVT = Val.getValueType(); 353 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 354 "Failed to tile the value with PartVT!"); 355 356 if (NumParts == 1) { 357 assert(PartVT == ValueVT && "Type conversion failed!"); 358 Parts[0] = Val; 359 return; 360 } 361 362 // Expand the value into multiple parts. 363 if (NumParts & (NumParts - 1)) { 364 // The number of parts is not a power of 2. Split off and copy the tail. 365 assert(PartVT.isInteger() && ValueVT.isInteger() && 366 "Do not know what to expand to!"); 367 unsigned RoundParts = 1 << Log2_32(NumParts); 368 unsigned RoundBits = RoundParts * PartBits; 369 unsigned OddParts = NumParts - RoundParts; 370 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 371 DAG.getIntPtrConstant(RoundBits)); 372 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT); 373 374 if (TLI.isBigEndian()) 375 // The odd parts were reversed by getCopyToParts - unreverse them. 376 std::reverse(Parts + RoundParts, Parts + NumParts); 377 378 NumParts = RoundParts; 379 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 380 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 381 } 382 383 // The number of parts is a power of 2. Repeatedly bisect the value using 384 // EXTRACT_ELEMENT. 385 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 386 EVT::getIntegerVT(*DAG.getContext(), 387 ValueVT.getSizeInBits()), 388 Val); 389 390 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 391 for (unsigned i = 0; i < NumParts; i += StepSize) { 392 unsigned ThisBits = StepSize * PartBits / 2; 393 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 394 SDValue &Part0 = Parts[i]; 395 SDValue &Part1 = Parts[i+StepSize/2]; 396 397 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 398 ThisVT, Part0, DAG.getIntPtrConstant(1)); 399 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 400 ThisVT, Part0, DAG.getIntPtrConstant(0)); 401 402 if (ThisBits == PartBits && ThisVT != PartVT) { 403 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 404 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 405 } 406 } 407 } 408 409 if (TLI.isBigEndian()) 410 std::reverse(Parts, Parts + OrigNumParts); 411 } 412 413 414 /// getCopyToPartsVector - Create a series of nodes that contain the specified 415 /// value split into legal parts. 416 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL, 417 SDValue Val, SDValue *Parts, unsigned NumParts, 418 EVT PartVT) { 419 EVT ValueVT = Val.getValueType(); 420 assert(ValueVT.isVector() && "Not a vector"); 421 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 422 423 if (NumParts == 1) { 424 if (PartVT == ValueVT) { 425 // Nothing to do. 426 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 427 // Bitconvert vector->vector case. 428 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 429 } else if (PartVT.isVector() && 430 PartVT.getVectorElementType() == ValueVT.getVectorElementType()&& 431 PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 432 EVT ElementVT = PartVT.getVectorElementType(); 433 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 434 // undef elements. 435 SmallVector<SDValue, 16> Ops; 436 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 437 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 438 ElementVT, Val, DAG.getIntPtrConstant(i))); 439 440 for (unsigned i = ValueVT.getVectorNumElements(), 441 e = PartVT.getVectorNumElements(); i != e; ++i) 442 Ops.push_back(DAG.getUNDEF(ElementVT)); 443 444 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 445 446 // FIXME: Use CONCAT for 2x -> 4x. 447 448 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 449 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 450 } else { 451 // Vector -> scalar conversion. 452 assert(ValueVT.getVectorElementType() == PartVT && 453 ValueVT.getVectorNumElements() == 1 && 454 "Only trivial vector-to-scalar conversions should get here!"); 455 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 456 PartVT, Val, DAG.getIntPtrConstant(0)); 457 } 458 459 Parts[0] = Val; 460 return; 461 } 462 463 // Handle a multi-element vector. 464 EVT IntermediateVT, RegisterVT; 465 unsigned NumIntermediates; 466 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 467 IntermediateVT, 468 NumIntermediates, RegisterVT); 469 unsigned NumElements = ValueVT.getVectorNumElements(); 470 471 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 472 NumParts = NumRegs; // Silence a compiler warning. 473 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 474 475 // Split the vector into intermediate operands. 476 SmallVector<SDValue, 8> Ops(NumIntermediates); 477 for (unsigned i = 0; i != NumIntermediates; ++i) { 478 if (IntermediateVT.isVector()) 479 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 480 IntermediateVT, Val, 481 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates))); 482 else 483 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 484 IntermediateVT, Val, DAG.getIntPtrConstant(i)); 485 } 486 487 // Split the intermediate operands into legal parts. 488 if (NumParts == NumIntermediates) { 489 // If the register was not expanded, promote or copy the value, 490 // as appropriate. 491 for (unsigned i = 0; i != NumParts; ++i) 492 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT); 493 } else if (NumParts > 0) { 494 // If the intermediate type was expanded, split each the value into 495 // legal parts. 496 assert(NumParts % NumIntermediates == 0 && 497 "Must expand into a divisible number of parts!"); 498 unsigned Factor = NumParts / NumIntermediates; 499 for (unsigned i = 0; i != NumIntermediates; ++i) 500 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT); 501 } 502 } 503 504 505 506 507 namespace { 508 /// RegsForValue - This struct represents the registers (physical or virtual) 509 /// that a particular set of values is assigned, and the type information 510 /// about the value. The most common situation is to represent one value at a 511 /// time, but struct or array values are handled element-wise as multiple 512 /// values. The splitting of aggregates is performed recursively, so that we 513 /// never have aggregate-typed registers. The values at this point do not 514 /// necessarily have legal types, so each value may require one or more 515 /// registers of some legal type. 516 /// 517 struct RegsForValue { 518 /// ValueVTs - The value types of the values, which may not be legal, and 519 /// may need be promoted or synthesized from one or more registers. 520 /// 521 SmallVector<EVT, 4> ValueVTs; 522 523 /// RegVTs - The value types of the registers. This is the same size as 524 /// ValueVTs and it records, for each value, what the type of the assigned 525 /// register or registers are. (Individual values are never synthesized 526 /// from more than one type of register.) 527 /// 528 /// With virtual registers, the contents of RegVTs is redundant with TLI's 529 /// getRegisterType member function, however when with physical registers 530 /// it is necessary to have a separate record of the types. 531 /// 532 SmallVector<EVT, 4> RegVTs; 533 534 /// Regs - This list holds the registers assigned to the values. 535 /// Each legal or promoted value requires one register, and each 536 /// expanded value requires multiple registers. 537 /// 538 SmallVector<unsigned, 4> Regs; 539 540 RegsForValue() {} 541 542 RegsForValue(const SmallVector<unsigned, 4> ®s, 543 EVT regvt, EVT valuevt) 544 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 545 546 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 547 unsigned Reg, const Type *Ty) { 548 ComputeValueVTs(tli, Ty, ValueVTs); 549 550 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 551 EVT ValueVT = ValueVTs[Value]; 552 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 553 EVT RegisterVT = tli.getRegisterType(Context, ValueVT); 554 for (unsigned i = 0; i != NumRegs; ++i) 555 Regs.push_back(Reg + i); 556 RegVTs.push_back(RegisterVT); 557 Reg += NumRegs; 558 } 559 } 560 561 /// areValueTypesLegal - Return true if types of all the values are legal. 562 bool areValueTypesLegal(const TargetLowering &TLI) { 563 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 564 EVT RegisterVT = RegVTs[Value]; 565 if (!TLI.isTypeLegal(RegisterVT)) 566 return false; 567 } 568 return true; 569 } 570 571 /// append - Add the specified values to this one. 572 void append(const RegsForValue &RHS) { 573 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 574 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 575 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 576 } 577 578 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 579 /// this value and returns the result as a ValueVTs value. This uses 580 /// Chain/Flag as the input and updates them for the output Chain/Flag. 581 /// If the Flag pointer is NULL, no flag is used. 582 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 583 DebugLoc dl, 584 SDValue &Chain, SDValue *Flag) const; 585 586 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 587 /// specified value into the registers specified by this object. This uses 588 /// Chain/Flag as the input and updates them for the output Chain/Flag. 589 /// If the Flag pointer is NULL, no flag is used. 590 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 591 SDValue &Chain, SDValue *Flag) const; 592 593 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 594 /// operand list. This adds the code marker, matching input operand index 595 /// (if applicable), and includes the number of values added into it. 596 void AddInlineAsmOperands(unsigned Kind, 597 bool HasMatching, unsigned MatchingIdx, 598 SelectionDAG &DAG, 599 std::vector<SDValue> &Ops) const; 600 }; 601 } 602 603 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 604 /// this value and returns the result as a ValueVT value. This uses 605 /// Chain/Flag as the input and updates them for the output Chain/Flag. 606 /// If the Flag pointer is NULL, no flag is used. 607 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 608 FunctionLoweringInfo &FuncInfo, 609 DebugLoc dl, 610 SDValue &Chain, SDValue *Flag) const { 611 // A Value with type {} or [0 x %t] needs no registers. 612 if (ValueVTs.empty()) 613 return SDValue(); 614 615 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 616 617 // Assemble the legal parts into the final values. 618 SmallVector<SDValue, 4> Values(ValueVTs.size()); 619 SmallVector<SDValue, 8> Parts; 620 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 621 // Copy the legal parts from the registers. 622 EVT ValueVT = ValueVTs[Value]; 623 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 624 EVT RegisterVT = RegVTs[Value]; 625 626 Parts.resize(NumRegs); 627 for (unsigned i = 0; i != NumRegs; ++i) { 628 SDValue P; 629 if (Flag == 0) { 630 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 631 } else { 632 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 633 *Flag = P.getValue(2); 634 } 635 636 Chain = P.getValue(1); 637 Parts[i] = P; 638 639 // If the source register was virtual and if we know something about it, 640 // add an assert node. 641 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 642 !RegisterVT.isInteger() || RegisterVT.isVector()) 643 continue; 644 645 const FunctionLoweringInfo::LiveOutInfo *LOI = 646 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 647 if (!LOI) 648 continue; 649 650 unsigned RegSize = RegisterVT.getSizeInBits(); 651 unsigned NumSignBits = LOI->NumSignBits; 652 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 653 654 // FIXME: We capture more information than the dag can represent. For 655 // now, just use the tightest assertzext/assertsext possible. 656 bool isSExt = true; 657 EVT FromVT(MVT::Other); 658 if (NumSignBits == RegSize) 659 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 660 else if (NumZeroBits >= RegSize-1) 661 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 662 else if (NumSignBits > RegSize-8) 663 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 664 else if (NumZeroBits >= RegSize-8) 665 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 666 else if (NumSignBits > RegSize-16) 667 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 668 else if (NumZeroBits >= RegSize-16) 669 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 670 else if (NumSignBits > RegSize-32) 671 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 672 else if (NumZeroBits >= RegSize-32) 673 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 674 else 675 continue; 676 677 // Add an assertion node. 678 assert(FromVT != MVT::Other); 679 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 680 RegisterVT, P, DAG.getValueType(FromVT)); 681 } 682 683 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 684 NumRegs, RegisterVT, ValueVT); 685 Part += NumRegs; 686 Parts.clear(); 687 } 688 689 return DAG.getNode(ISD::MERGE_VALUES, dl, 690 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 691 &Values[0], ValueVTs.size()); 692 } 693 694 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 695 /// specified value into the registers specified by this object. This uses 696 /// Chain/Flag as the input and updates them for the output Chain/Flag. 697 /// If the Flag pointer is NULL, no flag is used. 698 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 699 SDValue &Chain, SDValue *Flag) const { 700 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 701 702 // Get the list of the values's legal parts. 703 unsigned NumRegs = Regs.size(); 704 SmallVector<SDValue, 8> Parts(NumRegs); 705 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 706 EVT ValueVT = ValueVTs[Value]; 707 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 708 EVT RegisterVT = RegVTs[Value]; 709 710 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 711 &Parts[Part], NumParts, RegisterVT); 712 Part += NumParts; 713 } 714 715 // Copy the parts into the registers. 716 SmallVector<SDValue, 8> Chains(NumRegs); 717 for (unsigned i = 0; i != NumRegs; ++i) { 718 SDValue Part; 719 if (Flag == 0) { 720 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 721 } else { 722 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 723 *Flag = Part.getValue(1); 724 } 725 726 Chains[i] = Part.getValue(0); 727 } 728 729 if (NumRegs == 1 || Flag) 730 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 731 // flagged to it. That is the CopyToReg nodes and the user are considered 732 // a single scheduling unit. If we create a TokenFactor and return it as 733 // chain, then the TokenFactor is both a predecessor (operand) of the 734 // user as well as a successor (the TF operands are flagged to the user). 735 // c1, f1 = CopyToReg 736 // c2, f2 = CopyToReg 737 // c3 = TokenFactor c1, c2 738 // ... 739 // = op c3, ..., f2 740 Chain = Chains[NumRegs-1]; 741 else 742 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 743 } 744 745 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 746 /// operand list. This adds the code marker and includes the number of 747 /// values added into it. 748 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 749 unsigned MatchingIdx, 750 SelectionDAG &DAG, 751 std::vector<SDValue> &Ops) const { 752 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 753 754 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 755 if (HasMatching) 756 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 757 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 758 Ops.push_back(Res); 759 760 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 761 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 762 EVT RegisterVT = RegVTs[Value]; 763 for (unsigned i = 0; i != NumRegs; ++i) { 764 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 765 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 766 } 767 } 768 } 769 770 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { 771 AA = &aa; 772 GFI = gfi; 773 TD = DAG.getTarget().getTargetData(); 774 } 775 776 /// clear - Clear out the current SelectionDAG and the associated 777 /// state and prepare this SelectionDAGBuilder object to be used 778 /// for a new block. This doesn't clear out information about 779 /// additional blocks that are needed to complete switch lowering 780 /// or PHI node updating; that information is cleared out as it is 781 /// consumed. 782 void SelectionDAGBuilder::clear() { 783 NodeMap.clear(); 784 UnusedArgNodeMap.clear(); 785 PendingLoads.clear(); 786 PendingExports.clear(); 787 DanglingDebugInfoMap.clear(); 788 CurDebugLoc = DebugLoc(); 789 HasTailCall = false; 790 } 791 792 /// getRoot - Return the current virtual root of the Selection DAG, 793 /// flushing any PendingLoad items. This must be done before emitting 794 /// a store or any other node that may need to be ordered after any 795 /// prior load instructions. 796 /// 797 SDValue SelectionDAGBuilder::getRoot() { 798 if (PendingLoads.empty()) 799 return DAG.getRoot(); 800 801 if (PendingLoads.size() == 1) { 802 SDValue Root = PendingLoads[0]; 803 DAG.setRoot(Root); 804 PendingLoads.clear(); 805 return Root; 806 } 807 808 // Otherwise, we have to make a token factor node. 809 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 810 &PendingLoads[0], PendingLoads.size()); 811 PendingLoads.clear(); 812 DAG.setRoot(Root); 813 return Root; 814 } 815 816 /// getControlRoot - Similar to getRoot, but instead of flushing all the 817 /// PendingLoad items, flush all the PendingExports items. It is necessary 818 /// to do this before emitting a terminator instruction. 819 /// 820 SDValue SelectionDAGBuilder::getControlRoot() { 821 SDValue Root = DAG.getRoot(); 822 823 if (PendingExports.empty()) 824 return Root; 825 826 // Turn all of the CopyToReg chains into one factored node. 827 if (Root.getOpcode() != ISD::EntryToken) { 828 unsigned i = 0, e = PendingExports.size(); 829 for (; i != e; ++i) { 830 assert(PendingExports[i].getNode()->getNumOperands() > 1); 831 if (PendingExports[i].getNode()->getOperand(0) == Root) 832 break; // Don't add the root if we already indirectly depend on it. 833 } 834 835 if (i == e) 836 PendingExports.push_back(Root); 837 } 838 839 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 840 &PendingExports[0], 841 PendingExports.size()); 842 PendingExports.clear(); 843 DAG.setRoot(Root); 844 return Root; 845 } 846 847 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 848 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 849 DAG.AssignOrdering(Node, SDNodeOrder); 850 851 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 852 AssignOrderingToNode(Node->getOperand(I).getNode()); 853 } 854 855 void SelectionDAGBuilder::visit(const Instruction &I) { 856 // Set up outgoing PHI node register values before emitting the terminator. 857 if (isa<TerminatorInst>(&I)) 858 HandlePHINodesInSuccessorBlocks(I.getParent()); 859 860 CurDebugLoc = I.getDebugLoc(); 861 862 visit(I.getOpcode(), I); 863 864 if (!isa<TerminatorInst>(&I) && !HasTailCall) 865 CopyToExportRegsIfNeeded(&I); 866 867 CurDebugLoc = DebugLoc(); 868 } 869 870 void SelectionDAGBuilder::visitPHI(const PHINode &) { 871 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 872 } 873 874 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 875 // Note: this doesn't use InstVisitor, because it has to work with 876 // ConstantExpr's in addition to instructions. 877 switch (Opcode) { 878 default: llvm_unreachable("Unknown instruction type encountered!"); 879 // Build the switch statement using the Instruction.def file. 880 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 881 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break; 882 #include "llvm/Instruction.def" 883 } 884 885 // Assign the ordering to the freshly created DAG nodes. 886 if (NodeMap.count(&I)) { 887 ++SDNodeOrder; 888 AssignOrderingToNode(getValue(&I).getNode()); 889 } 890 } 891 892 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 893 // generate the debug data structures now that we've seen its definition. 894 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 895 SDValue Val) { 896 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 897 if (DDI.getDI()) { 898 const DbgValueInst *DI = DDI.getDI(); 899 DebugLoc dl = DDI.getdl(); 900 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 901 MDNode *Variable = DI->getVariable(); 902 uint64_t Offset = DI->getOffset(); 903 SDDbgValue *SDV; 904 if (Val.getNode()) { 905 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 906 SDV = DAG.getDbgValue(Variable, Val.getNode(), 907 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 908 DAG.AddDbgValue(SDV, Val.getNode(), false); 909 } 910 } else 911 DEBUG(dbgs() << "Dropping debug info for " << DI); 912 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 913 } 914 } 915 916 // getValue - Return an SDValue for the given Value. 917 SDValue SelectionDAGBuilder::getValue(const Value *V) { 918 // If we already have an SDValue for this value, use it. It's important 919 // to do this first, so that we don't create a CopyFromReg if we already 920 // have a regular SDValue. 921 SDValue &N = NodeMap[V]; 922 if (N.getNode()) return N; 923 924 // If there's a virtual register allocated and initialized for this 925 // value, use it. 926 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 927 if (It != FuncInfo.ValueMap.end()) { 928 unsigned InReg = It->second; 929 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 930 SDValue Chain = DAG.getEntryNode(); 931 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL); 932 resolveDanglingDebugInfo(V, N); 933 return N; 934 } 935 936 // Otherwise create a new SDValue and remember it. 937 SDValue Val = getValueImpl(V); 938 NodeMap[V] = Val; 939 resolveDanglingDebugInfo(V, Val); 940 return Val; 941 } 942 943 /// getNonRegisterValue - Return an SDValue for the given Value, but 944 /// don't look in FuncInfo.ValueMap for a virtual register. 945 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 946 // If we already have an SDValue for this value, use it. 947 SDValue &N = NodeMap[V]; 948 if (N.getNode()) return N; 949 950 // Otherwise create a new SDValue and remember it. 951 SDValue Val = getValueImpl(V); 952 NodeMap[V] = Val; 953 resolveDanglingDebugInfo(V, Val); 954 return Val; 955 } 956 957 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 958 /// Create an SDValue for the given value. 959 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 960 if (const Constant *C = dyn_cast<Constant>(V)) { 961 EVT VT = TLI.getValueType(V->getType(), true); 962 963 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 964 return DAG.getConstant(*CI, VT); 965 966 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 967 return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT); 968 969 if (isa<ConstantPointerNull>(C)) 970 return DAG.getConstant(0, TLI.getPointerTy()); 971 972 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 973 return DAG.getConstantFP(*CFP, VT); 974 975 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 976 return DAG.getUNDEF(VT); 977 978 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 979 visit(CE->getOpcode(), *CE); 980 SDValue N1 = NodeMap[V]; 981 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 982 return N1; 983 } 984 985 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 986 SmallVector<SDValue, 4> Constants; 987 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 988 OI != OE; ++OI) { 989 SDNode *Val = getValue(*OI).getNode(); 990 // If the operand is an empty aggregate, there are no values. 991 if (!Val) continue; 992 // Add each leaf value from the operand to the Constants list 993 // to form a flattened list of all the values. 994 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 995 Constants.push_back(SDValue(Val, i)); 996 } 997 998 return DAG.getMergeValues(&Constants[0], Constants.size(), 999 getCurDebugLoc()); 1000 } 1001 1002 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1003 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1004 "Unknown struct or array constant!"); 1005 1006 SmallVector<EVT, 4> ValueVTs; 1007 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1008 unsigned NumElts = ValueVTs.size(); 1009 if (NumElts == 0) 1010 return SDValue(); // empty struct 1011 SmallVector<SDValue, 4> Constants(NumElts); 1012 for (unsigned i = 0; i != NumElts; ++i) { 1013 EVT EltVT = ValueVTs[i]; 1014 if (isa<UndefValue>(C)) 1015 Constants[i] = DAG.getUNDEF(EltVT); 1016 else if (EltVT.isFloatingPoint()) 1017 Constants[i] = DAG.getConstantFP(0, EltVT); 1018 else 1019 Constants[i] = DAG.getConstant(0, EltVT); 1020 } 1021 1022 return DAG.getMergeValues(&Constants[0], NumElts, 1023 getCurDebugLoc()); 1024 } 1025 1026 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1027 return DAG.getBlockAddress(BA, VT); 1028 1029 const VectorType *VecTy = cast<VectorType>(V->getType()); 1030 unsigned NumElements = VecTy->getNumElements(); 1031 1032 // Now that we know the number and type of the elements, get that number of 1033 // elements into the Ops array based on what kind of constant it is. 1034 SmallVector<SDValue, 16> Ops; 1035 if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) { 1036 for (unsigned i = 0; i != NumElements; ++i) 1037 Ops.push_back(getValue(CP->getOperand(i))); 1038 } else { 1039 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1040 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1041 1042 SDValue Op; 1043 if (EltVT.isFloatingPoint()) 1044 Op = DAG.getConstantFP(0, EltVT); 1045 else 1046 Op = DAG.getConstant(0, EltVT); 1047 Ops.assign(NumElements, Op); 1048 } 1049 1050 // Create a BUILD_VECTOR node. 1051 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1052 VT, &Ops[0], Ops.size()); 1053 } 1054 1055 // If this is a static alloca, generate it as the frameindex instead of 1056 // computation. 1057 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1058 DenseMap<const AllocaInst*, int>::iterator SI = 1059 FuncInfo.StaticAllocaMap.find(AI); 1060 if (SI != FuncInfo.StaticAllocaMap.end()) 1061 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1062 } 1063 1064 // If this is an instruction which fast-isel has deferred, select it now. 1065 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1066 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1067 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1068 SDValue Chain = DAG.getEntryNode(); 1069 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 1070 } 1071 1072 llvm_unreachable("Can't get register for value!"); 1073 return SDValue(); 1074 } 1075 1076 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1077 SDValue Chain = getControlRoot(); 1078 SmallVector<ISD::OutputArg, 8> Outs; 1079 SmallVector<SDValue, 8> OutVals; 1080 1081 if (!FuncInfo.CanLowerReturn) { 1082 unsigned DemoteReg = FuncInfo.DemoteRegister; 1083 const Function *F = I.getParent()->getParent(); 1084 1085 // Emit a store of the return value through the virtual register. 1086 // Leave Outs empty so that LowerReturn won't try to load return 1087 // registers the usual way. 1088 SmallVector<EVT, 1> PtrValueVTs; 1089 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1090 PtrValueVTs); 1091 1092 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1093 SDValue RetOp = getValue(I.getOperand(0)); 1094 1095 SmallVector<EVT, 4> ValueVTs; 1096 SmallVector<uint64_t, 4> Offsets; 1097 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1098 unsigned NumValues = ValueVTs.size(); 1099 1100 SmallVector<SDValue, 4> Chains(NumValues); 1101 for (unsigned i = 0; i != NumValues; ++i) { 1102 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), 1103 RetPtr.getValueType(), RetPtr, 1104 DAG.getIntPtrConstant(Offsets[i])); 1105 Chains[i] = 1106 DAG.getStore(Chain, getCurDebugLoc(), 1107 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1108 // FIXME: better loc info would be nice. 1109 Add, MachinePointerInfo(), false, false, 0); 1110 } 1111 1112 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 1113 MVT::Other, &Chains[0], NumValues); 1114 } else if (I.getNumOperands() != 0) { 1115 SmallVector<EVT, 4> ValueVTs; 1116 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1117 unsigned NumValues = ValueVTs.size(); 1118 if (NumValues) { 1119 SDValue RetOp = getValue(I.getOperand(0)); 1120 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1121 EVT VT = ValueVTs[j]; 1122 1123 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1124 1125 const Function *F = I.getParent()->getParent(); 1126 if (F->paramHasAttr(0, Attribute::SExt)) 1127 ExtendKind = ISD::SIGN_EXTEND; 1128 else if (F->paramHasAttr(0, Attribute::ZExt)) 1129 ExtendKind = ISD::ZERO_EXTEND; 1130 1131 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1132 VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind); 1133 1134 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1135 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1136 SmallVector<SDValue, 4> Parts(NumParts); 1137 getCopyToParts(DAG, getCurDebugLoc(), 1138 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1139 &Parts[0], NumParts, PartVT, ExtendKind); 1140 1141 // 'inreg' on function refers to return value 1142 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1143 if (F->paramHasAttr(0, Attribute::InReg)) 1144 Flags.setInReg(); 1145 1146 // Propagate extension type if any 1147 if (ExtendKind == ISD::SIGN_EXTEND) 1148 Flags.setSExt(); 1149 else if (ExtendKind == ISD::ZERO_EXTEND) 1150 Flags.setZExt(); 1151 1152 for (unsigned i = 0; i < NumParts; ++i) { 1153 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1154 /*isfixed=*/true)); 1155 OutVals.push_back(Parts[i]); 1156 } 1157 } 1158 } 1159 } 1160 1161 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1162 CallingConv::ID CallConv = 1163 DAG.getMachineFunction().getFunction()->getCallingConv(); 1164 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 1165 Outs, OutVals, getCurDebugLoc(), DAG); 1166 1167 // Verify that the target's LowerReturn behaved as expected. 1168 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1169 "LowerReturn didn't return a valid chain!"); 1170 1171 // Update the DAG with the new chain value resulting from return lowering. 1172 DAG.setRoot(Chain); 1173 } 1174 1175 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1176 /// created for it, emit nodes to copy the value into the virtual 1177 /// registers. 1178 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1179 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1180 if (VMI != FuncInfo.ValueMap.end()) { 1181 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1182 CopyValueToVirtualRegister(V, VMI->second); 1183 } 1184 } 1185 1186 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1187 /// the current basic block, add it to ValueMap now so that we'll get a 1188 /// CopyTo/FromReg. 1189 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1190 // No need to export constants. 1191 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1192 1193 // Already exported? 1194 if (FuncInfo.isExportedInst(V)) return; 1195 1196 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1197 CopyValueToVirtualRegister(V, Reg); 1198 } 1199 1200 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1201 const BasicBlock *FromBB) { 1202 // The operands of the setcc have to be in this block. We don't know 1203 // how to export them from some other block. 1204 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1205 // Can export from current BB. 1206 if (VI->getParent() == FromBB) 1207 return true; 1208 1209 // Is already exported, noop. 1210 return FuncInfo.isExportedInst(V); 1211 } 1212 1213 // If this is an argument, we can export it if the BB is the entry block or 1214 // if it is already exported. 1215 if (isa<Argument>(V)) { 1216 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1217 return true; 1218 1219 // Otherwise, can only export this if it is already exported. 1220 return FuncInfo.isExportedInst(V); 1221 } 1222 1223 // Otherwise, constants can always be exported. 1224 return true; 1225 } 1226 1227 static bool InBlock(const Value *V, const BasicBlock *BB) { 1228 if (const Instruction *I = dyn_cast<Instruction>(V)) 1229 return I->getParent() == BB; 1230 return true; 1231 } 1232 1233 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1234 /// This function emits a branch and is used at the leaves of an OR or an 1235 /// AND operator tree. 1236 /// 1237 void 1238 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1239 MachineBasicBlock *TBB, 1240 MachineBasicBlock *FBB, 1241 MachineBasicBlock *CurBB, 1242 MachineBasicBlock *SwitchBB) { 1243 const BasicBlock *BB = CurBB->getBasicBlock(); 1244 1245 // If the leaf of the tree is a comparison, merge the condition into 1246 // the caseblock. 1247 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1248 // The operands of the cmp have to be in this block. We don't know 1249 // how to export them from some other block. If this is the first block 1250 // of the sequence, no exporting is needed. 1251 if (CurBB == SwitchBB || 1252 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1253 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1254 ISD::CondCode Condition; 1255 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1256 Condition = getICmpCondCode(IC->getPredicate()); 1257 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1258 Condition = getFCmpCondCode(FC->getPredicate()); 1259 } else { 1260 Condition = ISD::SETEQ; // silence warning. 1261 llvm_unreachable("Unknown compare instruction"); 1262 } 1263 1264 CaseBlock CB(Condition, BOp->getOperand(0), 1265 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1266 SwitchCases.push_back(CB); 1267 return; 1268 } 1269 } 1270 1271 // Create a CaseBlock record representing this branch. 1272 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1273 NULL, TBB, FBB, CurBB); 1274 SwitchCases.push_back(CB); 1275 } 1276 1277 /// FindMergedConditions - If Cond is an expression like 1278 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1279 MachineBasicBlock *TBB, 1280 MachineBasicBlock *FBB, 1281 MachineBasicBlock *CurBB, 1282 MachineBasicBlock *SwitchBB, 1283 unsigned Opc) { 1284 // If this node is not part of the or/and tree, emit it as a branch. 1285 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1286 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1287 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1288 BOp->getParent() != CurBB->getBasicBlock() || 1289 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1290 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1291 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1292 return; 1293 } 1294 1295 // Create TmpBB after CurBB. 1296 MachineFunction::iterator BBI = CurBB; 1297 MachineFunction &MF = DAG.getMachineFunction(); 1298 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1299 CurBB->getParent()->insert(++BBI, TmpBB); 1300 1301 if (Opc == Instruction::Or) { 1302 // Codegen X | Y as: 1303 // jmp_if_X TBB 1304 // jmp TmpBB 1305 // TmpBB: 1306 // jmp_if_Y TBB 1307 // jmp FBB 1308 // 1309 1310 // Emit the LHS condition. 1311 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1312 1313 // Emit the RHS condition into TmpBB. 1314 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1315 } else { 1316 assert(Opc == Instruction::And && "Unknown merge op!"); 1317 // Codegen X & Y as: 1318 // jmp_if_X TmpBB 1319 // jmp FBB 1320 // TmpBB: 1321 // jmp_if_Y TBB 1322 // jmp FBB 1323 // 1324 // This requires creation of TmpBB after CurBB. 1325 1326 // Emit the LHS condition. 1327 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1328 1329 // Emit the RHS condition into TmpBB. 1330 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1331 } 1332 } 1333 1334 /// If the set of cases should be emitted as a series of branches, return true. 1335 /// If we should emit this as a bunch of and/or'd together conditions, return 1336 /// false. 1337 bool 1338 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1339 if (Cases.size() != 2) return true; 1340 1341 // If this is two comparisons of the same values or'd or and'd together, they 1342 // will get folded into a single comparison, so don't emit two blocks. 1343 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1344 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1345 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1346 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1347 return false; 1348 } 1349 1350 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1351 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1352 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1353 Cases[0].CC == Cases[1].CC && 1354 isa<Constant>(Cases[0].CmpRHS) && 1355 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1356 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1357 return false; 1358 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1359 return false; 1360 } 1361 1362 return true; 1363 } 1364 1365 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1366 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1367 1368 // Update machine-CFG edges. 1369 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1370 1371 // Figure out which block is immediately after the current one. 1372 MachineBasicBlock *NextBlock = 0; 1373 MachineFunction::iterator BBI = BrMBB; 1374 if (++BBI != FuncInfo.MF->end()) 1375 NextBlock = BBI; 1376 1377 if (I.isUnconditional()) { 1378 // Update machine-CFG edges. 1379 BrMBB->addSuccessor(Succ0MBB); 1380 1381 // If this is not a fall-through branch, emit the branch. 1382 if (Succ0MBB != NextBlock) 1383 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1384 MVT::Other, getControlRoot(), 1385 DAG.getBasicBlock(Succ0MBB))); 1386 1387 return; 1388 } 1389 1390 // If this condition is one of the special cases we handle, do special stuff 1391 // now. 1392 const Value *CondVal = I.getCondition(); 1393 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1394 1395 // If this is a series of conditions that are or'd or and'd together, emit 1396 // this as a sequence of branches instead of setcc's with and/or operations. 1397 // As long as jumps are not expensive, this should improve performance. 1398 // For example, instead of something like: 1399 // cmp A, B 1400 // C = seteq 1401 // cmp D, E 1402 // F = setle 1403 // or C, F 1404 // jnz foo 1405 // Emit: 1406 // cmp A, B 1407 // je foo 1408 // cmp D, E 1409 // jle foo 1410 // 1411 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1412 if (!TLI.isJumpExpensive() && 1413 BOp->hasOneUse() && 1414 (BOp->getOpcode() == Instruction::And || 1415 BOp->getOpcode() == Instruction::Or)) { 1416 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1417 BOp->getOpcode()); 1418 // If the compares in later blocks need to use values not currently 1419 // exported from this block, export them now. This block should always 1420 // be the first entry. 1421 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1422 1423 // Allow some cases to be rejected. 1424 if (ShouldEmitAsBranches(SwitchCases)) { 1425 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1426 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1427 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1428 } 1429 1430 // Emit the branch for this block. 1431 visitSwitchCase(SwitchCases[0], BrMBB); 1432 SwitchCases.erase(SwitchCases.begin()); 1433 return; 1434 } 1435 1436 // Okay, we decided not to do this, remove any inserted MBB's and clear 1437 // SwitchCases. 1438 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1439 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1440 1441 SwitchCases.clear(); 1442 } 1443 } 1444 1445 // Create a CaseBlock record representing this branch. 1446 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1447 NULL, Succ0MBB, Succ1MBB, BrMBB); 1448 1449 // Use visitSwitchCase to actually insert the fast branch sequence for this 1450 // cond branch. 1451 visitSwitchCase(CB, BrMBB); 1452 } 1453 1454 /// visitSwitchCase - Emits the necessary code to represent a single node in 1455 /// the binary search tree resulting from lowering a switch instruction. 1456 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1457 MachineBasicBlock *SwitchBB) { 1458 SDValue Cond; 1459 SDValue CondLHS = getValue(CB.CmpLHS); 1460 DebugLoc dl = getCurDebugLoc(); 1461 1462 // Build the setcc now. 1463 if (CB.CmpMHS == NULL) { 1464 // Fold "(X == true)" to X and "(X == false)" to !X to 1465 // handle common cases produced by branch lowering. 1466 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1467 CB.CC == ISD::SETEQ) 1468 Cond = CondLHS; 1469 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1470 CB.CC == ISD::SETEQ) { 1471 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1472 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1473 } else 1474 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1475 } else { 1476 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1477 1478 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1479 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1480 1481 SDValue CmpOp = getValue(CB.CmpMHS); 1482 EVT VT = CmpOp.getValueType(); 1483 1484 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1485 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1486 ISD::SETLE); 1487 } else { 1488 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1489 VT, CmpOp, DAG.getConstant(Low, VT)); 1490 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1491 DAG.getConstant(High-Low, VT), ISD::SETULE); 1492 } 1493 } 1494 1495 // Update successor info 1496 SwitchBB->addSuccessor(CB.TrueBB); 1497 SwitchBB->addSuccessor(CB.FalseBB); 1498 1499 // Set NextBlock to be the MBB immediately after the current one, if any. 1500 // This is used to avoid emitting unnecessary branches to the next block. 1501 MachineBasicBlock *NextBlock = 0; 1502 MachineFunction::iterator BBI = SwitchBB; 1503 if (++BBI != FuncInfo.MF->end()) 1504 NextBlock = BBI; 1505 1506 // If the lhs block is the next block, invert the condition so that we can 1507 // fall through to the lhs instead of the rhs block. 1508 if (CB.TrueBB == NextBlock) { 1509 std::swap(CB.TrueBB, CB.FalseBB); 1510 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1511 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1512 } 1513 1514 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1515 MVT::Other, getControlRoot(), Cond, 1516 DAG.getBasicBlock(CB.TrueBB)); 1517 1518 // Insert the false branch. Do this even if it's a fall through branch, 1519 // this makes it easier to do DAG optimizations which require inverting 1520 // the branch condition. 1521 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1522 DAG.getBasicBlock(CB.FalseBB)); 1523 1524 DAG.setRoot(BrCond); 1525 } 1526 1527 /// visitJumpTable - Emit JumpTable node in the current MBB 1528 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1529 // Emit the code for the jump table 1530 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1531 EVT PTy = TLI.getPointerTy(); 1532 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1533 JT.Reg, PTy); 1534 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1535 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1536 MVT::Other, Index.getValue(1), 1537 Table, Index); 1538 DAG.setRoot(BrJumpTable); 1539 } 1540 1541 /// visitJumpTableHeader - This function emits necessary code to produce index 1542 /// in the JumpTable from switch case. 1543 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1544 JumpTableHeader &JTH, 1545 MachineBasicBlock *SwitchBB) { 1546 // Subtract the lowest switch case value from the value being switched on and 1547 // conditional branch to default mbb if the result is greater than the 1548 // difference between smallest and largest cases. 1549 SDValue SwitchOp = getValue(JTH.SValue); 1550 EVT VT = SwitchOp.getValueType(); 1551 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1552 DAG.getConstant(JTH.First, VT)); 1553 1554 // The SDNode we just created, which holds the value being switched on minus 1555 // the smallest case value, needs to be copied to a virtual register so it 1556 // can be used as an index into the jump table in a subsequent basic block. 1557 // This value may be smaller or larger than the target's pointer type, and 1558 // therefore require extension or truncating. 1559 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1560 1561 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1562 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1563 JumpTableReg, SwitchOp); 1564 JT.Reg = JumpTableReg; 1565 1566 // Emit the range check for the jump table, and branch to the default block 1567 // for the switch statement if the value being switched on exceeds the largest 1568 // case in the switch. 1569 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1570 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1571 DAG.getConstant(JTH.Last-JTH.First,VT), 1572 ISD::SETUGT); 1573 1574 // Set NextBlock to be the MBB immediately after the current one, if any. 1575 // This is used to avoid emitting unnecessary branches to the next block. 1576 MachineBasicBlock *NextBlock = 0; 1577 MachineFunction::iterator BBI = SwitchBB; 1578 1579 if (++BBI != FuncInfo.MF->end()) 1580 NextBlock = BBI; 1581 1582 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1583 MVT::Other, CopyTo, CMP, 1584 DAG.getBasicBlock(JT.Default)); 1585 1586 if (JT.MBB != NextBlock) 1587 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1588 DAG.getBasicBlock(JT.MBB)); 1589 1590 DAG.setRoot(BrCond); 1591 } 1592 1593 /// visitBitTestHeader - This function emits necessary code to produce value 1594 /// suitable for "bit tests" 1595 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1596 MachineBasicBlock *SwitchBB) { 1597 // Subtract the minimum value 1598 SDValue SwitchOp = getValue(B.SValue); 1599 EVT VT = SwitchOp.getValueType(); 1600 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1601 DAG.getConstant(B.First, VT)); 1602 1603 // Check range 1604 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1605 TLI.getSetCCResultType(Sub.getValueType()), 1606 Sub, DAG.getConstant(B.Range, VT), 1607 ISD::SETUGT); 1608 1609 // Determine the type of the test operands. 1610 bool UsePtrType = false; 1611 if (!TLI.isTypeLegal(VT)) 1612 UsePtrType = true; 1613 else { 1614 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1615 if ((uint64_t)((int64_t)B.Cases[i].Mask >> VT.getSizeInBits()) + 1 >= 2) { 1616 // Switch table case range are encoded into series of masks. 1617 // Just use pointer type, it's guaranteed to fit. 1618 UsePtrType = true; 1619 break; 1620 } 1621 } 1622 if (UsePtrType) { 1623 VT = TLI.getPointerTy(); 1624 Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT); 1625 } 1626 1627 B.RegVT = VT; 1628 B.Reg = FuncInfo.CreateReg(VT); 1629 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1630 B.Reg, Sub); 1631 1632 // Set NextBlock to be the MBB immediately after the current one, if any. 1633 // This is used to avoid emitting unnecessary branches to the next block. 1634 MachineBasicBlock *NextBlock = 0; 1635 MachineFunction::iterator BBI = SwitchBB; 1636 if (++BBI != FuncInfo.MF->end()) 1637 NextBlock = BBI; 1638 1639 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1640 1641 SwitchBB->addSuccessor(B.Default); 1642 SwitchBB->addSuccessor(MBB); 1643 1644 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1645 MVT::Other, CopyTo, RangeCmp, 1646 DAG.getBasicBlock(B.Default)); 1647 1648 if (MBB != NextBlock) 1649 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1650 DAG.getBasicBlock(MBB)); 1651 1652 DAG.setRoot(BrRange); 1653 } 1654 1655 /// visitBitTestCase - this function produces one "bit test" 1656 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1657 MachineBasicBlock* NextMBB, 1658 unsigned Reg, 1659 BitTestCase &B, 1660 MachineBasicBlock *SwitchBB) { 1661 EVT VT = BB.RegVT; 1662 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1663 Reg, VT); 1664 SDValue Cmp; 1665 if (CountPopulation_64(B.Mask) == 1) { 1666 // Testing for a single bit; just compare the shift count with what it 1667 // would need to be to shift a 1 bit in that position. 1668 Cmp = DAG.getSetCC(getCurDebugLoc(), 1669 TLI.getSetCCResultType(VT), 1670 ShiftOp, 1671 DAG.getConstant(CountTrailingZeros_64(B.Mask), VT), 1672 ISD::SETEQ); 1673 } else { 1674 // Make desired shift 1675 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT, 1676 DAG.getConstant(1, VT), ShiftOp); 1677 1678 // Emit bit tests and jumps 1679 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1680 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1681 Cmp = DAG.getSetCC(getCurDebugLoc(), 1682 TLI.getSetCCResultType(VT), 1683 AndOp, DAG.getConstant(0, VT), 1684 ISD::SETNE); 1685 } 1686 1687 SwitchBB->addSuccessor(B.TargetBB); 1688 SwitchBB->addSuccessor(NextMBB); 1689 1690 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1691 MVT::Other, getControlRoot(), 1692 Cmp, DAG.getBasicBlock(B.TargetBB)); 1693 1694 // Set NextBlock to be the MBB immediately after the current one, if any. 1695 // This is used to avoid emitting unnecessary branches to the next block. 1696 MachineBasicBlock *NextBlock = 0; 1697 MachineFunction::iterator BBI = SwitchBB; 1698 if (++BBI != FuncInfo.MF->end()) 1699 NextBlock = BBI; 1700 1701 if (NextMBB != NextBlock) 1702 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1703 DAG.getBasicBlock(NextMBB)); 1704 1705 DAG.setRoot(BrAnd); 1706 } 1707 1708 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1709 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1710 1711 // Retrieve successors. 1712 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1713 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1714 1715 const Value *Callee(I.getCalledValue()); 1716 if (isa<InlineAsm>(Callee)) 1717 visitInlineAsm(&I); 1718 else 1719 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1720 1721 // If the value of the invoke is used outside of its defining block, make it 1722 // available as a virtual register. 1723 CopyToExportRegsIfNeeded(&I); 1724 1725 // Update successor info 1726 InvokeMBB->addSuccessor(Return); 1727 InvokeMBB->addSuccessor(LandingPad); 1728 1729 // Drop into normal successor. 1730 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1731 MVT::Other, getControlRoot(), 1732 DAG.getBasicBlock(Return))); 1733 } 1734 1735 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) { 1736 } 1737 1738 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1739 /// small case ranges). 1740 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1741 CaseRecVector& WorkList, 1742 const Value* SV, 1743 MachineBasicBlock *Default, 1744 MachineBasicBlock *SwitchBB) { 1745 Case& BackCase = *(CR.Range.second-1); 1746 1747 // Size is the number of Cases represented by this range. 1748 size_t Size = CR.Range.second - CR.Range.first; 1749 if (Size > 3) 1750 return false; 1751 1752 // Get the MachineFunction which holds the current MBB. This is used when 1753 // inserting any additional MBBs necessary to represent the switch. 1754 MachineFunction *CurMF = FuncInfo.MF; 1755 1756 // Figure out which block is immediately after the current one. 1757 MachineBasicBlock *NextBlock = 0; 1758 MachineFunction::iterator BBI = CR.CaseBB; 1759 1760 if (++BBI != FuncInfo.MF->end()) 1761 NextBlock = BBI; 1762 1763 // If any two of the cases has the same destination, and if one value 1764 // is the same as the other, but has one bit unset that the other has set, 1765 // use bit manipulation to do two compares at once. For example: 1766 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1767 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 1768 // TODO: Handle cases where CR.CaseBB != SwitchBB. 1769 if (Size == 2 && CR.CaseBB == SwitchBB) { 1770 Case &Small = *CR.Range.first; 1771 Case &Big = *(CR.Range.second-1); 1772 1773 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 1774 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 1775 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 1776 1777 // Check that there is only one bit different. 1778 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 1779 (SmallValue | BigValue) == BigValue) { 1780 // Isolate the common bit. 1781 APInt CommonBit = BigValue & ~SmallValue; 1782 assert((SmallValue | CommonBit) == BigValue && 1783 CommonBit.countPopulation() == 1 && "Not a common bit?"); 1784 1785 SDValue CondLHS = getValue(SV); 1786 EVT VT = CondLHS.getValueType(); 1787 DebugLoc DL = getCurDebugLoc(); 1788 1789 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 1790 DAG.getConstant(CommonBit, VT)); 1791 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 1792 Or, DAG.getConstant(BigValue, VT), 1793 ISD::SETEQ); 1794 1795 // Update successor info. 1796 SwitchBB->addSuccessor(Small.BB); 1797 SwitchBB->addSuccessor(Default); 1798 1799 // Insert the true branch. 1800 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 1801 getControlRoot(), Cond, 1802 DAG.getBasicBlock(Small.BB)); 1803 1804 // Insert the false branch. 1805 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 1806 DAG.getBasicBlock(Default)); 1807 1808 DAG.setRoot(BrCond); 1809 return true; 1810 } 1811 } 1812 } 1813 1814 // Rearrange the case blocks so that the last one falls through if possible. 1815 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1816 // The last case block won't fall through into 'NextBlock' if we emit the 1817 // branches in this order. See if rearranging a case value would help. 1818 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { 1819 if (I->BB == NextBlock) { 1820 std::swap(*I, BackCase); 1821 break; 1822 } 1823 } 1824 } 1825 1826 // Create a CaseBlock record representing a conditional branch to 1827 // the Case's target mbb if the value being switched on SV is equal 1828 // to C. 1829 MachineBasicBlock *CurBlock = CR.CaseBB; 1830 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 1831 MachineBasicBlock *FallThrough; 1832 if (I != E-1) { 1833 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 1834 CurMF->insert(BBI, FallThrough); 1835 1836 // Put SV in a virtual register to make it available from the new blocks. 1837 ExportFromCurrentBlock(SV); 1838 } else { 1839 // If the last case doesn't match, go to the default block. 1840 FallThrough = Default; 1841 } 1842 1843 const Value *RHS, *LHS, *MHS; 1844 ISD::CondCode CC; 1845 if (I->High == I->Low) { 1846 // This is just small small case range :) containing exactly 1 case 1847 CC = ISD::SETEQ; 1848 LHS = SV; RHS = I->High; MHS = NULL; 1849 } else { 1850 CC = ISD::SETLE; 1851 LHS = I->Low; MHS = SV; RHS = I->High; 1852 } 1853 CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock); 1854 1855 // If emitting the first comparison, just call visitSwitchCase to emit the 1856 // code into the current block. Otherwise, push the CaseBlock onto the 1857 // vector to be later processed by SDISel, and insert the node's MBB 1858 // before the next MBB. 1859 if (CurBlock == SwitchBB) 1860 visitSwitchCase(CB, SwitchBB); 1861 else 1862 SwitchCases.push_back(CB); 1863 1864 CurBlock = FallThrough; 1865 } 1866 1867 return true; 1868 } 1869 1870 static inline bool areJTsAllowed(const TargetLowering &TLI) { 1871 return !DisableJumpTables && 1872 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 1873 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 1874 } 1875 1876 static APInt ComputeRange(const APInt &First, const APInt &Last) { 1877 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 1878 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 1879 return (LastExt - FirstExt + 1ULL); 1880 } 1881 1882 /// handleJTSwitchCase - Emit jumptable for current switch case range 1883 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR, 1884 CaseRecVector& WorkList, 1885 const Value* SV, 1886 MachineBasicBlock* Default, 1887 MachineBasicBlock *SwitchBB) { 1888 Case& FrontCase = *CR.Range.first; 1889 Case& BackCase = *(CR.Range.second-1); 1890 1891 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1892 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1893 1894 APInt TSize(First.getBitWidth(), 0); 1895 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1896 I!=E; ++I) 1897 TSize += I->size(); 1898 1899 if (!areJTsAllowed(TLI) || TSize.ult(4)) 1900 return false; 1901 1902 APInt Range = ComputeRange(First, Last); 1903 double Density = TSize.roundToDouble() / Range.roundToDouble(); 1904 if (Density < 0.4) 1905 return false; 1906 1907 DEBUG(dbgs() << "Lowering jump table\n" 1908 << "First entry: " << First << ". Last entry: " << Last << '\n' 1909 << "Range: " << Range 1910 << ". Size: " << TSize << ". Density: " << Density << "\n\n"); 1911 1912 // Get the MachineFunction which holds the current MBB. This is used when 1913 // inserting any additional MBBs necessary to represent the switch. 1914 MachineFunction *CurMF = FuncInfo.MF; 1915 1916 // Figure out which block is immediately after the current one. 1917 MachineFunction::iterator BBI = CR.CaseBB; 1918 ++BBI; 1919 1920 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1921 1922 // Create a new basic block to hold the code for loading the address 1923 // of the jump table, and jumping to it. Update successor information; 1924 // we will either branch to the default case for the switch, or the jump 1925 // table. 1926 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1927 CurMF->insert(BBI, JumpTableBB); 1928 CR.CaseBB->addSuccessor(Default); 1929 CR.CaseBB->addSuccessor(JumpTableBB); 1930 1931 // Build a vector of destination BBs, corresponding to each target 1932 // of the jump table. If the value of the jump table slot corresponds to 1933 // a case statement, push the case's BB onto the vector, otherwise, push 1934 // the default BB. 1935 std::vector<MachineBasicBlock*> DestBBs; 1936 APInt TEI = First; 1937 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 1938 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 1939 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 1940 1941 if (Low.sle(TEI) && TEI.sle(High)) { 1942 DestBBs.push_back(I->BB); 1943 if (TEI==High) 1944 ++I; 1945 } else { 1946 DestBBs.push_back(Default); 1947 } 1948 } 1949 1950 // Update successor info. Add one edge to each unique successor. 1951 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 1952 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 1953 E = DestBBs.end(); I != E; ++I) { 1954 if (!SuccsHandled[(*I)->getNumber()]) { 1955 SuccsHandled[(*I)->getNumber()] = true; 1956 JumpTableBB->addSuccessor(*I); 1957 } 1958 } 1959 1960 // Create a jump table index for this jump table. 1961 unsigned JTEncoding = TLI.getJumpTableEncoding(); 1962 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 1963 ->createJumpTableIndex(DestBBs); 1964 1965 // Set the jump table information so that we can codegen it as a second 1966 // MachineBasicBlock 1967 JumpTable JT(-1U, JTI, JumpTableBB, Default); 1968 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 1969 if (CR.CaseBB == SwitchBB) 1970 visitJumpTableHeader(JT, JTH, SwitchBB); 1971 1972 JTCases.push_back(JumpTableBlock(JTH, JT)); 1973 1974 return true; 1975 } 1976 1977 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 1978 /// 2 subtrees. 1979 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 1980 CaseRecVector& WorkList, 1981 const Value* SV, 1982 MachineBasicBlock *Default, 1983 MachineBasicBlock *SwitchBB) { 1984 // Get the MachineFunction which holds the current MBB. This is used when 1985 // inserting any additional MBBs necessary to represent the switch. 1986 MachineFunction *CurMF = FuncInfo.MF; 1987 1988 // Figure out which block is immediately after the current one. 1989 MachineFunction::iterator BBI = CR.CaseBB; 1990 ++BBI; 1991 1992 Case& FrontCase = *CR.Range.first; 1993 Case& BackCase = *(CR.Range.second-1); 1994 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1995 1996 // Size is the number of Cases represented by this range. 1997 unsigned Size = CR.Range.second - CR.Range.first; 1998 1999 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2000 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2001 double FMetric = 0; 2002 CaseItr Pivot = CR.Range.first + Size/2; 2003 2004 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2005 // (heuristically) allow us to emit JumpTable's later. 2006 APInt TSize(First.getBitWidth(), 0); 2007 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2008 I!=E; ++I) 2009 TSize += I->size(); 2010 2011 APInt LSize = FrontCase.size(); 2012 APInt RSize = TSize-LSize; 2013 DEBUG(dbgs() << "Selecting best pivot: \n" 2014 << "First: " << First << ", Last: " << Last <<'\n' 2015 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2016 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2017 J!=E; ++I, ++J) { 2018 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2019 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2020 APInt Range = ComputeRange(LEnd, RBegin); 2021 assert((Range - 2ULL).isNonNegative() && 2022 "Invalid case distance"); 2023 double LDensity = (double)LSize.roundToDouble() / 2024 (LEnd - First + 1ULL).roundToDouble(); 2025 double RDensity = (double)RSize.roundToDouble() / 2026 (Last - RBegin + 1ULL).roundToDouble(); 2027 double Metric = Range.logBase2()*(LDensity+RDensity); 2028 // Should always split in some non-trivial place 2029 DEBUG(dbgs() <<"=>Step\n" 2030 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2031 << "LDensity: " << LDensity 2032 << ", RDensity: " << RDensity << '\n' 2033 << "Metric: " << Metric << '\n'); 2034 if (FMetric < Metric) { 2035 Pivot = J; 2036 FMetric = Metric; 2037 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2038 } 2039 2040 LSize += J->size(); 2041 RSize -= J->size(); 2042 } 2043 if (areJTsAllowed(TLI)) { 2044 // If our case is dense we *really* should handle it earlier! 2045 assert((FMetric > 0) && "Should handle dense range earlier!"); 2046 } else { 2047 Pivot = CR.Range.first + Size/2; 2048 } 2049 2050 CaseRange LHSR(CR.Range.first, Pivot); 2051 CaseRange RHSR(Pivot, CR.Range.second); 2052 Constant *C = Pivot->Low; 2053 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 2054 2055 // We know that we branch to the LHS if the Value being switched on is 2056 // less than the Pivot value, C. We use this to optimize our binary 2057 // tree a bit, by recognizing that if SV is greater than or equal to the 2058 // LHS's Case Value, and that Case Value is exactly one less than the 2059 // Pivot's Value, then we can branch directly to the LHS's Target, 2060 // rather than creating a leaf node for it. 2061 if ((LHSR.second - LHSR.first) == 1 && 2062 LHSR.first->High == CR.GE && 2063 cast<ConstantInt>(C)->getValue() == 2064 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2065 TrueBB = LHSR.first->BB; 2066 } else { 2067 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2068 CurMF->insert(BBI, TrueBB); 2069 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2070 2071 // Put SV in a virtual register to make it available from the new blocks. 2072 ExportFromCurrentBlock(SV); 2073 } 2074 2075 // Similar to the optimization above, if the Value being switched on is 2076 // known to be less than the Constant CR.LT, and the current Case Value 2077 // is CR.LT - 1, then we can branch directly to the target block for 2078 // the current Case Value, rather than emitting a RHS leaf node for it. 2079 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2080 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2081 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2082 FalseBB = RHSR.first->BB; 2083 } else { 2084 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2085 CurMF->insert(BBI, FalseBB); 2086 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2087 2088 // Put SV in a virtual register to make it available from the new blocks. 2089 ExportFromCurrentBlock(SV); 2090 } 2091 2092 // Create a CaseBlock record representing a conditional branch to 2093 // the LHS node if the value being switched on SV is less than C. 2094 // Otherwise, branch to LHS. 2095 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2096 2097 if (CR.CaseBB == SwitchBB) 2098 visitSwitchCase(CB, SwitchBB); 2099 else 2100 SwitchCases.push_back(CB); 2101 2102 return true; 2103 } 2104 2105 /// handleBitTestsSwitchCase - if current case range has few destination and 2106 /// range span less, than machine word bitwidth, encode case range into series 2107 /// of masks and emit bit tests with these masks. 2108 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2109 CaseRecVector& WorkList, 2110 const Value* SV, 2111 MachineBasicBlock* Default, 2112 MachineBasicBlock *SwitchBB){ 2113 EVT PTy = TLI.getPointerTy(); 2114 unsigned IntPtrBits = PTy.getSizeInBits(); 2115 2116 Case& FrontCase = *CR.Range.first; 2117 Case& BackCase = *(CR.Range.second-1); 2118 2119 // Get the MachineFunction which holds the current MBB. This is used when 2120 // inserting any additional MBBs necessary to represent the switch. 2121 MachineFunction *CurMF = FuncInfo.MF; 2122 2123 // If target does not have legal shift left, do not emit bit tests at all. 2124 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 2125 return false; 2126 2127 size_t numCmps = 0; 2128 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2129 I!=E; ++I) { 2130 // Single case counts one, case range - two. 2131 numCmps += (I->Low == I->High ? 1 : 2); 2132 } 2133 2134 // Count unique destinations 2135 SmallSet<MachineBasicBlock*, 4> Dests; 2136 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2137 Dests.insert(I->BB); 2138 if (Dests.size() > 3) 2139 // Don't bother the code below, if there are too much unique destinations 2140 return false; 2141 } 2142 DEBUG(dbgs() << "Total number of unique destinations: " 2143 << Dests.size() << '\n' 2144 << "Total number of comparisons: " << numCmps << '\n'); 2145 2146 // Compute span of values. 2147 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2148 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2149 APInt cmpRange = maxValue - minValue; 2150 2151 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2152 << "Low bound: " << minValue << '\n' 2153 << "High bound: " << maxValue << '\n'); 2154 2155 if (cmpRange.uge(IntPtrBits) || 2156 (!(Dests.size() == 1 && numCmps >= 3) && 2157 !(Dests.size() == 2 && numCmps >= 5) && 2158 !(Dests.size() >= 3 && numCmps >= 6))) 2159 return false; 2160 2161 DEBUG(dbgs() << "Emitting bit tests\n"); 2162 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2163 2164 // Optimize the case where all the case values fit in a 2165 // word without having to subtract minValue. In this case, 2166 // we can optimize away the subtraction. 2167 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2168 cmpRange = maxValue; 2169 } else { 2170 lowBound = minValue; 2171 } 2172 2173 CaseBitsVector CasesBits; 2174 unsigned i, count = 0; 2175 2176 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2177 MachineBasicBlock* Dest = I->BB; 2178 for (i = 0; i < count; ++i) 2179 if (Dest == CasesBits[i].BB) 2180 break; 2181 2182 if (i == count) { 2183 assert((count < 3) && "Too much destinations to test!"); 2184 CasesBits.push_back(CaseBits(0, Dest, 0)); 2185 count++; 2186 } 2187 2188 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2189 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2190 2191 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2192 uint64_t hi = (highValue - lowBound).getZExtValue(); 2193 2194 for (uint64_t j = lo; j <= hi; j++) { 2195 CasesBits[i].Mask |= 1ULL << j; 2196 CasesBits[i].Bits++; 2197 } 2198 2199 } 2200 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2201 2202 BitTestInfo BTC; 2203 2204 // Figure out which block is immediately after the current one. 2205 MachineFunction::iterator BBI = CR.CaseBB; 2206 ++BBI; 2207 2208 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2209 2210 DEBUG(dbgs() << "Cases:\n"); 2211 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2212 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2213 << ", Bits: " << CasesBits[i].Bits 2214 << ", BB: " << CasesBits[i].BB << '\n'); 2215 2216 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2217 CurMF->insert(BBI, CaseBB); 2218 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2219 CaseBB, 2220 CasesBits[i].BB)); 2221 2222 // Put SV in a virtual register to make it available from the new blocks. 2223 ExportFromCurrentBlock(SV); 2224 } 2225 2226 BitTestBlock BTB(lowBound, cmpRange, SV, 2227 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2228 CR.CaseBB, Default, BTC); 2229 2230 if (CR.CaseBB == SwitchBB) 2231 visitBitTestHeader(BTB, SwitchBB); 2232 2233 BitTestCases.push_back(BTB); 2234 2235 return true; 2236 } 2237 2238 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2239 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2240 const SwitchInst& SI) { 2241 size_t numCmps = 0; 2242 2243 // Start with "simple" cases 2244 for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { 2245 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)]; 2246 Cases.push_back(Case(SI.getSuccessorValue(i), 2247 SI.getSuccessorValue(i), 2248 SMBB)); 2249 } 2250 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2251 2252 // Merge case into clusters 2253 if (Cases.size() >= 2) 2254 // Must recompute end() each iteration because it may be 2255 // invalidated by erase if we hold on to it 2256 for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin()); 2257 J != Cases.end(); ) { 2258 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2259 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2260 MachineBasicBlock* nextBB = J->BB; 2261 MachineBasicBlock* currentBB = I->BB; 2262 2263 // If the two neighboring cases go to the same destination, merge them 2264 // into a single case. 2265 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2266 I->High = J->High; 2267 J = Cases.erase(J); 2268 } else { 2269 I = J++; 2270 } 2271 } 2272 2273 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2274 if (I->Low != I->High) 2275 // A range counts double, since it requires two compares. 2276 ++numCmps; 2277 } 2278 2279 return numCmps; 2280 } 2281 2282 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2283 MachineBasicBlock *Last) { 2284 // Update JTCases. 2285 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2286 if (JTCases[i].first.HeaderBB == First) 2287 JTCases[i].first.HeaderBB = Last; 2288 2289 // Update BitTestCases. 2290 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2291 if (BitTestCases[i].Parent == First) 2292 BitTestCases[i].Parent = Last; 2293 } 2294 2295 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2296 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2297 2298 // Figure out which block is immediately after the current one. 2299 MachineBasicBlock *NextBlock = 0; 2300 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2301 2302 // If there is only the default destination, branch to it if it is not the 2303 // next basic block. Otherwise, just fall through. 2304 if (SI.getNumOperands() == 2) { 2305 // Update machine-CFG edges. 2306 2307 // If this is not a fall-through branch, emit the branch. 2308 SwitchMBB->addSuccessor(Default); 2309 if (Default != NextBlock) 2310 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 2311 MVT::Other, getControlRoot(), 2312 DAG.getBasicBlock(Default))); 2313 2314 return; 2315 } 2316 2317 // If there are any non-default case statements, create a vector of Cases 2318 // representing each one, and sort the vector so that we can efficiently 2319 // create a binary search tree from them. 2320 CaseVector Cases; 2321 size_t numCmps = Clusterify(Cases, SI); 2322 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2323 << ". Total compares: " << numCmps << '\n'); 2324 numCmps = 0; 2325 2326 // Get the Value to be switched on and default basic blocks, which will be 2327 // inserted into CaseBlock records, representing basic blocks in the binary 2328 // search tree. 2329 const Value *SV = SI.getOperand(0); 2330 2331 // Push the initial CaseRec onto the worklist 2332 CaseRecVector WorkList; 2333 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2334 CaseRange(Cases.begin(),Cases.end()))); 2335 2336 while (!WorkList.empty()) { 2337 // Grab a record representing a case range to process off the worklist 2338 CaseRec CR = WorkList.back(); 2339 WorkList.pop_back(); 2340 2341 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2342 continue; 2343 2344 // If the range has few cases (two or less) emit a series of specific 2345 // tests. 2346 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2347 continue; 2348 2349 // If the switch has more than 5 blocks, and at least 40% dense, and the 2350 // target supports indirect branches, then emit a jump table rather than 2351 // lowering the switch to a binary tree of conditional branches. 2352 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2353 continue; 2354 2355 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2356 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2357 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2358 } 2359 } 2360 2361 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2362 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2363 2364 // Update machine-CFG edges with unique successors. 2365 SmallVector<BasicBlock*, 32> succs; 2366 succs.reserve(I.getNumSuccessors()); 2367 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2368 succs.push_back(I.getSuccessor(i)); 2369 array_pod_sort(succs.begin(), succs.end()); 2370 succs.erase(std::unique(succs.begin(), succs.end()), succs.end()); 2371 for (unsigned i = 0, e = succs.size(); i != e; ++i) 2372 IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]); 2373 2374 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2375 MVT::Other, getControlRoot(), 2376 getValue(I.getAddress()))); 2377 } 2378 2379 void SelectionDAGBuilder::visitFSub(const User &I) { 2380 // -0.0 - X --> fneg 2381 const Type *Ty = I.getType(); 2382 if (isa<Constant>(I.getOperand(0)) && 2383 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2384 SDValue Op2 = getValue(I.getOperand(1)); 2385 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2386 Op2.getValueType(), Op2)); 2387 return; 2388 } 2389 2390 visitBinary(I, ISD::FSUB); 2391 } 2392 2393 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2394 SDValue Op1 = getValue(I.getOperand(0)); 2395 SDValue Op2 = getValue(I.getOperand(1)); 2396 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2397 Op1.getValueType(), Op1, Op2)); 2398 } 2399 2400 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2401 SDValue Op1 = getValue(I.getOperand(0)); 2402 SDValue Op2 = getValue(I.getOperand(1)); 2403 2404 MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType()); 2405 2406 // Coerce the shift amount to the right type if we can. 2407 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2408 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2409 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2410 DebugLoc DL = getCurDebugLoc(); 2411 2412 // If the operand is smaller than the shift count type, promote it. 2413 if (ShiftSize > Op2Size) 2414 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2415 2416 // If the operand is larger than the shift count type but the shift 2417 // count type has enough bits to represent any shift value, truncate 2418 // it now. This is a common case and it exposes the truncate to 2419 // optimization early. 2420 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2421 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2422 // Otherwise we'll need to temporarily settle for some other convenient 2423 // type. Type legalization will make adjustments once the shiftee is split. 2424 else 2425 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2426 } 2427 2428 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2429 Op1.getValueType(), Op1, Op2)); 2430 } 2431 2432 void SelectionDAGBuilder::visitICmp(const User &I) { 2433 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2434 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2435 predicate = IC->getPredicate(); 2436 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2437 predicate = ICmpInst::Predicate(IC->getPredicate()); 2438 SDValue Op1 = getValue(I.getOperand(0)); 2439 SDValue Op2 = getValue(I.getOperand(1)); 2440 ISD::CondCode Opcode = getICmpCondCode(predicate); 2441 2442 EVT DestVT = TLI.getValueType(I.getType()); 2443 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2444 } 2445 2446 void SelectionDAGBuilder::visitFCmp(const User &I) { 2447 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2448 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2449 predicate = FC->getPredicate(); 2450 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2451 predicate = FCmpInst::Predicate(FC->getPredicate()); 2452 SDValue Op1 = getValue(I.getOperand(0)); 2453 SDValue Op2 = getValue(I.getOperand(1)); 2454 ISD::CondCode Condition = getFCmpCondCode(predicate); 2455 EVT DestVT = TLI.getValueType(I.getType()); 2456 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2457 } 2458 2459 void SelectionDAGBuilder::visitSelect(const User &I) { 2460 SmallVector<EVT, 4> ValueVTs; 2461 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2462 unsigned NumValues = ValueVTs.size(); 2463 if (NumValues == 0) return; 2464 2465 SmallVector<SDValue, 4> Values(NumValues); 2466 SDValue Cond = getValue(I.getOperand(0)); 2467 SDValue TrueVal = getValue(I.getOperand(1)); 2468 SDValue FalseVal = getValue(I.getOperand(2)); 2469 2470 for (unsigned i = 0; i != NumValues; ++i) 2471 Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(), 2472 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2473 Cond, 2474 SDValue(TrueVal.getNode(), 2475 TrueVal.getResNo() + i), 2476 SDValue(FalseVal.getNode(), 2477 FalseVal.getResNo() + i)); 2478 2479 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2480 DAG.getVTList(&ValueVTs[0], NumValues), 2481 &Values[0], NumValues)); 2482 } 2483 2484 void SelectionDAGBuilder::visitTrunc(const User &I) { 2485 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2486 SDValue N = getValue(I.getOperand(0)); 2487 EVT DestVT = TLI.getValueType(I.getType()); 2488 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2489 } 2490 2491 void SelectionDAGBuilder::visitZExt(const User &I) { 2492 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2493 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2494 SDValue N = getValue(I.getOperand(0)); 2495 EVT DestVT = TLI.getValueType(I.getType()); 2496 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2497 } 2498 2499 void SelectionDAGBuilder::visitSExt(const User &I) { 2500 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2501 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2502 SDValue N = getValue(I.getOperand(0)); 2503 EVT DestVT = TLI.getValueType(I.getType()); 2504 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2505 } 2506 2507 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2508 // FPTrunc is never a no-op cast, no need to check 2509 SDValue N = getValue(I.getOperand(0)); 2510 EVT DestVT = TLI.getValueType(I.getType()); 2511 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2512 DestVT, N, DAG.getIntPtrConstant(0))); 2513 } 2514 2515 void SelectionDAGBuilder::visitFPExt(const User &I){ 2516 // FPTrunc is never a no-op cast, no need to check 2517 SDValue N = getValue(I.getOperand(0)); 2518 EVT DestVT = TLI.getValueType(I.getType()); 2519 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2520 } 2521 2522 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2523 // FPToUI is never a no-op cast, no need to check 2524 SDValue N = getValue(I.getOperand(0)); 2525 EVT DestVT = TLI.getValueType(I.getType()); 2526 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2527 } 2528 2529 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2530 // FPToSI is never a no-op cast, no need to check 2531 SDValue N = getValue(I.getOperand(0)); 2532 EVT DestVT = TLI.getValueType(I.getType()); 2533 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2534 } 2535 2536 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2537 // UIToFP is never a no-op cast, no need to check 2538 SDValue N = getValue(I.getOperand(0)); 2539 EVT DestVT = TLI.getValueType(I.getType()); 2540 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2541 } 2542 2543 void SelectionDAGBuilder::visitSIToFP(const User &I){ 2544 // SIToFP is never a no-op cast, no need to check 2545 SDValue N = getValue(I.getOperand(0)); 2546 EVT DestVT = TLI.getValueType(I.getType()); 2547 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2548 } 2549 2550 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2551 // What to do depends on the size of the integer and the size of the pointer. 2552 // We can either truncate, zero extend, or no-op, accordingly. 2553 SDValue N = getValue(I.getOperand(0)); 2554 EVT DestVT = TLI.getValueType(I.getType()); 2555 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2556 } 2557 2558 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2559 // What to do depends on the size of the integer and the size of the pointer. 2560 // We can either truncate, zero extend, or no-op, accordingly. 2561 SDValue N = getValue(I.getOperand(0)); 2562 EVT DestVT = TLI.getValueType(I.getType()); 2563 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2564 } 2565 2566 void SelectionDAGBuilder::visitBitCast(const User &I) { 2567 SDValue N = getValue(I.getOperand(0)); 2568 EVT DestVT = TLI.getValueType(I.getType()); 2569 2570 // BitCast assures us that source and destination are the same size so this is 2571 // either a BITCAST or a no-op. 2572 if (DestVT != N.getValueType()) 2573 setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 2574 DestVT, N)); // convert types. 2575 else 2576 setValue(&I, N); // noop cast. 2577 } 2578 2579 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2580 SDValue InVec = getValue(I.getOperand(0)); 2581 SDValue InVal = getValue(I.getOperand(1)); 2582 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2583 TLI.getPointerTy(), 2584 getValue(I.getOperand(2))); 2585 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2586 TLI.getValueType(I.getType()), 2587 InVec, InVal, InIdx)); 2588 } 2589 2590 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2591 SDValue InVec = getValue(I.getOperand(0)); 2592 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2593 TLI.getPointerTy(), 2594 getValue(I.getOperand(1))); 2595 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2596 TLI.getValueType(I.getType()), InVec, InIdx)); 2597 } 2598 2599 // Utility for visitShuffleVector - Returns true if the mask is mask starting 2600 // from SIndx and increasing to the element length (undefs are allowed). 2601 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) { 2602 unsigned MaskNumElts = Mask.size(); 2603 for (unsigned i = 0; i != MaskNumElts; ++i) 2604 if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx))) 2605 return false; 2606 return true; 2607 } 2608 2609 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2610 SmallVector<int, 8> Mask; 2611 SDValue Src1 = getValue(I.getOperand(0)); 2612 SDValue Src2 = getValue(I.getOperand(1)); 2613 2614 // Convert the ConstantVector mask operand into an array of ints, with -1 2615 // representing undef values. 2616 SmallVector<Constant*, 8> MaskElts; 2617 cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts); 2618 unsigned MaskNumElts = MaskElts.size(); 2619 for (unsigned i = 0; i != MaskNumElts; ++i) { 2620 if (isa<UndefValue>(MaskElts[i])) 2621 Mask.push_back(-1); 2622 else 2623 Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue()); 2624 } 2625 2626 EVT VT = TLI.getValueType(I.getType()); 2627 EVT SrcVT = Src1.getValueType(); 2628 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2629 2630 if (SrcNumElts == MaskNumElts) { 2631 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2632 &Mask[0])); 2633 return; 2634 } 2635 2636 // Normalize the shuffle vector since mask and vector length don't match. 2637 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2638 // Mask is longer than the source vectors and is a multiple of the source 2639 // vectors. We can use concatenate vector to make the mask and vectors 2640 // lengths match. 2641 if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { 2642 // The shuffle is concatenating two vectors together. 2643 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2644 VT, Src1, Src2)); 2645 return; 2646 } 2647 2648 // Pad both vectors with undefs to make them the same length as the mask. 2649 unsigned NumConcat = MaskNumElts / SrcNumElts; 2650 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2651 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2652 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2653 2654 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2655 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2656 MOps1[0] = Src1; 2657 MOps2[0] = Src2; 2658 2659 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2660 getCurDebugLoc(), VT, 2661 &MOps1[0], NumConcat); 2662 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2663 getCurDebugLoc(), VT, 2664 &MOps2[0], NumConcat); 2665 2666 // Readjust mask for new input vector length. 2667 SmallVector<int, 8> MappedOps; 2668 for (unsigned i = 0; i != MaskNumElts; ++i) { 2669 int Idx = Mask[i]; 2670 if (Idx < (int)SrcNumElts) 2671 MappedOps.push_back(Idx); 2672 else 2673 MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); 2674 } 2675 2676 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2677 &MappedOps[0])); 2678 return; 2679 } 2680 2681 if (SrcNumElts > MaskNumElts) { 2682 // Analyze the access pattern of the vector to see if we can extract 2683 // two subvectors and do the shuffle. The analysis is done by calculating 2684 // the range of elements the mask access on both vectors. 2685 int MinRange[2] = { SrcNumElts+1, SrcNumElts+1}; 2686 int MaxRange[2] = {-1, -1}; 2687 2688 for (unsigned i = 0; i != MaskNumElts; ++i) { 2689 int Idx = Mask[i]; 2690 int Input = 0; 2691 if (Idx < 0) 2692 continue; 2693 2694 if (Idx >= (int)SrcNumElts) { 2695 Input = 1; 2696 Idx -= SrcNumElts; 2697 } 2698 if (Idx > MaxRange[Input]) 2699 MaxRange[Input] = Idx; 2700 if (Idx < MinRange[Input]) 2701 MinRange[Input] = Idx; 2702 } 2703 2704 // Check if the access is smaller than the vector size and can we find 2705 // a reasonable extract index. 2706 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not 2707 // Extract. 2708 int StartIdx[2]; // StartIdx to extract from 2709 for (int Input=0; Input < 2; ++Input) { 2710 if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { 2711 RangeUse[Input] = 0; // Unused 2712 StartIdx[Input] = 0; 2713 } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { 2714 // Fits within range but we should see if we can find a good 2715 // start index that is a multiple of the mask length. 2716 if (MaxRange[Input] < (int)MaskNumElts) { 2717 RangeUse[Input] = 1; // Extract from beginning of the vector 2718 StartIdx[Input] = 0; 2719 } else { 2720 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2721 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2722 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2723 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2724 } 2725 } 2726 } 2727 2728 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2729 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2730 return; 2731 } 2732 else if (RangeUse[0] < 2 && RangeUse[1] < 2) { 2733 // Extract appropriate subvector and generate a vector shuffle 2734 for (int Input=0; Input < 2; ++Input) { 2735 SDValue &Src = Input == 0 ? Src1 : Src2; 2736 if (RangeUse[Input] == 0) 2737 Src = DAG.getUNDEF(VT); 2738 else 2739 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2740 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2741 } 2742 2743 // Calculate new mask. 2744 SmallVector<int, 8> MappedOps; 2745 for (unsigned i = 0; i != MaskNumElts; ++i) { 2746 int Idx = Mask[i]; 2747 if (Idx < 0) 2748 MappedOps.push_back(Idx); 2749 else if (Idx < (int)SrcNumElts) 2750 MappedOps.push_back(Idx - StartIdx[0]); 2751 else 2752 MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); 2753 } 2754 2755 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2756 &MappedOps[0])); 2757 return; 2758 } 2759 } 2760 2761 // We can't use either concat vectors or extract subvectors so fall back to 2762 // replacing the shuffle with extract and build vector. 2763 // to insert and build vector. 2764 EVT EltVT = VT.getVectorElementType(); 2765 EVT PtrVT = TLI.getPointerTy(); 2766 SmallVector<SDValue,8> Ops; 2767 for (unsigned i = 0; i != MaskNumElts; ++i) { 2768 if (Mask[i] < 0) { 2769 Ops.push_back(DAG.getUNDEF(EltVT)); 2770 } else { 2771 int Idx = Mask[i]; 2772 SDValue Res; 2773 2774 if (Idx < (int)SrcNumElts) 2775 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2776 EltVT, Src1, DAG.getConstant(Idx, PtrVT)); 2777 else 2778 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2779 EltVT, Src2, 2780 DAG.getConstant(Idx - SrcNumElts, PtrVT)); 2781 2782 Ops.push_back(Res); 2783 } 2784 } 2785 2786 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 2787 VT, &Ops[0], Ops.size())); 2788 } 2789 2790 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2791 const Value *Op0 = I.getOperand(0); 2792 const Value *Op1 = I.getOperand(1); 2793 const Type *AggTy = I.getType(); 2794 const Type *ValTy = Op1->getType(); 2795 bool IntoUndef = isa<UndefValue>(Op0); 2796 bool FromUndef = isa<UndefValue>(Op1); 2797 2798 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end()); 2799 2800 SmallVector<EVT, 4> AggValueVTs; 2801 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2802 SmallVector<EVT, 4> ValValueVTs; 2803 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2804 2805 unsigned NumAggValues = AggValueVTs.size(); 2806 unsigned NumValValues = ValValueVTs.size(); 2807 SmallVector<SDValue, 4> Values(NumAggValues); 2808 2809 SDValue Agg = getValue(Op0); 2810 SDValue Val = getValue(Op1); 2811 unsigned i = 0; 2812 // Copy the beginning value(s) from the original aggregate. 2813 for (; i != LinearIndex; ++i) 2814 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2815 SDValue(Agg.getNode(), Agg.getResNo() + i); 2816 // Copy values from the inserted value(s). 2817 for (; i != LinearIndex + NumValValues; ++i) 2818 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2819 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2820 // Copy remaining value(s) from the original aggregate. 2821 for (; i != NumAggValues; ++i) 2822 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2823 SDValue(Agg.getNode(), Agg.getResNo() + i); 2824 2825 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2826 DAG.getVTList(&AggValueVTs[0], NumAggValues), 2827 &Values[0], NumAggValues)); 2828 } 2829 2830 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2831 const Value *Op0 = I.getOperand(0); 2832 const Type *AggTy = Op0->getType(); 2833 const Type *ValTy = I.getType(); 2834 bool OutOfUndef = isa<UndefValue>(Op0); 2835 2836 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end()); 2837 2838 SmallVector<EVT, 4> ValValueVTs; 2839 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2840 2841 unsigned NumValValues = ValValueVTs.size(); 2842 SmallVector<SDValue, 4> Values(NumValValues); 2843 2844 SDValue Agg = getValue(Op0); 2845 // Copy out the selected value(s). 2846 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2847 Values[i - LinearIndex] = 2848 OutOfUndef ? 2849 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2850 SDValue(Agg.getNode(), Agg.getResNo() + i); 2851 2852 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2853 DAG.getVTList(&ValValueVTs[0], NumValValues), 2854 &Values[0], NumValValues)); 2855 } 2856 2857 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2858 SDValue N = getValue(I.getOperand(0)); 2859 const Type *Ty = I.getOperand(0)->getType(); 2860 2861 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2862 OI != E; ++OI) { 2863 const Value *Idx = *OI; 2864 if (const StructType *StTy = dyn_cast<StructType>(Ty)) { 2865 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2866 if (Field) { 2867 // N = N + Offset 2868 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 2869 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2870 DAG.getIntPtrConstant(Offset)); 2871 } 2872 2873 Ty = StTy->getElementType(Field); 2874 } else { 2875 Ty = cast<SequentialType>(Ty)->getElementType(); 2876 2877 // If this is a constant subscript, handle it quickly. 2878 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 2879 if (CI->isZero()) continue; 2880 uint64_t Offs = 2881 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 2882 SDValue OffsVal; 2883 EVT PTy = TLI.getPointerTy(); 2884 unsigned PtrBits = PTy.getSizeInBits(); 2885 if (PtrBits < 64) 2886 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2887 TLI.getPointerTy(), 2888 DAG.getConstant(Offs, MVT::i64)); 2889 else 2890 OffsVal = DAG.getIntPtrConstant(Offs); 2891 2892 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2893 OffsVal); 2894 continue; 2895 } 2896 2897 // N = N + Idx * ElementSize; 2898 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 2899 TD->getTypeAllocSize(Ty)); 2900 SDValue IdxN = getValue(Idx); 2901 2902 // If the index is smaller or larger than intptr_t, truncate or extend 2903 // it. 2904 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 2905 2906 // If this is a multiply by a power of two, turn it into a shl 2907 // immediately. This is a very common case. 2908 if (ElementSize != 1) { 2909 if (ElementSize.isPowerOf2()) { 2910 unsigned Amt = ElementSize.logBase2(); 2911 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 2912 N.getValueType(), IdxN, 2913 DAG.getConstant(Amt, TLI.getPointerTy())); 2914 } else { 2915 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 2916 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 2917 N.getValueType(), IdxN, Scale); 2918 } 2919 } 2920 2921 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2922 N.getValueType(), N, IdxN); 2923 } 2924 } 2925 2926 setValue(&I, N); 2927 } 2928 2929 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2930 // If this is a fixed sized alloca in the entry block of the function, 2931 // allocate it statically on the stack. 2932 if (FuncInfo.StaticAllocaMap.count(&I)) 2933 return; // getValue will auto-populate this. 2934 2935 const Type *Ty = I.getAllocatedType(); 2936 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 2937 unsigned Align = 2938 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 2939 I.getAlignment()); 2940 2941 SDValue AllocSize = getValue(I.getArraySize()); 2942 2943 EVT IntPtr = TLI.getPointerTy(); 2944 if (AllocSize.getValueType() != IntPtr) 2945 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 2946 2947 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr, 2948 AllocSize, 2949 DAG.getConstant(TySize, IntPtr)); 2950 2951 // Handle alignment. If the requested alignment is less than or equal to 2952 // the stack alignment, ignore it. If the size is greater than or equal to 2953 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2954 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 2955 if (Align <= StackAlign) 2956 Align = 0; 2957 2958 // Round the size of the allocation up to the stack alignment size 2959 // by add SA-1 to the size. 2960 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2961 AllocSize.getValueType(), AllocSize, 2962 DAG.getIntPtrConstant(StackAlign-1)); 2963 2964 // Mask out the low bits for alignment purposes. 2965 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 2966 AllocSize.getValueType(), AllocSize, 2967 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 2968 2969 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 2970 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2971 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 2972 VTs, Ops, 3); 2973 setValue(&I, DSA); 2974 DAG.setRoot(DSA.getValue(1)); 2975 2976 // Inform the Frame Information that we have just allocated a variable-sized 2977 // object. 2978 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); 2979 } 2980 2981 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2982 const Value *SV = I.getOperand(0); 2983 SDValue Ptr = getValue(SV); 2984 2985 const Type *Ty = I.getType(); 2986 2987 bool isVolatile = I.isVolatile(); 2988 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 2989 unsigned Alignment = I.getAlignment(); 2990 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 2991 2992 SmallVector<EVT, 4> ValueVTs; 2993 SmallVector<uint64_t, 4> Offsets; 2994 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 2995 unsigned NumValues = ValueVTs.size(); 2996 if (NumValues == 0) 2997 return; 2998 2999 SDValue Root; 3000 bool ConstantMemory = false; 3001 if (I.isVolatile() || NumValues > MaxParallelChains) 3002 // Serialize volatile loads with other side effects. 3003 Root = getRoot(); 3004 else if (AA->pointsToConstantMemory( 3005 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3006 // Do not serialize (non-volatile) loads of constant memory with anything. 3007 Root = DAG.getEntryNode(); 3008 ConstantMemory = true; 3009 } else { 3010 // Do not serialize non-volatile loads against each other. 3011 Root = DAG.getRoot(); 3012 } 3013 3014 SmallVector<SDValue, 4> Values(NumValues); 3015 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3016 NumValues)); 3017 EVT PtrVT = Ptr.getValueType(); 3018 unsigned ChainI = 0; 3019 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3020 // Serializing loads here may result in excessive register pressure, and 3021 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3022 // could recover a bit by hoisting nodes upward in the chain by recognizing 3023 // they are side-effect free or do not alias. The optimizer should really 3024 // avoid this case by converting large object/array copies to llvm.memcpy 3025 // (MaxParallelChains should always remain as failsafe). 3026 if (ChainI == MaxParallelChains) { 3027 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3028 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3029 MVT::Other, &Chains[0], ChainI); 3030 Root = Chain; 3031 ChainI = 0; 3032 } 3033 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3034 PtrVT, Ptr, 3035 DAG.getConstant(Offsets[i], PtrVT)); 3036 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 3037 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3038 isNonTemporal, Alignment, TBAAInfo); 3039 3040 Values[i] = L; 3041 Chains[ChainI] = L.getValue(1); 3042 } 3043 3044 if (!ConstantMemory) { 3045 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3046 MVT::Other, &Chains[0], ChainI); 3047 if (isVolatile) 3048 DAG.setRoot(Chain); 3049 else 3050 PendingLoads.push_back(Chain); 3051 } 3052 3053 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3054 DAG.getVTList(&ValueVTs[0], NumValues), 3055 &Values[0], NumValues)); 3056 } 3057 3058 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3059 const Value *SrcV = I.getOperand(0); 3060 const Value *PtrV = I.getOperand(1); 3061 3062 SmallVector<EVT, 4> ValueVTs; 3063 SmallVector<uint64_t, 4> Offsets; 3064 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 3065 unsigned NumValues = ValueVTs.size(); 3066 if (NumValues == 0) 3067 return; 3068 3069 // Get the lowered operands. Note that we do this after 3070 // checking if NumResults is zero, because with zero results 3071 // the operands won't have values in the map. 3072 SDValue Src = getValue(SrcV); 3073 SDValue Ptr = getValue(PtrV); 3074 3075 SDValue Root = getRoot(); 3076 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3077 NumValues)); 3078 EVT PtrVT = Ptr.getValueType(); 3079 bool isVolatile = I.isVolatile(); 3080 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3081 unsigned Alignment = I.getAlignment(); 3082 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3083 3084 unsigned ChainI = 0; 3085 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3086 // See visitLoad comments. 3087 if (ChainI == MaxParallelChains) { 3088 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3089 MVT::Other, &Chains[0], ChainI); 3090 Root = Chain; 3091 ChainI = 0; 3092 } 3093 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 3094 DAG.getConstant(Offsets[i], PtrVT)); 3095 SDValue St = DAG.getStore(Root, getCurDebugLoc(), 3096 SDValue(Src.getNode(), Src.getResNo() + i), 3097 Add, MachinePointerInfo(PtrV, Offsets[i]), 3098 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3099 Chains[ChainI] = St; 3100 } 3101 3102 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3103 MVT::Other, &Chains[0], ChainI); 3104 ++SDNodeOrder; 3105 AssignOrderingToNode(StoreNode.getNode()); 3106 DAG.setRoot(StoreNode); 3107 } 3108 3109 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3110 /// node. 3111 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3112 unsigned Intrinsic) { 3113 bool HasChain = !I.doesNotAccessMemory(); 3114 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3115 3116 // Build the operand list. 3117 SmallVector<SDValue, 8> Ops; 3118 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3119 if (OnlyLoad) { 3120 // We don't need to serialize loads against other loads. 3121 Ops.push_back(DAG.getRoot()); 3122 } else { 3123 Ops.push_back(getRoot()); 3124 } 3125 } 3126 3127 // Info is set by getTgtMemInstrinsic 3128 TargetLowering::IntrinsicInfo Info; 3129 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3130 3131 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3132 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3133 Info.opc == ISD::INTRINSIC_W_CHAIN) 3134 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); 3135 3136 // Add all operands of the call to the operand list. 3137 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3138 SDValue Op = getValue(I.getArgOperand(i)); 3139 assert(TLI.isTypeLegal(Op.getValueType()) && 3140 "Intrinsic uses a non-legal type?"); 3141 Ops.push_back(Op); 3142 } 3143 3144 SmallVector<EVT, 4> ValueVTs; 3145 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3146 #ifndef NDEBUG 3147 for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) { 3148 assert(TLI.isTypeLegal(ValueVTs[Val]) && 3149 "Intrinsic uses a non-legal type?"); 3150 } 3151 #endif // NDEBUG 3152 3153 if (HasChain) 3154 ValueVTs.push_back(MVT::Other); 3155 3156 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3157 3158 // Create the node. 3159 SDValue Result; 3160 if (IsTgtIntrinsic) { 3161 // This is target intrinsic that touches memory 3162 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 3163 VTs, &Ops[0], Ops.size(), 3164 Info.memVT, 3165 MachinePointerInfo(Info.ptrVal, Info.offset), 3166 Info.align, Info.vol, 3167 Info.readMem, Info.writeMem); 3168 } else if (!HasChain) { 3169 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 3170 VTs, &Ops[0], Ops.size()); 3171 } else if (!I.getType()->isVoidTy()) { 3172 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 3173 VTs, &Ops[0], Ops.size()); 3174 } else { 3175 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 3176 VTs, &Ops[0], Ops.size()); 3177 } 3178 3179 if (HasChain) { 3180 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3181 if (OnlyLoad) 3182 PendingLoads.push_back(Chain); 3183 else 3184 DAG.setRoot(Chain); 3185 } 3186 3187 if (!I.getType()->isVoidTy()) { 3188 if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3189 EVT VT = TLI.getValueType(PTy); 3190 Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result); 3191 } 3192 3193 setValue(&I, Result); 3194 } 3195 } 3196 3197 /// GetSignificand - Get the significand and build it into a floating-point 3198 /// number with exponent of 1: 3199 /// 3200 /// Op = (Op & 0x007fffff) | 0x3f800000; 3201 /// 3202 /// where Op is the hexidecimal representation of floating point value. 3203 static SDValue 3204 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 3205 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3206 DAG.getConstant(0x007fffff, MVT::i32)); 3207 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3208 DAG.getConstant(0x3f800000, MVT::i32)); 3209 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3210 } 3211 3212 /// GetExponent - Get the exponent: 3213 /// 3214 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3215 /// 3216 /// where Op is the hexidecimal representation of floating point value. 3217 static SDValue 3218 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3219 DebugLoc dl) { 3220 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3221 DAG.getConstant(0x7f800000, MVT::i32)); 3222 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3223 DAG.getConstant(23, TLI.getPointerTy())); 3224 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3225 DAG.getConstant(127, MVT::i32)); 3226 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3227 } 3228 3229 /// getF32Constant - Get 32-bit floating point constant. 3230 static SDValue 3231 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3232 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 3233 } 3234 3235 /// Inlined utility function to implement binary input atomic intrinsics for 3236 /// visitIntrinsicCall: I is a call instruction 3237 /// Op is the associated NodeType for I 3238 const char * 3239 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I, 3240 ISD::NodeType Op) { 3241 SDValue Root = getRoot(); 3242 SDValue L = 3243 DAG.getAtomic(Op, getCurDebugLoc(), 3244 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(), 3245 Root, 3246 getValue(I.getArgOperand(0)), 3247 getValue(I.getArgOperand(1)), 3248 I.getArgOperand(0)); 3249 setValue(&I, L); 3250 DAG.setRoot(L.getValue(1)); 3251 return 0; 3252 } 3253 3254 // implVisitAluOverflow - Lower arithmetic overflow instrinsics. 3255 const char * 3256 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) { 3257 SDValue Op1 = getValue(I.getArgOperand(0)); 3258 SDValue Op2 = getValue(I.getArgOperand(1)); 3259 3260 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 3261 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); 3262 return 0; 3263 } 3264 3265 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 3266 /// limited-precision mode. 3267 void 3268 SelectionDAGBuilder::visitExp(const CallInst &I) { 3269 SDValue result; 3270 DebugLoc dl = getCurDebugLoc(); 3271 3272 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3273 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3274 SDValue Op = getValue(I.getArgOperand(0)); 3275 3276 // Put the exponent in the right bit position for later addition to the 3277 // final result: 3278 // 3279 // #define LOG2OFe 1.4426950f 3280 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3281 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3282 getF32Constant(DAG, 0x3fb8aa3b)); 3283 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3284 3285 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3286 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3287 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3288 3289 // IntegerPartOfX <<= 23; 3290 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3291 DAG.getConstant(23, TLI.getPointerTy())); 3292 3293 if (LimitFloatPrecision <= 6) { 3294 // For floating-point precision of 6: 3295 // 3296 // TwoToFractionalPartOfX = 3297 // 0.997535578f + 3298 // (0.735607626f + 0.252464424f * x) * x; 3299 // 3300 // error 0.0144103317, which is 6 bits 3301 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3302 getF32Constant(DAG, 0x3e814304)); 3303 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3304 getF32Constant(DAG, 0x3f3c50c8)); 3305 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3306 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3307 getF32Constant(DAG, 0x3f7f5e7e)); 3308 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5); 3309 3310 // Add the exponent into the result in integer domain. 3311 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3312 TwoToFracPartOfX, IntegerPartOfX); 3313 3314 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6); 3315 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3316 // For floating-point precision of 12: 3317 // 3318 // TwoToFractionalPartOfX = 3319 // 0.999892986f + 3320 // (0.696457318f + 3321 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3322 // 3323 // 0.000107046256 error, which is 13 to 14 bits 3324 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3325 getF32Constant(DAG, 0x3da235e3)); 3326 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3327 getF32Constant(DAG, 0x3e65b8f3)); 3328 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3329 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3330 getF32Constant(DAG, 0x3f324b07)); 3331 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3332 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3333 getF32Constant(DAG, 0x3f7ff8fd)); 3334 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7); 3335 3336 // Add the exponent into the result in integer domain. 3337 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3338 TwoToFracPartOfX, IntegerPartOfX); 3339 3340 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8); 3341 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3342 // For floating-point precision of 18: 3343 // 3344 // TwoToFractionalPartOfX = 3345 // 0.999999982f + 3346 // (0.693148872f + 3347 // (0.240227044f + 3348 // (0.554906021e-1f + 3349 // (0.961591928e-2f + 3350 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3351 // 3352 // error 2.47208000*10^(-7), which is better than 18 bits 3353 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3354 getF32Constant(DAG, 0x3924b03e)); 3355 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3356 getF32Constant(DAG, 0x3ab24b87)); 3357 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3358 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3359 getF32Constant(DAG, 0x3c1d8c17)); 3360 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3361 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3362 getF32Constant(DAG, 0x3d634a1d)); 3363 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3364 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3365 getF32Constant(DAG, 0x3e75fe14)); 3366 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3367 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3368 getF32Constant(DAG, 0x3f317234)); 3369 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3370 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3371 getF32Constant(DAG, 0x3f800000)); 3372 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl, 3373 MVT::i32, t13); 3374 3375 // Add the exponent into the result in integer domain. 3376 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3377 TwoToFracPartOfX, IntegerPartOfX); 3378 3379 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14); 3380 } 3381 } else { 3382 // No special expansion. 3383 result = DAG.getNode(ISD::FEXP, dl, 3384 getValue(I.getArgOperand(0)).getValueType(), 3385 getValue(I.getArgOperand(0))); 3386 } 3387 3388 setValue(&I, result); 3389 } 3390 3391 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3392 /// limited-precision mode. 3393 void 3394 SelectionDAGBuilder::visitLog(const CallInst &I) { 3395 SDValue result; 3396 DebugLoc dl = getCurDebugLoc(); 3397 3398 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3399 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3400 SDValue Op = getValue(I.getArgOperand(0)); 3401 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3402 3403 // Scale the exponent by log(2) [0.69314718f]. 3404 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3405 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3406 getF32Constant(DAG, 0x3f317218)); 3407 3408 // Get the significand and build it into a floating-point number with 3409 // exponent of 1. 3410 SDValue X = GetSignificand(DAG, Op1, dl); 3411 3412 if (LimitFloatPrecision <= 6) { 3413 // For floating-point precision of 6: 3414 // 3415 // LogofMantissa = 3416 // -1.1609546f + 3417 // (1.4034025f - 0.23903021f * x) * x; 3418 // 3419 // error 0.0034276066, which is better than 8 bits 3420 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3421 getF32Constant(DAG, 0xbe74c456)); 3422 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3423 getF32Constant(DAG, 0x3fb3a2b1)); 3424 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3425 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3426 getF32Constant(DAG, 0x3f949a29)); 3427 3428 result = DAG.getNode(ISD::FADD, dl, 3429 MVT::f32, LogOfExponent, LogOfMantissa); 3430 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3431 // For floating-point precision of 12: 3432 // 3433 // LogOfMantissa = 3434 // -1.7417939f + 3435 // (2.8212026f + 3436 // (-1.4699568f + 3437 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3438 // 3439 // error 0.000061011436, which is 14 bits 3440 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3441 getF32Constant(DAG, 0xbd67b6d6)); 3442 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3443 getF32Constant(DAG, 0x3ee4f4b8)); 3444 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3445 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3446 getF32Constant(DAG, 0x3fbc278b)); 3447 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3448 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3449 getF32Constant(DAG, 0x40348e95)); 3450 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3451 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3452 getF32Constant(DAG, 0x3fdef31a)); 3453 3454 result = DAG.getNode(ISD::FADD, dl, 3455 MVT::f32, LogOfExponent, LogOfMantissa); 3456 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3457 // For floating-point precision of 18: 3458 // 3459 // LogOfMantissa = 3460 // -2.1072184f + 3461 // (4.2372794f + 3462 // (-3.7029485f + 3463 // (2.2781945f + 3464 // (-0.87823314f + 3465 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3466 // 3467 // error 0.0000023660568, which is better than 18 bits 3468 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3469 getF32Constant(DAG, 0xbc91e5ac)); 3470 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3471 getF32Constant(DAG, 0x3e4350aa)); 3472 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3473 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3474 getF32Constant(DAG, 0x3f60d3e3)); 3475 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3476 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3477 getF32Constant(DAG, 0x4011cdf0)); 3478 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3479 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3480 getF32Constant(DAG, 0x406cfd1c)); 3481 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3482 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3483 getF32Constant(DAG, 0x408797cb)); 3484 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3485 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3486 getF32Constant(DAG, 0x4006dcab)); 3487 3488 result = DAG.getNode(ISD::FADD, dl, 3489 MVT::f32, LogOfExponent, LogOfMantissa); 3490 } 3491 } else { 3492 // No special expansion. 3493 result = DAG.getNode(ISD::FLOG, dl, 3494 getValue(I.getArgOperand(0)).getValueType(), 3495 getValue(I.getArgOperand(0))); 3496 } 3497 3498 setValue(&I, result); 3499 } 3500 3501 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3502 /// limited-precision mode. 3503 void 3504 SelectionDAGBuilder::visitLog2(const CallInst &I) { 3505 SDValue result; 3506 DebugLoc dl = getCurDebugLoc(); 3507 3508 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3509 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3510 SDValue Op = getValue(I.getArgOperand(0)); 3511 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3512 3513 // Get the exponent. 3514 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3515 3516 // Get the significand and build it into a floating-point number with 3517 // exponent of 1. 3518 SDValue X = GetSignificand(DAG, Op1, dl); 3519 3520 // Different possible minimax approximations of significand in 3521 // floating-point for various degrees of accuracy over [1,2]. 3522 if (LimitFloatPrecision <= 6) { 3523 // For floating-point precision of 6: 3524 // 3525 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3526 // 3527 // error 0.0049451742, which is more than 7 bits 3528 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3529 getF32Constant(DAG, 0xbeb08fe0)); 3530 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3531 getF32Constant(DAG, 0x40019463)); 3532 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3533 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3534 getF32Constant(DAG, 0x3fd6633d)); 3535 3536 result = DAG.getNode(ISD::FADD, dl, 3537 MVT::f32, LogOfExponent, Log2ofMantissa); 3538 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3539 // For floating-point precision of 12: 3540 // 3541 // Log2ofMantissa = 3542 // -2.51285454f + 3543 // (4.07009056f + 3544 // (-2.12067489f + 3545 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3546 // 3547 // error 0.0000876136000, which is better than 13 bits 3548 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3549 getF32Constant(DAG, 0xbda7262e)); 3550 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3551 getF32Constant(DAG, 0x3f25280b)); 3552 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3553 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3554 getF32Constant(DAG, 0x4007b923)); 3555 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3556 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3557 getF32Constant(DAG, 0x40823e2f)); 3558 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3559 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3560 getF32Constant(DAG, 0x4020d29c)); 3561 3562 result = DAG.getNode(ISD::FADD, dl, 3563 MVT::f32, LogOfExponent, Log2ofMantissa); 3564 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3565 // For floating-point precision of 18: 3566 // 3567 // Log2ofMantissa = 3568 // -3.0400495f + 3569 // (6.1129976f + 3570 // (-5.3420409f + 3571 // (3.2865683f + 3572 // (-1.2669343f + 3573 // (0.27515199f - 3574 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3575 // 3576 // error 0.0000018516, which is better than 18 bits 3577 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3578 getF32Constant(DAG, 0xbcd2769e)); 3579 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3580 getF32Constant(DAG, 0x3e8ce0b9)); 3581 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3582 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3583 getF32Constant(DAG, 0x3fa22ae7)); 3584 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3585 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3586 getF32Constant(DAG, 0x40525723)); 3587 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3588 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3589 getF32Constant(DAG, 0x40aaf200)); 3590 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3591 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3592 getF32Constant(DAG, 0x40c39dad)); 3593 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3594 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3595 getF32Constant(DAG, 0x4042902c)); 3596 3597 result = DAG.getNode(ISD::FADD, dl, 3598 MVT::f32, LogOfExponent, Log2ofMantissa); 3599 } 3600 } else { 3601 // No special expansion. 3602 result = DAG.getNode(ISD::FLOG2, dl, 3603 getValue(I.getArgOperand(0)).getValueType(), 3604 getValue(I.getArgOperand(0))); 3605 } 3606 3607 setValue(&I, result); 3608 } 3609 3610 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3611 /// limited-precision mode. 3612 void 3613 SelectionDAGBuilder::visitLog10(const CallInst &I) { 3614 SDValue result; 3615 DebugLoc dl = getCurDebugLoc(); 3616 3617 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3618 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3619 SDValue Op = getValue(I.getArgOperand(0)); 3620 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3621 3622 // Scale the exponent by log10(2) [0.30102999f]. 3623 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3624 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3625 getF32Constant(DAG, 0x3e9a209a)); 3626 3627 // Get the significand and build it into a floating-point number with 3628 // exponent of 1. 3629 SDValue X = GetSignificand(DAG, Op1, dl); 3630 3631 if (LimitFloatPrecision <= 6) { 3632 // For floating-point precision of 6: 3633 // 3634 // Log10ofMantissa = 3635 // -0.50419619f + 3636 // (0.60948995f - 0.10380950f * x) * x; 3637 // 3638 // error 0.0014886165, which is 6 bits 3639 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3640 getF32Constant(DAG, 0xbdd49a13)); 3641 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3642 getF32Constant(DAG, 0x3f1c0789)); 3643 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3644 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3645 getF32Constant(DAG, 0x3f011300)); 3646 3647 result = DAG.getNode(ISD::FADD, dl, 3648 MVT::f32, LogOfExponent, Log10ofMantissa); 3649 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3650 // For floating-point precision of 12: 3651 // 3652 // Log10ofMantissa = 3653 // -0.64831180f + 3654 // (0.91751397f + 3655 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3656 // 3657 // error 0.00019228036, which is better than 12 bits 3658 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3659 getF32Constant(DAG, 0x3d431f31)); 3660 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3661 getF32Constant(DAG, 0x3ea21fb2)); 3662 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3663 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3664 getF32Constant(DAG, 0x3f6ae232)); 3665 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3666 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3667 getF32Constant(DAG, 0x3f25f7c3)); 3668 3669 result = DAG.getNode(ISD::FADD, dl, 3670 MVT::f32, LogOfExponent, Log10ofMantissa); 3671 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3672 // For floating-point precision of 18: 3673 // 3674 // Log10ofMantissa = 3675 // -0.84299375f + 3676 // (1.5327582f + 3677 // (-1.0688956f + 3678 // (0.49102474f + 3679 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3680 // 3681 // error 0.0000037995730, which is better than 18 bits 3682 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3683 getF32Constant(DAG, 0x3c5d51ce)); 3684 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3685 getF32Constant(DAG, 0x3e00685a)); 3686 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3687 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3688 getF32Constant(DAG, 0x3efb6798)); 3689 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3690 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3691 getF32Constant(DAG, 0x3f88d192)); 3692 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3693 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3694 getF32Constant(DAG, 0x3fc4316c)); 3695 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3696 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3697 getF32Constant(DAG, 0x3f57ce70)); 3698 3699 result = DAG.getNode(ISD::FADD, dl, 3700 MVT::f32, LogOfExponent, Log10ofMantissa); 3701 } 3702 } else { 3703 // No special expansion. 3704 result = DAG.getNode(ISD::FLOG10, dl, 3705 getValue(I.getArgOperand(0)).getValueType(), 3706 getValue(I.getArgOperand(0))); 3707 } 3708 3709 setValue(&I, result); 3710 } 3711 3712 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3713 /// limited-precision mode. 3714 void 3715 SelectionDAGBuilder::visitExp2(const CallInst &I) { 3716 SDValue result; 3717 DebugLoc dl = getCurDebugLoc(); 3718 3719 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3720 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3721 SDValue Op = getValue(I.getArgOperand(0)); 3722 3723 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 3724 3725 // FractionalPartOfX = x - (float)IntegerPartOfX; 3726 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3727 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 3728 3729 // IntegerPartOfX <<= 23; 3730 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3731 DAG.getConstant(23, TLI.getPointerTy())); 3732 3733 if (LimitFloatPrecision <= 6) { 3734 // For floating-point precision of 6: 3735 // 3736 // TwoToFractionalPartOfX = 3737 // 0.997535578f + 3738 // (0.735607626f + 0.252464424f * x) * x; 3739 // 3740 // error 0.0144103317, which is 6 bits 3741 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3742 getF32Constant(DAG, 0x3e814304)); 3743 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3744 getF32Constant(DAG, 0x3f3c50c8)); 3745 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3746 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3747 getF32Constant(DAG, 0x3f7f5e7e)); 3748 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 3749 SDValue TwoToFractionalPartOfX = 3750 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3751 3752 result = DAG.getNode(ISD::BITCAST, dl, 3753 MVT::f32, TwoToFractionalPartOfX); 3754 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3755 // For floating-point precision of 12: 3756 // 3757 // TwoToFractionalPartOfX = 3758 // 0.999892986f + 3759 // (0.696457318f + 3760 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3761 // 3762 // error 0.000107046256, which is 13 to 14 bits 3763 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3764 getF32Constant(DAG, 0x3da235e3)); 3765 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3766 getF32Constant(DAG, 0x3e65b8f3)); 3767 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3768 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3769 getF32Constant(DAG, 0x3f324b07)); 3770 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3771 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3772 getF32Constant(DAG, 0x3f7ff8fd)); 3773 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 3774 SDValue TwoToFractionalPartOfX = 3775 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3776 3777 result = DAG.getNode(ISD::BITCAST, dl, 3778 MVT::f32, TwoToFractionalPartOfX); 3779 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3780 // For floating-point precision of 18: 3781 // 3782 // TwoToFractionalPartOfX = 3783 // 0.999999982f + 3784 // (0.693148872f + 3785 // (0.240227044f + 3786 // (0.554906021e-1f + 3787 // (0.961591928e-2f + 3788 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3789 // error 2.47208000*10^(-7), which is better than 18 bits 3790 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3791 getF32Constant(DAG, 0x3924b03e)); 3792 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3793 getF32Constant(DAG, 0x3ab24b87)); 3794 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3795 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3796 getF32Constant(DAG, 0x3c1d8c17)); 3797 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3798 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3799 getF32Constant(DAG, 0x3d634a1d)); 3800 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3801 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3802 getF32Constant(DAG, 0x3e75fe14)); 3803 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3804 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3805 getF32Constant(DAG, 0x3f317234)); 3806 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3807 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3808 getF32Constant(DAG, 0x3f800000)); 3809 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 3810 SDValue TwoToFractionalPartOfX = 3811 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3812 3813 result = DAG.getNode(ISD::BITCAST, dl, 3814 MVT::f32, TwoToFractionalPartOfX); 3815 } 3816 } else { 3817 // No special expansion. 3818 result = DAG.getNode(ISD::FEXP2, dl, 3819 getValue(I.getArgOperand(0)).getValueType(), 3820 getValue(I.getArgOperand(0))); 3821 } 3822 3823 setValue(&I, result); 3824 } 3825 3826 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3827 /// limited-precision mode with x == 10.0f. 3828 void 3829 SelectionDAGBuilder::visitPow(const CallInst &I) { 3830 SDValue result; 3831 const Value *Val = I.getArgOperand(0); 3832 DebugLoc dl = getCurDebugLoc(); 3833 bool IsExp10 = false; 3834 3835 if (getValue(Val).getValueType() == MVT::f32 && 3836 getValue(I.getArgOperand(1)).getValueType() == MVT::f32 && 3837 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3838 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 3839 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3840 APFloat Ten(10.0f); 3841 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 3842 } 3843 } 3844 } 3845 3846 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3847 SDValue Op = getValue(I.getArgOperand(1)); 3848 3849 // Put the exponent in the right bit position for later addition to the 3850 // final result: 3851 // 3852 // #define LOG2OF10 3.3219281f 3853 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 3854 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3855 getF32Constant(DAG, 0x40549a78)); 3856 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3857 3858 // FractionalPartOfX = x - (float)IntegerPartOfX; 3859 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3860 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3861 3862 // IntegerPartOfX <<= 23; 3863 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3864 DAG.getConstant(23, TLI.getPointerTy())); 3865 3866 if (LimitFloatPrecision <= 6) { 3867 // For floating-point precision of 6: 3868 // 3869 // twoToFractionalPartOfX = 3870 // 0.997535578f + 3871 // (0.735607626f + 0.252464424f * x) * x; 3872 // 3873 // error 0.0144103317, which is 6 bits 3874 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3875 getF32Constant(DAG, 0x3e814304)); 3876 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3877 getF32Constant(DAG, 0x3f3c50c8)); 3878 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3879 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3880 getF32Constant(DAG, 0x3f7f5e7e)); 3881 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 3882 SDValue TwoToFractionalPartOfX = 3883 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3884 3885 result = DAG.getNode(ISD::BITCAST, dl, 3886 MVT::f32, TwoToFractionalPartOfX); 3887 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3888 // For floating-point precision of 12: 3889 // 3890 // TwoToFractionalPartOfX = 3891 // 0.999892986f + 3892 // (0.696457318f + 3893 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3894 // 3895 // error 0.000107046256, which is 13 to 14 bits 3896 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3897 getF32Constant(DAG, 0x3da235e3)); 3898 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3899 getF32Constant(DAG, 0x3e65b8f3)); 3900 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3901 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3902 getF32Constant(DAG, 0x3f324b07)); 3903 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3904 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3905 getF32Constant(DAG, 0x3f7ff8fd)); 3906 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 3907 SDValue TwoToFractionalPartOfX = 3908 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3909 3910 result = DAG.getNode(ISD::BITCAST, dl, 3911 MVT::f32, TwoToFractionalPartOfX); 3912 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3913 // For floating-point precision of 18: 3914 // 3915 // TwoToFractionalPartOfX = 3916 // 0.999999982f + 3917 // (0.693148872f + 3918 // (0.240227044f + 3919 // (0.554906021e-1f + 3920 // (0.961591928e-2f + 3921 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3922 // error 2.47208000*10^(-7), which is better than 18 bits 3923 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3924 getF32Constant(DAG, 0x3924b03e)); 3925 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3926 getF32Constant(DAG, 0x3ab24b87)); 3927 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3928 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3929 getF32Constant(DAG, 0x3c1d8c17)); 3930 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3931 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3932 getF32Constant(DAG, 0x3d634a1d)); 3933 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3934 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3935 getF32Constant(DAG, 0x3e75fe14)); 3936 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3937 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3938 getF32Constant(DAG, 0x3f317234)); 3939 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3940 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3941 getF32Constant(DAG, 0x3f800000)); 3942 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 3943 SDValue TwoToFractionalPartOfX = 3944 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3945 3946 result = DAG.getNode(ISD::BITCAST, dl, 3947 MVT::f32, TwoToFractionalPartOfX); 3948 } 3949 } else { 3950 // No special expansion. 3951 result = DAG.getNode(ISD::FPOW, dl, 3952 getValue(I.getArgOperand(0)).getValueType(), 3953 getValue(I.getArgOperand(0)), 3954 getValue(I.getArgOperand(1))); 3955 } 3956 3957 setValue(&I, result); 3958 } 3959 3960 3961 /// ExpandPowI - Expand a llvm.powi intrinsic. 3962 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 3963 SelectionDAG &DAG) { 3964 // If RHS is a constant, we can expand this out to a multiplication tree, 3965 // otherwise we end up lowering to a call to __powidf2 (for example). When 3966 // optimizing for size, we only want to do this if the expansion would produce 3967 // a small number of multiplies, otherwise we do the full expansion. 3968 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3969 // Get the exponent as a positive value. 3970 unsigned Val = RHSC->getSExtValue(); 3971 if ((int)Val < 0) Val = -Val; 3972 3973 // powi(x, 0) -> 1.0 3974 if (Val == 0) 3975 return DAG.getConstantFP(1.0, LHS.getValueType()); 3976 3977 const Function *F = DAG.getMachineFunction().getFunction(); 3978 if (!F->hasFnAttr(Attribute::OptimizeForSize) || 3979 // If optimizing for size, don't insert too many multiplies. This 3980 // inserts up to 5 multiplies. 3981 CountPopulation_32(Val)+Log2_32(Val) < 7) { 3982 // We use the simple binary decomposition method to generate the multiply 3983 // sequence. There are more optimal ways to do this (for example, 3984 // powi(x,15) generates one more multiply than it should), but this has 3985 // the benefit of being both really simple and much better than a libcall. 3986 SDValue Res; // Logically starts equal to 1.0 3987 SDValue CurSquare = LHS; 3988 while (Val) { 3989 if (Val & 1) { 3990 if (Res.getNode()) 3991 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3992 else 3993 Res = CurSquare; // 1.0*CurSquare. 3994 } 3995 3996 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3997 CurSquare, CurSquare); 3998 Val >>= 1; 3999 } 4000 4001 // If the original was negative, invert the result, producing 1/(x*x*x). 4002 if (RHSC->getSExtValue() < 0) 4003 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4004 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4005 return Res; 4006 } 4007 } 4008 4009 // Otherwise, expand to a libcall. 4010 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4011 } 4012 4013 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4014 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4015 /// At the end of instruction selection, they will be inserted to the entry BB. 4016 bool 4017 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4018 int64_t Offset, 4019 const SDValue &N) { 4020 const Argument *Arg = dyn_cast<Argument>(V); 4021 if (!Arg) 4022 return false; 4023 4024 MachineFunction &MF = DAG.getMachineFunction(); 4025 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4026 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 4027 4028 // Ignore inlined function arguments here. 4029 DIVariable DV(Variable); 4030 if (DV.isInlinedFnArgument(MF.getFunction())) 4031 return false; 4032 4033 MachineBasicBlock *MBB = FuncInfo.MBB; 4034 if (MBB != &MF.front()) 4035 return false; 4036 4037 unsigned Reg = 0; 4038 if (Arg->hasByValAttr()) { 4039 // Byval arguments' frame index is recorded during argument lowering. 4040 // Use this info directly. 4041 Reg = TRI->getFrameRegister(MF); 4042 Offset = FuncInfo.getByValArgumentFrameIndex(Arg); 4043 // If byval argument ofset is not recorded then ignore this. 4044 if (!Offset) 4045 Reg = 0; 4046 } 4047 4048 if (N.getNode() && N.getOpcode() == ISD::CopyFromReg) { 4049 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4050 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 4051 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4052 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4053 if (PR) 4054 Reg = PR; 4055 } 4056 } 4057 4058 if (!Reg) { 4059 // Check if ValueMap has reg number. 4060 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4061 if (VMI != FuncInfo.ValueMap.end()) 4062 Reg = VMI->second; 4063 } 4064 4065 if (!Reg && N.getNode()) { 4066 // Check if frame index is available. 4067 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4068 if (FrameIndexSDNode *FINode = 4069 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) { 4070 Reg = TRI->getFrameRegister(MF); 4071 Offset = FINode->getIndex(); 4072 } 4073 } 4074 4075 if (!Reg) 4076 return false; 4077 4078 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(), 4079 TII->get(TargetOpcode::DBG_VALUE)) 4080 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable); 4081 FuncInfo.ArgDbgValues.push_back(&*MIB); 4082 return true; 4083 } 4084 4085 // VisualStudio defines setjmp as _setjmp 4086 #if defined(_MSC_VER) && defined(setjmp) && \ 4087 !defined(setjmp_undefined_for_msvc) 4088 # pragma push_macro("setjmp") 4089 # undef setjmp 4090 # define setjmp_undefined_for_msvc 4091 #endif 4092 4093 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4094 /// we want to emit this as a call to a named external function, return the name 4095 /// otherwise lower it and return null. 4096 const char * 4097 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4098 DebugLoc dl = getCurDebugLoc(); 4099 SDValue Res; 4100 4101 switch (Intrinsic) { 4102 default: 4103 // By default, turn this into a target intrinsic node. 4104 visitTargetIntrinsic(I, Intrinsic); 4105 return 0; 4106 case Intrinsic::vastart: visitVAStart(I); return 0; 4107 case Intrinsic::vaend: visitVAEnd(I); return 0; 4108 case Intrinsic::vacopy: visitVACopy(I); return 0; 4109 case Intrinsic::returnaddress: 4110 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 4111 getValue(I.getArgOperand(0)))); 4112 return 0; 4113 case Intrinsic::frameaddress: 4114 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 4115 getValue(I.getArgOperand(0)))); 4116 return 0; 4117 case Intrinsic::setjmp: 4118 return "_setjmp"+!TLI.usesUnderscoreSetJmp(); 4119 case Intrinsic::longjmp: 4120 return "_longjmp"+!TLI.usesUnderscoreLongJmp(); 4121 case Intrinsic::memcpy: { 4122 // Assert for address < 256 since we support only user defined address 4123 // spaces. 4124 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4125 < 256 && 4126 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4127 < 256 && 4128 "Unknown address space"); 4129 SDValue Op1 = getValue(I.getArgOperand(0)); 4130 SDValue Op2 = getValue(I.getArgOperand(1)); 4131 SDValue Op3 = getValue(I.getArgOperand(2)); 4132 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4133 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4134 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, 4135 MachinePointerInfo(I.getArgOperand(0)), 4136 MachinePointerInfo(I.getArgOperand(1)))); 4137 return 0; 4138 } 4139 case Intrinsic::memset: { 4140 // Assert for address < 256 since we support only user defined address 4141 // spaces. 4142 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4143 < 256 && 4144 "Unknown address space"); 4145 SDValue Op1 = getValue(I.getArgOperand(0)); 4146 SDValue Op2 = getValue(I.getArgOperand(1)); 4147 SDValue Op3 = getValue(I.getArgOperand(2)); 4148 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4149 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4150 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4151 MachinePointerInfo(I.getArgOperand(0)))); 4152 return 0; 4153 } 4154 case Intrinsic::memmove: { 4155 // Assert for address < 256 since we support only user defined address 4156 // spaces. 4157 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4158 < 256 && 4159 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4160 < 256 && 4161 "Unknown address space"); 4162 SDValue Op1 = getValue(I.getArgOperand(0)); 4163 SDValue Op2 = getValue(I.getArgOperand(1)); 4164 SDValue Op3 = getValue(I.getArgOperand(2)); 4165 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4166 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4167 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4168 MachinePointerInfo(I.getArgOperand(0)), 4169 MachinePointerInfo(I.getArgOperand(1)))); 4170 return 0; 4171 } 4172 case Intrinsic::dbg_declare: { 4173 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4174 MDNode *Variable = DI.getVariable(); 4175 const Value *Address = DI.getAddress(); 4176 if (!Address || !DIVariable(DI.getVariable()).Verify()) 4177 return 0; 4178 4179 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4180 // but do not always have a corresponding SDNode built. The SDNodeOrder 4181 // absolute, but not relative, values are different depending on whether 4182 // debug info exists. 4183 ++SDNodeOrder; 4184 4185 // Check if address has undef value. 4186 if (isa<UndefValue>(Address) || 4187 (Address->use_empty() && !isa<Argument>(Address))) { 4188 DEBUG(dbgs() << "Dropping debug info for " << DI); 4189 return 0; 4190 } 4191 4192 SDValue &N = NodeMap[Address]; 4193 if (!N.getNode() && isa<Argument>(Address)) 4194 // Check unused arguments map. 4195 N = UnusedArgNodeMap[Address]; 4196 SDDbgValue *SDV; 4197 if (N.getNode()) { 4198 // Parameters are handled specially. 4199 bool isParameter = 4200 DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable; 4201 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4202 Address = BCI->getOperand(0); 4203 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4204 4205 if (isParameter && !AI) { 4206 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4207 if (FINode) 4208 // Byval parameter. We have a frame index at this point. 4209 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4210 0, dl, SDNodeOrder); 4211 else { 4212 // Can't do anything with other non-AI cases yet. This might be a 4213 // parameter of a callee function that got inlined, for example. 4214 DEBUG(dbgs() << "Dropping debug info for " << DI); 4215 return 0; 4216 } 4217 } else if (AI) 4218 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4219 0, dl, SDNodeOrder); 4220 else { 4221 // Can't do anything with other non-AI cases yet. 4222 DEBUG(dbgs() << "Dropping debug info for " << DI); 4223 return 0; 4224 } 4225 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4226 } else { 4227 // If Address is an argument then try to emit its dbg value using 4228 // virtual register info from the FuncInfo.ValueMap. 4229 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { 4230 // If variable is pinned by a alloca in dominating bb then 4231 // use StaticAllocaMap. 4232 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4233 if (AI->getParent() != DI.getParent()) { 4234 DenseMap<const AllocaInst*, int>::iterator SI = 4235 FuncInfo.StaticAllocaMap.find(AI); 4236 if (SI != FuncInfo.StaticAllocaMap.end()) { 4237 SDV = DAG.getDbgValue(Variable, SI->second, 4238 0, dl, SDNodeOrder); 4239 DAG.AddDbgValue(SDV, 0, false); 4240 return 0; 4241 } 4242 } 4243 } 4244 DEBUG(dbgs() << "Dropping debug info for " << DI); 4245 } 4246 } 4247 return 0; 4248 } 4249 case Intrinsic::dbg_value: { 4250 const DbgValueInst &DI = cast<DbgValueInst>(I); 4251 if (!DIVariable(DI.getVariable()).Verify()) 4252 return 0; 4253 4254 MDNode *Variable = DI.getVariable(); 4255 uint64_t Offset = DI.getOffset(); 4256 const Value *V = DI.getValue(); 4257 if (!V) 4258 return 0; 4259 4260 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4261 // but do not always have a corresponding SDNode built. The SDNodeOrder 4262 // absolute, but not relative, values are different depending on whether 4263 // debug info exists. 4264 ++SDNodeOrder; 4265 SDDbgValue *SDV; 4266 if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) { 4267 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4268 DAG.AddDbgValue(SDV, 0, false); 4269 } else { 4270 // Do not use getValue() in here; we don't want to generate code at 4271 // this point if it hasn't been done yet. 4272 SDValue N = NodeMap[V]; 4273 if (!N.getNode() && isa<Argument>(V)) 4274 // Check unused arguments map. 4275 N = UnusedArgNodeMap[V]; 4276 if (N.getNode()) { 4277 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4278 SDV = DAG.getDbgValue(Variable, N.getNode(), 4279 N.getResNo(), Offset, dl, SDNodeOrder); 4280 DAG.AddDbgValue(SDV, N.getNode(), false); 4281 } 4282 } else if (!V->use_empty() ) { 4283 // Do not call getValue(V) yet, as we don't want to generate code. 4284 // Remember it for later. 4285 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4286 DanglingDebugInfoMap[V] = DDI; 4287 } else { 4288 // We may expand this to cover more cases. One case where we have no 4289 // data available is an unreferenced parameter. 4290 DEBUG(dbgs() << "Dropping debug info for " << DI); 4291 } 4292 } 4293 4294 // Build a debug info table entry. 4295 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4296 V = BCI->getOperand(0); 4297 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4298 // Don't handle byval struct arguments or VLAs, for example. 4299 if (!AI) 4300 return 0; 4301 DenseMap<const AllocaInst*, int>::iterator SI = 4302 FuncInfo.StaticAllocaMap.find(AI); 4303 if (SI == FuncInfo.StaticAllocaMap.end()) 4304 return 0; // VLAs. 4305 int FI = SI->second; 4306 4307 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4308 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4309 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4310 return 0; 4311 } 4312 case Intrinsic::eh_exception: { 4313 // Insert the EXCEPTIONADDR instruction. 4314 assert(FuncInfo.MBB->isLandingPad() && 4315 "Call to eh.exception not in landing pad!"); 4316 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4317 SDValue Ops[1]; 4318 Ops[0] = DAG.getRoot(); 4319 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); 4320 setValue(&I, Op); 4321 DAG.setRoot(Op.getValue(1)); 4322 return 0; 4323 } 4324 4325 case Intrinsic::eh_selector: { 4326 MachineBasicBlock *CallMBB = FuncInfo.MBB; 4327 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4328 if (CallMBB->isLandingPad()) 4329 AddCatchInfo(I, &MMI, CallMBB); 4330 else { 4331 #ifndef NDEBUG 4332 FuncInfo.CatchInfoLost.insert(&I); 4333 #endif 4334 // FIXME: Mark exception selector register as live in. Hack for PR1508. 4335 unsigned Reg = TLI.getExceptionSelectorRegister(); 4336 if (Reg) FuncInfo.MBB->addLiveIn(Reg); 4337 } 4338 4339 // Insert the EHSELECTION instruction. 4340 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4341 SDValue Ops[2]; 4342 Ops[0] = getValue(I.getArgOperand(0)); 4343 Ops[1] = getRoot(); 4344 SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); 4345 DAG.setRoot(Op.getValue(1)); 4346 setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32)); 4347 return 0; 4348 } 4349 4350 case Intrinsic::eh_typeid_for: { 4351 // Find the type id for the given typeinfo. 4352 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4353 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4354 Res = DAG.getConstant(TypeID, MVT::i32); 4355 setValue(&I, Res); 4356 return 0; 4357 } 4358 4359 case Intrinsic::eh_return_i32: 4360 case Intrinsic::eh_return_i64: 4361 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4362 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 4363 MVT::Other, 4364 getControlRoot(), 4365 getValue(I.getArgOperand(0)), 4366 getValue(I.getArgOperand(1)))); 4367 return 0; 4368 case Intrinsic::eh_unwind_init: 4369 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4370 return 0; 4371 case Intrinsic::eh_dwarf_cfa: { 4372 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl, 4373 TLI.getPointerTy()); 4374 SDValue Offset = DAG.getNode(ISD::ADD, dl, 4375 TLI.getPointerTy(), 4376 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 4377 TLI.getPointerTy()), 4378 CfaArg); 4379 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 4380 TLI.getPointerTy(), 4381 DAG.getConstant(0, TLI.getPointerTy())); 4382 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 4383 FA, Offset)); 4384 return 0; 4385 } 4386 case Intrinsic::eh_sjlj_callsite: { 4387 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4388 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4389 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4390 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4391 4392 MMI.setCurrentCallSite(CI->getZExtValue()); 4393 return 0; 4394 } 4395 case Intrinsic::eh_sjlj_setjmp: { 4396 setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(), 4397 getValue(I.getArgOperand(0)))); 4398 return 0; 4399 } 4400 case Intrinsic::eh_sjlj_longjmp: { 4401 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other, 4402 getRoot(), getValue(I.getArgOperand(0)))); 4403 return 0; 4404 } 4405 case Intrinsic::eh_sjlj_dispatch_setup: { 4406 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other, 4407 getRoot(), getValue(I.getArgOperand(0)))); 4408 return 0; 4409 } 4410 4411 case Intrinsic::x86_mmx_pslli_w: 4412 case Intrinsic::x86_mmx_pslli_d: 4413 case Intrinsic::x86_mmx_pslli_q: 4414 case Intrinsic::x86_mmx_psrli_w: 4415 case Intrinsic::x86_mmx_psrli_d: 4416 case Intrinsic::x86_mmx_psrli_q: 4417 case Intrinsic::x86_mmx_psrai_w: 4418 case Intrinsic::x86_mmx_psrai_d: { 4419 SDValue ShAmt = getValue(I.getArgOperand(1)); 4420 if (isa<ConstantSDNode>(ShAmt)) { 4421 visitTargetIntrinsic(I, Intrinsic); 4422 return 0; 4423 } 4424 unsigned NewIntrinsic = 0; 4425 EVT ShAmtVT = MVT::v2i32; 4426 switch (Intrinsic) { 4427 case Intrinsic::x86_mmx_pslli_w: 4428 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4429 break; 4430 case Intrinsic::x86_mmx_pslli_d: 4431 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4432 break; 4433 case Intrinsic::x86_mmx_pslli_q: 4434 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4435 break; 4436 case Intrinsic::x86_mmx_psrli_w: 4437 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4438 break; 4439 case Intrinsic::x86_mmx_psrli_d: 4440 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4441 break; 4442 case Intrinsic::x86_mmx_psrli_q: 4443 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4444 break; 4445 case Intrinsic::x86_mmx_psrai_w: 4446 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4447 break; 4448 case Intrinsic::x86_mmx_psrai_d: 4449 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4450 break; 4451 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4452 } 4453 4454 // The vector shift intrinsics with scalars uses 32b shift amounts but 4455 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4456 // to be zero. 4457 // We must do this early because v2i32 is not a legal type. 4458 DebugLoc dl = getCurDebugLoc(); 4459 SDValue ShOps[2]; 4460 ShOps[0] = ShAmt; 4461 ShOps[1] = DAG.getConstant(0, MVT::i32); 4462 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2); 4463 EVT DestVT = TLI.getValueType(I.getType()); 4464 ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt); 4465 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 4466 DAG.getConstant(NewIntrinsic, MVT::i32), 4467 getValue(I.getArgOperand(0)), ShAmt); 4468 setValue(&I, Res); 4469 return 0; 4470 } 4471 case Intrinsic::convertff: 4472 case Intrinsic::convertfsi: 4473 case Intrinsic::convertfui: 4474 case Intrinsic::convertsif: 4475 case Intrinsic::convertuif: 4476 case Intrinsic::convertss: 4477 case Intrinsic::convertsu: 4478 case Intrinsic::convertus: 4479 case Intrinsic::convertuu: { 4480 ISD::CvtCode Code = ISD::CVT_INVALID; 4481 switch (Intrinsic) { 4482 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4483 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4484 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4485 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4486 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4487 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4488 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4489 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4490 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4491 } 4492 EVT DestVT = TLI.getValueType(I.getType()); 4493 const Value *Op1 = I.getArgOperand(0); 4494 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 4495 DAG.getValueType(DestVT), 4496 DAG.getValueType(getValue(Op1).getValueType()), 4497 getValue(I.getArgOperand(1)), 4498 getValue(I.getArgOperand(2)), 4499 Code); 4500 setValue(&I, Res); 4501 return 0; 4502 } 4503 case Intrinsic::sqrt: 4504 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 4505 getValue(I.getArgOperand(0)).getValueType(), 4506 getValue(I.getArgOperand(0)))); 4507 return 0; 4508 case Intrinsic::powi: 4509 setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)), 4510 getValue(I.getArgOperand(1)), DAG)); 4511 return 0; 4512 case Intrinsic::sin: 4513 setValue(&I, DAG.getNode(ISD::FSIN, dl, 4514 getValue(I.getArgOperand(0)).getValueType(), 4515 getValue(I.getArgOperand(0)))); 4516 return 0; 4517 case Intrinsic::cos: 4518 setValue(&I, DAG.getNode(ISD::FCOS, dl, 4519 getValue(I.getArgOperand(0)).getValueType(), 4520 getValue(I.getArgOperand(0)))); 4521 return 0; 4522 case Intrinsic::log: 4523 visitLog(I); 4524 return 0; 4525 case Intrinsic::log2: 4526 visitLog2(I); 4527 return 0; 4528 case Intrinsic::log10: 4529 visitLog10(I); 4530 return 0; 4531 case Intrinsic::exp: 4532 visitExp(I); 4533 return 0; 4534 case Intrinsic::exp2: 4535 visitExp2(I); 4536 return 0; 4537 case Intrinsic::pow: 4538 visitPow(I); 4539 return 0; 4540 case Intrinsic::convert_to_fp16: 4541 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 4542 MVT::i16, getValue(I.getArgOperand(0)))); 4543 return 0; 4544 case Intrinsic::convert_from_fp16: 4545 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 4546 MVT::f32, getValue(I.getArgOperand(0)))); 4547 return 0; 4548 case Intrinsic::pcmarker: { 4549 SDValue Tmp = getValue(I.getArgOperand(0)); 4550 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 4551 return 0; 4552 } 4553 case Intrinsic::readcyclecounter: { 4554 SDValue Op = getRoot(); 4555 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 4556 DAG.getVTList(MVT::i64, MVT::Other), 4557 &Op, 1); 4558 setValue(&I, Res); 4559 DAG.setRoot(Res.getValue(1)); 4560 return 0; 4561 } 4562 case Intrinsic::bswap: 4563 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 4564 getValue(I.getArgOperand(0)).getValueType(), 4565 getValue(I.getArgOperand(0)))); 4566 return 0; 4567 case Intrinsic::cttz: { 4568 SDValue Arg = getValue(I.getArgOperand(0)); 4569 EVT Ty = Arg.getValueType(); 4570 setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg)); 4571 return 0; 4572 } 4573 case Intrinsic::ctlz: { 4574 SDValue Arg = getValue(I.getArgOperand(0)); 4575 EVT Ty = Arg.getValueType(); 4576 setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg)); 4577 return 0; 4578 } 4579 case Intrinsic::ctpop: { 4580 SDValue Arg = getValue(I.getArgOperand(0)); 4581 EVT Ty = Arg.getValueType(); 4582 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 4583 return 0; 4584 } 4585 case Intrinsic::stacksave: { 4586 SDValue Op = getRoot(); 4587 Res = DAG.getNode(ISD::STACKSAVE, dl, 4588 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 4589 setValue(&I, Res); 4590 DAG.setRoot(Res.getValue(1)); 4591 return 0; 4592 } 4593 case Intrinsic::stackrestore: { 4594 Res = getValue(I.getArgOperand(0)); 4595 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 4596 return 0; 4597 } 4598 case Intrinsic::stackprotector: { 4599 // Emit code into the DAG to store the stack guard onto the stack. 4600 MachineFunction &MF = DAG.getMachineFunction(); 4601 MachineFrameInfo *MFI = MF.getFrameInfo(); 4602 EVT PtrTy = TLI.getPointerTy(); 4603 4604 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 4605 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4606 4607 int FI = FuncInfo.StaticAllocaMap[Slot]; 4608 MFI->setStackProtectorIndex(FI); 4609 4610 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4611 4612 // Store the stack protector onto the stack. 4613 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 4614 MachinePointerInfo::getFixedStack(FI), 4615 true, false, 0); 4616 setValue(&I, Res); 4617 DAG.setRoot(Res); 4618 return 0; 4619 } 4620 case Intrinsic::objectsize: { 4621 // If we don't know by now, we're never going to know. 4622 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4623 4624 assert(CI && "Non-constant type in __builtin_object_size?"); 4625 4626 SDValue Arg = getValue(I.getCalledValue()); 4627 EVT Ty = Arg.getValueType(); 4628 4629 if (CI->isZero()) 4630 Res = DAG.getConstant(-1ULL, Ty); 4631 else 4632 Res = DAG.getConstant(0, Ty); 4633 4634 setValue(&I, Res); 4635 return 0; 4636 } 4637 case Intrinsic::var_annotation: 4638 // Discard annotate attributes 4639 return 0; 4640 4641 case Intrinsic::init_trampoline: { 4642 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4643 4644 SDValue Ops[6]; 4645 Ops[0] = getRoot(); 4646 Ops[1] = getValue(I.getArgOperand(0)); 4647 Ops[2] = getValue(I.getArgOperand(1)); 4648 Ops[3] = getValue(I.getArgOperand(2)); 4649 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4650 Ops[5] = DAG.getSrcValue(F); 4651 4652 Res = DAG.getNode(ISD::TRAMPOLINE, dl, 4653 DAG.getVTList(TLI.getPointerTy(), MVT::Other), 4654 Ops, 6); 4655 4656 setValue(&I, Res); 4657 DAG.setRoot(Res.getValue(1)); 4658 return 0; 4659 } 4660 case Intrinsic::gcroot: 4661 if (GFI) { 4662 const Value *Alloca = I.getArgOperand(0); 4663 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4664 4665 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4666 GFI->addStackRoot(FI->getIndex(), TypeMap); 4667 } 4668 return 0; 4669 case Intrinsic::gcread: 4670 case Intrinsic::gcwrite: 4671 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4672 return 0; 4673 case Intrinsic::flt_rounds: 4674 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 4675 return 0; 4676 case Intrinsic::trap: 4677 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 4678 return 0; 4679 case Intrinsic::uadd_with_overflow: 4680 return implVisitAluOverflow(I, ISD::UADDO); 4681 case Intrinsic::sadd_with_overflow: 4682 return implVisitAluOverflow(I, ISD::SADDO); 4683 case Intrinsic::usub_with_overflow: 4684 return implVisitAluOverflow(I, ISD::USUBO); 4685 case Intrinsic::ssub_with_overflow: 4686 return implVisitAluOverflow(I, ISD::SSUBO); 4687 case Intrinsic::umul_with_overflow: 4688 return implVisitAluOverflow(I, ISD::UMULO); 4689 case Intrinsic::smul_with_overflow: 4690 return implVisitAluOverflow(I, ISD::SMULO); 4691 4692 case Intrinsic::prefetch: { 4693 SDValue Ops[4]; 4694 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4695 Ops[0] = getRoot(); 4696 Ops[1] = getValue(I.getArgOperand(0)); 4697 Ops[2] = getValue(I.getArgOperand(1)); 4698 Ops[3] = getValue(I.getArgOperand(2)); 4699 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl, 4700 DAG.getVTList(MVT::Other), 4701 &Ops[0], 4, 4702 EVT::getIntegerVT(*Context, 8), 4703 MachinePointerInfo(I.getArgOperand(0)), 4704 0, /* align */ 4705 false, /* volatile */ 4706 rw==0, /* read */ 4707 rw==1)); /* write */ 4708 return 0; 4709 } 4710 case Intrinsic::memory_barrier: { 4711 SDValue Ops[6]; 4712 Ops[0] = getRoot(); 4713 for (int x = 1; x < 6; ++x) 4714 Ops[x] = getValue(I.getArgOperand(x - 1)); 4715 4716 DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6)); 4717 return 0; 4718 } 4719 case Intrinsic::atomic_cmp_swap: { 4720 SDValue Root = getRoot(); 4721 SDValue L = 4722 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(), 4723 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(), 4724 Root, 4725 getValue(I.getArgOperand(0)), 4726 getValue(I.getArgOperand(1)), 4727 getValue(I.getArgOperand(2)), 4728 MachinePointerInfo(I.getArgOperand(0))); 4729 setValue(&I, L); 4730 DAG.setRoot(L.getValue(1)); 4731 return 0; 4732 } 4733 case Intrinsic::atomic_load_add: 4734 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD); 4735 case Intrinsic::atomic_load_sub: 4736 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB); 4737 case Intrinsic::atomic_load_or: 4738 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR); 4739 case Intrinsic::atomic_load_xor: 4740 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR); 4741 case Intrinsic::atomic_load_and: 4742 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND); 4743 case Intrinsic::atomic_load_nand: 4744 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND); 4745 case Intrinsic::atomic_load_max: 4746 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX); 4747 case Intrinsic::atomic_load_min: 4748 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN); 4749 case Intrinsic::atomic_load_umin: 4750 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN); 4751 case Intrinsic::atomic_load_umax: 4752 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX); 4753 case Intrinsic::atomic_swap: 4754 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP); 4755 4756 case Intrinsic::invariant_start: 4757 case Intrinsic::lifetime_start: 4758 // Discard region information. 4759 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4760 return 0; 4761 case Intrinsic::invariant_end: 4762 case Intrinsic::lifetime_end: 4763 // Discard region information. 4764 return 0; 4765 } 4766 } 4767 4768 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 4769 bool isTailCall, 4770 MachineBasicBlock *LandingPad) { 4771 const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 4772 const FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 4773 const Type *RetTy = FTy->getReturnType(); 4774 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4775 MCSymbol *BeginLabel = 0; 4776 4777 TargetLowering::ArgListTy Args; 4778 TargetLowering::ArgListEntry Entry; 4779 Args.reserve(CS.arg_size()); 4780 4781 // Check whether the function can return without sret-demotion. 4782 SmallVector<ISD::OutputArg, 4> Outs; 4783 SmallVector<uint64_t, 4> Offsets; 4784 GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 4785 Outs, TLI, &Offsets); 4786 4787 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 4788 FTy->isVarArg(), Outs, FTy->getContext()); 4789 4790 SDValue DemoteStackSlot; 4791 int DemoteStackIdx = -100; 4792 4793 if (!CanLowerReturn) { 4794 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 4795 FTy->getReturnType()); 4796 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 4797 FTy->getReturnType()); 4798 MachineFunction &MF = DAG.getMachineFunction(); 4799 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 4800 const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 4801 4802 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy()); 4803 Entry.Node = DemoteStackSlot; 4804 Entry.Ty = StackSlotPtrType; 4805 Entry.isSExt = false; 4806 Entry.isZExt = false; 4807 Entry.isInReg = false; 4808 Entry.isSRet = true; 4809 Entry.isNest = false; 4810 Entry.isByVal = false; 4811 Entry.Alignment = Align; 4812 Args.push_back(Entry); 4813 RetTy = Type::getVoidTy(FTy->getContext()); 4814 } 4815 4816 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 4817 i != e; ++i) { 4818 SDValue ArgNode = getValue(*i); 4819 Entry.Node = ArgNode; Entry.Ty = (*i)->getType(); 4820 4821 unsigned attrInd = i - CS.arg_begin() + 1; 4822 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 4823 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 4824 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 4825 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 4826 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 4827 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 4828 Entry.Alignment = CS.getParamAlignment(attrInd); 4829 Args.push_back(Entry); 4830 } 4831 4832 if (LandingPad) { 4833 // Insert a label before the invoke call to mark the try range. This can be 4834 // used to detect deletion of the invoke via the MachineModuleInfo. 4835 BeginLabel = MMI.getContext().CreateTempSymbol(); 4836 4837 // For SjLj, keep track of which landing pads go with which invokes 4838 // so as to maintain the ordering of pads in the LSDA. 4839 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 4840 if (CallSiteIndex) { 4841 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 4842 // Now that the call site is handled, stop tracking it. 4843 MMI.setCurrentCallSite(0); 4844 } 4845 4846 // Both PendingLoads and PendingExports must be flushed here; 4847 // this call might not return. 4848 (void)getRoot(); 4849 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 4850 } 4851 4852 // Check if target-independent constraints permit a tail call here. 4853 // Target-dependent constraints are checked within TLI.LowerCallTo. 4854 if (isTailCall && 4855 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 4856 isTailCall = false; 4857 4858 // If there's a possibility that fast-isel has already selected some amount 4859 // of the current basic block, don't emit a tail call. 4860 if (isTailCall && EnableFastISel) 4861 isTailCall = false; 4862 4863 std::pair<SDValue,SDValue> Result = 4864 TLI.LowerCallTo(getRoot(), RetTy, 4865 CS.paramHasAttr(0, Attribute::SExt), 4866 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), 4867 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), 4868 CS.getCallingConv(), 4869 isTailCall, 4870 !CS.getInstruction()->use_empty(), 4871 Callee, Args, DAG, getCurDebugLoc()); 4872 assert((isTailCall || Result.second.getNode()) && 4873 "Non-null chain expected with non-tail call!"); 4874 assert((Result.second.getNode() || !Result.first.getNode()) && 4875 "Null value expected with tail call!"); 4876 if (Result.first.getNode()) { 4877 setValue(CS.getInstruction(), Result.first); 4878 } else if (!CanLowerReturn && Result.second.getNode()) { 4879 // The instruction result is the result of loading from the 4880 // hidden sret parameter. 4881 SmallVector<EVT, 1> PVTs; 4882 const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 4883 4884 ComputeValueVTs(TLI, PtrRetTy, PVTs); 4885 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 4886 EVT PtrVT = PVTs[0]; 4887 unsigned NumValues = Outs.size(); 4888 SmallVector<SDValue, 4> Values(NumValues); 4889 SmallVector<SDValue, 4> Chains(NumValues); 4890 4891 for (unsigned i = 0; i < NumValues; ++i) { 4892 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 4893 DemoteStackSlot, 4894 DAG.getConstant(Offsets[i], PtrVT)); 4895 SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second, 4896 Add, 4897 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 4898 false, false, 1); 4899 Values[i] = L; 4900 Chains[i] = L.getValue(1); 4901 } 4902 4903 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 4904 MVT::Other, &Chains[0], NumValues); 4905 PendingLoads.push_back(Chain); 4906 4907 // Collect the legal value parts into potentially illegal values 4908 // that correspond to the original function's return values. 4909 SmallVector<EVT, 4> RetTys; 4910 RetTy = FTy->getReturnType(); 4911 ComputeValueVTs(TLI, RetTy, RetTys); 4912 ISD::NodeType AssertOp = ISD::DELETED_NODE; 4913 SmallVector<SDValue, 4> ReturnValues; 4914 unsigned CurReg = 0; 4915 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 4916 EVT VT = RetTys[I]; 4917 EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT); 4918 unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT); 4919 4920 SDValue ReturnValue = 4921 getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs, 4922 RegisterVT, VT, AssertOp); 4923 ReturnValues.push_back(ReturnValue); 4924 CurReg += NumRegs; 4925 } 4926 4927 setValue(CS.getInstruction(), 4928 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 4929 DAG.getVTList(&RetTys[0], RetTys.size()), 4930 &ReturnValues[0], ReturnValues.size())); 4931 4932 } 4933 4934 // As a special case, a null chain means that a tail call has been emitted and 4935 // the DAG root is already updated. 4936 if (Result.second.getNode()) 4937 DAG.setRoot(Result.second); 4938 else 4939 HasTailCall = true; 4940 4941 if (LandingPad) { 4942 // Insert a label at the end of the invoke call to mark the try range. This 4943 // can be used to detect deletion of the invoke via the MachineModuleInfo. 4944 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 4945 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 4946 4947 // Inform MachineModuleInfo of range. 4948 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 4949 } 4950 } 4951 4952 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 4953 /// value is equal or not-equal to zero. 4954 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 4955 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 4956 UI != E; ++UI) { 4957 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 4958 if (IC->isEquality()) 4959 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 4960 if (C->isNullValue()) 4961 continue; 4962 // Unknown instruction. 4963 return false; 4964 } 4965 return true; 4966 } 4967 4968 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 4969 const Type *LoadTy, 4970 SelectionDAGBuilder &Builder) { 4971 4972 // Check to see if this load can be trivially constant folded, e.g. if the 4973 // input is from a string literal. 4974 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 4975 // Cast pointer to the type we really want to load. 4976 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 4977 PointerType::getUnqual(LoadTy)); 4978 4979 if (const Constant *LoadCst = 4980 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 4981 Builder.TD)) 4982 return Builder.getValue(LoadCst); 4983 } 4984 4985 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 4986 // still constant memory, the input chain can be the entry node. 4987 SDValue Root; 4988 bool ConstantMemory = false; 4989 4990 // Do not serialize (non-volatile) loads of constant memory with anything. 4991 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 4992 Root = Builder.DAG.getEntryNode(); 4993 ConstantMemory = true; 4994 } else { 4995 // Do not serialize non-volatile loads against each other. 4996 Root = Builder.DAG.getRoot(); 4997 } 4998 4999 SDValue Ptr = Builder.getValue(PtrVal); 5000 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 5001 Ptr, MachinePointerInfo(PtrVal), 5002 false /*volatile*/, 5003 false /*nontemporal*/, 1 /* align=1 */); 5004 5005 if (!ConstantMemory) 5006 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5007 return LoadVal; 5008 } 5009 5010 5011 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5012 /// If so, return true and lower it, otherwise return false and it will be 5013 /// lowered like a normal call. 5014 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5015 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5016 if (I.getNumArgOperands() != 3) 5017 return false; 5018 5019 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5020 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5021 !I.getArgOperand(2)->getType()->isIntegerTy() || 5022 !I.getType()->isIntegerTy()) 5023 return false; 5024 5025 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); 5026 5027 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5028 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5029 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 5030 bool ActuallyDoIt = true; 5031 MVT LoadVT; 5032 const Type *LoadTy; 5033 switch (Size->getZExtValue()) { 5034 default: 5035 LoadVT = MVT::Other; 5036 LoadTy = 0; 5037 ActuallyDoIt = false; 5038 break; 5039 case 2: 5040 LoadVT = MVT::i16; 5041 LoadTy = Type::getInt16Ty(Size->getContext()); 5042 break; 5043 case 4: 5044 LoadVT = MVT::i32; 5045 LoadTy = Type::getInt32Ty(Size->getContext()); 5046 break; 5047 case 8: 5048 LoadVT = MVT::i64; 5049 LoadTy = Type::getInt64Ty(Size->getContext()); 5050 break; 5051 /* 5052 case 16: 5053 LoadVT = MVT::v4i32; 5054 LoadTy = Type::getInt32Ty(Size->getContext()); 5055 LoadTy = VectorType::get(LoadTy, 4); 5056 break; 5057 */ 5058 } 5059 5060 // This turns into unaligned loads. We only do this if the target natively 5061 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5062 // we'll only produce a small number of byte loads. 5063 5064 // Require that we can find a legal MVT, and only do this if the target 5065 // supports unaligned loads of that type. Expanding into byte loads would 5066 // bloat the code. 5067 if (ActuallyDoIt && Size->getZExtValue() > 4) { 5068 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5069 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5070 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 5071 ActuallyDoIt = false; 5072 } 5073 5074 if (ActuallyDoIt) { 5075 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5076 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5077 5078 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 5079 ISD::SETNE); 5080 EVT CallVT = TLI.getValueType(I.getType(), true); 5081 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 5082 return true; 5083 } 5084 } 5085 5086 5087 return false; 5088 } 5089 5090 5091 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5092 // Handle inline assembly differently. 5093 if (isa<InlineAsm>(I.getCalledValue())) { 5094 visitInlineAsm(&I); 5095 return; 5096 } 5097 5098 // See if any floating point values are being passed to this function. This is 5099 // used to emit an undefined reference to fltused on Windows. 5100 const FunctionType *FT = 5101 cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0)); 5102 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5103 if (FT->isVarArg() && 5104 !MMI.callsExternalVAFunctionWithFloatingPointArguments()) { 5105 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 5106 const Type* T = I.getArgOperand(i)->getType(); 5107 for (po_iterator<const Type*> i = po_begin(T), e = po_end(T); 5108 i != e; ++i) { 5109 if (!i->isFloatingPointTy()) continue; 5110 MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true); 5111 break; 5112 } 5113 } 5114 } 5115 5116 const char *RenameFn = 0; 5117 if (Function *F = I.getCalledFunction()) { 5118 if (F->isDeclaration()) { 5119 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5120 if (unsigned IID = II->getIntrinsicID(F)) { 5121 RenameFn = visitIntrinsicCall(I, IID); 5122 if (!RenameFn) 5123 return; 5124 } 5125 } 5126 if (unsigned IID = F->getIntrinsicID()) { 5127 RenameFn = visitIntrinsicCall(I, IID); 5128 if (!RenameFn) 5129 return; 5130 } 5131 } 5132 5133 // Check for well-known libc/libm calls. If the function is internal, it 5134 // can't be a library call. 5135 if (!F->hasLocalLinkage() && F->hasName()) { 5136 StringRef Name = F->getName(); 5137 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") { 5138 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5139 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5140 I.getType() == I.getArgOperand(0)->getType() && 5141 I.getType() == I.getArgOperand(1)->getType()) { 5142 SDValue LHS = getValue(I.getArgOperand(0)); 5143 SDValue RHS = getValue(I.getArgOperand(1)); 5144 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 5145 LHS.getValueType(), LHS, RHS)); 5146 return; 5147 } 5148 } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") { 5149 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5150 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5151 I.getType() == I.getArgOperand(0)->getType()) { 5152 SDValue Tmp = getValue(I.getArgOperand(0)); 5153 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), 5154 Tmp.getValueType(), Tmp)); 5155 return; 5156 } 5157 } else if (Name == "sin" || Name == "sinf" || Name == "sinl") { 5158 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5159 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5160 I.getType() == I.getArgOperand(0)->getType() && 5161 I.onlyReadsMemory()) { 5162 SDValue Tmp = getValue(I.getArgOperand(0)); 5163 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), 5164 Tmp.getValueType(), Tmp)); 5165 return; 5166 } 5167 } else if (Name == "cos" || Name == "cosf" || Name == "cosl") { 5168 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5169 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5170 I.getType() == I.getArgOperand(0)->getType() && 5171 I.onlyReadsMemory()) { 5172 SDValue Tmp = getValue(I.getArgOperand(0)); 5173 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), 5174 Tmp.getValueType(), Tmp)); 5175 return; 5176 } 5177 } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") { 5178 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5179 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5180 I.getType() == I.getArgOperand(0)->getType() && 5181 I.onlyReadsMemory()) { 5182 SDValue Tmp = getValue(I.getArgOperand(0)); 5183 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), 5184 Tmp.getValueType(), Tmp)); 5185 return; 5186 } 5187 } else if (Name == "memcmp") { 5188 if (visitMemCmpCall(I)) 5189 return; 5190 } 5191 } 5192 } 5193 5194 SDValue Callee; 5195 if (!RenameFn) 5196 Callee = getValue(I.getCalledValue()); 5197 else 5198 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 5199 5200 // Check if we can potentially perform a tail call. More detailed checking is 5201 // be done within LowerCallTo, after more information about the call is known. 5202 LowerCallTo(&I, Callee, I.isTailCall()); 5203 } 5204 5205 namespace llvm { 5206 5207 /// AsmOperandInfo - This contains information for each constraint that we are 5208 /// lowering. 5209 class LLVM_LIBRARY_VISIBILITY SDISelAsmOperandInfo : 5210 public TargetLowering::AsmOperandInfo { 5211 public: 5212 /// CallOperand - If this is the result output operand or a clobber 5213 /// this is null, otherwise it is the incoming operand to the CallInst. 5214 /// This gets modified as the asm is processed. 5215 SDValue CallOperand; 5216 5217 /// AssignedRegs - If this is a register or register class operand, this 5218 /// contains the set of register corresponding to the operand. 5219 RegsForValue AssignedRegs; 5220 5221 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5222 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 5223 } 5224 5225 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers 5226 /// busy in OutputRegs/InputRegs. 5227 void MarkAllocatedRegs(bool isOutReg, bool isInReg, 5228 std::set<unsigned> &OutputRegs, 5229 std::set<unsigned> &InputRegs, 5230 const TargetRegisterInfo &TRI) const { 5231 if (isOutReg) { 5232 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5233 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); 5234 } 5235 if (isInReg) { 5236 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5237 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); 5238 } 5239 } 5240 5241 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5242 /// corresponds to. If there is no Value* for this operand, it returns 5243 /// MVT::Other. 5244 EVT getCallOperandValEVT(LLVMContext &Context, 5245 const TargetLowering &TLI, 5246 const TargetData *TD) const { 5247 if (CallOperandVal == 0) return MVT::Other; 5248 5249 if (isa<BasicBlock>(CallOperandVal)) 5250 return TLI.getPointerTy(); 5251 5252 const llvm::Type *OpTy = CallOperandVal->getType(); 5253 5254 // If this is an indirect operand, the operand is a pointer to the 5255 // accessed type. 5256 if (isIndirect) { 5257 const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5258 if (!PtrTy) 5259 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5260 OpTy = PtrTy->getElementType(); 5261 } 5262 5263 // If OpTy is not a single value, it may be a struct/union that we 5264 // can tile with integers. 5265 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5266 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5267 switch (BitSize) { 5268 default: break; 5269 case 1: 5270 case 8: 5271 case 16: 5272 case 32: 5273 case 64: 5274 case 128: 5275 OpTy = IntegerType::get(Context, BitSize); 5276 break; 5277 } 5278 } 5279 5280 return TLI.getValueType(OpTy, true); 5281 } 5282 5283 private: 5284 /// MarkRegAndAliases - Mark the specified register and all aliases in the 5285 /// specified set. 5286 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, 5287 const TargetRegisterInfo &TRI) { 5288 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); 5289 Regs.insert(Reg); 5290 if (const unsigned *Aliases = TRI.getAliasSet(Reg)) 5291 for (; *Aliases; ++Aliases) 5292 Regs.insert(*Aliases); 5293 } 5294 }; 5295 5296 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5297 5298 } // end llvm namespace. 5299 5300 /// isAllocatableRegister - If the specified register is safe to allocate, 5301 /// i.e. it isn't a stack pointer or some other special register, return the 5302 /// register class for the register. Otherwise, return null. 5303 static const TargetRegisterClass * 5304 isAllocatableRegister(unsigned Reg, MachineFunction &MF, 5305 const TargetLowering &TLI, 5306 const TargetRegisterInfo *TRI) { 5307 EVT FoundVT = MVT::Other; 5308 const TargetRegisterClass *FoundRC = 0; 5309 for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(), 5310 E = TRI->regclass_end(); RCI != E; ++RCI) { 5311 EVT ThisVT = MVT::Other; 5312 5313 const TargetRegisterClass *RC = *RCI; 5314 // If none of the value types for this register class are valid, we 5315 // can't use it. For example, 64-bit reg classes on 32-bit targets. 5316 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); 5317 I != E; ++I) { 5318 if (TLI.isTypeLegal(*I)) { 5319 // If we have already found this register in a different register class, 5320 // choose the one with the largest VT specified. For example, on 5321 // PowerPC, we favor f64 register classes over f32. 5322 if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) { 5323 ThisVT = *I; 5324 break; 5325 } 5326 } 5327 } 5328 5329 if (ThisVT == MVT::Other) continue; 5330 5331 // NOTE: This isn't ideal. In particular, this might allocate the 5332 // frame pointer in functions that need it (due to them not being taken 5333 // out of allocation, because a variable sized allocation hasn't been seen 5334 // yet). This is a slight code pessimization, but should still work. 5335 for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF), 5336 E = RC->allocation_order_end(MF); I != E; ++I) 5337 if (*I == Reg) { 5338 // We found a matching register class. Keep looking at others in case 5339 // we find one with larger registers that this physreg is also in. 5340 FoundRC = RC; 5341 FoundVT = ThisVT; 5342 break; 5343 } 5344 } 5345 return FoundRC; 5346 } 5347 5348 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5349 /// specified operand. We prefer to assign virtual registers, to allow the 5350 /// register allocator to handle the assignment process. However, if the asm 5351 /// uses features that we can't model on machineinstrs, we have SDISel do the 5352 /// allocation. This produces generally horrible, but correct, code. 5353 /// 5354 /// OpInfo describes the operand. 5355 /// Input and OutputRegs are the set of already allocated physical registers. 5356 /// 5357 void SelectionDAGBuilder:: 5358 GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, 5359 std::set<unsigned> &OutputRegs, 5360 std::set<unsigned> &InputRegs) { 5361 LLVMContext &Context = FuncInfo.Fn->getContext(); 5362 5363 // Compute whether this value requires an input register, an output register, 5364 // or both. 5365 bool isOutReg = false; 5366 bool isInReg = false; 5367 switch (OpInfo.Type) { 5368 case InlineAsm::isOutput: 5369 isOutReg = true; 5370 5371 // If there is an input constraint that matches this, we need to reserve 5372 // the input register so no other inputs allocate to it. 5373 isInReg = OpInfo.hasMatchingInput(); 5374 break; 5375 case InlineAsm::isInput: 5376 isInReg = true; 5377 isOutReg = false; 5378 break; 5379 case InlineAsm::isClobber: 5380 isOutReg = true; 5381 isInReg = true; 5382 break; 5383 } 5384 5385 5386 MachineFunction &MF = DAG.getMachineFunction(); 5387 SmallVector<unsigned, 4> Regs; 5388 5389 // If this is a constraint for a single physreg, or a constraint for a 5390 // register class, find it. 5391 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5392 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5393 OpInfo.ConstraintVT); 5394 5395 unsigned NumRegs = 1; 5396 if (OpInfo.ConstraintVT != MVT::Other) { 5397 // If this is a FP input in an integer register (or visa versa) insert a bit 5398 // cast of the input value. More generally, handle any case where the input 5399 // value disagrees with the register class we plan to stick this in. 5400 if (OpInfo.Type == InlineAsm::isInput && 5401 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5402 // Try to convert to the first EVT that the reg class contains. If the 5403 // types are identical size, use a bitcast to convert (e.g. two differing 5404 // vector types). 5405 EVT RegVT = *PhysReg.second->vt_begin(); 5406 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5407 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 5408 RegVT, OpInfo.CallOperand); 5409 OpInfo.ConstraintVT = RegVT; 5410 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5411 // If the input is a FP value and we want it in FP registers, do a 5412 // bitcast to the corresponding integer type. This turns an f64 value 5413 // into i64, which can be passed with two i32 values on a 32-bit 5414 // machine. 5415 RegVT = EVT::getIntegerVT(Context, 5416 OpInfo.ConstraintVT.getSizeInBits()); 5417 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 5418 RegVT, OpInfo.CallOperand); 5419 OpInfo.ConstraintVT = RegVT; 5420 } 5421 } 5422 5423 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5424 } 5425 5426 EVT RegVT; 5427 EVT ValueVT = OpInfo.ConstraintVT; 5428 5429 // If this is a constraint for a specific physical register, like {r17}, 5430 // assign it now. 5431 if (unsigned AssignedReg = PhysReg.first) { 5432 const TargetRegisterClass *RC = PhysReg.second; 5433 if (OpInfo.ConstraintVT == MVT::Other) 5434 ValueVT = *RC->vt_begin(); 5435 5436 // Get the actual register value type. This is important, because the user 5437 // may have asked for (e.g.) the AX register in i32 type. We need to 5438 // remember that AX is actually i16 to get the right extension. 5439 RegVT = *RC->vt_begin(); 5440 5441 // This is a explicit reference to a physical register. 5442 Regs.push_back(AssignedReg); 5443 5444 // If this is an expanded reference, add the rest of the regs to Regs. 5445 if (NumRegs != 1) { 5446 TargetRegisterClass::iterator I = RC->begin(); 5447 for (; *I != AssignedReg; ++I) 5448 assert(I != RC->end() && "Didn't find reg!"); 5449 5450 // Already added the first reg. 5451 --NumRegs; ++I; 5452 for (; NumRegs; --NumRegs, ++I) { 5453 assert(I != RC->end() && "Ran out of registers to allocate!"); 5454 Regs.push_back(*I); 5455 } 5456 } 5457 5458 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5459 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5460 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5461 return; 5462 } 5463 5464 // Otherwise, if this was a reference to an LLVM register class, create vregs 5465 // for this reference. 5466 if (const TargetRegisterClass *RC = PhysReg.second) { 5467 RegVT = *RC->vt_begin(); 5468 if (OpInfo.ConstraintVT == MVT::Other) 5469 ValueVT = RegVT; 5470 5471 // Create the appropriate number of virtual registers. 5472 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5473 for (; NumRegs; --NumRegs) 5474 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5475 5476 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5477 return; 5478 } 5479 5480 // This is a reference to a register class that doesn't directly correspond 5481 // to an LLVM register class. Allocate NumRegs consecutive, available, 5482 // registers from the class. 5483 std::vector<unsigned> RegClassRegs 5484 = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode, 5485 OpInfo.ConstraintVT); 5486 5487 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5488 unsigned NumAllocated = 0; 5489 for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) { 5490 unsigned Reg = RegClassRegs[i]; 5491 // See if this register is available. 5492 if ((isOutReg && OutputRegs.count(Reg)) || // Already used. 5493 (isInReg && InputRegs.count(Reg))) { // Already used. 5494 // Make sure we find consecutive registers. 5495 NumAllocated = 0; 5496 continue; 5497 } 5498 5499 // Check to see if this register is allocatable (i.e. don't give out the 5500 // stack pointer). 5501 const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI); 5502 if (!RC) { // Couldn't allocate this register. 5503 // Reset NumAllocated to make sure we return consecutive registers. 5504 NumAllocated = 0; 5505 continue; 5506 } 5507 5508 // Okay, this register is good, we can use it. 5509 ++NumAllocated; 5510 5511 // If we allocated enough consecutive registers, succeed. 5512 if (NumAllocated == NumRegs) { 5513 unsigned RegStart = (i-NumAllocated)+1; 5514 unsigned RegEnd = i+1; 5515 // Mark all of the allocated registers used. 5516 for (unsigned i = RegStart; i != RegEnd; ++i) 5517 Regs.push_back(RegClassRegs[i]); 5518 5519 OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(), 5520 OpInfo.ConstraintVT); 5521 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5522 return; 5523 } 5524 } 5525 5526 // Otherwise, we couldn't allocate enough registers for this. 5527 } 5528 5529 /// visitInlineAsm - Handle a call to an InlineAsm object. 5530 /// 5531 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5532 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5533 5534 /// ConstraintOperands - Information about all of the constraints. 5535 SDISelAsmOperandInfoVector ConstraintOperands; 5536 5537 std::set<unsigned> OutputRegs, InputRegs; 5538 5539 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(CS); 5540 bool hasMemory = false; 5541 5542 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5543 unsigned ResNo = 0; // ResNo - The result number of the next output. 5544 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5545 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5546 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5547 5548 EVT OpVT = MVT::Other; 5549 5550 // Compute the value type for each operand. 5551 switch (OpInfo.Type) { 5552 case InlineAsm::isOutput: 5553 // Indirect outputs just consume an argument. 5554 if (OpInfo.isIndirect) { 5555 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5556 break; 5557 } 5558 5559 // The return value of the call is this value. As such, there is no 5560 // corresponding argument. 5561 assert(!CS.getType()->isVoidTy() && 5562 "Bad inline asm!"); 5563 if (const StructType *STy = dyn_cast<StructType>(CS.getType())) { 5564 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5565 } else { 5566 assert(ResNo == 0 && "Asm only has one result!"); 5567 OpVT = TLI.getValueType(CS.getType()); 5568 } 5569 ++ResNo; 5570 break; 5571 case InlineAsm::isInput: 5572 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5573 break; 5574 case InlineAsm::isClobber: 5575 // Nothing to do. 5576 break; 5577 } 5578 5579 // If this is an input or an indirect output, process the call argument. 5580 // BasicBlocks are labels, currently appearing only in asm's. 5581 if (OpInfo.CallOperandVal) { 5582 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5583 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5584 } else { 5585 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5586 } 5587 5588 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5589 } 5590 5591 OpInfo.ConstraintVT = OpVT; 5592 5593 // Indirect operand accesses access memory. 5594 if (OpInfo.isIndirect) 5595 hasMemory = true; 5596 else { 5597 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5598 TargetLowering::ConstraintType CType = TLI.getConstraintType(OpInfo.Codes[j]); 5599 if (CType == TargetLowering::C_Memory) { 5600 hasMemory = true; 5601 break; 5602 } 5603 } 5604 } 5605 } 5606 5607 SDValue Chain, Flag; 5608 5609 // We won't need to flush pending loads if this asm doesn't touch 5610 // memory and is nonvolatile. 5611 if (hasMemory || IA->hasSideEffects()) 5612 Chain = getRoot(); 5613 else 5614 Chain = DAG.getRoot(); 5615 5616 // Second pass over the constraints: compute which constraint option to use 5617 // and assign registers to constraints that want a specific physreg. 5618 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5619 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5620 5621 // If this is an output operand with a matching input operand, look up the 5622 // matching input. If their types mismatch, e.g. one is an integer, the 5623 // other is floating point, or their sizes are different, flag it as an 5624 // error. 5625 if (OpInfo.hasMatchingInput()) { 5626 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5627 5628 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5629 if ((OpInfo.ConstraintVT.isInteger() != 5630 Input.ConstraintVT.isInteger()) || 5631 (OpInfo.ConstraintVT.getSizeInBits() != 5632 Input.ConstraintVT.getSizeInBits())) { 5633 report_fatal_error("Unsupported asm: input constraint" 5634 " with a matching output constraint of" 5635 " incompatible type!"); 5636 } 5637 Input.ConstraintVT = OpInfo.ConstraintVT; 5638 } 5639 } 5640 5641 // Compute the constraint code and ConstraintType to use. 5642 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5643 5644 // If this is a memory input, and if the operand is not indirect, do what we 5645 // need to to provide an address for the memory input. 5646 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5647 !OpInfo.isIndirect) { 5648 assert((OpInfo.isMultipleAlternative || (OpInfo.Type == InlineAsm::isInput)) && 5649 "Can only indirectify direct input operands!"); 5650 5651 // Memory operands really want the address of the value. If we don't have 5652 // an indirect input, put it in the constpool if we can, otherwise spill 5653 // it to a stack slot. 5654 5655 // If the operand is a float, integer, or vector constant, spill to a 5656 // constant pool entry to get its address. 5657 const Value *OpVal = OpInfo.CallOperandVal; 5658 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5659 isa<ConstantVector>(OpVal)) { 5660 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5661 TLI.getPointerTy()); 5662 } else { 5663 // Otherwise, create a stack slot and emit a store to it before the 5664 // asm. 5665 const Type *Ty = OpVal->getType(); 5666 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 5667 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 5668 MachineFunction &MF = DAG.getMachineFunction(); 5669 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5670 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5671 Chain = DAG.getStore(Chain, getCurDebugLoc(), 5672 OpInfo.CallOperand, StackSlot, 5673 MachinePointerInfo::getFixedStack(SSFI), 5674 false, false, 0); 5675 OpInfo.CallOperand = StackSlot; 5676 } 5677 5678 // There is no longer a Value* corresponding to this operand. 5679 OpInfo.CallOperandVal = 0; 5680 5681 // It is now an indirect operand. 5682 OpInfo.isIndirect = true; 5683 } 5684 5685 // If this constraint is for a specific register, allocate it before 5686 // anything else. 5687 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5688 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5689 } 5690 5691 // Second pass - Loop over all of the operands, assigning virtual or physregs 5692 // to register class operands. 5693 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5694 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5695 5696 // C_Register operands have already been allocated, Other/Memory don't need 5697 // to be. 5698 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 5699 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5700 } 5701 5702 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 5703 std::vector<SDValue> AsmNodeOperands; 5704 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 5705 AsmNodeOperands.push_back( 5706 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 5707 TLI.getPointerTy())); 5708 5709 // If we have a !srcloc metadata node associated with it, we want to attach 5710 // this to the ultimately generated inline asm machineinstr. To do this, we 5711 // pass in the third operand as this (potentially null) inline asm MDNode. 5712 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 5713 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 5714 5715 // Remember the HasSideEffect and AlignStack bits as operand 3. 5716 unsigned ExtraInfo = 0; 5717 if (IA->hasSideEffects()) 5718 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 5719 if (IA->isAlignStack()) 5720 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 5721 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 5722 TLI.getPointerTy())); 5723 5724 // Loop over all of the inputs, copying the operand values into the 5725 // appropriate registers and processing the output regs. 5726 RegsForValue RetValRegs; 5727 5728 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 5729 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 5730 5731 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5732 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5733 5734 switch (OpInfo.Type) { 5735 case InlineAsm::isOutput: { 5736 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 5737 OpInfo.ConstraintType != TargetLowering::C_Register) { 5738 // Memory output, or 'other' output (e.g. 'X' constraint). 5739 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 5740 5741 // Add information to the INLINEASM node to know about this output. 5742 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5743 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 5744 TLI.getPointerTy())); 5745 AsmNodeOperands.push_back(OpInfo.CallOperand); 5746 break; 5747 } 5748 5749 // Otherwise, this is a register or register class output. 5750 5751 // Copy the output from the appropriate register. Find a register that 5752 // we can use. 5753 if (OpInfo.AssignedRegs.Regs.empty()) 5754 report_fatal_error("Couldn't allocate output reg for constraint '" + 5755 Twine(OpInfo.ConstraintCode) + "'!"); 5756 5757 // If this is an indirect operand, store through the pointer after the 5758 // asm. 5759 if (OpInfo.isIndirect) { 5760 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 5761 OpInfo.CallOperandVal)); 5762 } else { 5763 // This is the result value of the call. 5764 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5765 // Concatenate this output onto the outputs list. 5766 RetValRegs.append(OpInfo.AssignedRegs); 5767 } 5768 5769 // Add information to the INLINEASM node to know that this register is 5770 // set. 5771 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 5772 InlineAsm::Kind_RegDefEarlyClobber : 5773 InlineAsm::Kind_RegDef, 5774 false, 5775 0, 5776 DAG, 5777 AsmNodeOperands); 5778 break; 5779 } 5780 case InlineAsm::isInput: { 5781 SDValue InOperandVal = OpInfo.CallOperand; 5782 5783 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 5784 // If this is required to match an output register we have already set, 5785 // just use its register. 5786 unsigned OperandNo = OpInfo.getMatchedOperand(); 5787 5788 // Scan until we find the definition we already emitted of this operand. 5789 // When we find it, create a RegsForValue operand. 5790 unsigned CurOp = InlineAsm::Op_FirstOperand; 5791 for (; OperandNo; --OperandNo) { 5792 // Advance to the next operand. 5793 unsigned OpFlag = 5794 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5795 assert((InlineAsm::isRegDefKind(OpFlag) || 5796 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 5797 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 5798 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 5799 } 5800 5801 unsigned OpFlag = 5802 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5803 if (InlineAsm::isRegDefKind(OpFlag) || 5804 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 5805 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 5806 if (OpInfo.isIndirect) { 5807 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 5808 LLVMContext &Ctx = *DAG.getContext(); 5809 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 5810 " don't know how to handle tied " 5811 "indirect register inputs"); 5812 } 5813 5814 RegsForValue MatchedRegs; 5815 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 5816 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 5817 MatchedRegs.RegVTs.push_back(RegVT); 5818 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 5819 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 5820 i != e; ++i) 5821 MatchedRegs.Regs.push_back 5822 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 5823 5824 // Use the produced MatchedRegs object to 5825 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5826 Chain, &Flag); 5827 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 5828 true, OpInfo.getMatchedOperand(), 5829 DAG, AsmNodeOperands); 5830 break; 5831 } 5832 5833 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 5834 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 5835 "Unexpected number of operands"); 5836 // Add information to the INLINEASM node to know about this input. 5837 // See InlineAsm.h isUseOperandTiedToDef. 5838 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 5839 OpInfo.getMatchedOperand()); 5840 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 5841 TLI.getPointerTy())); 5842 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 5843 break; 5844 } 5845 5846 // Treat indirect 'X' constraint as memory. 5847 if (OpInfo.ConstraintType == TargetLowering::C_Other && 5848 OpInfo.isIndirect) 5849 OpInfo.ConstraintType = TargetLowering::C_Memory; 5850 5851 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 5852 std::vector<SDValue> Ops; 5853 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0], 5854 Ops, DAG); 5855 if (Ops.empty()) 5856 report_fatal_error("Invalid operand for inline asm constraint '" + 5857 Twine(OpInfo.ConstraintCode) + "'!"); 5858 5859 // Add information to the INLINEASM node to know about this input. 5860 unsigned ResOpType = 5861 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 5862 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5863 TLI.getPointerTy())); 5864 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 5865 break; 5866 } 5867 5868 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 5869 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 5870 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 5871 "Memory operands expect pointer values"); 5872 5873 // Add information to the INLINEASM node to know about this input. 5874 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5875 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5876 TLI.getPointerTy())); 5877 AsmNodeOperands.push_back(InOperandVal); 5878 break; 5879 } 5880 5881 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 5882 OpInfo.ConstraintType == TargetLowering::C_Register) && 5883 "Unknown constraint type!"); 5884 assert(!OpInfo.isIndirect && 5885 "Don't know how to handle indirect register inputs yet!"); 5886 5887 // Copy the input into the appropriate registers. 5888 if (OpInfo.AssignedRegs.Regs.empty() || 5889 !OpInfo.AssignedRegs.areValueTypesLegal(TLI)) 5890 report_fatal_error("Couldn't allocate input reg for constraint '" + 5891 Twine(OpInfo.ConstraintCode) + "'!"); 5892 5893 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5894 Chain, &Flag); 5895 5896 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 5897 DAG, AsmNodeOperands); 5898 break; 5899 } 5900 case InlineAsm::isClobber: { 5901 // Add the clobbered value to the operand list, so that the register 5902 // allocator is aware that the physreg got clobbered. 5903 if (!OpInfo.AssignedRegs.Regs.empty()) 5904 OpInfo.AssignedRegs.AddInlineAsmOperands( 5905 InlineAsm::Kind_RegDefEarlyClobber, 5906 false, 0, DAG, 5907 AsmNodeOperands); 5908 break; 5909 } 5910 } 5911 } 5912 5913 // Finish up input operands. Set the input chain and add the flag last. 5914 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 5915 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 5916 5917 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 5918 DAG.getVTList(MVT::Other, MVT::Glue), 5919 &AsmNodeOperands[0], AsmNodeOperands.size()); 5920 Flag = Chain.getValue(1); 5921 5922 // If this asm returns a register value, copy the result from that register 5923 // and set it as the value of the call. 5924 if (!RetValRegs.Regs.empty()) { 5925 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 5926 Chain, &Flag); 5927 5928 // FIXME: Why don't we do this for inline asms with MRVs? 5929 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 5930 EVT ResultType = TLI.getValueType(CS.getType()); 5931 5932 // If any of the results of the inline asm is a vector, it may have the 5933 // wrong width/num elts. This can happen for register classes that can 5934 // contain multiple different value types. The preg or vreg allocated may 5935 // not have the same VT as was expected. Convert it to the right type 5936 // with bit_convert. 5937 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 5938 Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 5939 ResultType, Val); 5940 5941 } else if (ResultType != Val.getValueType() && 5942 ResultType.isInteger() && Val.getValueType().isInteger()) { 5943 // If a result value was tied to an input value, the computed result may 5944 // have a wider width than the expected result. Extract the relevant 5945 // portion. 5946 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 5947 } 5948 5949 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 5950 } 5951 5952 setValue(CS.getInstruction(), Val); 5953 // Don't need to use this as a chain in this case. 5954 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 5955 return; 5956 } 5957 5958 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 5959 5960 // Process indirect outputs, first output all of the flagged copies out of 5961 // physregs. 5962 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 5963 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 5964 const Value *Ptr = IndirectStoresToEmit[i].second; 5965 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 5966 Chain, &Flag); 5967 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 5968 } 5969 5970 // Emit the non-flagged stores from the physregs. 5971 SmallVector<SDValue, 8> OutChains; 5972 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 5973 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 5974 StoresToEmit[i].first, 5975 getValue(StoresToEmit[i].second), 5976 MachinePointerInfo(StoresToEmit[i].second), 5977 false, false, 0); 5978 OutChains.push_back(Val); 5979 } 5980 5981 if (!OutChains.empty()) 5982 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 5983 &OutChains[0], OutChains.size()); 5984 5985 DAG.setRoot(Chain); 5986 } 5987 5988 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 5989 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 5990 MVT::Other, getRoot(), 5991 getValue(I.getArgOperand(0)), 5992 DAG.getSrcValue(I.getArgOperand(0)))); 5993 } 5994 5995 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 5996 const TargetData &TD = *TLI.getTargetData(); 5997 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 5998 getRoot(), getValue(I.getOperand(0)), 5999 DAG.getSrcValue(I.getOperand(0)), 6000 TD.getABITypeAlignment(I.getType())); 6001 setValue(&I, V); 6002 DAG.setRoot(V.getValue(1)); 6003 } 6004 6005 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6006 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 6007 MVT::Other, getRoot(), 6008 getValue(I.getArgOperand(0)), 6009 DAG.getSrcValue(I.getArgOperand(0)))); 6010 } 6011 6012 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6013 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 6014 MVT::Other, getRoot(), 6015 getValue(I.getArgOperand(0)), 6016 getValue(I.getArgOperand(1)), 6017 DAG.getSrcValue(I.getArgOperand(0)), 6018 DAG.getSrcValue(I.getArgOperand(1)))); 6019 } 6020 6021 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6022 /// implementation, which just calls LowerCall. 6023 /// FIXME: When all targets are 6024 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6025 std::pair<SDValue, SDValue> 6026 TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy, 6027 bool RetSExt, bool RetZExt, bool isVarArg, 6028 bool isInreg, unsigned NumFixedArgs, 6029 CallingConv::ID CallConv, bool isTailCall, 6030 bool isReturnValueUsed, 6031 SDValue Callee, 6032 ArgListTy &Args, SelectionDAG &DAG, 6033 DebugLoc dl) const { 6034 // Handle all of the outgoing arguments. 6035 SmallVector<ISD::OutputArg, 32> Outs; 6036 SmallVector<SDValue, 32> OutVals; 6037 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6038 SmallVector<EVT, 4> ValueVTs; 6039 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6040 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6041 Value != NumValues; ++Value) { 6042 EVT VT = ValueVTs[Value]; 6043 const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); 6044 SDValue Op = SDValue(Args[i].Node.getNode(), 6045 Args[i].Node.getResNo() + Value); 6046 ISD::ArgFlagsTy Flags; 6047 unsigned OriginalAlignment = 6048 getTargetData()->getABITypeAlignment(ArgTy); 6049 6050 if (Args[i].isZExt) 6051 Flags.setZExt(); 6052 if (Args[i].isSExt) 6053 Flags.setSExt(); 6054 if (Args[i].isInReg) 6055 Flags.setInReg(); 6056 if (Args[i].isSRet) 6057 Flags.setSRet(); 6058 if (Args[i].isByVal) { 6059 Flags.setByVal(); 6060 const PointerType *Ty = cast<PointerType>(Args[i].Ty); 6061 const Type *ElementTy = Ty->getElementType(); 6062 unsigned FrameAlign = getByValTypeAlignment(ElementTy); 6063 unsigned FrameSize = getTargetData()->getTypeAllocSize(ElementTy); 6064 // For ByVal, alignment should come from FE. BE will guess if this 6065 // info is not there but there are cases it cannot get right. 6066 if (Args[i].Alignment) 6067 FrameAlign = Args[i].Alignment; 6068 Flags.setByValAlign(FrameAlign); 6069 Flags.setByValSize(FrameSize); 6070 } 6071 if (Args[i].isNest) 6072 Flags.setNest(); 6073 Flags.setOrigAlign(OriginalAlignment); 6074 6075 EVT PartVT = getRegisterType(RetTy->getContext(), VT); 6076 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); 6077 SmallVector<SDValue, 4> Parts(NumParts); 6078 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6079 6080 if (Args[i].isSExt) 6081 ExtendKind = ISD::SIGN_EXTEND; 6082 else if (Args[i].isZExt) 6083 ExtendKind = ISD::ZERO_EXTEND; 6084 6085 getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, 6086 PartVT, ExtendKind); 6087 6088 for (unsigned j = 0; j != NumParts; ++j) { 6089 // if it isn't first piece, alignment must be 1 6090 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), 6091 i < NumFixedArgs); 6092 if (NumParts > 1 && j == 0) 6093 MyFlags.Flags.setSplit(); 6094 else if (j != 0) 6095 MyFlags.Flags.setOrigAlign(1); 6096 6097 Outs.push_back(MyFlags); 6098 OutVals.push_back(Parts[j]); 6099 } 6100 } 6101 } 6102 6103 // Handle the incoming return values from the call. 6104 SmallVector<ISD::InputArg, 32> Ins; 6105 SmallVector<EVT, 4> RetTys; 6106 ComputeValueVTs(*this, RetTy, RetTys); 6107 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6108 EVT VT = RetTys[I]; 6109 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 6110 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 6111 for (unsigned i = 0; i != NumRegs; ++i) { 6112 ISD::InputArg MyFlags; 6113 MyFlags.VT = RegisterVT.getSimpleVT(); 6114 MyFlags.Used = isReturnValueUsed; 6115 if (RetSExt) 6116 MyFlags.Flags.setSExt(); 6117 if (RetZExt) 6118 MyFlags.Flags.setZExt(); 6119 if (isInreg) 6120 MyFlags.Flags.setInReg(); 6121 Ins.push_back(MyFlags); 6122 } 6123 } 6124 6125 SmallVector<SDValue, 4> InVals; 6126 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, 6127 Outs, OutVals, Ins, dl, DAG, InVals); 6128 6129 // Verify that the target's LowerCall behaved as expected. 6130 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 6131 "LowerCall didn't return a valid chain!"); 6132 assert((!isTailCall || InVals.empty()) && 6133 "LowerCall emitted a return value for a tail call!"); 6134 assert((isTailCall || InVals.size() == Ins.size()) && 6135 "LowerCall didn't emit the correct number of values!"); 6136 6137 // For a tail call, the return value is merely live-out and there aren't 6138 // any nodes in the DAG representing it. Return a special value to 6139 // indicate that a tail call has been emitted and no more Instructions 6140 // should be processed in the current block. 6141 if (isTailCall) { 6142 DAG.setRoot(Chain); 6143 return std::make_pair(SDValue(), SDValue()); 6144 } 6145 6146 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6147 assert(InVals[i].getNode() && 6148 "LowerCall emitted a null value!"); 6149 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6150 "LowerCall emitted a value with the wrong type!"); 6151 }); 6152 6153 // Collect the legal value parts into potentially illegal values 6154 // that correspond to the original function's return values. 6155 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6156 if (RetSExt) 6157 AssertOp = ISD::AssertSext; 6158 else if (RetZExt) 6159 AssertOp = ISD::AssertZext; 6160 SmallVector<SDValue, 4> ReturnValues; 6161 unsigned CurReg = 0; 6162 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6163 EVT VT = RetTys[I]; 6164 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 6165 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 6166 6167 ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg], 6168 NumRegs, RegisterVT, VT, 6169 AssertOp)); 6170 CurReg += NumRegs; 6171 } 6172 6173 // For a function returning void, there is no return value. We can't create 6174 // such a node, so we just return a null return value in that case. In 6175 // that case, nothing will actualy look at the value. 6176 if (ReturnValues.empty()) 6177 return std::make_pair(SDValue(), Chain); 6178 6179 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 6180 DAG.getVTList(&RetTys[0], RetTys.size()), 6181 &ReturnValues[0], ReturnValues.size()); 6182 return std::make_pair(Res, Chain); 6183 } 6184 6185 void TargetLowering::LowerOperationWrapper(SDNode *N, 6186 SmallVectorImpl<SDValue> &Results, 6187 SelectionDAG &DAG) const { 6188 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6189 if (Res.getNode()) 6190 Results.push_back(Res); 6191 } 6192 6193 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6194 llvm_unreachable("LowerOperation not implemented for this target!"); 6195 return SDValue(); 6196 } 6197 6198 void 6199 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6200 SDValue Op = getNonRegisterValue(V); 6201 assert((Op.getOpcode() != ISD::CopyFromReg || 6202 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6203 "Copy from a reg to the same reg!"); 6204 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6205 6206 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6207 SDValue Chain = DAG.getEntryNode(); 6208 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 6209 PendingExports.push_back(Chain); 6210 } 6211 6212 #include "llvm/CodeGen/SelectionDAGISel.h" 6213 6214 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { 6215 // If this is the entry block, emit arguments. 6216 const Function &F = *LLVMBB->getParent(); 6217 SelectionDAG &DAG = SDB->DAG; 6218 DebugLoc dl = SDB->getCurDebugLoc(); 6219 const TargetData *TD = TLI.getTargetData(); 6220 SmallVector<ISD::InputArg, 16> Ins; 6221 6222 // Check whether the function can return without sret-demotion. 6223 SmallVector<ISD::OutputArg, 4> Outs; 6224 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 6225 Outs, TLI); 6226 6227 if (!FuncInfo->CanLowerReturn) { 6228 // Put in an sret pointer parameter before all the other parameters. 6229 SmallVector<EVT, 1> ValueVTs; 6230 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6231 6232 // NOTE: Assuming that a pointer will never break down to more than one VT 6233 // or one register. 6234 ISD::ArgFlagsTy Flags; 6235 Flags.setSRet(); 6236 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]); 6237 ISD::InputArg RetArg(Flags, RegisterVT, true); 6238 Ins.push_back(RetArg); 6239 } 6240 6241 // Set up the incoming argument description vector. 6242 unsigned Idx = 1; 6243 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 6244 I != E; ++I, ++Idx) { 6245 SmallVector<EVT, 4> ValueVTs; 6246 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6247 bool isArgValueUsed = !I->use_empty(); 6248 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6249 Value != NumValues; ++Value) { 6250 EVT VT = ValueVTs[Value]; 6251 const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6252 ISD::ArgFlagsTy Flags; 6253 unsigned OriginalAlignment = 6254 TD->getABITypeAlignment(ArgTy); 6255 6256 if (F.paramHasAttr(Idx, Attribute::ZExt)) 6257 Flags.setZExt(); 6258 if (F.paramHasAttr(Idx, Attribute::SExt)) 6259 Flags.setSExt(); 6260 if (F.paramHasAttr(Idx, Attribute::InReg)) 6261 Flags.setInReg(); 6262 if (F.paramHasAttr(Idx, Attribute::StructRet)) 6263 Flags.setSRet(); 6264 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 6265 Flags.setByVal(); 6266 const PointerType *Ty = cast<PointerType>(I->getType()); 6267 const Type *ElementTy = Ty->getElementType(); 6268 unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy); 6269 unsigned FrameSize = TD->getTypeAllocSize(ElementTy); 6270 // For ByVal, alignment should be passed from FE. BE will guess if 6271 // this info is not there but there are cases it cannot get right. 6272 if (F.getParamAlignment(Idx)) 6273 FrameAlign = F.getParamAlignment(Idx); 6274 Flags.setByValAlign(FrameAlign); 6275 Flags.setByValSize(FrameSize); 6276 } 6277 if (F.paramHasAttr(Idx, Attribute::Nest)) 6278 Flags.setNest(); 6279 Flags.setOrigAlign(OriginalAlignment); 6280 6281 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6282 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6283 for (unsigned i = 0; i != NumRegs; ++i) { 6284 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 6285 if (NumRegs > 1 && i == 0) 6286 MyFlags.Flags.setSplit(); 6287 // if it isn't first piece, alignment must be 1 6288 else if (i > 0) 6289 MyFlags.Flags.setOrigAlign(1); 6290 Ins.push_back(MyFlags); 6291 } 6292 } 6293 } 6294 6295 // Call the target to set up the argument values. 6296 SmallVector<SDValue, 8> InVals; 6297 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6298 F.isVarArg(), Ins, 6299 dl, DAG, InVals); 6300 6301 // Verify that the target's LowerFormalArguments behaved as expected. 6302 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6303 "LowerFormalArguments didn't return a valid chain!"); 6304 assert(InVals.size() == Ins.size() && 6305 "LowerFormalArguments didn't emit the correct number of values!"); 6306 DEBUG({ 6307 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6308 assert(InVals[i].getNode() && 6309 "LowerFormalArguments emitted a null value!"); 6310 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6311 "LowerFormalArguments emitted a value with the wrong type!"); 6312 } 6313 }); 6314 6315 // Update the DAG with the new chain value resulting from argument lowering. 6316 DAG.setRoot(NewRoot); 6317 6318 // Set up the argument values. 6319 unsigned i = 0; 6320 Idx = 1; 6321 if (!FuncInfo->CanLowerReturn) { 6322 // Create a virtual register for the sret pointer, and put in a copy 6323 // from the sret argument into it. 6324 SmallVector<EVT, 1> ValueVTs; 6325 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6326 EVT VT = ValueVTs[0]; 6327 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6328 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6329 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6330 RegVT, VT, AssertOp); 6331 6332 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6333 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6334 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 6335 FuncInfo->DemoteRegister = SRetReg; 6336 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 6337 SRetReg, ArgValue); 6338 DAG.setRoot(NewRoot); 6339 6340 // i indexes lowered arguments. Bump it past the hidden sret argument. 6341 // Idx indexes LLVM arguments. Don't touch it. 6342 ++i; 6343 } 6344 6345 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6346 ++I, ++Idx) { 6347 SmallVector<SDValue, 4> ArgValues; 6348 SmallVector<EVT, 4> ValueVTs; 6349 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6350 unsigned NumValues = ValueVTs.size(); 6351 6352 // If this argument is unused then remember its value. It is used to generate 6353 // debugging information. 6354 if (I->use_empty() && NumValues) 6355 SDB->setUnusedArgValue(I, InVals[i]); 6356 6357 for (unsigned Value = 0; Value != NumValues; ++Value) { 6358 EVT VT = ValueVTs[Value]; 6359 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6360 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6361 6362 if (!I->use_empty()) { 6363 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6364 if (F.paramHasAttr(Idx, Attribute::SExt)) 6365 AssertOp = ISD::AssertSext; 6366 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 6367 AssertOp = ISD::AssertZext; 6368 6369 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6370 NumParts, PartVT, VT, 6371 AssertOp)); 6372 } 6373 6374 i += NumParts; 6375 } 6376 6377 // Note down frame index for byval arguments. 6378 if (I->hasByValAttr() && !ArgValues.empty()) 6379 if (FrameIndexSDNode *FI = 6380 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 6381 FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex()); 6382 6383 if (!I->use_empty()) { 6384 SDValue Res; 6385 if (!ArgValues.empty()) 6386 Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6387 SDB->getCurDebugLoc()); 6388 SDB->setValue(I, Res); 6389 6390 // If this argument is live outside of the entry block, insert a copy from 6391 // whereever we got it to the vreg that other BB's will reference it as. 6392 SDB->CopyToExportRegsIfNeeded(I); 6393 } 6394 } 6395 6396 assert(i == InVals.size() && "Argument register count mismatch!"); 6397 6398 // Finally, if the target has anything special to do, allow it to do so. 6399 // FIXME: this should insert code into the DAG! 6400 EmitFunctionEntryCode(); 6401 } 6402 6403 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6404 /// ensure constants are generated when needed. Remember the virtual registers 6405 /// that need to be added to the Machine PHI nodes as input. We cannot just 6406 /// directly add them, because expansion might result in multiple MBB's for one 6407 /// BB. As such, the start of the BB might correspond to a different MBB than 6408 /// the end. 6409 /// 6410 void 6411 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 6412 const TerminatorInst *TI = LLVMBB->getTerminator(); 6413 6414 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6415 6416 // Check successor nodes' PHI nodes that expect a constant to be available 6417 // from this block. 6418 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6419 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6420 if (!isa<PHINode>(SuccBB->begin())) continue; 6421 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 6422 6423 // If this terminator has multiple identical successors (common for 6424 // switches), only handle each succ once. 6425 if (!SuccsHandled.insert(SuccMBB)) continue; 6426 6427 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6428 6429 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6430 // nodes and Machine PHI nodes, but the incoming operands have not been 6431 // emitted yet. 6432 for (BasicBlock::const_iterator I = SuccBB->begin(); 6433 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6434 // Ignore dead phi's. 6435 if (PN->use_empty()) continue; 6436 6437 unsigned Reg; 6438 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6439 6440 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 6441 unsigned &RegOut = ConstantsOut[C]; 6442 if (RegOut == 0) { 6443 RegOut = FuncInfo.CreateRegs(C->getType()); 6444 CopyValueToVirtualRegister(C, RegOut); 6445 } 6446 Reg = RegOut; 6447 } else { 6448 DenseMap<const Value *, unsigned>::iterator I = 6449 FuncInfo.ValueMap.find(PHIOp); 6450 if (I != FuncInfo.ValueMap.end()) 6451 Reg = I->second; 6452 else { 6453 assert(isa<AllocaInst>(PHIOp) && 6454 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6455 "Didn't codegen value into a register!??"); 6456 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 6457 CopyValueToVirtualRegister(PHIOp, Reg); 6458 } 6459 } 6460 6461 // Remember that this register needs to added to the machine PHI node as 6462 // the input for this MBB. 6463 SmallVector<EVT, 4> ValueVTs; 6464 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6465 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6466 EVT VT = ValueVTs[vti]; 6467 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 6468 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6469 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6470 Reg += NumRegisters; 6471 } 6472 } 6473 } 6474 ConstantsOut.clear(); 6475 } 6476