1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/BranchProbabilityInfo.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/MemoryLocation.h" 33 #include "llvm/Analysis/ProfileSummaryInfo.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/CodeGen/Analysis.h" 38 #include "llvm/CodeGen/FunctionLoweringInfo.h" 39 #include "llvm/CodeGen/GCMetadata.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineFunction.h" 43 #include "llvm/CodeGen/MachineInstr.h" 44 #include "llvm/CodeGen/MachineInstrBuilder.h" 45 #include "llvm/CodeGen/MachineJumpTableInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 53 #include "llvm/CodeGen/StackMaps.h" 54 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 55 #include "llvm/CodeGen/TargetFrameLowering.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetOpcodes.h" 58 #include "llvm/CodeGen/TargetRegisterInfo.h" 59 #include "llvm/CodeGen/TargetSubtargetInfo.h" 60 #include "llvm/CodeGen/WinEHFuncInfo.h" 61 #include "llvm/IR/Argument.h" 62 #include "llvm/IR/Attributes.h" 63 #include "llvm/IR/BasicBlock.h" 64 #include "llvm/IR/CFG.h" 65 #include "llvm/IR/CallingConv.h" 66 #include "llvm/IR/Constant.h" 67 #include "llvm/IR/ConstantRange.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DebugInfoMetadata.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/GetElementPtrTypeIterator.h" 74 #include "llvm/IR/InlineAsm.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/IntrinsicsAArch64.h" 80 #include "llvm/IR/IntrinsicsWebAssembly.h" 81 #include "llvm/IR/LLVMContext.h" 82 #include "llvm/IR/Metadata.h" 83 #include "llvm/IR/Module.h" 84 #include "llvm/IR/Operator.h" 85 #include "llvm/IR/PatternMatch.h" 86 #include "llvm/IR/Statepoint.h" 87 #include "llvm/IR/Type.h" 88 #include "llvm/IR/User.h" 89 #include "llvm/IR/Value.h" 90 #include "llvm/MC/MCContext.h" 91 #include "llvm/MC/MCSymbol.h" 92 #include "llvm/Support/AtomicOrdering.h" 93 #include "llvm/Support/Casting.h" 94 #include "llvm/Support/CommandLine.h" 95 #include "llvm/Support/Compiler.h" 96 #include "llvm/Support/Debug.h" 97 #include "llvm/Support/MathExtras.h" 98 #include "llvm/Support/raw_ostream.h" 99 #include "llvm/Target/TargetIntrinsicInfo.h" 100 #include "llvm/Target/TargetMachine.h" 101 #include "llvm/Target/TargetOptions.h" 102 #include "llvm/Transforms/Utils/Local.h" 103 #include <cstddef> 104 #include <cstring> 105 #include <iterator> 106 #include <limits> 107 #include <numeric> 108 #include <tuple> 109 110 using namespace llvm; 111 using namespace PatternMatch; 112 using namespace SwitchCG; 113 114 #define DEBUG_TYPE "isel" 115 116 /// LimitFloatPrecision - Generate low-precision inline sequences for 117 /// some float libcalls (6, 8 or 12 bits). 118 static unsigned LimitFloatPrecision; 119 120 static cl::opt<bool> 121 InsertAssertAlign("insert-assert-align", cl::init(true), 122 cl::desc("Insert the experimental `assertalign` node."), 123 cl::ReallyHidden); 124 125 static cl::opt<unsigned, true> 126 LimitFPPrecision("limit-float-precision", 127 cl::desc("Generate low-precision inline sequences " 128 "for some float libcalls"), 129 cl::location(LimitFloatPrecision), cl::Hidden, 130 cl::init(0)); 131 132 static cl::opt<unsigned> SwitchPeelThreshold( 133 "switch-peel-threshold", cl::Hidden, cl::init(66), 134 cl::desc("Set the case probability threshold for peeling the case from a " 135 "switch statement. A value greater than 100 will void this " 136 "optimization")); 137 138 // Limit the width of DAG chains. This is important in general to prevent 139 // DAG-based analysis from blowing up. For example, alias analysis and 140 // load clustering may not complete in reasonable time. It is difficult to 141 // recognize and avoid this situation within each individual analysis, and 142 // future analyses are likely to have the same behavior. Limiting DAG width is 143 // the safe approach and will be especially important with global DAGs. 144 // 145 // MaxParallelChains default is arbitrarily high to avoid affecting 146 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 147 // sequence over this should have been converted to llvm.memcpy by the 148 // frontend. It is easy to induce this behavior with .ll code such as: 149 // %buffer = alloca [4096 x i8] 150 // %data = load [4096 x i8]* %argPtr 151 // store [4096 x i8] %data, [4096 x i8]* %buffer 152 static const unsigned MaxParallelChains = 64; 153 154 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 155 const SDValue *Parts, unsigned NumParts, 156 MVT PartVT, EVT ValueVT, const Value *V, 157 Optional<CallingConv::ID> CC); 158 159 /// getCopyFromParts - Create a value that contains the specified legal parts 160 /// combined into the value they represent. If the parts combine to a type 161 /// larger than ValueVT then AssertOp can be used to specify whether the extra 162 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 163 /// (ISD::AssertSext). 164 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 165 const SDValue *Parts, unsigned NumParts, 166 MVT PartVT, EVT ValueVT, const Value *V, 167 Optional<CallingConv::ID> CC = None, 168 Optional<ISD::NodeType> AssertOp = None) { 169 // Let the target assemble the parts if it wants to 170 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 171 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 172 PartVT, ValueVT, CC)) 173 return Val; 174 175 if (ValueVT.isVector()) 176 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 177 CC); 178 179 assert(NumParts > 0 && "No parts to assemble!"); 180 SDValue Val = Parts[0]; 181 182 if (NumParts > 1) { 183 // Assemble the value from multiple parts. 184 if (ValueVT.isInteger()) { 185 unsigned PartBits = PartVT.getSizeInBits(); 186 unsigned ValueBits = ValueVT.getSizeInBits(); 187 188 // Assemble the power of 2 part. 189 unsigned RoundParts = 190 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 191 unsigned RoundBits = PartBits * RoundParts; 192 EVT RoundVT = RoundBits == ValueBits ? 193 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 194 SDValue Lo, Hi; 195 196 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 197 198 if (RoundParts > 2) { 199 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 200 PartVT, HalfVT, V); 201 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 202 RoundParts / 2, PartVT, HalfVT, V); 203 } else { 204 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 205 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 206 } 207 208 if (DAG.getDataLayout().isBigEndian()) 209 std::swap(Lo, Hi); 210 211 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 212 213 if (RoundParts < NumParts) { 214 // Assemble the trailing non-power-of-2 part. 215 unsigned OddParts = NumParts - RoundParts; 216 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 217 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 218 OddVT, V, CC); 219 220 // Combine the round and odd parts. 221 Lo = Val; 222 if (DAG.getDataLayout().isBigEndian()) 223 std::swap(Lo, Hi); 224 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 225 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 226 Hi = 227 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 228 DAG.getConstant(Lo.getValueSizeInBits(), DL, 229 TLI.getPointerTy(DAG.getDataLayout()))); 230 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 231 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 232 } 233 } else if (PartVT.isFloatingPoint()) { 234 // FP split into multiple FP parts (for ppcf128) 235 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 236 "Unexpected split"); 237 SDValue Lo, Hi; 238 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 239 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 240 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 241 std::swap(Lo, Hi); 242 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 243 } else { 244 // FP split into integer parts (soft fp) 245 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 246 !PartVT.isVector() && "Unexpected split"); 247 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 248 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 249 } 250 } 251 252 // There is now one part, held in Val. Correct it to match ValueVT. 253 // PartEVT is the type of the register class that holds the value. 254 // ValueVT is the type of the inline asm operation. 255 EVT PartEVT = Val.getValueType(); 256 257 if (PartEVT == ValueVT) 258 return Val; 259 260 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 261 ValueVT.bitsLT(PartEVT)) { 262 // For an FP value in an integer part, we need to truncate to the right 263 // width first. 264 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 265 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 266 } 267 268 // Handle types that have the same size. 269 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 270 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 271 272 // Handle types with different sizes. 273 if (PartEVT.isInteger() && ValueVT.isInteger()) { 274 if (ValueVT.bitsLT(PartEVT)) { 275 // For a truncate, see if we have any information to 276 // indicate whether the truncated bits will always be 277 // zero or sign-extension. 278 if (AssertOp.hasValue()) 279 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 280 DAG.getValueType(ValueVT)); 281 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 282 } 283 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 284 } 285 286 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 287 // FP_ROUND's are always exact here. 288 if (ValueVT.bitsLT(Val.getValueType())) 289 return DAG.getNode( 290 ISD::FP_ROUND, DL, ValueVT, Val, 291 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 292 293 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 294 } 295 296 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 297 // then truncating. 298 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 299 ValueVT.bitsLT(PartEVT)) { 300 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 301 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 302 } 303 304 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 305 } 306 307 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 308 const Twine &ErrMsg) { 309 const Instruction *I = dyn_cast_or_null<Instruction>(V); 310 if (!V) 311 return Ctx.emitError(ErrMsg); 312 313 const char *AsmError = ", possible invalid constraint for vector type"; 314 if (const CallInst *CI = dyn_cast<CallInst>(I)) 315 if (CI->isInlineAsm()) 316 return Ctx.emitError(I, ErrMsg + AsmError); 317 318 return Ctx.emitError(I, ErrMsg); 319 } 320 321 /// getCopyFromPartsVector - Create a value that contains the specified legal 322 /// parts combined into the value they represent. If the parts combine to a 323 /// type larger than ValueVT then AssertOp can be used to specify whether the 324 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 325 /// ValueVT (ISD::AssertSext). 326 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 327 const SDValue *Parts, unsigned NumParts, 328 MVT PartVT, EVT ValueVT, const Value *V, 329 Optional<CallingConv::ID> CallConv) { 330 assert(ValueVT.isVector() && "Not a vector value"); 331 assert(NumParts > 0 && "No parts to assemble!"); 332 const bool IsABIRegCopy = CallConv.hasValue(); 333 334 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 335 SDValue Val = Parts[0]; 336 337 // Handle a multi-element vector. 338 if (NumParts > 1) { 339 EVT IntermediateVT; 340 MVT RegisterVT; 341 unsigned NumIntermediates; 342 unsigned NumRegs; 343 344 if (IsABIRegCopy) { 345 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 346 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 347 NumIntermediates, RegisterVT); 348 } else { 349 NumRegs = 350 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 351 NumIntermediates, RegisterVT); 352 } 353 354 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 355 NumParts = NumRegs; // Silence a compiler warning. 356 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 357 assert(RegisterVT.getSizeInBits() == 358 Parts[0].getSimpleValueType().getSizeInBits() && 359 "Part type sizes don't match!"); 360 361 // Assemble the parts into intermediate operands. 362 SmallVector<SDValue, 8> Ops(NumIntermediates); 363 if (NumIntermediates == NumParts) { 364 // If the register was not expanded, truncate or copy the value, 365 // as appropriate. 366 for (unsigned i = 0; i != NumParts; ++i) 367 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 368 PartVT, IntermediateVT, V, CallConv); 369 } else if (NumParts > 0) { 370 // If the intermediate type was expanded, build the intermediate 371 // operands from the parts. 372 assert(NumParts % NumIntermediates == 0 && 373 "Must expand into a divisible number of parts!"); 374 unsigned Factor = NumParts / NumIntermediates; 375 for (unsigned i = 0; i != NumIntermediates; ++i) 376 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 377 PartVT, IntermediateVT, V, CallConv); 378 } 379 380 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 381 // intermediate operands. 382 EVT BuiltVectorTy = 383 IntermediateVT.isVector() 384 ? EVT::getVectorVT( 385 *DAG.getContext(), IntermediateVT.getScalarType(), 386 IntermediateVT.getVectorElementCount() * NumParts) 387 : EVT::getVectorVT(*DAG.getContext(), 388 IntermediateVT.getScalarType(), 389 NumIntermediates); 390 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 391 : ISD::BUILD_VECTOR, 392 DL, BuiltVectorTy, Ops); 393 } 394 395 // There is now one part, held in Val. Correct it to match ValueVT. 396 EVT PartEVT = Val.getValueType(); 397 398 if (PartEVT == ValueVT) 399 return Val; 400 401 if (PartEVT.isVector()) { 402 // If the element type of the source/dest vectors are the same, but the 403 // parts vector has more elements than the value vector, then we have a 404 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 405 // elements we want. 406 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 407 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 408 ValueVT.getVectorElementCount().getKnownMinValue()) && 409 (PartEVT.getVectorElementCount().isScalable() == 410 ValueVT.getVectorElementCount().isScalable()) && 411 "Cannot narrow, it would be a lossy transformation"); 412 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 413 DAG.getVectorIdxConstant(0, DL)); 414 } 415 416 // Vector/Vector bitcast. 417 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 418 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 419 420 assert(PartEVT.getVectorElementCount() == ValueVT.getVectorElementCount() && 421 "Cannot handle this kind of promotion"); 422 // Promoted vector extract 423 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 424 425 } 426 427 // Trivial bitcast if the types are the same size and the destination 428 // vector type is legal. 429 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 430 TLI.isTypeLegal(ValueVT)) 431 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 432 433 if (ValueVT.getVectorNumElements() != 1) { 434 // Certain ABIs require that vectors are passed as integers. For vectors 435 // are the same size, this is an obvious bitcast. 436 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 437 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 438 } else if (ValueVT.bitsLT(PartEVT)) { 439 // Bitcast Val back the original type and extract the corresponding 440 // vector we want. 441 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 442 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 443 ValueVT.getVectorElementType(), Elts); 444 Val = DAG.getBitcast(WiderVecType, Val); 445 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 446 DAG.getVectorIdxConstant(0, DL)); 447 } 448 449 diagnosePossiblyInvalidConstraint( 450 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 451 return DAG.getUNDEF(ValueVT); 452 } 453 454 // Handle cases such as i8 -> <1 x i1> 455 EVT ValueSVT = ValueVT.getVectorElementType(); 456 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 457 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 458 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 459 else 460 Val = ValueVT.isFloatingPoint() 461 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 462 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 463 } 464 465 return DAG.getBuildVector(ValueVT, DL, Val); 466 } 467 468 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 469 SDValue Val, SDValue *Parts, unsigned NumParts, 470 MVT PartVT, const Value *V, 471 Optional<CallingConv::ID> CallConv); 472 473 /// getCopyToParts - Create a series of nodes that contain the specified value 474 /// split into legal parts. If the parts contain more bits than Val, then, for 475 /// integers, ExtendKind can be used to specify how to generate the extra bits. 476 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 477 SDValue *Parts, unsigned NumParts, MVT PartVT, 478 const Value *V, 479 Optional<CallingConv::ID> CallConv = None, 480 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 481 // Let the target split the parts if it wants to 482 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 483 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 484 CallConv)) 485 return; 486 EVT ValueVT = Val.getValueType(); 487 488 // Handle the vector case separately. 489 if (ValueVT.isVector()) 490 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 491 CallConv); 492 493 unsigned PartBits = PartVT.getSizeInBits(); 494 unsigned OrigNumParts = NumParts; 495 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 496 "Copying to an illegal type!"); 497 498 if (NumParts == 0) 499 return; 500 501 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 502 EVT PartEVT = PartVT; 503 if (PartEVT == ValueVT) { 504 assert(NumParts == 1 && "No-op copy with multiple parts!"); 505 Parts[0] = Val; 506 return; 507 } 508 509 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 510 // If the parts cover more bits than the value has, promote the value. 511 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 512 assert(NumParts == 1 && "Do not know what to promote to!"); 513 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 514 } else { 515 if (ValueVT.isFloatingPoint()) { 516 // FP values need to be bitcast, then extended if they are being put 517 // into a larger container. 518 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 519 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 520 } 521 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 522 ValueVT.isInteger() && 523 "Unknown mismatch!"); 524 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 525 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 526 if (PartVT == MVT::x86mmx) 527 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 528 } 529 } else if (PartBits == ValueVT.getSizeInBits()) { 530 // Different types of the same size. 531 assert(NumParts == 1 && PartEVT != ValueVT); 532 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 533 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 534 // If the parts cover less bits than value has, truncate the value. 535 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 536 ValueVT.isInteger() && 537 "Unknown mismatch!"); 538 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 539 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 540 if (PartVT == MVT::x86mmx) 541 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 542 } 543 544 // The value may have changed - recompute ValueVT. 545 ValueVT = Val.getValueType(); 546 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 547 "Failed to tile the value with PartVT!"); 548 549 if (NumParts == 1) { 550 if (PartEVT != ValueVT) { 551 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 552 "scalar-to-vector conversion failed"); 553 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 554 } 555 556 Parts[0] = Val; 557 return; 558 } 559 560 // Expand the value into multiple parts. 561 if (NumParts & (NumParts - 1)) { 562 // The number of parts is not a power of 2. Split off and copy the tail. 563 assert(PartVT.isInteger() && ValueVT.isInteger() && 564 "Do not know what to expand to!"); 565 unsigned RoundParts = 1 << Log2_32(NumParts); 566 unsigned RoundBits = RoundParts * PartBits; 567 unsigned OddParts = NumParts - RoundParts; 568 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 569 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 570 571 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 572 CallConv); 573 574 if (DAG.getDataLayout().isBigEndian()) 575 // The odd parts were reversed by getCopyToParts - unreverse them. 576 std::reverse(Parts + RoundParts, Parts + NumParts); 577 578 NumParts = RoundParts; 579 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 580 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 581 } 582 583 // The number of parts is a power of 2. Repeatedly bisect the value using 584 // EXTRACT_ELEMENT. 585 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 586 EVT::getIntegerVT(*DAG.getContext(), 587 ValueVT.getSizeInBits()), 588 Val); 589 590 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 591 for (unsigned i = 0; i < NumParts; i += StepSize) { 592 unsigned ThisBits = StepSize * PartBits / 2; 593 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 594 SDValue &Part0 = Parts[i]; 595 SDValue &Part1 = Parts[i+StepSize/2]; 596 597 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 598 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 599 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 600 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 601 602 if (ThisBits == PartBits && ThisVT != PartVT) { 603 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 604 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 605 } 606 } 607 } 608 609 if (DAG.getDataLayout().isBigEndian()) 610 std::reverse(Parts, Parts + OrigNumParts); 611 } 612 613 static SDValue widenVectorToPartType(SelectionDAG &DAG, 614 SDValue Val, const SDLoc &DL, EVT PartVT) { 615 if (!PartVT.isFixedLengthVector()) 616 return SDValue(); 617 618 EVT ValueVT = Val.getValueType(); 619 unsigned PartNumElts = PartVT.getVectorNumElements(); 620 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 621 if (PartNumElts > ValueNumElts && 622 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 623 EVT ElementVT = PartVT.getVectorElementType(); 624 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 625 // undef elements. 626 SmallVector<SDValue, 16> Ops; 627 DAG.ExtractVectorElements(Val, Ops); 628 SDValue EltUndef = DAG.getUNDEF(ElementVT); 629 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 630 Ops.push_back(EltUndef); 631 632 // FIXME: Use CONCAT for 2x -> 4x. 633 return DAG.getBuildVector(PartVT, DL, Ops); 634 } 635 636 return SDValue(); 637 } 638 639 /// getCopyToPartsVector - Create a series of nodes that contain the specified 640 /// value split into legal parts. 641 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 642 SDValue Val, SDValue *Parts, unsigned NumParts, 643 MVT PartVT, const Value *V, 644 Optional<CallingConv::ID> CallConv) { 645 EVT ValueVT = Val.getValueType(); 646 assert(ValueVT.isVector() && "Not a vector"); 647 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 648 const bool IsABIRegCopy = CallConv.hasValue(); 649 650 if (NumParts == 1) { 651 EVT PartEVT = PartVT; 652 if (PartEVT == ValueVT) { 653 // Nothing to do. 654 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 655 // Bitconvert vector->vector case. 656 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 657 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 658 Val = Widened; 659 } else if (PartVT.isVector() && 660 PartEVT.getVectorElementType().bitsGE( 661 ValueVT.getVectorElementType()) && 662 PartEVT.getVectorElementCount() == 663 ValueVT.getVectorElementCount()) { 664 665 // Promoted vector extract 666 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 667 } else { 668 if (ValueVT.getVectorElementCount().isScalar()) { 669 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 670 DAG.getVectorIdxConstant(0, DL)); 671 } else { 672 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 673 assert(PartVT.getFixedSizeInBits() > ValueSize && 674 "lossy conversion of vector to scalar type"); 675 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 676 Val = DAG.getBitcast(IntermediateType, Val); 677 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 678 } 679 } 680 681 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 682 Parts[0] = Val; 683 return; 684 } 685 686 // Handle a multi-element vector. 687 EVT IntermediateVT; 688 MVT RegisterVT; 689 unsigned NumIntermediates; 690 unsigned NumRegs; 691 if (IsABIRegCopy) { 692 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 693 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 694 NumIntermediates, RegisterVT); 695 } else { 696 NumRegs = 697 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 698 NumIntermediates, RegisterVT); 699 } 700 701 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 702 NumParts = NumRegs; // Silence a compiler warning. 703 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 704 705 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 706 "Mixing scalable and fixed vectors when copying in parts"); 707 708 Optional<ElementCount> DestEltCnt; 709 710 if (IntermediateVT.isVector()) 711 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 712 else 713 DestEltCnt = ElementCount::getFixed(NumIntermediates); 714 715 EVT BuiltVectorTy = EVT::getVectorVT( 716 *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue()); 717 if (ValueVT != BuiltVectorTy) { 718 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 719 Val = Widened; 720 721 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 722 } 723 724 // Split the vector into intermediate operands. 725 SmallVector<SDValue, 8> Ops(NumIntermediates); 726 for (unsigned i = 0; i != NumIntermediates; ++i) { 727 if (IntermediateVT.isVector()) { 728 // This does something sensible for scalable vectors - see the 729 // definition of EXTRACT_SUBVECTOR for further details. 730 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 731 Ops[i] = 732 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 733 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 734 } else { 735 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 736 DAG.getVectorIdxConstant(i, DL)); 737 } 738 } 739 740 // Split the intermediate operands into legal parts. 741 if (NumParts == NumIntermediates) { 742 // If the register was not expanded, promote or copy the value, 743 // as appropriate. 744 for (unsigned i = 0; i != NumParts; ++i) 745 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 746 } else if (NumParts > 0) { 747 // If the intermediate type was expanded, split each the value into 748 // legal parts. 749 assert(NumIntermediates != 0 && "division by zero"); 750 assert(NumParts % NumIntermediates == 0 && 751 "Must expand into a divisible number of parts!"); 752 unsigned Factor = NumParts / NumIntermediates; 753 for (unsigned i = 0; i != NumIntermediates; ++i) 754 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 755 CallConv); 756 } 757 } 758 759 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 760 EVT valuevt, Optional<CallingConv::ID> CC) 761 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 762 RegCount(1, regs.size()), CallConv(CC) {} 763 764 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 765 const DataLayout &DL, unsigned Reg, Type *Ty, 766 Optional<CallingConv::ID> CC) { 767 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 768 769 CallConv = CC; 770 771 for (EVT ValueVT : ValueVTs) { 772 unsigned NumRegs = 773 isABIMangled() 774 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 775 : TLI.getNumRegisters(Context, ValueVT); 776 MVT RegisterVT = 777 isABIMangled() 778 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 779 : TLI.getRegisterType(Context, ValueVT); 780 for (unsigned i = 0; i != NumRegs; ++i) 781 Regs.push_back(Reg + i); 782 RegVTs.push_back(RegisterVT); 783 RegCount.push_back(NumRegs); 784 Reg += NumRegs; 785 } 786 } 787 788 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 789 FunctionLoweringInfo &FuncInfo, 790 const SDLoc &dl, SDValue &Chain, 791 SDValue *Flag, const Value *V) const { 792 // A Value with type {} or [0 x %t] needs no registers. 793 if (ValueVTs.empty()) 794 return SDValue(); 795 796 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 797 798 // Assemble the legal parts into the final values. 799 SmallVector<SDValue, 4> Values(ValueVTs.size()); 800 SmallVector<SDValue, 8> Parts; 801 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 802 // Copy the legal parts from the registers. 803 EVT ValueVT = ValueVTs[Value]; 804 unsigned NumRegs = RegCount[Value]; 805 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 806 *DAG.getContext(), 807 CallConv.getValue(), RegVTs[Value]) 808 : RegVTs[Value]; 809 810 Parts.resize(NumRegs); 811 for (unsigned i = 0; i != NumRegs; ++i) { 812 SDValue P; 813 if (!Flag) { 814 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 815 } else { 816 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 817 *Flag = P.getValue(2); 818 } 819 820 Chain = P.getValue(1); 821 Parts[i] = P; 822 823 // If the source register was virtual and if we know something about it, 824 // add an assert node. 825 if (!Register::isVirtualRegister(Regs[Part + i]) || 826 !RegisterVT.isInteger()) 827 continue; 828 829 const FunctionLoweringInfo::LiveOutInfo *LOI = 830 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 831 if (!LOI) 832 continue; 833 834 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 835 unsigned NumSignBits = LOI->NumSignBits; 836 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 837 838 if (NumZeroBits == RegSize) { 839 // The current value is a zero. 840 // Explicitly express that as it would be easier for 841 // optimizations to kick in. 842 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 843 continue; 844 } 845 846 // FIXME: We capture more information than the dag can represent. For 847 // now, just use the tightest assertzext/assertsext possible. 848 bool isSExt; 849 EVT FromVT(MVT::Other); 850 if (NumZeroBits) { 851 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 852 isSExt = false; 853 } else if (NumSignBits > 1) { 854 FromVT = 855 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 856 isSExt = true; 857 } else { 858 continue; 859 } 860 // Add an assertion node. 861 assert(FromVT != MVT::Other); 862 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 863 RegisterVT, P, DAG.getValueType(FromVT)); 864 } 865 866 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 867 RegisterVT, ValueVT, V, CallConv); 868 Part += NumRegs; 869 Parts.clear(); 870 } 871 872 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 873 } 874 875 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 876 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 877 const Value *V, 878 ISD::NodeType PreferredExtendType) const { 879 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 880 ISD::NodeType ExtendKind = PreferredExtendType; 881 882 // Get the list of the values's legal parts. 883 unsigned NumRegs = Regs.size(); 884 SmallVector<SDValue, 8> Parts(NumRegs); 885 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 886 unsigned NumParts = RegCount[Value]; 887 888 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 889 *DAG.getContext(), 890 CallConv.getValue(), RegVTs[Value]) 891 : RegVTs[Value]; 892 893 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 894 ExtendKind = ISD::ZERO_EXTEND; 895 896 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 897 NumParts, RegisterVT, V, CallConv, ExtendKind); 898 Part += NumParts; 899 } 900 901 // Copy the parts into the registers. 902 SmallVector<SDValue, 8> Chains(NumRegs); 903 for (unsigned i = 0; i != NumRegs; ++i) { 904 SDValue Part; 905 if (!Flag) { 906 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 907 } else { 908 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 909 *Flag = Part.getValue(1); 910 } 911 912 Chains[i] = Part.getValue(0); 913 } 914 915 if (NumRegs == 1 || Flag) 916 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 917 // flagged to it. That is the CopyToReg nodes and the user are considered 918 // a single scheduling unit. If we create a TokenFactor and return it as 919 // chain, then the TokenFactor is both a predecessor (operand) of the 920 // user as well as a successor (the TF operands are flagged to the user). 921 // c1, f1 = CopyToReg 922 // c2, f2 = CopyToReg 923 // c3 = TokenFactor c1, c2 924 // ... 925 // = op c3, ..., f2 926 Chain = Chains[NumRegs-1]; 927 else 928 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 929 } 930 931 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 932 unsigned MatchingIdx, const SDLoc &dl, 933 SelectionDAG &DAG, 934 std::vector<SDValue> &Ops) const { 935 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 936 937 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 938 if (HasMatching) 939 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 940 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 941 // Put the register class of the virtual registers in the flag word. That 942 // way, later passes can recompute register class constraints for inline 943 // assembly as well as normal instructions. 944 // Don't do this for tied operands that can use the regclass information 945 // from the def. 946 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 947 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 948 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 949 } 950 951 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 952 Ops.push_back(Res); 953 954 if (Code == InlineAsm::Kind_Clobber) { 955 // Clobbers should always have a 1:1 mapping with registers, and may 956 // reference registers that have illegal (e.g. vector) types. Hence, we 957 // shouldn't try to apply any sort of splitting logic to them. 958 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 959 "No 1:1 mapping from clobbers to regs?"); 960 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 961 (void)SP; 962 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 963 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 964 assert( 965 (Regs[I] != SP || 966 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 967 "If we clobbered the stack pointer, MFI should know about it."); 968 } 969 return; 970 } 971 972 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 973 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 974 MVT RegisterVT = RegVTs[Value]; 975 for (unsigned i = 0; i != NumRegs; ++i) { 976 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 977 unsigned TheReg = Regs[Reg++]; 978 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 979 } 980 } 981 } 982 983 SmallVector<std::pair<unsigned, TypeSize>, 4> 984 RegsForValue::getRegsAndSizes() const { 985 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 986 unsigned I = 0; 987 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 988 unsigned RegCount = std::get<0>(CountAndVT); 989 MVT RegisterVT = std::get<1>(CountAndVT); 990 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 991 for (unsigned E = I + RegCount; I != E; ++I) 992 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 993 } 994 return OutVec; 995 } 996 997 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 998 const TargetLibraryInfo *li) { 999 AA = aa; 1000 GFI = gfi; 1001 LibInfo = li; 1002 DL = &DAG.getDataLayout(); 1003 Context = DAG.getContext(); 1004 LPadToCallSiteMap.clear(); 1005 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1006 } 1007 1008 void SelectionDAGBuilder::clear() { 1009 NodeMap.clear(); 1010 UnusedArgNodeMap.clear(); 1011 PendingLoads.clear(); 1012 PendingExports.clear(); 1013 PendingConstrainedFP.clear(); 1014 PendingConstrainedFPStrict.clear(); 1015 CurInst = nullptr; 1016 HasTailCall = false; 1017 SDNodeOrder = LowestSDNodeOrder; 1018 StatepointLowering.clear(); 1019 } 1020 1021 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1022 DanglingDebugInfoMap.clear(); 1023 } 1024 1025 // Update DAG root to include dependencies on Pending chains. 1026 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1027 SDValue Root = DAG.getRoot(); 1028 1029 if (Pending.empty()) 1030 return Root; 1031 1032 // Add current root to PendingChains, unless we already indirectly 1033 // depend on it. 1034 if (Root.getOpcode() != ISD::EntryToken) { 1035 unsigned i = 0, e = Pending.size(); 1036 for (; i != e; ++i) { 1037 assert(Pending[i].getNode()->getNumOperands() > 1); 1038 if (Pending[i].getNode()->getOperand(0) == Root) 1039 break; // Don't add the root if we already indirectly depend on it. 1040 } 1041 1042 if (i == e) 1043 Pending.push_back(Root); 1044 } 1045 1046 if (Pending.size() == 1) 1047 Root = Pending[0]; 1048 else 1049 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1050 1051 DAG.setRoot(Root); 1052 Pending.clear(); 1053 return Root; 1054 } 1055 1056 SDValue SelectionDAGBuilder::getMemoryRoot() { 1057 return updateRoot(PendingLoads); 1058 } 1059 1060 SDValue SelectionDAGBuilder::getRoot() { 1061 // Chain up all pending constrained intrinsics together with all 1062 // pending loads, by simply appending them to PendingLoads and 1063 // then calling getMemoryRoot(). 1064 PendingLoads.reserve(PendingLoads.size() + 1065 PendingConstrainedFP.size() + 1066 PendingConstrainedFPStrict.size()); 1067 PendingLoads.append(PendingConstrainedFP.begin(), 1068 PendingConstrainedFP.end()); 1069 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1070 PendingConstrainedFPStrict.end()); 1071 PendingConstrainedFP.clear(); 1072 PendingConstrainedFPStrict.clear(); 1073 return getMemoryRoot(); 1074 } 1075 1076 SDValue SelectionDAGBuilder::getControlRoot() { 1077 // We need to emit pending fpexcept.strict constrained intrinsics, 1078 // so append them to the PendingExports list. 1079 PendingExports.append(PendingConstrainedFPStrict.begin(), 1080 PendingConstrainedFPStrict.end()); 1081 PendingConstrainedFPStrict.clear(); 1082 return updateRoot(PendingExports); 1083 } 1084 1085 void SelectionDAGBuilder::visit(const Instruction &I) { 1086 // Set up outgoing PHI node register values before emitting the terminator. 1087 if (I.isTerminator()) { 1088 HandlePHINodesInSuccessorBlocks(I.getParent()); 1089 } 1090 1091 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1092 if (!isa<DbgInfoIntrinsic>(I)) 1093 ++SDNodeOrder; 1094 1095 CurInst = &I; 1096 1097 visit(I.getOpcode(), I); 1098 1099 if (!I.isTerminator() && !HasTailCall && 1100 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1101 CopyToExportRegsIfNeeded(&I); 1102 1103 CurInst = nullptr; 1104 } 1105 1106 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1107 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1108 } 1109 1110 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1111 // Note: this doesn't use InstVisitor, because it has to work with 1112 // ConstantExpr's in addition to instructions. 1113 switch (Opcode) { 1114 default: llvm_unreachable("Unknown instruction type encountered!"); 1115 // Build the switch statement using the Instruction.def file. 1116 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1117 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1118 #include "llvm/IR/Instruction.def" 1119 } 1120 } 1121 1122 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1123 const DIExpression *Expr) { 1124 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1125 const DbgValueInst *DI = DDI.getDI(); 1126 DIVariable *DanglingVariable = DI->getVariable(); 1127 DIExpression *DanglingExpr = DI->getExpression(); 1128 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1129 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1130 return true; 1131 } 1132 return false; 1133 }; 1134 1135 for (auto &DDIMI : DanglingDebugInfoMap) { 1136 DanglingDebugInfoVector &DDIV = DDIMI.second; 1137 1138 // If debug info is to be dropped, run it through final checks to see 1139 // whether it can be salvaged. 1140 for (auto &DDI : DDIV) 1141 if (isMatchingDbgValue(DDI)) 1142 salvageUnresolvedDbgValue(DDI); 1143 1144 erase_if(DDIV, isMatchingDbgValue); 1145 } 1146 } 1147 1148 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1149 // generate the debug data structures now that we've seen its definition. 1150 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1151 SDValue Val) { 1152 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1153 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1154 return; 1155 1156 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1157 for (auto &DDI : DDIV) { 1158 const DbgValueInst *DI = DDI.getDI(); 1159 assert(DI && "Ill-formed DanglingDebugInfo"); 1160 DebugLoc dl = DDI.getdl(); 1161 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1162 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1163 DILocalVariable *Variable = DI->getVariable(); 1164 DIExpression *Expr = DI->getExpression(); 1165 assert(Variable->isValidLocationForIntrinsic(dl) && 1166 "Expected inlined-at fields to agree"); 1167 SDDbgValue *SDV; 1168 if (Val.getNode()) { 1169 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1170 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1171 // we couldn't resolve it directly when examining the DbgValue intrinsic 1172 // in the first place we should not be more successful here). Unless we 1173 // have some test case that prove this to be correct we should avoid 1174 // calling EmitFuncArgumentDbgValue here. 1175 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1176 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1177 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1178 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1179 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1180 // inserted after the definition of Val when emitting the instructions 1181 // after ISel. An alternative could be to teach 1182 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1183 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1184 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1185 << ValSDNodeOrder << "\n"); 1186 SDV = getDbgValue(Val, Variable, Expr, dl, 1187 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1188 DAG.AddDbgValue(SDV, Val.getNode(), false); 1189 } else 1190 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1191 << "in EmitFuncArgumentDbgValue\n"); 1192 } else { 1193 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1194 auto Undef = 1195 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1196 auto SDV = 1197 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1198 DAG.AddDbgValue(SDV, nullptr, false); 1199 } 1200 } 1201 DDIV.clear(); 1202 } 1203 1204 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1205 Value *V = DDI.getDI()->getValue(); 1206 DILocalVariable *Var = DDI.getDI()->getVariable(); 1207 DIExpression *Expr = DDI.getDI()->getExpression(); 1208 DebugLoc DL = DDI.getdl(); 1209 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1210 unsigned SDOrder = DDI.getSDNodeOrder(); 1211 1212 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1213 // that DW_OP_stack_value is desired. 1214 assert(isa<DbgValueInst>(DDI.getDI())); 1215 bool StackValue = true; 1216 1217 // Can this Value can be encoded without any further work? 1218 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1219 return; 1220 1221 // Attempt to salvage back through as many instructions as possible. Bail if 1222 // a non-instruction is seen, such as a constant expression or global 1223 // variable. FIXME: Further work could recover those too. 1224 while (isa<Instruction>(V)) { 1225 Instruction &VAsInst = *cast<Instruction>(V); 1226 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1227 1228 // If we cannot salvage any further, and haven't yet found a suitable debug 1229 // expression, bail out. 1230 if (!NewExpr) 1231 break; 1232 1233 // New value and expr now represent this debuginfo. 1234 V = VAsInst.getOperand(0); 1235 Expr = NewExpr; 1236 1237 // Some kind of simplification occurred: check whether the operand of the 1238 // salvaged debug expression can be encoded in this DAG. 1239 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1240 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1241 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1242 return; 1243 } 1244 } 1245 1246 // This was the final opportunity to salvage this debug information, and it 1247 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1248 // any earlier variable location. 1249 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1250 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1251 DAG.AddDbgValue(SDV, nullptr, false); 1252 1253 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1254 << "\n"); 1255 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1256 << "\n"); 1257 } 1258 1259 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1260 DIExpression *Expr, DebugLoc dl, 1261 DebugLoc InstDL, unsigned Order) { 1262 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1263 SDDbgValue *SDV; 1264 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1265 isa<ConstantPointerNull>(V)) { 1266 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1267 DAG.AddDbgValue(SDV, nullptr, false); 1268 return true; 1269 } 1270 1271 // If the Value is a frame index, we can create a FrameIndex debug value 1272 // without relying on the DAG at all. 1273 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1274 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1275 if (SI != FuncInfo.StaticAllocaMap.end()) { 1276 auto SDV = 1277 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1278 /*IsIndirect*/ false, dl, SDNodeOrder); 1279 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1280 // is still available even if the SDNode gets optimized out. 1281 DAG.AddDbgValue(SDV, nullptr, false); 1282 return true; 1283 } 1284 } 1285 1286 // Do not use getValue() in here; we don't want to generate code at 1287 // this point if it hasn't been done yet. 1288 SDValue N = NodeMap[V]; 1289 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1290 N = UnusedArgNodeMap[V]; 1291 if (N.getNode()) { 1292 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1293 return true; 1294 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1295 DAG.AddDbgValue(SDV, N.getNode(), false); 1296 return true; 1297 } 1298 1299 // Special rules apply for the first dbg.values of parameter variables in a 1300 // function. Identify them by the fact they reference Argument Values, that 1301 // they're parameters, and they are parameters of the current function. We 1302 // need to let them dangle until they get an SDNode. 1303 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1304 !InstDL.getInlinedAt(); 1305 if (!IsParamOfFunc) { 1306 // The value is not used in this block yet (or it would have an SDNode). 1307 // We still want the value to appear for the user if possible -- if it has 1308 // an associated VReg, we can refer to that instead. 1309 auto VMI = FuncInfo.ValueMap.find(V); 1310 if (VMI != FuncInfo.ValueMap.end()) { 1311 unsigned Reg = VMI->second; 1312 // If this is a PHI node, it may be split up into several MI PHI nodes 1313 // (in FunctionLoweringInfo::set). 1314 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1315 V->getType(), None); 1316 if (RFV.occupiesMultipleRegs()) { 1317 unsigned Offset = 0; 1318 unsigned BitsToDescribe = 0; 1319 if (auto VarSize = Var->getSizeInBits()) 1320 BitsToDescribe = *VarSize; 1321 if (auto Fragment = Expr->getFragmentInfo()) 1322 BitsToDescribe = Fragment->SizeInBits; 1323 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1324 // Bail out if all bits are described already. 1325 if (Offset >= BitsToDescribe) 1326 break; 1327 // TODO: handle scalable vectors. 1328 unsigned RegisterSize = RegAndSize.second; 1329 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1330 ? BitsToDescribe - Offset 1331 : RegisterSize; 1332 auto FragmentExpr = DIExpression::createFragmentExpression( 1333 Expr, Offset, FragmentSize); 1334 if (!FragmentExpr) 1335 continue; 1336 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1337 false, dl, SDNodeOrder); 1338 DAG.AddDbgValue(SDV, nullptr, false); 1339 Offset += RegisterSize; 1340 } 1341 } else { 1342 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1343 DAG.AddDbgValue(SDV, nullptr, false); 1344 } 1345 return true; 1346 } 1347 } 1348 1349 return false; 1350 } 1351 1352 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1353 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1354 for (auto &Pair : DanglingDebugInfoMap) 1355 for (auto &DDI : Pair.second) 1356 salvageUnresolvedDbgValue(DDI); 1357 clearDanglingDebugInfo(); 1358 } 1359 1360 /// getCopyFromRegs - If there was virtual register allocated for the value V 1361 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1362 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1363 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1364 SDValue Result; 1365 1366 if (It != FuncInfo.ValueMap.end()) { 1367 Register InReg = It->second; 1368 1369 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1370 DAG.getDataLayout(), InReg, Ty, 1371 None); // This is not an ABI copy. 1372 SDValue Chain = DAG.getEntryNode(); 1373 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1374 V); 1375 resolveDanglingDebugInfo(V, Result); 1376 } 1377 1378 return Result; 1379 } 1380 1381 /// getValue - Return an SDValue for the given Value. 1382 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1383 // If we already have an SDValue for this value, use it. It's important 1384 // to do this first, so that we don't create a CopyFromReg if we already 1385 // have a regular SDValue. 1386 SDValue &N = NodeMap[V]; 1387 if (N.getNode()) return N; 1388 1389 // If there's a virtual register allocated and initialized for this 1390 // value, use it. 1391 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1392 return copyFromReg; 1393 1394 // Otherwise create a new SDValue and remember it. 1395 SDValue Val = getValueImpl(V); 1396 NodeMap[V] = Val; 1397 resolveDanglingDebugInfo(V, Val); 1398 return Val; 1399 } 1400 1401 /// getNonRegisterValue - Return an SDValue for the given Value, but 1402 /// don't look in FuncInfo.ValueMap for a virtual register. 1403 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1404 // If we already have an SDValue for this value, use it. 1405 SDValue &N = NodeMap[V]; 1406 if (N.getNode()) { 1407 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1408 // Remove the debug location from the node as the node is about to be used 1409 // in a location which may differ from the original debug location. This 1410 // is relevant to Constant and ConstantFP nodes because they can appear 1411 // as constant expressions inside PHI nodes. 1412 N->setDebugLoc(DebugLoc()); 1413 } 1414 return N; 1415 } 1416 1417 // Otherwise create a new SDValue and remember it. 1418 SDValue Val = getValueImpl(V); 1419 NodeMap[V] = Val; 1420 resolveDanglingDebugInfo(V, Val); 1421 return Val; 1422 } 1423 1424 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1425 /// Create an SDValue for the given value. 1426 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1427 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1428 1429 if (const Constant *C = dyn_cast<Constant>(V)) { 1430 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1431 1432 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1433 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1434 1435 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1436 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1437 1438 if (isa<ConstantPointerNull>(C)) { 1439 unsigned AS = V->getType()->getPointerAddressSpace(); 1440 return DAG.getConstant(0, getCurSDLoc(), 1441 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1442 } 1443 1444 if (match(C, m_VScale(DAG.getDataLayout()))) 1445 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1446 1447 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1448 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1449 1450 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1451 return DAG.getUNDEF(VT); 1452 1453 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1454 visit(CE->getOpcode(), *CE); 1455 SDValue N1 = NodeMap[V]; 1456 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1457 return N1; 1458 } 1459 1460 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1461 SmallVector<SDValue, 4> Constants; 1462 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1463 OI != OE; ++OI) { 1464 SDNode *Val = getValue(*OI).getNode(); 1465 // If the operand is an empty aggregate, there are no values. 1466 if (!Val) continue; 1467 // Add each leaf value from the operand to the Constants list 1468 // to form a flattened list of all the values. 1469 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1470 Constants.push_back(SDValue(Val, i)); 1471 } 1472 1473 return DAG.getMergeValues(Constants, getCurSDLoc()); 1474 } 1475 1476 if (const ConstantDataSequential *CDS = 1477 dyn_cast<ConstantDataSequential>(C)) { 1478 SmallVector<SDValue, 4> Ops; 1479 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1480 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1481 // Add each leaf value from the operand to the Constants list 1482 // to form a flattened list of all the values. 1483 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1484 Ops.push_back(SDValue(Val, i)); 1485 } 1486 1487 if (isa<ArrayType>(CDS->getType())) 1488 return DAG.getMergeValues(Ops, getCurSDLoc()); 1489 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1490 } 1491 1492 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1493 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1494 "Unknown struct or array constant!"); 1495 1496 SmallVector<EVT, 4> ValueVTs; 1497 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1498 unsigned NumElts = ValueVTs.size(); 1499 if (NumElts == 0) 1500 return SDValue(); // empty struct 1501 SmallVector<SDValue, 4> Constants(NumElts); 1502 for (unsigned i = 0; i != NumElts; ++i) { 1503 EVT EltVT = ValueVTs[i]; 1504 if (isa<UndefValue>(C)) 1505 Constants[i] = DAG.getUNDEF(EltVT); 1506 else if (EltVT.isFloatingPoint()) 1507 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1508 else 1509 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1510 } 1511 1512 return DAG.getMergeValues(Constants, getCurSDLoc()); 1513 } 1514 1515 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1516 return DAG.getBlockAddress(BA, VT); 1517 1518 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1519 return getValue(Equiv->getGlobalValue()); 1520 1521 VectorType *VecTy = cast<VectorType>(V->getType()); 1522 1523 // Now that we know the number and type of the elements, get that number of 1524 // elements into the Ops array based on what kind of constant it is. 1525 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1526 SmallVector<SDValue, 16> Ops; 1527 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1528 for (unsigned i = 0; i != NumElements; ++i) 1529 Ops.push_back(getValue(CV->getOperand(i))); 1530 1531 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1532 } else if (isa<ConstantAggregateZero>(C)) { 1533 EVT EltVT = 1534 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1535 1536 SDValue Op; 1537 if (EltVT.isFloatingPoint()) 1538 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1539 else 1540 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1541 1542 if (isa<ScalableVectorType>(VecTy)) 1543 return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op); 1544 else { 1545 SmallVector<SDValue, 16> Ops; 1546 Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op); 1547 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1548 } 1549 } 1550 llvm_unreachable("Unknown vector constant"); 1551 } 1552 1553 // If this is a static alloca, generate it as the frameindex instead of 1554 // computation. 1555 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1556 DenseMap<const AllocaInst*, int>::iterator SI = 1557 FuncInfo.StaticAllocaMap.find(AI); 1558 if (SI != FuncInfo.StaticAllocaMap.end()) 1559 return DAG.getFrameIndex(SI->second, 1560 TLI.getFrameIndexTy(DAG.getDataLayout())); 1561 } 1562 1563 // If this is an instruction which fast-isel has deferred, select it now. 1564 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1565 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1566 1567 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1568 Inst->getType(), None); 1569 SDValue Chain = DAG.getEntryNode(); 1570 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1571 } 1572 1573 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) { 1574 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1575 } 1576 llvm_unreachable("Can't get register for value!"); 1577 } 1578 1579 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1580 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1581 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1582 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1583 bool IsSEH = isAsynchronousEHPersonality(Pers); 1584 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1585 if (!IsSEH) 1586 CatchPadMBB->setIsEHScopeEntry(); 1587 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1588 if (IsMSVCCXX || IsCoreCLR) 1589 CatchPadMBB->setIsEHFuncletEntry(); 1590 } 1591 1592 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1593 // Update machine-CFG edge. 1594 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1595 FuncInfo.MBB->addSuccessor(TargetMBB); 1596 TargetMBB->setIsEHCatchretTarget(true); 1597 DAG.getMachineFunction().setHasEHCatchret(true); 1598 1599 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1600 bool IsSEH = isAsynchronousEHPersonality(Pers); 1601 if (IsSEH) { 1602 // If this is not a fall-through branch or optimizations are switched off, 1603 // emit the branch. 1604 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1605 TM.getOptLevel() == CodeGenOpt::None) 1606 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1607 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1608 return; 1609 } 1610 1611 // Figure out the funclet membership for the catchret's successor. 1612 // This will be used by the FuncletLayout pass to determine how to order the 1613 // BB's. 1614 // A 'catchret' returns to the outer scope's color. 1615 Value *ParentPad = I.getCatchSwitchParentPad(); 1616 const BasicBlock *SuccessorColor; 1617 if (isa<ConstantTokenNone>(ParentPad)) 1618 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1619 else 1620 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1621 assert(SuccessorColor && "No parent funclet for catchret!"); 1622 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1623 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1624 1625 // Create the terminator node. 1626 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1627 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1628 DAG.getBasicBlock(SuccessorColorMBB)); 1629 DAG.setRoot(Ret); 1630 } 1631 1632 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1633 // Don't emit any special code for the cleanuppad instruction. It just marks 1634 // the start of an EH scope/funclet. 1635 FuncInfo.MBB->setIsEHScopeEntry(); 1636 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1637 if (Pers != EHPersonality::Wasm_CXX) { 1638 FuncInfo.MBB->setIsEHFuncletEntry(); 1639 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1640 } 1641 } 1642 1643 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1644 // not match, it is OK to add only the first unwind destination catchpad to the 1645 // successors, because there will be at least one invoke instruction within the 1646 // catch scope that points to the next unwind destination, if one exists, so 1647 // CFGSort cannot mess up with BB sorting order. 1648 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1649 // call within them, and catchpads only consisting of 'catch (...)' have a 1650 // '__cxa_end_catch' call within them, both of which generate invokes in case 1651 // the next unwind destination exists, i.e., the next unwind destination is not 1652 // the caller.) 1653 // 1654 // Having at most one EH pad successor is also simpler and helps later 1655 // transformations. 1656 // 1657 // For example, 1658 // current: 1659 // invoke void @foo to ... unwind label %catch.dispatch 1660 // catch.dispatch: 1661 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1662 // catch.start: 1663 // ... 1664 // ... in this BB or some other child BB dominated by this BB there will be an 1665 // invoke that points to 'next' BB as an unwind destination 1666 // 1667 // next: ; We don't need to add this to 'current' BB's successor 1668 // ... 1669 static void findWasmUnwindDestinations( 1670 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1671 BranchProbability Prob, 1672 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1673 &UnwindDests) { 1674 while (EHPadBB) { 1675 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1676 if (isa<CleanupPadInst>(Pad)) { 1677 // Stop on cleanup pads. 1678 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1679 UnwindDests.back().first->setIsEHScopeEntry(); 1680 break; 1681 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1682 // Add the catchpad handlers to the possible destinations. We don't 1683 // continue to the unwind destination of the catchswitch for wasm. 1684 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1685 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1686 UnwindDests.back().first->setIsEHScopeEntry(); 1687 } 1688 break; 1689 } else { 1690 continue; 1691 } 1692 } 1693 } 1694 1695 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1696 /// many places it could ultimately go. In the IR, we have a single unwind 1697 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1698 /// This function skips over imaginary basic blocks that hold catchswitch 1699 /// instructions, and finds all the "real" machine 1700 /// basic block destinations. As those destinations may not be successors of 1701 /// EHPadBB, here we also calculate the edge probability to those destinations. 1702 /// The passed-in Prob is the edge probability to EHPadBB. 1703 static void findUnwindDestinations( 1704 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1705 BranchProbability Prob, 1706 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1707 &UnwindDests) { 1708 EHPersonality Personality = 1709 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1710 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1711 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1712 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1713 bool IsSEH = isAsynchronousEHPersonality(Personality); 1714 1715 if (IsWasmCXX) { 1716 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1717 assert(UnwindDests.size() <= 1 && 1718 "There should be at most one unwind destination for wasm"); 1719 return; 1720 } 1721 1722 while (EHPadBB) { 1723 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1724 BasicBlock *NewEHPadBB = nullptr; 1725 if (isa<LandingPadInst>(Pad)) { 1726 // Stop on landingpads. They are not funclets. 1727 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1728 break; 1729 } else if (isa<CleanupPadInst>(Pad)) { 1730 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1731 // personalities. 1732 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1733 UnwindDests.back().first->setIsEHScopeEntry(); 1734 UnwindDests.back().first->setIsEHFuncletEntry(); 1735 break; 1736 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1737 // Add the catchpad handlers to the possible destinations. 1738 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1739 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1740 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1741 if (IsMSVCCXX || IsCoreCLR) 1742 UnwindDests.back().first->setIsEHFuncletEntry(); 1743 if (!IsSEH) 1744 UnwindDests.back().first->setIsEHScopeEntry(); 1745 } 1746 NewEHPadBB = CatchSwitch->getUnwindDest(); 1747 } else { 1748 continue; 1749 } 1750 1751 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1752 if (BPI && NewEHPadBB) 1753 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1754 EHPadBB = NewEHPadBB; 1755 } 1756 } 1757 1758 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1759 // Update successor info. 1760 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1761 auto UnwindDest = I.getUnwindDest(); 1762 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1763 BranchProbability UnwindDestProb = 1764 (BPI && UnwindDest) 1765 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1766 : BranchProbability::getZero(); 1767 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1768 for (auto &UnwindDest : UnwindDests) { 1769 UnwindDest.first->setIsEHPad(); 1770 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1771 } 1772 FuncInfo.MBB->normalizeSuccProbs(); 1773 1774 // Create the terminator node. 1775 SDValue Ret = 1776 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1777 DAG.setRoot(Ret); 1778 } 1779 1780 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1781 report_fatal_error("visitCatchSwitch not yet implemented!"); 1782 } 1783 1784 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1785 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1786 auto &DL = DAG.getDataLayout(); 1787 SDValue Chain = getControlRoot(); 1788 SmallVector<ISD::OutputArg, 8> Outs; 1789 SmallVector<SDValue, 8> OutVals; 1790 1791 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1792 // lower 1793 // 1794 // %val = call <ty> @llvm.experimental.deoptimize() 1795 // ret <ty> %val 1796 // 1797 // differently. 1798 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1799 LowerDeoptimizingReturn(); 1800 return; 1801 } 1802 1803 if (!FuncInfo.CanLowerReturn) { 1804 unsigned DemoteReg = FuncInfo.DemoteRegister; 1805 const Function *F = I.getParent()->getParent(); 1806 1807 // Emit a store of the return value through the virtual register. 1808 // Leave Outs empty so that LowerReturn won't try to load return 1809 // registers the usual way. 1810 SmallVector<EVT, 1> PtrValueVTs; 1811 ComputeValueVTs(TLI, DL, 1812 F->getReturnType()->getPointerTo( 1813 DAG.getDataLayout().getAllocaAddrSpace()), 1814 PtrValueVTs); 1815 1816 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1817 DemoteReg, PtrValueVTs[0]); 1818 SDValue RetOp = getValue(I.getOperand(0)); 1819 1820 SmallVector<EVT, 4> ValueVTs, MemVTs; 1821 SmallVector<uint64_t, 4> Offsets; 1822 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1823 &Offsets); 1824 unsigned NumValues = ValueVTs.size(); 1825 1826 SmallVector<SDValue, 4> Chains(NumValues); 1827 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1828 for (unsigned i = 0; i != NumValues; ++i) { 1829 // An aggregate return value cannot wrap around the address space, so 1830 // offsets to its parts don't wrap either. 1831 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 1832 TypeSize::Fixed(Offsets[i])); 1833 1834 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1835 if (MemVTs[i] != ValueVTs[i]) 1836 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1837 Chains[i] = DAG.getStore( 1838 Chain, getCurSDLoc(), Val, 1839 // FIXME: better loc info would be nice. 1840 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1841 commonAlignment(BaseAlign, Offsets[i])); 1842 } 1843 1844 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1845 MVT::Other, Chains); 1846 } else if (I.getNumOperands() != 0) { 1847 SmallVector<EVT, 4> ValueVTs; 1848 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1849 unsigned NumValues = ValueVTs.size(); 1850 if (NumValues) { 1851 SDValue RetOp = getValue(I.getOperand(0)); 1852 1853 const Function *F = I.getParent()->getParent(); 1854 1855 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1856 I.getOperand(0)->getType(), F->getCallingConv(), 1857 /*IsVarArg*/ false); 1858 1859 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1860 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1861 Attribute::SExt)) 1862 ExtendKind = ISD::SIGN_EXTEND; 1863 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1864 Attribute::ZExt)) 1865 ExtendKind = ISD::ZERO_EXTEND; 1866 1867 LLVMContext &Context = F->getContext(); 1868 bool RetInReg = F->getAttributes().hasAttribute( 1869 AttributeList::ReturnIndex, Attribute::InReg); 1870 1871 for (unsigned j = 0; j != NumValues; ++j) { 1872 EVT VT = ValueVTs[j]; 1873 1874 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1875 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1876 1877 CallingConv::ID CC = F->getCallingConv(); 1878 1879 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1880 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1881 SmallVector<SDValue, 4> Parts(NumParts); 1882 getCopyToParts(DAG, getCurSDLoc(), 1883 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1884 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1885 1886 // 'inreg' on function refers to return value 1887 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1888 if (RetInReg) 1889 Flags.setInReg(); 1890 1891 if (I.getOperand(0)->getType()->isPointerTy()) { 1892 Flags.setPointer(); 1893 Flags.setPointerAddrSpace( 1894 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1895 } 1896 1897 if (NeedsRegBlock) { 1898 Flags.setInConsecutiveRegs(); 1899 if (j == NumValues - 1) 1900 Flags.setInConsecutiveRegsLast(); 1901 } 1902 1903 // Propagate extension type if any 1904 if (ExtendKind == ISD::SIGN_EXTEND) 1905 Flags.setSExt(); 1906 else if (ExtendKind == ISD::ZERO_EXTEND) 1907 Flags.setZExt(); 1908 1909 for (unsigned i = 0; i < NumParts; ++i) { 1910 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1911 VT, /*isfixed=*/true, 0, 0)); 1912 OutVals.push_back(Parts[i]); 1913 } 1914 } 1915 } 1916 } 1917 1918 // Push in swifterror virtual register as the last element of Outs. This makes 1919 // sure swifterror virtual register will be returned in the swifterror 1920 // physical register. 1921 const Function *F = I.getParent()->getParent(); 1922 if (TLI.supportSwiftError() && 1923 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1924 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1925 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1926 Flags.setSwiftError(); 1927 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1928 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1929 true /*isfixed*/, 1 /*origidx*/, 1930 0 /*partOffs*/)); 1931 // Create SDNode for the swifterror virtual register. 1932 OutVals.push_back( 1933 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1934 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1935 EVT(TLI.getPointerTy(DL)))); 1936 } 1937 1938 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1939 CallingConv::ID CallConv = 1940 DAG.getMachineFunction().getFunction().getCallingConv(); 1941 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1942 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1943 1944 // Verify that the target's LowerReturn behaved as expected. 1945 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1946 "LowerReturn didn't return a valid chain!"); 1947 1948 // Update the DAG with the new chain value resulting from return lowering. 1949 DAG.setRoot(Chain); 1950 } 1951 1952 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1953 /// created for it, emit nodes to copy the value into the virtual 1954 /// registers. 1955 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1956 // Skip empty types 1957 if (V->getType()->isEmptyTy()) 1958 return; 1959 1960 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 1961 if (VMI != FuncInfo.ValueMap.end()) { 1962 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1963 CopyValueToVirtualRegister(V, VMI->second); 1964 } 1965 } 1966 1967 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1968 /// the current basic block, add it to ValueMap now so that we'll get a 1969 /// CopyTo/FromReg. 1970 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1971 // No need to export constants. 1972 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1973 1974 // Already exported? 1975 if (FuncInfo.isExportedInst(V)) return; 1976 1977 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1978 CopyValueToVirtualRegister(V, Reg); 1979 } 1980 1981 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1982 const BasicBlock *FromBB) { 1983 // The operands of the setcc have to be in this block. We don't know 1984 // how to export them from some other block. 1985 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1986 // Can export from current BB. 1987 if (VI->getParent() == FromBB) 1988 return true; 1989 1990 // Is already exported, noop. 1991 return FuncInfo.isExportedInst(V); 1992 } 1993 1994 // If this is an argument, we can export it if the BB is the entry block or 1995 // if it is already exported. 1996 if (isa<Argument>(V)) { 1997 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1998 return true; 1999 2000 // Otherwise, can only export this if it is already exported. 2001 return FuncInfo.isExportedInst(V); 2002 } 2003 2004 // Otherwise, constants can always be exported. 2005 return true; 2006 } 2007 2008 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2009 BranchProbability 2010 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2011 const MachineBasicBlock *Dst) const { 2012 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2013 const BasicBlock *SrcBB = Src->getBasicBlock(); 2014 const BasicBlock *DstBB = Dst->getBasicBlock(); 2015 if (!BPI) { 2016 // If BPI is not available, set the default probability as 1 / N, where N is 2017 // the number of successors. 2018 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2019 return BranchProbability(1, SuccSize); 2020 } 2021 return BPI->getEdgeProbability(SrcBB, DstBB); 2022 } 2023 2024 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2025 MachineBasicBlock *Dst, 2026 BranchProbability Prob) { 2027 if (!FuncInfo.BPI) 2028 Src->addSuccessorWithoutProb(Dst); 2029 else { 2030 if (Prob.isUnknown()) 2031 Prob = getEdgeProbability(Src, Dst); 2032 Src->addSuccessor(Dst, Prob); 2033 } 2034 } 2035 2036 static bool InBlock(const Value *V, const BasicBlock *BB) { 2037 if (const Instruction *I = dyn_cast<Instruction>(V)) 2038 return I->getParent() == BB; 2039 return true; 2040 } 2041 2042 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2043 /// This function emits a branch and is used at the leaves of an OR or an 2044 /// AND operator tree. 2045 void 2046 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2047 MachineBasicBlock *TBB, 2048 MachineBasicBlock *FBB, 2049 MachineBasicBlock *CurBB, 2050 MachineBasicBlock *SwitchBB, 2051 BranchProbability TProb, 2052 BranchProbability FProb, 2053 bool InvertCond) { 2054 const BasicBlock *BB = CurBB->getBasicBlock(); 2055 2056 // If the leaf of the tree is a comparison, merge the condition into 2057 // the caseblock. 2058 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2059 // The operands of the cmp have to be in this block. We don't know 2060 // how to export them from some other block. If this is the first block 2061 // of the sequence, no exporting is needed. 2062 if (CurBB == SwitchBB || 2063 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2064 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2065 ISD::CondCode Condition; 2066 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2067 ICmpInst::Predicate Pred = 2068 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2069 Condition = getICmpCondCode(Pred); 2070 } else { 2071 const FCmpInst *FC = cast<FCmpInst>(Cond); 2072 FCmpInst::Predicate Pred = 2073 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2074 Condition = getFCmpCondCode(Pred); 2075 if (TM.Options.NoNaNsFPMath) 2076 Condition = getFCmpCodeWithoutNaN(Condition); 2077 } 2078 2079 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2080 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2081 SL->SwitchCases.push_back(CB); 2082 return; 2083 } 2084 } 2085 2086 // Create a CaseBlock record representing this branch. 2087 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2088 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2089 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2090 SL->SwitchCases.push_back(CB); 2091 } 2092 2093 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2094 MachineBasicBlock *TBB, 2095 MachineBasicBlock *FBB, 2096 MachineBasicBlock *CurBB, 2097 MachineBasicBlock *SwitchBB, 2098 Instruction::BinaryOps Opc, 2099 BranchProbability TProb, 2100 BranchProbability FProb, 2101 bool InvertCond) { 2102 // Skip over not part of the tree and remember to invert op and operands at 2103 // next level. 2104 Value *NotCond; 2105 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2106 InBlock(NotCond, CurBB->getBasicBlock())) { 2107 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2108 !InvertCond); 2109 return; 2110 } 2111 2112 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2113 const Value *BOpOp0, *BOpOp1; 2114 // Compute the effective opcode for Cond, taking into account whether it needs 2115 // to be inverted, e.g. 2116 // and (not (or A, B)), C 2117 // gets lowered as 2118 // and (and (not A, not B), C) 2119 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2120 if (BOp) { 2121 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2122 ? Instruction::And 2123 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2124 ? Instruction::Or 2125 : (Instruction::BinaryOps)0); 2126 if (InvertCond) { 2127 if (BOpc == Instruction::And) 2128 BOpc = Instruction::Or; 2129 else if (BOpc == Instruction::Or) 2130 BOpc = Instruction::And; 2131 } 2132 } 2133 2134 // If this node is not part of the or/and tree, emit it as a branch. 2135 // Note that all nodes in the tree should have same opcode. 2136 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2137 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2138 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2139 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2140 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2141 TProb, FProb, InvertCond); 2142 return; 2143 } 2144 2145 // Create TmpBB after CurBB. 2146 MachineFunction::iterator BBI(CurBB); 2147 MachineFunction &MF = DAG.getMachineFunction(); 2148 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2149 CurBB->getParent()->insert(++BBI, TmpBB); 2150 2151 if (Opc == Instruction::Or) { 2152 // Codegen X | Y as: 2153 // BB1: 2154 // jmp_if_X TBB 2155 // jmp TmpBB 2156 // TmpBB: 2157 // jmp_if_Y TBB 2158 // jmp FBB 2159 // 2160 2161 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2162 // The requirement is that 2163 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2164 // = TrueProb for original BB. 2165 // Assuming the original probabilities are A and B, one choice is to set 2166 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2167 // A/(1+B) and 2B/(1+B). This choice assumes that 2168 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2169 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2170 // TmpBB, but the math is more complicated. 2171 2172 auto NewTrueProb = TProb / 2; 2173 auto NewFalseProb = TProb / 2 + FProb; 2174 // Emit the LHS condition. 2175 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2176 NewFalseProb, InvertCond); 2177 2178 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2179 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2180 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2181 // Emit the RHS condition into TmpBB. 2182 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2183 Probs[1], InvertCond); 2184 } else { 2185 assert(Opc == Instruction::And && "Unknown merge op!"); 2186 // Codegen X & Y as: 2187 // BB1: 2188 // jmp_if_X TmpBB 2189 // jmp FBB 2190 // TmpBB: 2191 // jmp_if_Y TBB 2192 // jmp FBB 2193 // 2194 // This requires creation of TmpBB after CurBB. 2195 2196 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2197 // The requirement is that 2198 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2199 // = FalseProb for original BB. 2200 // Assuming the original probabilities are A and B, one choice is to set 2201 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2202 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2203 // TrueProb for BB1 * FalseProb for TmpBB. 2204 2205 auto NewTrueProb = TProb + FProb / 2; 2206 auto NewFalseProb = FProb / 2; 2207 // Emit the LHS condition. 2208 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2209 NewFalseProb, InvertCond); 2210 2211 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2212 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2213 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2214 // Emit the RHS condition into TmpBB. 2215 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2216 Probs[1], InvertCond); 2217 } 2218 } 2219 2220 /// If the set of cases should be emitted as a series of branches, return true. 2221 /// If we should emit this as a bunch of and/or'd together conditions, return 2222 /// false. 2223 bool 2224 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2225 if (Cases.size() != 2) return true; 2226 2227 // If this is two comparisons of the same values or'd or and'd together, they 2228 // will get folded into a single comparison, so don't emit two blocks. 2229 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2230 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2231 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2232 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2233 return false; 2234 } 2235 2236 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2237 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2238 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2239 Cases[0].CC == Cases[1].CC && 2240 isa<Constant>(Cases[0].CmpRHS) && 2241 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2242 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2243 return false; 2244 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2245 return false; 2246 } 2247 2248 return true; 2249 } 2250 2251 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2252 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2253 2254 // Update machine-CFG edges. 2255 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2256 2257 if (I.isUnconditional()) { 2258 // Update machine-CFG edges. 2259 BrMBB->addSuccessor(Succ0MBB); 2260 2261 // If this is not a fall-through branch or optimizations are switched off, 2262 // emit the branch. 2263 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2264 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2265 MVT::Other, getControlRoot(), 2266 DAG.getBasicBlock(Succ0MBB))); 2267 2268 return; 2269 } 2270 2271 // If this condition is one of the special cases we handle, do special stuff 2272 // now. 2273 const Value *CondVal = I.getCondition(); 2274 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2275 2276 // If this is a series of conditions that are or'd or and'd together, emit 2277 // this as a sequence of branches instead of setcc's with and/or operations. 2278 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2279 // unpredictable branches, and vector extracts because those jumps are likely 2280 // expensive for any target), this should improve performance. 2281 // For example, instead of something like: 2282 // cmp A, B 2283 // C = seteq 2284 // cmp D, E 2285 // F = setle 2286 // or C, F 2287 // jnz foo 2288 // Emit: 2289 // cmp A, B 2290 // je foo 2291 // cmp D, E 2292 // jle foo 2293 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2294 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2295 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2296 Value *Vec; 2297 const Value *BOp0, *BOp1; 2298 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2299 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2300 Opcode = Instruction::And; 2301 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2302 Opcode = Instruction::Or; 2303 2304 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2305 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2306 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2307 getEdgeProbability(BrMBB, Succ0MBB), 2308 getEdgeProbability(BrMBB, Succ1MBB), 2309 /*InvertCond=*/false); 2310 // If the compares in later blocks need to use values not currently 2311 // exported from this block, export them now. This block should always 2312 // be the first entry. 2313 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2314 2315 // Allow some cases to be rejected. 2316 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2317 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2318 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2319 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2320 } 2321 2322 // Emit the branch for this block. 2323 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2324 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2325 return; 2326 } 2327 2328 // Okay, we decided not to do this, remove any inserted MBB's and clear 2329 // SwitchCases. 2330 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2331 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2332 2333 SL->SwitchCases.clear(); 2334 } 2335 } 2336 2337 // Create a CaseBlock record representing this branch. 2338 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2339 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2340 2341 // Use visitSwitchCase to actually insert the fast branch sequence for this 2342 // cond branch. 2343 visitSwitchCase(CB, BrMBB); 2344 } 2345 2346 /// visitSwitchCase - Emits the necessary code to represent a single node in 2347 /// the binary search tree resulting from lowering a switch instruction. 2348 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2349 MachineBasicBlock *SwitchBB) { 2350 SDValue Cond; 2351 SDValue CondLHS = getValue(CB.CmpLHS); 2352 SDLoc dl = CB.DL; 2353 2354 if (CB.CC == ISD::SETTRUE) { 2355 // Branch or fall through to TrueBB. 2356 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2357 SwitchBB->normalizeSuccProbs(); 2358 if (CB.TrueBB != NextBlock(SwitchBB)) { 2359 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2360 DAG.getBasicBlock(CB.TrueBB))); 2361 } 2362 return; 2363 } 2364 2365 auto &TLI = DAG.getTargetLoweringInfo(); 2366 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2367 2368 // Build the setcc now. 2369 if (!CB.CmpMHS) { 2370 // Fold "(X == true)" to X and "(X == false)" to !X to 2371 // handle common cases produced by branch lowering. 2372 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2373 CB.CC == ISD::SETEQ) 2374 Cond = CondLHS; 2375 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2376 CB.CC == ISD::SETEQ) { 2377 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2378 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2379 } else { 2380 SDValue CondRHS = getValue(CB.CmpRHS); 2381 2382 // If a pointer's DAG type is larger than its memory type then the DAG 2383 // values are zero-extended. This breaks signed comparisons so truncate 2384 // back to the underlying type before doing the compare. 2385 if (CondLHS.getValueType() != MemVT) { 2386 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2387 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2388 } 2389 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2390 } 2391 } else { 2392 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2393 2394 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2395 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2396 2397 SDValue CmpOp = getValue(CB.CmpMHS); 2398 EVT VT = CmpOp.getValueType(); 2399 2400 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2401 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2402 ISD::SETLE); 2403 } else { 2404 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2405 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2406 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2407 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2408 } 2409 } 2410 2411 // Update successor info 2412 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2413 // TrueBB and FalseBB are always different unless the incoming IR is 2414 // degenerate. This only happens when running llc on weird IR. 2415 if (CB.TrueBB != CB.FalseBB) 2416 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2417 SwitchBB->normalizeSuccProbs(); 2418 2419 // If the lhs block is the next block, invert the condition so that we can 2420 // fall through to the lhs instead of the rhs block. 2421 if (CB.TrueBB == NextBlock(SwitchBB)) { 2422 std::swap(CB.TrueBB, CB.FalseBB); 2423 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2424 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2425 } 2426 2427 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2428 MVT::Other, getControlRoot(), Cond, 2429 DAG.getBasicBlock(CB.TrueBB)); 2430 2431 // Insert the false branch. Do this even if it's a fall through branch, 2432 // this makes it easier to do DAG optimizations which require inverting 2433 // the branch condition. 2434 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2435 DAG.getBasicBlock(CB.FalseBB)); 2436 2437 DAG.setRoot(BrCond); 2438 } 2439 2440 /// visitJumpTable - Emit JumpTable node in the current MBB 2441 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2442 // Emit the code for the jump table 2443 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2444 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2445 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2446 JT.Reg, PTy); 2447 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2448 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2449 MVT::Other, Index.getValue(1), 2450 Table, Index); 2451 DAG.setRoot(BrJumpTable); 2452 } 2453 2454 /// visitJumpTableHeader - This function emits necessary code to produce index 2455 /// in the JumpTable from switch case. 2456 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2457 JumpTableHeader &JTH, 2458 MachineBasicBlock *SwitchBB) { 2459 SDLoc dl = getCurSDLoc(); 2460 2461 // Subtract the lowest switch case value from the value being switched on. 2462 SDValue SwitchOp = getValue(JTH.SValue); 2463 EVT VT = SwitchOp.getValueType(); 2464 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2465 DAG.getConstant(JTH.First, dl, VT)); 2466 2467 // The SDNode we just created, which holds the value being switched on minus 2468 // the smallest case value, needs to be copied to a virtual register so it 2469 // can be used as an index into the jump table in a subsequent basic block. 2470 // This value may be smaller or larger than the target's pointer type, and 2471 // therefore require extension or truncating. 2472 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2473 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2474 2475 unsigned JumpTableReg = 2476 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2477 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2478 JumpTableReg, SwitchOp); 2479 JT.Reg = JumpTableReg; 2480 2481 if (!JTH.OmitRangeCheck) { 2482 // Emit the range check for the jump table, and branch to the default block 2483 // for the switch statement if the value being switched on exceeds the 2484 // largest case in the switch. 2485 SDValue CMP = DAG.getSetCC( 2486 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2487 Sub.getValueType()), 2488 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2489 2490 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2491 MVT::Other, CopyTo, CMP, 2492 DAG.getBasicBlock(JT.Default)); 2493 2494 // Avoid emitting unnecessary branches to the next block. 2495 if (JT.MBB != NextBlock(SwitchBB)) 2496 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2497 DAG.getBasicBlock(JT.MBB)); 2498 2499 DAG.setRoot(BrCond); 2500 } else { 2501 // Avoid emitting unnecessary branches to the next block. 2502 if (JT.MBB != NextBlock(SwitchBB)) 2503 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2504 DAG.getBasicBlock(JT.MBB))); 2505 else 2506 DAG.setRoot(CopyTo); 2507 } 2508 } 2509 2510 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2511 /// variable if there exists one. 2512 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2513 SDValue &Chain) { 2514 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2515 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2516 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2517 MachineFunction &MF = DAG.getMachineFunction(); 2518 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2519 MachineSDNode *Node = 2520 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2521 if (Global) { 2522 MachinePointerInfo MPInfo(Global); 2523 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2524 MachineMemOperand::MODereferenceable; 2525 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2526 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2527 DAG.setNodeMemRefs(Node, {MemRef}); 2528 } 2529 if (PtrTy != PtrMemTy) 2530 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2531 return SDValue(Node, 0); 2532 } 2533 2534 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2535 /// tail spliced into a stack protector check success bb. 2536 /// 2537 /// For a high level explanation of how this fits into the stack protector 2538 /// generation see the comment on the declaration of class 2539 /// StackProtectorDescriptor. 2540 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2541 MachineBasicBlock *ParentBB) { 2542 2543 // First create the loads to the guard/stack slot for the comparison. 2544 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2545 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2546 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2547 2548 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2549 int FI = MFI.getStackProtectorIndex(); 2550 2551 SDValue Guard; 2552 SDLoc dl = getCurSDLoc(); 2553 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2554 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2555 Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 2556 2557 // Generate code to load the content of the guard slot. 2558 SDValue GuardVal = DAG.getLoad( 2559 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2560 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2561 MachineMemOperand::MOVolatile); 2562 2563 if (TLI.useStackGuardXorFP()) 2564 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2565 2566 // Retrieve guard check function, nullptr if instrumentation is inlined. 2567 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2568 // The target provides a guard check function to validate the guard value. 2569 // Generate a call to that function with the content of the guard slot as 2570 // argument. 2571 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2572 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2573 2574 TargetLowering::ArgListTy Args; 2575 TargetLowering::ArgListEntry Entry; 2576 Entry.Node = GuardVal; 2577 Entry.Ty = FnTy->getParamType(0); 2578 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2579 Entry.IsInReg = true; 2580 Args.push_back(Entry); 2581 2582 TargetLowering::CallLoweringInfo CLI(DAG); 2583 CLI.setDebugLoc(getCurSDLoc()) 2584 .setChain(DAG.getEntryNode()) 2585 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2586 getValue(GuardCheckFn), std::move(Args)); 2587 2588 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2589 DAG.setRoot(Result.second); 2590 return; 2591 } 2592 2593 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2594 // Otherwise, emit a volatile load to retrieve the stack guard value. 2595 SDValue Chain = DAG.getEntryNode(); 2596 if (TLI.useLoadStackGuardNode()) { 2597 Guard = getLoadStackGuard(DAG, dl, Chain); 2598 } else { 2599 const Value *IRGuard = TLI.getSDagStackGuard(M); 2600 SDValue GuardPtr = getValue(IRGuard); 2601 2602 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2603 MachinePointerInfo(IRGuard, 0), Align, 2604 MachineMemOperand::MOVolatile); 2605 } 2606 2607 // Perform the comparison via a getsetcc. 2608 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2609 *DAG.getContext(), 2610 Guard.getValueType()), 2611 Guard, GuardVal, ISD::SETNE); 2612 2613 // If the guard/stackslot do not equal, branch to failure MBB. 2614 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2615 MVT::Other, GuardVal.getOperand(0), 2616 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2617 // Otherwise branch to success MBB. 2618 SDValue Br = DAG.getNode(ISD::BR, dl, 2619 MVT::Other, BrCond, 2620 DAG.getBasicBlock(SPD.getSuccessMBB())); 2621 2622 DAG.setRoot(Br); 2623 } 2624 2625 /// Codegen the failure basic block for a stack protector check. 2626 /// 2627 /// A failure stack protector machine basic block consists simply of a call to 2628 /// __stack_chk_fail(). 2629 /// 2630 /// For a high level explanation of how this fits into the stack protector 2631 /// generation see the comment on the declaration of class 2632 /// StackProtectorDescriptor. 2633 void 2634 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2635 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2636 TargetLowering::MakeLibCallOptions CallOptions; 2637 CallOptions.setDiscardResult(true); 2638 SDValue Chain = 2639 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2640 None, CallOptions, getCurSDLoc()).second; 2641 // On PS4, the "return address" must still be within the calling function, 2642 // even if it's at the very end, so emit an explicit TRAP here. 2643 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2644 if (TM.getTargetTriple().isPS4CPU()) 2645 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2646 // WebAssembly needs an unreachable instruction after a non-returning call, 2647 // because the function return type can be different from __stack_chk_fail's 2648 // return type (void). 2649 if (TM.getTargetTriple().isWasm()) 2650 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2651 2652 DAG.setRoot(Chain); 2653 } 2654 2655 /// visitBitTestHeader - This function emits necessary code to produce value 2656 /// suitable for "bit tests" 2657 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2658 MachineBasicBlock *SwitchBB) { 2659 SDLoc dl = getCurSDLoc(); 2660 2661 // Subtract the minimum value. 2662 SDValue SwitchOp = getValue(B.SValue); 2663 EVT VT = SwitchOp.getValueType(); 2664 SDValue RangeSub = 2665 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2666 2667 // Determine the type of the test operands. 2668 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2669 bool UsePtrType = false; 2670 if (!TLI.isTypeLegal(VT)) { 2671 UsePtrType = true; 2672 } else { 2673 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2674 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2675 // Switch table case range are encoded into series of masks. 2676 // Just use pointer type, it's guaranteed to fit. 2677 UsePtrType = true; 2678 break; 2679 } 2680 } 2681 SDValue Sub = RangeSub; 2682 if (UsePtrType) { 2683 VT = TLI.getPointerTy(DAG.getDataLayout()); 2684 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2685 } 2686 2687 B.RegVT = VT.getSimpleVT(); 2688 B.Reg = FuncInfo.CreateReg(B.RegVT); 2689 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2690 2691 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2692 2693 if (!B.OmitRangeCheck) 2694 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2695 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2696 SwitchBB->normalizeSuccProbs(); 2697 2698 SDValue Root = CopyTo; 2699 if (!B.OmitRangeCheck) { 2700 // Conditional branch to the default block. 2701 SDValue RangeCmp = DAG.getSetCC(dl, 2702 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2703 RangeSub.getValueType()), 2704 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2705 ISD::SETUGT); 2706 2707 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2708 DAG.getBasicBlock(B.Default)); 2709 } 2710 2711 // Avoid emitting unnecessary branches to the next block. 2712 if (MBB != NextBlock(SwitchBB)) 2713 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2714 2715 DAG.setRoot(Root); 2716 } 2717 2718 /// visitBitTestCase - this function produces one "bit test" 2719 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2720 MachineBasicBlock* NextMBB, 2721 BranchProbability BranchProbToNext, 2722 unsigned Reg, 2723 BitTestCase &B, 2724 MachineBasicBlock *SwitchBB) { 2725 SDLoc dl = getCurSDLoc(); 2726 MVT VT = BB.RegVT; 2727 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2728 SDValue Cmp; 2729 unsigned PopCount = countPopulation(B.Mask); 2730 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2731 if (PopCount == 1) { 2732 // Testing for a single bit; just compare the shift count with what it 2733 // would need to be to shift a 1 bit in that position. 2734 Cmp = DAG.getSetCC( 2735 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2736 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2737 ISD::SETEQ); 2738 } else if (PopCount == BB.Range) { 2739 // There is only one zero bit in the range, test for it directly. 2740 Cmp = DAG.getSetCC( 2741 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2742 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2743 ISD::SETNE); 2744 } else { 2745 // Make desired shift 2746 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2747 DAG.getConstant(1, dl, VT), ShiftOp); 2748 2749 // Emit bit tests and jumps 2750 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2751 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2752 Cmp = DAG.getSetCC( 2753 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2754 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2755 } 2756 2757 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2758 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2759 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2760 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2761 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2762 // one as they are relative probabilities (and thus work more like weights), 2763 // and hence we need to normalize them to let the sum of them become one. 2764 SwitchBB->normalizeSuccProbs(); 2765 2766 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2767 MVT::Other, getControlRoot(), 2768 Cmp, DAG.getBasicBlock(B.TargetBB)); 2769 2770 // Avoid emitting unnecessary branches to the next block. 2771 if (NextMBB != NextBlock(SwitchBB)) 2772 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2773 DAG.getBasicBlock(NextMBB)); 2774 2775 DAG.setRoot(BrAnd); 2776 } 2777 2778 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2779 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2780 2781 // Retrieve successors. Look through artificial IR level blocks like 2782 // catchswitch for successors. 2783 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2784 const BasicBlock *EHPadBB = I.getSuccessor(1); 2785 2786 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2787 // have to do anything here to lower funclet bundles. 2788 assert(!I.hasOperandBundlesOtherThan( 2789 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 2790 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 2791 LLVMContext::OB_cfguardtarget, 2792 LLVMContext::OB_clang_arc_attachedcall}) && 2793 "Cannot lower invokes with arbitrary operand bundles yet!"); 2794 2795 const Value *Callee(I.getCalledOperand()); 2796 const Function *Fn = dyn_cast<Function>(Callee); 2797 if (isa<InlineAsm>(Callee)) 2798 visitInlineAsm(I); 2799 else if (Fn && Fn->isIntrinsic()) { 2800 switch (Fn->getIntrinsicID()) { 2801 default: 2802 llvm_unreachable("Cannot invoke this intrinsic"); 2803 case Intrinsic::donothing: 2804 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2805 break; 2806 case Intrinsic::experimental_patchpoint_void: 2807 case Intrinsic::experimental_patchpoint_i64: 2808 visitPatchpoint(I, EHPadBB); 2809 break; 2810 case Intrinsic::experimental_gc_statepoint: 2811 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2812 break; 2813 case Intrinsic::wasm_rethrow: { 2814 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2815 // special because it can be invoked, so we manually lower it to a DAG 2816 // node here. 2817 SmallVector<SDValue, 8> Ops; 2818 Ops.push_back(getRoot()); // inchain 2819 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2820 Ops.push_back( 2821 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 2822 TLI.getPointerTy(DAG.getDataLayout()))); 2823 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2824 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2825 break; 2826 } 2827 } 2828 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2829 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2830 // Eventually we will support lowering the @llvm.experimental.deoptimize 2831 // intrinsic, and right now there are no plans to support other intrinsics 2832 // with deopt state. 2833 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2834 } else { 2835 LowerCallTo(I, getValue(Callee), false, EHPadBB); 2836 } 2837 2838 // If the value of the invoke is used outside of its defining block, make it 2839 // available as a virtual register. 2840 // We already took care of the exported value for the statepoint instruction 2841 // during call to the LowerStatepoint. 2842 if (!isa<GCStatepointInst>(I)) { 2843 CopyToExportRegsIfNeeded(&I); 2844 } 2845 2846 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2847 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2848 BranchProbability EHPadBBProb = 2849 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2850 : BranchProbability::getZero(); 2851 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2852 2853 // Update successor info. 2854 addSuccessorWithProb(InvokeMBB, Return); 2855 for (auto &UnwindDest : UnwindDests) { 2856 UnwindDest.first->setIsEHPad(); 2857 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2858 } 2859 InvokeMBB->normalizeSuccProbs(); 2860 2861 // Drop into normal successor. 2862 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2863 DAG.getBasicBlock(Return))); 2864 } 2865 2866 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2867 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2868 2869 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2870 // have to do anything here to lower funclet bundles. 2871 assert(!I.hasOperandBundlesOtherThan( 2872 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2873 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2874 2875 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 2876 visitInlineAsm(I); 2877 CopyToExportRegsIfNeeded(&I); 2878 2879 // Retrieve successors. 2880 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2881 2882 // Update successor info. 2883 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 2884 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2885 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2886 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 2887 Target->setIsInlineAsmBrIndirectTarget(); 2888 } 2889 CallBrMBB->normalizeSuccProbs(); 2890 2891 // Drop into default successor. 2892 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2893 MVT::Other, getControlRoot(), 2894 DAG.getBasicBlock(Return))); 2895 } 2896 2897 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2898 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2899 } 2900 2901 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2902 assert(FuncInfo.MBB->isEHPad() && 2903 "Call to landingpad not in landing pad!"); 2904 2905 // If there aren't registers to copy the values into (e.g., during SjLj 2906 // exceptions), then don't bother to create these DAG nodes. 2907 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2908 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2909 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2910 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2911 return; 2912 2913 // If landingpad's return type is token type, we don't create DAG nodes 2914 // for its exception pointer and selector value. The extraction of exception 2915 // pointer or selector value from token type landingpads is not currently 2916 // supported. 2917 if (LP.getType()->isTokenTy()) 2918 return; 2919 2920 SmallVector<EVT, 2> ValueVTs; 2921 SDLoc dl = getCurSDLoc(); 2922 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2923 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2924 2925 // Get the two live-in registers as SDValues. The physregs have already been 2926 // copied into virtual registers. 2927 SDValue Ops[2]; 2928 if (FuncInfo.ExceptionPointerVirtReg) { 2929 Ops[0] = DAG.getZExtOrTrunc( 2930 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2931 FuncInfo.ExceptionPointerVirtReg, 2932 TLI.getPointerTy(DAG.getDataLayout())), 2933 dl, ValueVTs[0]); 2934 } else { 2935 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2936 } 2937 Ops[1] = DAG.getZExtOrTrunc( 2938 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2939 FuncInfo.ExceptionSelectorVirtReg, 2940 TLI.getPointerTy(DAG.getDataLayout())), 2941 dl, ValueVTs[1]); 2942 2943 // Merge into one. 2944 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2945 DAG.getVTList(ValueVTs), Ops); 2946 setValue(&LP, Res); 2947 } 2948 2949 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2950 MachineBasicBlock *Last) { 2951 // Update JTCases. 2952 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 2953 if (SL->JTCases[i].first.HeaderBB == First) 2954 SL->JTCases[i].first.HeaderBB = Last; 2955 2956 // Update BitTestCases. 2957 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 2958 if (SL->BitTestCases[i].Parent == First) 2959 SL->BitTestCases[i].Parent = Last; 2960 } 2961 2962 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2963 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2964 2965 // Update machine-CFG edges with unique successors. 2966 SmallSet<BasicBlock*, 32> Done; 2967 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2968 BasicBlock *BB = I.getSuccessor(i); 2969 bool Inserted = Done.insert(BB).second; 2970 if (!Inserted) 2971 continue; 2972 2973 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2974 addSuccessorWithProb(IndirectBrMBB, Succ); 2975 } 2976 IndirectBrMBB->normalizeSuccProbs(); 2977 2978 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2979 MVT::Other, getControlRoot(), 2980 getValue(I.getAddress()))); 2981 } 2982 2983 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2984 if (!DAG.getTarget().Options.TrapUnreachable) 2985 return; 2986 2987 // We may be able to ignore unreachable behind a noreturn call. 2988 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2989 const BasicBlock &BB = *I.getParent(); 2990 if (&I != &BB.front()) { 2991 BasicBlock::const_iterator PredI = 2992 std::prev(BasicBlock::const_iterator(&I)); 2993 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2994 if (Call->doesNotReturn()) 2995 return; 2996 } 2997 } 2998 } 2999 3000 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3001 } 3002 3003 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3004 SDNodeFlags Flags; 3005 3006 SDValue Op = getValue(I.getOperand(0)); 3007 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3008 Op, Flags); 3009 setValue(&I, UnNodeValue); 3010 } 3011 3012 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3013 SDNodeFlags Flags; 3014 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3015 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3016 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3017 } 3018 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3019 Flags.setExact(ExactOp->isExact()); 3020 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3021 Flags.copyFMF(*FPOp); 3022 3023 SDValue Op1 = getValue(I.getOperand(0)); 3024 SDValue Op2 = getValue(I.getOperand(1)); 3025 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3026 Op1, Op2, Flags); 3027 setValue(&I, BinNodeValue); 3028 } 3029 3030 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3031 SDValue Op1 = getValue(I.getOperand(0)); 3032 SDValue Op2 = getValue(I.getOperand(1)); 3033 3034 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3035 Op1.getValueType(), DAG.getDataLayout()); 3036 3037 // Coerce the shift amount to the right type if we can. 3038 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3039 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3040 unsigned Op2Size = Op2.getValueSizeInBits(); 3041 SDLoc DL = getCurSDLoc(); 3042 3043 // If the operand is smaller than the shift count type, promote it. 3044 if (ShiftSize > Op2Size) 3045 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3046 3047 // If the operand is larger than the shift count type but the shift 3048 // count type has enough bits to represent any shift value, truncate 3049 // it now. This is a common case and it exposes the truncate to 3050 // optimization early. 3051 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3052 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3053 // Otherwise we'll need to temporarily settle for some other convenient 3054 // type. Type legalization will make adjustments once the shiftee is split. 3055 else 3056 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3057 } 3058 3059 bool nuw = false; 3060 bool nsw = false; 3061 bool exact = false; 3062 3063 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3064 3065 if (const OverflowingBinaryOperator *OFBinOp = 3066 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3067 nuw = OFBinOp->hasNoUnsignedWrap(); 3068 nsw = OFBinOp->hasNoSignedWrap(); 3069 } 3070 if (const PossiblyExactOperator *ExactOp = 3071 dyn_cast<const PossiblyExactOperator>(&I)) 3072 exact = ExactOp->isExact(); 3073 } 3074 SDNodeFlags Flags; 3075 Flags.setExact(exact); 3076 Flags.setNoSignedWrap(nsw); 3077 Flags.setNoUnsignedWrap(nuw); 3078 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3079 Flags); 3080 setValue(&I, Res); 3081 } 3082 3083 void SelectionDAGBuilder::visitSDiv(const User &I) { 3084 SDValue Op1 = getValue(I.getOperand(0)); 3085 SDValue Op2 = getValue(I.getOperand(1)); 3086 3087 SDNodeFlags Flags; 3088 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3089 cast<PossiblyExactOperator>(&I)->isExact()); 3090 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3091 Op2, Flags)); 3092 } 3093 3094 void SelectionDAGBuilder::visitICmp(const User &I) { 3095 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3096 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3097 predicate = IC->getPredicate(); 3098 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3099 predicate = ICmpInst::Predicate(IC->getPredicate()); 3100 SDValue Op1 = getValue(I.getOperand(0)); 3101 SDValue Op2 = getValue(I.getOperand(1)); 3102 ISD::CondCode Opcode = getICmpCondCode(predicate); 3103 3104 auto &TLI = DAG.getTargetLoweringInfo(); 3105 EVT MemVT = 3106 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3107 3108 // If a pointer's DAG type is larger than its memory type then the DAG values 3109 // are zero-extended. This breaks signed comparisons so truncate back to the 3110 // underlying type before doing the compare. 3111 if (Op1.getValueType() != MemVT) { 3112 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3113 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3114 } 3115 3116 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3117 I.getType()); 3118 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3119 } 3120 3121 void SelectionDAGBuilder::visitFCmp(const User &I) { 3122 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3123 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3124 predicate = FC->getPredicate(); 3125 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3126 predicate = FCmpInst::Predicate(FC->getPredicate()); 3127 SDValue Op1 = getValue(I.getOperand(0)); 3128 SDValue Op2 = getValue(I.getOperand(1)); 3129 3130 ISD::CondCode Condition = getFCmpCondCode(predicate); 3131 auto *FPMO = cast<FPMathOperator>(&I); 3132 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3133 Condition = getFCmpCodeWithoutNaN(Condition); 3134 3135 SDNodeFlags Flags; 3136 Flags.copyFMF(*FPMO); 3137 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3138 3139 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3140 I.getType()); 3141 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3142 } 3143 3144 // Check if the condition of the select has one use or two users that are both 3145 // selects with the same condition. 3146 static bool hasOnlySelectUsers(const Value *Cond) { 3147 return llvm::all_of(Cond->users(), [](const Value *V) { 3148 return isa<SelectInst>(V); 3149 }); 3150 } 3151 3152 void SelectionDAGBuilder::visitSelect(const User &I) { 3153 SmallVector<EVT, 4> ValueVTs; 3154 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3155 ValueVTs); 3156 unsigned NumValues = ValueVTs.size(); 3157 if (NumValues == 0) return; 3158 3159 SmallVector<SDValue, 4> Values(NumValues); 3160 SDValue Cond = getValue(I.getOperand(0)); 3161 SDValue LHSVal = getValue(I.getOperand(1)); 3162 SDValue RHSVal = getValue(I.getOperand(2)); 3163 SmallVector<SDValue, 1> BaseOps(1, Cond); 3164 ISD::NodeType OpCode = 3165 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3166 3167 bool IsUnaryAbs = false; 3168 bool Negate = false; 3169 3170 SDNodeFlags Flags; 3171 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3172 Flags.copyFMF(*FPOp); 3173 3174 // Min/max matching is only viable if all output VTs are the same. 3175 if (is_splat(ValueVTs)) { 3176 EVT VT = ValueVTs[0]; 3177 LLVMContext &Ctx = *DAG.getContext(); 3178 auto &TLI = DAG.getTargetLoweringInfo(); 3179 3180 // We care about the legality of the operation after it has been type 3181 // legalized. 3182 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3183 VT = TLI.getTypeToTransformTo(Ctx, VT); 3184 3185 // If the vselect is legal, assume we want to leave this as a vector setcc + 3186 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3187 // min/max is legal on the scalar type. 3188 bool UseScalarMinMax = VT.isVector() && 3189 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3190 3191 Value *LHS, *RHS; 3192 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3193 ISD::NodeType Opc = ISD::DELETED_NODE; 3194 switch (SPR.Flavor) { 3195 case SPF_UMAX: Opc = ISD::UMAX; break; 3196 case SPF_UMIN: Opc = ISD::UMIN; break; 3197 case SPF_SMAX: Opc = ISD::SMAX; break; 3198 case SPF_SMIN: Opc = ISD::SMIN; break; 3199 case SPF_FMINNUM: 3200 switch (SPR.NaNBehavior) { 3201 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3202 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3203 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3204 case SPNB_RETURNS_ANY: { 3205 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3206 Opc = ISD::FMINNUM; 3207 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3208 Opc = ISD::FMINIMUM; 3209 else if (UseScalarMinMax) 3210 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3211 ISD::FMINNUM : ISD::FMINIMUM; 3212 break; 3213 } 3214 } 3215 break; 3216 case SPF_FMAXNUM: 3217 switch (SPR.NaNBehavior) { 3218 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3219 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3220 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3221 case SPNB_RETURNS_ANY: 3222 3223 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3224 Opc = ISD::FMAXNUM; 3225 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3226 Opc = ISD::FMAXIMUM; 3227 else if (UseScalarMinMax) 3228 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3229 ISD::FMAXNUM : ISD::FMAXIMUM; 3230 break; 3231 } 3232 break; 3233 case SPF_NABS: 3234 Negate = true; 3235 LLVM_FALLTHROUGH; 3236 case SPF_ABS: 3237 IsUnaryAbs = true; 3238 Opc = ISD::ABS; 3239 break; 3240 default: break; 3241 } 3242 3243 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3244 (TLI.isOperationLegalOrCustom(Opc, VT) || 3245 (UseScalarMinMax && 3246 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3247 // If the underlying comparison instruction is used by any other 3248 // instruction, the consumed instructions won't be destroyed, so it is 3249 // not profitable to convert to a min/max. 3250 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3251 OpCode = Opc; 3252 LHSVal = getValue(LHS); 3253 RHSVal = getValue(RHS); 3254 BaseOps.clear(); 3255 } 3256 3257 if (IsUnaryAbs) { 3258 OpCode = Opc; 3259 LHSVal = getValue(LHS); 3260 BaseOps.clear(); 3261 } 3262 } 3263 3264 if (IsUnaryAbs) { 3265 for (unsigned i = 0; i != NumValues; ++i) { 3266 SDLoc dl = getCurSDLoc(); 3267 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3268 Values[i] = 3269 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3270 if (Negate) 3271 Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), 3272 Values[i]); 3273 } 3274 } else { 3275 for (unsigned i = 0; i != NumValues; ++i) { 3276 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3277 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3278 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3279 Values[i] = DAG.getNode( 3280 OpCode, getCurSDLoc(), 3281 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3282 } 3283 } 3284 3285 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3286 DAG.getVTList(ValueVTs), Values)); 3287 } 3288 3289 void SelectionDAGBuilder::visitTrunc(const User &I) { 3290 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3291 SDValue N = getValue(I.getOperand(0)); 3292 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3293 I.getType()); 3294 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3295 } 3296 3297 void SelectionDAGBuilder::visitZExt(const User &I) { 3298 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3299 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3300 SDValue N = getValue(I.getOperand(0)); 3301 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3302 I.getType()); 3303 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3304 } 3305 3306 void SelectionDAGBuilder::visitSExt(const User &I) { 3307 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3308 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3309 SDValue N = getValue(I.getOperand(0)); 3310 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3311 I.getType()); 3312 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3313 } 3314 3315 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3316 // FPTrunc is never a no-op cast, no need to check 3317 SDValue N = getValue(I.getOperand(0)); 3318 SDLoc dl = getCurSDLoc(); 3319 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3320 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3321 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3322 DAG.getTargetConstant( 3323 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3324 } 3325 3326 void SelectionDAGBuilder::visitFPExt(const User &I) { 3327 // FPExt is never a no-op cast, no need to check 3328 SDValue N = getValue(I.getOperand(0)); 3329 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3330 I.getType()); 3331 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3332 } 3333 3334 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3335 // FPToUI is never a no-op cast, no need to check 3336 SDValue N = getValue(I.getOperand(0)); 3337 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3338 I.getType()); 3339 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3340 } 3341 3342 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3343 // FPToSI is never a no-op cast, no need to check 3344 SDValue N = getValue(I.getOperand(0)); 3345 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3346 I.getType()); 3347 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3348 } 3349 3350 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3351 // UIToFP is never a no-op cast, no need to check 3352 SDValue N = getValue(I.getOperand(0)); 3353 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3354 I.getType()); 3355 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3356 } 3357 3358 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3359 // SIToFP is never a no-op cast, no need to check 3360 SDValue N = getValue(I.getOperand(0)); 3361 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3362 I.getType()); 3363 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3364 } 3365 3366 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3367 // What to do depends on the size of the integer and the size of the pointer. 3368 // We can either truncate, zero extend, or no-op, accordingly. 3369 SDValue N = getValue(I.getOperand(0)); 3370 auto &TLI = DAG.getTargetLoweringInfo(); 3371 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3372 I.getType()); 3373 EVT PtrMemVT = 3374 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3375 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3376 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3377 setValue(&I, N); 3378 } 3379 3380 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3381 // What to do depends on the size of the integer and the size of the pointer. 3382 // We can either truncate, zero extend, or no-op, accordingly. 3383 SDValue N = getValue(I.getOperand(0)); 3384 auto &TLI = DAG.getTargetLoweringInfo(); 3385 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3386 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3387 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3388 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3389 setValue(&I, N); 3390 } 3391 3392 void SelectionDAGBuilder::visitBitCast(const User &I) { 3393 SDValue N = getValue(I.getOperand(0)); 3394 SDLoc dl = getCurSDLoc(); 3395 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3396 I.getType()); 3397 3398 // BitCast assures us that source and destination are the same size so this is 3399 // either a BITCAST or a no-op. 3400 if (DestVT != N.getValueType()) 3401 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3402 DestVT, N)); // convert types. 3403 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3404 // might fold any kind of constant expression to an integer constant and that 3405 // is not what we are looking for. Only recognize a bitcast of a genuine 3406 // constant integer as an opaque constant. 3407 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3408 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3409 /*isOpaque*/true)); 3410 else 3411 setValue(&I, N); // noop cast. 3412 } 3413 3414 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3415 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3416 const Value *SV = I.getOperand(0); 3417 SDValue N = getValue(SV); 3418 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3419 3420 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3421 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3422 3423 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3424 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3425 3426 setValue(&I, N); 3427 } 3428 3429 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3430 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3431 SDValue InVec = getValue(I.getOperand(0)); 3432 SDValue InVal = getValue(I.getOperand(1)); 3433 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3434 TLI.getVectorIdxTy(DAG.getDataLayout())); 3435 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3436 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3437 InVec, InVal, InIdx)); 3438 } 3439 3440 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3441 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3442 SDValue InVec = getValue(I.getOperand(0)); 3443 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3444 TLI.getVectorIdxTy(DAG.getDataLayout())); 3445 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3446 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3447 InVec, InIdx)); 3448 } 3449 3450 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3451 SDValue Src1 = getValue(I.getOperand(0)); 3452 SDValue Src2 = getValue(I.getOperand(1)); 3453 ArrayRef<int> Mask; 3454 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3455 Mask = SVI->getShuffleMask(); 3456 else 3457 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3458 SDLoc DL = getCurSDLoc(); 3459 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3460 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3461 EVT SrcVT = Src1.getValueType(); 3462 3463 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3464 VT.isScalableVector()) { 3465 // Canonical splat form of first element of first input vector. 3466 SDValue FirstElt = 3467 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3468 DAG.getVectorIdxConstant(0, DL)); 3469 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3470 return; 3471 } 3472 3473 // For now, we only handle splats for scalable vectors. 3474 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3475 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3476 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3477 3478 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3479 unsigned MaskNumElts = Mask.size(); 3480 3481 if (SrcNumElts == MaskNumElts) { 3482 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3483 return; 3484 } 3485 3486 // Normalize the shuffle vector since mask and vector length don't match. 3487 if (SrcNumElts < MaskNumElts) { 3488 // Mask is longer than the source vectors. We can use concatenate vector to 3489 // make the mask and vectors lengths match. 3490 3491 if (MaskNumElts % SrcNumElts == 0) { 3492 // Mask length is a multiple of the source vector length. 3493 // Check if the shuffle is some kind of concatenation of the input 3494 // vectors. 3495 unsigned NumConcat = MaskNumElts / SrcNumElts; 3496 bool IsConcat = true; 3497 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3498 for (unsigned i = 0; i != MaskNumElts; ++i) { 3499 int Idx = Mask[i]; 3500 if (Idx < 0) 3501 continue; 3502 // Ensure the indices in each SrcVT sized piece are sequential and that 3503 // the same source is used for the whole piece. 3504 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3505 (ConcatSrcs[i / SrcNumElts] >= 0 && 3506 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3507 IsConcat = false; 3508 break; 3509 } 3510 // Remember which source this index came from. 3511 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3512 } 3513 3514 // The shuffle is concatenating multiple vectors together. Just emit 3515 // a CONCAT_VECTORS operation. 3516 if (IsConcat) { 3517 SmallVector<SDValue, 8> ConcatOps; 3518 for (auto Src : ConcatSrcs) { 3519 if (Src < 0) 3520 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3521 else if (Src == 0) 3522 ConcatOps.push_back(Src1); 3523 else 3524 ConcatOps.push_back(Src2); 3525 } 3526 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3527 return; 3528 } 3529 } 3530 3531 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3532 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3533 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3534 PaddedMaskNumElts); 3535 3536 // Pad both vectors with undefs to make them the same length as the mask. 3537 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3538 3539 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3540 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3541 MOps1[0] = Src1; 3542 MOps2[0] = Src2; 3543 3544 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3545 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3546 3547 // Readjust mask for new input vector length. 3548 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3549 for (unsigned i = 0; i != MaskNumElts; ++i) { 3550 int Idx = Mask[i]; 3551 if (Idx >= (int)SrcNumElts) 3552 Idx -= SrcNumElts - PaddedMaskNumElts; 3553 MappedOps[i] = Idx; 3554 } 3555 3556 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3557 3558 // If the concatenated vector was padded, extract a subvector with the 3559 // correct number of elements. 3560 if (MaskNumElts != PaddedMaskNumElts) 3561 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3562 DAG.getVectorIdxConstant(0, DL)); 3563 3564 setValue(&I, Result); 3565 return; 3566 } 3567 3568 if (SrcNumElts > MaskNumElts) { 3569 // Analyze the access pattern of the vector to see if we can extract 3570 // two subvectors and do the shuffle. 3571 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3572 bool CanExtract = true; 3573 for (int Idx : Mask) { 3574 unsigned Input = 0; 3575 if (Idx < 0) 3576 continue; 3577 3578 if (Idx >= (int)SrcNumElts) { 3579 Input = 1; 3580 Idx -= SrcNumElts; 3581 } 3582 3583 // If all the indices come from the same MaskNumElts sized portion of 3584 // the sources we can use extract. Also make sure the extract wouldn't 3585 // extract past the end of the source. 3586 int NewStartIdx = alignDown(Idx, MaskNumElts); 3587 if (NewStartIdx + MaskNumElts > SrcNumElts || 3588 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3589 CanExtract = false; 3590 // Make sure we always update StartIdx as we use it to track if all 3591 // elements are undef. 3592 StartIdx[Input] = NewStartIdx; 3593 } 3594 3595 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3596 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3597 return; 3598 } 3599 if (CanExtract) { 3600 // Extract appropriate subvector and generate a vector shuffle 3601 for (unsigned Input = 0; Input < 2; ++Input) { 3602 SDValue &Src = Input == 0 ? Src1 : Src2; 3603 if (StartIdx[Input] < 0) 3604 Src = DAG.getUNDEF(VT); 3605 else { 3606 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3607 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3608 } 3609 } 3610 3611 // Calculate new mask. 3612 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3613 for (int &Idx : MappedOps) { 3614 if (Idx >= (int)SrcNumElts) 3615 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3616 else if (Idx >= 0) 3617 Idx -= StartIdx[0]; 3618 } 3619 3620 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3621 return; 3622 } 3623 } 3624 3625 // We can't use either concat vectors or extract subvectors so fall back to 3626 // replacing the shuffle with extract and build vector. 3627 // to insert and build vector. 3628 EVT EltVT = VT.getVectorElementType(); 3629 SmallVector<SDValue,8> Ops; 3630 for (int Idx : Mask) { 3631 SDValue Res; 3632 3633 if (Idx < 0) { 3634 Res = DAG.getUNDEF(EltVT); 3635 } else { 3636 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3637 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3638 3639 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3640 DAG.getVectorIdxConstant(Idx, DL)); 3641 } 3642 3643 Ops.push_back(Res); 3644 } 3645 3646 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3647 } 3648 3649 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3650 ArrayRef<unsigned> Indices; 3651 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3652 Indices = IV->getIndices(); 3653 else 3654 Indices = cast<ConstantExpr>(&I)->getIndices(); 3655 3656 const Value *Op0 = I.getOperand(0); 3657 const Value *Op1 = I.getOperand(1); 3658 Type *AggTy = I.getType(); 3659 Type *ValTy = Op1->getType(); 3660 bool IntoUndef = isa<UndefValue>(Op0); 3661 bool FromUndef = isa<UndefValue>(Op1); 3662 3663 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3664 3665 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3666 SmallVector<EVT, 4> AggValueVTs; 3667 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3668 SmallVector<EVT, 4> ValValueVTs; 3669 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3670 3671 unsigned NumAggValues = AggValueVTs.size(); 3672 unsigned NumValValues = ValValueVTs.size(); 3673 SmallVector<SDValue, 4> Values(NumAggValues); 3674 3675 // Ignore an insertvalue that produces an empty object 3676 if (!NumAggValues) { 3677 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3678 return; 3679 } 3680 3681 SDValue Agg = getValue(Op0); 3682 unsigned i = 0; 3683 // Copy the beginning value(s) from the original aggregate. 3684 for (; i != LinearIndex; ++i) 3685 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3686 SDValue(Agg.getNode(), Agg.getResNo() + i); 3687 // Copy values from the inserted value(s). 3688 if (NumValValues) { 3689 SDValue Val = getValue(Op1); 3690 for (; i != LinearIndex + NumValValues; ++i) 3691 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3692 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3693 } 3694 // Copy remaining value(s) from the original aggregate. 3695 for (; i != NumAggValues; ++i) 3696 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3697 SDValue(Agg.getNode(), Agg.getResNo() + i); 3698 3699 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3700 DAG.getVTList(AggValueVTs), Values)); 3701 } 3702 3703 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3704 ArrayRef<unsigned> Indices; 3705 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3706 Indices = EV->getIndices(); 3707 else 3708 Indices = cast<ConstantExpr>(&I)->getIndices(); 3709 3710 const Value *Op0 = I.getOperand(0); 3711 Type *AggTy = Op0->getType(); 3712 Type *ValTy = I.getType(); 3713 bool OutOfUndef = isa<UndefValue>(Op0); 3714 3715 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3716 3717 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3718 SmallVector<EVT, 4> ValValueVTs; 3719 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3720 3721 unsigned NumValValues = ValValueVTs.size(); 3722 3723 // Ignore a extractvalue that produces an empty object 3724 if (!NumValValues) { 3725 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3726 return; 3727 } 3728 3729 SmallVector<SDValue, 4> Values(NumValValues); 3730 3731 SDValue Agg = getValue(Op0); 3732 // Copy out the selected value(s). 3733 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3734 Values[i - LinearIndex] = 3735 OutOfUndef ? 3736 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3737 SDValue(Agg.getNode(), Agg.getResNo() + i); 3738 3739 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3740 DAG.getVTList(ValValueVTs), Values)); 3741 } 3742 3743 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3744 Value *Op0 = I.getOperand(0); 3745 // Note that the pointer operand may be a vector of pointers. Take the scalar 3746 // element which holds a pointer. 3747 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3748 SDValue N = getValue(Op0); 3749 SDLoc dl = getCurSDLoc(); 3750 auto &TLI = DAG.getTargetLoweringInfo(); 3751 3752 // Normalize Vector GEP - all scalar operands should be converted to the 3753 // splat vector. 3754 bool IsVectorGEP = I.getType()->isVectorTy(); 3755 ElementCount VectorElementCount = 3756 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3757 : ElementCount::getFixed(0); 3758 3759 if (IsVectorGEP && !N.getValueType().isVector()) { 3760 LLVMContext &Context = *DAG.getContext(); 3761 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3762 if (VectorElementCount.isScalable()) 3763 N = DAG.getSplatVector(VT, dl, N); 3764 else 3765 N = DAG.getSplatBuildVector(VT, dl, N); 3766 } 3767 3768 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3769 GTI != E; ++GTI) { 3770 const Value *Idx = GTI.getOperand(); 3771 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3772 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3773 if (Field) { 3774 // N = N + Offset 3775 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3776 3777 // In an inbounds GEP with an offset that is nonnegative even when 3778 // interpreted as signed, assume there is no unsigned overflow. 3779 SDNodeFlags Flags; 3780 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3781 Flags.setNoUnsignedWrap(true); 3782 3783 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3784 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3785 } 3786 } else { 3787 // IdxSize is the width of the arithmetic according to IR semantics. 3788 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3789 // (and fix up the result later). 3790 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3791 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3792 TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 3793 // We intentionally mask away the high bits here; ElementSize may not 3794 // fit in IdxTy. 3795 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3796 bool ElementScalable = ElementSize.isScalable(); 3797 3798 // If this is a scalar constant or a splat vector of constants, 3799 // handle it quickly. 3800 const auto *C = dyn_cast<Constant>(Idx); 3801 if (C && isa<VectorType>(C->getType())) 3802 C = C->getSplatValue(); 3803 3804 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3805 if (CI && CI->isZero()) 3806 continue; 3807 if (CI && !ElementScalable) { 3808 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3809 LLVMContext &Context = *DAG.getContext(); 3810 SDValue OffsVal; 3811 if (IsVectorGEP) 3812 OffsVal = DAG.getConstant( 3813 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3814 else 3815 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3816 3817 // In an inbounds GEP with an offset that is nonnegative even when 3818 // interpreted as signed, assume there is no unsigned overflow. 3819 SDNodeFlags Flags; 3820 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3821 Flags.setNoUnsignedWrap(true); 3822 3823 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3824 3825 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3826 continue; 3827 } 3828 3829 // N = N + Idx * ElementMul; 3830 SDValue IdxN = getValue(Idx); 3831 3832 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3833 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3834 VectorElementCount); 3835 if (VectorElementCount.isScalable()) 3836 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3837 else 3838 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3839 } 3840 3841 // If the index is smaller or larger than intptr_t, truncate or extend 3842 // it. 3843 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3844 3845 if (ElementScalable) { 3846 EVT VScaleTy = N.getValueType().getScalarType(); 3847 SDValue VScale = DAG.getNode( 3848 ISD::VSCALE, dl, VScaleTy, 3849 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3850 if (IsVectorGEP) 3851 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3852 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3853 } else { 3854 // If this is a multiply by a power of two, turn it into a shl 3855 // immediately. This is a very common case. 3856 if (ElementMul != 1) { 3857 if (ElementMul.isPowerOf2()) { 3858 unsigned Amt = ElementMul.logBase2(); 3859 IdxN = DAG.getNode(ISD::SHL, dl, 3860 N.getValueType(), IdxN, 3861 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3862 } else { 3863 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3864 IdxN.getValueType()); 3865 IdxN = DAG.getNode(ISD::MUL, dl, 3866 N.getValueType(), IdxN, Scale); 3867 } 3868 } 3869 } 3870 3871 N = DAG.getNode(ISD::ADD, dl, 3872 N.getValueType(), N, IdxN); 3873 } 3874 } 3875 3876 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3877 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3878 if (IsVectorGEP) { 3879 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 3880 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 3881 } 3882 3883 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3884 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3885 3886 setValue(&I, N); 3887 } 3888 3889 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3890 // If this is a fixed sized alloca in the entry block of the function, 3891 // allocate it statically on the stack. 3892 if (FuncInfo.StaticAllocaMap.count(&I)) 3893 return; // getValue will auto-populate this. 3894 3895 SDLoc dl = getCurSDLoc(); 3896 Type *Ty = I.getAllocatedType(); 3897 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3898 auto &DL = DAG.getDataLayout(); 3899 uint64_t TySize = DL.getTypeAllocSize(Ty); 3900 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 3901 3902 SDValue AllocSize = getValue(I.getArraySize()); 3903 3904 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3905 if (AllocSize.getValueType() != IntPtr) 3906 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3907 3908 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3909 AllocSize, 3910 DAG.getConstant(TySize, dl, IntPtr)); 3911 3912 // Handle alignment. If the requested alignment is less than or equal to 3913 // the stack alignment, ignore it. If the size is greater than or equal to 3914 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3915 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 3916 if (*Alignment <= StackAlign) 3917 Alignment = None; 3918 3919 const uint64_t StackAlignMask = StackAlign.value() - 1U; 3920 // Round the size of the allocation up to the stack alignment size 3921 // by add SA-1 to the size. This doesn't overflow because we're computing 3922 // an address inside an alloca. 3923 SDNodeFlags Flags; 3924 Flags.setNoUnsignedWrap(true); 3925 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3926 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 3927 3928 // Mask out the low bits for alignment purposes. 3929 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3930 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 3931 3932 SDValue Ops[] = { 3933 getRoot(), AllocSize, 3934 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 3935 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3936 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3937 setValue(&I, DSA); 3938 DAG.setRoot(DSA.getValue(1)); 3939 3940 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3941 } 3942 3943 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3944 if (I.isAtomic()) 3945 return visitAtomicLoad(I); 3946 3947 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3948 const Value *SV = I.getOperand(0); 3949 if (TLI.supportSwiftError()) { 3950 // Swifterror values can come from either a function parameter with 3951 // swifterror attribute or an alloca with swifterror attribute. 3952 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3953 if (Arg->hasSwiftErrorAttr()) 3954 return visitLoadFromSwiftError(I); 3955 } 3956 3957 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3958 if (Alloca->isSwiftError()) 3959 return visitLoadFromSwiftError(I); 3960 } 3961 } 3962 3963 SDValue Ptr = getValue(SV); 3964 3965 Type *Ty = I.getType(); 3966 Align Alignment = I.getAlign(); 3967 3968 AAMDNodes AAInfo; 3969 I.getAAMetadata(AAInfo); 3970 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3971 3972 SmallVector<EVT, 4> ValueVTs, MemVTs; 3973 SmallVector<uint64_t, 4> Offsets; 3974 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 3975 unsigned NumValues = ValueVTs.size(); 3976 if (NumValues == 0) 3977 return; 3978 3979 bool isVolatile = I.isVolatile(); 3980 3981 SDValue Root; 3982 bool ConstantMemory = false; 3983 if (isVolatile) 3984 // Serialize volatile loads with other side effects. 3985 Root = getRoot(); 3986 else if (NumValues > MaxParallelChains) 3987 Root = getMemoryRoot(); 3988 else if (AA && 3989 AA->pointsToConstantMemory(MemoryLocation( 3990 SV, 3991 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 3992 AAInfo))) { 3993 // Do not serialize (non-volatile) loads of constant memory with anything. 3994 Root = DAG.getEntryNode(); 3995 ConstantMemory = true; 3996 } else { 3997 // Do not serialize non-volatile loads against each other. 3998 Root = DAG.getRoot(); 3999 } 4000 4001 SDLoc dl = getCurSDLoc(); 4002 4003 if (isVolatile) 4004 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4005 4006 // An aggregate load cannot wrap around the address space, so offsets to its 4007 // parts don't wrap either. 4008 SDNodeFlags Flags; 4009 Flags.setNoUnsignedWrap(true); 4010 4011 SmallVector<SDValue, 4> Values(NumValues); 4012 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4013 EVT PtrVT = Ptr.getValueType(); 4014 4015 MachineMemOperand::Flags MMOFlags 4016 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4017 4018 unsigned ChainI = 0; 4019 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4020 // Serializing loads here may result in excessive register pressure, and 4021 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4022 // could recover a bit by hoisting nodes upward in the chain by recognizing 4023 // they are side-effect free or do not alias. The optimizer should really 4024 // avoid this case by converting large object/array copies to llvm.memcpy 4025 // (MaxParallelChains should always remain as failsafe). 4026 if (ChainI == MaxParallelChains) { 4027 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4028 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4029 makeArrayRef(Chains.data(), ChainI)); 4030 Root = Chain; 4031 ChainI = 0; 4032 } 4033 SDValue A = DAG.getNode(ISD::ADD, dl, 4034 PtrVT, Ptr, 4035 DAG.getConstant(Offsets[i], dl, PtrVT), 4036 Flags); 4037 4038 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4039 MachinePointerInfo(SV, Offsets[i]), Alignment, 4040 MMOFlags, AAInfo, Ranges); 4041 Chains[ChainI] = L.getValue(1); 4042 4043 if (MemVTs[i] != ValueVTs[i]) 4044 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4045 4046 Values[i] = L; 4047 } 4048 4049 if (!ConstantMemory) { 4050 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4051 makeArrayRef(Chains.data(), ChainI)); 4052 if (isVolatile) 4053 DAG.setRoot(Chain); 4054 else 4055 PendingLoads.push_back(Chain); 4056 } 4057 4058 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4059 DAG.getVTList(ValueVTs), Values)); 4060 } 4061 4062 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4063 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4064 "call visitStoreToSwiftError when backend supports swifterror"); 4065 4066 SmallVector<EVT, 4> ValueVTs; 4067 SmallVector<uint64_t, 4> Offsets; 4068 const Value *SrcV = I.getOperand(0); 4069 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4070 SrcV->getType(), ValueVTs, &Offsets); 4071 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4072 "expect a single EVT for swifterror"); 4073 4074 SDValue Src = getValue(SrcV); 4075 // Create a virtual register, then update the virtual register. 4076 Register VReg = 4077 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4078 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4079 // Chain can be getRoot or getControlRoot. 4080 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4081 SDValue(Src.getNode(), Src.getResNo())); 4082 DAG.setRoot(CopyNode); 4083 } 4084 4085 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4086 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4087 "call visitLoadFromSwiftError when backend supports swifterror"); 4088 4089 assert(!I.isVolatile() && 4090 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4091 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4092 "Support volatile, non temporal, invariant for load_from_swift_error"); 4093 4094 const Value *SV = I.getOperand(0); 4095 Type *Ty = I.getType(); 4096 AAMDNodes AAInfo; 4097 I.getAAMetadata(AAInfo); 4098 assert( 4099 (!AA || 4100 !AA->pointsToConstantMemory(MemoryLocation( 4101 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4102 AAInfo))) && 4103 "load_from_swift_error should not be constant memory"); 4104 4105 SmallVector<EVT, 4> ValueVTs; 4106 SmallVector<uint64_t, 4> Offsets; 4107 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4108 ValueVTs, &Offsets); 4109 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4110 "expect a single EVT for swifterror"); 4111 4112 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4113 SDValue L = DAG.getCopyFromReg( 4114 getRoot(), getCurSDLoc(), 4115 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4116 4117 setValue(&I, L); 4118 } 4119 4120 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4121 if (I.isAtomic()) 4122 return visitAtomicStore(I); 4123 4124 const Value *SrcV = I.getOperand(0); 4125 const Value *PtrV = I.getOperand(1); 4126 4127 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4128 if (TLI.supportSwiftError()) { 4129 // Swifterror values can come from either a function parameter with 4130 // swifterror attribute or an alloca with swifterror attribute. 4131 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4132 if (Arg->hasSwiftErrorAttr()) 4133 return visitStoreToSwiftError(I); 4134 } 4135 4136 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4137 if (Alloca->isSwiftError()) 4138 return visitStoreToSwiftError(I); 4139 } 4140 } 4141 4142 SmallVector<EVT, 4> ValueVTs, MemVTs; 4143 SmallVector<uint64_t, 4> Offsets; 4144 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4145 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4146 unsigned NumValues = ValueVTs.size(); 4147 if (NumValues == 0) 4148 return; 4149 4150 // Get the lowered operands. Note that we do this after 4151 // checking if NumResults is zero, because with zero results 4152 // the operands won't have values in the map. 4153 SDValue Src = getValue(SrcV); 4154 SDValue Ptr = getValue(PtrV); 4155 4156 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4157 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4158 SDLoc dl = getCurSDLoc(); 4159 Align Alignment = I.getAlign(); 4160 AAMDNodes AAInfo; 4161 I.getAAMetadata(AAInfo); 4162 4163 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4164 4165 // An aggregate load cannot wrap around the address space, so offsets to its 4166 // parts don't wrap either. 4167 SDNodeFlags Flags; 4168 Flags.setNoUnsignedWrap(true); 4169 4170 unsigned ChainI = 0; 4171 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4172 // See visitLoad comments. 4173 if (ChainI == MaxParallelChains) { 4174 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4175 makeArrayRef(Chains.data(), ChainI)); 4176 Root = Chain; 4177 ChainI = 0; 4178 } 4179 SDValue Add = 4180 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags); 4181 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4182 if (MemVTs[i] != ValueVTs[i]) 4183 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4184 SDValue St = 4185 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4186 Alignment, MMOFlags, AAInfo); 4187 Chains[ChainI] = St; 4188 } 4189 4190 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4191 makeArrayRef(Chains.data(), ChainI)); 4192 DAG.setRoot(StoreNode); 4193 } 4194 4195 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4196 bool IsCompressing) { 4197 SDLoc sdl = getCurSDLoc(); 4198 4199 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4200 MaybeAlign &Alignment) { 4201 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4202 Src0 = I.getArgOperand(0); 4203 Ptr = I.getArgOperand(1); 4204 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4205 Mask = I.getArgOperand(3); 4206 }; 4207 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4208 MaybeAlign &Alignment) { 4209 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4210 Src0 = I.getArgOperand(0); 4211 Ptr = I.getArgOperand(1); 4212 Mask = I.getArgOperand(2); 4213 Alignment = None; 4214 }; 4215 4216 Value *PtrOperand, *MaskOperand, *Src0Operand; 4217 MaybeAlign Alignment; 4218 if (IsCompressing) 4219 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4220 else 4221 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4222 4223 SDValue Ptr = getValue(PtrOperand); 4224 SDValue Src0 = getValue(Src0Operand); 4225 SDValue Mask = getValue(MaskOperand); 4226 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4227 4228 EVT VT = Src0.getValueType(); 4229 if (!Alignment) 4230 Alignment = DAG.getEVTAlign(VT); 4231 4232 AAMDNodes AAInfo; 4233 I.getAAMetadata(AAInfo); 4234 4235 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4236 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4237 // TODO: Make MachineMemOperands aware of scalable 4238 // vectors. 4239 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo); 4240 SDValue StoreNode = 4241 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4242 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4243 DAG.setRoot(StoreNode); 4244 setValue(&I, StoreNode); 4245 } 4246 4247 // Get a uniform base for the Gather/Scatter intrinsic. 4248 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4249 // We try to represent it as a base pointer + vector of indices. 4250 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4251 // The first operand of the GEP may be a single pointer or a vector of pointers 4252 // Example: 4253 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4254 // or 4255 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4256 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4257 // 4258 // When the first GEP operand is a single pointer - it is the uniform base we 4259 // are looking for. If first operand of the GEP is a splat vector - we 4260 // extract the splat value and use it as a uniform base. 4261 // In all other cases the function returns 'false'. 4262 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4263 ISD::MemIndexType &IndexType, SDValue &Scale, 4264 SelectionDAGBuilder *SDB, const BasicBlock *CurBB) { 4265 SelectionDAG& DAG = SDB->DAG; 4266 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4267 const DataLayout &DL = DAG.getDataLayout(); 4268 4269 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4270 4271 // Handle splat constant pointer. 4272 if (auto *C = dyn_cast<Constant>(Ptr)) { 4273 C = C->getSplatValue(); 4274 if (!C) 4275 return false; 4276 4277 Base = SDB->getValue(C); 4278 4279 unsigned NumElts = cast<FixedVectorType>(Ptr->getType())->getNumElements(); 4280 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4281 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4282 IndexType = ISD::SIGNED_SCALED; 4283 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4284 return true; 4285 } 4286 4287 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4288 if (!GEP || GEP->getParent() != CurBB) 4289 return false; 4290 4291 if (GEP->getNumOperands() != 2) 4292 return false; 4293 4294 const Value *BasePtr = GEP->getPointerOperand(); 4295 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4296 4297 // Make sure the base is scalar and the index is a vector. 4298 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4299 return false; 4300 4301 Base = SDB->getValue(BasePtr); 4302 Index = SDB->getValue(IndexVal); 4303 IndexType = ISD::SIGNED_SCALED; 4304 Scale = DAG.getTargetConstant( 4305 DL.getTypeAllocSize(GEP->getResultElementType()), 4306 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4307 return true; 4308 } 4309 4310 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4311 SDLoc sdl = getCurSDLoc(); 4312 4313 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4314 const Value *Ptr = I.getArgOperand(1); 4315 SDValue Src0 = getValue(I.getArgOperand(0)); 4316 SDValue Mask = getValue(I.getArgOperand(3)); 4317 EVT VT = Src0.getValueType(); 4318 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4319 ->getMaybeAlignValue() 4320 .getValueOr(DAG.getEVTAlign(VT)); 4321 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4322 4323 AAMDNodes AAInfo; 4324 I.getAAMetadata(AAInfo); 4325 4326 SDValue Base; 4327 SDValue Index; 4328 ISD::MemIndexType IndexType; 4329 SDValue Scale; 4330 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4331 I.getParent()); 4332 4333 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4334 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4335 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4336 // TODO: Make MachineMemOperands aware of scalable 4337 // vectors. 4338 MemoryLocation::UnknownSize, Alignment, AAInfo); 4339 if (!UniformBase) { 4340 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4341 Index = getValue(Ptr); 4342 IndexType = ISD::SIGNED_UNSCALED; 4343 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4344 } 4345 4346 EVT IdxVT = Index.getValueType(); 4347 EVT EltTy = IdxVT.getVectorElementType(); 4348 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4349 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4350 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4351 } 4352 4353 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4354 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4355 Ops, MMO, IndexType, false); 4356 DAG.setRoot(Scatter); 4357 setValue(&I, Scatter); 4358 } 4359 4360 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4361 SDLoc sdl = getCurSDLoc(); 4362 4363 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4364 MaybeAlign &Alignment) { 4365 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4366 Ptr = I.getArgOperand(0); 4367 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4368 Mask = I.getArgOperand(2); 4369 Src0 = I.getArgOperand(3); 4370 }; 4371 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4372 MaybeAlign &Alignment) { 4373 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4374 Ptr = I.getArgOperand(0); 4375 Alignment = None; 4376 Mask = I.getArgOperand(1); 4377 Src0 = I.getArgOperand(2); 4378 }; 4379 4380 Value *PtrOperand, *MaskOperand, *Src0Operand; 4381 MaybeAlign Alignment; 4382 if (IsExpanding) 4383 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4384 else 4385 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4386 4387 SDValue Ptr = getValue(PtrOperand); 4388 SDValue Src0 = getValue(Src0Operand); 4389 SDValue Mask = getValue(MaskOperand); 4390 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4391 4392 EVT VT = Src0.getValueType(); 4393 if (!Alignment) 4394 Alignment = DAG.getEVTAlign(VT); 4395 4396 AAMDNodes AAInfo; 4397 I.getAAMetadata(AAInfo); 4398 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4399 4400 // Do not serialize masked loads of constant memory with anything. 4401 MemoryLocation ML; 4402 if (VT.isScalableVector()) 4403 ML = MemoryLocation::getAfter(PtrOperand); 4404 else 4405 ML = MemoryLocation(PtrOperand, LocationSize::precise( 4406 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4407 AAInfo); 4408 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4409 4410 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4411 4412 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4413 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4414 // TODO: Make MachineMemOperands aware of scalable 4415 // vectors. 4416 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges); 4417 4418 SDValue Load = 4419 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4420 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4421 if (AddToChain) 4422 PendingLoads.push_back(Load.getValue(1)); 4423 setValue(&I, Load); 4424 } 4425 4426 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4427 SDLoc sdl = getCurSDLoc(); 4428 4429 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4430 const Value *Ptr = I.getArgOperand(0); 4431 SDValue Src0 = getValue(I.getArgOperand(3)); 4432 SDValue Mask = getValue(I.getArgOperand(2)); 4433 4434 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4435 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4436 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4437 ->getMaybeAlignValue() 4438 .getValueOr(DAG.getEVTAlign(VT)); 4439 4440 AAMDNodes AAInfo; 4441 I.getAAMetadata(AAInfo); 4442 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4443 4444 SDValue Root = DAG.getRoot(); 4445 SDValue Base; 4446 SDValue Index; 4447 ISD::MemIndexType IndexType; 4448 SDValue Scale; 4449 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4450 I.getParent()); 4451 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4452 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4453 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4454 // TODO: Make MachineMemOperands aware of scalable 4455 // vectors. 4456 MemoryLocation::UnknownSize, Alignment, AAInfo, Ranges); 4457 4458 if (!UniformBase) { 4459 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4460 Index = getValue(Ptr); 4461 IndexType = ISD::SIGNED_UNSCALED; 4462 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4463 } 4464 4465 EVT IdxVT = Index.getValueType(); 4466 EVT EltTy = IdxVT.getVectorElementType(); 4467 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4468 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4469 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4470 } 4471 4472 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4473 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4474 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4475 4476 PendingLoads.push_back(Gather.getValue(1)); 4477 setValue(&I, Gather); 4478 } 4479 4480 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4481 SDLoc dl = getCurSDLoc(); 4482 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4483 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4484 SyncScope::ID SSID = I.getSyncScopeID(); 4485 4486 SDValue InChain = getRoot(); 4487 4488 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4489 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4490 4491 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4492 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4493 4494 MachineFunction &MF = DAG.getMachineFunction(); 4495 MachineMemOperand *MMO = MF.getMachineMemOperand( 4496 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4497 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4498 FailureOrdering); 4499 4500 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4501 dl, MemVT, VTs, InChain, 4502 getValue(I.getPointerOperand()), 4503 getValue(I.getCompareOperand()), 4504 getValue(I.getNewValOperand()), MMO); 4505 4506 SDValue OutChain = L.getValue(2); 4507 4508 setValue(&I, L); 4509 DAG.setRoot(OutChain); 4510 } 4511 4512 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4513 SDLoc dl = getCurSDLoc(); 4514 ISD::NodeType NT; 4515 switch (I.getOperation()) { 4516 default: llvm_unreachable("Unknown atomicrmw operation"); 4517 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4518 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4519 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4520 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4521 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4522 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4523 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4524 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4525 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4526 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4527 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4528 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4529 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4530 } 4531 AtomicOrdering Ordering = I.getOrdering(); 4532 SyncScope::ID SSID = I.getSyncScopeID(); 4533 4534 SDValue InChain = getRoot(); 4535 4536 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4537 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4538 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4539 4540 MachineFunction &MF = DAG.getMachineFunction(); 4541 MachineMemOperand *MMO = MF.getMachineMemOperand( 4542 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4543 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4544 4545 SDValue L = 4546 DAG.getAtomic(NT, dl, MemVT, InChain, 4547 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4548 MMO); 4549 4550 SDValue OutChain = L.getValue(1); 4551 4552 setValue(&I, L); 4553 DAG.setRoot(OutChain); 4554 } 4555 4556 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4557 SDLoc dl = getCurSDLoc(); 4558 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4559 SDValue Ops[3]; 4560 Ops[0] = getRoot(); 4561 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4562 TLI.getFenceOperandTy(DAG.getDataLayout())); 4563 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4564 TLI.getFenceOperandTy(DAG.getDataLayout())); 4565 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4566 } 4567 4568 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4569 SDLoc dl = getCurSDLoc(); 4570 AtomicOrdering Order = I.getOrdering(); 4571 SyncScope::ID SSID = I.getSyncScopeID(); 4572 4573 SDValue InChain = getRoot(); 4574 4575 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4576 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4577 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4578 4579 if (!TLI.supportsUnalignedAtomics() && 4580 I.getAlignment() < MemVT.getSizeInBits() / 8) 4581 report_fatal_error("Cannot generate unaligned atomic load"); 4582 4583 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4584 4585 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4586 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4587 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4588 4589 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4590 4591 SDValue Ptr = getValue(I.getPointerOperand()); 4592 4593 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4594 // TODO: Once this is better exercised by tests, it should be merged with 4595 // the normal path for loads to prevent future divergence. 4596 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4597 if (MemVT != VT) 4598 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4599 4600 setValue(&I, L); 4601 SDValue OutChain = L.getValue(1); 4602 if (!I.isUnordered()) 4603 DAG.setRoot(OutChain); 4604 else 4605 PendingLoads.push_back(OutChain); 4606 return; 4607 } 4608 4609 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4610 Ptr, MMO); 4611 4612 SDValue OutChain = L.getValue(1); 4613 if (MemVT != VT) 4614 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4615 4616 setValue(&I, L); 4617 DAG.setRoot(OutChain); 4618 } 4619 4620 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4621 SDLoc dl = getCurSDLoc(); 4622 4623 AtomicOrdering Ordering = I.getOrdering(); 4624 SyncScope::ID SSID = I.getSyncScopeID(); 4625 4626 SDValue InChain = getRoot(); 4627 4628 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4629 EVT MemVT = 4630 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4631 4632 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4633 report_fatal_error("Cannot generate unaligned atomic store"); 4634 4635 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4636 4637 MachineFunction &MF = DAG.getMachineFunction(); 4638 MachineMemOperand *MMO = MF.getMachineMemOperand( 4639 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4640 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4641 4642 SDValue Val = getValue(I.getValueOperand()); 4643 if (Val.getValueType() != MemVT) 4644 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4645 SDValue Ptr = getValue(I.getPointerOperand()); 4646 4647 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4648 // TODO: Once this is better exercised by tests, it should be merged with 4649 // the normal path for stores to prevent future divergence. 4650 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4651 DAG.setRoot(S); 4652 return; 4653 } 4654 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4655 Ptr, Val, MMO); 4656 4657 4658 DAG.setRoot(OutChain); 4659 } 4660 4661 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4662 /// node. 4663 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4664 unsigned Intrinsic) { 4665 // Ignore the callsite's attributes. A specific call site may be marked with 4666 // readnone, but the lowering code will expect the chain based on the 4667 // definition. 4668 const Function *F = I.getCalledFunction(); 4669 bool HasChain = !F->doesNotAccessMemory(); 4670 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4671 4672 // Build the operand list. 4673 SmallVector<SDValue, 8> Ops; 4674 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4675 if (OnlyLoad) { 4676 // We don't need to serialize loads against other loads. 4677 Ops.push_back(DAG.getRoot()); 4678 } else { 4679 Ops.push_back(getRoot()); 4680 } 4681 } 4682 4683 // Info is set by getTgtMemInstrinsic 4684 TargetLowering::IntrinsicInfo Info; 4685 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4686 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4687 DAG.getMachineFunction(), 4688 Intrinsic); 4689 4690 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4691 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4692 Info.opc == ISD::INTRINSIC_W_CHAIN) 4693 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4694 TLI.getPointerTy(DAG.getDataLayout()))); 4695 4696 // Add all operands of the call to the operand list. 4697 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4698 const Value *Arg = I.getArgOperand(i); 4699 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4700 Ops.push_back(getValue(Arg)); 4701 continue; 4702 } 4703 4704 // Use TargetConstant instead of a regular constant for immarg. 4705 EVT VT = TLI.getValueType(*DL, Arg->getType(), true); 4706 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4707 assert(CI->getBitWidth() <= 64 && 4708 "large intrinsic immediates not handled"); 4709 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4710 } else { 4711 Ops.push_back( 4712 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4713 } 4714 } 4715 4716 SmallVector<EVT, 4> ValueVTs; 4717 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4718 4719 if (HasChain) 4720 ValueVTs.push_back(MVT::Other); 4721 4722 SDVTList VTs = DAG.getVTList(ValueVTs); 4723 4724 // Create the node. 4725 SDValue Result; 4726 if (IsTgtIntrinsic) { 4727 // This is target intrinsic that touches memory 4728 AAMDNodes AAInfo; 4729 I.getAAMetadata(AAInfo); 4730 Result = 4731 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4732 MachinePointerInfo(Info.ptrVal, Info.offset), 4733 Info.align, Info.flags, Info.size, AAInfo); 4734 } else if (!HasChain) { 4735 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4736 } else if (!I.getType()->isVoidTy()) { 4737 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4738 } else { 4739 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4740 } 4741 4742 if (HasChain) { 4743 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4744 if (OnlyLoad) 4745 PendingLoads.push_back(Chain); 4746 else 4747 DAG.setRoot(Chain); 4748 } 4749 4750 if (!I.getType()->isVoidTy()) { 4751 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4752 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4753 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4754 } else 4755 Result = lowerRangeToAssertZExt(DAG, I, Result); 4756 4757 MaybeAlign Alignment = I.getRetAlign(); 4758 if (!Alignment) 4759 Alignment = F->getAttributes().getRetAlignment(); 4760 // Insert `assertalign` node if there's an alignment. 4761 if (InsertAssertAlign && Alignment) { 4762 Result = 4763 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4764 } 4765 4766 setValue(&I, Result); 4767 } 4768 } 4769 4770 /// GetSignificand - Get the significand and build it into a floating-point 4771 /// number with exponent of 1: 4772 /// 4773 /// Op = (Op & 0x007fffff) | 0x3f800000; 4774 /// 4775 /// where Op is the hexadecimal representation of floating point value. 4776 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4777 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4778 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4779 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4780 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4781 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4782 } 4783 4784 /// GetExponent - Get the exponent: 4785 /// 4786 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4787 /// 4788 /// where Op is the hexadecimal representation of floating point value. 4789 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4790 const TargetLowering &TLI, const SDLoc &dl) { 4791 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4792 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4793 SDValue t1 = DAG.getNode( 4794 ISD::SRL, dl, MVT::i32, t0, 4795 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4796 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4797 DAG.getConstant(127, dl, MVT::i32)); 4798 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4799 } 4800 4801 /// getF32Constant - Get 32-bit floating point constant. 4802 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4803 const SDLoc &dl) { 4804 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4805 MVT::f32); 4806 } 4807 4808 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4809 SelectionDAG &DAG) { 4810 // TODO: What fast-math-flags should be set on the floating-point nodes? 4811 4812 // IntegerPartOfX = ((int32_t)(t0); 4813 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4814 4815 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4816 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4817 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4818 4819 // IntegerPartOfX <<= 23; 4820 IntegerPartOfX = DAG.getNode( 4821 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4822 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4823 DAG.getDataLayout()))); 4824 4825 SDValue TwoToFractionalPartOfX; 4826 if (LimitFloatPrecision <= 6) { 4827 // For floating-point precision of 6: 4828 // 4829 // TwoToFractionalPartOfX = 4830 // 0.997535578f + 4831 // (0.735607626f + 0.252464424f * x) * x; 4832 // 4833 // error 0.0144103317, which is 6 bits 4834 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4835 getF32Constant(DAG, 0x3e814304, dl)); 4836 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4837 getF32Constant(DAG, 0x3f3c50c8, dl)); 4838 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4839 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4840 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4841 } else if (LimitFloatPrecision <= 12) { 4842 // For floating-point precision of 12: 4843 // 4844 // TwoToFractionalPartOfX = 4845 // 0.999892986f + 4846 // (0.696457318f + 4847 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4848 // 4849 // error 0.000107046256, which is 13 to 14 bits 4850 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4851 getF32Constant(DAG, 0x3da235e3, dl)); 4852 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4853 getF32Constant(DAG, 0x3e65b8f3, dl)); 4854 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4855 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4856 getF32Constant(DAG, 0x3f324b07, dl)); 4857 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4858 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4859 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4860 } else { // LimitFloatPrecision <= 18 4861 // For floating-point precision of 18: 4862 // 4863 // TwoToFractionalPartOfX = 4864 // 0.999999982f + 4865 // (0.693148872f + 4866 // (0.240227044f + 4867 // (0.554906021e-1f + 4868 // (0.961591928e-2f + 4869 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4870 // error 2.47208000*10^(-7), which is better than 18 bits 4871 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4872 getF32Constant(DAG, 0x3924b03e, dl)); 4873 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4874 getF32Constant(DAG, 0x3ab24b87, dl)); 4875 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4876 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4877 getF32Constant(DAG, 0x3c1d8c17, dl)); 4878 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4879 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4880 getF32Constant(DAG, 0x3d634a1d, dl)); 4881 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4882 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4883 getF32Constant(DAG, 0x3e75fe14, dl)); 4884 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4885 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4886 getF32Constant(DAG, 0x3f317234, dl)); 4887 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4888 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4889 getF32Constant(DAG, 0x3f800000, dl)); 4890 } 4891 4892 // Add the exponent into the result in integer domain. 4893 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4894 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4895 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4896 } 4897 4898 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4899 /// limited-precision mode. 4900 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4901 const TargetLowering &TLI, SDNodeFlags Flags) { 4902 if (Op.getValueType() == MVT::f32 && 4903 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4904 4905 // Put the exponent in the right bit position for later addition to the 4906 // final result: 4907 // 4908 // t0 = Op * log2(e) 4909 4910 // TODO: What fast-math-flags should be set here? 4911 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4912 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 4913 return getLimitedPrecisionExp2(t0, dl, DAG); 4914 } 4915 4916 // No special expansion. 4917 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 4918 } 4919 4920 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4921 /// limited-precision mode. 4922 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4923 const TargetLowering &TLI, SDNodeFlags Flags) { 4924 // TODO: What fast-math-flags should be set on the floating-point nodes? 4925 4926 if (Op.getValueType() == MVT::f32 && 4927 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4928 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4929 4930 // Scale the exponent by log(2). 4931 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4932 SDValue LogOfExponent = 4933 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4934 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 4935 4936 // Get the significand and build it into a floating-point number with 4937 // exponent of 1. 4938 SDValue X = GetSignificand(DAG, Op1, dl); 4939 4940 SDValue LogOfMantissa; 4941 if (LimitFloatPrecision <= 6) { 4942 // For floating-point precision of 6: 4943 // 4944 // LogofMantissa = 4945 // -1.1609546f + 4946 // (1.4034025f - 0.23903021f * x) * x; 4947 // 4948 // error 0.0034276066, which is better than 8 bits 4949 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4950 getF32Constant(DAG, 0xbe74c456, dl)); 4951 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4952 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4953 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4954 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4955 getF32Constant(DAG, 0x3f949a29, dl)); 4956 } else if (LimitFloatPrecision <= 12) { 4957 // For floating-point precision of 12: 4958 // 4959 // LogOfMantissa = 4960 // -1.7417939f + 4961 // (2.8212026f + 4962 // (-1.4699568f + 4963 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4964 // 4965 // error 0.000061011436, which is 14 bits 4966 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4967 getF32Constant(DAG, 0xbd67b6d6, dl)); 4968 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4969 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4970 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4971 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4972 getF32Constant(DAG, 0x3fbc278b, dl)); 4973 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4974 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4975 getF32Constant(DAG, 0x40348e95, dl)); 4976 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4977 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4978 getF32Constant(DAG, 0x3fdef31a, dl)); 4979 } else { // LimitFloatPrecision <= 18 4980 // For floating-point precision of 18: 4981 // 4982 // LogOfMantissa = 4983 // -2.1072184f + 4984 // (4.2372794f + 4985 // (-3.7029485f + 4986 // (2.2781945f + 4987 // (-0.87823314f + 4988 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4989 // 4990 // error 0.0000023660568, which is better than 18 bits 4991 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4992 getF32Constant(DAG, 0xbc91e5ac, dl)); 4993 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4994 getF32Constant(DAG, 0x3e4350aa, dl)); 4995 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4996 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4997 getF32Constant(DAG, 0x3f60d3e3, dl)); 4998 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4999 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5000 getF32Constant(DAG, 0x4011cdf0, dl)); 5001 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5002 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5003 getF32Constant(DAG, 0x406cfd1c, dl)); 5004 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5005 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5006 getF32Constant(DAG, 0x408797cb, dl)); 5007 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5008 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5009 getF32Constant(DAG, 0x4006dcab, dl)); 5010 } 5011 5012 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5013 } 5014 5015 // No special expansion. 5016 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5017 } 5018 5019 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5020 /// limited-precision mode. 5021 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5022 const TargetLowering &TLI, SDNodeFlags Flags) { 5023 // TODO: What fast-math-flags should be set on the floating-point nodes? 5024 5025 if (Op.getValueType() == MVT::f32 && 5026 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5027 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5028 5029 // Get the exponent. 5030 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5031 5032 // Get the significand and build it into a floating-point number with 5033 // exponent of 1. 5034 SDValue X = GetSignificand(DAG, Op1, dl); 5035 5036 // Different possible minimax approximations of significand in 5037 // floating-point for various degrees of accuracy over [1,2]. 5038 SDValue Log2ofMantissa; 5039 if (LimitFloatPrecision <= 6) { 5040 // For floating-point precision of 6: 5041 // 5042 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5043 // 5044 // error 0.0049451742, which is more than 7 bits 5045 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5046 getF32Constant(DAG, 0xbeb08fe0, dl)); 5047 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5048 getF32Constant(DAG, 0x40019463, dl)); 5049 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5050 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5051 getF32Constant(DAG, 0x3fd6633d, dl)); 5052 } else if (LimitFloatPrecision <= 12) { 5053 // For floating-point precision of 12: 5054 // 5055 // Log2ofMantissa = 5056 // -2.51285454f + 5057 // (4.07009056f + 5058 // (-2.12067489f + 5059 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5060 // 5061 // error 0.0000876136000, which is better than 13 bits 5062 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5063 getF32Constant(DAG, 0xbda7262e, dl)); 5064 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5065 getF32Constant(DAG, 0x3f25280b, dl)); 5066 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5067 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5068 getF32Constant(DAG, 0x4007b923, dl)); 5069 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5070 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5071 getF32Constant(DAG, 0x40823e2f, dl)); 5072 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5073 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5074 getF32Constant(DAG, 0x4020d29c, dl)); 5075 } else { // LimitFloatPrecision <= 18 5076 // For floating-point precision of 18: 5077 // 5078 // Log2ofMantissa = 5079 // -3.0400495f + 5080 // (6.1129976f + 5081 // (-5.3420409f + 5082 // (3.2865683f + 5083 // (-1.2669343f + 5084 // (0.27515199f - 5085 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5086 // 5087 // error 0.0000018516, which is better than 18 bits 5088 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5089 getF32Constant(DAG, 0xbcd2769e, dl)); 5090 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5091 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5092 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5093 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5094 getF32Constant(DAG, 0x3fa22ae7, dl)); 5095 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5096 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5097 getF32Constant(DAG, 0x40525723, dl)); 5098 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5099 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5100 getF32Constant(DAG, 0x40aaf200, dl)); 5101 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5102 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5103 getF32Constant(DAG, 0x40c39dad, dl)); 5104 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5105 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5106 getF32Constant(DAG, 0x4042902c, dl)); 5107 } 5108 5109 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5110 } 5111 5112 // No special expansion. 5113 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5114 } 5115 5116 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5117 /// limited-precision mode. 5118 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5119 const TargetLowering &TLI, SDNodeFlags Flags) { 5120 // TODO: What fast-math-flags should be set on the floating-point nodes? 5121 5122 if (Op.getValueType() == MVT::f32 && 5123 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5124 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5125 5126 // Scale the exponent by log10(2) [0.30102999f]. 5127 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5128 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5129 getF32Constant(DAG, 0x3e9a209a, dl)); 5130 5131 // Get the significand and build it into a floating-point number with 5132 // exponent of 1. 5133 SDValue X = GetSignificand(DAG, Op1, dl); 5134 5135 SDValue Log10ofMantissa; 5136 if (LimitFloatPrecision <= 6) { 5137 // For floating-point precision of 6: 5138 // 5139 // Log10ofMantissa = 5140 // -0.50419619f + 5141 // (0.60948995f - 0.10380950f * x) * x; 5142 // 5143 // error 0.0014886165, which is 6 bits 5144 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5145 getF32Constant(DAG, 0xbdd49a13, dl)); 5146 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5147 getF32Constant(DAG, 0x3f1c0789, dl)); 5148 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5149 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5150 getF32Constant(DAG, 0x3f011300, dl)); 5151 } else if (LimitFloatPrecision <= 12) { 5152 // For floating-point precision of 12: 5153 // 5154 // Log10ofMantissa = 5155 // -0.64831180f + 5156 // (0.91751397f + 5157 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5158 // 5159 // error 0.00019228036, which is better than 12 bits 5160 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5161 getF32Constant(DAG, 0x3d431f31, dl)); 5162 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5163 getF32Constant(DAG, 0x3ea21fb2, dl)); 5164 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5165 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5166 getF32Constant(DAG, 0x3f6ae232, dl)); 5167 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5168 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5169 getF32Constant(DAG, 0x3f25f7c3, dl)); 5170 } else { // LimitFloatPrecision <= 18 5171 // For floating-point precision of 18: 5172 // 5173 // Log10ofMantissa = 5174 // -0.84299375f + 5175 // (1.5327582f + 5176 // (-1.0688956f + 5177 // (0.49102474f + 5178 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5179 // 5180 // error 0.0000037995730, which is better than 18 bits 5181 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5182 getF32Constant(DAG, 0x3c5d51ce, dl)); 5183 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5184 getF32Constant(DAG, 0x3e00685a, dl)); 5185 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5186 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5187 getF32Constant(DAG, 0x3efb6798, dl)); 5188 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5189 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5190 getF32Constant(DAG, 0x3f88d192, dl)); 5191 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5192 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5193 getF32Constant(DAG, 0x3fc4316c, dl)); 5194 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5195 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5196 getF32Constant(DAG, 0x3f57ce70, dl)); 5197 } 5198 5199 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5200 } 5201 5202 // No special expansion. 5203 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5204 } 5205 5206 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5207 /// limited-precision mode. 5208 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5209 const TargetLowering &TLI, SDNodeFlags Flags) { 5210 if (Op.getValueType() == MVT::f32 && 5211 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5212 return getLimitedPrecisionExp2(Op, dl, DAG); 5213 5214 // No special expansion. 5215 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5216 } 5217 5218 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5219 /// limited-precision mode with x == 10.0f. 5220 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5221 SelectionDAG &DAG, const TargetLowering &TLI, 5222 SDNodeFlags Flags) { 5223 bool IsExp10 = false; 5224 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5225 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5226 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5227 APFloat Ten(10.0f); 5228 IsExp10 = LHSC->isExactlyValue(Ten); 5229 } 5230 } 5231 5232 // TODO: What fast-math-flags should be set on the FMUL node? 5233 if (IsExp10) { 5234 // Put the exponent in the right bit position for later addition to the 5235 // final result: 5236 // 5237 // #define LOG2OF10 3.3219281f 5238 // t0 = Op * LOG2OF10; 5239 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5240 getF32Constant(DAG, 0x40549a78, dl)); 5241 return getLimitedPrecisionExp2(t0, dl, DAG); 5242 } 5243 5244 // No special expansion. 5245 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5246 } 5247 5248 /// ExpandPowI - Expand a llvm.powi intrinsic. 5249 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5250 SelectionDAG &DAG) { 5251 // If RHS is a constant, we can expand this out to a multiplication tree, 5252 // otherwise we end up lowering to a call to __powidf2 (for example). When 5253 // optimizing for size, we only want to do this if the expansion would produce 5254 // a small number of multiplies, otherwise we do the full expansion. 5255 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5256 // Get the exponent as a positive value. 5257 unsigned Val = RHSC->getSExtValue(); 5258 if ((int)Val < 0) Val = -Val; 5259 5260 // powi(x, 0) -> 1.0 5261 if (Val == 0) 5262 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5263 5264 bool OptForSize = DAG.shouldOptForSize(); 5265 if (!OptForSize || 5266 // If optimizing for size, don't insert too many multiplies. 5267 // This inserts up to 5 multiplies. 5268 countPopulation(Val) + Log2_32(Val) < 7) { 5269 // We use the simple binary decomposition method to generate the multiply 5270 // sequence. There are more optimal ways to do this (for example, 5271 // powi(x,15) generates one more multiply than it should), but this has 5272 // the benefit of being both really simple and much better than a libcall. 5273 SDValue Res; // Logically starts equal to 1.0 5274 SDValue CurSquare = LHS; 5275 // TODO: Intrinsics should have fast-math-flags that propagate to these 5276 // nodes. 5277 while (Val) { 5278 if (Val & 1) { 5279 if (Res.getNode()) 5280 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5281 else 5282 Res = CurSquare; // 1.0*CurSquare. 5283 } 5284 5285 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5286 CurSquare, CurSquare); 5287 Val >>= 1; 5288 } 5289 5290 // If the original was negative, invert the result, producing 1/(x*x*x). 5291 if (RHSC->getSExtValue() < 0) 5292 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5293 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5294 return Res; 5295 } 5296 } 5297 5298 // Otherwise, expand to a libcall. 5299 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5300 } 5301 5302 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5303 SDValue LHS, SDValue RHS, SDValue Scale, 5304 SelectionDAG &DAG, const TargetLowering &TLI) { 5305 EVT VT = LHS.getValueType(); 5306 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5307 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5308 LLVMContext &Ctx = *DAG.getContext(); 5309 5310 // If the type is legal but the operation isn't, this node might survive all 5311 // the way to operation legalization. If we end up there and we do not have 5312 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5313 // node. 5314 5315 // Coax the legalizer into expanding the node during type legalization instead 5316 // by bumping the size by one bit. This will force it to Promote, enabling the 5317 // early expansion and avoiding the need to expand later. 5318 5319 // We don't have to do this if Scale is 0; that can always be expanded, unless 5320 // it's a saturating signed operation. Those can experience true integer 5321 // division overflow, a case which we must avoid. 5322 5323 // FIXME: We wouldn't have to do this (or any of the early 5324 // expansion/promotion) if it was possible to expand a libcall of an 5325 // illegal type during operation legalization. But it's not, so things 5326 // get a bit hacky. 5327 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5328 if ((ScaleInt > 0 || (Saturating && Signed)) && 5329 (TLI.isTypeLegal(VT) || 5330 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5331 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5332 Opcode, VT, ScaleInt); 5333 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5334 EVT PromVT; 5335 if (VT.isScalarInteger()) 5336 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5337 else if (VT.isVector()) { 5338 PromVT = VT.getVectorElementType(); 5339 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5340 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5341 } else 5342 llvm_unreachable("Wrong VT for DIVFIX?"); 5343 if (Signed) { 5344 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5345 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5346 } else { 5347 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5348 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5349 } 5350 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5351 // For saturating operations, we need to shift up the LHS to get the 5352 // proper saturation width, and then shift down again afterwards. 5353 if (Saturating) 5354 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5355 DAG.getConstant(1, DL, ShiftTy)); 5356 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5357 if (Saturating) 5358 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5359 DAG.getConstant(1, DL, ShiftTy)); 5360 return DAG.getZExtOrTrunc(Res, DL, VT); 5361 } 5362 } 5363 5364 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5365 } 5366 5367 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5368 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5369 static void 5370 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5371 const SDValue &N) { 5372 switch (N.getOpcode()) { 5373 case ISD::CopyFromReg: { 5374 SDValue Op = N.getOperand(1); 5375 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5376 Op.getValueType().getSizeInBits()); 5377 return; 5378 } 5379 case ISD::BITCAST: 5380 case ISD::AssertZext: 5381 case ISD::AssertSext: 5382 case ISD::TRUNCATE: 5383 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5384 return; 5385 case ISD::BUILD_PAIR: 5386 case ISD::BUILD_VECTOR: 5387 case ISD::CONCAT_VECTORS: 5388 for (SDValue Op : N->op_values()) 5389 getUnderlyingArgRegs(Regs, Op); 5390 return; 5391 default: 5392 return; 5393 } 5394 } 5395 5396 /// If the DbgValueInst is a dbg_value of a function argument, create the 5397 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5398 /// instruction selection, they will be inserted to the entry BB. 5399 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5400 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5401 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5402 const Argument *Arg = dyn_cast<Argument>(V); 5403 if (!Arg) 5404 return false; 5405 5406 if (!IsDbgDeclare) { 5407 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5408 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5409 // the entry block. 5410 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5411 if (!IsInEntryBlock) 5412 return false; 5413 5414 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5415 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5416 // variable that also is a param. 5417 // 5418 // Although, if we are at the top of the entry block already, we can still 5419 // emit using ArgDbgValue. This might catch some situations when the 5420 // dbg.value refers to an argument that isn't used in the entry block, so 5421 // any CopyToReg node would be optimized out and the only way to express 5422 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5423 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5424 // we should only emit as ArgDbgValue if the Variable is an argument to the 5425 // current function, and the dbg.value intrinsic is found in the entry 5426 // block. 5427 bool VariableIsFunctionInputArg = Variable->isParameter() && 5428 !DL->getInlinedAt(); 5429 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5430 if (!IsInPrologue && !VariableIsFunctionInputArg) 5431 return false; 5432 5433 // Here we assume that a function argument on IR level only can be used to 5434 // describe one input parameter on source level. If we for example have 5435 // source code like this 5436 // 5437 // struct A { long x, y; }; 5438 // void foo(struct A a, long b) { 5439 // ... 5440 // b = a.x; 5441 // ... 5442 // } 5443 // 5444 // and IR like this 5445 // 5446 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5447 // entry: 5448 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5449 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5450 // call void @llvm.dbg.value(metadata i32 %b, "b", 5451 // ... 5452 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5453 // ... 5454 // 5455 // then the last dbg.value is describing a parameter "b" using a value that 5456 // is an argument. But since we already has used %a1 to describe a parameter 5457 // we should not handle that last dbg.value here (that would result in an 5458 // incorrect hoisting of the DBG_VALUE to the function entry). 5459 // Notice that we allow one dbg.value per IR level argument, to accommodate 5460 // for the situation with fragments above. 5461 if (VariableIsFunctionInputArg) { 5462 unsigned ArgNo = Arg->getArgNo(); 5463 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5464 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5465 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5466 return false; 5467 FuncInfo.DescribedArgs.set(ArgNo); 5468 } 5469 } 5470 5471 MachineFunction &MF = DAG.getMachineFunction(); 5472 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5473 5474 bool IsIndirect = false; 5475 Optional<MachineOperand> Op; 5476 // Some arguments' frame index is recorded during argument lowering. 5477 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5478 if (FI != std::numeric_limits<int>::max()) 5479 Op = MachineOperand::CreateFI(FI); 5480 5481 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5482 if (!Op && N.getNode()) { 5483 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5484 Register Reg; 5485 if (ArgRegsAndSizes.size() == 1) 5486 Reg = ArgRegsAndSizes.front().first; 5487 5488 if (Reg && Reg.isVirtual()) { 5489 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5490 Register PR = RegInfo.getLiveInPhysReg(Reg); 5491 if (PR) 5492 Reg = PR; 5493 } 5494 if (Reg) { 5495 Op = MachineOperand::CreateReg(Reg, false); 5496 IsIndirect = IsDbgDeclare; 5497 } 5498 } 5499 5500 if (!Op && N.getNode()) { 5501 // Check if frame index is available. 5502 SDValue LCandidate = peekThroughBitcasts(N); 5503 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5504 if (FrameIndexSDNode *FINode = 5505 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5506 Op = MachineOperand::CreateFI(FINode->getIndex()); 5507 } 5508 5509 if (!Op) { 5510 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5511 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5512 SplitRegs) { 5513 unsigned Offset = 0; 5514 for (auto RegAndSize : SplitRegs) { 5515 // If the expression is already a fragment, the current register 5516 // offset+size might extend beyond the fragment. In this case, only 5517 // the register bits that are inside the fragment are relevant. 5518 int RegFragmentSizeInBits = RegAndSize.second; 5519 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5520 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5521 // The register is entirely outside the expression fragment, 5522 // so is irrelevant for debug info. 5523 if (Offset >= ExprFragmentSizeInBits) 5524 break; 5525 // The register is partially outside the expression fragment, only 5526 // the low bits within the fragment are relevant for debug info. 5527 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5528 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5529 } 5530 } 5531 5532 auto FragmentExpr = DIExpression::createFragmentExpression( 5533 Expr, Offset, RegFragmentSizeInBits); 5534 Offset += RegAndSize.second; 5535 // If a valid fragment expression cannot be created, the variable's 5536 // correct value cannot be determined and so it is set as Undef. 5537 if (!FragmentExpr) { 5538 SDDbgValue *SDV = DAG.getConstantDbgValue( 5539 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5540 DAG.AddDbgValue(SDV, nullptr, false); 5541 continue; 5542 } 5543 assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?"); 5544 FuncInfo.ArgDbgValues.push_back( 5545 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5546 RegAndSize.first, Variable, *FragmentExpr)); 5547 } 5548 }; 5549 5550 // Check if ValueMap has reg number. 5551 DenseMap<const Value *, Register>::const_iterator 5552 VMI = FuncInfo.ValueMap.find(V); 5553 if (VMI != FuncInfo.ValueMap.end()) { 5554 const auto &TLI = DAG.getTargetLoweringInfo(); 5555 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5556 V->getType(), None); 5557 if (RFV.occupiesMultipleRegs()) { 5558 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5559 return true; 5560 } 5561 5562 Op = MachineOperand::CreateReg(VMI->second, false); 5563 IsIndirect = IsDbgDeclare; 5564 } else if (ArgRegsAndSizes.size() > 1) { 5565 // This was split due to the calling convention, and no virtual register 5566 // mapping exists for the value. 5567 splitMultiRegDbgValue(ArgRegsAndSizes); 5568 return true; 5569 } 5570 } 5571 5572 if (!Op) 5573 return false; 5574 5575 assert(Variable->isValidLocationForIntrinsic(DL) && 5576 "Expected inlined-at fields to agree"); 5577 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5578 FuncInfo.ArgDbgValues.push_back( 5579 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5580 *Op, Variable, Expr)); 5581 5582 return true; 5583 } 5584 5585 /// Return the appropriate SDDbgValue based on N. 5586 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5587 DILocalVariable *Variable, 5588 DIExpression *Expr, 5589 const DebugLoc &dl, 5590 unsigned DbgSDNodeOrder) { 5591 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5592 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5593 // stack slot locations. 5594 // 5595 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5596 // debug values here after optimization: 5597 // 5598 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5599 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5600 // 5601 // Both describe the direct values of their associated variables. 5602 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5603 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5604 } 5605 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5606 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5607 } 5608 5609 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5610 switch (Intrinsic) { 5611 case Intrinsic::smul_fix: 5612 return ISD::SMULFIX; 5613 case Intrinsic::umul_fix: 5614 return ISD::UMULFIX; 5615 case Intrinsic::smul_fix_sat: 5616 return ISD::SMULFIXSAT; 5617 case Intrinsic::umul_fix_sat: 5618 return ISD::UMULFIXSAT; 5619 case Intrinsic::sdiv_fix: 5620 return ISD::SDIVFIX; 5621 case Intrinsic::udiv_fix: 5622 return ISD::UDIVFIX; 5623 case Intrinsic::sdiv_fix_sat: 5624 return ISD::SDIVFIXSAT; 5625 case Intrinsic::udiv_fix_sat: 5626 return ISD::UDIVFIXSAT; 5627 default: 5628 llvm_unreachable("Unhandled fixed point intrinsic"); 5629 } 5630 } 5631 5632 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5633 const char *FunctionName) { 5634 assert(FunctionName && "FunctionName must not be nullptr"); 5635 SDValue Callee = DAG.getExternalSymbol( 5636 FunctionName, 5637 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5638 LowerCallTo(I, Callee, I.isTailCall()); 5639 } 5640 5641 /// Given a @llvm.call.preallocated.setup, return the corresponding 5642 /// preallocated call. 5643 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5644 assert(cast<CallBase>(PreallocatedSetup) 5645 ->getCalledFunction() 5646 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5647 "expected call_preallocated_setup Value"); 5648 for (auto *U : PreallocatedSetup->users()) { 5649 auto *UseCall = cast<CallBase>(U); 5650 const Function *Fn = UseCall->getCalledFunction(); 5651 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5652 return UseCall; 5653 } 5654 } 5655 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5656 } 5657 5658 /// Lower the call to the specified intrinsic function. 5659 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5660 unsigned Intrinsic) { 5661 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5662 SDLoc sdl = getCurSDLoc(); 5663 DebugLoc dl = getCurDebugLoc(); 5664 SDValue Res; 5665 5666 SDNodeFlags Flags; 5667 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5668 Flags.copyFMF(*FPOp); 5669 5670 switch (Intrinsic) { 5671 default: 5672 // By default, turn this into a target intrinsic node. 5673 visitTargetIntrinsic(I, Intrinsic); 5674 return; 5675 case Intrinsic::vscale: { 5676 match(&I, m_VScale(DAG.getDataLayout())); 5677 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5678 setValue(&I, 5679 DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1))); 5680 return; 5681 } 5682 case Intrinsic::vastart: visitVAStart(I); return; 5683 case Intrinsic::vaend: visitVAEnd(I); return; 5684 case Intrinsic::vacopy: visitVACopy(I); return; 5685 case Intrinsic::returnaddress: 5686 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5687 TLI.getPointerTy(DAG.getDataLayout()), 5688 getValue(I.getArgOperand(0)))); 5689 return; 5690 case Intrinsic::addressofreturnaddress: 5691 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5692 TLI.getPointerTy(DAG.getDataLayout()))); 5693 return; 5694 case Intrinsic::sponentry: 5695 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5696 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5697 return; 5698 case Intrinsic::frameaddress: 5699 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5700 TLI.getFrameIndexTy(DAG.getDataLayout()), 5701 getValue(I.getArgOperand(0)))); 5702 return; 5703 case Intrinsic::read_volatile_register: 5704 case Intrinsic::read_register: { 5705 Value *Reg = I.getArgOperand(0); 5706 SDValue Chain = getRoot(); 5707 SDValue RegName = 5708 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5709 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5710 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5711 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5712 setValue(&I, Res); 5713 DAG.setRoot(Res.getValue(1)); 5714 return; 5715 } 5716 case Intrinsic::write_register: { 5717 Value *Reg = I.getArgOperand(0); 5718 Value *RegValue = I.getArgOperand(1); 5719 SDValue Chain = getRoot(); 5720 SDValue RegName = 5721 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5722 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5723 RegName, getValue(RegValue))); 5724 return; 5725 } 5726 case Intrinsic::memcpy: { 5727 const auto &MCI = cast<MemCpyInst>(I); 5728 SDValue Op1 = getValue(I.getArgOperand(0)); 5729 SDValue Op2 = getValue(I.getArgOperand(1)); 5730 SDValue Op3 = getValue(I.getArgOperand(2)); 5731 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5732 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5733 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5734 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5735 bool isVol = MCI.isVolatile(); 5736 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5737 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5738 // node. 5739 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5740 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5741 /* AlwaysInline */ false, isTC, 5742 MachinePointerInfo(I.getArgOperand(0)), 5743 MachinePointerInfo(I.getArgOperand(1))); 5744 updateDAGForMaybeTailCall(MC); 5745 return; 5746 } 5747 case Intrinsic::memcpy_inline: { 5748 const auto &MCI = cast<MemCpyInlineInst>(I); 5749 SDValue Dst = getValue(I.getArgOperand(0)); 5750 SDValue Src = getValue(I.getArgOperand(1)); 5751 SDValue Size = getValue(I.getArgOperand(2)); 5752 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5753 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5754 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5755 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5756 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5757 bool isVol = MCI.isVolatile(); 5758 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5759 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5760 // node. 5761 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5762 /* AlwaysInline */ true, isTC, 5763 MachinePointerInfo(I.getArgOperand(0)), 5764 MachinePointerInfo(I.getArgOperand(1))); 5765 updateDAGForMaybeTailCall(MC); 5766 return; 5767 } 5768 case Intrinsic::memset: { 5769 const auto &MSI = cast<MemSetInst>(I); 5770 SDValue Op1 = getValue(I.getArgOperand(0)); 5771 SDValue Op2 = getValue(I.getArgOperand(1)); 5772 SDValue Op3 = getValue(I.getArgOperand(2)); 5773 // @llvm.memset defines 0 and 1 to both mean no alignment. 5774 Align Alignment = MSI.getDestAlign().valueOrOne(); 5775 bool isVol = MSI.isVolatile(); 5776 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5777 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5778 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC, 5779 MachinePointerInfo(I.getArgOperand(0))); 5780 updateDAGForMaybeTailCall(MS); 5781 return; 5782 } 5783 case Intrinsic::memmove: { 5784 const auto &MMI = cast<MemMoveInst>(I); 5785 SDValue Op1 = getValue(I.getArgOperand(0)); 5786 SDValue Op2 = getValue(I.getArgOperand(1)); 5787 SDValue Op3 = getValue(I.getArgOperand(2)); 5788 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5789 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5790 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5791 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5792 bool isVol = MMI.isVolatile(); 5793 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5794 // FIXME: Support passing different dest/src alignments to the memmove DAG 5795 // node. 5796 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5797 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5798 isTC, MachinePointerInfo(I.getArgOperand(0)), 5799 MachinePointerInfo(I.getArgOperand(1))); 5800 updateDAGForMaybeTailCall(MM); 5801 return; 5802 } 5803 case Intrinsic::memcpy_element_unordered_atomic: { 5804 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5805 SDValue Dst = getValue(MI.getRawDest()); 5806 SDValue Src = getValue(MI.getRawSource()); 5807 SDValue Length = getValue(MI.getLength()); 5808 5809 unsigned DstAlign = MI.getDestAlignment(); 5810 unsigned SrcAlign = MI.getSourceAlignment(); 5811 Type *LengthTy = MI.getLength()->getType(); 5812 unsigned ElemSz = MI.getElementSizeInBytes(); 5813 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5814 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5815 SrcAlign, Length, LengthTy, ElemSz, isTC, 5816 MachinePointerInfo(MI.getRawDest()), 5817 MachinePointerInfo(MI.getRawSource())); 5818 updateDAGForMaybeTailCall(MC); 5819 return; 5820 } 5821 case Intrinsic::memmove_element_unordered_atomic: { 5822 auto &MI = cast<AtomicMemMoveInst>(I); 5823 SDValue Dst = getValue(MI.getRawDest()); 5824 SDValue Src = getValue(MI.getRawSource()); 5825 SDValue Length = getValue(MI.getLength()); 5826 5827 unsigned DstAlign = MI.getDestAlignment(); 5828 unsigned SrcAlign = MI.getSourceAlignment(); 5829 Type *LengthTy = MI.getLength()->getType(); 5830 unsigned ElemSz = MI.getElementSizeInBytes(); 5831 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5832 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5833 SrcAlign, Length, LengthTy, ElemSz, isTC, 5834 MachinePointerInfo(MI.getRawDest()), 5835 MachinePointerInfo(MI.getRawSource())); 5836 updateDAGForMaybeTailCall(MC); 5837 return; 5838 } 5839 case Intrinsic::memset_element_unordered_atomic: { 5840 auto &MI = cast<AtomicMemSetInst>(I); 5841 SDValue Dst = getValue(MI.getRawDest()); 5842 SDValue Val = getValue(MI.getValue()); 5843 SDValue Length = getValue(MI.getLength()); 5844 5845 unsigned DstAlign = MI.getDestAlignment(); 5846 Type *LengthTy = MI.getLength()->getType(); 5847 unsigned ElemSz = MI.getElementSizeInBytes(); 5848 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5849 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5850 LengthTy, ElemSz, isTC, 5851 MachinePointerInfo(MI.getRawDest())); 5852 updateDAGForMaybeTailCall(MC); 5853 return; 5854 } 5855 case Intrinsic::call_preallocated_setup: { 5856 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 5857 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5858 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 5859 getRoot(), SrcValue); 5860 setValue(&I, Res); 5861 DAG.setRoot(Res); 5862 return; 5863 } 5864 case Intrinsic::call_preallocated_arg: { 5865 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 5866 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5867 SDValue Ops[3]; 5868 Ops[0] = getRoot(); 5869 Ops[1] = SrcValue; 5870 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 5871 MVT::i32); // arg index 5872 SDValue Res = DAG.getNode( 5873 ISD::PREALLOCATED_ARG, sdl, 5874 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 5875 setValue(&I, Res); 5876 DAG.setRoot(Res.getValue(1)); 5877 return; 5878 } 5879 case Intrinsic::dbg_addr: 5880 case Intrinsic::dbg_declare: { 5881 const auto &DI = cast<DbgVariableIntrinsic>(I); 5882 DILocalVariable *Variable = DI.getVariable(); 5883 DIExpression *Expression = DI.getExpression(); 5884 dropDanglingDebugInfo(Variable, Expression); 5885 assert(Variable && "Missing variable"); 5886 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 5887 << "\n"); 5888 // Check if address has undef value. 5889 const Value *Address = DI.getVariableLocation(); 5890 if (!Address || isa<UndefValue>(Address) || 5891 (Address->use_empty() && !isa<Argument>(Address))) { 5892 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5893 << " (bad/undef/unused-arg address)\n"); 5894 return; 5895 } 5896 5897 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5898 5899 // Check if this variable can be described by a frame index, typically 5900 // either as a static alloca or a byval parameter. 5901 int FI = std::numeric_limits<int>::max(); 5902 if (const auto *AI = 5903 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5904 if (AI->isStaticAlloca()) { 5905 auto I = FuncInfo.StaticAllocaMap.find(AI); 5906 if (I != FuncInfo.StaticAllocaMap.end()) 5907 FI = I->second; 5908 } 5909 } else if (const auto *Arg = dyn_cast<Argument>( 5910 Address->stripInBoundsConstantOffsets())) { 5911 FI = FuncInfo.getArgumentFrameIndex(Arg); 5912 } 5913 5914 // llvm.dbg.addr is control dependent and always generates indirect 5915 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5916 // the MachineFunction variable table. 5917 if (FI != std::numeric_limits<int>::max()) { 5918 if (Intrinsic == Intrinsic::dbg_addr) { 5919 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5920 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5921 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5922 } else { 5923 LLVM_DEBUG(dbgs() << "Skipping " << DI 5924 << " (variable info stashed in MF side table)\n"); 5925 } 5926 return; 5927 } 5928 5929 SDValue &N = NodeMap[Address]; 5930 if (!N.getNode() && isa<Argument>(Address)) 5931 // Check unused arguments map. 5932 N = UnusedArgNodeMap[Address]; 5933 SDDbgValue *SDV; 5934 if (N.getNode()) { 5935 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5936 Address = BCI->getOperand(0); 5937 // Parameters are handled specially. 5938 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5939 if (isParameter && FINode) { 5940 // Byval parameter. We have a frame index at this point. 5941 SDV = 5942 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5943 /*IsIndirect*/ true, dl, SDNodeOrder); 5944 } else if (isa<Argument>(Address)) { 5945 // Address is an argument, so try to emit its dbg value using 5946 // virtual register info from the FuncInfo.ValueMap. 5947 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5948 return; 5949 } else { 5950 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5951 true, dl, SDNodeOrder); 5952 } 5953 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5954 } else { 5955 // If Address is an argument then try to emit its dbg value using 5956 // virtual register info from the FuncInfo.ValueMap. 5957 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5958 N)) { 5959 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5960 << " (could not emit func-arg dbg_value)\n"); 5961 } 5962 } 5963 return; 5964 } 5965 case Intrinsic::dbg_label: { 5966 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5967 DILabel *Label = DI.getLabel(); 5968 assert(Label && "Missing label"); 5969 5970 SDDbgLabel *SDV; 5971 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5972 DAG.AddDbgLabel(SDV); 5973 return; 5974 } 5975 case Intrinsic::dbg_value: { 5976 const DbgValueInst &DI = cast<DbgValueInst>(I); 5977 assert(DI.getVariable() && "Missing variable"); 5978 5979 DILocalVariable *Variable = DI.getVariable(); 5980 DIExpression *Expression = DI.getExpression(); 5981 dropDanglingDebugInfo(Variable, Expression); 5982 const Value *V = DI.getValue(); 5983 if (!V) 5984 return; 5985 5986 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5987 SDNodeOrder)) 5988 return; 5989 5990 // TODO: Dangling debug info will eventually either be resolved or produce 5991 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5992 // between the original dbg.value location and its resolved DBG_VALUE, which 5993 // we should ideally fill with an extra Undef DBG_VALUE. 5994 5995 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5996 return; 5997 } 5998 5999 case Intrinsic::eh_typeid_for: { 6000 // Find the type id for the given typeinfo. 6001 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6002 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6003 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6004 setValue(&I, Res); 6005 return; 6006 } 6007 6008 case Intrinsic::eh_return_i32: 6009 case Intrinsic::eh_return_i64: 6010 DAG.getMachineFunction().setCallsEHReturn(true); 6011 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6012 MVT::Other, 6013 getControlRoot(), 6014 getValue(I.getArgOperand(0)), 6015 getValue(I.getArgOperand(1)))); 6016 return; 6017 case Intrinsic::eh_unwind_init: 6018 DAG.getMachineFunction().setCallsUnwindInit(true); 6019 return; 6020 case Intrinsic::eh_dwarf_cfa: 6021 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6022 TLI.getPointerTy(DAG.getDataLayout()), 6023 getValue(I.getArgOperand(0)))); 6024 return; 6025 case Intrinsic::eh_sjlj_callsite: { 6026 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6027 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 6028 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 6029 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6030 6031 MMI.setCurrentCallSite(CI->getZExtValue()); 6032 return; 6033 } 6034 case Intrinsic::eh_sjlj_functioncontext: { 6035 // Get and store the index of the function context. 6036 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6037 AllocaInst *FnCtx = 6038 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6039 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6040 MFI.setFunctionContextIndex(FI); 6041 return; 6042 } 6043 case Intrinsic::eh_sjlj_setjmp: { 6044 SDValue Ops[2]; 6045 Ops[0] = getRoot(); 6046 Ops[1] = getValue(I.getArgOperand(0)); 6047 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6048 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6049 setValue(&I, Op.getValue(0)); 6050 DAG.setRoot(Op.getValue(1)); 6051 return; 6052 } 6053 case Intrinsic::eh_sjlj_longjmp: 6054 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6055 getRoot(), getValue(I.getArgOperand(0)))); 6056 return; 6057 case Intrinsic::eh_sjlj_setup_dispatch: 6058 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6059 getRoot())); 6060 return; 6061 case Intrinsic::masked_gather: 6062 visitMaskedGather(I); 6063 return; 6064 case Intrinsic::masked_load: 6065 visitMaskedLoad(I); 6066 return; 6067 case Intrinsic::masked_scatter: 6068 visitMaskedScatter(I); 6069 return; 6070 case Intrinsic::masked_store: 6071 visitMaskedStore(I); 6072 return; 6073 case Intrinsic::masked_expandload: 6074 visitMaskedLoad(I, true /* IsExpanding */); 6075 return; 6076 case Intrinsic::masked_compressstore: 6077 visitMaskedStore(I, true /* IsCompressing */); 6078 return; 6079 case Intrinsic::powi: 6080 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6081 getValue(I.getArgOperand(1)), DAG)); 6082 return; 6083 case Intrinsic::log: 6084 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6085 return; 6086 case Intrinsic::log2: 6087 setValue(&I, 6088 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6089 return; 6090 case Intrinsic::log10: 6091 setValue(&I, 6092 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6093 return; 6094 case Intrinsic::exp: 6095 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6096 return; 6097 case Intrinsic::exp2: 6098 setValue(&I, 6099 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6100 return; 6101 case Intrinsic::pow: 6102 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6103 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6104 return; 6105 case Intrinsic::sqrt: 6106 case Intrinsic::fabs: 6107 case Intrinsic::sin: 6108 case Intrinsic::cos: 6109 case Intrinsic::floor: 6110 case Intrinsic::ceil: 6111 case Intrinsic::trunc: 6112 case Intrinsic::rint: 6113 case Intrinsic::nearbyint: 6114 case Intrinsic::round: 6115 case Intrinsic::roundeven: 6116 case Intrinsic::canonicalize: { 6117 unsigned Opcode; 6118 switch (Intrinsic) { 6119 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6120 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6121 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6122 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6123 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6124 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6125 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6126 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6127 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6128 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6129 case Intrinsic::round: Opcode = ISD::FROUND; break; 6130 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6131 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6132 } 6133 6134 setValue(&I, DAG.getNode(Opcode, sdl, 6135 getValue(I.getArgOperand(0)).getValueType(), 6136 getValue(I.getArgOperand(0)), Flags)); 6137 return; 6138 } 6139 case Intrinsic::lround: 6140 case Intrinsic::llround: 6141 case Intrinsic::lrint: 6142 case Intrinsic::llrint: { 6143 unsigned Opcode; 6144 switch (Intrinsic) { 6145 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6146 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6147 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6148 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6149 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6150 } 6151 6152 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6153 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6154 getValue(I.getArgOperand(0)))); 6155 return; 6156 } 6157 case Intrinsic::minnum: 6158 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6159 getValue(I.getArgOperand(0)).getValueType(), 6160 getValue(I.getArgOperand(0)), 6161 getValue(I.getArgOperand(1)), Flags)); 6162 return; 6163 case Intrinsic::maxnum: 6164 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6165 getValue(I.getArgOperand(0)).getValueType(), 6166 getValue(I.getArgOperand(0)), 6167 getValue(I.getArgOperand(1)), Flags)); 6168 return; 6169 case Intrinsic::minimum: 6170 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6171 getValue(I.getArgOperand(0)).getValueType(), 6172 getValue(I.getArgOperand(0)), 6173 getValue(I.getArgOperand(1)), Flags)); 6174 return; 6175 case Intrinsic::maximum: 6176 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6177 getValue(I.getArgOperand(0)).getValueType(), 6178 getValue(I.getArgOperand(0)), 6179 getValue(I.getArgOperand(1)), Flags)); 6180 return; 6181 case Intrinsic::copysign: 6182 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6183 getValue(I.getArgOperand(0)).getValueType(), 6184 getValue(I.getArgOperand(0)), 6185 getValue(I.getArgOperand(1)), Flags)); 6186 return; 6187 case Intrinsic::fma: 6188 setValue(&I, DAG.getNode( 6189 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6190 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6191 getValue(I.getArgOperand(2)), Flags)); 6192 return; 6193 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6194 case Intrinsic::INTRINSIC: 6195 #include "llvm/IR/ConstrainedOps.def" 6196 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6197 return; 6198 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6199 #include "llvm/IR/VPIntrinsics.def" 6200 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6201 return; 6202 case Intrinsic::fmuladd: { 6203 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6204 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6205 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6206 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6207 getValue(I.getArgOperand(0)).getValueType(), 6208 getValue(I.getArgOperand(0)), 6209 getValue(I.getArgOperand(1)), 6210 getValue(I.getArgOperand(2)), Flags)); 6211 } else { 6212 // TODO: Intrinsic calls should have fast-math-flags. 6213 SDValue Mul = DAG.getNode( 6214 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6215 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6216 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6217 getValue(I.getArgOperand(0)).getValueType(), 6218 Mul, getValue(I.getArgOperand(2)), Flags); 6219 setValue(&I, Add); 6220 } 6221 return; 6222 } 6223 case Intrinsic::convert_to_fp16: 6224 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6225 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6226 getValue(I.getArgOperand(0)), 6227 DAG.getTargetConstant(0, sdl, 6228 MVT::i32)))); 6229 return; 6230 case Intrinsic::convert_from_fp16: 6231 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6232 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6233 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6234 getValue(I.getArgOperand(0))))); 6235 return; 6236 case Intrinsic::fptosi_sat: { 6237 EVT Type = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6238 SDValue SatW = DAG.getConstant(Type.getScalarSizeInBits(), sdl, MVT::i32); 6239 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, Type, 6240 getValue(I.getArgOperand(0)), SatW)); 6241 return; 6242 } 6243 case Intrinsic::fptoui_sat: { 6244 EVT Type = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6245 SDValue SatW = DAG.getConstant(Type.getScalarSizeInBits(), sdl, MVT::i32); 6246 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, Type, 6247 getValue(I.getArgOperand(0)), SatW)); 6248 return; 6249 } 6250 case Intrinsic::set_rounding: 6251 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6252 {getRoot(), getValue(I.getArgOperand(0))}); 6253 setValue(&I, Res); 6254 DAG.setRoot(Res.getValue(0)); 6255 return; 6256 case Intrinsic::pcmarker: { 6257 SDValue Tmp = getValue(I.getArgOperand(0)); 6258 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6259 return; 6260 } 6261 case Intrinsic::readcyclecounter: { 6262 SDValue Op = getRoot(); 6263 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6264 DAG.getVTList(MVT::i64, MVT::Other), Op); 6265 setValue(&I, Res); 6266 DAG.setRoot(Res.getValue(1)); 6267 return; 6268 } 6269 case Intrinsic::bitreverse: 6270 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6271 getValue(I.getArgOperand(0)).getValueType(), 6272 getValue(I.getArgOperand(0)))); 6273 return; 6274 case Intrinsic::bswap: 6275 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6276 getValue(I.getArgOperand(0)).getValueType(), 6277 getValue(I.getArgOperand(0)))); 6278 return; 6279 case Intrinsic::cttz: { 6280 SDValue Arg = getValue(I.getArgOperand(0)); 6281 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6282 EVT Ty = Arg.getValueType(); 6283 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6284 sdl, Ty, Arg)); 6285 return; 6286 } 6287 case Intrinsic::ctlz: { 6288 SDValue Arg = getValue(I.getArgOperand(0)); 6289 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6290 EVT Ty = Arg.getValueType(); 6291 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6292 sdl, Ty, Arg)); 6293 return; 6294 } 6295 case Intrinsic::ctpop: { 6296 SDValue Arg = getValue(I.getArgOperand(0)); 6297 EVT Ty = Arg.getValueType(); 6298 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6299 return; 6300 } 6301 case Intrinsic::fshl: 6302 case Intrinsic::fshr: { 6303 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6304 SDValue X = getValue(I.getArgOperand(0)); 6305 SDValue Y = getValue(I.getArgOperand(1)); 6306 SDValue Z = getValue(I.getArgOperand(2)); 6307 EVT VT = X.getValueType(); 6308 6309 if (X == Y) { 6310 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6311 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6312 } else { 6313 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6314 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6315 } 6316 return; 6317 } 6318 case Intrinsic::sadd_sat: { 6319 SDValue Op1 = getValue(I.getArgOperand(0)); 6320 SDValue Op2 = getValue(I.getArgOperand(1)); 6321 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6322 return; 6323 } 6324 case Intrinsic::uadd_sat: { 6325 SDValue Op1 = getValue(I.getArgOperand(0)); 6326 SDValue Op2 = getValue(I.getArgOperand(1)); 6327 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6328 return; 6329 } 6330 case Intrinsic::ssub_sat: { 6331 SDValue Op1 = getValue(I.getArgOperand(0)); 6332 SDValue Op2 = getValue(I.getArgOperand(1)); 6333 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6334 return; 6335 } 6336 case Intrinsic::usub_sat: { 6337 SDValue Op1 = getValue(I.getArgOperand(0)); 6338 SDValue Op2 = getValue(I.getArgOperand(1)); 6339 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6340 return; 6341 } 6342 case Intrinsic::sshl_sat: { 6343 SDValue Op1 = getValue(I.getArgOperand(0)); 6344 SDValue Op2 = getValue(I.getArgOperand(1)); 6345 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6346 return; 6347 } 6348 case Intrinsic::ushl_sat: { 6349 SDValue Op1 = getValue(I.getArgOperand(0)); 6350 SDValue Op2 = getValue(I.getArgOperand(1)); 6351 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6352 return; 6353 } 6354 case Intrinsic::smul_fix: 6355 case Intrinsic::umul_fix: 6356 case Intrinsic::smul_fix_sat: 6357 case Intrinsic::umul_fix_sat: { 6358 SDValue Op1 = getValue(I.getArgOperand(0)); 6359 SDValue Op2 = getValue(I.getArgOperand(1)); 6360 SDValue Op3 = getValue(I.getArgOperand(2)); 6361 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6362 Op1.getValueType(), Op1, Op2, Op3)); 6363 return; 6364 } 6365 case Intrinsic::sdiv_fix: 6366 case Intrinsic::udiv_fix: 6367 case Intrinsic::sdiv_fix_sat: 6368 case Intrinsic::udiv_fix_sat: { 6369 SDValue Op1 = getValue(I.getArgOperand(0)); 6370 SDValue Op2 = getValue(I.getArgOperand(1)); 6371 SDValue Op3 = getValue(I.getArgOperand(2)); 6372 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6373 Op1, Op2, Op3, DAG, TLI)); 6374 return; 6375 } 6376 case Intrinsic::smax: { 6377 SDValue Op1 = getValue(I.getArgOperand(0)); 6378 SDValue Op2 = getValue(I.getArgOperand(1)); 6379 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6380 return; 6381 } 6382 case Intrinsic::smin: { 6383 SDValue Op1 = getValue(I.getArgOperand(0)); 6384 SDValue Op2 = getValue(I.getArgOperand(1)); 6385 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6386 return; 6387 } 6388 case Intrinsic::umax: { 6389 SDValue Op1 = getValue(I.getArgOperand(0)); 6390 SDValue Op2 = getValue(I.getArgOperand(1)); 6391 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6392 return; 6393 } 6394 case Intrinsic::umin: { 6395 SDValue Op1 = getValue(I.getArgOperand(0)); 6396 SDValue Op2 = getValue(I.getArgOperand(1)); 6397 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6398 return; 6399 } 6400 case Intrinsic::abs: { 6401 // TODO: Preserve "int min is poison" arg in SDAG? 6402 SDValue Op1 = getValue(I.getArgOperand(0)); 6403 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6404 return; 6405 } 6406 case Intrinsic::stacksave: { 6407 SDValue Op = getRoot(); 6408 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6409 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6410 setValue(&I, Res); 6411 DAG.setRoot(Res.getValue(1)); 6412 return; 6413 } 6414 case Intrinsic::stackrestore: 6415 Res = getValue(I.getArgOperand(0)); 6416 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6417 return; 6418 case Intrinsic::get_dynamic_area_offset: { 6419 SDValue Op = getRoot(); 6420 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6421 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6422 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6423 // target. 6424 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6425 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6426 " intrinsic!"); 6427 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6428 Op); 6429 DAG.setRoot(Op); 6430 setValue(&I, Res); 6431 return; 6432 } 6433 case Intrinsic::stackguard: { 6434 MachineFunction &MF = DAG.getMachineFunction(); 6435 const Module &M = *MF.getFunction().getParent(); 6436 SDValue Chain = getRoot(); 6437 if (TLI.useLoadStackGuardNode()) { 6438 Res = getLoadStackGuard(DAG, sdl, Chain); 6439 } else { 6440 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6441 const Value *Global = TLI.getSDagStackGuard(M); 6442 Align Align = DL->getPrefTypeAlign(Global->getType()); 6443 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6444 MachinePointerInfo(Global, 0), Align, 6445 MachineMemOperand::MOVolatile); 6446 } 6447 if (TLI.useStackGuardXorFP()) 6448 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6449 DAG.setRoot(Chain); 6450 setValue(&I, Res); 6451 return; 6452 } 6453 case Intrinsic::stackprotector: { 6454 // Emit code into the DAG to store the stack guard onto the stack. 6455 MachineFunction &MF = DAG.getMachineFunction(); 6456 MachineFrameInfo &MFI = MF.getFrameInfo(); 6457 SDValue Src, Chain = getRoot(); 6458 6459 if (TLI.useLoadStackGuardNode()) 6460 Src = getLoadStackGuard(DAG, sdl, Chain); 6461 else 6462 Src = getValue(I.getArgOperand(0)); // The guard's value. 6463 6464 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6465 6466 int FI = FuncInfo.StaticAllocaMap[Slot]; 6467 MFI.setStackProtectorIndex(FI); 6468 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6469 6470 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6471 6472 // Store the stack protector onto the stack. 6473 Res = DAG.getStore( 6474 Chain, sdl, Src, FIN, 6475 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6476 MaybeAlign(), MachineMemOperand::MOVolatile); 6477 setValue(&I, Res); 6478 DAG.setRoot(Res); 6479 return; 6480 } 6481 case Intrinsic::objectsize: 6482 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6483 6484 case Intrinsic::is_constant: 6485 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6486 6487 case Intrinsic::annotation: 6488 case Intrinsic::ptr_annotation: 6489 case Intrinsic::launder_invariant_group: 6490 case Intrinsic::strip_invariant_group: 6491 // Drop the intrinsic, but forward the value 6492 setValue(&I, getValue(I.getOperand(0))); 6493 return; 6494 6495 case Intrinsic::assume: 6496 case Intrinsic::experimental_noalias_scope_decl: 6497 case Intrinsic::var_annotation: 6498 case Intrinsic::sideeffect: 6499 // Discard annotate attributes, noalias scope declarations, assumptions, and 6500 // artificial side-effects. 6501 return; 6502 6503 case Intrinsic::codeview_annotation: { 6504 // Emit a label associated with this metadata. 6505 MachineFunction &MF = DAG.getMachineFunction(); 6506 MCSymbol *Label = 6507 MF.getMMI().getContext().createTempSymbol("annotation", true); 6508 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6509 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6510 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6511 DAG.setRoot(Res); 6512 return; 6513 } 6514 6515 case Intrinsic::init_trampoline: { 6516 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6517 6518 SDValue Ops[6]; 6519 Ops[0] = getRoot(); 6520 Ops[1] = getValue(I.getArgOperand(0)); 6521 Ops[2] = getValue(I.getArgOperand(1)); 6522 Ops[3] = getValue(I.getArgOperand(2)); 6523 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6524 Ops[5] = DAG.getSrcValue(F); 6525 6526 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6527 6528 DAG.setRoot(Res); 6529 return; 6530 } 6531 case Intrinsic::adjust_trampoline: 6532 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6533 TLI.getPointerTy(DAG.getDataLayout()), 6534 getValue(I.getArgOperand(0)))); 6535 return; 6536 case Intrinsic::gcroot: { 6537 assert(DAG.getMachineFunction().getFunction().hasGC() && 6538 "only valid in functions with gc specified, enforced by Verifier"); 6539 assert(GFI && "implied by previous"); 6540 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6541 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6542 6543 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6544 GFI->addStackRoot(FI->getIndex(), TypeMap); 6545 return; 6546 } 6547 case Intrinsic::gcread: 6548 case Intrinsic::gcwrite: 6549 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6550 case Intrinsic::flt_rounds: 6551 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6552 setValue(&I, Res); 6553 DAG.setRoot(Res.getValue(1)); 6554 return; 6555 6556 case Intrinsic::expect: 6557 // Just replace __builtin_expect(exp, c) with EXP. 6558 setValue(&I, getValue(I.getArgOperand(0))); 6559 return; 6560 6561 case Intrinsic::ubsantrap: 6562 case Intrinsic::debugtrap: 6563 case Intrinsic::trap: { 6564 StringRef TrapFuncName = 6565 I.getAttributes() 6566 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6567 .getValueAsString(); 6568 if (TrapFuncName.empty()) { 6569 switch (Intrinsic) { 6570 case Intrinsic::trap: 6571 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 6572 break; 6573 case Intrinsic::debugtrap: 6574 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 6575 break; 6576 case Intrinsic::ubsantrap: 6577 DAG.setRoot(DAG.getNode( 6578 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 6579 DAG.getTargetConstant( 6580 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 6581 MVT::i32))); 6582 break; 6583 default: llvm_unreachable("unknown trap intrinsic"); 6584 } 6585 return; 6586 } 6587 TargetLowering::ArgListTy Args; 6588 if (Intrinsic == Intrinsic::ubsantrap) { 6589 Args.push_back(TargetLoweringBase::ArgListEntry()); 6590 Args[0].Val = I.getArgOperand(0); 6591 Args[0].Node = getValue(Args[0].Val); 6592 Args[0].Ty = Args[0].Val->getType(); 6593 } 6594 6595 TargetLowering::CallLoweringInfo CLI(DAG); 6596 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6597 CallingConv::C, I.getType(), 6598 DAG.getExternalSymbol(TrapFuncName.data(), 6599 TLI.getPointerTy(DAG.getDataLayout())), 6600 std::move(Args)); 6601 6602 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6603 DAG.setRoot(Result.second); 6604 return; 6605 } 6606 6607 case Intrinsic::uadd_with_overflow: 6608 case Intrinsic::sadd_with_overflow: 6609 case Intrinsic::usub_with_overflow: 6610 case Intrinsic::ssub_with_overflow: 6611 case Intrinsic::umul_with_overflow: 6612 case Intrinsic::smul_with_overflow: { 6613 ISD::NodeType Op; 6614 switch (Intrinsic) { 6615 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6616 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6617 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6618 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6619 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6620 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6621 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6622 } 6623 SDValue Op1 = getValue(I.getArgOperand(0)); 6624 SDValue Op2 = getValue(I.getArgOperand(1)); 6625 6626 EVT ResultVT = Op1.getValueType(); 6627 EVT OverflowVT = MVT::i1; 6628 if (ResultVT.isVector()) 6629 OverflowVT = EVT::getVectorVT( 6630 *Context, OverflowVT, ResultVT.getVectorElementCount()); 6631 6632 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6633 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6634 return; 6635 } 6636 case Intrinsic::prefetch: { 6637 SDValue Ops[5]; 6638 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6639 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6640 Ops[0] = DAG.getRoot(); 6641 Ops[1] = getValue(I.getArgOperand(0)); 6642 Ops[2] = getValue(I.getArgOperand(1)); 6643 Ops[3] = getValue(I.getArgOperand(2)); 6644 Ops[4] = getValue(I.getArgOperand(3)); 6645 SDValue Result = DAG.getMemIntrinsicNode( 6646 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6647 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6648 /* align */ None, Flags); 6649 6650 // Chain the prefetch in parallell with any pending loads, to stay out of 6651 // the way of later optimizations. 6652 PendingLoads.push_back(Result); 6653 Result = getRoot(); 6654 DAG.setRoot(Result); 6655 return; 6656 } 6657 case Intrinsic::lifetime_start: 6658 case Intrinsic::lifetime_end: { 6659 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6660 // Stack coloring is not enabled in O0, discard region information. 6661 if (TM.getOptLevel() == CodeGenOpt::None) 6662 return; 6663 6664 const int64_t ObjectSize = 6665 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6666 Value *const ObjectPtr = I.getArgOperand(1); 6667 SmallVector<const Value *, 4> Allocas; 6668 getUnderlyingObjects(ObjectPtr, Allocas); 6669 6670 for (const Value *Alloca : Allocas) { 6671 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 6672 6673 // Could not find an Alloca. 6674 if (!LifetimeObject) 6675 continue; 6676 6677 // First check that the Alloca is static, otherwise it won't have a 6678 // valid frame index. 6679 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6680 if (SI == FuncInfo.StaticAllocaMap.end()) 6681 return; 6682 6683 const int FrameIndex = SI->second; 6684 int64_t Offset; 6685 if (GetPointerBaseWithConstantOffset( 6686 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6687 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6688 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6689 Offset); 6690 DAG.setRoot(Res); 6691 } 6692 return; 6693 } 6694 case Intrinsic::pseudoprobe: { 6695 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 6696 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6697 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 6698 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 6699 DAG.setRoot(Res); 6700 return; 6701 } 6702 case Intrinsic::invariant_start: 6703 // Discard region information. 6704 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6705 return; 6706 case Intrinsic::invariant_end: 6707 // Discard region information. 6708 return; 6709 case Intrinsic::clear_cache: 6710 /// FunctionName may be null. 6711 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6712 lowerCallToExternalSymbol(I, FunctionName); 6713 return; 6714 case Intrinsic::donothing: 6715 // ignore 6716 return; 6717 case Intrinsic::experimental_stackmap: 6718 visitStackmap(I); 6719 return; 6720 case Intrinsic::experimental_patchpoint_void: 6721 case Intrinsic::experimental_patchpoint_i64: 6722 visitPatchpoint(I); 6723 return; 6724 case Intrinsic::experimental_gc_statepoint: 6725 LowerStatepoint(cast<GCStatepointInst>(I)); 6726 return; 6727 case Intrinsic::experimental_gc_result: 6728 visitGCResult(cast<GCResultInst>(I)); 6729 return; 6730 case Intrinsic::experimental_gc_relocate: 6731 visitGCRelocate(cast<GCRelocateInst>(I)); 6732 return; 6733 case Intrinsic::instrprof_increment: 6734 llvm_unreachable("instrprof failed to lower an increment"); 6735 case Intrinsic::instrprof_value_profile: 6736 llvm_unreachable("instrprof failed to lower a value profiling call"); 6737 case Intrinsic::localescape: { 6738 MachineFunction &MF = DAG.getMachineFunction(); 6739 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6740 6741 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6742 // is the same on all targets. 6743 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6744 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6745 if (isa<ConstantPointerNull>(Arg)) 6746 continue; // Skip null pointers. They represent a hole in index space. 6747 AllocaInst *Slot = cast<AllocaInst>(Arg); 6748 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6749 "can only escape static allocas"); 6750 int FI = FuncInfo.StaticAllocaMap[Slot]; 6751 MCSymbol *FrameAllocSym = 6752 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6753 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6754 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6755 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6756 .addSym(FrameAllocSym) 6757 .addFrameIndex(FI); 6758 } 6759 6760 return; 6761 } 6762 6763 case Intrinsic::localrecover: { 6764 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6765 MachineFunction &MF = DAG.getMachineFunction(); 6766 6767 // Get the symbol that defines the frame offset. 6768 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6769 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6770 unsigned IdxVal = 6771 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6772 MCSymbol *FrameAllocSym = 6773 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6774 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6775 6776 Value *FP = I.getArgOperand(1); 6777 SDValue FPVal = getValue(FP); 6778 EVT PtrVT = FPVal.getValueType(); 6779 6780 // Create a MCSymbol for the label to avoid any target lowering 6781 // that would make this PC relative. 6782 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6783 SDValue OffsetVal = 6784 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6785 6786 // Add the offset to the FP. 6787 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6788 setValue(&I, Add); 6789 6790 return; 6791 } 6792 6793 case Intrinsic::eh_exceptionpointer: 6794 case Intrinsic::eh_exceptioncode: { 6795 // Get the exception pointer vreg, copy from it, and resize it to fit. 6796 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6797 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6798 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6799 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6800 SDValue N = 6801 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6802 if (Intrinsic == Intrinsic::eh_exceptioncode) 6803 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6804 setValue(&I, N); 6805 return; 6806 } 6807 case Intrinsic::xray_customevent: { 6808 // Here we want to make sure that the intrinsic behaves as if it has a 6809 // specific calling convention, and only for x86_64. 6810 // FIXME: Support other platforms later. 6811 const auto &Triple = DAG.getTarget().getTargetTriple(); 6812 if (Triple.getArch() != Triple::x86_64) 6813 return; 6814 6815 SDLoc DL = getCurSDLoc(); 6816 SmallVector<SDValue, 8> Ops; 6817 6818 // We want to say that we always want the arguments in registers. 6819 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6820 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6821 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6822 SDValue Chain = getRoot(); 6823 Ops.push_back(LogEntryVal); 6824 Ops.push_back(StrSizeVal); 6825 Ops.push_back(Chain); 6826 6827 // We need to enforce the calling convention for the callsite, so that 6828 // argument ordering is enforced correctly, and that register allocation can 6829 // see that some registers may be assumed clobbered and have to preserve 6830 // them across calls to the intrinsic. 6831 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6832 DL, NodeTys, Ops); 6833 SDValue patchableNode = SDValue(MN, 0); 6834 DAG.setRoot(patchableNode); 6835 setValue(&I, patchableNode); 6836 return; 6837 } 6838 case Intrinsic::xray_typedevent: { 6839 // Here we want to make sure that the intrinsic behaves as if it has a 6840 // specific calling convention, and only for x86_64. 6841 // FIXME: Support other platforms later. 6842 const auto &Triple = DAG.getTarget().getTargetTriple(); 6843 if (Triple.getArch() != Triple::x86_64) 6844 return; 6845 6846 SDLoc DL = getCurSDLoc(); 6847 SmallVector<SDValue, 8> Ops; 6848 6849 // We want to say that we always want the arguments in registers. 6850 // It's unclear to me how manipulating the selection DAG here forces callers 6851 // to provide arguments in registers instead of on the stack. 6852 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6853 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6854 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6855 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6856 SDValue Chain = getRoot(); 6857 Ops.push_back(LogTypeId); 6858 Ops.push_back(LogEntryVal); 6859 Ops.push_back(StrSizeVal); 6860 Ops.push_back(Chain); 6861 6862 // We need to enforce the calling convention for the callsite, so that 6863 // argument ordering is enforced correctly, and that register allocation can 6864 // see that some registers may be assumed clobbered and have to preserve 6865 // them across calls to the intrinsic. 6866 MachineSDNode *MN = DAG.getMachineNode( 6867 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6868 SDValue patchableNode = SDValue(MN, 0); 6869 DAG.setRoot(patchableNode); 6870 setValue(&I, patchableNode); 6871 return; 6872 } 6873 case Intrinsic::experimental_deoptimize: 6874 LowerDeoptimizeCall(&I); 6875 return; 6876 6877 case Intrinsic::vector_reduce_fadd: 6878 case Intrinsic::vector_reduce_fmul: 6879 case Intrinsic::vector_reduce_add: 6880 case Intrinsic::vector_reduce_mul: 6881 case Intrinsic::vector_reduce_and: 6882 case Intrinsic::vector_reduce_or: 6883 case Intrinsic::vector_reduce_xor: 6884 case Intrinsic::vector_reduce_smax: 6885 case Intrinsic::vector_reduce_smin: 6886 case Intrinsic::vector_reduce_umax: 6887 case Intrinsic::vector_reduce_umin: 6888 case Intrinsic::vector_reduce_fmax: 6889 case Intrinsic::vector_reduce_fmin: 6890 visitVectorReduce(I, Intrinsic); 6891 return; 6892 6893 case Intrinsic::icall_branch_funnel: { 6894 SmallVector<SDValue, 16> Ops; 6895 Ops.push_back(getValue(I.getArgOperand(0))); 6896 6897 int64_t Offset; 6898 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6899 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6900 if (!Base) 6901 report_fatal_error( 6902 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6903 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6904 6905 struct BranchFunnelTarget { 6906 int64_t Offset; 6907 SDValue Target; 6908 }; 6909 SmallVector<BranchFunnelTarget, 8> Targets; 6910 6911 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6912 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6913 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6914 if (ElemBase != Base) 6915 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6916 "to the same GlobalValue"); 6917 6918 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6919 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6920 if (!GA) 6921 report_fatal_error( 6922 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6923 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6924 GA->getGlobal(), getCurSDLoc(), 6925 Val.getValueType(), GA->getOffset())}); 6926 } 6927 llvm::sort(Targets, 6928 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6929 return T1.Offset < T2.Offset; 6930 }); 6931 6932 for (auto &T : Targets) { 6933 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6934 Ops.push_back(T.Target); 6935 } 6936 6937 Ops.push_back(DAG.getRoot()); // Chain 6938 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6939 getCurSDLoc(), MVT::Other, Ops), 6940 0); 6941 DAG.setRoot(N); 6942 setValue(&I, N); 6943 HasTailCall = true; 6944 return; 6945 } 6946 6947 case Intrinsic::wasm_landingpad_index: 6948 // Information this intrinsic contained has been transferred to 6949 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6950 // delete it now. 6951 return; 6952 6953 case Intrinsic::aarch64_settag: 6954 case Intrinsic::aarch64_settag_zero: { 6955 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6956 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 6957 SDValue Val = TSI.EmitTargetCodeForSetTag( 6958 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 6959 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 6960 ZeroMemory); 6961 DAG.setRoot(Val); 6962 setValue(&I, Val); 6963 return; 6964 } 6965 case Intrinsic::ptrmask: { 6966 SDValue Ptr = getValue(I.getOperand(0)); 6967 SDValue Const = getValue(I.getOperand(1)); 6968 6969 EVT PtrVT = Ptr.getValueType(); 6970 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr, 6971 DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT))); 6972 return; 6973 } 6974 case Intrinsic::get_active_lane_mask: { 6975 auto DL = getCurSDLoc(); 6976 SDValue Index = getValue(I.getOperand(0)); 6977 SDValue TripCount = getValue(I.getOperand(1)); 6978 Type *ElementTy = I.getOperand(0)->getType(); 6979 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6980 unsigned VecWidth = VT.getVectorNumElements(); 6981 6982 SmallVector<SDValue, 16> OpsTripCount; 6983 SmallVector<SDValue, 16> OpsIndex; 6984 SmallVector<SDValue, 16> OpsStepConstants; 6985 for (unsigned i = 0; i < VecWidth; i++) { 6986 OpsTripCount.push_back(TripCount); 6987 OpsIndex.push_back(Index); 6988 OpsStepConstants.push_back( 6989 DAG.getConstant(i, DL, EVT::getEVT(ElementTy))); 6990 } 6991 6992 EVT CCVT = EVT::getVectorVT(I.getContext(), MVT::i1, VecWidth); 6993 6994 auto VecTy = EVT::getEVT(FixedVectorType::get(ElementTy, VecWidth)); 6995 SDValue VectorIndex = DAG.getBuildVector(VecTy, DL, OpsIndex); 6996 SDValue VectorStep = DAG.getBuildVector(VecTy, DL, OpsStepConstants); 6997 SDValue VectorInduction = DAG.getNode( 6998 ISD::UADDO, DL, DAG.getVTList(VecTy, CCVT), VectorIndex, VectorStep); 6999 SDValue VectorTripCount = DAG.getBuildVector(VecTy, DL, OpsTripCount); 7000 SDValue SetCC = DAG.getSetCC(DL, CCVT, VectorInduction.getValue(0), 7001 VectorTripCount, ISD::CondCode::SETULT); 7002 setValue(&I, DAG.getNode(ISD::AND, DL, CCVT, 7003 DAG.getNOT(DL, VectorInduction.getValue(1), CCVT), 7004 SetCC)); 7005 return; 7006 } 7007 case Intrinsic::experimental_vector_insert: { 7008 auto DL = getCurSDLoc(); 7009 7010 SDValue Vec = getValue(I.getOperand(0)); 7011 SDValue SubVec = getValue(I.getOperand(1)); 7012 SDValue Index = getValue(I.getOperand(2)); 7013 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7014 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ResultVT, Vec, SubVec, 7015 Index)); 7016 return; 7017 } 7018 case Intrinsic::experimental_vector_extract: { 7019 auto DL = getCurSDLoc(); 7020 7021 SDValue Vec = getValue(I.getOperand(0)); 7022 SDValue Index = getValue(I.getOperand(1)); 7023 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7024 7025 setValue(&I, DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, Index)); 7026 return; 7027 } 7028 case Intrinsic::experimental_vector_reverse: 7029 visitVectorReverse(I); 7030 return; 7031 } 7032 } 7033 7034 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7035 const ConstrainedFPIntrinsic &FPI) { 7036 SDLoc sdl = getCurSDLoc(); 7037 7038 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7039 SmallVector<EVT, 4> ValueVTs; 7040 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 7041 ValueVTs.push_back(MVT::Other); // Out chain 7042 7043 // We do not need to serialize constrained FP intrinsics against 7044 // each other or against (nonvolatile) loads, so they can be 7045 // chained like loads. 7046 SDValue Chain = DAG.getRoot(); 7047 SmallVector<SDValue, 4> Opers; 7048 Opers.push_back(Chain); 7049 if (FPI.isUnaryOp()) { 7050 Opers.push_back(getValue(FPI.getArgOperand(0))); 7051 } else if (FPI.isTernaryOp()) { 7052 Opers.push_back(getValue(FPI.getArgOperand(0))); 7053 Opers.push_back(getValue(FPI.getArgOperand(1))); 7054 Opers.push_back(getValue(FPI.getArgOperand(2))); 7055 } else { 7056 Opers.push_back(getValue(FPI.getArgOperand(0))); 7057 Opers.push_back(getValue(FPI.getArgOperand(1))); 7058 } 7059 7060 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7061 assert(Result.getNode()->getNumValues() == 2); 7062 7063 // Push node to the appropriate list so that future instructions can be 7064 // chained up correctly. 7065 SDValue OutChain = Result.getValue(1); 7066 switch (EB) { 7067 case fp::ExceptionBehavior::ebIgnore: 7068 // The only reason why ebIgnore nodes still need to be chained is that 7069 // they might depend on the current rounding mode, and therefore must 7070 // not be moved across instruction that may change that mode. 7071 LLVM_FALLTHROUGH; 7072 case fp::ExceptionBehavior::ebMayTrap: 7073 // These must not be moved across calls or instructions that may change 7074 // floating-point exception masks. 7075 PendingConstrainedFP.push_back(OutChain); 7076 break; 7077 case fp::ExceptionBehavior::ebStrict: 7078 // These must not be moved across calls or instructions that may change 7079 // floating-point exception masks or read floating-point exception flags. 7080 // In addition, they cannot be optimized out even if unused. 7081 PendingConstrainedFPStrict.push_back(OutChain); 7082 break; 7083 } 7084 }; 7085 7086 SDVTList VTs = DAG.getVTList(ValueVTs); 7087 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 7088 7089 SDNodeFlags Flags; 7090 if (EB == fp::ExceptionBehavior::ebIgnore) 7091 Flags.setNoFPExcept(true); 7092 7093 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7094 Flags.copyFMF(*FPOp); 7095 7096 unsigned Opcode; 7097 switch (FPI.getIntrinsicID()) { 7098 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7099 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7100 case Intrinsic::INTRINSIC: \ 7101 Opcode = ISD::STRICT_##DAGN; \ 7102 break; 7103 #include "llvm/IR/ConstrainedOps.def" 7104 case Intrinsic::experimental_constrained_fmuladd: { 7105 Opcode = ISD::STRICT_FMA; 7106 // Break fmuladd into fmul and fadd. 7107 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7108 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 7109 ValueVTs[0])) { 7110 Opers.pop_back(); 7111 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7112 pushOutChain(Mul, EB); 7113 Opcode = ISD::STRICT_FADD; 7114 Opers.clear(); 7115 Opers.push_back(Mul.getValue(1)); 7116 Opers.push_back(Mul.getValue(0)); 7117 Opers.push_back(getValue(FPI.getArgOperand(2))); 7118 } 7119 break; 7120 } 7121 } 7122 7123 // A few strict DAG nodes carry additional operands that are not 7124 // set up by the default code above. 7125 switch (Opcode) { 7126 default: break; 7127 case ISD::STRICT_FP_ROUND: 7128 Opers.push_back( 7129 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7130 break; 7131 case ISD::STRICT_FSETCC: 7132 case ISD::STRICT_FSETCCS: { 7133 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7134 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7135 if (TM.Options.NoNaNsFPMath) 7136 Condition = getFCmpCodeWithoutNaN(Condition); 7137 Opers.push_back(DAG.getCondCode(Condition)); 7138 break; 7139 } 7140 } 7141 7142 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7143 pushOutChain(Result, EB); 7144 7145 SDValue FPResult = Result.getValue(0); 7146 setValue(&FPI, FPResult); 7147 } 7148 7149 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7150 Optional<unsigned> ResOPC; 7151 switch (VPIntrin.getIntrinsicID()) { 7152 #define BEGIN_REGISTER_VP_INTRINSIC(INTRIN, ...) case Intrinsic::INTRIN: 7153 #define BEGIN_REGISTER_VP_SDNODE(VPSDID, ...) ResOPC = ISD::VPSDID; 7154 #define END_REGISTER_VP_INTRINSIC(...) break; 7155 #include "llvm/IR/VPIntrinsics.def" 7156 } 7157 7158 if (!ResOPC.hasValue()) 7159 llvm_unreachable( 7160 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7161 7162 return ResOPC.getValue(); 7163 } 7164 7165 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 7166 const VPIntrinsic &VPIntrin) { 7167 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 7168 7169 SmallVector<EVT, 4> ValueVTs; 7170 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7171 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 7172 SDVTList VTs = DAG.getVTList(ValueVTs); 7173 7174 // Request operands. 7175 SmallVector<SDValue, 7> OpValues; 7176 for (int i = 0; i < (int)VPIntrin.getNumArgOperands(); ++i) 7177 OpValues.push_back(getValue(VPIntrin.getArgOperand(i))); 7178 7179 SDLoc DL = getCurSDLoc(); 7180 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues); 7181 setValue(&VPIntrin, Result); 7182 } 7183 7184 std::pair<SDValue, SDValue> 7185 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7186 const BasicBlock *EHPadBB) { 7187 MachineFunction &MF = DAG.getMachineFunction(); 7188 MachineModuleInfo &MMI = MF.getMMI(); 7189 MCSymbol *BeginLabel = nullptr; 7190 7191 if (EHPadBB) { 7192 // Insert a label before the invoke call to mark the try range. This can be 7193 // used to detect deletion of the invoke via the MachineModuleInfo. 7194 BeginLabel = MMI.getContext().createTempSymbol(); 7195 7196 // For SjLj, keep track of which landing pads go with which invokes 7197 // so as to maintain the ordering of pads in the LSDA. 7198 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7199 if (CallSiteIndex) { 7200 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7201 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7202 7203 // Now that the call site is handled, stop tracking it. 7204 MMI.setCurrentCallSite(0); 7205 } 7206 7207 // Both PendingLoads and PendingExports must be flushed here; 7208 // this call might not return. 7209 (void)getRoot(); 7210 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 7211 7212 CLI.setChain(getRoot()); 7213 } 7214 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7215 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7216 7217 assert((CLI.IsTailCall || Result.second.getNode()) && 7218 "Non-null chain expected with non-tail call!"); 7219 assert((Result.second.getNode() || !Result.first.getNode()) && 7220 "Null value expected with tail call!"); 7221 7222 if (!Result.second.getNode()) { 7223 // As a special case, a null chain means that a tail call has been emitted 7224 // and the DAG root is already updated. 7225 HasTailCall = true; 7226 7227 // Since there's no actual continuation from this block, nothing can be 7228 // relying on us setting vregs for them. 7229 PendingExports.clear(); 7230 } else { 7231 DAG.setRoot(Result.second); 7232 } 7233 7234 if (EHPadBB) { 7235 // Insert a label at the end of the invoke call to mark the try range. This 7236 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7237 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7238 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7239 7240 // Inform MachineModuleInfo of range. 7241 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7242 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7243 // actually use outlined funclets and their LSDA info style. 7244 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7245 assert(CLI.CB); 7246 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7247 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CB), BeginLabel, EndLabel); 7248 } else if (!isScopedEHPersonality(Pers)) { 7249 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7250 } 7251 } 7252 7253 return Result; 7254 } 7255 7256 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7257 bool isTailCall, 7258 const BasicBlock *EHPadBB) { 7259 auto &DL = DAG.getDataLayout(); 7260 FunctionType *FTy = CB.getFunctionType(); 7261 Type *RetTy = CB.getType(); 7262 7263 TargetLowering::ArgListTy Args; 7264 Args.reserve(CB.arg_size()); 7265 7266 const Value *SwiftErrorVal = nullptr; 7267 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7268 7269 if (isTailCall) { 7270 // Avoid emitting tail calls in functions with the disable-tail-calls 7271 // attribute. 7272 auto *Caller = CB.getParent()->getParent(); 7273 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7274 "true") 7275 isTailCall = false; 7276 7277 // We can't tail call inside a function with a swifterror argument. Lowering 7278 // does not support this yet. It would have to move into the swifterror 7279 // register before the call. 7280 if (TLI.supportSwiftError() && 7281 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7282 isTailCall = false; 7283 } 7284 7285 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7286 TargetLowering::ArgListEntry Entry; 7287 const Value *V = *I; 7288 7289 // Skip empty types 7290 if (V->getType()->isEmptyTy()) 7291 continue; 7292 7293 SDValue ArgNode = getValue(V); 7294 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7295 7296 Entry.setAttributes(&CB, I - CB.arg_begin()); 7297 7298 // Use swifterror virtual register as input to the call. 7299 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7300 SwiftErrorVal = V; 7301 // We find the virtual register for the actual swifterror argument. 7302 // Instead of using the Value, we use the virtual register instead. 7303 Entry.Node = 7304 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7305 EVT(TLI.getPointerTy(DL))); 7306 } 7307 7308 Args.push_back(Entry); 7309 7310 // If we have an explicit sret argument that is an Instruction, (i.e., it 7311 // might point to function-local memory), we can't meaningfully tail-call. 7312 if (Entry.IsSRet && isa<Instruction>(V)) 7313 isTailCall = false; 7314 } 7315 7316 // If call site has a cfguardtarget operand bundle, create and add an 7317 // additional ArgListEntry. 7318 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7319 TargetLowering::ArgListEntry Entry; 7320 Value *V = Bundle->Inputs[0]; 7321 SDValue ArgNode = getValue(V); 7322 Entry.Node = ArgNode; 7323 Entry.Ty = V->getType(); 7324 Entry.IsCFGuardTarget = true; 7325 Args.push_back(Entry); 7326 } 7327 7328 // Check if target-independent constraints permit a tail call here. 7329 // Target-dependent constraints are checked within TLI->LowerCallTo. 7330 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7331 isTailCall = false; 7332 7333 // Disable tail calls if there is an swifterror argument. Targets have not 7334 // been updated to support tail calls. 7335 if (TLI.supportSwiftError() && SwiftErrorVal) 7336 isTailCall = false; 7337 7338 TargetLowering::CallLoweringInfo CLI(DAG); 7339 CLI.setDebugLoc(getCurSDLoc()) 7340 .setChain(getRoot()) 7341 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7342 .setTailCall(isTailCall) 7343 .setConvergent(CB.isConvergent()) 7344 .setIsPreallocated( 7345 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 7346 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7347 7348 if (Result.first.getNode()) { 7349 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7350 setValue(&CB, Result.first); 7351 } 7352 7353 // The last element of CLI.InVals has the SDValue for swifterror return. 7354 // Here we copy it to a virtual register and update SwiftErrorMap for 7355 // book-keeping. 7356 if (SwiftErrorVal && TLI.supportSwiftError()) { 7357 // Get the last element of InVals. 7358 SDValue Src = CLI.InVals.back(); 7359 Register VReg = 7360 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7361 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7362 DAG.setRoot(CopyNode); 7363 } 7364 } 7365 7366 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7367 SelectionDAGBuilder &Builder) { 7368 // Check to see if this load can be trivially constant folded, e.g. if the 7369 // input is from a string literal. 7370 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7371 // Cast pointer to the type we really want to load. 7372 Type *LoadTy = 7373 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7374 if (LoadVT.isVector()) 7375 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7376 7377 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7378 PointerType::getUnqual(LoadTy)); 7379 7380 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7381 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7382 return Builder.getValue(LoadCst); 7383 } 7384 7385 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7386 // still constant memory, the input chain can be the entry node. 7387 SDValue Root; 7388 bool ConstantMemory = false; 7389 7390 // Do not serialize (non-volatile) loads of constant memory with anything. 7391 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7392 Root = Builder.DAG.getEntryNode(); 7393 ConstantMemory = true; 7394 } else { 7395 // Do not serialize non-volatile loads against each other. 7396 Root = Builder.DAG.getRoot(); 7397 } 7398 7399 SDValue Ptr = Builder.getValue(PtrVal); 7400 SDValue LoadVal = 7401 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 7402 MachinePointerInfo(PtrVal), Align(1)); 7403 7404 if (!ConstantMemory) 7405 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7406 return LoadVal; 7407 } 7408 7409 /// Record the value for an instruction that produces an integer result, 7410 /// converting the type where necessary. 7411 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7412 SDValue Value, 7413 bool IsSigned) { 7414 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7415 I.getType(), true); 7416 if (IsSigned) 7417 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7418 else 7419 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7420 setValue(&I, Value); 7421 } 7422 7423 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 7424 /// true and lower it. Otherwise return false, and it will be lowered like a 7425 /// normal call. 7426 /// The caller already checked that \p I calls the appropriate LibFunc with a 7427 /// correct prototype. 7428 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 7429 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7430 const Value *Size = I.getArgOperand(2); 7431 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7432 if (CSize && CSize->getZExtValue() == 0) { 7433 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7434 I.getType(), true); 7435 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7436 return true; 7437 } 7438 7439 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7440 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7441 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7442 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7443 if (Res.first.getNode()) { 7444 processIntegerCallValue(I, Res.first, true); 7445 PendingLoads.push_back(Res.second); 7446 return true; 7447 } 7448 7449 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7450 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7451 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7452 return false; 7453 7454 // If the target has a fast compare for the given size, it will return a 7455 // preferred load type for that size. Require that the load VT is legal and 7456 // that the target supports unaligned loads of that type. Otherwise, return 7457 // INVALID. 7458 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7459 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7460 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7461 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7462 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7463 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7464 // TODO: Check alignment of src and dest ptrs. 7465 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7466 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7467 if (!TLI.isTypeLegal(LVT) || 7468 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7469 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7470 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7471 } 7472 7473 return LVT; 7474 }; 7475 7476 // This turns into unaligned loads. We only do this if the target natively 7477 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7478 // we'll only produce a small number of byte loads. 7479 MVT LoadVT; 7480 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7481 switch (NumBitsToCompare) { 7482 default: 7483 return false; 7484 case 16: 7485 LoadVT = MVT::i16; 7486 break; 7487 case 32: 7488 LoadVT = MVT::i32; 7489 break; 7490 case 64: 7491 case 128: 7492 case 256: 7493 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7494 break; 7495 } 7496 7497 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7498 return false; 7499 7500 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7501 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7502 7503 // Bitcast to a wide integer type if the loads are vectors. 7504 if (LoadVT.isVector()) { 7505 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7506 LoadL = DAG.getBitcast(CmpVT, LoadL); 7507 LoadR = DAG.getBitcast(CmpVT, LoadR); 7508 } 7509 7510 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7511 processIntegerCallValue(I, Cmp, false); 7512 return true; 7513 } 7514 7515 /// See if we can lower a memchr call into an optimized form. If so, return 7516 /// true and lower it. Otherwise return false, and it will be lowered like a 7517 /// normal call. 7518 /// The caller already checked that \p I calls the appropriate LibFunc with a 7519 /// correct prototype. 7520 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7521 const Value *Src = I.getArgOperand(0); 7522 const Value *Char = I.getArgOperand(1); 7523 const Value *Length = I.getArgOperand(2); 7524 7525 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7526 std::pair<SDValue, SDValue> Res = 7527 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7528 getValue(Src), getValue(Char), getValue(Length), 7529 MachinePointerInfo(Src)); 7530 if (Res.first.getNode()) { 7531 setValue(&I, Res.first); 7532 PendingLoads.push_back(Res.second); 7533 return true; 7534 } 7535 7536 return false; 7537 } 7538 7539 /// See if we can lower a mempcpy call into an optimized form. If so, return 7540 /// true and lower it. Otherwise return false, and it will be lowered like a 7541 /// normal call. 7542 /// The caller already checked that \p I calls the appropriate LibFunc with a 7543 /// correct prototype. 7544 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7545 SDValue Dst = getValue(I.getArgOperand(0)); 7546 SDValue Src = getValue(I.getArgOperand(1)); 7547 SDValue Size = getValue(I.getArgOperand(2)); 7548 7549 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 7550 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 7551 // DAG::getMemcpy needs Alignment to be defined. 7552 Align Alignment = std::min(DstAlign, SrcAlign); 7553 7554 bool isVol = false; 7555 SDLoc sdl = getCurSDLoc(); 7556 7557 // In the mempcpy context we need to pass in a false value for isTailCall 7558 // because the return pointer needs to be adjusted by the size of 7559 // the copied memory. 7560 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 7561 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 7562 /*isTailCall=*/false, 7563 MachinePointerInfo(I.getArgOperand(0)), 7564 MachinePointerInfo(I.getArgOperand(1))); 7565 assert(MC.getNode() != nullptr && 7566 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7567 DAG.setRoot(MC); 7568 7569 // Check if Size needs to be truncated or extended. 7570 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7571 7572 // Adjust return pointer to point just past the last dst byte. 7573 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7574 Dst, Size); 7575 setValue(&I, DstPlusSize); 7576 return true; 7577 } 7578 7579 /// See if we can lower a strcpy call into an optimized form. If so, return 7580 /// true and lower it, otherwise return false and it will be lowered like a 7581 /// normal call. 7582 /// The caller already checked that \p I calls the appropriate LibFunc with a 7583 /// correct prototype. 7584 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7585 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7586 7587 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7588 std::pair<SDValue, SDValue> Res = 7589 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7590 getValue(Arg0), getValue(Arg1), 7591 MachinePointerInfo(Arg0), 7592 MachinePointerInfo(Arg1), isStpcpy); 7593 if (Res.first.getNode()) { 7594 setValue(&I, Res.first); 7595 DAG.setRoot(Res.second); 7596 return true; 7597 } 7598 7599 return false; 7600 } 7601 7602 /// See if we can lower a strcmp call into an optimized form. If so, return 7603 /// true and lower it, otherwise return false and it will be lowered like a 7604 /// normal call. 7605 /// The caller already checked that \p I calls the appropriate LibFunc with a 7606 /// correct prototype. 7607 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7608 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7609 7610 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7611 std::pair<SDValue, SDValue> Res = 7612 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7613 getValue(Arg0), getValue(Arg1), 7614 MachinePointerInfo(Arg0), 7615 MachinePointerInfo(Arg1)); 7616 if (Res.first.getNode()) { 7617 processIntegerCallValue(I, Res.first, true); 7618 PendingLoads.push_back(Res.second); 7619 return true; 7620 } 7621 7622 return false; 7623 } 7624 7625 /// See if we can lower a strlen call into an optimized form. If so, return 7626 /// true and lower it, otherwise return false and it will be lowered like a 7627 /// normal call. 7628 /// The caller already checked that \p I calls the appropriate LibFunc with a 7629 /// correct prototype. 7630 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7631 const Value *Arg0 = I.getArgOperand(0); 7632 7633 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7634 std::pair<SDValue, SDValue> Res = 7635 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7636 getValue(Arg0), MachinePointerInfo(Arg0)); 7637 if (Res.first.getNode()) { 7638 processIntegerCallValue(I, Res.first, false); 7639 PendingLoads.push_back(Res.second); 7640 return true; 7641 } 7642 7643 return false; 7644 } 7645 7646 /// See if we can lower a strnlen call into an optimized form. If so, return 7647 /// true and lower it, otherwise return false and it will be lowered like a 7648 /// normal call. 7649 /// The caller already checked that \p I calls the appropriate LibFunc with a 7650 /// correct prototype. 7651 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7652 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7653 7654 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7655 std::pair<SDValue, SDValue> Res = 7656 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7657 getValue(Arg0), getValue(Arg1), 7658 MachinePointerInfo(Arg0)); 7659 if (Res.first.getNode()) { 7660 processIntegerCallValue(I, Res.first, false); 7661 PendingLoads.push_back(Res.second); 7662 return true; 7663 } 7664 7665 return false; 7666 } 7667 7668 /// See if we can lower a unary floating-point operation into an SDNode with 7669 /// the specified Opcode. If so, return true and lower it, otherwise return 7670 /// false and it will be lowered like a normal call. 7671 /// The caller already checked that \p I calls the appropriate LibFunc with a 7672 /// correct prototype. 7673 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7674 unsigned Opcode) { 7675 // We already checked this call's prototype; verify it doesn't modify errno. 7676 if (!I.onlyReadsMemory()) 7677 return false; 7678 7679 SDNodeFlags Flags; 7680 Flags.copyFMF(cast<FPMathOperator>(I)); 7681 7682 SDValue Tmp = getValue(I.getArgOperand(0)); 7683 setValue(&I, 7684 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 7685 return true; 7686 } 7687 7688 /// See if we can lower a binary floating-point operation into an SDNode with 7689 /// the specified Opcode. If so, return true and lower it. Otherwise return 7690 /// false, and it will be lowered like a normal call. 7691 /// The caller already checked that \p I calls the appropriate LibFunc with a 7692 /// correct prototype. 7693 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7694 unsigned Opcode) { 7695 // We already checked this call's prototype; verify it doesn't modify errno. 7696 if (!I.onlyReadsMemory()) 7697 return false; 7698 7699 SDNodeFlags Flags; 7700 Flags.copyFMF(cast<FPMathOperator>(I)); 7701 7702 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7703 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7704 EVT VT = Tmp0.getValueType(); 7705 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 7706 return true; 7707 } 7708 7709 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7710 // Handle inline assembly differently. 7711 if (I.isInlineAsm()) { 7712 visitInlineAsm(I); 7713 return; 7714 } 7715 7716 if (Function *F = I.getCalledFunction()) { 7717 if (F->isDeclaration()) { 7718 // Is this an LLVM intrinsic or a target-specific intrinsic? 7719 unsigned IID = F->getIntrinsicID(); 7720 if (!IID) 7721 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7722 IID = II->getIntrinsicID(F); 7723 7724 if (IID) { 7725 visitIntrinsicCall(I, IID); 7726 return; 7727 } 7728 } 7729 7730 // Check for well-known libc/libm calls. If the function is internal, it 7731 // can't be a library call. Don't do the check if marked as nobuiltin for 7732 // some reason or the call site requires strict floating point semantics. 7733 LibFunc Func; 7734 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7735 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7736 LibInfo->hasOptimizedCodeGen(Func)) { 7737 switch (Func) { 7738 default: break; 7739 case LibFunc_bcmp: 7740 if (visitMemCmpBCmpCall(I)) 7741 return; 7742 break; 7743 case LibFunc_copysign: 7744 case LibFunc_copysignf: 7745 case LibFunc_copysignl: 7746 // We already checked this call's prototype; verify it doesn't modify 7747 // errno. 7748 if (I.onlyReadsMemory()) { 7749 SDValue LHS = getValue(I.getArgOperand(0)); 7750 SDValue RHS = getValue(I.getArgOperand(1)); 7751 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7752 LHS.getValueType(), LHS, RHS)); 7753 return; 7754 } 7755 break; 7756 case LibFunc_fabs: 7757 case LibFunc_fabsf: 7758 case LibFunc_fabsl: 7759 if (visitUnaryFloatCall(I, ISD::FABS)) 7760 return; 7761 break; 7762 case LibFunc_fmin: 7763 case LibFunc_fminf: 7764 case LibFunc_fminl: 7765 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7766 return; 7767 break; 7768 case LibFunc_fmax: 7769 case LibFunc_fmaxf: 7770 case LibFunc_fmaxl: 7771 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7772 return; 7773 break; 7774 case LibFunc_sin: 7775 case LibFunc_sinf: 7776 case LibFunc_sinl: 7777 if (visitUnaryFloatCall(I, ISD::FSIN)) 7778 return; 7779 break; 7780 case LibFunc_cos: 7781 case LibFunc_cosf: 7782 case LibFunc_cosl: 7783 if (visitUnaryFloatCall(I, ISD::FCOS)) 7784 return; 7785 break; 7786 case LibFunc_sqrt: 7787 case LibFunc_sqrtf: 7788 case LibFunc_sqrtl: 7789 case LibFunc_sqrt_finite: 7790 case LibFunc_sqrtf_finite: 7791 case LibFunc_sqrtl_finite: 7792 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7793 return; 7794 break; 7795 case LibFunc_floor: 7796 case LibFunc_floorf: 7797 case LibFunc_floorl: 7798 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7799 return; 7800 break; 7801 case LibFunc_nearbyint: 7802 case LibFunc_nearbyintf: 7803 case LibFunc_nearbyintl: 7804 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7805 return; 7806 break; 7807 case LibFunc_ceil: 7808 case LibFunc_ceilf: 7809 case LibFunc_ceill: 7810 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7811 return; 7812 break; 7813 case LibFunc_rint: 7814 case LibFunc_rintf: 7815 case LibFunc_rintl: 7816 if (visitUnaryFloatCall(I, ISD::FRINT)) 7817 return; 7818 break; 7819 case LibFunc_round: 7820 case LibFunc_roundf: 7821 case LibFunc_roundl: 7822 if (visitUnaryFloatCall(I, ISD::FROUND)) 7823 return; 7824 break; 7825 case LibFunc_trunc: 7826 case LibFunc_truncf: 7827 case LibFunc_truncl: 7828 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7829 return; 7830 break; 7831 case LibFunc_log2: 7832 case LibFunc_log2f: 7833 case LibFunc_log2l: 7834 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7835 return; 7836 break; 7837 case LibFunc_exp2: 7838 case LibFunc_exp2f: 7839 case LibFunc_exp2l: 7840 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7841 return; 7842 break; 7843 case LibFunc_memcmp: 7844 if (visitMemCmpBCmpCall(I)) 7845 return; 7846 break; 7847 case LibFunc_mempcpy: 7848 if (visitMemPCpyCall(I)) 7849 return; 7850 break; 7851 case LibFunc_memchr: 7852 if (visitMemChrCall(I)) 7853 return; 7854 break; 7855 case LibFunc_strcpy: 7856 if (visitStrCpyCall(I, false)) 7857 return; 7858 break; 7859 case LibFunc_stpcpy: 7860 if (visitStrCpyCall(I, true)) 7861 return; 7862 break; 7863 case LibFunc_strcmp: 7864 if (visitStrCmpCall(I)) 7865 return; 7866 break; 7867 case LibFunc_strlen: 7868 if (visitStrLenCall(I)) 7869 return; 7870 break; 7871 case LibFunc_strnlen: 7872 if (visitStrNLenCall(I)) 7873 return; 7874 break; 7875 } 7876 } 7877 } 7878 7879 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7880 // have to do anything here to lower funclet bundles. 7881 // CFGuardTarget bundles are lowered in LowerCallTo. 7882 assert(!I.hasOperandBundlesOtherThan( 7883 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 7884 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 7885 LLVMContext::OB_clang_arc_attachedcall}) && 7886 "Cannot lower calls with arbitrary operand bundles!"); 7887 7888 SDValue Callee = getValue(I.getCalledOperand()); 7889 7890 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7891 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7892 else 7893 // Check if we can potentially perform a tail call. More detailed checking 7894 // is be done within LowerCallTo, after more information about the call is 7895 // known. 7896 LowerCallTo(I, Callee, I.isTailCall()); 7897 } 7898 7899 namespace { 7900 7901 /// AsmOperandInfo - This contains information for each constraint that we are 7902 /// lowering. 7903 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7904 public: 7905 /// CallOperand - If this is the result output operand or a clobber 7906 /// this is null, otherwise it is the incoming operand to the CallInst. 7907 /// This gets modified as the asm is processed. 7908 SDValue CallOperand; 7909 7910 /// AssignedRegs - If this is a register or register class operand, this 7911 /// contains the set of register corresponding to the operand. 7912 RegsForValue AssignedRegs; 7913 7914 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7915 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7916 } 7917 7918 /// Whether or not this operand accesses memory 7919 bool hasMemory(const TargetLowering &TLI) const { 7920 // Indirect operand accesses access memory. 7921 if (isIndirect) 7922 return true; 7923 7924 for (const auto &Code : Codes) 7925 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7926 return true; 7927 7928 return false; 7929 } 7930 7931 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7932 /// corresponds to. If there is no Value* for this operand, it returns 7933 /// MVT::Other. 7934 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7935 const DataLayout &DL) const { 7936 if (!CallOperandVal) return MVT::Other; 7937 7938 if (isa<BasicBlock>(CallOperandVal)) 7939 return TLI.getProgramPointerTy(DL); 7940 7941 llvm::Type *OpTy = CallOperandVal->getType(); 7942 7943 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7944 // If this is an indirect operand, the operand is a pointer to the 7945 // accessed type. 7946 if (isIndirect) { 7947 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7948 if (!PtrTy) 7949 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7950 OpTy = PtrTy->getElementType(); 7951 } 7952 7953 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7954 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7955 if (STy->getNumElements() == 1) 7956 OpTy = STy->getElementType(0); 7957 7958 // If OpTy is not a single value, it may be a struct/union that we 7959 // can tile with integers. 7960 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7961 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7962 switch (BitSize) { 7963 default: break; 7964 case 1: 7965 case 8: 7966 case 16: 7967 case 32: 7968 case 64: 7969 case 128: 7970 OpTy = IntegerType::get(Context, BitSize); 7971 break; 7972 } 7973 } 7974 7975 return TLI.getValueType(DL, OpTy, true); 7976 } 7977 }; 7978 7979 7980 } // end anonymous namespace 7981 7982 /// Make sure that the output operand \p OpInfo and its corresponding input 7983 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7984 /// out). 7985 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7986 SDISelAsmOperandInfo &MatchingOpInfo, 7987 SelectionDAG &DAG) { 7988 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7989 return; 7990 7991 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7992 const auto &TLI = DAG.getTargetLoweringInfo(); 7993 7994 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7995 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7996 OpInfo.ConstraintVT); 7997 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7998 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7999 MatchingOpInfo.ConstraintVT); 8000 if ((OpInfo.ConstraintVT.isInteger() != 8001 MatchingOpInfo.ConstraintVT.isInteger()) || 8002 (MatchRC.second != InputRC.second)) { 8003 // FIXME: error out in a more elegant fashion 8004 report_fatal_error("Unsupported asm: input constraint" 8005 " with a matching output constraint of" 8006 " incompatible type!"); 8007 } 8008 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8009 } 8010 8011 /// Get a direct memory input to behave well as an indirect operand. 8012 /// This may introduce stores, hence the need for a \p Chain. 8013 /// \return The (possibly updated) chain. 8014 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8015 SDISelAsmOperandInfo &OpInfo, 8016 SelectionDAG &DAG) { 8017 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8018 8019 // If we don't have an indirect input, put it in the constpool if we can, 8020 // otherwise spill it to a stack slot. 8021 // TODO: This isn't quite right. We need to handle these according to 8022 // the addressing mode that the constraint wants. Also, this may take 8023 // an additional register for the computation and we don't want that 8024 // either. 8025 8026 // If the operand is a float, integer, or vector constant, spill to a 8027 // constant pool entry to get its address. 8028 const Value *OpVal = OpInfo.CallOperandVal; 8029 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 8030 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 8031 OpInfo.CallOperand = DAG.getConstantPool( 8032 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 8033 return Chain; 8034 } 8035 8036 // Otherwise, create a stack slot and emit a store to it before the asm. 8037 Type *Ty = OpVal->getType(); 8038 auto &DL = DAG.getDataLayout(); 8039 uint64_t TySize = DL.getTypeAllocSize(Ty); 8040 MachineFunction &MF = DAG.getMachineFunction(); 8041 int SSFI = MF.getFrameInfo().CreateStackObject( 8042 TySize, DL.getPrefTypeAlign(Ty), false); 8043 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 8044 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 8045 MachinePointerInfo::getFixedStack(MF, SSFI), 8046 TLI.getMemValueType(DL, Ty)); 8047 OpInfo.CallOperand = StackSlot; 8048 8049 return Chain; 8050 } 8051 8052 /// GetRegistersForValue - Assign registers (virtual or physical) for the 8053 /// specified operand. We prefer to assign virtual registers, to allow the 8054 /// register allocator to handle the assignment process. However, if the asm 8055 /// uses features that we can't model on machineinstrs, we have SDISel do the 8056 /// allocation. This produces generally horrible, but correct, code. 8057 /// 8058 /// OpInfo describes the operand 8059 /// RefOpInfo describes the matching operand if any, the operand otherwise 8060 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 8061 SDISelAsmOperandInfo &OpInfo, 8062 SDISelAsmOperandInfo &RefOpInfo) { 8063 LLVMContext &Context = *DAG.getContext(); 8064 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8065 8066 MachineFunction &MF = DAG.getMachineFunction(); 8067 SmallVector<unsigned, 4> Regs; 8068 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8069 8070 // No work to do for memory operations. 8071 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 8072 return; 8073 8074 // If this is a constraint for a single physreg, or a constraint for a 8075 // register class, find it. 8076 unsigned AssignedReg; 8077 const TargetRegisterClass *RC; 8078 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 8079 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 8080 // RC is unset only on failure. Return immediately. 8081 if (!RC) 8082 return; 8083 8084 // Get the actual register value type. This is important, because the user 8085 // may have asked for (e.g.) the AX register in i32 type. We need to 8086 // remember that AX is actually i16 to get the right extension. 8087 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 8088 8089 if (OpInfo.ConstraintVT != MVT::Other) { 8090 // If this is an FP operand in an integer register (or visa versa), or more 8091 // generally if the operand value disagrees with the register class we plan 8092 // to stick it in, fix the operand type. 8093 // 8094 // If this is an input value, the bitcast to the new type is done now. 8095 // Bitcast for output value is done at the end of visitInlineAsm(). 8096 if ((OpInfo.Type == InlineAsm::isOutput || 8097 OpInfo.Type == InlineAsm::isInput) && 8098 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 8099 // Try to convert to the first EVT that the reg class contains. If the 8100 // types are identical size, use a bitcast to convert (e.g. two differing 8101 // vector types). Note: output bitcast is done at the end of 8102 // visitInlineAsm(). 8103 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 8104 // Exclude indirect inputs while they are unsupported because the code 8105 // to perform the load is missing and thus OpInfo.CallOperand still 8106 // refers to the input address rather than the pointed-to value. 8107 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8108 OpInfo.CallOperand = 8109 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8110 OpInfo.ConstraintVT = RegVT; 8111 // If the operand is an FP value and we want it in integer registers, 8112 // use the corresponding integer type. This turns an f64 value into 8113 // i64, which can be passed with two i32 values on a 32-bit machine. 8114 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8115 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8116 if (OpInfo.Type == InlineAsm::isInput) 8117 OpInfo.CallOperand = 8118 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8119 OpInfo.ConstraintVT = VT; 8120 } 8121 } 8122 } 8123 8124 // No need to allocate a matching input constraint since the constraint it's 8125 // matching to has already been allocated. 8126 if (OpInfo.isMatchingInputConstraint()) 8127 return; 8128 8129 EVT ValueVT = OpInfo.ConstraintVT; 8130 if (OpInfo.ConstraintVT == MVT::Other) 8131 ValueVT = RegVT; 8132 8133 // Initialize NumRegs. 8134 unsigned NumRegs = 1; 8135 if (OpInfo.ConstraintVT != MVT::Other) 8136 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 8137 8138 // If this is a constraint for a specific physical register, like {r17}, 8139 // assign it now. 8140 8141 // If this associated to a specific register, initialize iterator to correct 8142 // place. If virtual, make sure we have enough registers 8143 8144 // Initialize iterator if necessary 8145 TargetRegisterClass::iterator I = RC->begin(); 8146 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8147 8148 // Do not check for single registers. 8149 if (AssignedReg) { 8150 for (; *I != AssignedReg; ++I) 8151 assert(I != RC->end() && "AssignedReg should be member of RC"); 8152 } 8153 8154 for (; NumRegs; --NumRegs, ++I) { 8155 assert(I != RC->end() && "Ran out of registers to allocate!"); 8156 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8157 Regs.push_back(R); 8158 } 8159 8160 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8161 } 8162 8163 static unsigned 8164 findMatchingInlineAsmOperand(unsigned OperandNo, 8165 const std::vector<SDValue> &AsmNodeOperands) { 8166 // Scan until we find the definition we already emitted of this operand. 8167 unsigned CurOp = InlineAsm::Op_FirstOperand; 8168 for (; OperandNo; --OperandNo) { 8169 // Advance to the next operand. 8170 unsigned OpFlag = 8171 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8172 assert((InlineAsm::isRegDefKind(OpFlag) || 8173 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8174 InlineAsm::isMemKind(OpFlag)) && 8175 "Skipped past definitions?"); 8176 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8177 } 8178 return CurOp; 8179 } 8180 8181 namespace { 8182 8183 class ExtraFlags { 8184 unsigned Flags = 0; 8185 8186 public: 8187 explicit ExtraFlags(const CallBase &Call) { 8188 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8189 if (IA->hasSideEffects()) 8190 Flags |= InlineAsm::Extra_HasSideEffects; 8191 if (IA->isAlignStack()) 8192 Flags |= InlineAsm::Extra_IsAlignStack; 8193 if (Call.isConvergent()) 8194 Flags |= InlineAsm::Extra_IsConvergent; 8195 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8196 } 8197 8198 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8199 // Ideally, we would only check against memory constraints. However, the 8200 // meaning of an Other constraint can be target-specific and we can't easily 8201 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8202 // for Other constraints as well. 8203 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8204 OpInfo.ConstraintType == TargetLowering::C_Other) { 8205 if (OpInfo.Type == InlineAsm::isInput) 8206 Flags |= InlineAsm::Extra_MayLoad; 8207 else if (OpInfo.Type == InlineAsm::isOutput) 8208 Flags |= InlineAsm::Extra_MayStore; 8209 else if (OpInfo.Type == InlineAsm::isClobber) 8210 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8211 } 8212 } 8213 8214 unsigned get() const { return Flags; } 8215 }; 8216 8217 } // end anonymous namespace 8218 8219 /// visitInlineAsm - Handle a call to an InlineAsm object. 8220 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call) { 8221 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8222 8223 /// ConstraintOperands - Information about all of the constraints. 8224 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 8225 8226 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8227 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8228 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8229 8230 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8231 // AsmDialect, MayLoad, MayStore). 8232 bool HasSideEffect = IA->hasSideEffects(); 8233 ExtraFlags ExtraInfo(Call); 8234 8235 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8236 unsigned ResNo = 0; // ResNo - The result number of the next output. 8237 unsigned NumMatchingOps = 0; 8238 for (auto &T : TargetConstraints) { 8239 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8240 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8241 8242 // Compute the value type for each operand. 8243 if (OpInfo.Type == InlineAsm::isInput || 8244 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8245 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 8246 8247 // Process the call argument. BasicBlocks are labels, currently appearing 8248 // only in asm's. 8249 if (isa<CallBrInst>(Call) && 8250 ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() - 8251 cast<CallBrInst>(&Call)->getNumIndirectDests() - 8252 NumMatchingOps) && 8253 (NumMatchingOps == 0 || 8254 ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() - 8255 NumMatchingOps))) { 8256 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8257 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8258 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8259 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8260 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8261 } else { 8262 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8263 } 8264 8265 EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 8266 DAG.getDataLayout()); 8267 OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other; 8268 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8269 // The return value of the call is this value. As such, there is no 8270 // corresponding argument. 8271 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8272 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 8273 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8274 DAG.getDataLayout(), STy->getElementType(ResNo)); 8275 } else { 8276 assert(ResNo == 0 && "Asm only has one result!"); 8277 OpInfo.ConstraintVT = 8278 TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType()); 8279 } 8280 ++ResNo; 8281 } else { 8282 OpInfo.ConstraintVT = MVT::Other; 8283 } 8284 8285 if (OpInfo.hasMatchingInput()) 8286 ++NumMatchingOps; 8287 8288 if (!HasSideEffect) 8289 HasSideEffect = OpInfo.hasMemory(TLI); 8290 8291 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8292 // FIXME: Could we compute this on OpInfo rather than T? 8293 8294 // Compute the constraint code and ConstraintType to use. 8295 TLI.ComputeConstraintToUse(T, SDValue()); 8296 8297 if (T.ConstraintType == TargetLowering::C_Immediate && 8298 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8299 // We've delayed emitting a diagnostic like the "n" constraint because 8300 // inlining could cause an integer showing up. 8301 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8302 "' expects an integer constant " 8303 "expression"); 8304 8305 ExtraInfo.update(T); 8306 } 8307 8308 8309 // We won't need to flush pending loads if this asm doesn't touch 8310 // memory and is nonvolatile. 8311 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8312 8313 bool IsCallBr = isa<CallBrInst>(Call); 8314 if (IsCallBr) { 8315 // If this is a callbr we need to flush pending exports since inlineasm_br 8316 // is a terminator. We need to do this before nodes are glued to 8317 // the inlineasm_br node. 8318 Chain = getControlRoot(); 8319 } 8320 8321 // Second pass over the constraints: compute which constraint option to use. 8322 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8323 // If this is an output operand with a matching input operand, look up the 8324 // matching input. If their types mismatch, e.g. one is an integer, the 8325 // other is floating point, or their sizes are different, flag it as an 8326 // error. 8327 if (OpInfo.hasMatchingInput()) { 8328 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8329 patchMatchingInput(OpInfo, Input, DAG); 8330 } 8331 8332 // Compute the constraint code and ConstraintType to use. 8333 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8334 8335 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8336 OpInfo.Type == InlineAsm::isClobber) 8337 continue; 8338 8339 // If this is a memory input, and if the operand is not indirect, do what we 8340 // need to provide an address for the memory input. 8341 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8342 !OpInfo.isIndirect) { 8343 assert((OpInfo.isMultipleAlternative || 8344 (OpInfo.Type == InlineAsm::isInput)) && 8345 "Can only indirectify direct input operands!"); 8346 8347 // Memory operands really want the address of the value. 8348 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8349 8350 // There is no longer a Value* corresponding to this operand. 8351 OpInfo.CallOperandVal = nullptr; 8352 8353 // It is now an indirect operand. 8354 OpInfo.isIndirect = true; 8355 } 8356 8357 } 8358 8359 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8360 std::vector<SDValue> AsmNodeOperands; 8361 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8362 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8363 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8364 8365 // If we have a !srcloc metadata node associated with it, we want to attach 8366 // this to the ultimately generated inline asm machineinstr. To do this, we 8367 // pass in the third operand as this (potentially null) inline asm MDNode. 8368 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8369 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8370 8371 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8372 // bits as operand 3. 8373 AsmNodeOperands.push_back(DAG.getTargetConstant( 8374 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8375 8376 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8377 // this, assign virtual and physical registers for inputs and otput. 8378 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8379 // Assign Registers. 8380 SDISelAsmOperandInfo &RefOpInfo = 8381 OpInfo.isMatchingInputConstraint() 8382 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8383 : OpInfo; 8384 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8385 8386 auto DetectWriteToReservedRegister = [&]() { 8387 const MachineFunction &MF = DAG.getMachineFunction(); 8388 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8389 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8390 if (Register::isPhysicalRegister(Reg) && 8391 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8392 const char *RegName = TRI.getName(Reg); 8393 emitInlineAsmError(Call, "write to reserved register '" + 8394 Twine(RegName) + "'"); 8395 return true; 8396 } 8397 } 8398 return false; 8399 }; 8400 8401 switch (OpInfo.Type) { 8402 case InlineAsm::isOutput: 8403 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8404 unsigned ConstraintID = 8405 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8406 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8407 "Failed to convert memory constraint code to constraint id."); 8408 8409 // Add information to the INLINEASM node to know about this output. 8410 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8411 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8412 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8413 MVT::i32)); 8414 AsmNodeOperands.push_back(OpInfo.CallOperand); 8415 } else { 8416 // Otherwise, this outputs to a register (directly for C_Register / 8417 // C_RegisterClass, and a target-defined fashion for 8418 // C_Immediate/C_Other). Find a register that we can use. 8419 if (OpInfo.AssignedRegs.Regs.empty()) { 8420 emitInlineAsmError( 8421 Call, "couldn't allocate output register for constraint '" + 8422 Twine(OpInfo.ConstraintCode) + "'"); 8423 return; 8424 } 8425 8426 if (DetectWriteToReservedRegister()) 8427 return; 8428 8429 // Add information to the INLINEASM node to know that this register is 8430 // set. 8431 OpInfo.AssignedRegs.AddInlineAsmOperands( 8432 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8433 : InlineAsm::Kind_RegDef, 8434 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8435 } 8436 break; 8437 8438 case InlineAsm::isInput: { 8439 SDValue InOperandVal = OpInfo.CallOperand; 8440 8441 if (OpInfo.isMatchingInputConstraint()) { 8442 // If this is required to match an output register we have already set, 8443 // just use its register. 8444 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8445 AsmNodeOperands); 8446 unsigned OpFlag = 8447 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8448 if (InlineAsm::isRegDefKind(OpFlag) || 8449 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8450 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8451 if (OpInfo.isIndirect) { 8452 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8453 emitInlineAsmError(Call, "inline asm not supported yet: " 8454 "don't know how to handle tied " 8455 "indirect register inputs"); 8456 return; 8457 } 8458 8459 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8460 SmallVector<unsigned, 4> Regs; 8461 8462 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8463 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8464 MachineRegisterInfo &RegInfo = 8465 DAG.getMachineFunction().getRegInfo(); 8466 for (unsigned i = 0; i != NumRegs; ++i) 8467 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8468 } else { 8469 emitInlineAsmError(Call, 8470 "inline asm error: This value type register " 8471 "class is not natively supported!"); 8472 return; 8473 } 8474 8475 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8476 8477 SDLoc dl = getCurSDLoc(); 8478 // Use the produced MatchedRegs object to 8479 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 8480 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8481 true, OpInfo.getMatchedOperand(), dl, 8482 DAG, AsmNodeOperands); 8483 break; 8484 } 8485 8486 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8487 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8488 "Unexpected number of operands"); 8489 // Add information to the INLINEASM node to know about this input. 8490 // See InlineAsm.h isUseOperandTiedToDef. 8491 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8492 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8493 OpInfo.getMatchedOperand()); 8494 AsmNodeOperands.push_back(DAG.getTargetConstant( 8495 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8496 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8497 break; 8498 } 8499 8500 // Treat indirect 'X' constraint as memory. 8501 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8502 OpInfo.isIndirect) 8503 OpInfo.ConstraintType = TargetLowering::C_Memory; 8504 8505 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8506 OpInfo.ConstraintType == TargetLowering::C_Other) { 8507 std::vector<SDValue> Ops; 8508 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8509 Ops, DAG); 8510 if (Ops.empty()) { 8511 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8512 if (isa<ConstantSDNode>(InOperandVal)) { 8513 emitInlineAsmError(Call, "value out of range for constraint '" + 8514 Twine(OpInfo.ConstraintCode) + "'"); 8515 return; 8516 } 8517 8518 emitInlineAsmError(Call, 8519 "invalid operand for inline asm constraint '" + 8520 Twine(OpInfo.ConstraintCode) + "'"); 8521 return; 8522 } 8523 8524 // Add information to the INLINEASM node to know about this input. 8525 unsigned ResOpType = 8526 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8527 AsmNodeOperands.push_back(DAG.getTargetConstant( 8528 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8529 llvm::append_range(AsmNodeOperands, Ops); 8530 break; 8531 } 8532 8533 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8534 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8535 assert(InOperandVal.getValueType() == 8536 TLI.getPointerTy(DAG.getDataLayout()) && 8537 "Memory operands expect pointer values"); 8538 8539 unsigned ConstraintID = 8540 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8541 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8542 "Failed to convert memory constraint code to constraint id."); 8543 8544 // Add information to the INLINEASM node to know about this input. 8545 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8546 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8547 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8548 getCurSDLoc(), 8549 MVT::i32)); 8550 AsmNodeOperands.push_back(InOperandVal); 8551 break; 8552 } 8553 8554 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8555 OpInfo.ConstraintType == TargetLowering::C_Register) && 8556 "Unknown constraint type!"); 8557 8558 // TODO: Support this. 8559 if (OpInfo.isIndirect) { 8560 emitInlineAsmError( 8561 Call, "Don't know how to handle indirect register inputs yet " 8562 "for constraint '" + 8563 Twine(OpInfo.ConstraintCode) + "'"); 8564 return; 8565 } 8566 8567 // Copy the input into the appropriate registers. 8568 if (OpInfo.AssignedRegs.Regs.empty()) { 8569 emitInlineAsmError(Call, 8570 "couldn't allocate input reg for constraint '" + 8571 Twine(OpInfo.ConstraintCode) + "'"); 8572 return; 8573 } 8574 8575 if (DetectWriteToReservedRegister()) 8576 return; 8577 8578 SDLoc dl = getCurSDLoc(); 8579 8580 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8581 &Call); 8582 8583 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8584 dl, DAG, AsmNodeOperands); 8585 break; 8586 } 8587 case InlineAsm::isClobber: 8588 // Add the clobbered value to the operand list, so that the register 8589 // allocator is aware that the physreg got clobbered. 8590 if (!OpInfo.AssignedRegs.Regs.empty()) 8591 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8592 false, 0, getCurSDLoc(), DAG, 8593 AsmNodeOperands); 8594 break; 8595 } 8596 } 8597 8598 // Finish up input operands. Set the input chain and add the flag last. 8599 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8600 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8601 8602 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8603 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8604 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8605 Flag = Chain.getValue(1); 8606 8607 // Do additional work to generate outputs. 8608 8609 SmallVector<EVT, 1> ResultVTs; 8610 SmallVector<SDValue, 1> ResultValues; 8611 SmallVector<SDValue, 8> OutChains; 8612 8613 llvm::Type *CallResultType = Call.getType(); 8614 ArrayRef<Type *> ResultTypes; 8615 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 8616 ResultTypes = StructResult->elements(); 8617 else if (!CallResultType->isVoidTy()) 8618 ResultTypes = makeArrayRef(CallResultType); 8619 8620 auto CurResultType = ResultTypes.begin(); 8621 auto handleRegAssign = [&](SDValue V) { 8622 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8623 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8624 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8625 ++CurResultType; 8626 // If the type of the inline asm call site return value is different but has 8627 // same size as the type of the asm output bitcast it. One example of this 8628 // is for vectors with different width / number of elements. This can 8629 // happen for register classes that can contain multiple different value 8630 // types. The preg or vreg allocated may not have the same VT as was 8631 // expected. 8632 // 8633 // This can also happen for a return value that disagrees with the register 8634 // class it is put in, eg. a double in a general-purpose register on a 8635 // 32-bit machine. 8636 if (ResultVT != V.getValueType() && 8637 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8638 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8639 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8640 V.getValueType().isInteger()) { 8641 // If a result value was tied to an input value, the computed result 8642 // may have a wider width than the expected result. Extract the 8643 // relevant portion. 8644 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8645 } 8646 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8647 ResultVTs.push_back(ResultVT); 8648 ResultValues.push_back(V); 8649 }; 8650 8651 // Deal with output operands. 8652 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8653 if (OpInfo.Type == InlineAsm::isOutput) { 8654 SDValue Val; 8655 // Skip trivial output operands. 8656 if (OpInfo.AssignedRegs.Regs.empty()) 8657 continue; 8658 8659 switch (OpInfo.ConstraintType) { 8660 case TargetLowering::C_Register: 8661 case TargetLowering::C_RegisterClass: 8662 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 8663 Chain, &Flag, &Call); 8664 break; 8665 case TargetLowering::C_Immediate: 8666 case TargetLowering::C_Other: 8667 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8668 OpInfo, DAG); 8669 break; 8670 case TargetLowering::C_Memory: 8671 break; // Already handled. 8672 case TargetLowering::C_Unknown: 8673 assert(false && "Unexpected unknown constraint"); 8674 } 8675 8676 // Indirect output manifest as stores. Record output chains. 8677 if (OpInfo.isIndirect) { 8678 const Value *Ptr = OpInfo.CallOperandVal; 8679 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8680 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8681 MachinePointerInfo(Ptr)); 8682 OutChains.push_back(Store); 8683 } else { 8684 // generate CopyFromRegs to associated registers. 8685 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8686 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8687 for (const SDValue &V : Val->op_values()) 8688 handleRegAssign(V); 8689 } else 8690 handleRegAssign(Val); 8691 } 8692 } 8693 } 8694 8695 // Set results. 8696 if (!ResultValues.empty()) { 8697 assert(CurResultType == ResultTypes.end() && 8698 "Mismatch in number of ResultTypes"); 8699 assert(ResultValues.size() == ResultTypes.size() && 8700 "Mismatch in number of output operands in asm result"); 8701 8702 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8703 DAG.getVTList(ResultVTs), ResultValues); 8704 setValue(&Call, V); 8705 } 8706 8707 // Collect store chains. 8708 if (!OutChains.empty()) 8709 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8710 8711 // Only Update Root if inline assembly has a memory effect. 8712 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8713 DAG.setRoot(Chain); 8714 } 8715 8716 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 8717 const Twine &Message) { 8718 LLVMContext &Ctx = *DAG.getContext(); 8719 Ctx.emitError(&Call, Message); 8720 8721 // Make sure we leave the DAG in a valid state 8722 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8723 SmallVector<EVT, 1> ValueVTs; 8724 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 8725 8726 if (ValueVTs.empty()) 8727 return; 8728 8729 SmallVector<SDValue, 1> Ops; 8730 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8731 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8732 8733 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 8734 } 8735 8736 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8737 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8738 MVT::Other, getRoot(), 8739 getValue(I.getArgOperand(0)), 8740 DAG.getSrcValue(I.getArgOperand(0)))); 8741 } 8742 8743 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8744 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8745 const DataLayout &DL = DAG.getDataLayout(); 8746 SDValue V = DAG.getVAArg( 8747 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8748 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8749 DL.getABITypeAlign(I.getType()).value()); 8750 DAG.setRoot(V.getValue(1)); 8751 8752 if (I.getType()->isPointerTy()) 8753 V = DAG.getPtrExtOrTrunc( 8754 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8755 setValue(&I, V); 8756 } 8757 8758 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8759 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8760 MVT::Other, getRoot(), 8761 getValue(I.getArgOperand(0)), 8762 DAG.getSrcValue(I.getArgOperand(0)))); 8763 } 8764 8765 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8766 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8767 MVT::Other, getRoot(), 8768 getValue(I.getArgOperand(0)), 8769 getValue(I.getArgOperand(1)), 8770 DAG.getSrcValue(I.getArgOperand(0)), 8771 DAG.getSrcValue(I.getArgOperand(1)))); 8772 } 8773 8774 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8775 const Instruction &I, 8776 SDValue Op) { 8777 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8778 if (!Range) 8779 return Op; 8780 8781 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8782 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8783 return Op; 8784 8785 APInt Lo = CR.getUnsignedMin(); 8786 if (!Lo.isMinValue()) 8787 return Op; 8788 8789 APInt Hi = CR.getUnsignedMax(); 8790 unsigned Bits = std::max(Hi.getActiveBits(), 8791 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8792 8793 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8794 8795 SDLoc SL = getCurSDLoc(); 8796 8797 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8798 DAG.getValueType(SmallVT)); 8799 unsigned NumVals = Op.getNode()->getNumValues(); 8800 if (NumVals == 1) 8801 return ZExt; 8802 8803 SmallVector<SDValue, 4> Ops; 8804 8805 Ops.push_back(ZExt); 8806 for (unsigned I = 1; I != NumVals; ++I) 8807 Ops.push_back(Op.getValue(I)); 8808 8809 return DAG.getMergeValues(Ops, SL); 8810 } 8811 8812 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8813 /// the call being lowered. 8814 /// 8815 /// This is a helper for lowering intrinsics that follow a target calling 8816 /// convention or require stack pointer adjustment. Only a subset of the 8817 /// intrinsic's operands need to participate in the calling convention. 8818 void SelectionDAGBuilder::populateCallLoweringInfo( 8819 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8820 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8821 bool IsPatchPoint) { 8822 TargetLowering::ArgListTy Args; 8823 Args.reserve(NumArgs); 8824 8825 // Populate the argument list. 8826 // Attributes for args start at offset 1, after the return attribute. 8827 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8828 ArgI != ArgE; ++ArgI) { 8829 const Value *V = Call->getOperand(ArgI); 8830 8831 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8832 8833 TargetLowering::ArgListEntry Entry; 8834 Entry.Node = getValue(V); 8835 Entry.Ty = V->getType(); 8836 Entry.setAttributes(Call, ArgI); 8837 Args.push_back(Entry); 8838 } 8839 8840 CLI.setDebugLoc(getCurSDLoc()) 8841 .setChain(getRoot()) 8842 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8843 .setDiscardResult(Call->use_empty()) 8844 .setIsPatchPoint(IsPatchPoint) 8845 .setIsPreallocated( 8846 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 8847 } 8848 8849 /// Add a stack map intrinsic call's live variable operands to a stackmap 8850 /// or patchpoint target node's operand list. 8851 /// 8852 /// Constants are converted to TargetConstants purely as an optimization to 8853 /// avoid constant materialization and register allocation. 8854 /// 8855 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8856 /// generate addess computation nodes, and so FinalizeISel can convert the 8857 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8858 /// address materialization and register allocation, but may also be required 8859 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8860 /// alloca in the entry block, then the runtime may assume that the alloca's 8861 /// StackMap location can be read immediately after compilation and that the 8862 /// location is valid at any point during execution (this is similar to the 8863 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8864 /// only available in a register, then the runtime would need to trap when 8865 /// execution reaches the StackMap in order to read the alloca's location. 8866 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 8867 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8868 SelectionDAGBuilder &Builder) { 8869 for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) { 8870 SDValue OpVal = Builder.getValue(Call.getArgOperand(i)); 8871 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8872 Ops.push_back( 8873 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8874 Ops.push_back( 8875 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8876 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8877 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8878 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8879 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8880 } else 8881 Ops.push_back(OpVal); 8882 } 8883 } 8884 8885 /// Lower llvm.experimental.stackmap directly to its target opcode. 8886 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8887 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8888 // [live variables...]) 8889 8890 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8891 8892 SDValue Chain, InFlag, Callee, NullPtr; 8893 SmallVector<SDValue, 32> Ops; 8894 8895 SDLoc DL = getCurSDLoc(); 8896 Callee = getValue(CI.getCalledOperand()); 8897 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8898 8899 // The stackmap intrinsic only records the live variables (the arguments 8900 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8901 // intrinsic, this won't be lowered to a function call. This means we don't 8902 // have to worry about calling conventions and target specific lowering code. 8903 // Instead we perform the call lowering right here. 8904 // 8905 // chain, flag = CALLSEQ_START(chain, 0, 0) 8906 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8907 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8908 // 8909 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8910 InFlag = Chain.getValue(1); 8911 8912 // Add the <id> and <numBytes> constants. 8913 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8914 Ops.push_back(DAG.getTargetConstant( 8915 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8916 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8917 Ops.push_back(DAG.getTargetConstant( 8918 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8919 MVT::i32)); 8920 8921 // Push live variables for the stack map. 8922 addStackMapLiveVars(CI, 2, DL, Ops, *this); 8923 8924 // We are not pushing any register mask info here on the operands list, 8925 // because the stackmap doesn't clobber anything. 8926 8927 // Push the chain and the glue flag. 8928 Ops.push_back(Chain); 8929 Ops.push_back(InFlag); 8930 8931 // Create the STACKMAP node. 8932 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8933 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8934 Chain = SDValue(SM, 0); 8935 InFlag = Chain.getValue(1); 8936 8937 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8938 8939 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8940 8941 // Set the root to the target-lowered call chain. 8942 DAG.setRoot(Chain); 8943 8944 // Inform the Frame Information that we have a stackmap in this function. 8945 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8946 } 8947 8948 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8949 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 8950 const BasicBlock *EHPadBB) { 8951 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8952 // i32 <numBytes>, 8953 // i8* <target>, 8954 // i32 <numArgs>, 8955 // [Args...], 8956 // [live variables...]) 8957 8958 CallingConv::ID CC = CB.getCallingConv(); 8959 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8960 bool HasDef = !CB.getType()->isVoidTy(); 8961 SDLoc dl = getCurSDLoc(); 8962 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 8963 8964 // Handle immediate and symbolic callees. 8965 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8966 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8967 /*isTarget=*/true); 8968 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8969 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8970 SDLoc(SymbolicCallee), 8971 SymbolicCallee->getValueType(0)); 8972 8973 // Get the real number of arguments participating in the call <numArgs> 8974 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 8975 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8976 8977 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8978 // Intrinsics include all meta-operands up to but not including CC. 8979 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8980 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 8981 "Not enough arguments provided to the patchpoint intrinsic"); 8982 8983 // For AnyRegCC the arguments are lowered later on manually. 8984 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8985 Type *ReturnTy = 8986 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 8987 8988 TargetLowering::CallLoweringInfo CLI(DAG); 8989 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 8990 ReturnTy, true); 8991 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8992 8993 SDNode *CallEnd = Result.second.getNode(); 8994 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8995 CallEnd = CallEnd->getOperand(0).getNode(); 8996 8997 /// Get a call instruction from the call sequence chain. 8998 /// Tail calls are not allowed. 8999 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 9000 "Expected a callseq node."); 9001 SDNode *Call = CallEnd->getOperand(0).getNode(); 9002 bool HasGlue = Call->getGluedNode(); 9003 9004 // Replace the target specific call node with the patchable intrinsic. 9005 SmallVector<SDValue, 8> Ops; 9006 9007 // Add the <id> and <numBytes> constants. 9008 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 9009 Ops.push_back(DAG.getTargetConstant( 9010 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 9011 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 9012 Ops.push_back(DAG.getTargetConstant( 9013 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 9014 MVT::i32)); 9015 9016 // Add the callee. 9017 Ops.push_back(Callee); 9018 9019 // Adjust <numArgs> to account for any arguments that have been passed on the 9020 // stack instead. 9021 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 9022 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 9023 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 9024 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 9025 9026 // Add the calling convention 9027 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 9028 9029 // Add the arguments we omitted previously. The register allocator should 9030 // place these in any free register. 9031 if (IsAnyRegCC) 9032 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 9033 Ops.push_back(getValue(CB.getArgOperand(i))); 9034 9035 // Push the arguments from the call instruction up to the register mask. 9036 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 9037 Ops.append(Call->op_begin() + 2, e); 9038 9039 // Push live variables for the stack map. 9040 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 9041 9042 // Push the register mask info. 9043 if (HasGlue) 9044 Ops.push_back(*(Call->op_end()-2)); 9045 else 9046 Ops.push_back(*(Call->op_end()-1)); 9047 9048 // Push the chain (this is originally the first operand of the call, but 9049 // becomes now the last or second to last operand). 9050 Ops.push_back(*(Call->op_begin())); 9051 9052 // Push the glue flag (last operand). 9053 if (HasGlue) 9054 Ops.push_back(*(Call->op_end()-1)); 9055 9056 SDVTList NodeTys; 9057 if (IsAnyRegCC && HasDef) { 9058 // Create the return types based on the intrinsic definition 9059 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9060 SmallVector<EVT, 3> ValueVTs; 9061 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 9062 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 9063 9064 // There is always a chain and a glue type at the end 9065 ValueVTs.push_back(MVT::Other); 9066 ValueVTs.push_back(MVT::Glue); 9067 NodeTys = DAG.getVTList(ValueVTs); 9068 } else 9069 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9070 9071 // Replace the target specific call node with a PATCHPOINT node. 9072 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 9073 dl, NodeTys, Ops); 9074 9075 // Update the NodeMap. 9076 if (HasDef) { 9077 if (IsAnyRegCC) 9078 setValue(&CB, SDValue(MN, 0)); 9079 else 9080 setValue(&CB, Result.first); 9081 } 9082 9083 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 9084 // call sequence. Furthermore the location of the chain and glue can change 9085 // when the AnyReg calling convention is used and the intrinsic returns a 9086 // value. 9087 if (IsAnyRegCC && HasDef) { 9088 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 9089 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 9090 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 9091 } else 9092 DAG.ReplaceAllUsesWith(Call, MN); 9093 DAG.DeleteNode(Call); 9094 9095 // Inform the Frame Information that we have a patchpoint in this function. 9096 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 9097 } 9098 9099 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 9100 unsigned Intrinsic) { 9101 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9102 SDValue Op1 = getValue(I.getArgOperand(0)); 9103 SDValue Op2; 9104 if (I.getNumArgOperands() > 1) 9105 Op2 = getValue(I.getArgOperand(1)); 9106 SDLoc dl = getCurSDLoc(); 9107 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 9108 SDValue Res; 9109 SDNodeFlags SDFlags; 9110 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 9111 SDFlags.copyFMF(*FPMO); 9112 9113 switch (Intrinsic) { 9114 case Intrinsic::vector_reduce_fadd: 9115 if (SDFlags.hasAllowReassociation()) 9116 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 9117 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 9118 SDFlags); 9119 else 9120 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 9121 break; 9122 case Intrinsic::vector_reduce_fmul: 9123 if (SDFlags.hasAllowReassociation()) 9124 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 9125 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 9126 SDFlags); 9127 else 9128 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 9129 break; 9130 case Intrinsic::vector_reduce_add: 9131 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 9132 break; 9133 case Intrinsic::vector_reduce_mul: 9134 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 9135 break; 9136 case Intrinsic::vector_reduce_and: 9137 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 9138 break; 9139 case Intrinsic::vector_reduce_or: 9140 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 9141 break; 9142 case Intrinsic::vector_reduce_xor: 9143 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9144 break; 9145 case Intrinsic::vector_reduce_smax: 9146 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 9147 break; 9148 case Intrinsic::vector_reduce_smin: 9149 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 9150 break; 9151 case Intrinsic::vector_reduce_umax: 9152 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 9153 break; 9154 case Intrinsic::vector_reduce_umin: 9155 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 9156 break; 9157 case Intrinsic::vector_reduce_fmax: 9158 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 9159 break; 9160 case Intrinsic::vector_reduce_fmin: 9161 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 9162 break; 9163 default: 9164 llvm_unreachable("Unhandled vector reduce intrinsic"); 9165 } 9166 setValue(&I, Res); 9167 } 9168 9169 /// Returns an AttributeList representing the attributes applied to the return 9170 /// value of the given call. 9171 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9172 SmallVector<Attribute::AttrKind, 2> Attrs; 9173 if (CLI.RetSExt) 9174 Attrs.push_back(Attribute::SExt); 9175 if (CLI.RetZExt) 9176 Attrs.push_back(Attribute::ZExt); 9177 if (CLI.IsInReg) 9178 Attrs.push_back(Attribute::InReg); 9179 9180 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9181 Attrs); 9182 } 9183 9184 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9185 /// implementation, which just calls LowerCall. 9186 /// FIXME: When all targets are 9187 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9188 std::pair<SDValue, SDValue> 9189 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9190 // Handle the incoming return values from the call. 9191 CLI.Ins.clear(); 9192 Type *OrigRetTy = CLI.RetTy; 9193 SmallVector<EVT, 4> RetTys; 9194 SmallVector<uint64_t, 4> Offsets; 9195 auto &DL = CLI.DAG.getDataLayout(); 9196 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9197 9198 if (CLI.IsPostTypeLegalization) { 9199 // If we are lowering a libcall after legalization, split the return type. 9200 SmallVector<EVT, 4> OldRetTys; 9201 SmallVector<uint64_t, 4> OldOffsets; 9202 RetTys.swap(OldRetTys); 9203 Offsets.swap(OldOffsets); 9204 9205 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9206 EVT RetVT = OldRetTys[i]; 9207 uint64_t Offset = OldOffsets[i]; 9208 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9209 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9210 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9211 RetTys.append(NumRegs, RegisterVT); 9212 for (unsigned j = 0; j != NumRegs; ++j) 9213 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9214 } 9215 } 9216 9217 SmallVector<ISD::OutputArg, 4> Outs; 9218 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9219 9220 bool CanLowerReturn = 9221 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9222 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9223 9224 SDValue DemoteStackSlot; 9225 int DemoteStackIdx = -100; 9226 if (!CanLowerReturn) { 9227 // FIXME: equivalent assert? 9228 // assert(!CS.hasInAllocaArgument() && 9229 // "sret demotion is incompatible with inalloca"); 9230 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9231 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9232 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9233 DemoteStackIdx = 9234 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9235 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9236 DL.getAllocaAddrSpace()); 9237 9238 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9239 ArgListEntry Entry; 9240 Entry.Node = DemoteStackSlot; 9241 Entry.Ty = StackSlotPtrType; 9242 Entry.IsSExt = false; 9243 Entry.IsZExt = false; 9244 Entry.IsInReg = false; 9245 Entry.IsSRet = true; 9246 Entry.IsNest = false; 9247 Entry.IsByVal = false; 9248 Entry.IsByRef = false; 9249 Entry.IsReturned = false; 9250 Entry.IsSwiftSelf = false; 9251 Entry.IsSwiftError = false; 9252 Entry.IsCFGuardTarget = false; 9253 Entry.Alignment = Alignment; 9254 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9255 CLI.NumFixedArgs += 1; 9256 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9257 9258 // sret demotion isn't compatible with tail-calls, since the sret argument 9259 // points into the callers stack frame. 9260 CLI.IsTailCall = false; 9261 } else { 9262 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9263 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 9264 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9265 ISD::ArgFlagsTy Flags; 9266 if (NeedsRegBlock) { 9267 Flags.setInConsecutiveRegs(); 9268 if (I == RetTys.size() - 1) 9269 Flags.setInConsecutiveRegsLast(); 9270 } 9271 EVT VT = RetTys[I]; 9272 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9273 CLI.CallConv, VT); 9274 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9275 CLI.CallConv, VT); 9276 for (unsigned i = 0; i != NumRegs; ++i) { 9277 ISD::InputArg MyFlags; 9278 MyFlags.Flags = Flags; 9279 MyFlags.VT = RegisterVT; 9280 MyFlags.ArgVT = VT; 9281 MyFlags.Used = CLI.IsReturnValueUsed; 9282 if (CLI.RetTy->isPointerTy()) { 9283 MyFlags.Flags.setPointer(); 9284 MyFlags.Flags.setPointerAddrSpace( 9285 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9286 } 9287 if (CLI.RetSExt) 9288 MyFlags.Flags.setSExt(); 9289 if (CLI.RetZExt) 9290 MyFlags.Flags.setZExt(); 9291 if (CLI.IsInReg) 9292 MyFlags.Flags.setInReg(); 9293 CLI.Ins.push_back(MyFlags); 9294 } 9295 } 9296 } 9297 9298 // We push in swifterror return as the last element of CLI.Ins. 9299 ArgListTy &Args = CLI.getArgs(); 9300 if (supportSwiftError()) { 9301 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9302 if (Args[i].IsSwiftError) { 9303 ISD::InputArg MyFlags; 9304 MyFlags.VT = getPointerTy(DL); 9305 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9306 MyFlags.Flags.setSwiftError(); 9307 CLI.Ins.push_back(MyFlags); 9308 } 9309 } 9310 } 9311 9312 // Handle all of the outgoing arguments. 9313 CLI.Outs.clear(); 9314 CLI.OutVals.clear(); 9315 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9316 SmallVector<EVT, 4> ValueVTs; 9317 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9318 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9319 Type *FinalType = Args[i].Ty; 9320 if (Args[i].IsByVal) 9321 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9322 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9323 FinalType, CLI.CallConv, CLI.IsVarArg); 9324 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9325 ++Value) { 9326 EVT VT = ValueVTs[Value]; 9327 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9328 SDValue Op = SDValue(Args[i].Node.getNode(), 9329 Args[i].Node.getResNo() + Value); 9330 ISD::ArgFlagsTy Flags; 9331 9332 // Certain targets (such as MIPS), may have a different ABI alignment 9333 // for a type depending on the context. Give the target a chance to 9334 // specify the alignment it wants. 9335 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9336 9337 if (Args[i].Ty->isPointerTy()) { 9338 Flags.setPointer(); 9339 Flags.setPointerAddrSpace( 9340 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9341 } 9342 if (Args[i].IsZExt) 9343 Flags.setZExt(); 9344 if (Args[i].IsSExt) 9345 Flags.setSExt(); 9346 if (Args[i].IsInReg) { 9347 // If we are using vectorcall calling convention, a structure that is 9348 // passed InReg - is surely an HVA 9349 if (CLI.CallConv == CallingConv::X86_VectorCall && 9350 isa<StructType>(FinalType)) { 9351 // The first value of a structure is marked 9352 if (0 == Value) 9353 Flags.setHvaStart(); 9354 Flags.setHva(); 9355 } 9356 // Set InReg Flag 9357 Flags.setInReg(); 9358 } 9359 if (Args[i].IsSRet) 9360 Flags.setSRet(); 9361 if (Args[i].IsSwiftSelf) 9362 Flags.setSwiftSelf(); 9363 if (Args[i].IsSwiftError) 9364 Flags.setSwiftError(); 9365 if (Args[i].IsCFGuardTarget) 9366 Flags.setCFGuardTarget(); 9367 if (Args[i].IsByVal) 9368 Flags.setByVal(); 9369 if (Args[i].IsByRef) 9370 Flags.setByRef(); 9371 if (Args[i].IsPreallocated) { 9372 Flags.setPreallocated(); 9373 // Set the byval flag for CCAssignFn callbacks that don't know about 9374 // preallocated. This way we can know how many bytes we should've 9375 // allocated and how many bytes a callee cleanup function will pop. If 9376 // we port preallocated to more targets, we'll have to add custom 9377 // preallocated handling in the various CC lowering callbacks. 9378 Flags.setByVal(); 9379 } 9380 if (Args[i].IsInAlloca) { 9381 Flags.setInAlloca(); 9382 // Set the byval flag for CCAssignFn callbacks that don't know about 9383 // inalloca. This way we can know how many bytes we should've allocated 9384 // and how many bytes a callee cleanup function will pop. If we port 9385 // inalloca to more targets, we'll have to add custom inalloca handling 9386 // in the various CC lowering callbacks. 9387 Flags.setByVal(); 9388 } 9389 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 9390 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9391 Type *ElementTy = Ty->getElementType(); 9392 9393 unsigned FrameSize = DL.getTypeAllocSize( 9394 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9395 Flags.setByValSize(FrameSize); 9396 9397 // info is not there but there are cases it cannot get right. 9398 Align FrameAlign; 9399 if (auto MA = Args[i].Alignment) 9400 FrameAlign = *MA; 9401 else 9402 FrameAlign = Align(getByValTypeAlignment(ElementTy, DL)); 9403 Flags.setByValAlign(FrameAlign); 9404 } 9405 if (Args[i].IsNest) 9406 Flags.setNest(); 9407 if (NeedsRegBlock) 9408 Flags.setInConsecutiveRegs(); 9409 Flags.setOrigAlign(OriginalAlignment); 9410 9411 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9412 CLI.CallConv, VT); 9413 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9414 CLI.CallConv, VT); 9415 SmallVector<SDValue, 4> Parts(NumParts); 9416 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9417 9418 if (Args[i].IsSExt) 9419 ExtendKind = ISD::SIGN_EXTEND; 9420 else if (Args[i].IsZExt) 9421 ExtendKind = ISD::ZERO_EXTEND; 9422 9423 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9424 // for now. 9425 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9426 CanLowerReturn) { 9427 assert((CLI.RetTy == Args[i].Ty || 9428 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9429 CLI.RetTy->getPointerAddressSpace() == 9430 Args[i].Ty->getPointerAddressSpace())) && 9431 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9432 // Before passing 'returned' to the target lowering code, ensure that 9433 // either the register MVT and the actual EVT are the same size or that 9434 // the return value and argument are extended in the same way; in these 9435 // cases it's safe to pass the argument register value unchanged as the 9436 // return register value (although it's at the target's option whether 9437 // to do so) 9438 // TODO: allow code generation to take advantage of partially preserved 9439 // registers rather than clobbering the entire register when the 9440 // parameter extension method is not compatible with the return 9441 // extension method 9442 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9443 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9444 CLI.RetZExt == Args[i].IsZExt)) 9445 Flags.setReturned(); 9446 } 9447 9448 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 9449 CLI.CallConv, ExtendKind); 9450 9451 for (unsigned j = 0; j != NumParts; ++j) { 9452 // if it isn't first piece, alignment must be 1 9453 // For scalable vectors the scalable part is currently handled 9454 // by individual targets, so we just use the known minimum size here. 9455 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9456 i < CLI.NumFixedArgs, i, 9457 j*Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9458 if (NumParts > 1 && j == 0) 9459 MyFlags.Flags.setSplit(); 9460 else if (j != 0) { 9461 MyFlags.Flags.setOrigAlign(Align(1)); 9462 if (j == NumParts - 1) 9463 MyFlags.Flags.setSplitEnd(); 9464 } 9465 9466 CLI.Outs.push_back(MyFlags); 9467 CLI.OutVals.push_back(Parts[j]); 9468 } 9469 9470 if (NeedsRegBlock && Value == NumValues - 1) 9471 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9472 } 9473 } 9474 9475 SmallVector<SDValue, 4> InVals; 9476 CLI.Chain = LowerCall(CLI, InVals); 9477 9478 // Update CLI.InVals to use outside of this function. 9479 CLI.InVals = InVals; 9480 9481 // Verify that the target's LowerCall behaved as expected. 9482 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9483 "LowerCall didn't return a valid chain!"); 9484 assert((!CLI.IsTailCall || InVals.empty()) && 9485 "LowerCall emitted a return value for a tail call!"); 9486 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9487 "LowerCall didn't emit the correct number of values!"); 9488 9489 // For a tail call, the return value is merely live-out and there aren't 9490 // any nodes in the DAG representing it. Return a special value to 9491 // indicate that a tail call has been emitted and no more Instructions 9492 // should be processed in the current block. 9493 if (CLI.IsTailCall) { 9494 CLI.DAG.setRoot(CLI.Chain); 9495 return std::make_pair(SDValue(), SDValue()); 9496 } 9497 9498 #ifndef NDEBUG 9499 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9500 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9501 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9502 "LowerCall emitted a value with the wrong type!"); 9503 } 9504 #endif 9505 9506 SmallVector<SDValue, 4> ReturnValues; 9507 if (!CanLowerReturn) { 9508 // The instruction result is the result of loading from the 9509 // hidden sret parameter. 9510 SmallVector<EVT, 1> PVTs; 9511 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9512 9513 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9514 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9515 EVT PtrVT = PVTs[0]; 9516 9517 unsigned NumValues = RetTys.size(); 9518 ReturnValues.resize(NumValues); 9519 SmallVector<SDValue, 4> Chains(NumValues); 9520 9521 // An aggregate return value cannot wrap around the address space, so 9522 // offsets to its parts don't wrap either. 9523 SDNodeFlags Flags; 9524 Flags.setNoUnsignedWrap(true); 9525 9526 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9527 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 9528 for (unsigned i = 0; i < NumValues; ++i) { 9529 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9530 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9531 PtrVT), Flags); 9532 SDValue L = CLI.DAG.getLoad( 9533 RetTys[i], CLI.DL, CLI.Chain, Add, 9534 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9535 DemoteStackIdx, Offsets[i]), 9536 HiddenSRetAlign); 9537 ReturnValues[i] = L; 9538 Chains[i] = L.getValue(1); 9539 } 9540 9541 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9542 } else { 9543 // Collect the legal value parts into potentially illegal values 9544 // that correspond to the original function's return values. 9545 Optional<ISD::NodeType> AssertOp; 9546 if (CLI.RetSExt) 9547 AssertOp = ISD::AssertSext; 9548 else if (CLI.RetZExt) 9549 AssertOp = ISD::AssertZext; 9550 unsigned CurReg = 0; 9551 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9552 EVT VT = RetTys[I]; 9553 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9554 CLI.CallConv, VT); 9555 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9556 CLI.CallConv, VT); 9557 9558 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9559 NumRegs, RegisterVT, VT, nullptr, 9560 CLI.CallConv, AssertOp)); 9561 CurReg += NumRegs; 9562 } 9563 9564 // For a function returning void, there is no return value. We can't create 9565 // such a node, so we just return a null return value in that case. In 9566 // that case, nothing will actually look at the value. 9567 if (ReturnValues.empty()) 9568 return std::make_pair(SDValue(), CLI.Chain); 9569 } 9570 9571 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9572 CLI.DAG.getVTList(RetTys), ReturnValues); 9573 return std::make_pair(Res, CLI.Chain); 9574 } 9575 9576 /// Places new result values for the node in Results (their number 9577 /// and types must exactly match those of the original return values of 9578 /// the node), or leaves Results empty, which indicates that the node is not 9579 /// to be custom lowered after all. 9580 void TargetLowering::LowerOperationWrapper(SDNode *N, 9581 SmallVectorImpl<SDValue> &Results, 9582 SelectionDAG &DAG) const { 9583 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 9584 9585 if (!Res.getNode()) 9586 return; 9587 9588 // If the original node has one result, take the return value from 9589 // LowerOperation as is. It might not be result number 0. 9590 if (N->getNumValues() == 1) { 9591 Results.push_back(Res); 9592 return; 9593 } 9594 9595 // If the original node has multiple results, then the return node should 9596 // have the same number of results. 9597 assert((N->getNumValues() == Res->getNumValues()) && 9598 "Lowering returned the wrong number of results!"); 9599 9600 // Places new result values base on N result number. 9601 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 9602 Results.push_back(Res.getValue(I)); 9603 } 9604 9605 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9606 llvm_unreachable("LowerOperation not implemented for this target!"); 9607 } 9608 9609 void 9610 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9611 SDValue Op = getNonRegisterValue(V); 9612 assert((Op.getOpcode() != ISD::CopyFromReg || 9613 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9614 "Copy from a reg to the same reg!"); 9615 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9616 9617 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9618 // If this is an InlineAsm we have to match the registers required, not the 9619 // notional registers required by the type. 9620 9621 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9622 None); // This is not an ABI copy. 9623 SDValue Chain = DAG.getEntryNode(); 9624 9625 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9626 FuncInfo.PreferredExtendType.end()) 9627 ? ISD::ANY_EXTEND 9628 : FuncInfo.PreferredExtendType[V]; 9629 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9630 PendingExports.push_back(Chain); 9631 } 9632 9633 #include "llvm/CodeGen/SelectionDAGISel.h" 9634 9635 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9636 /// entry block, return true. This includes arguments used by switches, since 9637 /// the switch may expand into multiple basic blocks. 9638 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9639 // With FastISel active, we may be splitting blocks, so force creation 9640 // of virtual registers for all non-dead arguments. 9641 if (FastISel) 9642 return A->use_empty(); 9643 9644 const BasicBlock &Entry = A->getParent()->front(); 9645 for (const User *U : A->users()) 9646 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9647 return false; // Use not in entry block. 9648 9649 return true; 9650 } 9651 9652 using ArgCopyElisionMapTy = 9653 DenseMap<const Argument *, 9654 std::pair<const AllocaInst *, const StoreInst *>>; 9655 9656 /// Scan the entry block of the function in FuncInfo for arguments that look 9657 /// like copies into a local alloca. Record any copied arguments in 9658 /// ArgCopyElisionCandidates. 9659 static void 9660 findArgumentCopyElisionCandidates(const DataLayout &DL, 9661 FunctionLoweringInfo *FuncInfo, 9662 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9663 // Record the state of every static alloca used in the entry block. Argument 9664 // allocas are all used in the entry block, so we need approximately as many 9665 // entries as we have arguments. 9666 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9667 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9668 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9669 StaticAllocas.reserve(NumArgs * 2); 9670 9671 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9672 if (!V) 9673 return nullptr; 9674 V = V->stripPointerCasts(); 9675 const auto *AI = dyn_cast<AllocaInst>(V); 9676 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9677 return nullptr; 9678 auto Iter = StaticAllocas.insert({AI, Unknown}); 9679 return &Iter.first->second; 9680 }; 9681 9682 // Look for stores of arguments to static allocas. Look through bitcasts and 9683 // GEPs to handle type coercions, as long as the alloca is fully initialized 9684 // by the store. Any non-store use of an alloca escapes it and any subsequent 9685 // unanalyzed store might write it. 9686 // FIXME: Handle structs initialized with multiple stores. 9687 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9688 // Look for stores, and handle non-store uses conservatively. 9689 const auto *SI = dyn_cast<StoreInst>(&I); 9690 if (!SI) { 9691 // We will look through cast uses, so ignore them completely. 9692 if (I.isCast()) 9693 continue; 9694 // Ignore debug info and pseudo op intrinsics, they don't escape or store 9695 // to allocas. 9696 if (I.isDebugOrPseudoInst()) 9697 continue; 9698 // This is an unknown instruction. Assume it escapes or writes to all 9699 // static alloca operands. 9700 for (const Use &U : I.operands()) { 9701 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9702 *Info = StaticAllocaInfo::Clobbered; 9703 } 9704 continue; 9705 } 9706 9707 // If the stored value is a static alloca, mark it as escaped. 9708 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9709 *Info = StaticAllocaInfo::Clobbered; 9710 9711 // Check if the destination is a static alloca. 9712 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9713 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9714 if (!Info) 9715 continue; 9716 const AllocaInst *AI = cast<AllocaInst>(Dst); 9717 9718 // Skip allocas that have been initialized or clobbered. 9719 if (*Info != StaticAllocaInfo::Unknown) 9720 continue; 9721 9722 // Check if the stored value is an argument, and that this store fully 9723 // initializes the alloca. Don't elide copies from the same argument twice. 9724 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9725 const auto *Arg = dyn_cast<Argument>(Val); 9726 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 9727 Arg->getType()->isEmptyTy() || 9728 DL.getTypeStoreSize(Arg->getType()) != 9729 DL.getTypeAllocSize(AI->getAllocatedType()) || 9730 ArgCopyElisionCandidates.count(Arg)) { 9731 *Info = StaticAllocaInfo::Clobbered; 9732 continue; 9733 } 9734 9735 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9736 << '\n'); 9737 9738 // Mark this alloca and store for argument copy elision. 9739 *Info = StaticAllocaInfo::Elidable; 9740 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9741 9742 // Stop scanning if we've seen all arguments. This will happen early in -O0 9743 // builds, which is useful, because -O0 builds have large entry blocks and 9744 // many allocas. 9745 if (ArgCopyElisionCandidates.size() == NumArgs) 9746 break; 9747 } 9748 } 9749 9750 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9751 /// ArgVal is a load from a suitable fixed stack object. 9752 static void tryToElideArgumentCopy( 9753 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 9754 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9755 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9756 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9757 SDValue ArgVal, bool &ArgHasUses) { 9758 // Check if this is a load from a fixed stack object. 9759 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9760 if (!LNode) 9761 return; 9762 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9763 if (!FINode) 9764 return; 9765 9766 // Check that the fixed stack object is the right size and alignment. 9767 // Look at the alignment that the user wrote on the alloca instead of looking 9768 // at the stack object. 9769 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9770 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9771 const AllocaInst *AI = ArgCopyIter->second.first; 9772 int FixedIndex = FINode->getIndex(); 9773 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 9774 int OldIndex = AllocaIndex; 9775 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 9776 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9777 LLVM_DEBUG( 9778 dbgs() << " argument copy elision failed due to bad fixed stack " 9779 "object size\n"); 9780 return; 9781 } 9782 Align RequiredAlignment = AI->getAlign(); 9783 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 9784 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9785 "greater than stack argument alignment (" 9786 << DebugStr(RequiredAlignment) << " vs " 9787 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 9788 return; 9789 } 9790 9791 // Perform the elision. Delete the old stack object and replace its only use 9792 // in the variable info map. Mark the stack object as mutable. 9793 LLVM_DEBUG({ 9794 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9795 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9796 << '\n'; 9797 }); 9798 MFI.RemoveStackObject(OldIndex); 9799 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9800 AllocaIndex = FixedIndex; 9801 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9802 Chains.push_back(ArgVal.getValue(1)); 9803 9804 // Avoid emitting code for the store implementing the copy. 9805 const StoreInst *SI = ArgCopyIter->second.second; 9806 ElidedArgCopyInstrs.insert(SI); 9807 9808 // Check for uses of the argument again so that we can avoid exporting ArgVal 9809 // if it is't used by anything other than the store. 9810 for (const Value *U : Arg.users()) { 9811 if (U != SI) { 9812 ArgHasUses = true; 9813 break; 9814 } 9815 } 9816 } 9817 9818 void SelectionDAGISel::LowerArguments(const Function &F) { 9819 SelectionDAG &DAG = SDB->DAG; 9820 SDLoc dl = SDB->getCurSDLoc(); 9821 const DataLayout &DL = DAG.getDataLayout(); 9822 SmallVector<ISD::InputArg, 16> Ins; 9823 9824 // In Naked functions we aren't going to save any registers. 9825 if (F.hasFnAttribute(Attribute::Naked)) 9826 return; 9827 9828 if (!FuncInfo->CanLowerReturn) { 9829 // Put in an sret pointer parameter before all the other parameters. 9830 SmallVector<EVT, 1> ValueVTs; 9831 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9832 F.getReturnType()->getPointerTo( 9833 DAG.getDataLayout().getAllocaAddrSpace()), 9834 ValueVTs); 9835 9836 // NOTE: Assuming that a pointer will never break down to more than one VT 9837 // or one register. 9838 ISD::ArgFlagsTy Flags; 9839 Flags.setSRet(); 9840 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9841 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9842 ISD::InputArg::NoArgIndex, 0); 9843 Ins.push_back(RetArg); 9844 } 9845 9846 // Look for stores of arguments to static allocas. Mark such arguments with a 9847 // flag to ask the target to give us the memory location of that argument if 9848 // available. 9849 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9850 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 9851 ArgCopyElisionCandidates); 9852 9853 // Set up the incoming argument description vector. 9854 for (const Argument &Arg : F.args()) { 9855 unsigned ArgNo = Arg.getArgNo(); 9856 SmallVector<EVT, 4> ValueVTs; 9857 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9858 bool isArgValueUsed = !Arg.use_empty(); 9859 unsigned PartBase = 0; 9860 Type *FinalType = Arg.getType(); 9861 if (Arg.hasAttribute(Attribute::ByVal)) 9862 FinalType = Arg.getParamByValType(); 9863 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9864 FinalType, F.getCallingConv(), F.isVarArg()); 9865 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9866 Value != NumValues; ++Value) { 9867 EVT VT = ValueVTs[Value]; 9868 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9869 ISD::ArgFlagsTy Flags; 9870 9871 // Certain targets (such as MIPS), may have a different ABI alignment 9872 // for a type depending on the context. Give the target a chance to 9873 // specify the alignment it wants. 9874 const Align OriginalAlignment( 9875 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 9876 9877 if (Arg.getType()->isPointerTy()) { 9878 Flags.setPointer(); 9879 Flags.setPointerAddrSpace( 9880 cast<PointerType>(Arg.getType())->getAddressSpace()); 9881 } 9882 if (Arg.hasAttribute(Attribute::ZExt)) 9883 Flags.setZExt(); 9884 if (Arg.hasAttribute(Attribute::SExt)) 9885 Flags.setSExt(); 9886 if (Arg.hasAttribute(Attribute::InReg)) { 9887 // If we are using vectorcall calling convention, a structure that is 9888 // passed InReg - is surely an HVA 9889 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9890 isa<StructType>(Arg.getType())) { 9891 // The first value of a structure is marked 9892 if (0 == Value) 9893 Flags.setHvaStart(); 9894 Flags.setHva(); 9895 } 9896 // Set InReg Flag 9897 Flags.setInReg(); 9898 } 9899 if (Arg.hasAttribute(Attribute::StructRet)) 9900 Flags.setSRet(); 9901 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9902 Flags.setSwiftSelf(); 9903 if (Arg.hasAttribute(Attribute::SwiftError)) 9904 Flags.setSwiftError(); 9905 if (Arg.hasAttribute(Attribute::ByVal)) 9906 Flags.setByVal(); 9907 if (Arg.hasAttribute(Attribute::ByRef)) 9908 Flags.setByRef(); 9909 if (Arg.hasAttribute(Attribute::InAlloca)) { 9910 Flags.setInAlloca(); 9911 // Set the byval flag for CCAssignFn callbacks that don't know about 9912 // inalloca. This way we can know how many bytes we should've allocated 9913 // and how many bytes a callee cleanup function will pop. If we port 9914 // inalloca to more targets, we'll have to add custom inalloca handling 9915 // in the various CC lowering callbacks. 9916 Flags.setByVal(); 9917 } 9918 if (Arg.hasAttribute(Attribute::Preallocated)) { 9919 Flags.setPreallocated(); 9920 // Set the byval flag for CCAssignFn callbacks that don't know about 9921 // preallocated. This way we can know how many bytes we should've 9922 // allocated and how many bytes a callee cleanup function will pop. If 9923 // we port preallocated to more targets, we'll have to add custom 9924 // preallocated handling in the various CC lowering callbacks. 9925 Flags.setByVal(); 9926 } 9927 9928 Type *ArgMemTy = nullptr; 9929 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 9930 Flags.isByRef()) { 9931 if (!ArgMemTy) 9932 ArgMemTy = Arg.getPointeeInMemoryValueType(); 9933 9934 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 9935 9936 // For in-memory arguments, size and alignment should be passed from FE. 9937 // BE will guess if this info is not there but there are cases it cannot 9938 // get right. 9939 MaybeAlign MemAlign = Arg.getParamAlign(); 9940 if (!MemAlign) 9941 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 9942 9943 if (Flags.isByRef()) { 9944 Flags.setByRefSize(MemSize); 9945 Flags.setByRefAlign(*MemAlign); 9946 } else { 9947 Flags.setByValSize(MemSize); 9948 Flags.setByValAlign(*MemAlign); 9949 } 9950 } 9951 9952 if (Arg.hasAttribute(Attribute::Nest)) 9953 Flags.setNest(); 9954 if (NeedsRegBlock) 9955 Flags.setInConsecutiveRegs(); 9956 Flags.setOrigAlign(OriginalAlignment); 9957 if (ArgCopyElisionCandidates.count(&Arg)) 9958 Flags.setCopyElisionCandidate(); 9959 if (Arg.hasAttribute(Attribute::Returned)) 9960 Flags.setReturned(); 9961 9962 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9963 *CurDAG->getContext(), F.getCallingConv(), VT); 9964 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9965 *CurDAG->getContext(), F.getCallingConv(), VT); 9966 for (unsigned i = 0; i != NumRegs; ++i) { 9967 // For scalable vectors, use the minimum size; individual targets 9968 // are responsible for handling scalable vector arguments and 9969 // return values. 9970 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9971 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 9972 if (NumRegs > 1 && i == 0) 9973 MyFlags.Flags.setSplit(); 9974 // if it isn't first piece, alignment must be 1 9975 else if (i > 0) { 9976 MyFlags.Flags.setOrigAlign(Align(1)); 9977 if (i == NumRegs - 1) 9978 MyFlags.Flags.setSplitEnd(); 9979 } 9980 Ins.push_back(MyFlags); 9981 } 9982 if (NeedsRegBlock && Value == NumValues - 1) 9983 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9984 PartBase += VT.getStoreSize().getKnownMinSize(); 9985 } 9986 } 9987 9988 // Call the target to set up the argument values. 9989 SmallVector<SDValue, 8> InVals; 9990 SDValue NewRoot = TLI->LowerFormalArguments( 9991 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9992 9993 // Verify that the target's LowerFormalArguments behaved as expected. 9994 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9995 "LowerFormalArguments didn't return a valid chain!"); 9996 assert(InVals.size() == Ins.size() && 9997 "LowerFormalArguments didn't emit the correct number of values!"); 9998 LLVM_DEBUG({ 9999 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 10000 assert(InVals[i].getNode() && 10001 "LowerFormalArguments emitted a null value!"); 10002 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 10003 "LowerFormalArguments emitted a value with the wrong type!"); 10004 } 10005 }); 10006 10007 // Update the DAG with the new chain value resulting from argument lowering. 10008 DAG.setRoot(NewRoot); 10009 10010 // Set up the argument values. 10011 unsigned i = 0; 10012 if (!FuncInfo->CanLowerReturn) { 10013 // Create a virtual register for the sret pointer, and put in a copy 10014 // from the sret argument into it. 10015 SmallVector<EVT, 1> ValueVTs; 10016 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10017 F.getReturnType()->getPointerTo( 10018 DAG.getDataLayout().getAllocaAddrSpace()), 10019 ValueVTs); 10020 MVT VT = ValueVTs[0].getSimpleVT(); 10021 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 10022 Optional<ISD::NodeType> AssertOp = None; 10023 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 10024 nullptr, F.getCallingConv(), AssertOp); 10025 10026 MachineFunction& MF = SDB->DAG.getMachineFunction(); 10027 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 10028 Register SRetReg = 10029 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 10030 FuncInfo->DemoteRegister = SRetReg; 10031 NewRoot = 10032 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 10033 DAG.setRoot(NewRoot); 10034 10035 // i indexes lowered arguments. Bump it past the hidden sret argument. 10036 ++i; 10037 } 10038 10039 SmallVector<SDValue, 4> Chains; 10040 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 10041 for (const Argument &Arg : F.args()) { 10042 SmallVector<SDValue, 4> ArgValues; 10043 SmallVector<EVT, 4> ValueVTs; 10044 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10045 unsigned NumValues = ValueVTs.size(); 10046 if (NumValues == 0) 10047 continue; 10048 10049 bool ArgHasUses = !Arg.use_empty(); 10050 10051 // Elide the copying store if the target loaded this argument from a 10052 // suitable fixed stack object. 10053 if (Ins[i].Flags.isCopyElisionCandidate()) { 10054 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 10055 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 10056 InVals[i], ArgHasUses); 10057 } 10058 10059 // If this argument is unused then remember its value. It is used to generate 10060 // debugging information. 10061 bool isSwiftErrorArg = 10062 TLI->supportSwiftError() && 10063 Arg.hasAttribute(Attribute::SwiftError); 10064 if (!ArgHasUses && !isSwiftErrorArg) { 10065 SDB->setUnusedArgValue(&Arg, InVals[i]); 10066 10067 // Also remember any frame index for use in FastISel. 10068 if (FrameIndexSDNode *FI = 10069 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 10070 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10071 } 10072 10073 for (unsigned Val = 0; Val != NumValues; ++Val) { 10074 EVT VT = ValueVTs[Val]; 10075 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 10076 F.getCallingConv(), VT); 10077 unsigned NumParts = TLI->getNumRegistersForCallingConv( 10078 *CurDAG->getContext(), F.getCallingConv(), VT); 10079 10080 // Even an apparent 'unused' swifterror argument needs to be returned. So 10081 // we do generate a copy for it that can be used on return from the 10082 // function. 10083 if (ArgHasUses || isSwiftErrorArg) { 10084 Optional<ISD::NodeType> AssertOp; 10085 if (Arg.hasAttribute(Attribute::SExt)) 10086 AssertOp = ISD::AssertSext; 10087 else if (Arg.hasAttribute(Attribute::ZExt)) 10088 AssertOp = ISD::AssertZext; 10089 10090 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 10091 PartVT, VT, nullptr, 10092 F.getCallingConv(), AssertOp)); 10093 } 10094 10095 i += NumParts; 10096 } 10097 10098 // We don't need to do anything else for unused arguments. 10099 if (ArgValues.empty()) 10100 continue; 10101 10102 // Note down frame index. 10103 if (FrameIndexSDNode *FI = 10104 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 10105 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10106 10107 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 10108 SDB->getCurSDLoc()); 10109 10110 SDB->setValue(&Arg, Res); 10111 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 10112 // We want to associate the argument with the frame index, among 10113 // involved operands, that correspond to the lowest address. The 10114 // getCopyFromParts function, called earlier, is swapping the order of 10115 // the operands to BUILD_PAIR depending on endianness. The result of 10116 // that swapping is that the least significant bits of the argument will 10117 // be in the first operand of the BUILD_PAIR node, and the most 10118 // significant bits will be in the second operand. 10119 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 10120 if (LoadSDNode *LNode = 10121 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 10122 if (FrameIndexSDNode *FI = 10123 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 10124 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10125 } 10126 10127 // Analyses past this point are naive and don't expect an assertion. 10128 if (Res.getOpcode() == ISD::AssertZext) 10129 Res = Res.getOperand(0); 10130 10131 // Update the SwiftErrorVRegDefMap. 10132 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 10133 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10134 if (Register::isVirtualRegister(Reg)) 10135 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 10136 Reg); 10137 } 10138 10139 // If this argument is live outside of the entry block, insert a copy from 10140 // wherever we got it to the vreg that other BB's will reference it as. 10141 if (Res.getOpcode() == ISD::CopyFromReg) { 10142 // If we can, though, try to skip creating an unnecessary vreg. 10143 // FIXME: This isn't very clean... it would be nice to make this more 10144 // general. 10145 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10146 if (Register::isVirtualRegister(Reg)) { 10147 FuncInfo->ValueMap[&Arg] = Reg; 10148 continue; 10149 } 10150 } 10151 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 10152 FuncInfo->InitializeRegForValue(&Arg); 10153 SDB->CopyToExportRegsIfNeeded(&Arg); 10154 } 10155 } 10156 10157 if (!Chains.empty()) { 10158 Chains.push_back(NewRoot); 10159 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 10160 } 10161 10162 DAG.setRoot(NewRoot); 10163 10164 assert(i == InVals.size() && "Argument register count mismatch!"); 10165 10166 // If any argument copy elisions occurred and we have debug info, update the 10167 // stale frame indices used in the dbg.declare variable info table. 10168 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 10169 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 10170 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 10171 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 10172 if (I != ArgCopyElisionFrameIndexMap.end()) 10173 VI.Slot = I->second; 10174 } 10175 } 10176 10177 // Finally, if the target has anything special to do, allow it to do so. 10178 emitFunctionEntryCode(); 10179 } 10180 10181 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 10182 /// ensure constants are generated when needed. Remember the virtual registers 10183 /// that need to be added to the Machine PHI nodes as input. We cannot just 10184 /// directly add them, because expansion might result in multiple MBB's for one 10185 /// BB. As such, the start of the BB might correspond to a different MBB than 10186 /// the end. 10187 void 10188 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10189 const Instruction *TI = LLVMBB->getTerminator(); 10190 10191 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10192 10193 // Check PHI nodes in successors that expect a value to be available from this 10194 // block. 10195 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 10196 const BasicBlock *SuccBB = TI->getSuccessor(succ); 10197 if (!isa<PHINode>(SuccBB->begin())) continue; 10198 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10199 10200 // If this terminator has multiple identical successors (common for 10201 // switches), only handle each succ once. 10202 if (!SuccsHandled.insert(SuccMBB).second) 10203 continue; 10204 10205 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10206 10207 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10208 // nodes and Machine PHI nodes, but the incoming operands have not been 10209 // emitted yet. 10210 for (const PHINode &PN : SuccBB->phis()) { 10211 // Ignore dead phi's. 10212 if (PN.use_empty()) 10213 continue; 10214 10215 // Skip empty types 10216 if (PN.getType()->isEmptyTy()) 10217 continue; 10218 10219 unsigned Reg; 10220 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10221 10222 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 10223 unsigned &RegOut = ConstantsOut[C]; 10224 if (RegOut == 0) { 10225 RegOut = FuncInfo.CreateRegs(C); 10226 CopyValueToVirtualRegister(C, RegOut); 10227 } 10228 Reg = RegOut; 10229 } else { 10230 DenseMap<const Value *, Register>::iterator I = 10231 FuncInfo.ValueMap.find(PHIOp); 10232 if (I != FuncInfo.ValueMap.end()) 10233 Reg = I->second; 10234 else { 10235 assert(isa<AllocaInst>(PHIOp) && 10236 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10237 "Didn't codegen value into a register!??"); 10238 Reg = FuncInfo.CreateRegs(PHIOp); 10239 CopyValueToVirtualRegister(PHIOp, Reg); 10240 } 10241 } 10242 10243 // Remember that this register needs to added to the machine PHI node as 10244 // the input for this MBB. 10245 SmallVector<EVT, 4> ValueVTs; 10246 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10247 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10248 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10249 EVT VT = ValueVTs[vti]; 10250 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10251 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10252 FuncInfo.PHINodesToUpdate.push_back( 10253 std::make_pair(&*MBBI++, Reg + i)); 10254 Reg += NumRegisters; 10255 } 10256 } 10257 } 10258 10259 ConstantsOut.clear(); 10260 } 10261 10262 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 10263 /// is 0. 10264 MachineBasicBlock * 10265 SelectionDAGBuilder::StackProtectorDescriptor:: 10266 AddSuccessorMBB(const BasicBlock *BB, 10267 MachineBasicBlock *ParentMBB, 10268 bool IsLikely, 10269 MachineBasicBlock *SuccMBB) { 10270 // If SuccBB has not been created yet, create it. 10271 if (!SuccMBB) { 10272 MachineFunction *MF = ParentMBB->getParent(); 10273 MachineFunction::iterator BBI(ParentMBB); 10274 SuccMBB = MF->CreateMachineBasicBlock(BB); 10275 MF->insert(++BBI, SuccMBB); 10276 } 10277 // Add it as a successor of ParentMBB. 10278 ParentMBB->addSuccessor( 10279 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 10280 return SuccMBB; 10281 } 10282 10283 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10284 MachineFunction::iterator I(MBB); 10285 if (++I == FuncInfo.MF->end()) 10286 return nullptr; 10287 return &*I; 10288 } 10289 10290 /// During lowering new call nodes can be created (such as memset, etc.). 10291 /// Those will become new roots of the current DAG, but complications arise 10292 /// when they are tail calls. In such cases, the call lowering will update 10293 /// the root, but the builder still needs to know that a tail call has been 10294 /// lowered in order to avoid generating an additional return. 10295 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10296 // If the node is null, we do have a tail call. 10297 if (MaybeTC.getNode() != nullptr) 10298 DAG.setRoot(MaybeTC); 10299 else 10300 HasTailCall = true; 10301 } 10302 10303 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10304 MachineBasicBlock *SwitchMBB, 10305 MachineBasicBlock *DefaultMBB) { 10306 MachineFunction *CurMF = FuncInfo.MF; 10307 MachineBasicBlock *NextMBB = nullptr; 10308 MachineFunction::iterator BBI(W.MBB); 10309 if (++BBI != FuncInfo.MF->end()) 10310 NextMBB = &*BBI; 10311 10312 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10313 10314 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10315 10316 if (Size == 2 && W.MBB == SwitchMBB) { 10317 // If any two of the cases has the same destination, and if one value 10318 // is the same as the other, but has one bit unset that the other has set, 10319 // use bit manipulation to do two compares at once. For example: 10320 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10321 // TODO: This could be extended to merge any 2 cases in switches with 3 10322 // cases. 10323 // TODO: Handle cases where W.CaseBB != SwitchBB. 10324 CaseCluster &Small = *W.FirstCluster; 10325 CaseCluster &Big = *W.LastCluster; 10326 10327 if (Small.Low == Small.High && Big.Low == Big.High && 10328 Small.MBB == Big.MBB) { 10329 const APInt &SmallValue = Small.Low->getValue(); 10330 const APInt &BigValue = Big.Low->getValue(); 10331 10332 // Check that there is only one bit different. 10333 APInt CommonBit = BigValue ^ SmallValue; 10334 if (CommonBit.isPowerOf2()) { 10335 SDValue CondLHS = getValue(Cond); 10336 EVT VT = CondLHS.getValueType(); 10337 SDLoc DL = getCurSDLoc(); 10338 10339 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10340 DAG.getConstant(CommonBit, DL, VT)); 10341 SDValue Cond = DAG.getSetCC( 10342 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10343 ISD::SETEQ); 10344 10345 // Update successor info. 10346 // Both Small and Big will jump to Small.BB, so we sum up the 10347 // probabilities. 10348 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10349 if (BPI) 10350 addSuccessorWithProb( 10351 SwitchMBB, DefaultMBB, 10352 // The default destination is the first successor in IR. 10353 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10354 else 10355 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10356 10357 // Insert the true branch. 10358 SDValue BrCond = 10359 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10360 DAG.getBasicBlock(Small.MBB)); 10361 // Insert the false branch. 10362 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10363 DAG.getBasicBlock(DefaultMBB)); 10364 10365 DAG.setRoot(BrCond); 10366 return; 10367 } 10368 } 10369 } 10370 10371 if (TM.getOptLevel() != CodeGenOpt::None) { 10372 // Here, we order cases by probability so the most likely case will be 10373 // checked first. However, two clusters can have the same probability in 10374 // which case their relative ordering is non-deterministic. So we use Low 10375 // as a tie-breaker as clusters are guaranteed to never overlap. 10376 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10377 [](const CaseCluster &a, const CaseCluster &b) { 10378 return a.Prob != b.Prob ? 10379 a.Prob > b.Prob : 10380 a.Low->getValue().slt(b.Low->getValue()); 10381 }); 10382 10383 // Rearrange the case blocks so that the last one falls through if possible 10384 // without changing the order of probabilities. 10385 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10386 --I; 10387 if (I->Prob > W.LastCluster->Prob) 10388 break; 10389 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10390 std::swap(*I, *W.LastCluster); 10391 break; 10392 } 10393 } 10394 } 10395 10396 // Compute total probability. 10397 BranchProbability DefaultProb = W.DefaultProb; 10398 BranchProbability UnhandledProbs = DefaultProb; 10399 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10400 UnhandledProbs += I->Prob; 10401 10402 MachineBasicBlock *CurMBB = W.MBB; 10403 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10404 bool FallthroughUnreachable = false; 10405 MachineBasicBlock *Fallthrough; 10406 if (I == W.LastCluster) { 10407 // For the last cluster, fall through to the default destination. 10408 Fallthrough = DefaultMBB; 10409 FallthroughUnreachable = isa<UnreachableInst>( 10410 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10411 } else { 10412 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10413 CurMF->insert(BBI, Fallthrough); 10414 // Put Cond in a virtual register to make it available from the new blocks. 10415 ExportFromCurrentBlock(Cond); 10416 } 10417 UnhandledProbs -= I->Prob; 10418 10419 switch (I->Kind) { 10420 case CC_JumpTable: { 10421 // FIXME: Optimize away range check based on pivot comparisons. 10422 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10423 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10424 10425 // The jump block hasn't been inserted yet; insert it here. 10426 MachineBasicBlock *JumpMBB = JT->MBB; 10427 CurMF->insert(BBI, JumpMBB); 10428 10429 auto JumpProb = I->Prob; 10430 auto FallthroughProb = UnhandledProbs; 10431 10432 // If the default statement is a target of the jump table, we evenly 10433 // distribute the default probability to successors of CurMBB. Also 10434 // update the probability on the edge from JumpMBB to Fallthrough. 10435 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10436 SE = JumpMBB->succ_end(); 10437 SI != SE; ++SI) { 10438 if (*SI == DefaultMBB) { 10439 JumpProb += DefaultProb / 2; 10440 FallthroughProb -= DefaultProb / 2; 10441 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10442 JumpMBB->normalizeSuccProbs(); 10443 break; 10444 } 10445 } 10446 10447 if (FallthroughUnreachable) { 10448 // Skip the range check if the fallthrough block is unreachable. 10449 JTH->OmitRangeCheck = true; 10450 } 10451 10452 if (!JTH->OmitRangeCheck) 10453 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10454 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10455 CurMBB->normalizeSuccProbs(); 10456 10457 // The jump table header will be inserted in our current block, do the 10458 // range check, and fall through to our fallthrough block. 10459 JTH->HeaderBB = CurMBB; 10460 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10461 10462 // If we're in the right place, emit the jump table header right now. 10463 if (CurMBB == SwitchMBB) { 10464 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10465 JTH->Emitted = true; 10466 } 10467 break; 10468 } 10469 case CC_BitTests: { 10470 // FIXME: Optimize away range check based on pivot comparisons. 10471 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10472 10473 // The bit test blocks haven't been inserted yet; insert them here. 10474 for (BitTestCase &BTC : BTB->Cases) 10475 CurMF->insert(BBI, BTC.ThisBB); 10476 10477 // Fill in fields of the BitTestBlock. 10478 BTB->Parent = CurMBB; 10479 BTB->Default = Fallthrough; 10480 10481 BTB->DefaultProb = UnhandledProbs; 10482 // If the cases in bit test don't form a contiguous range, we evenly 10483 // distribute the probability on the edge to Fallthrough to two 10484 // successors of CurMBB. 10485 if (!BTB->ContiguousRange) { 10486 BTB->Prob += DefaultProb / 2; 10487 BTB->DefaultProb -= DefaultProb / 2; 10488 } 10489 10490 if (FallthroughUnreachable) { 10491 // Skip the range check if the fallthrough block is unreachable. 10492 BTB->OmitRangeCheck = true; 10493 } 10494 10495 // If we're in the right place, emit the bit test header right now. 10496 if (CurMBB == SwitchMBB) { 10497 visitBitTestHeader(*BTB, SwitchMBB); 10498 BTB->Emitted = true; 10499 } 10500 break; 10501 } 10502 case CC_Range: { 10503 const Value *RHS, *LHS, *MHS; 10504 ISD::CondCode CC; 10505 if (I->Low == I->High) { 10506 // Check Cond == I->Low. 10507 CC = ISD::SETEQ; 10508 LHS = Cond; 10509 RHS=I->Low; 10510 MHS = nullptr; 10511 } else { 10512 // Check I->Low <= Cond <= I->High. 10513 CC = ISD::SETLE; 10514 LHS = I->Low; 10515 MHS = Cond; 10516 RHS = I->High; 10517 } 10518 10519 // If Fallthrough is unreachable, fold away the comparison. 10520 if (FallthroughUnreachable) 10521 CC = ISD::SETTRUE; 10522 10523 // The false probability is the sum of all unhandled cases. 10524 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10525 getCurSDLoc(), I->Prob, UnhandledProbs); 10526 10527 if (CurMBB == SwitchMBB) 10528 visitSwitchCase(CB, SwitchMBB); 10529 else 10530 SL->SwitchCases.push_back(CB); 10531 10532 break; 10533 } 10534 } 10535 CurMBB = Fallthrough; 10536 } 10537 } 10538 10539 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10540 CaseClusterIt First, 10541 CaseClusterIt Last) { 10542 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10543 if (X.Prob != CC.Prob) 10544 return X.Prob > CC.Prob; 10545 10546 // Ties are broken by comparing the case value. 10547 return X.Low->getValue().slt(CC.Low->getValue()); 10548 }); 10549 } 10550 10551 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10552 const SwitchWorkListItem &W, 10553 Value *Cond, 10554 MachineBasicBlock *SwitchMBB) { 10555 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10556 "Clusters not sorted?"); 10557 10558 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10559 10560 // Balance the tree based on branch probabilities to create a near-optimal (in 10561 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10562 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10563 CaseClusterIt LastLeft = W.FirstCluster; 10564 CaseClusterIt FirstRight = W.LastCluster; 10565 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10566 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10567 10568 // Move LastLeft and FirstRight towards each other from opposite directions to 10569 // find a partitioning of the clusters which balances the probability on both 10570 // sides. If LeftProb and RightProb are equal, alternate which side is 10571 // taken to ensure 0-probability nodes are distributed evenly. 10572 unsigned I = 0; 10573 while (LastLeft + 1 < FirstRight) { 10574 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10575 LeftProb += (++LastLeft)->Prob; 10576 else 10577 RightProb += (--FirstRight)->Prob; 10578 I++; 10579 } 10580 10581 while (true) { 10582 // Our binary search tree differs from a typical BST in that ours can have up 10583 // to three values in each leaf. The pivot selection above doesn't take that 10584 // into account, which means the tree might require more nodes and be less 10585 // efficient. We compensate for this here. 10586 10587 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10588 unsigned NumRight = W.LastCluster - FirstRight + 1; 10589 10590 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10591 // If one side has less than 3 clusters, and the other has more than 3, 10592 // consider taking a cluster from the other side. 10593 10594 if (NumLeft < NumRight) { 10595 // Consider moving the first cluster on the right to the left side. 10596 CaseCluster &CC = *FirstRight; 10597 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10598 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10599 if (LeftSideRank <= RightSideRank) { 10600 // Moving the cluster to the left does not demote it. 10601 ++LastLeft; 10602 ++FirstRight; 10603 continue; 10604 } 10605 } else { 10606 assert(NumRight < NumLeft); 10607 // Consider moving the last element on the left to the right side. 10608 CaseCluster &CC = *LastLeft; 10609 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10610 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10611 if (RightSideRank <= LeftSideRank) { 10612 // Moving the cluster to the right does not demot it. 10613 --LastLeft; 10614 --FirstRight; 10615 continue; 10616 } 10617 } 10618 } 10619 break; 10620 } 10621 10622 assert(LastLeft + 1 == FirstRight); 10623 assert(LastLeft >= W.FirstCluster); 10624 assert(FirstRight <= W.LastCluster); 10625 10626 // Use the first element on the right as pivot since we will make less-than 10627 // comparisons against it. 10628 CaseClusterIt PivotCluster = FirstRight; 10629 assert(PivotCluster > W.FirstCluster); 10630 assert(PivotCluster <= W.LastCluster); 10631 10632 CaseClusterIt FirstLeft = W.FirstCluster; 10633 CaseClusterIt LastRight = W.LastCluster; 10634 10635 const ConstantInt *Pivot = PivotCluster->Low; 10636 10637 // New blocks will be inserted immediately after the current one. 10638 MachineFunction::iterator BBI(W.MBB); 10639 ++BBI; 10640 10641 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10642 // we can branch to its destination directly if it's squeezed exactly in 10643 // between the known lower bound and Pivot - 1. 10644 MachineBasicBlock *LeftMBB; 10645 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10646 FirstLeft->Low == W.GE && 10647 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10648 LeftMBB = FirstLeft->MBB; 10649 } else { 10650 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10651 FuncInfo.MF->insert(BBI, LeftMBB); 10652 WorkList.push_back( 10653 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10654 // Put Cond in a virtual register to make it available from the new blocks. 10655 ExportFromCurrentBlock(Cond); 10656 } 10657 10658 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10659 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10660 // directly if RHS.High equals the current upper bound. 10661 MachineBasicBlock *RightMBB; 10662 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10663 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10664 RightMBB = FirstRight->MBB; 10665 } else { 10666 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10667 FuncInfo.MF->insert(BBI, RightMBB); 10668 WorkList.push_back( 10669 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10670 // Put Cond in a virtual register to make it available from the new blocks. 10671 ExportFromCurrentBlock(Cond); 10672 } 10673 10674 // Create the CaseBlock record that will be used to lower the branch. 10675 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10676 getCurSDLoc(), LeftProb, RightProb); 10677 10678 if (W.MBB == SwitchMBB) 10679 visitSwitchCase(CB, SwitchMBB); 10680 else 10681 SL->SwitchCases.push_back(CB); 10682 } 10683 10684 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10685 // from the swith statement. 10686 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10687 BranchProbability PeeledCaseProb) { 10688 if (PeeledCaseProb == BranchProbability::getOne()) 10689 return BranchProbability::getZero(); 10690 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10691 10692 uint32_t Numerator = CaseProb.getNumerator(); 10693 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10694 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10695 } 10696 10697 // Try to peel the top probability case if it exceeds the threshold. 10698 // Return current MachineBasicBlock for the switch statement if the peeling 10699 // does not occur. 10700 // If the peeling is performed, return the newly created MachineBasicBlock 10701 // for the peeled switch statement. Also update Clusters to remove the peeled 10702 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10703 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10704 const SwitchInst &SI, CaseClusterVector &Clusters, 10705 BranchProbability &PeeledCaseProb) { 10706 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10707 // Don't perform if there is only one cluster or optimizing for size. 10708 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10709 TM.getOptLevel() == CodeGenOpt::None || 10710 SwitchMBB->getParent()->getFunction().hasMinSize()) 10711 return SwitchMBB; 10712 10713 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10714 unsigned PeeledCaseIndex = 0; 10715 bool SwitchPeeled = false; 10716 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10717 CaseCluster &CC = Clusters[Index]; 10718 if (CC.Prob < TopCaseProb) 10719 continue; 10720 TopCaseProb = CC.Prob; 10721 PeeledCaseIndex = Index; 10722 SwitchPeeled = true; 10723 } 10724 if (!SwitchPeeled) 10725 return SwitchMBB; 10726 10727 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10728 << TopCaseProb << "\n"); 10729 10730 // Record the MBB for the peeled switch statement. 10731 MachineFunction::iterator BBI(SwitchMBB); 10732 ++BBI; 10733 MachineBasicBlock *PeeledSwitchMBB = 10734 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10735 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10736 10737 ExportFromCurrentBlock(SI.getCondition()); 10738 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10739 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10740 nullptr, nullptr, TopCaseProb.getCompl()}; 10741 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10742 10743 Clusters.erase(PeeledCaseIt); 10744 for (CaseCluster &CC : Clusters) { 10745 LLVM_DEBUG( 10746 dbgs() << "Scale the probablity for one cluster, before scaling: " 10747 << CC.Prob << "\n"); 10748 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10749 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10750 } 10751 PeeledCaseProb = TopCaseProb; 10752 return PeeledSwitchMBB; 10753 } 10754 10755 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10756 // Extract cases from the switch. 10757 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10758 CaseClusterVector Clusters; 10759 Clusters.reserve(SI.getNumCases()); 10760 for (auto I : SI.cases()) { 10761 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10762 const ConstantInt *CaseVal = I.getCaseValue(); 10763 BranchProbability Prob = 10764 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10765 : BranchProbability(1, SI.getNumCases() + 1); 10766 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10767 } 10768 10769 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10770 10771 // Cluster adjacent cases with the same destination. We do this at all 10772 // optimization levels because it's cheap to do and will make codegen faster 10773 // if there are many clusters. 10774 sortAndRangeify(Clusters); 10775 10776 // The branch probablity of the peeled case. 10777 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10778 MachineBasicBlock *PeeledSwitchMBB = 10779 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10780 10781 // If there is only the default destination, jump there directly. 10782 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10783 if (Clusters.empty()) { 10784 assert(PeeledSwitchMBB == SwitchMBB); 10785 SwitchMBB->addSuccessor(DefaultMBB); 10786 if (DefaultMBB != NextBlock(SwitchMBB)) { 10787 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10788 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10789 } 10790 return; 10791 } 10792 10793 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 10794 SL->findBitTestClusters(Clusters, &SI); 10795 10796 LLVM_DEBUG({ 10797 dbgs() << "Case clusters: "; 10798 for (const CaseCluster &C : Clusters) { 10799 if (C.Kind == CC_JumpTable) 10800 dbgs() << "JT:"; 10801 if (C.Kind == CC_BitTests) 10802 dbgs() << "BT:"; 10803 10804 C.Low->getValue().print(dbgs(), true); 10805 if (C.Low != C.High) { 10806 dbgs() << '-'; 10807 C.High->getValue().print(dbgs(), true); 10808 } 10809 dbgs() << ' '; 10810 } 10811 dbgs() << '\n'; 10812 }); 10813 10814 assert(!Clusters.empty()); 10815 SwitchWorkList WorkList; 10816 CaseClusterIt First = Clusters.begin(); 10817 CaseClusterIt Last = Clusters.end() - 1; 10818 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10819 // Scale the branchprobability for DefaultMBB if the peel occurs and 10820 // DefaultMBB is not replaced. 10821 if (PeeledCaseProb != BranchProbability::getZero() && 10822 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10823 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10824 WorkList.push_back( 10825 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10826 10827 while (!WorkList.empty()) { 10828 SwitchWorkListItem W = WorkList.pop_back_val(); 10829 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10830 10831 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10832 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10833 // For optimized builds, lower large range as a balanced binary tree. 10834 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10835 continue; 10836 } 10837 10838 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10839 } 10840 } 10841 10842 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 10843 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10844 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 10845 10846 SDLoc DL = getCurSDLoc(); 10847 SDValue V = getValue(I.getOperand(0)); 10848 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 10849 10850 if (VT.isScalableVector()) { 10851 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 10852 return; 10853 } 10854 10855 // Use VECTOR_SHUFFLE for the fixed-length vector 10856 // to maintain existing behavior. 10857 SmallVector<int, 8> Mask; 10858 unsigned NumElts = VT.getVectorMinNumElements(); 10859 for (unsigned i = 0; i != NumElts; ++i) 10860 Mask.push_back(NumElts - 1 - i); 10861 10862 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 10863 } 10864 10865 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 10866 SmallVector<EVT, 4> ValueVTs; 10867 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 10868 ValueVTs); 10869 unsigned NumValues = ValueVTs.size(); 10870 if (NumValues == 0) return; 10871 10872 SmallVector<SDValue, 4> Values(NumValues); 10873 SDValue Op = getValue(I.getOperand(0)); 10874 10875 for (unsigned i = 0; i != NumValues; ++i) 10876 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 10877 SDValue(Op.getNode(), Op.getResNo() + i)); 10878 10879 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 10880 DAG.getVTList(ValueVTs), Values)); 10881 } 10882