xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 2be3f868f9c21d9d9eb1d3d4608d8a319baaabcc)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BranchProbabilityInfo.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/Loads.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/CodeGen/Analysis.h"
39 #include "llvm/CodeGen/FunctionLoweringInfo.h"
40 #include "llvm/CodeGen/GCMetadata.h"
41 #include "llvm/CodeGen/ISDOpcodes.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBuilder.h"
47 #include "llvm/CodeGen/MachineJumpTableInfo.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineModuleInfo.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RuntimeLibcalls.h"
53 #include "llvm/CodeGen/SelectionDAG.h"
54 #include "llvm/CodeGen/SelectionDAGNodes.h"
55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/TargetFrameLowering.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/ValueTypes.h"
64 #include "llvm/CodeGen/WinEHFuncInfo.h"
65 #include "llvm/IR/Argument.h"
66 #include "llvm/IR/Attributes.h"
67 #include "llvm/IR/BasicBlock.h"
68 #include "llvm/IR/CFG.h"
69 #include "llvm/IR/CallSite.h"
70 #include "llvm/IR/CallingConv.h"
71 #include "llvm/IR/Constant.h"
72 #include "llvm/IR/ConstantRange.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DataLayout.h"
75 #include "llvm/IR/DebugInfoMetadata.h"
76 #include "llvm/IR/DebugLoc.h"
77 #include "llvm/IR/DerivedTypes.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GetElementPtrTypeIterator.h"
80 #include "llvm/IR/InlineAsm.h"
81 #include "llvm/IR/InstrTypes.h"
82 #include "llvm/IR/Instruction.h"
83 #include "llvm/IR/Instructions.h"
84 #include "llvm/IR/IntrinsicInst.h"
85 #include "llvm/IR/Intrinsics.h"
86 #include "llvm/IR/LLVMContext.h"
87 #include "llvm/IR/Metadata.h"
88 #include "llvm/IR/Module.h"
89 #include "llvm/IR/Operator.h"
90 #include "llvm/IR/PatternMatch.h"
91 #include "llvm/IR/Statepoint.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/MC/MCContext.h"
96 #include "llvm/MC/MCSymbol.h"
97 #include "llvm/Support/AtomicOrdering.h"
98 #include "llvm/Support/BranchProbability.h"
99 #include "llvm/Support/Casting.h"
100 #include "llvm/Support/CodeGen.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Compiler.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MachineValueType.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Target/TargetIntrinsicInfo.h"
109 #include "llvm/Target/TargetMachine.h"
110 #include "llvm/Target/TargetOptions.h"
111 #include "llvm/Transforms/Utils/Local.h"
112 #include <algorithm>
113 #include <cassert>
114 #include <cstddef>
115 #include <cstdint>
116 #include <cstring>
117 #include <iterator>
118 #include <limits>
119 #include <numeric>
120 #include <tuple>
121 #include <utility>
122 #include <vector>
123 
124 using namespace llvm;
125 using namespace PatternMatch;
126 
127 #define DEBUG_TYPE "isel"
128 
129 /// LimitFloatPrecision - Generate low-precision inline sequences for
130 /// some float libcalls (6, 8 or 12 bits).
131 static unsigned LimitFloatPrecision;
132 
133 static cl::opt<unsigned, true>
134     LimitFPPrecision("limit-float-precision",
135                      cl::desc("Generate low-precision inline sequences "
136                               "for some float libcalls"),
137                      cl::location(LimitFloatPrecision), cl::Hidden,
138                      cl::init(0));
139 
140 static cl::opt<unsigned> SwitchPeelThreshold(
141     "switch-peel-threshold", cl::Hidden, cl::init(66),
142     cl::desc("Set the case probability threshold for peeling the case from a "
143              "switch statement. A value greater than 100 will void this "
144              "optimization"));
145 
146 // Limit the width of DAG chains. This is important in general to prevent
147 // DAG-based analysis from blowing up. For example, alias analysis and
148 // load clustering may not complete in reasonable time. It is difficult to
149 // recognize and avoid this situation within each individual analysis, and
150 // future analyses are likely to have the same behavior. Limiting DAG width is
151 // the safe approach and will be especially important with global DAGs.
152 //
153 // MaxParallelChains default is arbitrarily high to avoid affecting
154 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
155 // sequence over this should have been converted to llvm.memcpy by the
156 // frontend. It is easy to induce this behavior with .ll code such as:
157 // %buffer = alloca [4096 x i8]
158 // %data = load [4096 x i8]* %argPtr
159 // store [4096 x i8] %data, [4096 x i8]* %buffer
160 static const unsigned MaxParallelChains = 64;
161 
162 // Return the calling convention if the Value passed requires ABI mangling as it
163 // is a parameter to a function or a return value from a function which is not
164 // an intrinsic.
165 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
166   if (auto *R = dyn_cast<ReturnInst>(V))
167     return R->getParent()->getParent()->getCallingConv();
168 
169   if (auto *CI = dyn_cast<CallInst>(V)) {
170     const bool IsInlineAsm = CI->isInlineAsm();
171     const bool IsIndirectFunctionCall =
172         !IsInlineAsm && !CI->getCalledFunction();
173 
174     // It is possible that the call instruction is an inline asm statement or an
175     // indirect function call in which case the return value of
176     // getCalledFunction() would be nullptr.
177     const bool IsInstrinsicCall =
178         !IsInlineAsm && !IsIndirectFunctionCall &&
179         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
180 
181     if (!IsInlineAsm && !IsInstrinsicCall)
182       return CI->getCallingConv();
183   }
184 
185   return None;
186 }
187 
188 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
189                                       const SDValue *Parts, unsigned NumParts,
190                                       MVT PartVT, EVT ValueVT, const Value *V,
191                                       Optional<CallingConv::ID> CC);
192 
193 /// getCopyFromParts - Create a value that contains the specified legal parts
194 /// combined into the value they represent.  If the parts combine to a type
195 /// larger than ValueVT then AssertOp can be used to specify whether the extra
196 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
197 /// (ISD::AssertSext).
198 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
199                                 const SDValue *Parts, unsigned NumParts,
200                                 MVT PartVT, EVT ValueVT, const Value *V,
201                                 Optional<CallingConv::ID> CC = None,
202                                 Optional<ISD::NodeType> AssertOp = None) {
203   if (ValueVT.isVector())
204     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
205                                   CC);
206 
207   assert(NumParts > 0 && "No parts to assemble!");
208   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
209   SDValue Val = Parts[0];
210 
211   if (NumParts > 1) {
212     // Assemble the value from multiple parts.
213     if (ValueVT.isInteger()) {
214       unsigned PartBits = PartVT.getSizeInBits();
215       unsigned ValueBits = ValueVT.getSizeInBits();
216 
217       // Assemble the power of 2 part.
218       unsigned RoundParts = NumParts & (NumParts - 1) ?
219         1 << Log2_32(NumParts) : NumParts;
220       unsigned RoundBits = PartBits * RoundParts;
221       EVT RoundVT = RoundBits == ValueBits ?
222         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
223       SDValue Lo, Hi;
224 
225       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
226 
227       if (RoundParts > 2) {
228         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
229                               PartVT, HalfVT, V);
230         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
231                               RoundParts / 2, PartVT, HalfVT, V);
232       } else {
233         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
234         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
235       }
236 
237       if (DAG.getDataLayout().isBigEndian())
238         std::swap(Lo, Hi);
239 
240       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
241 
242       if (RoundParts < NumParts) {
243         // Assemble the trailing non-power-of-2 part.
244         unsigned OddParts = NumParts - RoundParts;
245         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
246         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
247                               OddVT, V, CC);
248 
249         // Combine the round and odd parts.
250         Lo = Val;
251         if (DAG.getDataLayout().isBigEndian())
252           std::swap(Lo, Hi);
253         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
254         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
255         Hi =
256             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
257                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
258                                         TLI.getPointerTy(DAG.getDataLayout())));
259         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
260         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
261       }
262     } else if (PartVT.isFloatingPoint()) {
263       // FP split into multiple FP parts (for ppcf128)
264       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
265              "Unexpected split");
266       SDValue Lo, Hi;
267       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
268       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
269       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
270         std::swap(Lo, Hi);
271       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
272     } else {
273       // FP split into integer parts (soft fp)
274       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
275              !PartVT.isVector() && "Unexpected split");
276       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
277       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
278     }
279   }
280 
281   // There is now one part, held in Val.  Correct it to match ValueVT.
282   // PartEVT is the type of the register class that holds the value.
283   // ValueVT is the type of the inline asm operation.
284   EVT PartEVT = Val.getValueType();
285 
286   if (PartEVT == ValueVT)
287     return Val;
288 
289   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
290       ValueVT.bitsLT(PartEVT)) {
291     // For an FP value in an integer part, we need to truncate to the right
292     // width first.
293     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
294     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
295   }
296 
297   // Handle types that have the same size.
298   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
299     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300 
301   // Handle types with different sizes.
302   if (PartEVT.isInteger() && ValueVT.isInteger()) {
303     if (ValueVT.bitsLT(PartEVT)) {
304       // For a truncate, see if we have any information to
305       // indicate whether the truncated bits will always be
306       // zero or sign-extension.
307       if (AssertOp.hasValue())
308         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
309                           DAG.getValueType(ValueVT));
310       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
311     }
312     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
313   }
314 
315   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
316     // FP_ROUND's are always exact here.
317     if (ValueVT.bitsLT(Val.getValueType()))
318       return DAG.getNode(
319           ISD::FP_ROUND, DL, ValueVT, Val,
320           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
321 
322     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
323   }
324 
325   llvm_unreachable("Unknown mismatch!");
326 }
327 
328 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
329                                               const Twine &ErrMsg) {
330   const Instruction *I = dyn_cast_or_null<Instruction>(V);
331   if (!V)
332     return Ctx.emitError(ErrMsg);
333 
334   const char *AsmError = ", possible invalid constraint for vector type";
335   if (const CallInst *CI = dyn_cast<CallInst>(I))
336     if (isa<InlineAsm>(CI->getCalledValue()))
337       return Ctx.emitError(I, ErrMsg + AsmError);
338 
339   return Ctx.emitError(I, ErrMsg);
340 }
341 
342 /// getCopyFromPartsVector - Create a value that contains the specified legal
343 /// parts combined into the value they represent.  If the parts combine to a
344 /// type larger than ValueVT then AssertOp can be used to specify whether the
345 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
346 /// ValueVT (ISD::AssertSext).
347 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
348                                       const SDValue *Parts, unsigned NumParts,
349                                       MVT PartVT, EVT ValueVT, const Value *V,
350                                       Optional<CallingConv::ID> CallConv) {
351   assert(ValueVT.isVector() && "Not a vector value");
352   assert(NumParts > 0 && "No parts to assemble!");
353   const bool IsABIRegCopy = CallConv.hasValue();
354 
355   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
356   SDValue Val = Parts[0];
357 
358   // Handle a multi-element vector.
359   if (NumParts > 1) {
360     EVT IntermediateVT;
361     MVT RegisterVT;
362     unsigned NumIntermediates;
363     unsigned NumRegs;
364 
365     if (IsABIRegCopy) {
366       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
367           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
368           NumIntermediates, RegisterVT);
369     } else {
370       NumRegs =
371           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
372                                      NumIntermediates, RegisterVT);
373     }
374 
375     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
376     NumParts = NumRegs; // Silence a compiler warning.
377     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
378     assert(RegisterVT.getSizeInBits() ==
379            Parts[0].getSimpleValueType().getSizeInBits() &&
380            "Part type sizes don't match!");
381 
382     // Assemble the parts into intermediate operands.
383     SmallVector<SDValue, 8> Ops(NumIntermediates);
384     if (NumIntermediates == NumParts) {
385       // If the register was not expanded, truncate or copy the value,
386       // as appropriate.
387       for (unsigned i = 0; i != NumParts; ++i)
388         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
389                                   PartVT, IntermediateVT, V);
390     } else if (NumParts > 0) {
391       // If the intermediate type was expanded, build the intermediate
392       // operands from the parts.
393       assert(NumParts % NumIntermediates == 0 &&
394              "Must expand into a divisible number of parts!");
395       unsigned Factor = NumParts / NumIntermediates;
396       for (unsigned i = 0; i != NumIntermediates; ++i)
397         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
398                                   PartVT, IntermediateVT, V);
399     }
400 
401     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
402     // intermediate operands.
403     EVT BuiltVectorTy =
404         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
405                          (IntermediateVT.isVector()
406                               ? IntermediateVT.getVectorNumElements() * NumParts
407                               : NumIntermediates));
408     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
409                                                 : ISD::BUILD_VECTOR,
410                       DL, BuiltVectorTy, Ops);
411   }
412 
413   // There is now one part, held in Val.  Correct it to match ValueVT.
414   EVT PartEVT = Val.getValueType();
415 
416   if (PartEVT == ValueVT)
417     return Val;
418 
419   if (PartEVT.isVector()) {
420     // If the element type of the source/dest vectors are the same, but the
421     // parts vector has more elements than the value vector, then we have a
422     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
423     // elements we want.
424     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
425       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
426              "Cannot narrow, it would be a lossy transformation");
427       return DAG.getNode(
428           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
429           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
430     }
431 
432     // Vector/Vector bitcast.
433     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
434       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
435 
436     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
437       "Cannot handle this kind of promotion");
438     // Promoted vector extract
439     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
440 
441   }
442 
443   // Trivial bitcast if the types are the same size and the destination
444   // vector type is legal.
445   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
446       TLI.isTypeLegal(ValueVT))
447     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
448 
449   if (ValueVT.getVectorNumElements() != 1) {
450      // Certain ABIs require that vectors are passed as integers. For vectors
451      // are the same size, this is an obvious bitcast.
452      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
453        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
454      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
455        // Bitcast Val back the original type and extract the corresponding
456        // vector we want.
457        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
458        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
459                                            ValueVT.getVectorElementType(), Elts);
460        Val = DAG.getBitcast(WiderVecType, Val);
461        return DAG.getNode(
462            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
463            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
464      }
465 
466      diagnosePossiblyInvalidConstraint(
467          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
468      return DAG.getUNDEF(ValueVT);
469   }
470 
471   // Handle cases such as i8 -> <1 x i1>
472   EVT ValueSVT = ValueVT.getVectorElementType();
473   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
474     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
475                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
476 
477   return DAG.getBuildVector(ValueVT, DL, Val);
478 }
479 
480 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
481                                  SDValue Val, SDValue *Parts, unsigned NumParts,
482                                  MVT PartVT, const Value *V,
483                                  Optional<CallingConv::ID> CallConv);
484 
485 /// getCopyToParts - Create a series of nodes that contain the specified value
486 /// split into legal parts.  If the parts contain more bits than Val, then, for
487 /// integers, ExtendKind can be used to specify how to generate the extra bits.
488 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
489                            SDValue *Parts, unsigned NumParts, MVT PartVT,
490                            const Value *V,
491                            Optional<CallingConv::ID> CallConv = None,
492                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
493   EVT ValueVT = Val.getValueType();
494 
495   // Handle the vector case separately.
496   if (ValueVT.isVector())
497     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
498                                 CallConv);
499 
500   unsigned PartBits = PartVT.getSizeInBits();
501   unsigned OrigNumParts = NumParts;
502   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
503          "Copying to an illegal type!");
504 
505   if (NumParts == 0)
506     return;
507 
508   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
509   EVT PartEVT = PartVT;
510   if (PartEVT == ValueVT) {
511     assert(NumParts == 1 && "No-op copy with multiple parts!");
512     Parts[0] = Val;
513     return;
514   }
515 
516   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
517     // If the parts cover more bits than the value has, promote the value.
518     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
519       assert(NumParts == 1 && "Do not know what to promote to!");
520       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
521     } else {
522       if (ValueVT.isFloatingPoint()) {
523         // FP values need to be bitcast, then extended if they are being put
524         // into a larger container.
525         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
526         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
527       }
528       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
529              ValueVT.isInteger() &&
530              "Unknown mismatch!");
531       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
532       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
533       if (PartVT == MVT::x86mmx)
534         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
535     }
536   } else if (PartBits == ValueVT.getSizeInBits()) {
537     // Different types of the same size.
538     assert(NumParts == 1 && PartEVT != ValueVT);
539     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
540   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
541     // If the parts cover less bits than value has, truncate the value.
542     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
543            ValueVT.isInteger() &&
544            "Unknown mismatch!");
545     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
546     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
547     if (PartVT == MVT::x86mmx)
548       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
549   }
550 
551   // The value may have changed - recompute ValueVT.
552   ValueVT = Val.getValueType();
553   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
554          "Failed to tile the value with PartVT!");
555 
556   if (NumParts == 1) {
557     if (PartEVT != ValueVT) {
558       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
559                                         "scalar-to-vector conversion failed");
560       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
561     }
562 
563     Parts[0] = Val;
564     return;
565   }
566 
567   // Expand the value into multiple parts.
568   if (NumParts & (NumParts - 1)) {
569     // The number of parts is not a power of 2.  Split off and copy the tail.
570     assert(PartVT.isInteger() && ValueVT.isInteger() &&
571            "Do not know what to expand to!");
572     unsigned RoundParts = 1 << Log2_32(NumParts);
573     unsigned RoundBits = RoundParts * PartBits;
574     unsigned OddParts = NumParts - RoundParts;
575     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
576       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
577 
578     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
579                    CallConv);
580 
581     if (DAG.getDataLayout().isBigEndian())
582       // The odd parts were reversed by getCopyToParts - unreverse them.
583       std::reverse(Parts + RoundParts, Parts + NumParts);
584 
585     NumParts = RoundParts;
586     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
587     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
588   }
589 
590   // The number of parts is a power of 2.  Repeatedly bisect the value using
591   // EXTRACT_ELEMENT.
592   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
593                          EVT::getIntegerVT(*DAG.getContext(),
594                                            ValueVT.getSizeInBits()),
595                          Val);
596 
597   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
598     for (unsigned i = 0; i < NumParts; i += StepSize) {
599       unsigned ThisBits = StepSize * PartBits / 2;
600       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
601       SDValue &Part0 = Parts[i];
602       SDValue &Part1 = Parts[i+StepSize/2];
603 
604       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
605                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
606       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
607                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
608 
609       if (ThisBits == PartBits && ThisVT != PartVT) {
610         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
611         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
612       }
613     }
614   }
615 
616   if (DAG.getDataLayout().isBigEndian())
617     std::reverse(Parts, Parts + OrigNumParts);
618 }
619 
620 static SDValue widenVectorToPartType(SelectionDAG &DAG,
621                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
622   if (!PartVT.isVector())
623     return SDValue();
624 
625   EVT ValueVT = Val.getValueType();
626   unsigned PartNumElts = PartVT.getVectorNumElements();
627   unsigned ValueNumElts = ValueVT.getVectorNumElements();
628   if (PartNumElts > ValueNumElts &&
629       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
630     EVT ElementVT = PartVT.getVectorElementType();
631     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
632     // undef elements.
633     SmallVector<SDValue, 16> Ops;
634     DAG.ExtractVectorElements(Val, Ops);
635     SDValue EltUndef = DAG.getUNDEF(ElementVT);
636     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
637       Ops.push_back(EltUndef);
638 
639     // FIXME: Use CONCAT for 2x -> 4x.
640     return DAG.getBuildVector(PartVT, DL, Ops);
641   }
642 
643   return SDValue();
644 }
645 
646 /// getCopyToPartsVector - Create a series of nodes that contain the specified
647 /// value split into legal parts.
648 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
649                                  SDValue Val, SDValue *Parts, unsigned NumParts,
650                                  MVT PartVT, const Value *V,
651                                  Optional<CallingConv::ID> CallConv) {
652   EVT ValueVT = Val.getValueType();
653   assert(ValueVT.isVector() && "Not a vector");
654   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
655   const bool IsABIRegCopy = CallConv.hasValue();
656 
657   if (NumParts == 1) {
658     EVT PartEVT = PartVT;
659     if (PartEVT == ValueVT) {
660       // Nothing to do.
661     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
662       // Bitconvert vector->vector case.
663       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
664     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
665       Val = Widened;
666     } else if (PartVT.isVector() &&
667                PartEVT.getVectorElementType().bitsGE(
668                  ValueVT.getVectorElementType()) &&
669                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
670 
671       // Promoted vector extract
672       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
673     } else {
674       if (ValueVT.getVectorNumElements() == 1) {
675         Val = DAG.getNode(
676             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
677             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
678       } else {
679         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
680                "lossy conversion of vector to scalar type");
681         EVT IntermediateType =
682             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
683         Val = DAG.getBitcast(IntermediateType, Val);
684         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
685       }
686     }
687 
688     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
689     Parts[0] = Val;
690     return;
691   }
692 
693   // Handle a multi-element vector.
694   EVT IntermediateVT;
695   MVT RegisterVT;
696   unsigned NumIntermediates;
697   unsigned NumRegs;
698   if (IsABIRegCopy) {
699     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
700         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
701         NumIntermediates, RegisterVT);
702   } else {
703     NumRegs =
704         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
705                                    NumIntermediates, RegisterVT);
706   }
707 
708   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
709   NumParts = NumRegs; // Silence a compiler warning.
710   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
711 
712   unsigned IntermediateNumElts = IntermediateVT.isVector() ?
713     IntermediateVT.getVectorNumElements() : 1;
714 
715   // Convert the vector to the appropiate type if necessary.
716   unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
717 
718   EVT BuiltVectorTy = EVT::getVectorVT(
719       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
720   MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
721   if (ValueVT != BuiltVectorTy) {
722     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
723       Val = Widened;
724 
725     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
726   }
727 
728   // Split the vector into intermediate operands.
729   SmallVector<SDValue, 8> Ops(NumIntermediates);
730   for (unsigned i = 0; i != NumIntermediates; ++i) {
731     if (IntermediateVT.isVector()) {
732       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
733                            DAG.getConstant(i * IntermediateNumElts, DL, IdxVT));
734     } else {
735       Ops[i] = DAG.getNode(
736           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
737           DAG.getConstant(i, DL, IdxVT));
738     }
739   }
740 
741   // Split the intermediate operands into legal parts.
742   if (NumParts == NumIntermediates) {
743     // If the register was not expanded, promote or copy the value,
744     // as appropriate.
745     for (unsigned i = 0; i != NumParts; ++i)
746       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
747   } else if (NumParts > 0) {
748     // If the intermediate type was expanded, split each the value into
749     // legal parts.
750     assert(NumIntermediates != 0 && "division by zero");
751     assert(NumParts % NumIntermediates == 0 &&
752            "Must expand into a divisible number of parts!");
753     unsigned Factor = NumParts / NumIntermediates;
754     for (unsigned i = 0; i != NumIntermediates; ++i)
755       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
756                      CallConv);
757   }
758 }
759 
760 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
761                            EVT valuevt, Optional<CallingConv::ID> CC)
762     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
763       RegCount(1, regs.size()), CallConv(CC) {}
764 
765 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
766                            const DataLayout &DL, unsigned Reg, Type *Ty,
767                            Optional<CallingConv::ID> CC) {
768   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
769 
770   CallConv = CC;
771 
772   for (EVT ValueVT : ValueVTs) {
773     unsigned NumRegs =
774         isABIMangled()
775             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
776             : TLI.getNumRegisters(Context, ValueVT);
777     MVT RegisterVT =
778         isABIMangled()
779             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
780             : TLI.getRegisterType(Context, ValueVT);
781     for (unsigned i = 0; i != NumRegs; ++i)
782       Regs.push_back(Reg + i);
783     RegVTs.push_back(RegisterVT);
784     RegCount.push_back(NumRegs);
785     Reg += NumRegs;
786   }
787 }
788 
789 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
790                                       FunctionLoweringInfo &FuncInfo,
791                                       const SDLoc &dl, SDValue &Chain,
792                                       SDValue *Flag, const Value *V) const {
793   // A Value with type {} or [0 x %t] needs no registers.
794   if (ValueVTs.empty())
795     return SDValue();
796 
797   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
798 
799   // Assemble the legal parts into the final values.
800   SmallVector<SDValue, 4> Values(ValueVTs.size());
801   SmallVector<SDValue, 8> Parts;
802   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
803     // Copy the legal parts from the registers.
804     EVT ValueVT = ValueVTs[Value];
805     unsigned NumRegs = RegCount[Value];
806     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
807                                           *DAG.getContext(),
808                                           CallConv.getValue(), RegVTs[Value])
809                                     : RegVTs[Value];
810 
811     Parts.resize(NumRegs);
812     for (unsigned i = 0; i != NumRegs; ++i) {
813       SDValue P;
814       if (!Flag) {
815         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
816       } else {
817         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
818         *Flag = P.getValue(2);
819       }
820 
821       Chain = P.getValue(1);
822       Parts[i] = P;
823 
824       // If the source register was virtual and if we know something about it,
825       // add an assert node.
826       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
827           !RegisterVT.isInteger())
828         continue;
829 
830       const FunctionLoweringInfo::LiveOutInfo *LOI =
831         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
832       if (!LOI)
833         continue;
834 
835       unsigned RegSize = RegisterVT.getScalarSizeInBits();
836       unsigned NumSignBits = LOI->NumSignBits;
837       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
838 
839       if (NumZeroBits == RegSize) {
840         // The current value is a zero.
841         // Explicitly express that as it would be easier for
842         // optimizations to kick in.
843         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
844         continue;
845       }
846 
847       // FIXME: We capture more information than the dag can represent.  For
848       // now, just use the tightest assertzext/assertsext possible.
849       bool isSExt;
850       EVT FromVT(MVT::Other);
851       if (NumZeroBits) {
852         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
853         isSExt = false;
854       } else if (NumSignBits > 1) {
855         FromVT =
856             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
857         isSExt = true;
858       } else {
859         continue;
860       }
861       // Add an assertion node.
862       assert(FromVT != MVT::Other);
863       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
864                              RegisterVT, P, DAG.getValueType(FromVT));
865     }
866 
867     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
868                                      RegisterVT, ValueVT, V, CallConv);
869     Part += NumRegs;
870     Parts.clear();
871   }
872 
873   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
874 }
875 
876 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
877                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
878                                  const Value *V,
879                                  ISD::NodeType PreferredExtendType) const {
880   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
881   ISD::NodeType ExtendKind = PreferredExtendType;
882 
883   // Get the list of the values's legal parts.
884   unsigned NumRegs = Regs.size();
885   SmallVector<SDValue, 8> Parts(NumRegs);
886   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
887     unsigned NumParts = RegCount[Value];
888 
889     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
890                                           *DAG.getContext(),
891                                           CallConv.getValue(), RegVTs[Value])
892                                     : RegVTs[Value];
893 
894     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
895       ExtendKind = ISD::ZERO_EXTEND;
896 
897     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
898                    NumParts, RegisterVT, V, CallConv, ExtendKind);
899     Part += NumParts;
900   }
901 
902   // Copy the parts into the registers.
903   SmallVector<SDValue, 8> Chains(NumRegs);
904   for (unsigned i = 0; i != NumRegs; ++i) {
905     SDValue Part;
906     if (!Flag) {
907       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
908     } else {
909       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
910       *Flag = Part.getValue(1);
911     }
912 
913     Chains[i] = Part.getValue(0);
914   }
915 
916   if (NumRegs == 1 || Flag)
917     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
918     // flagged to it. That is the CopyToReg nodes and the user are considered
919     // a single scheduling unit. If we create a TokenFactor and return it as
920     // chain, then the TokenFactor is both a predecessor (operand) of the
921     // user as well as a successor (the TF operands are flagged to the user).
922     // c1, f1 = CopyToReg
923     // c2, f2 = CopyToReg
924     // c3     = TokenFactor c1, c2
925     // ...
926     //        = op c3, ..., f2
927     Chain = Chains[NumRegs-1];
928   else
929     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
930 }
931 
932 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
933                                         unsigned MatchingIdx, const SDLoc &dl,
934                                         SelectionDAG &DAG,
935                                         std::vector<SDValue> &Ops) const {
936   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
937 
938   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
939   if (HasMatching)
940     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
941   else if (!Regs.empty() &&
942            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
943     // Put the register class of the virtual registers in the flag word.  That
944     // way, later passes can recompute register class constraints for inline
945     // assembly as well as normal instructions.
946     // Don't do this for tied operands that can use the regclass information
947     // from the def.
948     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
949     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
950     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
951   }
952 
953   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
954   Ops.push_back(Res);
955 
956   if (Code == InlineAsm::Kind_Clobber) {
957     // Clobbers should always have a 1:1 mapping with registers, and may
958     // reference registers that have illegal (e.g. vector) types. Hence, we
959     // shouldn't try to apply any sort of splitting logic to them.
960     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
961            "No 1:1 mapping from clobbers to regs?");
962     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
963     (void)SP;
964     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
965       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
966       assert(
967           (Regs[I] != SP ||
968            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
969           "If we clobbered the stack pointer, MFI should know about it.");
970     }
971     return;
972   }
973 
974   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
975     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
976     MVT RegisterVT = RegVTs[Value];
977     for (unsigned i = 0; i != NumRegs; ++i) {
978       assert(Reg < Regs.size() && "Mismatch in # registers expected");
979       unsigned TheReg = Regs[Reg++];
980       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
981     }
982   }
983 }
984 
985 SmallVector<std::pair<unsigned, unsigned>, 4>
986 RegsForValue::getRegsAndSizes() const {
987   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
988   unsigned I = 0;
989   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
990     unsigned RegCount = std::get<0>(CountAndVT);
991     MVT RegisterVT = std::get<1>(CountAndVT);
992     unsigned RegisterSize = RegisterVT.getSizeInBits();
993     for (unsigned E = I + RegCount; I != E; ++I)
994       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
995   }
996   return OutVec;
997 }
998 
999 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1000                                const TargetLibraryInfo *li) {
1001   AA = aa;
1002   GFI = gfi;
1003   LibInfo = li;
1004   DL = &DAG.getDataLayout();
1005   Context = DAG.getContext();
1006   LPadToCallSiteMap.clear();
1007 }
1008 
1009 void SelectionDAGBuilder::clear() {
1010   NodeMap.clear();
1011   UnusedArgNodeMap.clear();
1012   PendingLoads.clear();
1013   PendingExports.clear();
1014   CurInst = nullptr;
1015   HasTailCall = false;
1016   SDNodeOrder = LowestSDNodeOrder;
1017   StatepointLowering.clear();
1018 }
1019 
1020 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1021   DanglingDebugInfoMap.clear();
1022 }
1023 
1024 SDValue SelectionDAGBuilder::getRoot() {
1025   if (PendingLoads.empty())
1026     return DAG.getRoot();
1027 
1028   if (PendingLoads.size() == 1) {
1029     SDValue Root = PendingLoads[0];
1030     DAG.setRoot(Root);
1031     PendingLoads.clear();
1032     return Root;
1033   }
1034 
1035   // Otherwise, we have to make a token factor node.
1036   SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads);
1037   PendingLoads.clear();
1038   DAG.setRoot(Root);
1039   return Root;
1040 }
1041 
1042 SDValue SelectionDAGBuilder::getControlRoot() {
1043   SDValue Root = DAG.getRoot();
1044 
1045   if (PendingExports.empty())
1046     return Root;
1047 
1048   // Turn all of the CopyToReg chains into one factored node.
1049   if (Root.getOpcode() != ISD::EntryToken) {
1050     unsigned i = 0, e = PendingExports.size();
1051     for (; i != e; ++i) {
1052       assert(PendingExports[i].getNode()->getNumOperands() > 1);
1053       if (PendingExports[i].getNode()->getOperand(0) == Root)
1054         break;  // Don't add the root if we already indirectly depend on it.
1055     }
1056 
1057     if (i == e)
1058       PendingExports.push_back(Root);
1059   }
1060 
1061   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1062                      PendingExports);
1063   PendingExports.clear();
1064   DAG.setRoot(Root);
1065   return Root;
1066 }
1067 
1068 void SelectionDAGBuilder::visit(const Instruction &I) {
1069   // Set up outgoing PHI node register values before emitting the terminator.
1070   if (I.isTerminator()) {
1071     HandlePHINodesInSuccessorBlocks(I.getParent());
1072   }
1073 
1074   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1075   if (!isa<DbgInfoIntrinsic>(I))
1076     ++SDNodeOrder;
1077 
1078   CurInst = &I;
1079 
1080   visit(I.getOpcode(), I);
1081 
1082   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1083     // Propagate the fast-math-flags of this IR instruction to the DAG node that
1084     // maps to this instruction.
1085     // TODO: We could handle all flags (nsw, etc) here.
1086     // TODO: If an IR instruction maps to >1 node, only the final node will have
1087     //       flags set.
1088     if (SDNode *Node = getNodeForIRValue(&I)) {
1089       SDNodeFlags IncomingFlags;
1090       IncomingFlags.copyFMF(*FPMO);
1091       if (!Node->getFlags().isDefined())
1092         Node->setFlags(IncomingFlags);
1093       else
1094         Node->intersectFlagsWith(IncomingFlags);
1095     }
1096   }
1097 
1098   if (!I.isTerminator() && !HasTailCall &&
1099       !isStatepoint(&I)) // statepoints handle their exports internally
1100     CopyToExportRegsIfNeeded(&I);
1101 
1102   CurInst = nullptr;
1103 }
1104 
1105 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1106   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1107 }
1108 
1109 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1110   // Note: this doesn't use InstVisitor, because it has to work with
1111   // ConstantExpr's in addition to instructions.
1112   switch (Opcode) {
1113   default: llvm_unreachable("Unknown instruction type encountered!");
1114     // Build the switch statement using the Instruction.def file.
1115 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1116     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1117 #include "llvm/IR/Instruction.def"
1118   }
1119 }
1120 
1121 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1122                                                 const DIExpression *Expr) {
1123   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1124     const DbgValueInst *DI = DDI.getDI();
1125     DIVariable *DanglingVariable = DI->getVariable();
1126     DIExpression *DanglingExpr = DI->getExpression();
1127     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1128       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1129       return true;
1130     }
1131     return false;
1132   };
1133 
1134   for (auto &DDIMI : DanglingDebugInfoMap) {
1135     DanglingDebugInfoVector &DDIV = DDIMI.second;
1136 
1137     // If debug info is to be dropped, run it through final checks to see
1138     // whether it can be salvaged.
1139     for (auto &DDI : DDIV)
1140       if (isMatchingDbgValue(DDI))
1141         salvageUnresolvedDbgValue(DDI);
1142 
1143     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1144   }
1145 }
1146 
1147 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1148 // generate the debug data structures now that we've seen its definition.
1149 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1150                                                    SDValue Val) {
1151   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1152   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1153     return;
1154 
1155   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1156   for (auto &DDI : DDIV) {
1157     const DbgValueInst *DI = DDI.getDI();
1158     assert(DI && "Ill-formed DanglingDebugInfo");
1159     DebugLoc dl = DDI.getdl();
1160     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1161     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1162     DILocalVariable *Variable = DI->getVariable();
1163     DIExpression *Expr = DI->getExpression();
1164     assert(Variable->isValidLocationForIntrinsic(dl) &&
1165            "Expected inlined-at fields to agree");
1166     SDDbgValue *SDV;
1167     if (Val.getNode()) {
1168       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1169       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1170       // we couldn't resolve it directly when examining the DbgValue intrinsic
1171       // in the first place we should not be more successful here). Unless we
1172       // have some test case that prove this to be correct we should avoid
1173       // calling EmitFuncArgumentDbgValue here.
1174       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1175         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1176                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1177         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1178         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1179         // inserted after the definition of Val when emitting the instructions
1180         // after ISel. An alternative could be to teach
1181         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1182         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1183                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1184                    << ValSDNodeOrder << "\n");
1185         SDV = getDbgValue(Val, Variable, Expr, dl,
1186                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1187         DAG.AddDbgValue(SDV, Val.getNode(), false);
1188       } else
1189         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1190                           << "in EmitFuncArgumentDbgValue\n");
1191     } else {
1192       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1193       auto Undef =
1194           UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1195       auto SDV =
1196           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1197       DAG.AddDbgValue(SDV, nullptr, false);
1198     }
1199   }
1200   DDIV.clear();
1201 }
1202 
1203 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1204   Value *V = DDI.getDI()->getValue();
1205   DILocalVariable *Var = DDI.getDI()->getVariable();
1206   DIExpression *Expr = DDI.getDI()->getExpression();
1207   DebugLoc DL = DDI.getdl();
1208   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1209   unsigned SDOrder = DDI.getSDNodeOrder();
1210 
1211   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1212   // that DW_OP_stack_value is desired.
1213   assert(isa<DbgValueInst>(DDI.getDI()));
1214   bool StackValue = true;
1215 
1216   // Can this Value can be encoded without any further work?
1217   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1218     return;
1219 
1220   // Attempt to salvage back through as many instructions as possible. Bail if
1221   // a non-instruction is seen, such as a constant expression or global
1222   // variable. FIXME: Further work could recover those too.
1223   while (isa<Instruction>(V)) {
1224     Instruction &VAsInst = *cast<Instruction>(V);
1225     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1226 
1227     // If we cannot salvage any further, and haven't yet found a suitable debug
1228     // expression, bail out.
1229     if (!NewExpr)
1230       break;
1231 
1232     // New value and expr now represent this debuginfo.
1233     V = VAsInst.getOperand(0);
1234     Expr = NewExpr;
1235 
1236     // Some kind of simplification occurred: check whether the operand of the
1237     // salvaged debug expression can be encoded in this DAG.
1238     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1239       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1240                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1241       return;
1242     }
1243   }
1244 
1245   // This was the final opportunity to salvage this debug information, and it
1246   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1247   // any earlier variable location.
1248   auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1249   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1250   DAG.AddDbgValue(SDV, nullptr, false);
1251 
1252   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1253                     << "\n");
1254   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1255                     << "\n");
1256 }
1257 
1258 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1259                                            DIExpression *Expr, DebugLoc dl,
1260                                            DebugLoc InstDL, unsigned Order) {
1261   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1262   SDDbgValue *SDV;
1263   if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1264       isa<ConstantPointerNull>(V)) {
1265     SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1266     DAG.AddDbgValue(SDV, nullptr, false);
1267     return true;
1268   }
1269 
1270   // If the Value is a frame index, we can create a FrameIndex debug value
1271   // without relying on the DAG at all.
1272   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1273     auto SI = FuncInfo.StaticAllocaMap.find(AI);
1274     if (SI != FuncInfo.StaticAllocaMap.end()) {
1275       auto SDV =
1276           DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1277                                     /*IsIndirect*/ false, dl, SDNodeOrder);
1278       // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1279       // is still available even if the SDNode gets optimized out.
1280       DAG.AddDbgValue(SDV, nullptr, false);
1281       return true;
1282     }
1283   }
1284 
1285   // Do not use getValue() in here; we don't want to generate code at
1286   // this point if it hasn't been done yet.
1287   SDValue N = NodeMap[V];
1288   if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1289     N = UnusedArgNodeMap[V];
1290   if (N.getNode()) {
1291     if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1292       return true;
1293     SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1294     DAG.AddDbgValue(SDV, N.getNode(), false);
1295     return true;
1296   }
1297 
1298   // Special rules apply for the first dbg.values of parameter variables in a
1299   // function. Identify them by the fact they reference Argument Values, that
1300   // they're parameters, and they are parameters of the current function. We
1301   // need to let them dangle until they get an SDNode.
1302   bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1303                        !InstDL.getInlinedAt();
1304   if (!IsParamOfFunc) {
1305     // The value is not used in this block yet (or it would have an SDNode).
1306     // We still want the value to appear for the user if possible -- if it has
1307     // an associated VReg, we can refer to that instead.
1308     auto VMI = FuncInfo.ValueMap.find(V);
1309     if (VMI != FuncInfo.ValueMap.end()) {
1310       unsigned Reg = VMI->second;
1311       // If this is a PHI node, it may be split up into several MI PHI nodes
1312       // (in FunctionLoweringInfo::set).
1313       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1314                        V->getType(), None);
1315       if (RFV.occupiesMultipleRegs()) {
1316         unsigned Offset = 0;
1317         unsigned BitsToDescribe = 0;
1318         if (auto VarSize = Var->getSizeInBits())
1319           BitsToDescribe = *VarSize;
1320         if (auto Fragment = Expr->getFragmentInfo())
1321           BitsToDescribe = Fragment->SizeInBits;
1322         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1323           unsigned RegisterSize = RegAndSize.second;
1324           // Bail out if all bits are described already.
1325           if (Offset >= BitsToDescribe)
1326             break;
1327           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1328               ? BitsToDescribe - Offset
1329               : RegisterSize;
1330           auto FragmentExpr = DIExpression::createFragmentExpression(
1331               Expr, Offset, FragmentSize);
1332           if (!FragmentExpr)
1333               continue;
1334           SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1335                                     false, dl, SDNodeOrder);
1336           DAG.AddDbgValue(SDV, nullptr, false);
1337           Offset += RegisterSize;
1338         }
1339       } else {
1340         SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1341         DAG.AddDbgValue(SDV, nullptr, false);
1342       }
1343       return true;
1344     }
1345   }
1346 
1347   return false;
1348 }
1349 
1350 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1351   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1352   for (auto &Pair : DanglingDebugInfoMap)
1353     for (auto &DDI : Pair.second)
1354       salvageUnresolvedDbgValue(DDI);
1355   clearDanglingDebugInfo();
1356 }
1357 
1358 /// getCopyFromRegs - If there was virtual register allocated for the value V
1359 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1360 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1361   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1362   SDValue Result;
1363 
1364   if (It != FuncInfo.ValueMap.end()) {
1365     unsigned InReg = It->second;
1366 
1367     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1368                      DAG.getDataLayout(), InReg, Ty,
1369                      None); // This is not an ABI copy.
1370     SDValue Chain = DAG.getEntryNode();
1371     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1372                                  V);
1373     resolveDanglingDebugInfo(V, Result);
1374   }
1375 
1376   return Result;
1377 }
1378 
1379 /// getValue - Return an SDValue for the given Value.
1380 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1381   // If we already have an SDValue for this value, use it. It's important
1382   // to do this first, so that we don't create a CopyFromReg if we already
1383   // have a regular SDValue.
1384   SDValue &N = NodeMap[V];
1385   if (N.getNode()) return N;
1386 
1387   // If there's a virtual register allocated and initialized for this
1388   // value, use it.
1389   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1390     return copyFromReg;
1391 
1392   // Otherwise create a new SDValue and remember it.
1393   SDValue Val = getValueImpl(V);
1394   NodeMap[V] = Val;
1395   resolveDanglingDebugInfo(V, Val);
1396   return Val;
1397 }
1398 
1399 // Return true if SDValue exists for the given Value
1400 bool SelectionDAGBuilder::findValue(const Value *V) const {
1401   return (NodeMap.find(V) != NodeMap.end()) ||
1402     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1403 }
1404 
1405 /// getNonRegisterValue - Return an SDValue for the given Value, but
1406 /// don't look in FuncInfo.ValueMap for a virtual register.
1407 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1408   // If we already have an SDValue for this value, use it.
1409   SDValue &N = NodeMap[V];
1410   if (N.getNode()) {
1411     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1412       // Remove the debug location from the node as the node is about to be used
1413       // in a location which may differ from the original debug location.  This
1414       // is relevant to Constant and ConstantFP nodes because they can appear
1415       // as constant expressions inside PHI nodes.
1416       N->setDebugLoc(DebugLoc());
1417     }
1418     return N;
1419   }
1420 
1421   // Otherwise create a new SDValue and remember it.
1422   SDValue Val = getValueImpl(V);
1423   NodeMap[V] = Val;
1424   resolveDanglingDebugInfo(V, Val);
1425   return Val;
1426 }
1427 
1428 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1429 /// Create an SDValue for the given value.
1430 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1431   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1432 
1433   if (const Constant *C = dyn_cast<Constant>(V)) {
1434     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1435 
1436     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1437       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1438 
1439     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1440       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1441 
1442     if (isa<ConstantPointerNull>(C)) {
1443       unsigned AS = V->getType()->getPointerAddressSpace();
1444       return DAG.getConstant(0, getCurSDLoc(),
1445                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1446     }
1447 
1448     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1449       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1450 
1451     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1452       return DAG.getUNDEF(VT);
1453 
1454     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1455       visit(CE->getOpcode(), *CE);
1456       SDValue N1 = NodeMap[V];
1457       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1458       return N1;
1459     }
1460 
1461     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1462       SmallVector<SDValue, 4> Constants;
1463       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1464            OI != OE; ++OI) {
1465         SDNode *Val = getValue(*OI).getNode();
1466         // If the operand is an empty aggregate, there are no values.
1467         if (!Val) continue;
1468         // Add each leaf value from the operand to the Constants list
1469         // to form a flattened list of all the values.
1470         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1471           Constants.push_back(SDValue(Val, i));
1472       }
1473 
1474       return DAG.getMergeValues(Constants, getCurSDLoc());
1475     }
1476 
1477     if (const ConstantDataSequential *CDS =
1478           dyn_cast<ConstantDataSequential>(C)) {
1479       SmallVector<SDValue, 4> Ops;
1480       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1481         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1482         // Add each leaf value from the operand to the Constants list
1483         // to form a flattened list of all the values.
1484         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1485           Ops.push_back(SDValue(Val, i));
1486       }
1487 
1488       if (isa<ArrayType>(CDS->getType()))
1489         return DAG.getMergeValues(Ops, getCurSDLoc());
1490       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1491     }
1492 
1493     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1494       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1495              "Unknown struct or array constant!");
1496 
1497       SmallVector<EVT, 4> ValueVTs;
1498       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1499       unsigned NumElts = ValueVTs.size();
1500       if (NumElts == 0)
1501         return SDValue(); // empty struct
1502       SmallVector<SDValue, 4> Constants(NumElts);
1503       for (unsigned i = 0; i != NumElts; ++i) {
1504         EVT EltVT = ValueVTs[i];
1505         if (isa<UndefValue>(C))
1506           Constants[i] = DAG.getUNDEF(EltVT);
1507         else if (EltVT.isFloatingPoint())
1508           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1509         else
1510           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1511       }
1512 
1513       return DAG.getMergeValues(Constants, getCurSDLoc());
1514     }
1515 
1516     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1517       return DAG.getBlockAddress(BA, VT);
1518 
1519     VectorType *VecTy = cast<VectorType>(V->getType());
1520     unsigned NumElements = VecTy->getNumElements();
1521 
1522     // Now that we know the number and type of the elements, get that number of
1523     // elements into the Ops array based on what kind of constant it is.
1524     SmallVector<SDValue, 16> Ops;
1525     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1526       for (unsigned i = 0; i != NumElements; ++i)
1527         Ops.push_back(getValue(CV->getOperand(i)));
1528     } else {
1529       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1530       EVT EltVT =
1531           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1532 
1533       SDValue Op;
1534       if (EltVT.isFloatingPoint())
1535         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1536       else
1537         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1538       Ops.assign(NumElements, Op);
1539     }
1540 
1541     // Create a BUILD_VECTOR node.
1542     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1543   }
1544 
1545   // If this is a static alloca, generate it as the frameindex instead of
1546   // computation.
1547   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1548     DenseMap<const AllocaInst*, int>::iterator SI =
1549       FuncInfo.StaticAllocaMap.find(AI);
1550     if (SI != FuncInfo.StaticAllocaMap.end())
1551       return DAG.getFrameIndex(SI->second,
1552                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1553   }
1554 
1555   // If this is an instruction which fast-isel has deferred, select it now.
1556   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1557     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1558 
1559     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1560                      Inst->getType(), getABIRegCopyCC(V));
1561     SDValue Chain = DAG.getEntryNode();
1562     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1563   }
1564 
1565   llvm_unreachable("Can't get register for value!");
1566 }
1567 
1568 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1569   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1570   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1571   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1572   bool IsSEH = isAsynchronousEHPersonality(Pers);
1573   bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX;
1574   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1575   if (!IsSEH)
1576     CatchPadMBB->setIsEHScopeEntry();
1577   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1578   if (IsMSVCCXX || IsCoreCLR)
1579     CatchPadMBB->setIsEHFuncletEntry();
1580   // Wasm does not need catchpads anymore
1581   if (!IsWasmCXX)
1582     DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other,
1583                             getControlRoot()));
1584 }
1585 
1586 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1587   // Update machine-CFG edge.
1588   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1589   FuncInfo.MBB->addSuccessor(TargetMBB);
1590 
1591   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1592   bool IsSEH = isAsynchronousEHPersonality(Pers);
1593   if (IsSEH) {
1594     // If this is not a fall-through branch or optimizations are switched off,
1595     // emit the branch.
1596     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1597         TM.getOptLevel() == CodeGenOpt::None)
1598       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1599                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1600     return;
1601   }
1602 
1603   // Figure out the funclet membership for the catchret's successor.
1604   // This will be used by the FuncletLayout pass to determine how to order the
1605   // BB's.
1606   // A 'catchret' returns to the outer scope's color.
1607   Value *ParentPad = I.getCatchSwitchParentPad();
1608   const BasicBlock *SuccessorColor;
1609   if (isa<ConstantTokenNone>(ParentPad))
1610     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1611   else
1612     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1613   assert(SuccessorColor && "No parent funclet for catchret!");
1614   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1615   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1616 
1617   // Create the terminator node.
1618   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1619                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1620                             DAG.getBasicBlock(SuccessorColorMBB));
1621   DAG.setRoot(Ret);
1622 }
1623 
1624 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1625   // Don't emit any special code for the cleanuppad instruction. It just marks
1626   // the start of an EH scope/funclet.
1627   FuncInfo.MBB->setIsEHScopeEntry();
1628   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1629   if (Pers != EHPersonality::Wasm_CXX) {
1630     FuncInfo.MBB->setIsEHFuncletEntry();
1631     FuncInfo.MBB->setIsCleanupFuncletEntry();
1632   }
1633 }
1634 
1635 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1636 // the control flow always stops at the single catch pad, as it does for a
1637 // cleanup pad. In case the exception caught is not of the types the catch pad
1638 // catches, it will be rethrown by a rethrow.
1639 static void findWasmUnwindDestinations(
1640     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1641     BranchProbability Prob,
1642     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1643         &UnwindDests) {
1644   while (EHPadBB) {
1645     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1646     if (isa<CleanupPadInst>(Pad)) {
1647       // Stop on cleanup pads.
1648       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1649       UnwindDests.back().first->setIsEHScopeEntry();
1650       break;
1651     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1652       // Add the catchpad handlers to the possible destinations. We don't
1653       // continue to the unwind destination of the catchswitch for wasm.
1654       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1655         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1656         UnwindDests.back().first->setIsEHScopeEntry();
1657       }
1658       break;
1659     } else {
1660       continue;
1661     }
1662   }
1663 }
1664 
1665 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1666 /// many places it could ultimately go. In the IR, we have a single unwind
1667 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1668 /// This function skips over imaginary basic blocks that hold catchswitch
1669 /// instructions, and finds all the "real" machine
1670 /// basic block destinations. As those destinations may not be successors of
1671 /// EHPadBB, here we also calculate the edge probability to those destinations.
1672 /// The passed-in Prob is the edge probability to EHPadBB.
1673 static void findUnwindDestinations(
1674     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1675     BranchProbability Prob,
1676     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1677         &UnwindDests) {
1678   EHPersonality Personality =
1679     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1680   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1681   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1682   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1683   bool IsSEH = isAsynchronousEHPersonality(Personality);
1684 
1685   if (IsWasmCXX) {
1686     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1687     assert(UnwindDests.size() <= 1 &&
1688            "There should be at most one unwind destination for wasm");
1689     return;
1690   }
1691 
1692   while (EHPadBB) {
1693     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1694     BasicBlock *NewEHPadBB = nullptr;
1695     if (isa<LandingPadInst>(Pad)) {
1696       // Stop on landingpads. They are not funclets.
1697       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1698       break;
1699     } else if (isa<CleanupPadInst>(Pad)) {
1700       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1701       // personalities.
1702       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1703       UnwindDests.back().first->setIsEHScopeEntry();
1704       UnwindDests.back().first->setIsEHFuncletEntry();
1705       break;
1706     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1707       // Add the catchpad handlers to the possible destinations.
1708       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1709         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1710         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1711         if (IsMSVCCXX || IsCoreCLR)
1712           UnwindDests.back().first->setIsEHFuncletEntry();
1713         if (!IsSEH)
1714           UnwindDests.back().first->setIsEHScopeEntry();
1715       }
1716       NewEHPadBB = CatchSwitch->getUnwindDest();
1717     } else {
1718       continue;
1719     }
1720 
1721     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1722     if (BPI && NewEHPadBB)
1723       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1724     EHPadBB = NewEHPadBB;
1725   }
1726 }
1727 
1728 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1729   // Update successor info.
1730   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1731   auto UnwindDest = I.getUnwindDest();
1732   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1733   BranchProbability UnwindDestProb =
1734       (BPI && UnwindDest)
1735           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1736           : BranchProbability::getZero();
1737   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1738   for (auto &UnwindDest : UnwindDests) {
1739     UnwindDest.first->setIsEHPad();
1740     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1741   }
1742   FuncInfo.MBB->normalizeSuccProbs();
1743 
1744   // Create the terminator node.
1745   SDValue Ret =
1746       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1747   DAG.setRoot(Ret);
1748 }
1749 
1750 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1751   report_fatal_error("visitCatchSwitch not yet implemented!");
1752 }
1753 
1754 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1755   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1756   auto &DL = DAG.getDataLayout();
1757   SDValue Chain = getControlRoot();
1758   SmallVector<ISD::OutputArg, 8> Outs;
1759   SmallVector<SDValue, 8> OutVals;
1760 
1761   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1762   // lower
1763   //
1764   //   %val = call <ty> @llvm.experimental.deoptimize()
1765   //   ret <ty> %val
1766   //
1767   // differently.
1768   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1769     LowerDeoptimizingReturn();
1770     return;
1771   }
1772 
1773   if (!FuncInfo.CanLowerReturn) {
1774     unsigned DemoteReg = FuncInfo.DemoteRegister;
1775     const Function *F = I.getParent()->getParent();
1776 
1777     // Emit a store of the return value through the virtual register.
1778     // Leave Outs empty so that LowerReturn won't try to load return
1779     // registers the usual way.
1780     SmallVector<EVT, 1> PtrValueVTs;
1781     ComputeValueVTs(TLI, DL,
1782                     F->getReturnType()->getPointerTo(
1783                         DAG.getDataLayout().getAllocaAddrSpace()),
1784                     PtrValueVTs);
1785 
1786     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1787                                         DemoteReg, PtrValueVTs[0]);
1788     SDValue RetOp = getValue(I.getOperand(0));
1789 
1790     SmallVector<EVT, 4> ValueVTs;
1791     SmallVector<uint64_t, 4> Offsets;
1792     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1793     unsigned NumValues = ValueVTs.size();
1794 
1795     SmallVector<SDValue, 4> Chains(NumValues);
1796     for (unsigned i = 0; i != NumValues; ++i) {
1797       // An aggregate return value cannot wrap around the address space, so
1798       // offsets to its parts don't wrap either.
1799       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1800       Chains[i] = DAG.getStore(
1801           Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1802           // FIXME: better loc info would be nice.
1803           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1804     }
1805 
1806     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1807                         MVT::Other, Chains);
1808   } else if (I.getNumOperands() != 0) {
1809     SmallVector<EVT, 4> ValueVTs;
1810     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1811     unsigned NumValues = ValueVTs.size();
1812     if (NumValues) {
1813       SDValue RetOp = getValue(I.getOperand(0));
1814 
1815       const Function *F = I.getParent()->getParent();
1816 
1817       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1818           I.getOperand(0)->getType(), F->getCallingConv(),
1819           /*IsVarArg*/ false);
1820 
1821       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1822       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1823                                           Attribute::SExt))
1824         ExtendKind = ISD::SIGN_EXTEND;
1825       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1826                                                Attribute::ZExt))
1827         ExtendKind = ISD::ZERO_EXTEND;
1828 
1829       LLVMContext &Context = F->getContext();
1830       bool RetInReg = F->getAttributes().hasAttribute(
1831           AttributeList::ReturnIndex, Attribute::InReg);
1832 
1833       for (unsigned j = 0; j != NumValues; ++j) {
1834         EVT VT = ValueVTs[j];
1835 
1836         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1837           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1838 
1839         CallingConv::ID CC = F->getCallingConv();
1840 
1841         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1842         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1843         SmallVector<SDValue, 4> Parts(NumParts);
1844         getCopyToParts(DAG, getCurSDLoc(),
1845                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1846                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1847 
1848         // 'inreg' on function refers to return value
1849         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1850         if (RetInReg)
1851           Flags.setInReg();
1852 
1853         if (I.getOperand(0)->getType()->isPointerTy()) {
1854           Flags.setPointer();
1855           Flags.setPointerAddrSpace(
1856               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1857         }
1858 
1859         if (NeedsRegBlock) {
1860           Flags.setInConsecutiveRegs();
1861           if (j == NumValues - 1)
1862             Flags.setInConsecutiveRegsLast();
1863         }
1864 
1865         // Propagate extension type if any
1866         if (ExtendKind == ISD::SIGN_EXTEND)
1867           Flags.setSExt();
1868         else if (ExtendKind == ISD::ZERO_EXTEND)
1869           Flags.setZExt();
1870 
1871         for (unsigned i = 0; i < NumParts; ++i) {
1872           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1873                                         VT, /*isfixed=*/true, 0, 0));
1874           OutVals.push_back(Parts[i]);
1875         }
1876       }
1877     }
1878   }
1879 
1880   // Push in swifterror virtual register as the last element of Outs. This makes
1881   // sure swifterror virtual register will be returned in the swifterror
1882   // physical register.
1883   const Function *F = I.getParent()->getParent();
1884   if (TLI.supportSwiftError() &&
1885       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1886     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1887     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1888     Flags.setSwiftError();
1889     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1890                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1891                                   true /*isfixed*/, 1 /*origidx*/,
1892                                   0 /*partOffs*/));
1893     // Create SDNode for the swifterror virtual register.
1894     OutVals.push_back(
1895         DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt(
1896                             &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first,
1897                         EVT(TLI.getPointerTy(DL))));
1898   }
1899 
1900   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1901   CallingConv::ID CallConv =
1902     DAG.getMachineFunction().getFunction().getCallingConv();
1903   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1904       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1905 
1906   // Verify that the target's LowerReturn behaved as expected.
1907   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1908          "LowerReturn didn't return a valid chain!");
1909 
1910   // Update the DAG with the new chain value resulting from return lowering.
1911   DAG.setRoot(Chain);
1912 }
1913 
1914 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1915 /// created for it, emit nodes to copy the value into the virtual
1916 /// registers.
1917 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1918   // Skip empty types
1919   if (V->getType()->isEmptyTy())
1920     return;
1921 
1922   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1923   if (VMI != FuncInfo.ValueMap.end()) {
1924     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1925     CopyValueToVirtualRegister(V, VMI->second);
1926   }
1927 }
1928 
1929 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1930 /// the current basic block, add it to ValueMap now so that we'll get a
1931 /// CopyTo/FromReg.
1932 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1933   // No need to export constants.
1934   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1935 
1936   // Already exported?
1937   if (FuncInfo.isExportedInst(V)) return;
1938 
1939   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1940   CopyValueToVirtualRegister(V, Reg);
1941 }
1942 
1943 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1944                                                      const BasicBlock *FromBB) {
1945   // The operands of the setcc have to be in this block.  We don't know
1946   // how to export them from some other block.
1947   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1948     // Can export from current BB.
1949     if (VI->getParent() == FromBB)
1950       return true;
1951 
1952     // Is already exported, noop.
1953     return FuncInfo.isExportedInst(V);
1954   }
1955 
1956   // If this is an argument, we can export it if the BB is the entry block or
1957   // if it is already exported.
1958   if (isa<Argument>(V)) {
1959     if (FromBB == &FromBB->getParent()->getEntryBlock())
1960       return true;
1961 
1962     // Otherwise, can only export this if it is already exported.
1963     return FuncInfo.isExportedInst(V);
1964   }
1965 
1966   // Otherwise, constants can always be exported.
1967   return true;
1968 }
1969 
1970 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1971 BranchProbability
1972 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1973                                         const MachineBasicBlock *Dst) const {
1974   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1975   const BasicBlock *SrcBB = Src->getBasicBlock();
1976   const BasicBlock *DstBB = Dst->getBasicBlock();
1977   if (!BPI) {
1978     // If BPI is not available, set the default probability as 1 / N, where N is
1979     // the number of successors.
1980     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1981     return BranchProbability(1, SuccSize);
1982   }
1983   return BPI->getEdgeProbability(SrcBB, DstBB);
1984 }
1985 
1986 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1987                                                MachineBasicBlock *Dst,
1988                                                BranchProbability Prob) {
1989   if (!FuncInfo.BPI)
1990     Src->addSuccessorWithoutProb(Dst);
1991   else {
1992     if (Prob.isUnknown())
1993       Prob = getEdgeProbability(Src, Dst);
1994     Src->addSuccessor(Dst, Prob);
1995   }
1996 }
1997 
1998 static bool InBlock(const Value *V, const BasicBlock *BB) {
1999   if (const Instruction *I = dyn_cast<Instruction>(V))
2000     return I->getParent() == BB;
2001   return true;
2002 }
2003 
2004 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2005 /// This function emits a branch and is used at the leaves of an OR or an
2006 /// AND operator tree.
2007 void
2008 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2009                                                   MachineBasicBlock *TBB,
2010                                                   MachineBasicBlock *FBB,
2011                                                   MachineBasicBlock *CurBB,
2012                                                   MachineBasicBlock *SwitchBB,
2013                                                   BranchProbability TProb,
2014                                                   BranchProbability FProb,
2015                                                   bool InvertCond) {
2016   const BasicBlock *BB = CurBB->getBasicBlock();
2017 
2018   // If the leaf of the tree is a comparison, merge the condition into
2019   // the caseblock.
2020   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2021     // The operands of the cmp have to be in this block.  We don't know
2022     // how to export them from some other block.  If this is the first block
2023     // of the sequence, no exporting is needed.
2024     if (CurBB == SwitchBB ||
2025         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2026          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2027       ISD::CondCode Condition;
2028       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2029         ICmpInst::Predicate Pred =
2030             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2031         Condition = getICmpCondCode(Pred);
2032       } else {
2033         const FCmpInst *FC = cast<FCmpInst>(Cond);
2034         FCmpInst::Predicate Pred =
2035             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2036         Condition = getFCmpCondCode(Pred);
2037         if (TM.Options.NoNaNsFPMath)
2038           Condition = getFCmpCodeWithoutNaN(Condition);
2039       }
2040 
2041       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2042                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2043       SwitchCases.push_back(CB);
2044       return;
2045     }
2046   }
2047 
2048   // Create a CaseBlock record representing this branch.
2049   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2050   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2051                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2052   SwitchCases.push_back(CB);
2053 }
2054 
2055 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2056                                                MachineBasicBlock *TBB,
2057                                                MachineBasicBlock *FBB,
2058                                                MachineBasicBlock *CurBB,
2059                                                MachineBasicBlock *SwitchBB,
2060                                                Instruction::BinaryOps Opc,
2061                                                BranchProbability TProb,
2062                                                BranchProbability FProb,
2063                                                bool InvertCond) {
2064   // Skip over not part of the tree and remember to invert op and operands at
2065   // next level.
2066   Value *NotCond;
2067   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2068       InBlock(NotCond, CurBB->getBasicBlock())) {
2069     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2070                          !InvertCond);
2071     return;
2072   }
2073 
2074   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2075   // Compute the effective opcode for Cond, taking into account whether it needs
2076   // to be inverted, e.g.
2077   //   and (not (or A, B)), C
2078   // gets lowered as
2079   //   and (and (not A, not B), C)
2080   unsigned BOpc = 0;
2081   if (BOp) {
2082     BOpc = BOp->getOpcode();
2083     if (InvertCond) {
2084       if (BOpc == Instruction::And)
2085         BOpc = Instruction::Or;
2086       else if (BOpc == Instruction::Or)
2087         BOpc = Instruction::And;
2088     }
2089   }
2090 
2091   // If this node is not part of the or/and tree, emit it as a branch.
2092   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2093       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2094       BOp->getParent() != CurBB->getBasicBlock() ||
2095       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2096       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2097     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2098                                  TProb, FProb, InvertCond);
2099     return;
2100   }
2101 
2102   //  Create TmpBB after CurBB.
2103   MachineFunction::iterator BBI(CurBB);
2104   MachineFunction &MF = DAG.getMachineFunction();
2105   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2106   CurBB->getParent()->insert(++BBI, TmpBB);
2107 
2108   if (Opc == Instruction::Or) {
2109     // Codegen X | Y as:
2110     // BB1:
2111     //   jmp_if_X TBB
2112     //   jmp TmpBB
2113     // TmpBB:
2114     //   jmp_if_Y TBB
2115     //   jmp FBB
2116     //
2117 
2118     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2119     // The requirement is that
2120     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2121     //     = TrueProb for original BB.
2122     // Assuming the original probabilities are A and B, one choice is to set
2123     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2124     // A/(1+B) and 2B/(1+B). This choice assumes that
2125     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2126     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2127     // TmpBB, but the math is more complicated.
2128 
2129     auto NewTrueProb = TProb / 2;
2130     auto NewFalseProb = TProb / 2 + FProb;
2131     // Emit the LHS condition.
2132     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2133                          NewTrueProb, NewFalseProb, InvertCond);
2134 
2135     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2136     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2137     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2138     // Emit the RHS condition into TmpBB.
2139     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2140                          Probs[0], Probs[1], InvertCond);
2141   } else {
2142     assert(Opc == Instruction::And && "Unknown merge op!");
2143     // Codegen X & Y as:
2144     // BB1:
2145     //   jmp_if_X TmpBB
2146     //   jmp FBB
2147     // TmpBB:
2148     //   jmp_if_Y TBB
2149     //   jmp FBB
2150     //
2151     //  This requires creation of TmpBB after CurBB.
2152 
2153     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2154     // The requirement is that
2155     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2156     //     = FalseProb for original BB.
2157     // Assuming the original probabilities are A and B, one choice is to set
2158     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2159     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2160     // TrueProb for BB1 * FalseProb for TmpBB.
2161 
2162     auto NewTrueProb = TProb + FProb / 2;
2163     auto NewFalseProb = FProb / 2;
2164     // Emit the LHS condition.
2165     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2166                          NewTrueProb, NewFalseProb, InvertCond);
2167 
2168     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2169     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2170     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2171     // Emit the RHS condition into TmpBB.
2172     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2173                          Probs[0], Probs[1], InvertCond);
2174   }
2175 }
2176 
2177 /// If the set of cases should be emitted as a series of branches, return true.
2178 /// If we should emit this as a bunch of and/or'd together conditions, return
2179 /// false.
2180 bool
2181 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2182   if (Cases.size() != 2) return true;
2183 
2184   // If this is two comparisons of the same values or'd or and'd together, they
2185   // will get folded into a single comparison, so don't emit two blocks.
2186   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2187        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2188       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2189        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2190     return false;
2191   }
2192 
2193   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2194   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2195   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2196       Cases[0].CC == Cases[1].CC &&
2197       isa<Constant>(Cases[0].CmpRHS) &&
2198       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2199     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2200       return false;
2201     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2202       return false;
2203   }
2204 
2205   return true;
2206 }
2207 
2208 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2209   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2210 
2211   // Update machine-CFG edges.
2212   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2213 
2214   if (I.isUnconditional()) {
2215     // Update machine-CFG edges.
2216     BrMBB->addSuccessor(Succ0MBB);
2217 
2218     // If this is not a fall-through branch or optimizations are switched off,
2219     // emit the branch.
2220     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2221       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2222                               MVT::Other, getControlRoot(),
2223                               DAG.getBasicBlock(Succ0MBB)));
2224 
2225     return;
2226   }
2227 
2228   // If this condition is one of the special cases we handle, do special stuff
2229   // now.
2230   const Value *CondVal = I.getCondition();
2231   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2232 
2233   // If this is a series of conditions that are or'd or and'd together, emit
2234   // this as a sequence of branches instead of setcc's with and/or operations.
2235   // As long as jumps are not expensive, this should improve performance.
2236   // For example, instead of something like:
2237   //     cmp A, B
2238   //     C = seteq
2239   //     cmp D, E
2240   //     F = setle
2241   //     or C, F
2242   //     jnz foo
2243   // Emit:
2244   //     cmp A, B
2245   //     je foo
2246   //     cmp D, E
2247   //     jle foo
2248   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2249     Instruction::BinaryOps Opcode = BOp->getOpcode();
2250     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2251         !I.getMetadata(LLVMContext::MD_unpredictable) &&
2252         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2253       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2254                            Opcode,
2255                            getEdgeProbability(BrMBB, Succ0MBB),
2256                            getEdgeProbability(BrMBB, Succ1MBB),
2257                            /*InvertCond=*/false);
2258       // If the compares in later blocks need to use values not currently
2259       // exported from this block, export them now.  This block should always
2260       // be the first entry.
2261       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2262 
2263       // Allow some cases to be rejected.
2264       if (ShouldEmitAsBranches(SwitchCases)) {
2265         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
2266           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
2267           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
2268         }
2269 
2270         // Emit the branch for this block.
2271         visitSwitchCase(SwitchCases[0], BrMBB);
2272         SwitchCases.erase(SwitchCases.begin());
2273         return;
2274       }
2275 
2276       // Okay, we decided not to do this, remove any inserted MBB's and clear
2277       // SwitchCases.
2278       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
2279         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
2280 
2281       SwitchCases.clear();
2282     }
2283   }
2284 
2285   // Create a CaseBlock record representing this branch.
2286   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2287                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2288 
2289   // Use visitSwitchCase to actually insert the fast branch sequence for this
2290   // cond branch.
2291   visitSwitchCase(CB, BrMBB);
2292 }
2293 
2294 /// visitSwitchCase - Emits the necessary code to represent a single node in
2295 /// the binary search tree resulting from lowering a switch instruction.
2296 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2297                                           MachineBasicBlock *SwitchBB) {
2298   SDValue Cond;
2299   SDValue CondLHS = getValue(CB.CmpLHS);
2300   SDLoc dl = CB.DL;
2301 
2302   if (CB.CC == ISD::SETTRUE) {
2303     // Branch or fall through to TrueBB.
2304     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2305     SwitchBB->normalizeSuccProbs();
2306     if (CB.TrueBB != NextBlock(SwitchBB)) {
2307       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2308                               DAG.getBasicBlock(CB.TrueBB)));
2309     }
2310     return;
2311   }
2312 
2313   // Build the setcc now.
2314   if (!CB.CmpMHS) {
2315     // Fold "(X == true)" to X and "(X == false)" to !X to
2316     // handle common cases produced by branch lowering.
2317     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2318         CB.CC == ISD::SETEQ)
2319       Cond = CondLHS;
2320     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2321              CB.CC == ISD::SETEQ) {
2322       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2323       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2324     } else
2325       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
2326   } else {
2327     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2328 
2329     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2330     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2331 
2332     SDValue CmpOp = getValue(CB.CmpMHS);
2333     EVT VT = CmpOp.getValueType();
2334 
2335     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2336       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2337                           ISD::SETLE);
2338     } else {
2339       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2340                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2341       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2342                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2343     }
2344   }
2345 
2346   // Update successor info
2347   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2348   // TrueBB and FalseBB are always different unless the incoming IR is
2349   // degenerate. This only happens when running llc on weird IR.
2350   if (CB.TrueBB != CB.FalseBB)
2351     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2352   SwitchBB->normalizeSuccProbs();
2353 
2354   // If the lhs block is the next block, invert the condition so that we can
2355   // fall through to the lhs instead of the rhs block.
2356   if (CB.TrueBB == NextBlock(SwitchBB)) {
2357     std::swap(CB.TrueBB, CB.FalseBB);
2358     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2359     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2360   }
2361 
2362   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2363                                MVT::Other, getControlRoot(), Cond,
2364                                DAG.getBasicBlock(CB.TrueBB));
2365 
2366   // Insert the false branch. Do this even if it's a fall through branch,
2367   // this makes it easier to do DAG optimizations which require inverting
2368   // the branch condition.
2369   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2370                        DAG.getBasicBlock(CB.FalseBB));
2371 
2372   DAG.setRoot(BrCond);
2373 }
2374 
2375 /// visitJumpTable - Emit JumpTable node in the current MBB
2376 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
2377   // Emit the code for the jump table
2378   assert(JT.Reg != -1U && "Should lower JT Header first!");
2379   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2380   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2381                                      JT.Reg, PTy);
2382   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2383   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2384                                     MVT::Other, Index.getValue(1),
2385                                     Table, Index);
2386   DAG.setRoot(BrJumpTable);
2387 }
2388 
2389 /// visitJumpTableHeader - This function emits necessary code to produce index
2390 /// in the JumpTable from switch case.
2391 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
2392                                                JumpTableHeader &JTH,
2393                                                MachineBasicBlock *SwitchBB) {
2394   SDLoc dl = getCurSDLoc();
2395 
2396   // Subtract the lowest switch case value from the value being switched on.
2397   SDValue SwitchOp = getValue(JTH.SValue);
2398   EVT VT = SwitchOp.getValueType();
2399   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2400                             DAG.getConstant(JTH.First, dl, VT));
2401 
2402   // The SDNode we just created, which holds the value being switched on minus
2403   // the smallest case value, needs to be copied to a virtual register so it
2404   // can be used as an index into the jump table in a subsequent basic block.
2405   // This value may be smaller or larger than the target's pointer type, and
2406   // therefore require extension or truncating.
2407   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2408   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2409 
2410   unsigned JumpTableReg =
2411       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2412   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2413                                     JumpTableReg, SwitchOp);
2414   JT.Reg = JumpTableReg;
2415 
2416   if (!JTH.OmitRangeCheck) {
2417     // Emit the range check for the jump table, and branch to the default block
2418     // for the switch statement if the value being switched on exceeds the
2419     // largest case in the switch.
2420     SDValue CMP = DAG.getSetCC(
2421         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2422                                    Sub.getValueType()),
2423         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2424 
2425     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2426                                  MVT::Other, CopyTo, CMP,
2427                                  DAG.getBasicBlock(JT.Default));
2428 
2429     // Avoid emitting unnecessary branches to the next block.
2430     if (JT.MBB != NextBlock(SwitchBB))
2431       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2432                            DAG.getBasicBlock(JT.MBB));
2433 
2434     DAG.setRoot(BrCond);
2435   } else {
2436     // Avoid emitting unnecessary branches to the next block.
2437     if (JT.MBB != NextBlock(SwitchBB))
2438       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2439                               DAG.getBasicBlock(JT.MBB)));
2440     else
2441       DAG.setRoot(CopyTo);
2442   }
2443 }
2444 
2445 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2446 /// variable if there exists one.
2447 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2448                                  SDValue &Chain) {
2449   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2450   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2451   MachineFunction &MF = DAG.getMachineFunction();
2452   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2453   MachineSDNode *Node =
2454       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2455   if (Global) {
2456     MachinePointerInfo MPInfo(Global);
2457     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2458                  MachineMemOperand::MODereferenceable;
2459     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2460         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy));
2461     DAG.setNodeMemRefs(Node, {MemRef});
2462   }
2463   return SDValue(Node, 0);
2464 }
2465 
2466 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2467 /// tail spliced into a stack protector check success bb.
2468 ///
2469 /// For a high level explanation of how this fits into the stack protector
2470 /// generation see the comment on the declaration of class
2471 /// StackProtectorDescriptor.
2472 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2473                                                   MachineBasicBlock *ParentBB) {
2474 
2475   // First create the loads to the guard/stack slot for the comparison.
2476   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2477   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2478 
2479   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2480   int FI = MFI.getStackProtectorIndex();
2481 
2482   SDValue Guard;
2483   SDLoc dl = getCurSDLoc();
2484   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2485   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2486   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2487 
2488   // Generate code to load the content of the guard slot.
2489   SDValue GuardVal = DAG.getLoad(
2490       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2491       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2492       MachineMemOperand::MOVolatile);
2493 
2494   if (TLI.useStackGuardXorFP())
2495     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2496 
2497   // Retrieve guard check function, nullptr if instrumentation is inlined.
2498   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2499     // The target provides a guard check function to validate the guard value.
2500     // Generate a call to that function with the content of the guard slot as
2501     // argument.
2502     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2503     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2504 
2505     TargetLowering::ArgListTy Args;
2506     TargetLowering::ArgListEntry Entry;
2507     Entry.Node = GuardVal;
2508     Entry.Ty = FnTy->getParamType(0);
2509     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2510       Entry.IsInReg = true;
2511     Args.push_back(Entry);
2512 
2513     TargetLowering::CallLoweringInfo CLI(DAG);
2514     CLI.setDebugLoc(getCurSDLoc())
2515         .setChain(DAG.getEntryNode())
2516         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2517                    getValue(GuardCheckFn), std::move(Args));
2518 
2519     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2520     DAG.setRoot(Result.second);
2521     return;
2522   }
2523 
2524   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2525   // Otherwise, emit a volatile load to retrieve the stack guard value.
2526   SDValue Chain = DAG.getEntryNode();
2527   if (TLI.useLoadStackGuardNode()) {
2528     Guard = getLoadStackGuard(DAG, dl, Chain);
2529   } else {
2530     const Value *IRGuard = TLI.getSDagStackGuard(M);
2531     SDValue GuardPtr = getValue(IRGuard);
2532 
2533     Guard =
2534         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2535                     Align, MachineMemOperand::MOVolatile);
2536   }
2537 
2538   // Perform the comparison via a subtract/getsetcc.
2539   EVT VT = Guard.getValueType();
2540   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2541 
2542   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2543                                                         *DAG.getContext(),
2544                                                         Sub.getValueType()),
2545                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2546 
2547   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2548   // branch to failure MBB.
2549   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2550                                MVT::Other, GuardVal.getOperand(0),
2551                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2552   // Otherwise branch to success MBB.
2553   SDValue Br = DAG.getNode(ISD::BR, dl,
2554                            MVT::Other, BrCond,
2555                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2556 
2557   DAG.setRoot(Br);
2558 }
2559 
2560 /// Codegen the failure basic block for a stack protector check.
2561 ///
2562 /// A failure stack protector machine basic block consists simply of a call to
2563 /// __stack_chk_fail().
2564 ///
2565 /// For a high level explanation of how this fits into the stack protector
2566 /// generation see the comment on the declaration of class
2567 /// StackProtectorDescriptor.
2568 void
2569 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2570   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2571   SDValue Chain =
2572       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2573                       None, false, getCurSDLoc(), false, false).second;
2574   // On PS4, the "return address" must still be within the calling function,
2575   // even if it's at the very end, so emit an explicit TRAP here.
2576   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2577   if (TM.getTargetTriple().isPS4CPU())
2578     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2579 
2580   DAG.setRoot(Chain);
2581 }
2582 
2583 /// visitBitTestHeader - This function emits necessary code to produce value
2584 /// suitable for "bit tests"
2585 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2586                                              MachineBasicBlock *SwitchBB) {
2587   SDLoc dl = getCurSDLoc();
2588 
2589   // Subtract the minimum value
2590   SDValue SwitchOp = getValue(B.SValue);
2591   EVT VT = SwitchOp.getValueType();
2592   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2593                             DAG.getConstant(B.First, dl, VT));
2594 
2595   // Check range
2596   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2597   SDValue RangeCmp = DAG.getSetCC(
2598       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2599                                  Sub.getValueType()),
2600       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2601 
2602   // Determine the type of the test operands.
2603   bool UsePtrType = false;
2604   if (!TLI.isTypeLegal(VT))
2605     UsePtrType = true;
2606   else {
2607     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2608       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2609         // Switch table case range are encoded into series of masks.
2610         // Just use pointer type, it's guaranteed to fit.
2611         UsePtrType = true;
2612         break;
2613       }
2614   }
2615   if (UsePtrType) {
2616     VT = TLI.getPointerTy(DAG.getDataLayout());
2617     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2618   }
2619 
2620   B.RegVT = VT.getSimpleVT();
2621   B.Reg = FuncInfo.CreateReg(B.RegVT);
2622   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2623 
2624   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2625 
2626   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2627   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2628   SwitchBB->normalizeSuccProbs();
2629 
2630   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2631                                 MVT::Other, CopyTo, RangeCmp,
2632                                 DAG.getBasicBlock(B.Default));
2633 
2634   // Avoid emitting unnecessary branches to the next block.
2635   if (MBB != NextBlock(SwitchBB))
2636     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2637                           DAG.getBasicBlock(MBB));
2638 
2639   DAG.setRoot(BrRange);
2640 }
2641 
2642 /// visitBitTestCase - this function produces one "bit test"
2643 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2644                                            MachineBasicBlock* NextMBB,
2645                                            BranchProbability BranchProbToNext,
2646                                            unsigned Reg,
2647                                            BitTestCase &B,
2648                                            MachineBasicBlock *SwitchBB) {
2649   SDLoc dl = getCurSDLoc();
2650   MVT VT = BB.RegVT;
2651   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2652   SDValue Cmp;
2653   unsigned PopCount = countPopulation(B.Mask);
2654   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2655   if (PopCount == 1) {
2656     // Testing for a single bit; just compare the shift count with what it
2657     // would need to be to shift a 1 bit in that position.
2658     Cmp = DAG.getSetCC(
2659         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2660         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2661         ISD::SETEQ);
2662   } else if (PopCount == BB.Range) {
2663     // There is only one zero bit in the range, test for it directly.
2664     Cmp = DAG.getSetCC(
2665         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2666         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2667         ISD::SETNE);
2668   } else {
2669     // Make desired shift
2670     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2671                                     DAG.getConstant(1, dl, VT), ShiftOp);
2672 
2673     // Emit bit tests and jumps
2674     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2675                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2676     Cmp = DAG.getSetCC(
2677         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2678         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2679   }
2680 
2681   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2682   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2683   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2684   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2685   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2686   // one as they are relative probabilities (and thus work more like weights),
2687   // and hence we need to normalize them to let the sum of them become one.
2688   SwitchBB->normalizeSuccProbs();
2689 
2690   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2691                               MVT::Other, getControlRoot(),
2692                               Cmp, DAG.getBasicBlock(B.TargetBB));
2693 
2694   // Avoid emitting unnecessary branches to the next block.
2695   if (NextMBB != NextBlock(SwitchBB))
2696     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2697                         DAG.getBasicBlock(NextMBB));
2698 
2699   DAG.setRoot(BrAnd);
2700 }
2701 
2702 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2703   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2704 
2705   // Retrieve successors. Look through artificial IR level blocks like
2706   // catchswitch for successors.
2707   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2708   const BasicBlock *EHPadBB = I.getSuccessor(1);
2709 
2710   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2711   // have to do anything here to lower funclet bundles.
2712   assert(!I.hasOperandBundlesOtherThan(
2713              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2714          "Cannot lower invokes with arbitrary operand bundles yet!");
2715 
2716   const Value *Callee(I.getCalledValue());
2717   const Function *Fn = dyn_cast<Function>(Callee);
2718   if (isa<InlineAsm>(Callee))
2719     visitInlineAsm(&I);
2720   else if (Fn && Fn->isIntrinsic()) {
2721     switch (Fn->getIntrinsicID()) {
2722     default:
2723       llvm_unreachable("Cannot invoke this intrinsic");
2724     case Intrinsic::donothing:
2725       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2726       break;
2727     case Intrinsic::experimental_patchpoint_void:
2728     case Intrinsic::experimental_patchpoint_i64:
2729       visitPatchpoint(&I, EHPadBB);
2730       break;
2731     case Intrinsic::experimental_gc_statepoint:
2732       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2733       break;
2734     case Intrinsic::wasm_rethrow_in_catch: {
2735       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2736       // special because it can be invoked, so we manually lower it to a DAG
2737       // node here.
2738       SmallVector<SDValue, 8> Ops;
2739       Ops.push_back(getRoot()); // inchain
2740       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2741       Ops.push_back(
2742           DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(),
2743                                 TLI.getPointerTy(DAG.getDataLayout())));
2744       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2745       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2746       break;
2747     }
2748     }
2749   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2750     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2751     // Eventually we will support lowering the @llvm.experimental.deoptimize
2752     // intrinsic, and right now there are no plans to support other intrinsics
2753     // with deopt state.
2754     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2755   } else {
2756     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2757   }
2758 
2759   // If the value of the invoke is used outside of its defining block, make it
2760   // available as a virtual register.
2761   // We already took care of the exported value for the statepoint instruction
2762   // during call to the LowerStatepoint.
2763   if (!isStatepoint(I)) {
2764     CopyToExportRegsIfNeeded(&I);
2765   }
2766 
2767   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2768   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2769   BranchProbability EHPadBBProb =
2770       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2771           : BranchProbability::getZero();
2772   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2773 
2774   // Update successor info.
2775   addSuccessorWithProb(InvokeMBB, Return);
2776   for (auto &UnwindDest : UnwindDests) {
2777     UnwindDest.first->setIsEHPad();
2778     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2779   }
2780   InvokeMBB->normalizeSuccProbs();
2781 
2782   // Drop into normal successor.
2783   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2784                           DAG.getBasicBlock(Return)));
2785 }
2786 
2787 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2788   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2789 
2790   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2791   // have to do anything here to lower funclet bundles.
2792   assert(!I.hasOperandBundlesOtherThan(
2793              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2794          "Cannot lower callbrs with arbitrary operand bundles yet!");
2795 
2796   assert(isa<InlineAsm>(I.getCalledValue()) &&
2797          "Only know how to handle inlineasm callbr");
2798   visitInlineAsm(&I);
2799 
2800   // Retrieve successors.
2801   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2802 
2803   // Update successor info.
2804   addSuccessorWithProb(CallBrMBB, Return);
2805   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2806     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2807     addSuccessorWithProb(CallBrMBB, Target);
2808   }
2809   CallBrMBB->normalizeSuccProbs();
2810 
2811   // Drop into default successor.
2812   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2813                           MVT::Other, getControlRoot(),
2814                           DAG.getBasicBlock(Return)));
2815 }
2816 
2817 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2818   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2819 }
2820 
2821 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2822   assert(FuncInfo.MBB->isEHPad() &&
2823          "Call to landingpad not in landing pad!");
2824 
2825   // If there aren't registers to copy the values into (e.g., during SjLj
2826   // exceptions), then don't bother to create these DAG nodes.
2827   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2828   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2829   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2830       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2831     return;
2832 
2833   // If landingpad's return type is token type, we don't create DAG nodes
2834   // for its exception pointer and selector value. The extraction of exception
2835   // pointer or selector value from token type landingpads is not currently
2836   // supported.
2837   if (LP.getType()->isTokenTy())
2838     return;
2839 
2840   SmallVector<EVT, 2> ValueVTs;
2841   SDLoc dl = getCurSDLoc();
2842   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2843   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2844 
2845   // Get the two live-in registers as SDValues. The physregs have already been
2846   // copied into virtual registers.
2847   SDValue Ops[2];
2848   if (FuncInfo.ExceptionPointerVirtReg) {
2849     Ops[0] = DAG.getZExtOrTrunc(
2850         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2851                            FuncInfo.ExceptionPointerVirtReg,
2852                            TLI.getPointerTy(DAG.getDataLayout())),
2853         dl, ValueVTs[0]);
2854   } else {
2855     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2856   }
2857   Ops[1] = DAG.getZExtOrTrunc(
2858       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2859                          FuncInfo.ExceptionSelectorVirtReg,
2860                          TLI.getPointerTy(DAG.getDataLayout())),
2861       dl, ValueVTs[1]);
2862 
2863   // Merge into one.
2864   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2865                             DAG.getVTList(ValueVTs), Ops);
2866   setValue(&LP, Res);
2867 }
2868 
2869 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2870 #ifndef NDEBUG
2871   for (const CaseCluster &CC : Clusters)
2872     assert(CC.Low == CC.High && "Input clusters must be single-case");
2873 #endif
2874 
2875   llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) {
2876     return a.Low->getValue().slt(b.Low->getValue());
2877   });
2878 
2879   // Merge adjacent clusters with the same destination.
2880   const unsigned N = Clusters.size();
2881   unsigned DstIndex = 0;
2882   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2883     CaseCluster &CC = Clusters[SrcIndex];
2884     const ConstantInt *CaseVal = CC.Low;
2885     MachineBasicBlock *Succ = CC.MBB;
2886 
2887     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2888         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2889       // If this case has the same successor and is a neighbour, merge it into
2890       // the previous cluster.
2891       Clusters[DstIndex - 1].High = CaseVal;
2892       Clusters[DstIndex - 1].Prob += CC.Prob;
2893     } else {
2894       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2895                    sizeof(Clusters[SrcIndex]));
2896     }
2897   }
2898   Clusters.resize(DstIndex);
2899 }
2900 
2901 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2902                                            MachineBasicBlock *Last) {
2903   // Update JTCases.
2904   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2905     if (JTCases[i].first.HeaderBB == First)
2906       JTCases[i].first.HeaderBB = Last;
2907 
2908   // Update BitTestCases.
2909   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2910     if (BitTestCases[i].Parent == First)
2911       BitTestCases[i].Parent = Last;
2912 }
2913 
2914 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2915   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2916 
2917   // Update machine-CFG edges with unique successors.
2918   SmallSet<BasicBlock*, 32> Done;
2919   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2920     BasicBlock *BB = I.getSuccessor(i);
2921     bool Inserted = Done.insert(BB).second;
2922     if (!Inserted)
2923         continue;
2924 
2925     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2926     addSuccessorWithProb(IndirectBrMBB, Succ);
2927   }
2928   IndirectBrMBB->normalizeSuccProbs();
2929 
2930   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2931                           MVT::Other, getControlRoot(),
2932                           getValue(I.getAddress())));
2933 }
2934 
2935 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2936   if (!DAG.getTarget().Options.TrapUnreachable)
2937     return;
2938 
2939   // We may be able to ignore unreachable behind a noreturn call.
2940   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2941     const BasicBlock &BB = *I.getParent();
2942     if (&I != &BB.front()) {
2943       BasicBlock::const_iterator PredI =
2944         std::prev(BasicBlock::const_iterator(&I));
2945       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2946         if (Call->doesNotReturn())
2947           return;
2948       }
2949     }
2950   }
2951 
2952   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2953 }
2954 
2955 void SelectionDAGBuilder::visitFSub(const User &I) {
2956   // -0.0 - X --> fneg
2957   Type *Ty = I.getType();
2958   if (isa<Constant>(I.getOperand(0)) &&
2959       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2960     SDValue Op2 = getValue(I.getOperand(1));
2961     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2962                              Op2.getValueType(), Op2));
2963     return;
2964   }
2965 
2966   visitBinary(I, ISD::FSUB);
2967 }
2968 
2969 /// Checks if the given instruction performs a vector reduction, in which case
2970 /// we have the freedom to alter the elements in the result as long as the
2971 /// reduction of them stays unchanged.
2972 static bool isVectorReductionOp(const User *I) {
2973   const Instruction *Inst = dyn_cast<Instruction>(I);
2974   if (!Inst || !Inst->getType()->isVectorTy())
2975     return false;
2976 
2977   auto OpCode = Inst->getOpcode();
2978   switch (OpCode) {
2979   case Instruction::Add:
2980   case Instruction::Mul:
2981   case Instruction::And:
2982   case Instruction::Or:
2983   case Instruction::Xor:
2984     break;
2985   case Instruction::FAdd:
2986   case Instruction::FMul:
2987     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2988       if (FPOp->getFastMathFlags().isFast())
2989         break;
2990     LLVM_FALLTHROUGH;
2991   default:
2992     return false;
2993   }
2994 
2995   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2996   // Ensure the reduction size is a power of 2.
2997   if (!isPowerOf2_32(ElemNum))
2998     return false;
2999 
3000   unsigned ElemNumToReduce = ElemNum;
3001 
3002   // Do DFS search on the def-use chain from the given instruction. We only
3003   // allow four kinds of operations during the search until we reach the
3004   // instruction that extracts the first element from the vector:
3005   //
3006   //   1. The reduction operation of the same opcode as the given instruction.
3007   //
3008   //   2. PHI node.
3009   //
3010   //   3. ShuffleVector instruction together with a reduction operation that
3011   //      does a partial reduction.
3012   //
3013   //   4. ExtractElement that extracts the first element from the vector, and we
3014   //      stop searching the def-use chain here.
3015   //
3016   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
3017   // from 1-3 to the stack to continue the DFS. The given instruction is not
3018   // a reduction operation if we meet any other instructions other than those
3019   // listed above.
3020 
3021   SmallVector<const User *, 16> UsersToVisit{Inst};
3022   SmallPtrSet<const User *, 16> Visited;
3023   bool ReduxExtracted = false;
3024 
3025   while (!UsersToVisit.empty()) {
3026     auto User = UsersToVisit.back();
3027     UsersToVisit.pop_back();
3028     if (!Visited.insert(User).second)
3029       continue;
3030 
3031     for (const auto &U : User->users()) {
3032       auto Inst = dyn_cast<Instruction>(U);
3033       if (!Inst)
3034         return false;
3035 
3036       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
3037         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
3038           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
3039             return false;
3040         UsersToVisit.push_back(U);
3041       } else if (const ShuffleVectorInst *ShufInst =
3042                      dyn_cast<ShuffleVectorInst>(U)) {
3043         // Detect the following pattern: A ShuffleVector instruction together
3044         // with a reduction that do partial reduction on the first and second
3045         // ElemNumToReduce / 2 elements, and store the result in
3046         // ElemNumToReduce / 2 elements in another vector.
3047 
3048         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
3049         if (ResultElements < ElemNum)
3050           return false;
3051 
3052         if (ElemNumToReduce == 1)
3053           return false;
3054         if (!isa<UndefValue>(U->getOperand(1)))
3055           return false;
3056         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
3057           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
3058             return false;
3059         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
3060           if (ShufInst->getMaskValue(i) != -1)
3061             return false;
3062 
3063         // There is only one user of this ShuffleVector instruction, which
3064         // must be a reduction operation.
3065         if (!U->hasOneUse())
3066           return false;
3067 
3068         auto U2 = dyn_cast<Instruction>(*U->user_begin());
3069         if (!U2 || U2->getOpcode() != OpCode)
3070           return false;
3071 
3072         // Check operands of the reduction operation.
3073         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
3074             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
3075           UsersToVisit.push_back(U2);
3076           ElemNumToReduce /= 2;
3077         } else
3078           return false;
3079       } else if (isa<ExtractElementInst>(U)) {
3080         // At this moment we should have reduced all elements in the vector.
3081         if (ElemNumToReduce != 1)
3082           return false;
3083 
3084         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
3085         if (!Val || !Val->isZero())
3086           return false;
3087 
3088         ReduxExtracted = true;
3089       } else
3090         return false;
3091     }
3092   }
3093   return ReduxExtracted;
3094 }
3095 
3096 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3097   SDNodeFlags Flags;
3098 
3099   SDValue Op = getValue(I.getOperand(0));
3100   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3101                                     Op, Flags);
3102   setValue(&I, UnNodeValue);
3103 }
3104 
3105 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3106   SDNodeFlags Flags;
3107   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3108     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3109     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3110   }
3111   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
3112     Flags.setExact(ExactOp->isExact());
3113   }
3114   if (isVectorReductionOp(&I)) {
3115     Flags.setVectorReduction(true);
3116     LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
3117   }
3118 
3119   SDValue Op1 = getValue(I.getOperand(0));
3120   SDValue Op2 = getValue(I.getOperand(1));
3121   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3122                                      Op1, Op2, Flags);
3123   setValue(&I, BinNodeValue);
3124 }
3125 
3126 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3127   SDValue Op1 = getValue(I.getOperand(0));
3128   SDValue Op2 = getValue(I.getOperand(1));
3129 
3130   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3131       Op1.getValueType(), DAG.getDataLayout());
3132 
3133   // Coerce the shift amount to the right type if we can.
3134   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3135     unsigned ShiftSize = ShiftTy.getSizeInBits();
3136     unsigned Op2Size = Op2.getValueSizeInBits();
3137     SDLoc DL = getCurSDLoc();
3138 
3139     // If the operand is smaller than the shift count type, promote it.
3140     if (ShiftSize > Op2Size)
3141       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3142 
3143     // If the operand is larger than the shift count type but the shift
3144     // count type has enough bits to represent any shift value, truncate
3145     // it now. This is a common case and it exposes the truncate to
3146     // optimization early.
3147     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3148       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3149     // Otherwise we'll need to temporarily settle for some other convenient
3150     // type.  Type legalization will make adjustments once the shiftee is split.
3151     else
3152       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3153   }
3154 
3155   bool nuw = false;
3156   bool nsw = false;
3157   bool exact = false;
3158 
3159   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3160 
3161     if (const OverflowingBinaryOperator *OFBinOp =
3162             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3163       nuw = OFBinOp->hasNoUnsignedWrap();
3164       nsw = OFBinOp->hasNoSignedWrap();
3165     }
3166     if (const PossiblyExactOperator *ExactOp =
3167             dyn_cast<const PossiblyExactOperator>(&I))
3168       exact = ExactOp->isExact();
3169   }
3170   SDNodeFlags Flags;
3171   Flags.setExact(exact);
3172   Flags.setNoSignedWrap(nsw);
3173   Flags.setNoUnsignedWrap(nuw);
3174   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3175                             Flags);
3176   setValue(&I, Res);
3177 }
3178 
3179 void SelectionDAGBuilder::visitSDiv(const User &I) {
3180   SDValue Op1 = getValue(I.getOperand(0));
3181   SDValue Op2 = getValue(I.getOperand(1));
3182 
3183   SDNodeFlags Flags;
3184   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3185                  cast<PossiblyExactOperator>(&I)->isExact());
3186   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3187                            Op2, Flags));
3188 }
3189 
3190 void SelectionDAGBuilder::visitICmp(const User &I) {
3191   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3192   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3193     predicate = IC->getPredicate();
3194   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3195     predicate = ICmpInst::Predicate(IC->getPredicate());
3196   SDValue Op1 = getValue(I.getOperand(0));
3197   SDValue Op2 = getValue(I.getOperand(1));
3198   ISD::CondCode Opcode = getICmpCondCode(predicate);
3199 
3200   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3201                                                         I.getType());
3202   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3203 }
3204 
3205 void SelectionDAGBuilder::visitFCmp(const User &I) {
3206   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3207   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3208     predicate = FC->getPredicate();
3209   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3210     predicate = FCmpInst::Predicate(FC->getPredicate());
3211   SDValue Op1 = getValue(I.getOperand(0));
3212   SDValue Op2 = getValue(I.getOperand(1));
3213 
3214   ISD::CondCode Condition = getFCmpCondCode(predicate);
3215   auto *FPMO = dyn_cast<FPMathOperator>(&I);
3216   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
3217     Condition = getFCmpCodeWithoutNaN(Condition);
3218 
3219   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3220                                                         I.getType());
3221   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3222 }
3223 
3224 // Check if the condition of the select has one use or two users that are both
3225 // selects with the same condition.
3226 static bool hasOnlySelectUsers(const Value *Cond) {
3227   return llvm::all_of(Cond->users(), [](const Value *V) {
3228     return isa<SelectInst>(V);
3229   });
3230 }
3231 
3232 void SelectionDAGBuilder::visitSelect(const User &I) {
3233   SmallVector<EVT, 4> ValueVTs;
3234   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3235                   ValueVTs);
3236   unsigned NumValues = ValueVTs.size();
3237   if (NumValues == 0) return;
3238 
3239   SmallVector<SDValue, 4> Values(NumValues);
3240   SDValue Cond     = getValue(I.getOperand(0));
3241   SDValue LHSVal   = getValue(I.getOperand(1));
3242   SDValue RHSVal   = getValue(I.getOperand(2));
3243   auto BaseOps = {Cond};
3244   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
3245     ISD::VSELECT : ISD::SELECT;
3246 
3247   bool IsUnaryAbs = false;
3248 
3249   // Min/max matching is only viable if all output VTs are the same.
3250   if (is_splat(ValueVTs)) {
3251     EVT VT = ValueVTs[0];
3252     LLVMContext &Ctx = *DAG.getContext();
3253     auto &TLI = DAG.getTargetLoweringInfo();
3254 
3255     // We care about the legality of the operation after it has been type
3256     // legalized.
3257     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
3258            VT != TLI.getTypeToTransformTo(Ctx, VT))
3259       VT = TLI.getTypeToTransformTo(Ctx, VT);
3260 
3261     // If the vselect is legal, assume we want to leave this as a vector setcc +
3262     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3263     // min/max is legal on the scalar type.
3264     bool UseScalarMinMax = VT.isVector() &&
3265       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3266 
3267     Value *LHS, *RHS;
3268     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3269     ISD::NodeType Opc = ISD::DELETED_NODE;
3270     switch (SPR.Flavor) {
3271     case SPF_UMAX:    Opc = ISD::UMAX; break;
3272     case SPF_UMIN:    Opc = ISD::UMIN; break;
3273     case SPF_SMAX:    Opc = ISD::SMAX; break;
3274     case SPF_SMIN:    Opc = ISD::SMIN; break;
3275     case SPF_FMINNUM:
3276       switch (SPR.NaNBehavior) {
3277       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3278       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3279       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3280       case SPNB_RETURNS_ANY: {
3281         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3282           Opc = ISD::FMINNUM;
3283         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3284           Opc = ISD::FMINIMUM;
3285         else if (UseScalarMinMax)
3286           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3287             ISD::FMINNUM : ISD::FMINIMUM;
3288         break;
3289       }
3290       }
3291       break;
3292     case SPF_FMAXNUM:
3293       switch (SPR.NaNBehavior) {
3294       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3295       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3296       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3297       case SPNB_RETURNS_ANY:
3298 
3299         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3300           Opc = ISD::FMAXNUM;
3301         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3302           Opc = ISD::FMAXIMUM;
3303         else if (UseScalarMinMax)
3304           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3305             ISD::FMAXNUM : ISD::FMAXIMUM;
3306         break;
3307       }
3308       break;
3309     case SPF_ABS:
3310       IsUnaryAbs = true;
3311       Opc = ISD::ABS;
3312       break;
3313     case SPF_NABS:
3314       // TODO: we need to produce sub(0, abs(X)).
3315     default: break;
3316     }
3317 
3318     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3319         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3320          (UseScalarMinMax &&
3321           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3322         // If the underlying comparison instruction is used by any other
3323         // instruction, the consumed instructions won't be destroyed, so it is
3324         // not profitable to convert to a min/max.
3325         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3326       OpCode = Opc;
3327       LHSVal = getValue(LHS);
3328       RHSVal = getValue(RHS);
3329       BaseOps = {};
3330     }
3331 
3332     if (IsUnaryAbs) {
3333       OpCode = Opc;
3334       LHSVal = getValue(LHS);
3335       BaseOps = {};
3336     }
3337   }
3338 
3339   if (IsUnaryAbs) {
3340     for (unsigned i = 0; i != NumValues; ++i) {
3341       Values[i] =
3342           DAG.getNode(OpCode, getCurSDLoc(),
3343                       LHSVal.getNode()->getValueType(LHSVal.getResNo() + i),
3344                       SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3345     }
3346   } else {
3347     for (unsigned i = 0; i != NumValues; ++i) {
3348       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3349       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3350       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3351       Values[i] = DAG.getNode(
3352           OpCode, getCurSDLoc(),
3353           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops);
3354     }
3355   }
3356 
3357   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3358                            DAG.getVTList(ValueVTs), Values));
3359 }
3360 
3361 void SelectionDAGBuilder::visitTrunc(const User &I) {
3362   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3363   SDValue N = getValue(I.getOperand(0));
3364   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3365                                                         I.getType());
3366   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3367 }
3368 
3369 void SelectionDAGBuilder::visitZExt(const User &I) {
3370   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3371   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3372   SDValue N = getValue(I.getOperand(0));
3373   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3374                                                         I.getType());
3375   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3376 }
3377 
3378 void SelectionDAGBuilder::visitSExt(const User &I) {
3379   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3380   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3381   SDValue N = getValue(I.getOperand(0));
3382   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3383                                                         I.getType());
3384   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3385 }
3386 
3387 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3388   // FPTrunc is never a no-op cast, no need to check
3389   SDValue N = getValue(I.getOperand(0));
3390   SDLoc dl = getCurSDLoc();
3391   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3392   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3393   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3394                            DAG.getTargetConstant(
3395                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3396 }
3397 
3398 void SelectionDAGBuilder::visitFPExt(const User &I) {
3399   // FPExt is never a no-op cast, no need to check
3400   SDValue N = getValue(I.getOperand(0));
3401   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3402                                                         I.getType());
3403   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3404 }
3405 
3406 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3407   // FPToUI is never a no-op cast, no need to check
3408   SDValue N = getValue(I.getOperand(0));
3409   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3410                                                         I.getType());
3411   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3412 }
3413 
3414 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3415   // FPToSI is never a no-op cast, no need to check
3416   SDValue N = getValue(I.getOperand(0));
3417   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3418                                                         I.getType());
3419   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3420 }
3421 
3422 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3423   // UIToFP is never a no-op cast, no need to check
3424   SDValue N = getValue(I.getOperand(0));
3425   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3426                                                         I.getType());
3427   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3428 }
3429 
3430 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3431   // SIToFP is never a no-op cast, no need to check
3432   SDValue N = getValue(I.getOperand(0));
3433   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3434                                                         I.getType());
3435   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3436 }
3437 
3438 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3439   // What to do depends on the size of the integer and the size of the pointer.
3440   // We can either truncate, zero extend, or no-op, accordingly.
3441   SDValue N = getValue(I.getOperand(0));
3442   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3443                                                         I.getType());
3444   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3445 }
3446 
3447 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3448   // What to do depends on the size of the integer and the size of the pointer.
3449   // We can either truncate, zero extend, or no-op, accordingly.
3450   SDValue N = getValue(I.getOperand(0));
3451   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3452                                                         I.getType());
3453   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3454 }
3455 
3456 void SelectionDAGBuilder::visitBitCast(const User &I) {
3457   SDValue N = getValue(I.getOperand(0));
3458   SDLoc dl = getCurSDLoc();
3459   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3460                                                         I.getType());
3461 
3462   // BitCast assures us that source and destination are the same size so this is
3463   // either a BITCAST or a no-op.
3464   if (DestVT != N.getValueType())
3465     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3466                              DestVT, N)); // convert types.
3467   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3468   // might fold any kind of constant expression to an integer constant and that
3469   // is not what we are looking for. Only recognize a bitcast of a genuine
3470   // constant integer as an opaque constant.
3471   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3472     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3473                                  /*isOpaque*/true));
3474   else
3475     setValue(&I, N);            // noop cast.
3476 }
3477 
3478 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3479   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3480   const Value *SV = I.getOperand(0);
3481   SDValue N = getValue(SV);
3482   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3483 
3484   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3485   unsigned DestAS = I.getType()->getPointerAddressSpace();
3486 
3487   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3488     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3489 
3490   setValue(&I, N);
3491 }
3492 
3493 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3494   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3495   SDValue InVec = getValue(I.getOperand(0));
3496   SDValue InVal = getValue(I.getOperand(1));
3497   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3498                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3499   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3500                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3501                            InVec, InVal, InIdx));
3502 }
3503 
3504 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3505   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3506   SDValue InVec = getValue(I.getOperand(0));
3507   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3508                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3509   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3510                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3511                            InVec, InIdx));
3512 }
3513 
3514 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3515   SDValue Src1 = getValue(I.getOperand(0));
3516   SDValue Src2 = getValue(I.getOperand(1));
3517   SDLoc DL = getCurSDLoc();
3518 
3519   SmallVector<int, 8> Mask;
3520   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3521   unsigned MaskNumElts = Mask.size();
3522 
3523   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3524   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3525   EVT SrcVT = Src1.getValueType();
3526   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3527 
3528   if (SrcNumElts == MaskNumElts) {
3529     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3530     return;
3531   }
3532 
3533   // Normalize the shuffle vector since mask and vector length don't match.
3534   if (SrcNumElts < MaskNumElts) {
3535     // Mask is longer than the source vectors. We can use concatenate vector to
3536     // make the mask and vectors lengths match.
3537 
3538     if (MaskNumElts % SrcNumElts == 0) {
3539       // Mask length is a multiple of the source vector length.
3540       // Check if the shuffle is some kind of concatenation of the input
3541       // vectors.
3542       unsigned NumConcat = MaskNumElts / SrcNumElts;
3543       bool IsConcat = true;
3544       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3545       for (unsigned i = 0; i != MaskNumElts; ++i) {
3546         int Idx = Mask[i];
3547         if (Idx < 0)
3548           continue;
3549         // Ensure the indices in each SrcVT sized piece are sequential and that
3550         // the same source is used for the whole piece.
3551         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3552             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3553              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3554           IsConcat = false;
3555           break;
3556         }
3557         // Remember which source this index came from.
3558         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3559       }
3560 
3561       // The shuffle is concatenating multiple vectors together. Just emit
3562       // a CONCAT_VECTORS operation.
3563       if (IsConcat) {
3564         SmallVector<SDValue, 8> ConcatOps;
3565         for (auto Src : ConcatSrcs) {
3566           if (Src < 0)
3567             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3568           else if (Src == 0)
3569             ConcatOps.push_back(Src1);
3570           else
3571             ConcatOps.push_back(Src2);
3572         }
3573         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3574         return;
3575       }
3576     }
3577 
3578     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3579     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3580     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3581                                     PaddedMaskNumElts);
3582 
3583     // Pad both vectors with undefs to make them the same length as the mask.
3584     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3585 
3586     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3587     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3588     MOps1[0] = Src1;
3589     MOps2[0] = Src2;
3590 
3591     Src1 = Src1.isUndef()
3592                ? DAG.getUNDEF(PaddedVT)
3593                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3594     Src2 = Src2.isUndef()
3595                ? DAG.getUNDEF(PaddedVT)
3596                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3597 
3598     // Readjust mask for new input vector length.
3599     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3600     for (unsigned i = 0; i != MaskNumElts; ++i) {
3601       int Idx = Mask[i];
3602       if (Idx >= (int)SrcNumElts)
3603         Idx -= SrcNumElts - PaddedMaskNumElts;
3604       MappedOps[i] = Idx;
3605     }
3606 
3607     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3608 
3609     // If the concatenated vector was padded, extract a subvector with the
3610     // correct number of elements.
3611     if (MaskNumElts != PaddedMaskNumElts)
3612       Result = DAG.getNode(
3613           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3614           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3615 
3616     setValue(&I, Result);
3617     return;
3618   }
3619 
3620   if (SrcNumElts > MaskNumElts) {
3621     // Analyze the access pattern of the vector to see if we can extract
3622     // two subvectors and do the shuffle.
3623     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3624     bool CanExtract = true;
3625     for (int Idx : Mask) {
3626       unsigned Input = 0;
3627       if (Idx < 0)
3628         continue;
3629 
3630       if (Idx >= (int)SrcNumElts) {
3631         Input = 1;
3632         Idx -= SrcNumElts;
3633       }
3634 
3635       // If all the indices come from the same MaskNumElts sized portion of
3636       // the sources we can use extract. Also make sure the extract wouldn't
3637       // extract past the end of the source.
3638       int NewStartIdx = alignDown(Idx, MaskNumElts);
3639       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3640           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3641         CanExtract = false;
3642       // Make sure we always update StartIdx as we use it to track if all
3643       // elements are undef.
3644       StartIdx[Input] = NewStartIdx;
3645     }
3646 
3647     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3648       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3649       return;
3650     }
3651     if (CanExtract) {
3652       // Extract appropriate subvector and generate a vector shuffle
3653       for (unsigned Input = 0; Input < 2; ++Input) {
3654         SDValue &Src = Input == 0 ? Src1 : Src2;
3655         if (StartIdx[Input] < 0)
3656           Src = DAG.getUNDEF(VT);
3657         else {
3658           Src = DAG.getNode(
3659               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3660               DAG.getConstant(StartIdx[Input], DL,
3661                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3662         }
3663       }
3664 
3665       // Calculate new mask.
3666       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3667       for (int &Idx : MappedOps) {
3668         if (Idx >= (int)SrcNumElts)
3669           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3670         else if (Idx >= 0)
3671           Idx -= StartIdx[0];
3672       }
3673 
3674       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3675       return;
3676     }
3677   }
3678 
3679   // We can't use either concat vectors or extract subvectors so fall back to
3680   // replacing the shuffle with extract and build vector.
3681   // to insert and build vector.
3682   EVT EltVT = VT.getVectorElementType();
3683   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3684   SmallVector<SDValue,8> Ops;
3685   for (int Idx : Mask) {
3686     SDValue Res;
3687 
3688     if (Idx < 0) {
3689       Res = DAG.getUNDEF(EltVT);
3690     } else {
3691       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3692       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3693 
3694       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3695                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3696     }
3697 
3698     Ops.push_back(Res);
3699   }
3700 
3701   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3702 }
3703 
3704 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3705   ArrayRef<unsigned> Indices;
3706   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3707     Indices = IV->getIndices();
3708   else
3709     Indices = cast<ConstantExpr>(&I)->getIndices();
3710 
3711   const Value *Op0 = I.getOperand(0);
3712   const Value *Op1 = I.getOperand(1);
3713   Type *AggTy = I.getType();
3714   Type *ValTy = Op1->getType();
3715   bool IntoUndef = isa<UndefValue>(Op0);
3716   bool FromUndef = isa<UndefValue>(Op1);
3717 
3718   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3719 
3720   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3721   SmallVector<EVT, 4> AggValueVTs;
3722   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3723   SmallVector<EVT, 4> ValValueVTs;
3724   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3725 
3726   unsigned NumAggValues = AggValueVTs.size();
3727   unsigned NumValValues = ValValueVTs.size();
3728   SmallVector<SDValue, 4> Values(NumAggValues);
3729 
3730   // Ignore an insertvalue that produces an empty object
3731   if (!NumAggValues) {
3732     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3733     return;
3734   }
3735 
3736   SDValue Agg = getValue(Op0);
3737   unsigned i = 0;
3738   // Copy the beginning value(s) from the original aggregate.
3739   for (; i != LinearIndex; ++i)
3740     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3741                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3742   // Copy values from the inserted value(s).
3743   if (NumValValues) {
3744     SDValue Val = getValue(Op1);
3745     for (; i != LinearIndex + NumValValues; ++i)
3746       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3747                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3748   }
3749   // Copy remaining value(s) from the original aggregate.
3750   for (; i != NumAggValues; ++i)
3751     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3752                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3753 
3754   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3755                            DAG.getVTList(AggValueVTs), Values));
3756 }
3757 
3758 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3759   ArrayRef<unsigned> Indices;
3760   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3761     Indices = EV->getIndices();
3762   else
3763     Indices = cast<ConstantExpr>(&I)->getIndices();
3764 
3765   const Value *Op0 = I.getOperand(0);
3766   Type *AggTy = Op0->getType();
3767   Type *ValTy = I.getType();
3768   bool OutOfUndef = isa<UndefValue>(Op0);
3769 
3770   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3771 
3772   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3773   SmallVector<EVT, 4> ValValueVTs;
3774   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3775 
3776   unsigned NumValValues = ValValueVTs.size();
3777 
3778   // Ignore a extractvalue that produces an empty object
3779   if (!NumValValues) {
3780     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3781     return;
3782   }
3783 
3784   SmallVector<SDValue, 4> Values(NumValValues);
3785 
3786   SDValue Agg = getValue(Op0);
3787   // Copy out the selected value(s).
3788   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3789     Values[i - LinearIndex] =
3790       OutOfUndef ?
3791         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3792         SDValue(Agg.getNode(), Agg.getResNo() + i);
3793 
3794   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3795                            DAG.getVTList(ValValueVTs), Values));
3796 }
3797 
3798 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3799   Value *Op0 = I.getOperand(0);
3800   // Note that the pointer operand may be a vector of pointers. Take the scalar
3801   // element which holds a pointer.
3802   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3803   SDValue N = getValue(Op0);
3804   SDLoc dl = getCurSDLoc();
3805 
3806   // Normalize Vector GEP - all scalar operands should be converted to the
3807   // splat vector.
3808   unsigned VectorWidth = I.getType()->isVectorTy() ?
3809     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3810 
3811   if (VectorWidth && !N.getValueType().isVector()) {
3812     LLVMContext &Context = *DAG.getContext();
3813     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3814     N = DAG.getSplatBuildVector(VT, dl, N);
3815   }
3816 
3817   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3818        GTI != E; ++GTI) {
3819     const Value *Idx = GTI.getOperand();
3820     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3821       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3822       if (Field) {
3823         // N = N + Offset
3824         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3825 
3826         // In an inbounds GEP with an offset that is nonnegative even when
3827         // interpreted as signed, assume there is no unsigned overflow.
3828         SDNodeFlags Flags;
3829         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3830           Flags.setNoUnsignedWrap(true);
3831 
3832         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3833                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3834       }
3835     } else {
3836       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3837       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3838       APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3839 
3840       // If this is a scalar constant or a splat vector of constants,
3841       // handle it quickly.
3842       const auto *CI = dyn_cast<ConstantInt>(Idx);
3843       if (!CI && isa<ConstantDataVector>(Idx) &&
3844           cast<ConstantDataVector>(Idx)->getSplatValue())
3845         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3846 
3847       if (CI) {
3848         if (CI->isZero())
3849           continue;
3850         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3851         LLVMContext &Context = *DAG.getContext();
3852         SDValue OffsVal = VectorWidth ?
3853           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3854           DAG.getConstant(Offs, dl, IdxTy);
3855 
3856         // In an inbouds GEP with an offset that is nonnegative even when
3857         // interpreted as signed, assume there is no unsigned overflow.
3858         SDNodeFlags Flags;
3859         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3860           Flags.setNoUnsignedWrap(true);
3861 
3862         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3863         continue;
3864       }
3865 
3866       // N = N + Idx * ElementSize;
3867       SDValue IdxN = getValue(Idx);
3868 
3869       if (!IdxN.getValueType().isVector() && VectorWidth) {
3870         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3871         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3872       }
3873 
3874       // If the index is smaller or larger than intptr_t, truncate or extend
3875       // it.
3876       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3877 
3878       // If this is a multiply by a power of two, turn it into a shl
3879       // immediately.  This is a very common case.
3880       if (ElementSize != 1) {
3881         if (ElementSize.isPowerOf2()) {
3882           unsigned Amt = ElementSize.logBase2();
3883           IdxN = DAG.getNode(ISD::SHL, dl,
3884                              N.getValueType(), IdxN,
3885                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3886         } else {
3887           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3888           IdxN = DAG.getNode(ISD::MUL, dl,
3889                              N.getValueType(), IdxN, Scale);
3890         }
3891       }
3892 
3893       N = DAG.getNode(ISD::ADD, dl,
3894                       N.getValueType(), N, IdxN);
3895     }
3896   }
3897 
3898   setValue(&I, N);
3899 }
3900 
3901 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3902   // If this is a fixed sized alloca in the entry block of the function,
3903   // allocate it statically on the stack.
3904   if (FuncInfo.StaticAllocaMap.count(&I))
3905     return;   // getValue will auto-populate this.
3906 
3907   SDLoc dl = getCurSDLoc();
3908   Type *Ty = I.getAllocatedType();
3909   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3910   auto &DL = DAG.getDataLayout();
3911   uint64_t TySize = DL.getTypeAllocSize(Ty);
3912   unsigned Align =
3913       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3914 
3915   SDValue AllocSize = getValue(I.getArraySize());
3916 
3917   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3918   if (AllocSize.getValueType() != IntPtr)
3919     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3920 
3921   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3922                           AllocSize,
3923                           DAG.getConstant(TySize, dl, IntPtr));
3924 
3925   // Handle alignment.  If the requested alignment is less than or equal to
3926   // the stack alignment, ignore it.  If the size is greater than or equal to
3927   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3928   unsigned StackAlign =
3929       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3930   if (Align <= StackAlign)
3931     Align = 0;
3932 
3933   // Round the size of the allocation up to the stack alignment size
3934   // by add SA-1 to the size. This doesn't overflow because we're computing
3935   // an address inside an alloca.
3936   SDNodeFlags Flags;
3937   Flags.setNoUnsignedWrap(true);
3938   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3939                           DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3940 
3941   // Mask out the low bits for alignment purposes.
3942   AllocSize =
3943       DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3944                   DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
3945 
3946   SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
3947   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3948   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3949   setValue(&I, DSA);
3950   DAG.setRoot(DSA.getValue(1));
3951 
3952   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3953 }
3954 
3955 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3956   if (I.isAtomic())
3957     return visitAtomicLoad(I);
3958 
3959   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3960   const Value *SV = I.getOperand(0);
3961   if (TLI.supportSwiftError()) {
3962     // Swifterror values can come from either a function parameter with
3963     // swifterror attribute or an alloca with swifterror attribute.
3964     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3965       if (Arg->hasSwiftErrorAttr())
3966         return visitLoadFromSwiftError(I);
3967     }
3968 
3969     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3970       if (Alloca->isSwiftError())
3971         return visitLoadFromSwiftError(I);
3972     }
3973   }
3974 
3975   SDValue Ptr = getValue(SV);
3976 
3977   Type *Ty = I.getType();
3978 
3979   bool isVolatile = I.isVolatile();
3980   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3981   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3982   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3983   unsigned Alignment = I.getAlignment();
3984 
3985   AAMDNodes AAInfo;
3986   I.getAAMetadata(AAInfo);
3987   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3988 
3989   SmallVector<EVT, 4> ValueVTs;
3990   SmallVector<uint64_t, 4> Offsets;
3991   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3992   unsigned NumValues = ValueVTs.size();
3993   if (NumValues == 0)
3994     return;
3995 
3996   SDValue Root;
3997   bool ConstantMemory = false;
3998   if (isVolatile || NumValues > MaxParallelChains)
3999     // Serialize volatile loads with other side effects.
4000     Root = getRoot();
4001   else if (AA &&
4002            AA->pointsToConstantMemory(MemoryLocation(
4003                SV,
4004                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4005                AAInfo))) {
4006     // Do not serialize (non-volatile) loads of constant memory with anything.
4007     Root = DAG.getEntryNode();
4008     ConstantMemory = true;
4009   } else {
4010     // Do not serialize non-volatile loads against each other.
4011     Root = DAG.getRoot();
4012   }
4013 
4014   SDLoc dl = getCurSDLoc();
4015 
4016   if (isVolatile)
4017     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4018 
4019   // An aggregate load cannot wrap around the address space, so offsets to its
4020   // parts don't wrap either.
4021   SDNodeFlags Flags;
4022   Flags.setNoUnsignedWrap(true);
4023 
4024   SmallVector<SDValue, 4> Values(NumValues);
4025   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4026   EVT PtrVT = Ptr.getValueType();
4027   unsigned ChainI = 0;
4028   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4029     // Serializing loads here may result in excessive register pressure, and
4030     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4031     // could recover a bit by hoisting nodes upward in the chain by recognizing
4032     // they are side-effect free or do not alias. The optimizer should really
4033     // avoid this case by converting large object/array copies to llvm.memcpy
4034     // (MaxParallelChains should always remain as failsafe).
4035     if (ChainI == MaxParallelChains) {
4036       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4037       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4038                                   makeArrayRef(Chains.data(), ChainI));
4039       Root = Chain;
4040       ChainI = 0;
4041     }
4042     SDValue A = DAG.getNode(ISD::ADD, dl,
4043                             PtrVT, Ptr,
4044                             DAG.getConstant(Offsets[i], dl, PtrVT),
4045                             Flags);
4046     auto MMOFlags = MachineMemOperand::MONone;
4047     if (isVolatile)
4048       MMOFlags |= MachineMemOperand::MOVolatile;
4049     if (isNonTemporal)
4050       MMOFlags |= MachineMemOperand::MONonTemporal;
4051     if (isInvariant)
4052       MMOFlags |= MachineMemOperand::MOInvariant;
4053     if (isDereferenceable)
4054       MMOFlags |= MachineMemOperand::MODereferenceable;
4055     MMOFlags |= TLI.getMMOFlags(I);
4056 
4057     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
4058                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4059                             MMOFlags, AAInfo, Ranges);
4060 
4061     Values[i] = L;
4062     Chains[ChainI] = L.getValue(1);
4063   }
4064 
4065   if (!ConstantMemory) {
4066     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4067                                 makeArrayRef(Chains.data(), ChainI));
4068     if (isVolatile)
4069       DAG.setRoot(Chain);
4070     else
4071       PendingLoads.push_back(Chain);
4072   }
4073 
4074   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4075                            DAG.getVTList(ValueVTs), Values));
4076 }
4077 
4078 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4079   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4080          "call visitStoreToSwiftError when backend supports swifterror");
4081 
4082   SmallVector<EVT, 4> ValueVTs;
4083   SmallVector<uint64_t, 4> Offsets;
4084   const Value *SrcV = I.getOperand(0);
4085   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4086                   SrcV->getType(), ValueVTs, &Offsets);
4087   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4088          "expect a single EVT for swifterror");
4089 
4090   SDValue Src = getValue(SrcV);
4091   // Create a virtual register, then update the virtual register.
4092   unsigned VReg; bool CreatedVReg;
4093   std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I);
4094   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4095   // Chain can be getRoot or getControlRoot.
4096   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4097                                       SDValue(Src.getNode(), Src.getResNo()));
4098   DAG.setRoot(CopyNode);
4099   if (CreatedVReg)
4100     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
4101 }
4102 
4103 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4104   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4105          "call visitLoadFromSwiftError when backend supports swifterror");
4106 
4107   assert(!I.isVolatile() &&
4108          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
4109          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
4110          "Support volatile, non temporal, invariant for load_from_swift_error");
4111 
4112   const Value *SV = I.getOperand(0);
4113   Type *Ty = I.getType();
4114   AAMDNodes AAInfo;
4115   I.getAAMetadata(AAInfo);
4116   assert(
4117       (!AA ||
4118        !AA->pointsToConstantMemory(MemoryLocation(
4119            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4120            AAInfo))) &&
4121       "load_from_swift_error should not be constant memory");
4122 
4123   SmallVector<EVT, 4> ValueVTs;
4124   SmallVector<uint64_t, 4> Offsets;
4125   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4126                   ValueVTs, &Offsets);
4127   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4128          "expect a single EVT for swifterror");
4129 
4130   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4131   SDValue L = DAG.getCopyFromReg(
4132       getRoot(), getCurSDLoc(),
4133       FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first,
4134       ValueVTs[0]);
4135 
4136   setValue(&I, L);
4137 }
4138 
4139 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4140   if (I.isAtomic())
4141     return visitAtomicStore(I);
4142 
4143   const Value *SrcV = I.getOperand(0);
4144   const Value *PtrV = I.getOperand(1);
4145 
4146   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4147   if (TLI.supportSwiftError()) {
4148     // Swifterror values can come from either a function parameter with
4149     // swifterror attribute or an alloca with swifterror attribute.
4150     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4151       if (Arg->hasSwiftErrorAttr())
4152         return visitStoreToSwiftError(I);
4153     }
4154 
4155     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4156       if (Alloca->isSwiftError())
4157         return visitStoreToSwiftError(I);
4158     }
4159   }
4160 
4161   SmallVector<EVT, 4> ValueVTs;
4162   SmallVector<uint64_t, 4> Offsets;
4163   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4164                   SrcV->getType(), ValueVTs, &Offsets);
4165   unsigned NumValues = ValueVTs.size();
4166   if (NumValues == 0)
4167     return;
4168 
4169   // Get the lowered operands. Note that we do this after
4170   // checking if NumResults is zero, because with zero results
4171   // the operands won't have values in the map.
4172   SDValue Src = getValue(SrcV);
4173   SDValue Ptr = getValue(PtrV);
4174 
4175   SDValue Root = getRoot();
4176   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4177   SDLoc dl = getCurSDLoc();
4178   EVT PtrVT = Ptr.getValueType();
4179   unsigned Alignment = I.getAlignment();
4180   AAMDNodes AAInfo;
4181   I.getAAMetadata(AAInfo);
4182 
4183   auto MMOFlags = MachineMemOperand::MONone;
4184   if (I.isVolatile())
4185     MMOFlags |= MachineMemOperand::MOVolatile;
4186   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
4187     MMOFlags |= MachineMemOperand::MONonTemporal;
4188   MMOFlags |= TLI.getMMOFlags(I);
4189 
4190   // An aggregate load cannot wrap around the address space, so offsets to its
4191   // parts don't wrap either.
4192   SDNodeFlags Flags;
4193   Flags.setNoUnsignedWrap(true);
4194 
4195   unsigned ChainI = 0;
4196   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4197     // See visitLoad comments.
4198     if (ChainI == MaxParallelChains) {
4199       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4200                                   makeArrayRef(Chains.data(), ChainI));
4201       Root = Chain;
4202       ChainI = 0;
4203     }
4204     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
4205                               DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
4206     SDValue St = DAG.getStore(
4207         Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
4208         MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
4209     Chains[ChainI] = St;
4210   }
4211 
4212   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4213                                   makeArrayRef(Chains.data(), ChainI));
4214   DAG.setRoot(StoreNode);
4215 }
4216 
4217 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4218                                            bool IsCompressing) {
4219   SDLoc sdl = getCurSDLoc();
4220 
4221   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4222                            unsigned& Alignment) {
4223     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4224     Src0 = I.getArgOperand(0);
4225     Ptr = I.getArgOperand(1);
4226     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
4227     Mask = I.getArgOperand(3);
4228   };
4229   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4230                            unsigned& Alignment) {
4231     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4232     Src0 = I.getArgOperand(0);
4233     Ptr = I.getArgOperand(1);
4234     Mask = I.getArgOperand(2);
4235     Alignment = 0;
4236   };
4237 
4238   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4239   unsigned Alignment;
4240   if (IsCompressing)
4241     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4242   else
4243     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4244 
4245   SDValue Ptr = getValue(PtrOperand);
4246   SDValue Src0 = getValue(Src0Operand);
4247   SDValue Mask = getValue(MaskOperand);
4248 
4249   EVT VT = Src0.getValueType();
4250   if (!Alignment)
4251     Alignment = DAG.getEVTAlignment(VT);
4252 
4253   AAMDNodes AAInfo;
4254   I.getAAMetadata(AAInfo);
4255 
4256   MachineMemOperand *MMO =
4257     DAG.getMachineFunction().
4258     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4259                           MachineMemOperand::MOStore,  VT.getStoreSize(),
4260                           Alignment, AAInfo);
4261   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
4262                                          MMO, false /* Truncating */,
4263                                          IsCompressing);
4264   DAG.setRoot(StoreNode);
4265   setValue(&I, StoreNode);
4266 }
4267 
4268 // Get a uniform base for the Gather/Scatter intrinsic.
4269 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4270 // We try to represent it as a base pointer + vector of indices.
4271 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4272 // The first operand of the GEP may be a single pointer or a vector of pointers
4273 // Example:
4274 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4275 //  or
4276 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4277 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4278 //
4279 // When the first GEP operand is a single pointer - it is the uniform base we
4280 // are looking for. If first operand of the GEP is a splat vector - we
4281 // extract the splat value and use it as a uniform base.
4282 // In all other cases the function returns 'false'.
4283 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
4284                            SDValue &Scale, SelectionDAGBuilder* SDB) {
4285   SelectionDAG& DAG = SDB->DAG;
4286   LLVMContext &Context = *DAG.getContext();
4287 
4288   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4289   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4290   if (!GEP)
4291     return false;
4292 
4293   const Value *GEPPtr = GEP->getPointerOperand();
4294   if (!GEPPtr->getType()->isVectorTy())
4295     Ptr = GEPPtr;
4296   else if (!(Ptr = getSplatValue(GEPPtr)))
4297     return false;
4298 
4299   unsigned FinalIndex = GEP->getNumOperands() - 1;
4300   Value *IndexVal = GEP->getOperand(FinalIndex);
4301 
4302   // Ensure all the other indices are 0.
4303   for (unsigned i = 1; i < FinalIndex; ++i) {
4304     auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i));
4305     if (!C || !C->isZero())
4306       return false;
4307   }
4308 
4309   // The operands of the GEP may be defined in another basic block.
4310   // In this case we'll not find nodes for the operands.
4311   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
4312     return false;
4313 
4314   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4315   const DataLayout &DL = DAG.getDataLayout();
4316   Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()),
4317                                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4318   Base = SDB->getValue(Ptr);
4319   Index = SDB->getValue(IndexVal);
4320 
4321   if (!Index.getValueType().isVector()) {
4322     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
4323     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
4324     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
4325   }
4326   return true;
4327 }
4328 
4329 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4330   SDLoc sdl = getCurSDLoc();
4331 
4332   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
4333   const Value *Ptr = I.getArgOperand(1);
4334   SDValue Src0 = getValue(I.getArgOperand(0));
4335   SDValue Mask = getValue(I.getArgOperand(3));
4336   EVT VT = Src0.getValueType();
4337   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
4338   if (!Alignment)
4339     Alignment = DAG.getEVTAlignment(VT);
4340   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4341 
4342   AAMDNodes AAInfo;
4343   I.getAAMetadata(AAInfo);
4344 
4345   SDValue Base;
4346   SDValue Index;
4347   SDValue Scale;
4348   const Value *BasePtr = Ptr;
4349   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4350 
4351   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
4352   MachineMemOperand *MMO = DAG.getMachineFunction().
4353     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
4354                          MachineMemOperand::MOStore,  VT.getStoreSize(),
4355                          Alignment, AAInfo);
4356   if (!UniformBase) {
4357     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4358     Index = getValue(Ptr);
4359     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4360   }
4361   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
4362   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4363                                          Ops, MMO);
4364   DAG.setRoot(Scatter);
4365   setValue(&I, Scatter);
4366 }
4367 
4368 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4369   SDLoc sdl = getCurSDLoc();
4370 
4371   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4372                            unsigned& Alignment) {
4373     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4374     Ptr = I.getArgOperand(0);
4375     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4376     Mask = I.getArgOperand(2);
4377     Src0 = I.getArgOperand(3);
4378   };
4379   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4380                            unsigned& Alignment) {
4381     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4382     Ptr = I.getArgOperand(0);
4383     Alignment = 0;
4384     Mask = I.getArgOperand(1);
4385     Src0 = I.getArgOperand(2);
4386   };
4387 
4388   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4389   unsigned Alignment;
4390   if (IsExpanding)
4391     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4392   else
4393     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4394 
4395   SDValue Ptr = getValue(PtrOperand);
4396   SDValue Src0 = getValue(Src0Operand);
4397   SDValue Mask = getValue(MaskOperand);
4398 
4399   EVT VT = Src0.getValueType();
4400   if (!Alignment)
4401     Alignment = DAG.getEVTAlignment(VT);
4402 
4403   AAMDNodes AAInfo;
4404   I.getAAMetadata(AAInfo);
4405   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4406 
4407   // Do not serialize masked loads of constant memory with anything.
4408   bool AddToChain =
4409       !AA || !AA->pointsToConstantMemory(MemoryLocation(
4410                  PtrOperand,
4411                  LocationSize::precise(
4412                      DAG.getDataLayout().getTypeStoreSize(I.getType())),
4413                  AAInfo));
4414   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4415 
4416   MachineMemOperand *MMO =
4417     DAG.getMachineFunction().
4418     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4419                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
4420                           Alignment, AAInfo, Ranges);
4421 
4422   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
4423                                    ISD::NON_EXTLOAD, IsExpanding);
4424   if (AddToChain)
4425     PendingLoads.push_back(Load.getValue(1));
4426   setValue(&I, Load);
4427 }
4428 
4429 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4430   SDLoc sdl = getCurSDLoc();
4431 
4432   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4433   const Value *Ptr = I.getArgOperand(0);
4434   SDValue Src0 = getValue(I.getArgOperand(3));
4435   SDValue Mask = getValue(I.getArgOperand(2));
4436 
4437   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4438   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4439   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4440   if (!Alignment)
4441     Alignment = DAG.getEVTAlignment(VT);
4442 
4443   AAMDNodes AAInfo;
4444   I.getAAMetadata(AAInfo);
4445   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4446 
4447   SDValue Root = DAG.getRoot();
4448   SDValue Base;
4449   SDValue Index;
4450   SDValue Scale;
4451   const Value *BasePtr = Ptr;
4452   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4453   bool ConstantMemory = false;
4454   if (UniformBase && AA &&
4455       AA->pointsToConstantMemory(
4456           MemoryLocation(BasePtr,
4457                          LocationSize::precise(
4458                              DAG.getDataLayout().getTypeStoreSize(I.getType())),
4459                          AAInfo))) {
4460     // Do not serialize (non-volatile) loads of constant memory with anything.
4461     Root = DAG.getEntryNode();
4462     ConstantMemory = true;
4463   }
4464 
4465   MachineMemOperand *MMO =
4466     DAG.getMachineFunction().
4467     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4468                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
4469                          Alignment, AAInfo, Ranges);
4470 
4471   if (!UniformBase) {
4472     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4473     Index = getValue(Ptr);
4474     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4475   }
4476   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4477   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4478                                        Ops, MMO);
4479 
4480   SDValue OutChain = Gather.getValue(1);
4481   if (!ConstantMemory)
4482     PendingLoads.push_back(OutChain);
4483   setValue(&I, Gather);
4484 }
4485 
4486 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4487   SDLoc dl = getCurSDLoc();
4488   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4489   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4490   SyncScope::ID SSID = I.getSyncScopeID();
4491 
4492   SDValue InChain = getRoot();
4493 
4494   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4495   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4496 
4497   auto Alignment = DAG.getEVTAlignment(MemVT);
4498 
4499   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4500   if (I.isVolatile())
4501     Flags |= MachineMemOperand::MOVolatile;
4502   Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4503 
4504   MachineFunction &MF = DAG.getMachineFunction();
4505   MachineMemOperand *MMO =
4506     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4507                             Flags, MemVT.getStoreSize(), Alignment,
4508                             AAMDNodes(), nullptr, SSID, SuccessOrdering,
4509                             FailureOrdering);
4510 
4511   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4512                                    dl, MemVT, VTs, InChain,
4513                                    getValue(I.getPointerOperand()),
4514                                    getValue(I.getCompareOperand()),
4515                                    getValue(I.getNewValOperand()), MMO);
4516 
4517   SDValue OutChain = L.getValue(2);
4518 
4519   setValue(&I, L);
4520   DAG.setRoot(OutChain);
4521 }
4522 
4523 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4524   SDLoc dl = getCurSDLoc();
4525   ISD::NodeType NT;
4526   switch (I.getOperation()) {
4527   default: llvm_unreachable("Unknown atomicrmw operation");
4528   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4529   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4530   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4531   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4532   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4533   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4534   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4535   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4536   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4537   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4538   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4539   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4540   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4541   }
4542   AtomicOrdering Ordering = I.getOrdering();
4543   SyncScope::ID SSID = I.getSyncScopeID();
4544 
4545   SDValue InChain = getRoot();
4546 
4547   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4548   auto Alignment = DAG.getEVTAlignment(MemVT);
4549 
4550   auto Flags = MachineMemOperand::MOLoad |  MachineMemOperand::MOStore;
4551   if (I.isVolatile())
4552     Flags |= MachineMemOperand::MOVolatile;
4553   Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4554 
4555   MachineFunction &MF = DAG.getMachineFunction();
4556   MachineMemOperand *MMO =
4557     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4558                             MemVT.getStoreSize(), Alignment, AAMDNodes(),
4559                             nullptr, SSID, Ordering);
4560 
4561   SDValue L =
4562     DAG.getAtomic(NT, dl, MemVT, InChain,
4563                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4564                   MMO);
4565 
4566   SDValue OutChain = L.getValue(1);
4567 
4568   setValue(&I, L);
4569   DAG.setRoot(OutChain);
4570 }
4571 
4572 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4573   SDLoc dl = getCurSDLoc();
4574   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4575   SDValue Ops[3];
4576   Ops[0] = getRoot();
4577   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4578                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4579   Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4580                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4581   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4582 }
4583 
4584 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4585   SDLoc dl = getCurSDLoc();
4586   AtomicOrdering Order = I.getOrdering();
4587   SyncScope::ID SSID = I.getSyncScopeID();
4588 
4589   SDValue InChain = getRoot();
4590 
4591   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4592   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4593 
4594   if (!TLI.supportsUnalignedAtomics() &&
4595       I.getAlignment() < VT.getStoreSize())
4596     report_fatal_error("Cannot generate unaligned atomic load");
4597 
4598   auto Flags = MachineMemOperand::MOLoad;
4599   if (I.isVolatile())
4600     Flags |= MachineMemOperand::MOVolatile;
4601   if (I.getMetadata(LLVMContext::MD_invariant_load) != nullptr)
4602     Flags |= MachineMemOperand::MOInvariant;
4603   if (isDereferenceablePointer(I.getPointerOperand(), DAG.getDataLayout()))
4604     Flags |= MachineMemOperand::MODereferenceable;
4605 
4606   Flags |= TLI.getMMOFlags(I);
4607 
4608   MachineMemOperand *MMO =
4609       DAG.getMachineFunction().
4610       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4611                            Flags, VT.getStoreSize(),
4612                            I.getAlignment() ? I.getAlignment() :
4613                                               DAG.getEVTAlignment(VT),
4614                            AAMDNodes(), nullptr, SSID, Order);
4615 
4616   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4617   SDValue L =
4618       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4619                     getValue(I.getPointerOperand()), MMO);
4620 
4621   SDValue OutChain = L.getValue(1);
4622 
4623   setValue(&I, L);
4624   DAG.setRoot(OutChain);
4625 }
4626 
4627 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4628   SDLoc dl = getCurSDLoc();
4629 
4630   AtomicOrdering Ordering = I.getOrdering();
4631   SyncScope::ID SSID = I.getSyncScopeID();
4632 
4633   SDValue InChain = getRoot();
4634 
4635   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4636   EVT VT =
4637       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4638 
4639   if (I.getAlignment() < VT.getStoreSize())
4640     report_fatal_error("Cannot generate unaligned atomic store");
4641 
4642   auto Flags = MachineMemOperand::MOStore;
4643   if (I.isVolatile())
4644     Flags |= MachineMemOperand::MOVolatile;
4645   Flags |= TLI.getMMOFlags(I);
4646 
4647   MachineFunction &MF = DAG.getMachineFunction();
4648   MachineMemOperand *MMO =
4649     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4650                             VT.getStoreSize(), I.getAlignment(), AAMDNodes(),
4651                             nullptr, SSID, Ordering);
4652   SDValue OutChain =
4653     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, InChain,
4654               getValue(I.getPointerOperand()), getValue(I.getValueOperand()),
4655               MMO);
4656 
4657 
4658   DAG.setRoot(OutChain);
4659 }
4660 
4661 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4662 /// node.
4663 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4664                                                unsigned Intrinsic) {
4665   // Ignore the callsite's attributes. A specific call site may be marked with
4666   // readnone, but the lowering code will expect the chain based on the
4667   // definition.
4668   const Function *F = I.getCalledFunction();
4669   bool HasChain = !F->doesNotAccessMemory();
4670   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4671 
4672   // Build the operand list.
4673   SmallVector<SDValue, 8> Ops;
4674   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4675     if (OnlyLoad) {
4676       // We don't need to serialize loads against other loads.
4677       Ops.push_back(DAG.getRoot());
4678     } else {
4679       Ops.push_back(getRoot());
4680     }
4681   }
4682 
4683   // Info is set by getTgtMemInstrinsic
4684   TargetLowering::IntrinsicInfo Info;
4685   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4686   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4687                                                DAG.getMachineFunction(),
4688                                                Intrinsic);
4689 
4690   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4691   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4692       Info.opc == ISD::INTRINSIC_W_CHAIN)
4693     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4694                                         TLI.getPointerTy(DAG.getDataLayout())));
4695 
4696   // Add all operands of the call to the operand list.
4697   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4698     SDValue Op = getValue(I.getArgOperand(i));
4699     Ops.push_back(Op);
4700   }
4701 
4702   SmallVector<EVT, 4> ValueVTs;
4703   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4704 
4705   if (HasChain)
4706     ValueVTs.push_back(MVT::Other);
4707 
4708   SDVTList VTs = DAG.getVTList(ValueVTs);
4709 
4710   // Create the node.
4711   SDValue Result;
4712   if (IsTgtIntrinsic) {
4713     // This is target intrinsic that touches memory
4714     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs,
4715       Ops, Info.memVT,
4716       MachinePointerInfo(Info.ptrVal, Info.offset), Info.align,
4717       Info.flags, Info.size);
4718   } else if (!HasChain) {
4719     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4720   } else if (!I.getType()->isVoidTy()) {
4721     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4722   } else {
4723     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4724   }
4725 
4726   if (HasChain) {
4727     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4728     if (OnlyLoad)
4729       PendingLoads.push_back(Chain);
4730     else
4731       DAG.setRoot(Chain);
4732   }
4733 
4734   if (!I.getType()->isVoidTy()) {
4735     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4736       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4737       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4738     } else
4739       Result = lowerRangeToAssertZExt(DAG, I, Result);
4740 
4741     setValue(&I, Result);
4742   }
4743 }
4744 
4745 /// GetSignificand - Get the significand and build it into a floating-point
4746 /// number with exponent of 1:
4747 ///
4748 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4749 ///
4750 /// where Op is the hexadecimal representation of floating point value.
4751 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4752   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4753                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4754   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4755                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4756   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4757 }
4758 
4759 /// GetExponent - Get the exponent:
4760 ///
4761 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4762 ///
4763 /// where Op is the hexadecimal representation of floating point value.
4764 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4765                            const TargetLowering &TLI, const SDLoc &dl) {
4766   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4767                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4768   SDValue t1 = DAG.getNode(
4769       ISD::SRL, dl, MVT::i32, t0,
4770       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4771   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4772                            DAG.getConstant(127, dl, MVT::i32));
4773   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4774 }
4775 
4776 /// getF32Constant - Get 32-bit floating point constant.
4777 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4778                               const SDLoc &dl) {
4779   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4780                            MVT::f32);
4781 }
4782 
4783 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4784                                        SelectionDAG &DAG) {
4785   // TODO: What fast-math-flags should be set on the floating-point nodes?
4786 
4787   //   IntegerPartOfX = ((int32_t)(t0);
4788   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4789 
4790   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4791   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4792   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4793 
4794   //   IntegerPartOfX <<= 23;
4795   IntegerPartOfX = DAG.getNode(
4796       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4797       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4798                                   DAG.getDataLayout())));
4799 
4800   SDValue TwoToFractionalPartOfX;
4801   if (LimitFloatPrecision <= 6) {
4802     // For floating-point precision of 6:
4803     //
4804     //   TwoToFractionalPartOfX =
4805     //     0.997535578f +
4806     //       (0.735607626f + 0.252464424f * x) * x;
4807     //
4808     // error 0.0144103317, which is 6 bits
4809     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4810                              getF32Constant(DAG, 0x3e814304, dl));
4811     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4812                              getF32Constant(DAG, 0x3f3c50c8, dl));
4813     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4814     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4815                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4816   } else if (LimitFloatPrecision <= 12) {
4817     // For floating-point precision of 12:
4818     //
4819     //   TwoToFractionalPartOfX =
4820     //     0.999892986f +
4821     //       (0.696457318f +
4822     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4823     //
4824     // error 0.000107046256, which is 13 to 14 bits
4825     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4826                              getF32Constant(DAG, 0x3da235e3, dl));
4827     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4828                              getF32Constant(DAG, 0x3e65b8f3, dl));
4829     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4830     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4831                              getF32Constant(DAG, 0x3f324b07, dl));
4832     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4833     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4834                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4835   } else { // LimitFloatPrecision <= 18
4836     // For floating-point precision of 18:
4837     //
4838     //   TwoToFractionalPartOfX =
4839     //     0.999999982f +
4840     //       (0.693148872f +
4841     //         (0.240227044f +
4842     //           (0.554906021e-1f +
4843     //             (0.961591928e-2f +
4844     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4845     // error 2.47208000*10^(-7), which is better than 18 bits
4846     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4847                              getF32Constant(DAG, 0x3924b03e, dl));
4848     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4849                              getF32Constant(DAG, 0x3ab24b87, dl));
4850     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4851     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4852                              getF32Constant(DAG, 0x3c1d8c17, dl));
4853     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4854     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4855                              getF32Constant(DAG, 0x3d634a1d, dl));
4856     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4857     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4858                              getF32Constant(DAG, 0x3e75fe14, dl));
4859     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4860     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4861                               getF32Constant(DAG, 0x3f317234, dl));
4862     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4863     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4864                                          getF32Constant(DAG, 0x3f800000, dl));
4865   }
4866 
4867   // Add the exponent into the result in integer domain.
4868   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4869   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4870                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4871 }
4872 
4873 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4874 /// limited-precision mode.
4875 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4876                          const TargetLowering &TLI) {
4877   if (Op.getValueType() == MVT::f32 &&
4878       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4879 
4880     // Put the exponent in the right bit position for later addition to the
4881     // final result:
4882     //
4883     //   #define LOG2OFe 1.4426950f
4884     //   t0 = Op * LOG2OFe
4885 
4886     // TODO: What fast-math-flags should be set here?
4887     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4888                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4889     return getLimitedPrecisionExp2(t0, dl, DAG);
4890   }
4891 
4892   // No special expansion.
4893   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4894 }
4895 
4896 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4897 /// limited-precision mode.
4898 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4899                          const TargetLowering &TLI) {
4900   // TODO: What fast-math-flags should be set on the floating-point nodes?
4901 
4902   if (Op.getValueType() == MVT::f32 &&
4903       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4904     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4905 
4906     // Scale the exponent by log(2) [0.69314718f].
4907     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4908     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4909                                         getF32Constant(DAG, 0x3f317218, dl));
4910 
4911     // Get the significand and build it into a floating-point number with
4912     // exponent of 1.
4913     SDValue X = GetSignificand(DAG, Op1, dl);
4914 
4915     SDValue LogOfMantissa;
4916     if (LimitFloatPrecision <= 6) {
4917       // For floating-point precision of 6:
4918       //
4919       //   LogofMantissa =
4920       //     -1.1609546f +
4921       //       (1.4034025f - 0.23903021f * x) * x;
4922       //
4923       // error 0.0034276066, which is better than 8 bits
4924       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4925                                getF32Constant(DAG, 0xbe74c456, dl));
4926       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4927                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4928       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4929       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4930                                   getF32Constant(DAG, 0x3f949a29, dl));
4931     } else if (LimitFloatPrecision <= 12) {
4932       // For floating-point precision of 12:
4933       //
4934       //   LogOfMantissa =
4935       //     -1.7417939f +
4936       //       (2.8212026f +
4937       //         (-1.4699568f +
4938       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4939       //
4940       // error 0.000061011436, which is 14 bits
4941       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4942                                getF32Constant(DAG, 0xbd67b6d6, dl));
4943       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4944                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4945       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4946       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4947                                getF32Constant(DAG, 0x3fbc278b, dl));
4948       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4949       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4950                                getF32Constant(DAG, 0x40348e95, dl));
4951       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4952       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4953                                   getF32Constant(DAG, 0x3fdef31a, dl));
4954     } else { // LimitFloatPrecision <= 18
4955       // For floating-point precision of 18:
4956       //
4957       //   LogOfMantissa =
4958       //     -2.1072184f +
4959       //       (4.2372794f +
4960       //         (-3.7029485f +
4961       //           (2.2781945f +
4962       //             (-0.87823314f +
4963       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4964       //
4965       // error 0.0000023660568, which is better than 18 bits
4966       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4967                                getF32Constant(DAG, 0xbc91e5ac, dl));
4968       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4969                                getF32Constant(DAG, 0x3e4350aa, dl));
4970       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4971       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4972                                getF32Constant(DAG, 0x3f60d3e3, dl));
4973       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4974       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4975                                getF32Constant(DAG, 0x4011cdf0, dl));
4976       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4977       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4978                                getF32Constant(DAG, 0x406cfd1c, dl));
4979       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4980       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4981                                getF32Constant(DAG, 0x408797cb, dl));
4982       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4983       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4984                                   getF32Constant(DAG, 0x4006dcab, dl));
4985     }
4986 
4987     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4988   }
4989 
4990   // No special expansion.
4991   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4992 }
4993 
4994 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4995 /// limited-precision mode.
4996 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4997                           const TargetLowering &TLI) {
4998   // TODO: What fast-math-flags should be set on the floating-point nodes?
4999 
5000   if (Op.getValueType() == MVT::f32 &&
5001       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5002     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5003 
5004     // Get the exponent.
5005     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5006 
5007     // Get the significand and build it into a floating-point number with
5008     // exponent of 1.
5009     SDValue X = GetSignificand(DAG, Op1, dl);
5010 
5011     // Different possible minimax approximations of significand in
5012     // floating-point for various degrees of accuracy over [1,2].
5013     SDValue Log2ofMantissa;
5014     if (LimitFloatPrecision <= 6) {
5015       // For floating-point precision of 6:
5016       //
5017       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5018       //
5019       // error 0.0049451742, which is more than 7 bits
5020       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5021                                getF32Constant(DAG, 0xbeb08fe0, dl));
5022       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5023                                getF32Constant(DAG, 0x40019463, dl));
5024       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5025       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5026                                    getF32Constant(DAG, 0x3fd6633d, dl));
5027     } else if (LimitFloatPrecision <= 12) {
5028       // For floating-point precision of 12:
5029       //
5030       //   Log2ofMantissa =
5031       //     -2.51285454f +
5032       //       (4.07009056f +
5033       //         (-2.12067489f +
5034       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5035       //
5036       // error 0.0000876136000, which is better than 13 bits
5037       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5038                                getF32Constant(DAG, 0xbda7262e, dl));
5039       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5040                                getF32Constant(DAG, 0x3f25280b, dl));
5041       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5042       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5043                                getF32Constant(DAG, 0x4007b923, dl));
5044       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5045       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5046                                getF32Constant(DAG, 0x40823e2f, dl));
5047       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5048       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5049                                    getF32Constant(DAG, 0x4020d29c, dl));
5050     } else { // LimitFloatPrecision <= 18
5051       // For floating-point precision of 18:
5052       //
5053       //   Log2ofMantissa =
5054       //     -3.0400495f +
5055       //       (6.1129976f +
5056       //         (-5.3420409f +
5057       //           (3.2865683f +
5058       //             (-1.2669343f +
5059       //               (0.27515199f -
5060       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5061       //
5062       // error 0.0000018516, which is better than 18 bits
5063       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5064                                getF32Constant(DAG, 0xbcd2769e, dl));
5065       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5066                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5067       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5068       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5069                                getF32Constant(DAG, 0x3fa22ae7, dl));
5070       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5071       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5072                                getF32Constant(DAG, 0x40525723, dl));
5073       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5074       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5075                                getF32Constant(DAG, 0x40aaf200, dl));
5076       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5077       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5078                                getF32Constant(DAG, 0x40c39dad, dl));
5079       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5080       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5081                                    getF32Constant(DAG, 0x4042902c, dl));
5082     }
5083 
5084     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5085   }
5086 
5087   // No special expansion.
5088   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
5089 }
5090 
5091 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5092 /// limited-precision mode.
5093 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5094                            const TargetLowering &TLI) {
5095   // TODO: What fast-math-flags should be set on the floating-point nodes?
5096 
5097   if (Op.getValueType() == MVT::f32 &&
5098       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5099     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5100 
5101     // Scale the exponent by log10(2) [0.30102999f].
5102     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5103     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5104                                         getF32Constant(DAG, 0x3e9a209a, dl));
5105 
5106     // Get the significand and build it into a floating-point number with
5107     // exponent of 1.
5108     SDValue X = GetSignificand(DAG, Op1, dl);
5109 
5110     SDValue Log10ofMantissa;
5111     if (LimitFloatPrecision <= 6) {
5112       // For floating-point precision of 6:
5113       //
5114       //   Log10ofMantissa =
5115       //     -0.50419619f +
5116       //       (0.60948995f - 0.10380950f * x) * x;
5117       //
5118       // error 0.0014886165, which is 6 bits
5119       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5120                                getF32Constant(DAG, 0xbdd49a13, dl));
5121       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5122                                getF32Constant(DAG, 0x3f1c0789, dl));
5123       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5124       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5125                                     getF32Constant(DAG, 0x3f011300, dl));
5126     } else if (LimitFloatPrecision <= 12) {
5127       // For floating-point precision of 12:
5128       //
5129       //   Log10ofMantissa =
5130       //     -0.64831180f +
5131       //       (0.91751397f +
5132       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5133       //
5134       // error 0.00019228036, which is better than 12 bits
5135       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5136                                getF32Constant(DAG, 0x3d431f31, dl));
5137       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5138                                getF32Constant(DAG, 0x3ea21fb2, dl));
5139       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5140       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5141                                getF32Constant(DAG, 0x3f6ae232, dl));
5142       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5143       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5144                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5145     } else { // LimitFloatPrecision <= 18
5146       // For floating-point precision of 18:
5147       //
5148       //   Log10ofMantissa =
5149       //     -0.84299375f +
5150       //       (1.5327582f +
5151       //         (-1.0688956f +
5152       //           (0.49102474f +
5153       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5154       //
5155       // error 0.0000037995730, which is better than 18 bits
5156       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5157                                getF32Constant(DAG, 0x3c5d51ce, dl));
5158       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5159                                getF32Constant(DAG, 0x3e00685a, dl));
5160       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5161       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5162                                getF32Constant(DAG, 0x3efb6798, dl));
5163       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5164       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5165                                getF32Constant(DAG, 0x3f88d192, dl));
5166       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5167       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5168                                getF32Constant(DAG, 0x3fc4316c, dl));
5169       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5170       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5171                                     getF32Constant(DAG, 0x3f57ce70, dl));
5172     }
5173 
5174     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5175   }
5176 
5177   // No special expansion.
5178   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
5179 }
5180 
5181 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5182 /// limited-precision mode.
5183 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5184                           const TargetLowering &TLI) {
5185   if (Op.getValueType() == MVT::f32 &&
5186       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5187     return getLimitedPrecisionExp2(Op, dl, DAG);
5188 
5189   // No special expansion.
5190   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
5191 }
5192 
5193 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5194 /// limited-precision mode with x == 10.0f.
5195 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5196                          SelectionDAG &DAG, const TargetLowering &TLI) {
5197   bool IsExp10 = false;
5198   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5199       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5200     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5201       APFloat Ten(10.0f);
5202       IsExp10 = LHSC->isExactlyValue(Ten);
5203     }
5204   }
5205 
5206   // TODO: What fast-math-flags should be set on the FMUL node?
5207   if (IsExp10) {
5208     // Put the exponent in the right bit position for later addition to the
5209     // final result:
5210     //
5211     //   #define LOG2OF10 3.3219281f
5212     //   t0 = Op * LOG2OF10;
5213     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5214                              getF32Constant(DAG, 0x40549a78, dl));
5215     return getLimitedPrecisionExp2(t0, dl, DAG);
5216   }
5217 
5218   // No special expansion.
5219   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
5220 }
5221 
5222 /// ExpandPowI - Expand a llvm.powi intrinsic.
5223 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5224                           SelectionDAG &DAG) {
5225   // If RHS is a constant, we can expand this out to a multiplication tree,
5226   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5227   // optimizing for size, we only want to do this if the expansion would produce
5228   // a small number of multiplies, otherwise we do the full expansion.
5229   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5230     // Get the exponent as a positive value.
5231     unsigned Val = RHSC->getSExtValue();
5232     if ((int)Val < 0) Val = -Val;
5233 
5234     // powi(x, 0) -> 1.0
5235     if (Val == 0)
5236       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5237 
5238     const Function &F = DAG.getMachineFunction().getFunction();
5239     if (!F.hasOptSize() ||
5240         // If optimizing for size, don't insert too many multiplies.
5241         // This inserts up to 5 multiplies.
5242         countPopulation(Val) + Log2_32(Val) < 7) {
5243       // We use the simple binary decomposition method to generate the multiply
5244       // sequence.  There are more optimal ways to do this (for example,
5245       // powi(x,15) generates one more multiply than it should), but this has
5246       // the benefit of being both really simple and much better than a libcall.
5247       SDValue Res;  // Logically starts equal to 1.0
5248       SDValue CurSquare = LHS;
5249       // TODO: Intrinsics should have fast-math-flags that propagate to these
5250       // nodes.
5251       while (Val) {
5252         if (Val & 1) {
5253           if (Res.getNode())
5254             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5255           else
5256             Res = CurSquare;  // 1.0*CurSquare.
5257         }
5258 
5259         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5260                                 CurSquare, CurSquare);
5261         Val >>= 1;
5262       }
5263 
5264       // If the original was negative, invert the result, producing 1/(x*x*x).
5265       if (RHSC->getSExtValue() < 0)
5266         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5267                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5268       return Res;
5269     }
5270   }
5271 
5272   // Otherwise, expand to a libcall.
5273   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5274 }
5275 
5276 // getUnderlyingArgReg - Find underlying register used for a truncated or
5277 // bitcasted argument.
5278 static unsigned getUnderlyingArgReg(const SDValue &N) {
5279   switch (N.getOpcode()) {
5280   case ISD::CopyFromReg:
5281     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
5282   case ISD::BITCAST:
5283   case ISD::AssertZext:
5284   case ISD::AssertSext:
5285   case ISD::TRUNCATE:
5286     return getUnderlyingArgReg(N.getOperand(0));
5287   default:
5288     return 0;
5289   }
5290 }
5291 
5292 /// If the DbgValueInst is a dbg_value of a function argument, create the
5293 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5294 /// instruction selection, they will be inserted to the entry BB.
5295 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5296     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5297     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5298   const Argument *Arg = dyn_cast<Argument>(V);
5299   if (!Arg)
5300     return false;
5301 
5302   if (!IsDbgDeclare) {
5303     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5304     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5305     // the entry block.
5306     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5307     if (!IsInEntryBlock)
5308       return false;
5309 
5310     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5311     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5312     // variable that also is a param.
5313     //
5314     // Although, if we are at the top of the entry block already, we can still
5315     // emit using ArgDbgValue. This might catch some situations when the
5316     // dbg.value refers to an argument that isn't used in the entry block, so
5317     // any CopyToReg node would be optimized out and the only way to express
5318     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5319     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5320     // we should only emit as ArgDbgValue if the Variable is an argument to the
5321     // current function, and the dbg.value intrinsic is found in the entry
5322     // block.
5323     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5324         !DL->getInlinedAt();
5325     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5326     if (!IsInPrologue && !VariableIsFunctionInputArg)
5327       return false;
5328 
5329     // Here we assume that a function argument on IR level only can be used to
5330     // describe one input parameter on source level. If we for example have
5331     // source code like this
5332     //
5333     //    struct A { long x, y; };
5334     //    void foo(struct A a, long b) {
5335     //      ...
5336     //      b = a.x;
5337     //      ...
5338     //    }
5339     //
5340     // and IR like this
5341     //
5342     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5343     //  entry:
5344     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5345     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5346     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5347     //    ...
5348     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5349     //    ...
5350     //
5351     // then the last dbg.value is describing a parameter "b" using a value that
5352     // is an argument. But since we already has used %a1 to describe a parameter
5353     // we should not handle that last dbg.value here (that would result in an
5354     // incorrect hoisting of the DBG_VALUE to the function entry).
5355     // Notice that we allow one dbg.value per IR level argument, to accomodate
5356     // for the situation with fragments above.
5357     if (VariableIsFunctionInputArg) {
5358       unsigned ArgNo = Arg->getArgNo();
5359       if (ArgNo >= FuncInfo.DescribedArgs.size())
5360         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5361       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5362         return false;
5363       FuncInfo.DescribedArgs.set(ArgNo);
5364     }
5365   }
5366 
5367   MachineFunction &MF = DAG.getMachineFunction();
5368   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5369 
5370   bool IsIndirect = false;
5371   Optional<MachineOperand> Op;
5372   // Some arguments' frame index is recorded during argument lowering.
5373   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5374   if (FI != std::numeric_limits<int>::max())
5375     Op = MachineOperand::CreateFI(FI);
5376 
5377   if (!Op && N.getNode()) {
5378     unsigned Reg = getUnderlyingArgReg(N);
5379     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
5380       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5381       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
5382       if (PR)
5383         Reg = PR;
5384     }
5385     if (Reg) {
5386       Op = MachineOperand::CreateReg(Reg, false);
5387       IsIndirect = IsDbgDeclare;
5388     }
5389   }
5390 
5391   if (!Op && N.getNode()) {
5392     // Check if frame index is available.
5393     SDValue LCandidate = peekThroughBitcasts(N);
5394     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5395       if (FrameIndexSDNode *FINode =
5396           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5397         Op = MachineOperand::CreateFI(FINode->getIndex());
5398   }
5399 
5400   if (!Op) {
5401     // Check if ValueMap has reg number.
5402     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
5403     if (VMI != FuncInfo.ValueMap.end()) {
5404       const auto &TLI = DAG.getTargetLoweringInfo();
5405       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5406                        V->getType(), getABIRegCopyCC(V));
5407       if (RFV.occupiesMultipleRegs()) {
5408         unsigned Offset = 0;
5409         for (auto RegAndSize : RFV.getRegsAndSizes()) {
5410           Op = MachineOperand::CreateReg(RegAndSize.first, false);
5411           auto FragmentExpr = DIExpression::createFragmentExpression(
5412               Expr, Offset, RegAndSize.second);
5413           if (!FragmentExpr)
5414             continue;
5415           FuncInfo.ArgDbgValues.push_back(
5416               BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5417                       Op->getReg(), Variable, *FragmentExpr));
5418           Offset += RegAndSize.second;
5419         }
5420         return true;
5421       }
5422       Op = MachineOperand::CreateReg(VMI->second, false);
5423       IsIndirect = IsDbgDeclare;
5424     }
5425   }
5426 
5427   if (!Op)
5428     return false;
5429 
5430   assert(Variable->isValidLocationForIntrinsic(DL) &&
5431          "Expected inlined-at fields to agree");
5432   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5433   FuncInfo.ArgDbgValues.push_back(
5434       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5435               *Op, Variable, Expr));
5436 
5437   return true;
5438 }
5439 
5440 /// Return the appropriate SDDbgValue based on N.
5441 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5442                                              DILocalVariable *Variable,
5443                                              DIExpression *Expr,
5444                                              const DebugLoc &dl,
5445                                              unsigned DbgSDNodeOrder) {
5446   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5447     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5448     // stack slot locations.
5449     //
5450     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5451     // debug values here after optimization:
5452     //
5453     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5454     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5455     //
5456     // Both describe the direct values of their associated variables.
5457     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5458                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5459   }
5460   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5461                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5462 }
5463 
5464 // VisualStudio defines setjmp as _setjmp
5465 #if defined(_MSC_VER) && defined(setjmp) && \
5466                          !defined(setjmp_undefined_for_msvc)
5467 #  pragma push_macro("setjmp")
5468 #  undef setjmp
5469 #  define setjmp_undefined_for_msvc
5470 #endif
5471 
5472 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5473   switch (Intrinsic) {
5474   case Intrinsic::smul_fix:
5475     return ISD::SMULFIX;
5476   case Intrinsic::umul_fix:
5477     return ISD::UMULFIX;
5478   default:
5479     llvm_unreachable("Unhandled fixed point intrinsic");
5480   }
5481 }
5482 
5483 /// Lower the call to the specified intrinsic function. If we want to emit this
5484 /// as a call to a named external function, return the name. Otherwise, lower it
5485 /// and return null.
5486 const char *
5487 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
5488   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5489   SDLoc sdl = getCurSDLoc();
5490   DebugLoc dl = getCurDebugLoc();
5491   SDValue Res;
5492 
5493   switch (Intrinsic) {
5494   default:
5495     // By default, turn this into a target intrinsic node.
5496     visitTargetIntrinsic(I, Intrinsic);
5497     return nullptr;
5498   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
5499   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
5500   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
5501   case Intrinsic::returnaddress:
5502     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5503                              TLI.getPointerTy(DAG.getDataLayout()),
5504                              getValue(I.getArgOperand(0))));
5505     return nullptr;
5506   case Intrinsic::addressofreturnaddress:
5507     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5508                              TLI.getPointerTy(DAG.getDataLayout())));
5509     return nullptr;
5510   case Intrinsic::sponentry:
5511     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5512                              TLI.getPointerTy(DAG.getDataLayout())));
5513     return nullptr;
5514   case Intrinsic::frameaddress:
5515     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5516                              TLI.getPointerTy(DAG.getDataLayout()),
5517                              getValue(I.getArgOperand(0))));
5518     return nullptr;
5519   case Intrinsic::read_register: {
5520     Value *Reg = I.getArgOperand(0);
5521     SDValue Chain = getRoot();
5522     SDValue RegName =
5523         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5524     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5525     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5526       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5527     setValue(&I, Res);
5528     DAG.setRoot(Res.getValue(1));
5529     return nullptr;
5530   }
5531   case Intrinsic::write_register: {
5532     Value *Reg = I.getArgOperand(0);
5533     Value *RegValue = I.getArgOperand(1);
5534     SDValue Chain = getRoot();
5535     SDValue RegName =
5536         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5537     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5538                             RegName, getValue(RegValue)));
5539     return nullptr;
5540   }
5541   case Intrinsic::setjmp:
5542     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
5543   case Intrinsic::longjmp:
5544     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
5545   case Intrinsic::memcpy: {
5546     const auto &MCI = cast<MemCpyInst>(I);
5547     SDValue Op1 = getValue(I.getArgOperand(0));
5548     SDValue Op2 = getValue(I.getArgOperand(1));
5549     SDValue Op3 = getValue(I.getArgOperand(2));
5550     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5551     unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5552     unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5553     unsigned Align = MinAlign(DstAlign, SrcAlign);
5554     bool isVol = MCI.isVolatile();
5555     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5556     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5557     // node.
5558     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5559                                false, isTC,
5560                                MachinePointerInfo(I.getArgOperand(0)),
5561                                MachinePointerInfo(I.getArgOperand(1)));
5562     updateDAGForMaybeTailCall(MC);
5563     return nullptr;
5564   }
5565   case Intrinsic::memset: {
5566     const auto &MSI = cast<MemSetInst>(I);
5567     SDValue Op1 = getValue(I.getArgOperand(0));
5568     SDValue Op2 = getValue(I.getArgOperand(1));
5569     SDValue Op3 = getValue(I.getArgOperand(2));
5570     // @llvm.memset defines 0 and 1 to both mean no alignment.
5571     unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5572     bool isVol = MSI.isVolatile();
5573     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5574     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5575                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5576     updateDAGForMaybeTailCall(MS);
5577     return nullptr;
5578   }
5579   case Intrinsic::memmove: {
5580     const auto &MMI = cast<MemMoveInst>(I);
5581     SDValue Op1 = getValue(I.getArgOperand(0));
5582     SDValue Op2 = getValue(I.getArgOperand(1));
5583     SDValue Op3 = getValue(I.getArgOperand(2));
5584     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5585     unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5586     unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5587     unsigned Align = MinAlign(DstAlign, SrcAlign);
5588     bool isVol = MMI.isVolatile();
5589     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5590     // FIXME: Support passing different dest/src alignments to the memmove DAG
5591     // node.
5592     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5593                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5594                                 MachinePointerInfo(I.getArgOperand(1)));
5595     updateDAGForMaybeTailCall(MM);
5596     return nullptr;
5597   }
5598   case Intrinsic::memcpy_element_unordered_atomic: {
5599     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5600     SDValue Dst = getValue(MI.getRawDest());
5601     SDValue Src = getValue(MI.getRawSource());
5602     SDValue Length = getValue(MI.getLength());
5603 
5604     unsigned DstAlign = MI.getDestAlignment();
5605     unsigned SrcAlign = MI.getSourceAlignment();
5606     Type *LengthTy = MI.getLength()->getType();
5607     unsigned ElemSz = MI.getElementSizeInBytes();
5608     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5609     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5610                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5611                                      MachinePointerInfo(MI.getRawDest()),
5612                                      MachinePointerInfo(MI.getRawSource()));
5613     updateDAGForMaybeTailCall(MC);
5614     return nullptr;
5615   }
5616   case Intrinsic::memmove_element_unordered_atomic: {
5617     auto &MI = cast<AtomicMemMoveInst>(I);
5618     SDValue Dst = getValue(MI.getRawDest());
5619     SDValue Src = getValue(MI.getRawSource());
5620     SDValue Length = getValue(MI.getLength());
5621 
5622     unsigned DstAlign = MI.getDestAlignment();
5623     unsigned SrcAlign = MI.getSourceAlignment();
5624     Type *LengthTy = MI.getLength()->getType();
5625     unsigned ElemSz = MI.getElementSizeInBytes();
5626     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5627     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5628                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5629                                       MachinePointerInfo(MI.getRawDest()),
5630                                       MachinePointerInfo(MI.getRawSource()));
5631     updateDAGForMaybeTailCall(MC);
5632     return nullptr;
5633   }
5634   case Intrinsic::memset_element_unordered_atomic: {
5635     auto &MI = cast<AtomicMemSetInst>(I);
5636     SDValue Dst = getValue(MI.getRawDest());
5637     SDValue Val = getValue(MI.getValue());
5638     SDValue Length = getValue(MI.getLength());
5639 
5640     unsigned DstAlign = MI.getDestAlignment();
5641     Type *LengthTy = MI.getLength()->getType();
5642     unsigned ElemSz = MI.getElementSizeInBytes();
5643     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5644     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5645                                      LengthTy, ElemSz, isTC,
5646                                      MachinePointerInfo(MI.getRawDest()));
5647     updateDAGForMaybeTailCall(MC);
5648     return nullptr;
5649   }
5650   case Intrinsic::dbg_addr:
5651   case Intrinsic::dbg_declare: {
5652     const auto &DI = cast<DbgVariableIntrinsic>(I);
5653     DILocalVariable *Variable = DI.getVariable();
5654     DIExpression *Expression = DI.getExpression();
5655     dropDanglingDebugInfo(Variable, Expression);
5656     assert(Variable && "Missing variable");
5657 
5658     // Check if address has undef value.
5659     const Value *Address = DI.getVariableLocation();
5660     if (!Address || isa<UndefValue>(Address) ||
5661         (Address->use_empty() && !isa<Argument>(Address))) {
5662       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5663       return nullptr;
5664     }
5665 
5666     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5667 
5668     // Check if this variable can be described by a frame index, typically
5669     // either as a static alloca or a byval parameter.
5670     int FI = std::numeric_limits<int>::max();
5671     if (const auto *AI =
5672             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5673       if (AI->isStaticAlloca()) {
5674         auto I = FuncInfo.StaticAllocaMap.find(AI);
5675         if (I != FuncInfo.StaticAllocaMap.end())
5676           FI = I->second;
5677       }
5678     } else if (const auto *Arg = dyn_cast<Argument>(
5679                    Address->stripInBoundsConstantOffsets())) {
5680       FI = FuncInfo.getArgumentFrameIndex(Arg);
5681     }
5682 
5683     // llvm.dbg.addr is control dependent and always generates indirect
5684     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5685     // the MachineFunction variable table.
5686     if (FI != std::numeric_limits<int>::max()) {
5687       if (Intrinsic == Intrinsic::dbg_addr) {
5688         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5689             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5690         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5691       }
5692       return nullptr;
5693     }
5694 
5695     SDValue &N = NodeMap[Address];
5696     if (!N.getNode() && isa<Argument>(Address))
5697       // Check unused arguments map.
5698       N = UnusedArgNodeMap[Address];
5699     SDDbgValue *SDV;
5700     if (N.getNode()) {
5701       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5702         Address = BCI->getOperand(0);
5703       // Parameters are handled specially.
5704       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5705       if (isParameter && FINode) {
5706         // Byval parameter. We have a frame index at this point.
5707         SDV =
5708             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5709                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5710       } else if (isa<Argument>(Address)) {
5711         // Address is an argument, so try to emit its dbg value using
5712         // virtual register info from the FuncInfo.ValueMap.
5713         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5714         return nullptr;
5715       } else {
5716         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5717                               true, dl, SDNodeOrder);
5718       }
5719       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5720     } else {
5721       // If Address is an argument then try to emit its dbg value using
5722       // virtual register info from the FuncInfo.ValueMap.
5723       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5724                                     N)) {
5725         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5726       }
5727     }
5728     return nullptr;
5729   }
5730   case Intrinsic::dbg_label: {
5731     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5732     DILabel *Label = DI.getLabel();
5733     assert(Label && "Missing label");
5734 
5735     SDDbgLabel *SDV;
5736     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5737     DAG.AddDbgLabel(SDV);
5738     return nullptr;
5739   }
5740   case Intrinsic::dbg_value: {
5741     const DbgValueInst &DI = cast<DbgValueInst>(I);
5742     assert(DI.getVariable() && "Missing variable");
5743 
5744     DILocalVariable *Variable = DI.getVariable();
5745     DIExpression *Expression = DI.getExpression();
5746     dropDanglingDebugInfo(Variable, Expression);
5747     const Value *V = DI.getValue();
5748     if (!V)
5749       return nullptr;
5750 
5751     if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
5752         SDNodeOrder))
5753       return nullptr;
5754 
5755     // TODO: Dangling debug info will eventually either be resolved or produce
5756     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5757     // between the original dbg.value location and its resolved DBG_VALUE, which
5758     // we should ideally fill with an extra Undef DBG_VALUE.
5759 
5760     DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5761     return nullptr;
5762   }
5763 
5764   case Intrinsic::eh_typeid_for: {
5765     // Find the type id for the given typeinfo.
5766     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5767     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5768     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5769     setValue(&I, Res);
5770     return nullptr;
5771   }
5772 
5773   case Intrinsic::eh_return_i32:
5774   case Intrinsic::eh_return_i64:
5775     DAG.getMachineFunction().setCallsEHReturn(true);
5776     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5777                             MVT::Other,
5778                             getControlRoot(),
5779                             getValue(I.getArgOperand(0)),
5780                             getValue(I.getArgOperand(1))));
5781     return nullptr;
5782   case Intrinsic::eh_unwind_init:
5783     DAG.getMachineFunction().setCallsUnwindInit(true);
5784     return nullptr;
5785   case Intrinsic::eh_dwarf_cfa:
5786     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5787                              TLI.getPointerTy(DAG.getDataLayout()),
5788                              getValue(I.getArgOperand(0))));
5789     return nullptr;
5790   case Intrinsic::eh_sjlj_callsite: {
5791     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5792     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5793     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5794     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5795 
5796     MMI.setCurrentCallSite(CI->getZExtValue());
5797     return nullptr;
5798   }
5799   case Intrinsic::eh_sjlj_functioncontext: {
5800     // Get and store the index of the function context.
5801     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5802     AllocaInst *FnCtx =
5803       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5804     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5805     MFI.setFunctionContextIndex(FI);
5806     return nullptr;
5807   }
5808   case Intrinsic::eh_sjlj_setjmp: {
5809     SDValue Ops[2];
5810     Ops[0] = getRoot();
5811     Ops[1] = getValue(I.getArgOperand(0));
5812     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5813                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5814     setValue(&I, Op.getValue(0));
5815     DAG.setRoot(Op.getValue(1));
5816     return nullptr;
5817   }
5818   case Intrinsic::eh_sjlj_longjmp:
5819     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5820                             getRoot(), getValue(I.getArgOperand(0))));
5821     return nullptr;
5822   case Intrinsic::eh_sjlj_setup_dispatch:
5823     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5824                             getRoot()));
5825     return nullptr;
5826   case Intrinsic::masked_gather:
5827     visitMaskedGather(I);
5828     return nullptr;
5829   case Intrinsic::masked_load:
5830     visitMaskedLoad(I);
5831     return nullptr;
5832   case Intrinsic::masked_scatter:
5833     visitMaskedScatter(I);
5834     return nullptr;
5835   case Intrinsic::masked_store:
5836     visitMaskedStore(I);
5837     return nullptr;
5838   case Intrinsic::masked_expandload:
5839     visitMaskedLoad(I, true /* IsExpanding */);
5840     return nullptr;
5841   case Intrinsic::masked_compressstore:
5842     visitMaskedStore(I, true /* IsCompressing */);
5843     return nullptr;
5844   case Intrinsic::x86_mmx_pslli_w:
5845   case Intrinsic::x86_mmx_pslli_d:
5846   case Intrinsic::x86_mmx_pslli_q:
5847   case Intrinsic::x86_mmx_psrli_w:
5848   case Intrinsic::x86_mmx_psrli_d:
5849   case Intrinsic::x86_mmx_psrli_q:
5850   case Intrinsic::x86_mmx_psrai_w:
5851   case Intrinsic::x86_mmx_psrai_d: {
5852     SDValue ShAmt = getValue(I.getArgOperand(1));
5853     if (isa<ConstantSDNode>(ShAmt)) {
5854       visitTargetIntrinsic(I, Intrinsic);
5855       return nullptr;
5856     }
5857     unsigned NewIntrinsic = 0;
5858     EVT ShAmtVT = MVT::v2i32;
5859     switch (Intrinsic) {
5860     case Intrinsic::x86_mmx_pslli_w:
5861       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5862       break;
5863     case Intrinsic::x86_mmx_pslli_d:
5864       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5865       break;
5866     case Intrinsic::x86_mmx_pslli_q:
5867       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5868       break;
5869     case Intrinsic::x86_mmx_psrli_w:
5870       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5871       break;
5872     case Intrinsic::x86_mmx_psrli_d:
5873       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5874       break;
5875     case Intrinsic::x86_mmx_psrli_q:
5876       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5877       break;
5878     case Intrinsic::x86_mmx_psrai_w:
5879       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5880       break;
5881     case Intrinsic::x86_mmx_psrai_d:
5882       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5883       break;
5884     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5885     }
5886 
5887     // The vector shift intrinsics with scalars uses 32b shift amounts but
5888     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5889     // to be zero.
5890     // We must do this early because v2i32 is not a legal type.
5891     SDValue ShOps[2];
5892     ShOps[0] = ShAmt;
5893     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5894     ShAmt =  DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5895     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5896     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5897     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5898                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5899                        getValue(I.getArgOperand(0)), ShAmt);
5900     setValue(&I, Res);
5901     return nullptr;
5902   }
5903   case Intrinsic::powi:
5904     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5905                             getValue(I.getArgOperand(1)), DAG));
5906     return nullptr;
5907   case Intrinsic::log:
5908     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5909     return nullptr;
5910   case Intrinsic::log2:
5911     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5912     return nullptr;
5913   case Intrinsic::log10:
5914     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5915     return nullptr;
5916   case Intrinsic::exp:
5917     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5918     return nullptr;
5919   case Intrinsic::exp2:
5920     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5921     return nullptr;
5922   case Intrinsic::pow:
5923     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5924                            getValue(I.getArgOperand(1)), DAG, TLI));
5925     return nullptr;
5926   case Intrinsic::sqrt:
5927   case Intrinsic::fabs:
5928   case Intrinsic::sin:
5929   case Intrinsic::cos:
5930   case Intrinsic::floor:
5931   case Intrinsic::ceil:
5932   case Intrinsic::trunc:
5933   case Intrinsic::rint:
5934   case Intrinsic::nearbyint:
5935   case Intrinsic::round:
5936   case Intrinsic::canonicalize: {
5937     unsigned Opcode;
5938     switch (Intrinsic) {
5939     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5940     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5941     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5942     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5943     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5944     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5945     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5946     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5947     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5948     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5949     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5950     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5951     }
5952 
5953     setValue(&I, DAG.getNode(Opcode, sdl,
5954                              getValue(I.getArgOperand(0)).getValueType(),
5955                              getValue(I.getArgOperand(0))));
5956     return nullptr;
5957   }
5958   case Intrinsic::minnum: {
5959     auto VT = getValue(I.getArgOperand(0)).getValueType();
5960     unsigned Opc =
5961         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)
5962             ? ISD::FMINIMUM
5963             : ISD::FMINNUM;
5964     setValue(&I, DAG.getNode(Opc, sdl, VT,
5965                              getValue(I.getArgOperand(0)),
5966                              getValue(I.getArgOperand(1))));
5967     return nullptr;
5968   }
5969   case Intrinsic::maxnum: {
5970     auto VT = getValue(I.getArgOperand(0)).getValueType();
5971     unsigned Opc =
5972         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)
5973             ? ISD::FMAXIMUM
5974             : ISD::FMAXNUM;
5975     setValue(&I, DAG.getNode(Opc, sdl, VT,
5976                              getValue(I.getArgOperand(0)),
5977                              getValue(I.getArgOperand(1))));
5978     return nullptr;
5979   }
5980   case Intrinsic::minimum:
5981     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
5982                              getValue(I.getArgOperand(0)).getValueType(),
5983                              getValue(I.getArgOperand(0)),
5984                              getValue(I.getArgOperand(1))));
5985     return nullptr;
5986   case Intrinsic::maximum:
5987     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
5988                              getValue(I.getArgOperand(0)).getValueType(),
5989                              getValue(I.getArgOperand(0)),
5990                              getValue(I.getArgOperand(1))));
5991     return nullptr;
5992   case Intrinsic::copysign:
5993     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5994                              getValue(I.getArgOperand(0)).getValueType(),
5995                              getValue(I.getArgOperand(0)),
5996                              getValue(I.getArgOperand(1))));
5997     return nullptr;
5998   case Intrinsic::fma:
5999     setValue(&I, DAG.getNode(ISD::FMA, sdl,
6000                              getValue(I.getArgOperand(0)).getValueType(),
6001                              getValue(I.getArgOperand(0)),
6002                              getValue(I.getArgOperand(1)),
6003                              getValue(I.getArgOperand(2))));
6004     return nullptr;
6005   case Intrinsic::experimental_constrained_fadd:
6006   case Intrinsic::experimental_constrained_fsub:
6007   case Intrinsic::experimental_constrained_fmul:
6008   case Intrinsic::experimental_constrained_fdiv:
6009   case Intrinsic::experimental_constrained_frem:
6010   case Intrinsic::experimental_constrained_fma:
6011   case Intrinsic::experimental_constrained_sqrt:
6012   case Intrinsic::experimental_constrained_pow:
6013   case Intrinsic::experimental_constrained_powi:
6014   case Intrinsic::experimental_constrained_sin:
6015   case Intrinsic::experimental_constrained_cos:
6016   case Intrinsic::experimental_constrained_exp:
6017   case Intrinsic::experimental_constrained_exp2:
6018   case Intrinsic::experimental_constrained_log:
6019   case Intrinsic::experimental_constrained_log10:
6020   case Intrinsic::experimental_constrained_log2:
6021   case Intrinsic::experimental_constrained_rint:
6022   case Intrinsic::experimental_constrained_nearbyint:
6023   case Intrinsic::experimental_constrained_maxnum:
6024   case Intrinsic::experimental_constrained_minnum:
6025   case Intrinsic::experimental_constrained_ceil:
6026   case Intrinsic::experimental_constrained_floor:
6027   case Intrinsic::experimental_constrained_round:
6028   case Intrinsic::experimental_constrained_trunc:
6029     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6030     return nullptr;
6031   case Intrinsic::fmuladd: {
6032     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6033     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6034         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
6035       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6036                                getValue(I.getArgOperand(0)).getValueType(),
6037                                getValue(I.getArgOperand(0)),
6038                                getValue(I.getArgOperand(1)),
6039                                getValue(I.getArgOperand(2))));
6040     } else {
6041       // TODO: Intrinsic calls should have fast-math-flags.
6042       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
6043                                 getValue(I.getArgOperand(0)).getValueType(),
6044                                 getValue(I.getArgOperand(0)),
6045                                 getValue(I.getArgOperand(1)));
6046       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6047                                 getValue(I.getArgOperand(0)).getValueType(),
6048                                 Mul,
6049                                 getValue(I.getArgOperand(2)));
6050       setValue(&I, Add);
6051     }
6052     return nullptr;
6053   }
6054   case Intrinsic::convert_to_fp16:
6055     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6056                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6057                                          getValue(I.getArgOperand(0)),
6058                                          DAG.getTargetConstant(0, sdl,
6059                                                                MVT::i32))));
6060     return nullptr;
6061   case Intrinsic::convert_from_fp16:
6062     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6063                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6064                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6065                                          getValue(I.getArgOperand(0)))));
6066     return nullptr;
6067   case Intrinsic::pcmarker: {
6068     SDValue Tmp = getValue(I.getArgOperand(0));
6069     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6070     return nullptr;
6071   }
6072   case Intrinsic::readcyclecounter: {
6073     SDValue Op = getRoot();
6074     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6075                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6076     setValue(&I, Res);
6077     DAG.setRoot(Res.getValue(1));
6078     return nullptr;
6079   }
6080   case Intrinsic::bitreverse:
6081     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6082                              getValue(I.getArgOperand(0)).getValueType(),
6083                              getValue(I.getArgOperand(0))));
6084     return nullptr;
6085   case Intrinsic::bswap:
6086     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6087                              getValue(I.getArgOperand(0)).getValueType(),
6088                              getValue(I.getArgOperand(0))));
6089     return nullptr;
6090   case Intrinsic::cttz: {
6091     SDValue Arg = getValue(I.getArgOperand(0));
6092     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6093     EVT Ty = Arg.getValueType();
6094     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6095                              sdl, Ty, Arg));
6096     return nullptr;
6097   }
6098   case Intrinsic::ctlz: {
6099     SDValue Arg = getValue(I.getArgOperand(0));
6100     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6101     EVT Ty = Arg.getValueType();
6102     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6103                              sdl, Ty, Arg));
6104     return nullptr;
6105   }
6106   case Intrinsic::ctpop: {
6107     SDValue Arg = getValue(I.getArgOperand(0));
6108     EVT Ty = Arg.getValueType();
6109     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6110     return nullptr;
6111   }
6112   case Intrinsic::fshl:
6113   case Intrinsic::fshr: {
6114     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6115     SDValue X = getValue(I.getArgOperand(0));
6116     SDValue Y = getValue(I.getArgOperand(1));
6117     SDValue Z = getValue(I.getArgOperand(2));
6118     EVT VT = X.getValueType();
6119     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
6120     SDValue Zero = DAG.getConstant(0, sdl, VT);
6121     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
6122 
6123     auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6124     if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
6125       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6126       return nullptr;
6127     }
6128 
6129     // When X == Y, this is rotate. If the data type has a power-of-2 size, we
6130     // avoid the select that is necessary in the general case to filter out
6131     // the 0-shift possibility that leads to UB.
6132     if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
6133       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6134       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6135         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6136         return nullptr;
6137       }
6138 
6139       // Some targets only rotate one way. Try the opposite direction.
6140       RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
6141       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6142         // Negate the shift amount because it is safe to ignore the high bits.
6143         SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6144         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
6145         return nullptr;
6146       }
6147 
6148       // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
6149       // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
6150       SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6151       SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
6152       SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
6153       SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
6154       setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
6155       return nullptr;
6156     }
6157 
6158     // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6159     // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6160     SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
6161     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
6162     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6163     SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
6164 
6165     // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6166     // and that is undefined. We must compare and select to avoid UB.
6167     EVT CCVT = MVT::i1;
6168     if (VT.isVector())
6169       CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
6170 
6171     // For fshl, 0-shift returns the 1st arg (X).
6172     // For fshr, 0-shift returns the 2nd arg (Y).
6173     SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
6174     setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
6175     return nullptr;
6176   }
6177   case Intrinsic::sadd_sat: {
6178     SDValue Op1 = getValue(I.getArgOperand(0));
6179     SDValue Op2 = getValue(I.getArgOperand(1));
6180     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6181     return nullptr;
6182   }
6183   case Intrinsic::uadd_sat: {
6184     SDValue Op1 = getValue(I.getArgOperand(0));
6185     SDValue Op2 = getValue(I.getArgOperand(1));
6186     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6187     return nullptr;
6188   }
6189   case Intrinsic::ssub_sat: {
6190     SDValue Op1 = getValue(I.getArgOperand(0));
6191     SDValue Op2 = getValue(I.getArgOperand(1));
6192     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6193     return nullptr;
6194   }
6195   case Intrinsic::usub_sat: {
6196     SDValue Op1 = getValue(I.getArgOperand(0));
6197     SDValue Op2 = getValue(I.getArgOperand(1));
6198     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6199     return nullptr;
6200   }
6201   case Intrinsic::smul_fix:
6202   case Intrinsic::umul_fix: {
6203     SDValue Op1 = getValue(I.getArgOperand(0));
6204     SDValue Op2 = getValue(I.getArgOperand(1));
6205     SDValue Op3 = getValue(I.getArgOperand(2));
6206     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6207                              Op1.getValueType(), Op1, Op2, Op3));
6208     return nullptr;
6209   }
6210   case Intrinsic::stacksave: {
6211     SDValue Op = getRoot();
6212     Res = DAG.getNode(
6213         ISD::STACKSAVE, sdl,
6214         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
6215     setValue(&I, Res);
6216     DAG.setRoot(Res.getValue(1));
6217     return nullptr;
6218   }
6219   case Intrinsic::stackrestore:
6220     Res = getValue(I.getArgOperand(0));
6221     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6222     return nullptr;
6223   case Intrinsic::get_dynamic_area_offset: {
6224     SDValue Op = getRoot();
6225     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6226     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6227     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6228     // target.
6229     if (PtrTy != ResTy)
6230       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6231                          " intrinsic!");
6232     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6233                       Op);
6234     DAG.setRoot(Op);
6235     setValue(&I, Res);
6236     return nullptr;
6237   }
6238   case Intrinsic::stackguard: {
6239     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6240     MachineFunction &MF = DAG.getMachineFunction();
6241     const Module &M = *MF.getFunction().getParent();
6242     SDValue Chain = getRoot();
6243     if (TLI.useLoadStackGuardNode()) {
6244       Res = getLoadStackGuard(DAG, sdl, Chain);
6245     } else {
6246       const Value *Global = TLI.getSDagStackGuard(M);
6247       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
6248       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6249                         MachinePointerInfo(Global, 0), Align,
6250                         MachineMemOperand::MOVolatile);
6251     }
6252     if (TLI.useStackGuardXorFP())
6253       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6254     DAG.setRoot(Chain);
6255     setValue(&I, Res);
6256     return nullptr;
6257   }
6258   case Intrinsic::stackprotector: {
6259     // Emit code into the DAG to store the stack guard onto the stack.
6260     MachineFunction &MF = DAG.getMachineFunction();
6261     MachineFrameInfo &MFI = MF.getFrameInfo();
6262     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6263     SDValue Src, Chain = getRoot();
6264 
6265     if (TLI.useLoadStackGuardNode())
6266       Src = getLoadStackGuard(DAG, sdl, Chain);
6267     else
6268       Src = getValue(I.getArgOperand(0));   // The guard's value.
6269 
6270     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6271 
6272     int FI = FuncInfo.StaticAllocaMap[Slot];
6273     MFI.setStackProtectorIndex(FI);
6274 
6275     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6276 
6277     // Store the stack protector onto the stack.
6278     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
6279                                                  DAG.getMachineFunction(), FI),
6280                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
6281     setValue(&I, Res);
6282     DAG.setRoot(Res);
6283     return nullptr;
6284   }
6285   case Intrinsic::objectsize: {
6286     // If we don't know by now, we're never going to know.
6287     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
6288 
6289     assert(CI && "Non-constant type in __builtin_object_size?");
6290 
6291     SDValue Arg = getValue(I.getCalledValue());
6292     EVT Ty = Arg.getValueType();
6293 
6294     if (CI->isZero())
6295       Res = DAG.getConstant(-1ULL, sdl, Ty);
6296     else
6297       Res = DAG.getConstant(0, sdl, Ty);
6298 
6299     setValue(&I, Res);
6300     return nullptr;
6301   }
6302 
6303   case Intrinsic::is_constant:
6304     // If this wasn't constant-folded away by now, then it's not a
6305     // constant.
6306     setValue(&I, DAG.getConstant(0, sdl, MVT::i1));
6307     return nullptr;
6308 
6309   case Intrinsic::annotation:
6310   case Intrinsic::ptr_annotation:
6311   case Intrinsic::launder_invariant_group:
6312   case Intrinsic::strip_invariant_group:
6313     // Drop the intrinsic, but forward the value
6314     setValue(&I, getValue(I.getOperand(0)));
6315     return nullptr;
6316   case Intrinsic::assume:
6317   case Intrinsic::var_annotation:
6318   case Intrinsic::sideeffect:
6319     // Discard annotate attributes, assumptions, and artificial side-effects.
6320     return nullptr;
6321 
6322   case Intrinsic::codeview_annotation: {
6323     // Emit a label associated with this metadata.
6324     MachineFunction &MF = DAG.getMachineFunction();
6325     MCSymbol *Label =
6326         MF.getMMI().getContext().createTempSymbol("annotation", true);
6327     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6328     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6329     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6330     DAG.setRoot(Res);
6331     return nullptr;
6332   }
6333 
6334   case Intrinsic::init_trampoline: {
6335     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6336 
6337     SDValue Ops[6];
6338     Ops[0] = getRoot();
6339     Ops[1] = getValue(I.getArgOperand(0));
6340     Ops[2] = getValue(I.getArgOperand(1));
6341     Ops[3] = getValue(I.getArgOperand(2));
6342     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6343     Ops[5] = DAG.getSrcValue(F);
6344 
6345     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6346 
6347     DAG.setRoot(Res);
6348     return nullptr;
6349   }
6350   case Intrinsic::adjust_trampoline:
6351     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6352                              TLI.getPointerTy(DAG.getDataLayout()),
6353                              getValue(I.getArgOperand(0))));
6354     return nullptr;
6355   case Intrinsic::gcroot: {
6356     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6357            "only valid in functions with gc specified, enforced by Verifier");
6358     assert(GFI && "implied by previous");
6359     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6360     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6361 
6362     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6363     GFI->addStackRoot(FI->getIndex(), TypeMap);
6364     return nullptr;
6365   }
6366   case Intrinsic::gcread:
6367   case Intrinsic::gcwrite:
6368     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6369   case Intrinsic::flt_rounds:
6370     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
6371     return nullptr;
6372 
6373   case Intrinsic::expect:
6374     // Just replace __builtin_expect(exp, c) with EXP.
6375     setValue(&I, getValue(I.getArgOperand(0)));
6376     return nullptr;
6377 
6378   case Intrinsic::debugtrap:
6379   case Intrinsic::trap: {
6380     StringRef TrapFuncName =
6381         I.getAttributes()
6382             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6383             .getValueAsString();
6384     if (TrapFuncName.empty()) {
6385       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6386         ISD::TRAP : ISD::DEBUGTRAP;
6387       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6388       return nullptr;
6389     }
6390     TargetLowering::ArgListTy Args;
6391 
6392     TargetLowering::CallLoweringInfo CLI(DAG);
6393     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6394         CallingConv::C, I.getType(),
6395         DAG.getExternalSymbol(TrapFuncName.data(),
6396                               TLI.getPointerTy(DAG.getDataLayout())),
6397         std::move(Args));
6398 
6399     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6400     DAG.setRoot(Result.second);
6401     return nullptr;
6402   }
6403 
6404   case Intrinsic::uadd_with_overflow:
6405   case Intrinsic::sadd_with_overflow:
6406   case Intrinsic::usub_with_overflow:
6407   case Intrinsic::ssub_with_overflow:
6408   case Intrinsic::umul_with_overflow:
6409   case Intrinsic::smul_with_overflow: {
6410     ISD::NodeType Op;
6411     switch (Intrinsic) {
6412     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6413     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6414     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6415     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6416     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6417     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6418     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6419     }
6420     SDValue Op1 = getValue(I.getArgOperand(0));
6421     SDValue Op2 = getValue(I.getArgOperand(1));
6422 
6423     EVT ResultVT = Op1.getValueType();
6424     EVT OverflowVT = MVT::i1;
6425     if (ResultVT.isVector())
6426       OverflowVT = EVT::getVectorVT(
6427           *Context, OverflowVT, ResultVT.getVectorNumElements());
6428 
6429     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6430     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6431     return nullptr;
6432   }
6433   case Intrinsic::prefetch: {
6434     SDValue Ops[5];
6435     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6436     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6437     Ops[0] = DAG.getRoot();
6438     Ops[1] = getValue(I.getArgOperand(0));
6439     Ops[2] = getValue(I.getArgOperand(1));
6440     Ops[3] = getValue(I.getArgOperand(2));
6441     Ops[4] = getValue(I.getArgOperand(3));
6442     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
6443                                              DAG.getVTList(MVT::Other), Ops,
6444                                              EVT::getIntegerVT(*Context, 8),
6445                                              MachinePointerInfo(I.getArgOperand(0)),
6446                                              0, /* align */
6447                                              Flags);
6448 
6449     // Chain the prefetch in parallell with any pending loads, to stay out of
6450     // the way of later optimizations.
6451     PendingLoads.push_back(Result);
6452     Result = getRoot();
6453     DAG.setRoot(Result);
6454     return nullptr;
6455   }
6456   case Intrinsic::lifetime_start:
6457   case Intrinsic::lifetime_end: {
6458     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6459     // Stack coloring is not enabled in O0, discard region information.
6460     if (TM.getOptLevel() == CodeGenOpt::None)
6461       return nullptr;
6462 
6463     const int64_t ObjectSize =
6464         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6465     Value *const ObjectPtr = I.getArgOperand(1);
6466     SmallVector<Value *, 4> Allocas;
6467     GetUnderlyingObjects(ObjectPtr, Allocas, *DL);
6468 
6469     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
6470            E = Allocas.end(); Object != E; ++Object) {
6471       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6472 
6473       // Could not find an Alloca.
6474       if (!LifetimeObject)
6475         continue;
6476 
6477       // First check that the Alloca is static, otherwise it won't have a
6478       // valid frame index.
6479       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6480       if (SI == FuncInfo.StaticAllocaMap.end())
6481         return nullptr;
6482 
6483       const int FrameIndex = SI->second;
6484       int64_t Offset;
6485       if (GetPointerBaseWithConstantOffset(
6486               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6487         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6488       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6489                                 Offset);
6490       DAG.setRoot(Res);
6491     }
6492     return nullptr;
6493   }
6494   case Intrinsic::invariant_start:
6495     // Discard region information.
6496     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6497     return nullptr;
6498   case Intrinsic::invariant_end:
6499     // Discard region information.
6500     return nullptr;
6501   case Intrinsic::clear_cache:
6502     return TLI.getClearCacheBuiltinName();
6503   case Intrinsic::donothing:
6504     // ignore
6505     return nullptr;
6506   case Intrinsic::experimental_stackmap:
6507     visitStackmap(I);
6508     return nullptr;
6509   case Intrinsic::experimental_patchpoint_void:
6510   case Intrinsic::experimental_patchpoint_i64:
6511     visitPatchpoint(&I);
6512     return nullptr;
6513   case Intrinsic::experimental_gc_statepoint:
6514     LowerStatepoint(ImmutableStatepoint(&I));
6515     return nullptr;
6516   case Intrinsic::experimental_gc_result:
6517     visitGCResult(cast<GCResultInst>(I));
6518     return nullptr;
6519   case Intrinsic::experimental_gc_relocate:
6520     visitGCRelocate(cast<GCRelocateInst>(I));
6521     return nullptr;
6522   case Intrinsic::instrprof_increment:
6523     llvm_unreachable("instrprof failed to lower an increment");
6524   case Intrinsic::instrprof_value_profile:
6525     llvm_unreachable("instrprof failed to lower a value profiling call");
6526   case Intrinsic::localescape: {
6527     MachineFunction &MF = DAG.getMachineFunction();
6528     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6529 
6530     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6531     // is the same on all targets.
6532     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6533       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6534       if (isa<ConstantPointerNull>(Arg))
6535         continue; // Skip null pointers. They represent a hole in index space.
6536       AllocaInst *Slot = cast<AllocaInst>(Arg);
6537       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6538              "can only escape static allocas");
6539       int FI = FuncInfo.StaticAllocaMap[Slot];
6540       MCSymbol *FrameAllocSym =
6541           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6542               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6543       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6544               TII->get(TargetOpcode::LOCAL_ESCAPE))
6545           .addSym(FrameAllocSym)
6546           .addFrameIndex(FI);
6547     }
6548 
6549     return nullptr;
6550   }
6551 
6552   case Intrinsic::localrecover: {
6553     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6554     MachineFunction &MF = DAG.getMachineFunction();
6555     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6556 
6557     // Get the symbol that defines the frame offset.
6558     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6559     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6560     unsigned IdxVal =
6561         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6562     MCSymbol *FrameAllocSym =
6563         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6564             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6565 
6566     // Create a MCSymbol for the label to avoid any target lowering
6567     // that would make this PC relative.
6568     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6569     SDValue OffsetVal =
6570         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6571 
6572     // Add the offset to the FP.
6573     Value *FP = I.getArgOperand(1);
6574     SDValue FPVal = getValue(FP);
6575     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
6576     setValue(&I, Add);
6577 
6578     return nullptr;
6579   }
6580 
6581   case Intrinsic::eh_exceptionpointer:
6582   case Intrinsic::eh_exceptioncode: {
6583     // Get the exception pointer vreg, copy from it, and resize it to fit.
6584     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6585     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6586     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6587     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6588     SDValue N =
6589         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6590     if (Intrinsic == Intrinsic::eh_exceptioncode)
6591       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6592     setValue(&I, N);
6593     return nullptr;
6594   }
6595   case Intrinsic::xray_customevent: {
6596     // Here we want to make sure that the intrinsic behaves as if it has a
6597     // specific calling convention, and only for x86_64.
6598     // FIXME: Support other platforms later.
6599     const auto &Triple = DAG.getTarget().getTargetTriple();
6600     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6601       return nullptr;
6602 
6603     SDLoc DL = getCurSDLoc();
6604     SmallVector<SDValue, 8> Ops;
6605 
6606     // We want to say that we always want the arguments in registers.
6607     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6608     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6609     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6610     SDValue Chain = getRoot();
6611     Ops.push_back(LogEntryVal);
6612     Ops.push_back(StrSizeVal);
6613     Ops.push_back(Chain);
6614 
6615     // We need to enforce the calling convention for the callsite, so that
6616     // argument ordering is enforced correctly, and that register allocation can
6617     // see that some registers may be assumed clobbered and have to preserve
6618     // them across calls to the intrinsic.
6619     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6620                                            DL, NodeTys, Ops);
6621     SDValue patchableNode = SDValue(MN, 0);
6622     DAG.setRoot(patchableNode);
6623     setValue(&I, patchableNode);
6624     return nullptr;
6625   }
6626   case Intrinsic::xray_typedevent: {
6627     // Here we want to make sure that the intrinsic behaves as if it has a
6628     // specific calling convention, and only for x86_64.
6629     // FIXME: Support other platforms later.
6630     const auto &Triple = DAG.getTarget().getTargetTriple();
6631     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6632       return nullptr;
6633 
6634     SDLoc DL = getCurSDLoc();
6635     SmallVector<SDValue, 8> Ops;
6636 
6637     // We want to say that we always want the arguments in registers.
6638     // It's unclear to me how manipulating the selection DAG here forces callers
6639     // to provide arguments in registers instead of on the stack.
6640     SDValue LogTypeId = getValue(I.getArgOperand(0));
6641     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6642     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6643     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6644     SDValue Chain = getRoot();
6645     Ops.push_back(LogTypeId);
6646     Ops.push_back(LogEntryVal);
6647     Ops.push_back(StrSizeVal);
6648     Ops.push_back(Chain);
6649 
6650     // We need to enforce the calling convention for the callsite, so that
6651     // argument ordering is enforced correctly, and that register allocation can
6652     // see that some registers may be assumed clobbered and have to preserve
6653     // them across calls to the intrinsic.
6654     MachineSDNode *MN = DAG.getMachineNode(
6655         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6656     SDValue patchableNode = SDValue(MN, 0);
6657     DAG.setRoot(patchableNode);
6658     setValue(&I, patchableNode);
6659     return nullptr;
6660   }
6661   case Intrinsic::experimental_deoptimize:
6662     LowerDeoptimizeCall(&I);
6663     return nullptr;
6664 
6665   case Intrinsic::experimental_vector_reduce_fadd:
6666   case Intrinsic::experimental_vector_reduce_fmul:
6667   case Intrinsic::experimental_vector_reduce_add:
6668   case Intrinsic::experimental_vector_reduce_mul:
6669   case Intrinsic::experimental_vector_reduce_and:
6670   case Intrinsic::experimental_vector_reduce_or:
6671   case Intrinsic::experimental_vector_reduce_xor:
6672   case Intrinsic::experimental_vector_reduce_smax:
6673   case Intrinsic::experimental_vector_reduce_smin:
6674   case Intrinsic::experimental_vector_reduce_umax:
6675   case Intrinsic::experimental_vector_reduce_umin:
6676   case Intrinsic::experimental_vector_reduce_fmax:
6677   case Intrinsic::experimental_vector_reduce_fmin:
6678     visitVectorReduce(I, Intrinsic);
6679     return nullptr;
6680 
6681   case Intrinsic::icall_branch_funnel: {
6682     SmallVector<SDValue, 16> Ops;
6683     Ops.push_back(DAG.getRoot());
6684     Ops.push_back(getValue(I.getArgOperand(0)));
6685 
6686     int64_t Offset;
6687     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6688         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6689     if (!Base)
6690       report_fatal_error(
6691           "llvm.icall.branch.funnel operand must be a GlobalValue");
6692     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6693 
6694     struct BranchFunnelTarget {
6695       int64_t Offset;
6696       SDValue Target;
6697     };
6698     SmallVector<BranchFunnelTarget, 8> Targets;
6699 
6700     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6701       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6702           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6703       if (ElemBase != Base)
6704         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6705                            "to the same GlobalValue");
6706 
6707       SDValue Val = getValue(I.getArgOperand(Op + 1));
6708       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6709       if (!GA)
6710         report_fatal_error(
6711             "llvm.icall.branch.funnel operand must be a GlobalValue");
6712       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6713                                      GA->getGlobal(), getCurSDLoc(),
6714                                      Val.getValueType(), GA->getOffset())});
6715     }
6716     llvm::sort(Targets,
6717                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6718                  return T1.Offset < T2.Offset;
6719                });
6720 
6721     for (auto &T : Targets) {
6722       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6723       Ops.push_back(T.Target);
6724     }
6725 
6726     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6727                                  getCurSDLoc(), MVT::Other, Ops),
6728               0);
6729     DAG.setRoot(N);
6730     setValue(&I, N);
6731     HasTailCall = true;
6732     return nullptr;
6733   }
6734 
6735   case Intrinsic::wasm_landingpad_index:
6736     // Information this intrinsic contained has been transferred to
6737     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6738     // delete it now.
6739     return nullptr;
6740   }
6741 }
6742 
6743 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6744     const ConstrainedFPIntrinsic &FPI) {
6745   SDLoc sdl = getCurSDLoc();
6746   unsigned Opcode;
6747   switch (FPI.getIntrinsicID()) {
6748   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6749   case Intrinsic::experimental_constrained_fadd:
6750     Opcode = ISD::STRICT_FADD;
6751     break;
6752   case Intrinsic::experimental_constrained_fsub:
6753     Opcode = ISD::STRICT_FSUB;
6754     break;
6755   case Intrinsic::experimental_constrained_fmul:
6756     Opcode = ISD::STRICT_FMUL;
6757     break;
6758   case Intrinsic::experimental_constrained_fdiv:
6759     Opcode = ISD::STRICT_FDIV;
6760     break;
6761   case Intrinsic::experimental_constrained_frem:
6762     Opcode = ISD::STRICT_FREM;
6763     break;
6764   case Intrinsic::experimental_constrained_fma:
6765     Opcode = ISD::STRICT_FMA;
6766     break;
6767   case Intrinsic::experimental_constrained_sqrt:
6768     Opcode = ISD::STRICT_FSQRT;
6769     break;
6770   case Intrinsic::experimental_constrained_pow:
6771     Opcode = ISD::STRICT_FPOW;
6772     break;
6773   case Intrinsic::experimental_constrained_powi:
6774     Opcode = ISD::STRICT_FPOWI;
6775     break;
6776   case Intrinsic::experimental_constrained_sin:
6777     Opcode = ISD::STRICT_FSIN;
6778     break;
6779   case Intrinsic::experimental_constrained_cos:
6780     Opcode = ISD::STRICT_FCOS;
6781     break;
6782   case Intrinsic::experimental_constrained_exp:
6783     Opcode = ISD::STRICT_FEXP;
6784     break;
6785   case Intrinsic::experimental_constrained_exp2:
6786     Opcode = ISD::STRICT_FEXP2;
6787     break;
6788   case Intrinsic::experimental_constrained_log:
6789     Opcode = ISD::STRICT_FLOG;
6790     break;
6791   case Intrinsic::experimental_constrained_log10:
6792     Opcode = ISD::STRICT_FLOG10;
6793     break;
6794   case Intrinsic::experimental_constrained_log2:
6795     Opcode = ISD::STRICT_FLOG2;
6796     break;
6797   case Intrinsic::experimental_constrained_rint:
6798     Opcode = ISD::STRICT_FRINT;
6799     break;
6800   case Intrinsic::experimental_constrained_nearbyint:
6801     Opcode = ISD::STRICT_FNEARBYINT;
6802     break;
6803   case Intrinsic::experimental_constrained_maxnum:
6804     Opcode = ISD::STRICT_FMAXNUM;
6805     break;
6806   case Intrinsic::experimental_constrained_minnum:
6807     Opcode = ISD::STRICT_FMINNUM;
6808     break;
6809   case Intrinsic::experimental_constrained_ceil:
6810     Opcode = ISD::STRICT_FCEIL;
6811     break;
6812   case Intrinsic::experimental_constrained_floor:
6813     Opcode = ISD::STRICT_FFLOOR;
6814     break;
6815   case Intrinsic::experimental_constrained_round:
6816     Opcode = ISD::STRICT_FROUND;
6817     break;
6818   case Intrinsic::experimental_constrained_trunc:
6819     Opcode = ISD::STRICT_FTRUNC;
6820     break;
6821   }
6822   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6823   SDValue Chain = getRoot();
6824   SmallVector<EVT, 4> ValueVTs;
6825   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6826   ValueVTs.push_back(MVT::Other); // Out chain
6827 
6828   SDVTList VTs = DAG.getVTList(ValueVTs);
6829   SDValue Result;
6830   if (FPI.isUnaryOp())
6831     Result = DAG.getNode(Opcode, sdl, VTs,
6832                          { Chain, getValue(FPI.getArgOperand(0)) });
6833   else if (FPI.isTernaryOp())
6834     Result = DAG.getNode(Opcode, sdl, VTs,
6835                          { Chain, getValue(FPI.getArgOperand(0)),
6836                                   getValue(FPI.getArgOperand(1)),
6837                                   getValue(FPI.getArgOperand(2)) });
6838   else
6839     Result = DAG.getNode(Opcode, sdl, VTs,
6840                          { Chain, getValue(FPI.getArgOperand(0)),
6841                            getValue(FPI.getArgOperand(1))  });
6842 
6843   assert(Result.getNode()->getNumValues() == 2);
6844   SDValue OutChain = Result.getValue(1);
6845   DAG.setRoot(OutChain);
6846   SDValue FPResult = Result.getValue(0);
6847   setValue(&FPI, FPResult);
6848 }
6849 
6850 std::pair<SDValue, SDValue>
6851 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6852                                     const BasicBlock *EHPadBB) {
6853   MachineFunction &MF = DAG.getMachineFunction();
6854   MachineModuleInfo &MMI = MF.getMMI();
6855   MCSymbol *BeginLabel = nullptr;
6856 
6857   if (EHPadBB) {
6858     // Insert a label before the invoke call to mark the try range.  This can be
6859     // used to detect deletion of the invoke via the MachineModuleInfo.
6860     BeginLabel = MMI.getContext().createTempSymbol();
6861 
6862     // For SjLj, keep track of which landing pads go with which invokes
6863     // so as to maintain the ordering of pads in the LSDA.
6864     unsigned CallSiteIndex = MMI.getCurrentCallSite();
6865     if (CallSiteIndex) {
6866       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
6867       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
6868 
6869       // Now that the call site is handled, stop tracking it.
6870       MMI.setCurrentCallSite(0);
6871     }
6872 
6873     // Both PendingLoads and PendingExports must be flushed here;
6874     // this call might not return.
6875     (void)getRoot();
6876     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
6877 
6878     CLI.setChain(getRoot());
6879   }
6880   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6881   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6882 
6883   assert((CLI.IsTailCall || Result.second.getNode()) &&
6884          "Non-null chain expected with non-tail call!");
6885   assert((Result.second.getNode() || !Result.first.getNode()) &&
6886          "Null value expected with tail call!");
6887 
6888   if (!Result.second.getNode()) {
6889     // As a special case, a null chain means that a tail call has been emitted
6890     // and the DAG root is already updated.
6891     HasTailCall = true;
6892 
6893     // Since there's no actual continuation from this block, nothing can be
6894     // relying on us setting vregs for them.
6895     PendingExports.clear();
6896   } else {
6897     DAG.setRoot(Result.second);
6898   }
6899 
6900   if (EHPadBB) {
6901     // Insert a label at the end of the invoke call to mark the try range.  This
6902     // can be used to detect deletion of the invoke via the MachineModuleInfo.
6903     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
6904     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
6905 
6906     // Inform MachineModuleInfo of range.
6907     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
6908     // There is a platform (e.g. wasm) that uses funclet style IR but does not
6909     // actually use outlined funclets and their LSDA info style.
6910     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
6911       assert(CLI.CS);
6912       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
6913       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
6914                                 BeginLabel, EndLabel);
6915     } else if (!isScopedEHPersonality(Pers)) {
6916       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
6917     }
6918   }
6919 
6920   return Result;
6921 }
6922 
6923 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
6924                                       bool isTailCall,
6925                                       const BasicBlock *EHPadBB) {
6926   auto &DL = DAG.getDataLayout();
6927   FunctionType *FTy = CS.getFunctionType();
6928   Type *RetTy = CS.getType();
6929 
6930   TargetLowering::ArgListTy Args;
6931   Args.reserve(CS.arg_size());
6932 
6933   const Value *SwiftErrorVal = nullptr;
6934   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6935 
6936   // We can't tail call inside a function with a swifterror argument. Lowering
6937   // does not support this yet. It would have to move into the swifterror
6938   // register before the call.
6939   auto *Caller = CS.getInstruction()->getParent()->getParent();
6940   if (TLI.supportSwiftError() &&
6941       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
6942     isTailCall = false;
6943 
6944   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
6945        i != e; ++i) {
6946     TargetLowering::ArgListEntry Entry;
6947     const Value *V = *i;
6948 
6949     // Skip empty types
6950     if (V->getType()->isEmptyTy())
6951       continue;
6952 
6953     SDValue ArgNode = getValue(V);
6954     Entry.Node = ArgNode; Entry.Ty = V->getType();
6955 
6956     Entry.setAttributes(&CS, i - CS.arg_begin());
6957 
6958     // Use swifterror virtual register as input to the call.
6959     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
6960       SwiftErrorVal = V;
6961       // We find the virtual register for the actual swifterror argument.
6962       // Instead of using the Value, we use the virtual register instead.
6963       Entry.Node = DAG.getRegister(FuncInfo
6964                                        .getOrCreateSwiftErrorVRegUseAt(
6965                                            CS.getInstruction(), FuncInfo.MBB, V)
6966                                        .first,
6967                                    EVT(TLI.getPointerTy(DL)));
6968     }
6969 
6970     Args.push_back(Entry);
6971 
6972     // If we have an explicit sret argument that is an Instruction, (i.e., it
6973     // might point to function-local memory), we can't meaningfully tail-call.
6974     if (Entry.IsSRet && isa<Instruction>(V))
6975       isTailCall = false;
6976   }
6977 
6978   // Check if target-independent constraints permit a tail call here.
6979   // Target-dependent constraints are checked within TLI->LowerCallTo.
6980   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
6981     isTailCall = false;
6982 
6983   // Disable tail calls if there is an swifterror argument. Targets have not
6984   // been updated to support tail calls.
6985   if (TLI.supportSwiftError() && SwiftErrorVal)
6986     isTailCall = false;
6987 
6988   TargetLowering::CallLoweringInfo CLI(DAG);
6989   CLI.setDebugLoc(getCurSDLoc())
6990       .setChain(getRoot())
6991       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
6992       .setTailCall(isTailCall)
6993       .setConvergent(CS.isConvergent());
6994   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
6995 
6996   if (Result.first.getNode()) {
6997     const Instruction *Inst = CS.getInstruction();
6998     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
6999     setValue(Inst, Result.first);
7000   }
7001 
7002   // The last element of CLI.InVals has the SDValue for swifterror return.
7003   // Here we copy it to a virtual register and update SwiftErrorMap for
7004   // book-keeping.
7005   if (SwiftErrorVal && TLI.supportSwiftError()) {
7006     // Get the last element of InVals.
7007     SDValue Src = CLI.InVals.back();
7008     unsigned VReg; bool CreatedVReg;
7009     std::tie(VReg, CreatedVReg) =
7010         FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction());
7011     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7012     // We update the virtual register for the actual swifterror argument.
7013     if (CreatedVReg)
7014       FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
7015     DAG.setRoot(CopyNode);
7016   }
7017 }
7018 
7019 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7020                              SelectionDAGBuilder &Builder) {
7021   // Check to see if this load can be trivially constant folded, e.g. if the
7022   // input is from a string literal.
7023   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7024     // Cast pointer to the type we really want to load.
7025     Type *LoadTy =
7026         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7027     if (LoadVT.isVector())
7028       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
7029 
7030     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7031                                          PointerType::getUnqual(LoadTy));
7032 
7033     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7034             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7035       return Builder.getValue(LoadCst);
7036   }
7037 
7038   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7039   // still constant memory, the input chain can be the entry node.
7040   SDValue Root;
7041   bool ConstantMemory = false;
7042 
7043   // Do not serialize (non-volatile) loads of constant memory with anything.
7044   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7045     Root = Builder.DAG.getEntryNode();
7046     ConstantMemory = true;
7047   } else {
7048     // Do not serialize non-volatile loads against each other.
7049     Root = Builder.DAG.getRoot();
7050   }
7051 
7052   SDValue Ptr = Builder.getValue(PtrVal);
7053   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
7054                                         Ptr, MachinePointerInfo(PtrVal),
7055                                         /* Alignment = */ 1);
7056 
7057   if (!ConstantMemory)
7058     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7059   return LoadVal;
7060 }
7061 
7062 /// Record the value for an instruction that produces an integer result,
7063 /// converting the type where necessary.
7064 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7065                                                   SDValue Value,
7066                                                   bool IsSigned) {
7067   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7068                                                     I.getType(), true);
7069   if (IsSigned)
7070     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7071   else
7072     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7073   setValue(&I, Value);
7074 }
7075 
7076 /// See if we can lower a memcmp call into an optimized form. If so, return
7077 /// true and lower it. Otherwise return false, and it will be lowered like a
7078 /// normal call.
7079 /// The caller already checked that \p I calls the appropriate LibFunc with a
7080 /// correct prototype.
7081 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
7082   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7083   const Value *Size = I.getArgOperand(2);
7084   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7085   if (CSize && CSize->getZExtValue() == 0) {
7086     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7087                                                           I.getType(), true);
7088     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7089     return true;
7090   }
7091 
7092   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7093   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7094       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7095       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7096   if (Res.first.getNode()) {
7097     processIntegerCallValue(I, Res.first, true);
7098     PendingLoads.push_back(Res.second);
7099     return true;
7100   }
7101 
7102   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7103   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7104   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7105     return false;
7106 
7107   // If the target has a fast compare for the given size, it will return a
7108   // preferred load type for that size. Require that the load VT is legal and
7109   // that the target supports unaligned loads of that type. Otherwise, return
7110   // INVALID.
7111   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7112     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7113     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7114     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7115       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7116       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7117       // TODO: Check alignment of src and dest ptrs.
7118       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7119       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7120       if (!TLI.isTypeLegal(LVT) ||
7121           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7122           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7123         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7124     }
7125 
7126     return LVT;
7127   };
7128 
7129   // This turns into unaligned loads. We only do this if the target natively
7130   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7131   // we'll only produce a small number of byte loads.
7132   MVT LoadVT;
7133   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7134   switch (NumBitsToCompare) {
7135   default:
7136     return false;
7137   case 16:
7138     LoadVT = MVT::i16;
7139     break;
7140   case 32:
7141     LoadVT = MVT::i32;
7142     break;
7143   case 64:
7144   case 128:
7145   case 256:
7146     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7147     break;
7148   }
7149 
7150   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7151     return false;
7152 
7153   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7154   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7155 
7156   // Bitcast to a wide integer type if the loads are vectors.
7157   if (LoadVT.isVector()) {
7158     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7159     LoadL = DAG.getBitcast(CmpVT, LoadL);
7160     LoadR = DAG.getBitcast(CmpVT, LoadR);
7161   }
7162 
7163   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7164   processIntegerCallValue(I, Cmp, false);
7165   return true;
7166 }
7167 
7168 /// See if we can lower a memchr call into an optimized form. If so, return
7169 /// true and lower it. Otherwise return false, and it will be lowered like a
7170 /// normal call.
7171 /// The caller already checked that \p I calls the appropriate LibFunc with a
7172 /// correct prototype.
7173 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7174   const Value *Src = I.getArgOperand(0);
7175   const Value *Char = I.getArgOperand(1);
7176   const Value *Length = I.getArgOperand(2);
7177 
7178   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7179   std::pair<SDValue, SDValue> Res =
7180     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7181                                 getValue(Src), getValue(Char), getValue(Length),
7182                                 MachinePointerInfo(Src));
7183   if (Res.first.getNode()) {
7184     setValue(&I, Res.first);
7185     PendingLoads.push_back(Res.second);
7186     return true;
7187   }
7188 
7189   return false;
7190 }
7191 
7192 /// See if we can lower a mempcpy call into an optimized form. If so, return
7193 /// true and lower it. Otherwise return false, and it will be lowered like a
7194 /// normal call.
7195 /// The caller already checked that \p I calls the appropriate LibFunc with a
7196 /// correct prototype.
7197 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7198   SDValue Dst = getValue(I.getArgOperand(0));
7199   SDValue Src = getValue(I.getArgOperand(1));
7200   SDValue Size = getValue(I.getArgOperand(2));
7201 
7202   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
7203   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
7204   unsigned Align = std::min(DstAlign, SrcAlign);
7205   if (Align == 0) // Alignment of one or both could not be inferred.
7206     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
7207 
7208   bool isVol = false;
7209   SDLoc sdl = getCurSDLoc();
7210 
7211   // In the mempcpy context we need to pass in a false value for isTailCall
7212   // because the return pointer needs to be adjusted by the size of
7213   // the copied memory.
7214   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
7215                              false, /*isTailCall=*/false,
7216                              MachinePointerInfo(I.getArgOperand(0)),
7217                              MachinePointerInfo(I.getArgOperand(1)));
7218   assert(MC.getNode() != nullptr &&
7219          "** memcpy should not be lowered as TailCall in mempcpy context **");
7220   DAG.setRoot(MC);
7221 
7222   // Check if Size needs to be truncated or extended.
7223   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7224 
7225   // Adjust return pointer to point just past the last dst byte.
7226   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7227                                     Dst, Size);
7228   setValue(&I, DstPlusSize);
7229   return true;
7230 }
7231 
7232 /// See if we can lower a strcpy call into an optimized form.  If so, return
7233 /// true and lower it, otherwise return false and it will be lowered like a
7234 /// normal call.
7235 /// The caller already checked that \p I calls the appropriate LibFunc with a
7236 /// correct prototype.
7237 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7238   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7239 
7240   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7241   std::pair<SDValue, SDValue> Res =
7242     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7243                                 getValue(Arg0), getValue(Arg1),
7244                                 MachinePointerInfo(Arg0),
7245                                 MachinePointerInfo(Arg1), isStpcpy);
7246   if (Res.first.getNode()) {
7247     setValue(&I, Res.first);
7248     DAG.setRoot(Res.second);
7249     return true;
7250   }
7251 
7252   return false;
7253 }
7254 
7255 /// See if we can lower a strcmp call into an optimized form.  If so, return
7256 /// true and lower it, otherwise return false and it will be lowered like a
7257 /// normal call.
7258 /// The caller already checked that \p I calls the appropriate LibFunc with a
7259 /// correct prototype.
7260 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7261   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7262 
7263   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7264   std::pair<SDValue, SDValue> Res =
7265     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7266                                 getValue(Arg0), getValue(Arg1),
7267                                 MachinePointerInfo(Arg0),
7268                                 MachinePointerInfo(Arg1));
7269   if (Res.first.getNode()) {
7270     processIntegerCallValue(I, Res.first, true);
7271     PendingLoads.push_back(Res.second);
7272     return true;
7273   }
7274 
7275   return false;
7276 }
7277 
7278 /// See if we can lower a strlen call into an optimized form.  If so, return
7279 /// true and lower it, otherwise return false and it will be lowered like a
7280 /// normal call.
7281 /// The caller already checked that \p I calls the appropriate LibFunc with a
7282 /// correct prototype.
7283 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7284   const Value *Arg0 = I.getArgOperand(0);
7285 
7286   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7287   std::pair<SDValue, SDValue> Res =
7288     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7289                                 getValue(Arg0), MachinePointerInfo(Arg0));
7290   if (Res.first.getNode()) {
7291     processIntegerCallValue(I, Res.first, false);
7292     PendingLoads.push_back(Res.second);
7293     return true;
7294   }
7295 
7296   return false;
7297 }
7298 
7299 /// See if we can lower a strnlen call into an optimized form.  If so, return
7300 /// true and lower it, otherwise return false and it will be lowered like a
7301 /// normal call.
7302 /// The caller already checked that \p I calls the appropriate LibFunc with a
7303 /// correct prototype.
7304 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7305   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7306 
7307   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7308   std::pair<SDValue, SDValue> Res =
7309     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7310                                  getValue(Arg0), getValue(Arg1),
7311                                  MachinePointerInfo(Arg0));
7312   if (Res.first.getNode()) {
7313     processIntegerCallValue(I, Res.first, false);
7314     PendingLoads.push_back(Res.second);
7315     return true;
7316   }
7317 
7318   return false;
7319 }
7320 
7321 /// See if we can lower a unary floating-point operation into an SDNode with
7322 /// the specified Opcode.  If so, return true and lower it, otherwise return
7323 /// false and it will be lowered like a normal call.
7324 /// The caller already checked that \p I calls the appropriate LibFunc with a
7325 /// correct prototype.
7326 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7327                                               unsigned Opcode) {
7328   // We already checked this call's prototype; verify it doesn't modify errno.
7329   if (!I.onlyReadsMemory())
7330     return false;
7331 
7332   SDValue Tmp = getValue(I.getArgOperand(0));
7333   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
7334   return true;
7335 }
7336 
7337 /// See if we can lower a binary floating-point operation into an SDNode with
7338 /// the specified Opcode. If so, return true and lower it. Otherwise return
7339 /// false, and it will be lowered like a normal call.
7340 /// The caller already checked that \p I calls the appropriate LibFunc with a
7341 /// correct prototype.
7342 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7343                                                unsigned Opcode) {
7344   // We already checked this call's prototype; verify it doesn't modify errno.
7345   if (!I.onlyReadsMemory())
7346     return false;
7347 
7348   SDValue Tmp0 = getValue(I.getArgOperand(0));
7349   SDValue Tmp1 = getValue(I.getArgOperand(1));
7350   EVT VT = Tmp0.getValueType();
7351   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
7352   return true;
7353 }
7354 
7355 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7356   // Handle inline assembly differently.
7357   if (isa<InlineAsm>(I.getCalledValue())) {
7358     visitInlineAsm(&I);
7359     return;
7360   }
7361 
7362   const char *RenameFn = nullptr;
7363   if (Function *F = I.getCalledFunction()) {
7364     if (F->isDeclaration()) {
7365       // Is this an LLVM intrinsic or a target-specific intrinsic?
7366       unsigned IID = F->getIntrinsicID();
7367       if (!IID)
7368         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7369           IID = II->getIntrinsicID(F);
7370 
7371       if (IID) {
7372         RenameFn = visitIntrinsicCall(I, IID);
7373         if (!RenameFn)
7374           return;
7375       }
7376     }
7377 
7378     // Check for well-known libc/libm calls.  If the function is internal, it
7379     // can't be a library call.  Don't do the check if marked as nobuiltin for
7380     // some reason or the call site requires strict floating point semantics.
7381     LibFunc Func;
7382     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7383         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7384         LibInfo->hasOptimizedCodeGen(Func)) {
7385       switch (Func) {
7386       default: break;
7387       case LibFunc_copysign:
7388       case LibFunc_copysignf:
7389       case LibFunc_copysignl:
7390         // We already checked this call's prototype; verify it doesn't modify
7391         // errno.
7392         if (I.onlyReadsMemory()) {
7393           SDValue LHS = getValue(I.getArgOperand(0));
7394           SDValue RHS = getValue(I.getArgOperand(1));
7395           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7396                                    LHS.getValueType(), LHS, RHS));
7397           return;
7398         }
7399         break;
7400       case LibFunc_fabs:
7401       case LibFunc_fabsf:
7402       case LibFunc_fabsl:
7403         if (visitUnaryFloatCall(I, ISD::FABS))
7404           return;
7405         break;
7406       case LibFunc_fmin:
7407       case LibFunc_fminf:
7408       case LibFunc_fminl:
7409         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7410           return;
7411         break;
7412       case LibFunc_fmax:
7413       case LibFunc_fmaxf:
7414       case LibFunc_fmaxl:
7415         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7416           return;
7417         break;
7418       case LibFunc_sin:
7419       case LibFunc_sinf:
7420       case LibFunc_sinl:
7421         if (visitUnaryFloatCall(I, ISD::FSIN))
7422           return;
7423         break;
7424       case LibFunc_cos:
7425       case LibFunc_cosf:
7426       case LibFunc_cosl:
7427         if (visitUnaryFloatCall(I, ISD::FCOS))
7428           return;
7429         break;
7430       case LibFunc_sqrt:
7431       case LibFunc_sqrtf:
7432       case LibFunc_sqrtl:
7433       case LibFunc_sqrt_finite:
7434       case LibFunc_sqrtf_finite:
7435       case LibFunc_sqrtl_finite:
7436         if (visitUnaryFloatCall(I, ISD::FSQRT))
7437           return;
7438         break;
7439       case LibFunc_floor:
7440       case LibFunc_floorf:
7441       case LibFunc_floorl:
7442         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7443           return;
7444         break;
7445       case LibFunc_nearbyint:
7446       case LibFunc_nearbyintf:
7447       case LibFunc_nearbyintl:
7448         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7449           return;
7450         break;
7451       case LibFunc_ceil:
7452       case LibFunc_ceilf:
7453       case LibFunc_ceill:
7454         if (visitUnaryFloatCall(I, ISD::FCEIL))
7455           return;
7456         break;
7457       case LibFunc_rint:
7458       case LibFunc_rintf:
7459       case LibFunc_rintl:
7460         if (visitUnaryFloatCall(I, ISD::FRINT))
7461           return;
7462         break;
7463       case LibFunc_round:
7464       case LibFunc_roundf:
7465       case LibFunc_roundl:
7466         if (visitUnaryFloatCall(I, ISD::FROUND))
7467           return;
7468         break;
7469       case LibFunc_trunc:
7470       case LibFunc_truncf:
7471       case LibFunc_truncl:
7472         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7473           return;
7474         break;
7475       case LibFunc_log2:
7476       case LibFunc_log2f:
7477       case LibFunc_log2l:
7478         if (visitUnaryFloatCall(I, ISD::FLOG2))
7479           return;
7480         break;
7481       case LibFunc_exp2:
7482       case LibFunc_exp2f:
7483       case LibFunc_exp2l:
7484         if (visitUnaryFloatCall(I, ISD::FEXP2))
7485           return;
7486         break;
7487       case LibFunc_memcmp:
7488         if (visitMemCmpCall(I))
7489           return;
7490         break;
7491       case LibFunc_mempcpy:
7492         if (visitMemPCpyCall(I))
7493           return;
7494         break;
7495       case LibFunc_memchr:
7496         if (visitMemChrCall(I))
7497           return;
7498         break;
7499       case LibFunc_strcpy:
7500         if (visitStrCpyCall(I, false))
7501           return;
7502         break;
7503       case LibFunc_stpcpy:
7504         if (visitStrCpyCall(I, true))
7505           return;
7506         break;
7507       case LibFunc_strcmp:
7508         if (visitStrCmpCall(I))
7509           return;
7510         break;
7511       case LibFunc_strlen:
7512         if (visitStrLenCall(I))
7513           return;
7514         break;
7515       case LibFunc_strnlen:
7516         if (visitStrNLenCall(I))
7517           return;
7518         break;
7519       }
7520     }
7521   }
7522 
7523   SDValue Callee;
7524   if (!RenameFn)
7525     Callee = getValue(I.getCalledValue());
7526   else
7527     Callee = DAG.getExternalSymbol(
7528         RenameFn,
7529         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
7530 
7531   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7532   // have to do anything here to lower funclet bundles.
7533   assert(!I.hasOperandBundlesOtherThan(
7534              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
7535          "Cannot lower calls with arbitrary operand bundles!");
7536 
7537   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7538     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7539   else
7540     // Check if we can potentially perform a tail call. More detailed checking
7541     // is be done within LowerCallTo, after more information about the call is
7542     // known.
7543     LowerCallTo(&I, Callee, I.isTailCall());
7544 }
7545 
7546 namespace {
7547 
7548 /// AsmOperandInfo - This contains information for each constraint that we are
7549 /// lowering.
7550 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7551 public:
7552   /// CallOperand - If this is the result output operand or a clobber
7553   /// this is null, otherwise it is the incoming operand to the CallInst.
7554   /// This gets modified as the asm is processed.
7555   SDValue CallOperand;
7556 
7557   /// AssignedRegs - If this is a register or register class operand, this
7558   /// contains the set of register corresponding to the operand.
7559   RegsForValue AssignedRegs;
7560 
7561   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7562     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7563   }
7564 
7565   /// Whether or not this operand accesses memory
7566   bool hasMemory(const TargetLowering &TLI) const {
7567     // Indirect operand accesses access memory.
7568     if (isIndirect)
7569       return true;
7570 
7571     for (const auto &Code : Codes)
7572       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7573         return true;
7574 
7575     return false;
7576   }
7577 
7578   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7579   /// corresponds to.  If there is no Value* for this operand, it returns
7580   /// MVT::Other.
7581   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7582                            const DataLayout &DL) const {
7583     if (!CallOperandVal) return MVT::Other;
7584 
7585     if (isa<BasicBlock>(CallOperandVal))
7586       return TLI.getPointerTy(DL);
7587 
7588     llvm::Type *OpTy = CallOperandVal->getType();
7589 
7590     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7591     // If this is an indirect operand, the operand is a pointer to the
7592     // accessed type.
7593     if (isIndirect) {
7594       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7595       if (!PtrTy)
7596         report_fatal_error("Indirect operand for inline asm not a pointer!");
7597       OpTy = PtrTy->getElementType();
7598     }
7599 
7600     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7601     if (StructType *STy = dyn_cast<StructType>(OpTy))
7602       if (STy->getNumElements() == 1)
7603         OpTy = STy->getElementType(0);
7604 
7605     // If OpTy is not a single value, it may be a struct/union that we
7606     // can tile with integers.
7607     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7608       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7609       switch (BitSize) {
7610       default: break;
7611       case 1:
7612       case 8:
7613       case 16:
7614       case 32:
7615       case 64:
7616       case 128:
7617         OpTy = IntegerType::get(Context, BitSize);
7618         break;
7619       }
7620     }
7621 
7622     return TLI.getValueType(DL, OpTy, true);
7623   }
7624 };
7625 
7626 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7627 
7628 } // end anonymous namespace
7629 
7630 /// Make sure that the output operand \p OpInfo and its corresponding input
7631 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7632 /// out).
7633 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7634                                SDISelAsmOperandInfo &MatchingOpInfo,
7635                                SelectionDAG &DAG) {
7636   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7637     return;
7638 
7639   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7640   const auto &TLI = DAG.getTargetLoweringInfo();
7641 
7642   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7643       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7644                                        OpInfo.ConstraintVT);
7645   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7646       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7647                                        MatchingOpInfo.ConstraintVT);
7648   if ((OpInfo.ConstraintVT.isInteger() !=
7649        MatchingOpInfo.ConstraintVT.isInteger()) ||
7650       (MatchRC.second != InputRC.second)) {
7651     // FIXME: error out in a more elegant fashion
7652     report_fatal_error("Unsupported asm: input constraint"
7653                        " with a matching output constraint of"
7654                        " incompatible type!");
7655   }
7656   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7657 }
7658 
7659 /// Get a direct memory input to behave well as an indirect operand.
7660 /// This may introduce stores, hence the need for a \p Chain.
7661 /// \return The (possibly updated) chain.
7662 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7663                                         SDISelAsmOperandInfo &OpInfo,
7664                                         SelectionDAG &DAG) {
7665   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7666 
7667   // If we don't have an indirect input, put it in the constpool if we can,
7668   // otherwise spill it to a stack slot.
7669   // TODO: This isn't quite right. We need to handle these according to
7670   // the addressing mode that the constraint wants. Also, this may take
7671   // an additional register for the computation and we don't want that
7672   // either.
7673 
7674   // If the operand is a float, integer, or vector constant, spill to a
7675   // constant pool entry to get its address.
7676   const Value *OpVal = OpInfo.CallOperandVal;
7677   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7678       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7679     OpInfo.CallOperand = DAG.getConstantPool(
7680         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7681     return Chain;
7682   }
7683 
7684   // Otherwise, create a stack slot and emit a store to it before the asm.
7685   Type *Ty = OpVal->getType();
7686   auto &DL = DAG.getDataLayout();
7687   uint64_t TySize = DL.getTypeAllocSize(Ty);
7688   unsigned Align = DL.getPrefTypeAlignment(Ty);
7689   MachineFunction &MF = DAG.getMachineFunction();
7690   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7691   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7692   Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7693                        MachinePointerInfo::getFixedStack(MF, SSFI));
7694   OpInfo.CallOperand = StackSlot;
7695 
7696   return Chain;
7697 }
7698 
7699 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7700 /// specified operand.  We prefer to assign virtual registers, to allow the
7701 /// register allocator to handle the assignment process.  However, if the asm
7702 /// uses features that we can't model on machineinstrs, we have SDISel do the
7703 /// allocation.  This produces generally horrible, but correct, code.
7704 ///
7705 ///   OpInfo describes the operand
7706 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7707 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7708                                  SDISelAsmOperandInfo &OpInfo,
7709                                  SDISelAsmOperandInfo &RefOpInfo) {
7710   LLVMContext &Context = *DAG.getContext();
7711   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7712 
7713   MachineFunction &MF = DAG.getMachineFunction();
7714   SmallVector<unsigned, 4> Regs;
7715   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7716 
7717   // No work to do for memory operations.
7718   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7719     return;
7720 
7721   // If this is a constraint for a single physreg, or a constraint for a
7722   // register class, find it.
7723   unsigned AssignedReg;
7724   const TargetRegisterClass *RC;
7725   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7726       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7727   // RC is unset only on failure. Return immediately.
7728   if (!RC)
7729     return;
7730 
7731   // Get the actual register value type.  This is important, because the user
7732   // may have asked for (e.g.) the AX register in i32 type.  We need to
7733   // remember that AX is actually i16 to get the right extension.
7734   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7735 
7736   if (OpInfo.ConstraintVT != MVT::Other) {
7737     // If this is an FP operand in an integer register (or visa versa), or more
7738     // generally if the operand value disagrees with the register class we plan
7739     // to stick it in, fix the operand type.
7740     //
7741     // If this is an input value, the bitcast to the new type is done now.
7742     // Bitcast for output value is done at the end of visitInlineAsm().
7743     if ((OpInfo.Type == InlineAsm::isOutput ||
7744          OpInfo.Type == InlineAsm::isInput) &&
7745         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7746       // Try to convert to the first EVT that the reg class contains.  If the
7747       // types are identical size, use a bitcast to convert (e.g. two differing
7748       // vector types).  Note: output bitcast is done at the end of
7749       // visitInlineAsm().
7750       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7751         // Exclude indirect inputs while they are unsupported because the code
7752         // to perform the load is missing and thus OpInfo.CallOperand still
7753         // refers to the input address rather than the pointed-to value.
7754         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7755           OpInfo.CallOperand =
7756               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7757         OpInfo.ConstraintVT = RegVT;
7758         // If the operand is an FP value and we want it in integer registers,
7759         // use the corresponding integer type. This turns an f64 value into
7760         // i64, which can be passed with two i32 values on a 32-bit machine.
7761       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7762         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7763         if (OpInfo.Type == InlineAsm::isInput)
7764           OpInfo.CallOperand =
7765               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
7766         OpInfo.ConstraintVT = VT;
7767       }
7768     }
7769   }
7770 
7771   // No need to allocate a matching input constraint since the constraint it's
7772   // matching to has already been allocated.
7773   if (OpInfo.isMatchingInputConstraint())
7774     return;
7775 
7776   EVT ValueVT = OpInfo.ConstraintVT;
7777   if (OpInfo.ConstraintVT == MVT::Other)
7778     ValueVT = RegVT;
7779 
7780   // Initialize NumRegs.
7781   unsigned NumRegs = 1;
7782   if (OpInfo.ConstraintVT != MVT::Other)
7783     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7784 
7785   // If this is a constraint for a specific physical register, like {r17},
7786   // assign it now.
7787 
7788   // If this associated to a specific register, initialize iterator to correct
7789   // place. If virtual, make sure we have enough registers
7790 
7791   // Initialize iterator if necessary
7792   TargetRegisterClass::iterator I = RC->begin();
7793   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7794 
7795   // Do not check for single registers.
7796   if (AssignedReg) {
7797       for (; *I != AssignedReg; ++I)
7798         assert(I != RC->end() && "AssignedReg should be member of RC");
7799   }
7800 
7801   for (; NumRegs; --NumRegs, ++I) {
7802     assert(I != RC->end() && "Ran out of registers to allocate!");
7803     auto R = (AssignedReg) ? *I : RegInfo.createVirtualRegister(RC);
7804     Regs.push_back(R);
7805   }
7806 
7807   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7808 }
7809 
7810 static unsigned
7811 findMatchingInlineAsmOperand(unsigned OperandNo,
7812                              const std::vector<SDValue> &AsmNodeOperands) {
7813   // Scan until we find the definition we already emitted of this operand.
7814   unsigned CurOp = InlineAsm::Op_FirstOperand;
7815   for (; OperandNo; --OperandNo) {
7816     // Advance to the next operand.
7817     unsigned OpFlag =
7818         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7819     assert((InlineAsm::isRegDefKind(OpFlag) ||
7820             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7821             InlineAsm::isMemKind(OpFlag)) &&
7822            "Skipped past definitions?");
7823     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7824   }
7825   return CurOp;
7826 }
7827 
7828 namespace {
7829 
7830 class ExtraFlags {
7831   unsigned Flags = 0;
7832 
7833 public:
7834   explicit ExtraFlags(ImmutableCallSite CS) {
7835     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7836     if (IA->hasSideEffects())
7837       Flags |= InlineAsm::Extra_HasSideEffects;
7838     if (IA->isAlignStack())
7839       Flags |= InlineAsm::Extra_IsAlignStack;
7840     if (CS.isConvergent())
7841       Flags |= InlineAsm::Extra_IsConvergent;
7842     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7843   }
7844 
7845   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7846     // Ideally, we would only check against memory constraints.  However, the
7847     // meaning of an Other constraint can be target-specific and we can't easily
7848     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
7849     // for Other constraints as well.
7850     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7851         OpInfo.ConstraintType == TargetLowering::C_Other) {
7852       if (OpInfo.Type == InlineAsm::isInput)
7853         Flags |= InlineAsm::Extra_MayLoad;
7854       else if (OpInfo.Type == InlineAsm::isOutput)
7855         Flags |= InlineAsm::Extra_MayStore;
7856       else if (OpInfo.Type == InlineAsm::isClobber)
7857         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
7858     }
7859   }
7860 
7861   unsigned get() const { return Flags; }
7862 };
7863 
7864 } // end anonymous namespace
7865 
7866 /// visitInlineAsm - Handle a call to an InlineAsm object.
7867 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
7868   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7869 
7870   /// ConstraintOperands - Information about all of the constraints.
7871   SDISelAsmOperandInfoVector ConstraintOperands;
7872 
7873   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7874   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
7875       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
7876 
7877   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
7878   // AsmDialect, MayLoad, MayStore).
7879   bool HasSideEffect = IA->hasSideEffects();
7880   ExtraFlags ExtraInfo(CS);
7881 
7882   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
7883   unsigned ResNo = 0;   // ResNo - The result number of the next output.
7884   for (auto &T : TargetConstraints) {
7885     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
7886     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
7887 
7888     // Compute the value type for each operand.
7889     if (OpInfo.Type == InlineAsm::isInput ||
7890         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
7891       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
7892 
7893       // Process the call argument. BasicBlocks are labels, currently appearing
7894       // only in asm's.
7895       const Instruction *I = CS.getInstruction();
7896       if (isa<CallBrInst>(I) &&
7897           (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() -
7898                           cast<CallBrInst>(I)->getNumIndirectDests())) {
7899         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
7900         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
7901         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
7902       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
7903         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
7904       } else {
7905         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
7906       }
7907 
7908       OpInfo.ConstraintVT =
7909           OpInfo
7910               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
7911               .getSimpleVT();
7912     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
7913       // The return value of the call is this value.  As such, there is no
7914       // corresponding argument.
7915       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7916       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
7917         OpInfo.ConstraintVT = TLI.getSimpleValueType(
7918             DAG.getDataLayout(), STy->getElementType(ResNo));
7919       } else {
7920         assert(ResNo == 0 && "Asm only has one result!");
7921         OpInfo.ConstraintVT =
7922             TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
7923       }
7924       ++ResNo;
7925     } else {
7926       OpInfo.ConstraintVT = MVT::Other;
7927     }
7928 
7929     if (!HasSideEffect)
7930       HasSideEffect = OpInfo.hasMemory(TLI);
7931 
7932     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
7933     // FIXME: Could we compute this on OpInfo rather than T?
7934 
7935     // Compute the constraint code and ConstraintType to use.
7936     TLI.ComputeConstraintToUse(T, SDValue());
7937 
7938     ExtraInfo.update(T);
7939   }
7940 
7941   // We won't need to flush pending loads if this asm doesn't touch
7942   // memory and is nonvolatile.
7943   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
7944 
7945   // Second pass over the constraints: compute which constraint option to use.
7946   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
7947     // If this is an output operand with a matching input operand, look up the
7948     // matching input. If their types mismatch, e.g. one is an integer, the
7949     // other is floating point, or their sizes are different, flag it as an
7950     // error.
7951     if (OpInfo.hasMatchingInput()) {
7952       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
7953       patchMatchingInput(OpInfo, Input, DAG);
7954     }
7955 
7956     // Compute the constraint code and ConstraintType to use.
7957     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
7958 
7959     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7960         OpInfo.Type == InlineAsm::isClobber)
7961       continue;
7962 
7963     // If this is a memory input, and if the operand is not indirect, do what we
7964     // need to provide an address for the memory input.
7965     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7966         !OpInfo.isIndirect) {
7967       assert((OpInfo.isMultipleAlternative ||
7968               (OpInfo.Type == InlineAsm::isInput)) &&
7969              "Can only indirectify direct input operands!");
7970 
7971       // Memory operands really want the address of the value.
7972       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
7973 
7974       // There is no longer a Value* corresponding to this operand.
7975       OpInfo.CallOperandVal = nullptr;
7976 
7977       // It is now an indirect operand.
7978       OpInfo.isIndirect = true;
7979     }
7980 
7981   }
7982 
7983   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
7984   std::vector<SDValue> AsmNodeOperands;
7985   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
7986   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
7987       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
7988 
7989   // If we have a !srcloc metadata node associated with it, we want to attach
7990   // this to the ultimately generated inline asm machineinstr.  To do this, we
7991   // pass in the third operand as this (potentially null) inline asm MDNode.
7992   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
7993   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
7994 
7995   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7996   // bits as operand 3.
7997   AsmNodeOperands.push_back(DAG.getTargetConstant(
7998       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7999 
8000   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8001   // this, assign virtual and physical registers for inputs and otput.
8002   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8003     // Assign Registers.
8004     SDISelAsmOperandInfo &RefOpInfo =
8005         OpInfo.isMatchingInputConstraint()
8006             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8007             : OpInfo;
8008     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8009 
8010     switch (OpInfo.Type) {
8011     case InlineAsm::isOutput:
8012       if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8013           (OpInfo.ConstraintType == TargetLowering::C_Other &&
8014            OpInfo.isIndirect)) {
8015         unsigned ConstraintID =
8016             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8017         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8018                "Failed to convert memory constraint code to constraint id.");
8019 
8020         // Add information to the INLINEASM node to know about this output.
8021         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8022         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8023         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8024                                                         MVT::i32));
8025         AsmNodeOperands.push_back(OpInfo.CallOperand);
8026         break;
8027       } else if ((OpInfo.ConstraintType == TargetLowering::C_Other &&
8028                   !OpInfo.isIndirect) ||
8029                  OpInfo.ConstraintType == TargetLowering::C_Register ||
8030                  OpInfo.ConstraintType == TargetLowering::C_RegisterClass) {
8031         // Otherwise, this outputs to a register (directly for C_Register /
8032         // C_RegisterClass, and a target-defined fashion for C_Other). Find a
8033         // register that we can use.
8034         if (OpInfo.AssignedRegs.Regs.empty()) {
8035           emitInlineAsmError(
8036               CS, "couldn't allocate output register for constraint '" +
8037                       Twine(OpInfo.ConstraintCode) + "'");
8038           return;
8039         }
8040 
8041         // Add information to the INLINEASM node to know that this register is
8042         // set.
8043         OpInfo.AssignedRegs.AddInlineAsmOperands(
8044             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8045                                   : InlineAsm::Kind_RegDef,
8046             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8047       }
8048       break;
8049 
8050     case InlineAsm::isInput: {
8051       SDValue InOperandVal = OpInfo.CallOperand;
8052 
8053       if (OpInfo.isMatchingInputConstraint()) {
8054         // If this is required to match an output register we have already set,
8055         // just use its register.
8056         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8057                                                   AsmNodeOperands);
8058         unsigned OpFlag =
8059           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8060         if (InlineAsm::isRegDefKind(OpFlag) ||
8061             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8062           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8063           if (OpInfo.isIndirect) {
8064             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8065             emitInlineAsmError(CS, "inline asm not supported yet:"
8066                                    " don't know how to handle tied "
8067                                    "indirect register inputs");
8068             return;
8069           }
8070 
8071           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8072           SmallVector<unsigned, 4> Regs;
8073 
8074           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8075             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8076             MachineRegisterInfo &RegInfo =
8077                 DAG.getMachineFunction().getRegInfo();
8078             for (unsigned i = 0; i != NumRegs; ++i)
8079               Regs.push_back(RegInfo.createVirtualRegister(RC));
8080           } else {
8081             emitInlineAsmError(CS, "inline asm error: This value type register "
8082                                    "class is not natively supported!");
8083             return;
8084           }
8085 
8086           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8087 
8088           SDLoc dl = getCurSDLoc();
8089           // Use the produced MatchedRegs object to
8090           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8091                                     CS.getInstruction());
8092           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8093                                            true, OpInfo.getMatchedOperand(), dl,
8094                                            DAG, AsmNodeOperands);
8095           break;
8096         }
8097 
8098         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8099         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8100                "Unexpected number of operands");
8101         // Add information to the INLINEASM node to know about this input.
8102         // See InlineAsm.h isUseOperandTiedToDef.
8103         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8104         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8105                                                     OpInfo.getMatchedOperand());
8106         AsmNodeOperands.push_back(DAG.getTargetConstant(
8107             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8108         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8109         break;
8110       }
8111 
8112       // Treat indirect 'X' constraint as memory.
8113       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8114           OpInfo.isIndirect)
8115         OpInfo.ConstraintType = TargetLowering::C_Memory;
8116 
8117       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
8118         std::vector<SDValue> Ops;
8119         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8120                                           Ops, DAG);
8121         if (Ops.empty()) {
8122           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
8123                                      Twine(OpInfo.ConstraintCode) + "'");
8124           return;
8125         }
8126 
8127         // Add information to the INLINEASM node to know about this input.
8128         unsigned ResOpType =
8129           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8130         AsmNodeOperands.push_back(DAG.getTargetConstant(
8131             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8132         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8133         break;
8134       }
8135 
8136       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8137         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8138         assert(InOperandVal.getValueType() ==
8139                    TLI.getPointerTy(DAG.getDataLayout()) &&
8140                "Memory operands expect pointer values");
8141 
8142         unsigned ConstraintID =
8143             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8144         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8145                "Failed to convert memory constraint code to constraint id.");
8146 
8147         // Add information to the INLINEASM node to know about this input.
8148         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8149         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8150         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8151                                                         getCurSDLoc(),
8152                                                         MVT::i32));
8153         AsmNodeOperands.push_back(InOperandVal);
8154         break;
8155       }
8156 
8157       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8158               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8159              "Unknown constraint type!");
8160 
8161       // TODO: Support this.
8162       if (OpInfo.isIndirect) {
8163         emitInlineAsmError(
8164             CS, "Don't know how to handle indirect register inputs yet "
8165                 "for constraint '" +
8166                     Twine(OpInfo.ConstraintCode) + "'");
8167         return;
8168       }
8169 
8170       // Copy the input into the appropriate registers.
8171       if (OpInfo.AssignedRegs.Regs.empty()) {
8172         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
8173                                    Twine(OpInfo.ConstraintCode) + "'");
8174         return;
8175       }
8176 
8177       SDLoc dl = getCurSDLoc();
8178 
8179       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
8180                                         Chain, &Flag, CS.getInstruction());
8181 
8182       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8183                                                dl, DAG, AsmNodeOperands);
8184       break;
8185     }
8186     case InlineAsm::isClobber:
8187       // Add the clobbered value to the operand list, so that the register
8188       // allocator is aware that the physreg got clobbered.
8189       if (!OpInfo.AssignedRegs.Regs.empty())
8190         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8191                                                  false, 0, getCurSDLoc(), DAG,
8192                                                  AsmNodeOperands);
8193       break;
8194     }
8195   }
8196 
8197   // Finish up input operands.  Set the input chain and add the flag last.
8198   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8199   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8200 
8201   unsigned ISDOpc = isa<CallBrInst>(CS.getInstruction()) ? ISD::INLINEASM_BR
8202                                                          : ISD::INLINEASM;
8203   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8204                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8205   Flag = Chain.getValue(1);
8206 
8207   // Do additional work to generate outputs.
8208 
8209   SmallVector<EVT, 1> ResultVTs;
8210   SmallVector<SDValue, 1> ResultValues;
8211   SmallVector<SDValue, 8> OutChains;
8212 
8213   llvm::Type *CSResultType = CS.getType();
8214   ArrayRef<Type *> ResultTypes;
8215   if (StructType *StructResult = dyn_cast<StructType>(CSResultType))
8216     ResultTypes = StructResult->elements();
8217   else if (!CSResultType->isVoidTy())
8218     ResultTypes = makeArrayRef(CSResultType);
8219 
8220   auto CurResultType = ResultTypes.begin();
8221   auto handleRegAssign = [&](SDValue V) {
8222     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8223     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8224     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8225     ++CurResultType;
8226     // If the type of the inline asm call site return value is different but has
8227     // same size as the type of the asm output bitcast it.  One example of this
8228     // is for vectors with different width / number of elements.  This can
8229     // happen for register classes that can contain multiple different value
8230     // types.  The preg or vreg allocated may not have the same VT as was
8231     // expected.
8232     //
8233     // This can also happen for a return value that disagrees with the register
8234     // class it is put in, eg. a double in a general-purpose register on a
8235     // 32-bit machine.
8236     if (ResultVT != V.getValueType() &&
8237         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8238       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8239     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8240              V.getValueType().isInteger()) {
8241       // If a result value was tied to an input value, the computed result
8242       // may have a wider width than the expected result.  Extract the
8243       // relevant portion.
8244       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8245     }
8246     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8247     ResultVTs.push_back(ResultVT);
8248     ResultValues.push_back(V);
8249   };
8250 
8251   // Deal with output operands.
8252   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8253     if (OpInfo.Type == InlineAsm::isOutput) {
8254       SDValue Val;
8255       // Skip trivial output operands.
8256       if (OpInfo.AssignedRegs.Regs.empty())
8257         continue;
8258 
8259       switch (OpInfo.ConstraintType) {
8260       case TargetLowering::C_Register:
8261       case TargetLowering::C_RegisterClass:
8262         Val = OpInfo.AssignedRegs.getCopyFromRegs(
8263             DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction());
8264         break;
8265       case TargetLowering::C_Other:
8266         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8267                                               OpInfo, DAG);
8268         break;
8269       case TargetLowering::C_Memory:
8270         break; // Already handled.
8271       case TargetLowering::C_Unknown:
8272         assert(false && "Unexpected unknown constraint");
8273       }
8274 
8275       // Indirect output manifest as stores. Record output chains.
8276       if (OpInfo.isIndirect) {
8277         const Value *Ptr = OpInfo.CallOperandVal;
8278         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8279         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8280                                      MachinePointerInfo(Ptr));
8281         OutChains.push_back(Store);
8282       } else {
8283         // generate CopyFromRegs to associated registers.
8284         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8285         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8286           for (const SDValue &V : Val->op_values())
8287             handleRegAssign(V);
8288         } else
8289           handleRegAssign(Val);
8290       }
8291     }
8292   }
8293 
8294   // Set results.
8295   if (!ResultValues.empty()) {
8296     assert(CurResultType == ResultTypes.end() &&
8297            "Mismatch in number of ResultTypes");
8298     assert(ResultValues.size() == ResultTypes.size() &&
8299            "Mismatch in number of output operands in asm result");
8300 
8301     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8302                             DAG.getVTList(ResultVTs), ResultValues);
8303     setValue(CS.getInstruction(), V);
8304   }
8305 
8306   // Collect store chains.
8307   if (!OutChains.empty())
8308     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8309 
8310   // Only Update Root if inline assembly has a memory effect.
8311   if (ResultValues.empty() || HasSideEffect || !OutChains.empty())
8312     DAG.setRoot(Chain);
8313 }
8314 
8315 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
8316                                              const Twine &Message) {
8317   LLVMContext &Ctx = *DAG.getContext();
8318   Ctx.emitError(CS.getInstruction(), Message);
8319 
8320   // Make sure we leave the DAG in a valid state
8321   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8322   SmallVector<EVT, 1> ValueVTs;
8323   ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8324 
8325   if (ValueVTs.empty())
8326     return;
8327 
8328   SmallVector<SDValue, 1> Ops;
8329   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8330     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8331 
8332   setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
8333 }
8334 
8335 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8336   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8337                           MVT::Other, getRoot(),
8338                           getValue(I.getArgOperand(0)),
8339                           DAG.getSrcValue(I.getArgOperand(0))));
8340 }
8341 
8342 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8343   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8344   const DataLayout &DL = DAG.getDataLayout();
8345   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
8346                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
8347                            DAG.getSrcValue(I.getOperand(0)),
8348                            DL.getABITypeAlignment(I.getType()));
8349   setValue(&I, V);
8350   DAG.setRoot(V.getValue(1));
8351 }
8352 
8353 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8354   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8355                           MVT::Other, getRoot(),
8356                           getValue(I.getArgOperand(0)),
8357                           DAG.getSrcValue(I.getArgOperand(0))));
8358 }
8359 
8360 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8361   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8362                           MVT::Other, getRoot(),
8363                           getValue(I.getArgOperand(0)),
8364                           getValue(I.getArgOperand(1)),
8365                           DAG.getSrcValue(I.getArgOperand(0)),
8366                           DAG.getSrcValue(I.getArgOperand(1))));
8367 }
8368 
8369 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8370                                                     const Instruction &I,
8371                                                     SDValue Op) {
8372   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8373   if (!Range)
8374     return Op;
8375 
8376   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8377   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8378     return Op;
8379 
8380   APInt Lo = CR.getUnsignedMin();
8381   if (!Lo.isMinValue())
8382     return Op;
8383 
8384   APInt Hi = CR.getUnsignedMax();
8385   unsigned Bits = std::max(Hi.getActiveBits(),
8386                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8387 
8388   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8389 
8390   SDLoc SL = getCurSDLoc();
8391 
8392   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8393                              DAG.getValueType(SmallVT));
8394   unsigned NumVals = Op.getNode()->getNumValues();
8395   if (NumVals == 1)
8396     return ZExt;
8397 
8398   SmallVector<SDValue, 4> Ops;
8399 
8400   Ops.push_back(ZExt);
8401   for (unsigned I = 1; I != NumVals; ++I)
8402     Ops.push_back(Op.getValue(I));
8403 
8404   return DAG.getMergeValues(Ops, SL);
8405 }
8406 
8407 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8408 /// the call being lowered.
8409 ///
8410 /// This is a helper for lowering intrinsics that follow a target calling
8411 /// convention or require stack pointer adjustment. Only a subset of the
8412 /// intrinsic's operands need to participate in the calling convention.
8413 void SelectionDAGBuilder::populateCallLoweringInfo(
8414     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8415     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8416     bool IsPatchPoint) {
8417   TargetLowering::ArgListTy Args;
8418   Args.reserve(NumArgs);
8419 
8420   // Populate the argument list.
8421   // Attributes for args start at offset 1, after the return attribute.
8422   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8423        ArgI != ArgE; ++ArgI) {
8424     const Value *V = Call->getOperand(ArgI);
8425 
8426     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8427 
8428     TargetLowering::ArgListEntry Entry;
8429     Entry.Node = getValue(V);
8430     Entry.Ty = V->getType();
8431     Entry.setAttributes(Call, ArgI);
8432     Args.push_back(Entry);
8433   }
8434 
8435   CLI.setDebugLoc(getCurSDLoc())
8436       .setChain(getRoot())
8437       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8438       .setDiscardResult(Call->use_empty())
8439       .setIsPatchPoint(IsPatchPoint);
8440 }
8441 
8442 /// Add a stack map intrinsic call's live variable operands to a stackmap
8443 /// or patchpoint target node's operand list.
8444 ///
8445 /// Constants are converted to TargetConstants purely as an optimization to
8446 /// avoid constant materialization and register allocation.
8447 ///
8448 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8449 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
8450 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8451 /// address materialization and register allocation, but may also be required
8452 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8453 /// alloca in the entry block, then the runtime may assume that the alloca's
8454 /// StackMap location can be read immediately after compilation and that the
8455 /// location is valid at any point during execution (this is similar to the
8456 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8457 /// only available in a register, then the runtime would need to trap when
8458 /// execution reaches the StackMap in order to read the alloca's location.
8459 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
8460                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8461                                 SelectionDAGBuilder &Builder) {
8462   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
8463     SDValue OpVal = Builder.getValue(CS.getArgument(i));
8464     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8465       Ops.push_back(
8466         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8467       Ops.push_back(
8468         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8469     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8470       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8471       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8472           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8473     } else
8474       Ops.push_back(OpVal);
8475   }
8476 }
8477 
8478 /// Lower llvm.experimental.stackmap directly to its target opcode.
8479 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8480   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8481   //                                  [live variables...])
8482 
8483   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8484 
8485   SDValue Chain, InFlag, Callee, NullPtr;
8486   SmallVector<SDValue, 32> Ops;
8487 
8488   SDLoc DL = getCurSDLoc();
8489   Callee = getValue(CI.getCalledValue());
8490   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8491 
8492   // The stackmap intrinsic only records the live variables (the arguemnts
8493   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8494   // intrinsic, this won't be lowered to a function call. This means we don't
8495   // have to worry about calling conventions and target specific lowering code.
8496   // Instead we perform the call lowering right here.
8497   //
8498   // chain, flag = CALLSEQ_START(chain, 0, 0)
8499   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8500   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8501   //
8502   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8503   InFlag = Chain.getValue(1);
8504 
8505   // Add the <id> and <numBytes> constants.
8506   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8507   Ops.push_back(DAG.getTargetConstant(
8508                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8509   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8510   Ops.push_back(DAG.getTargetConstant(
8511                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8512                   MVT::i32));
8513 
8514   // Push live variables for the stack map.
8515   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
8516 
8517   // We are not pushing any register mask info here on the operands list,
8518   // because the stackmap doesn't clobber anything.
8519 
8520   // Push the chain and the glue flag.
8521   Ops.push_back(Chain);
8522   Ops.push_back(InFlag);
8523 
8524   // Create the STACKMAP node.
8525   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8526   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8527   Chain = SDValue(SM, 0);
8528   InFlag = Chain.getValue(1);
8529 
8530   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8531 
8532   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8533 
8534   // Set the root to the target-lowered call chain.
8535   DAG.setRoot(Chain);
8536 
8537   // Inform the Frame Information that we have a stackmap in this function.
8538   FuncInfo.MF->getFrameInfo().setHasStackMap();
8539 }
8540 
8541 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8542 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
8543                                           const BasicBlock *EHPadBB) {
8544   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8545   //                                                 i32 <numBytes>,
8546   //                                                 i8* <target>,
8547   //                                                 i32 <numArgs>,
8548   //                                                 [Args...],
8549   //                                                 [live variables...])
8550 
8551   CallingConv::ID CC = CS.getCallingConv();
8552   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8553   bool HasDef = !CS->getType()->isVoidTy();
8554   SDLoc dl = getCurSDLoc();
8555   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8556 
8557   // Handle immediate and symbolic callees.
8558   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8559     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8560                                    /*isTarget=*/true);
8561   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8562     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8563                                          SDLoc(SymbolicCallee),
8564                                          SymbolicCallee->getValueType(0));
8565 
8566   // Get the real number of arguments participating in the call <numArgs>
8567   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8568   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8569 
8570   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8571   // Intrinsics include all meta-operands up to but not including CC.
8572   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8573   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8574          "Not enough arguments provided to the patchpoint intrinsic");
8575 
8576   // For AnyRegCC the arguments are lowered later on manually.
8577   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8578   Type *ReturnTy =
8579     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8580 
8581   TargetLowering::CallLoweringInfo CLI(DAG);
8582   populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()),
8583                            NumMetaOpers, NumCallArgs, Callee, ReturnTy, true);
8584   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8585 
8586   SDNode *CallEnd = Result.second.getNode();
8587   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8588     CallEnd = CallEnd->getOperand(0).getNode();
8589 
8590   /// Get a call instruction from the call sequence chain.
8591   /// Tail calls are not allowed.
8592   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8593          "Expected a callseq node.");
8594   SDNode *Call = CallEnd->getOperand(0).getNode();
8595   bool HasGlue = Call->getGluedNode();
8596 
8597   // Replace the target specific call node with the patchable intrinsic.
8598   SmallVector<SDValue, 8> Ops;
8599 
8600   // Add the <id> and <numBytes> constants.
8601   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8602   Ops.push_back(DAG.getTargetConstant(
8603                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8604   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8605   Ops.push_back(DAG.getTargetConstant(
8606                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8607                   MVT::i32));
8608 
8609   // Add the callee.
8610   Ops.push_back(Callee);
8611 
8612   // Adjust <numArgs> to account for any arguments that have been passed on the
8613   // stack instead.
8614   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8615   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8616   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8617   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8618 
8619   // Add the calling convention
8620   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8621 
8622   // Add the arguments we omitted previously. The register allocator should
8623   // place these in any free register.
8624   if (IsAnyRegCC)
8625     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8626       Ops.push_back(getValue(CS.getArgument(i)));
8627 
8628   // Push the arguments from the call instruction up to the register mask.
8629   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8630   Ops.append(Call->op_begin() + 2, e);
8631 
8632   // Push live variables for the stack map.
8633   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8634 
8635   // Push the register mask info.
8636   if (HasGlue)
8637     Ops.push_back(*(Call->op_end()-2));
8638   else
8639     Ops.push_back(*(Call->op_end()-1));
8640 
8641   // Push the chain (this is originally the first operand of the call, but
8642   // becomes now the last or second to last operand).
8643   Ops.push_back(*(Call->op_begin()));
8644 
8645   // Push the glue flag (last operand).
8646   if (HasGlue)
8647     Ops.push_back(*(Call->op_end()-1));
8648 
8649   SDVTList NodeTys;
8650   if (IsAnyRegCC && HasDef) {
8651     // Create the return types based on the intrinsic definition
8652     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8653     SmallVector<EVT, 3> ValueVTs;
8654     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8655     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8656 
8657     // There is always a chain and a glue type at the end
8658     ValueVTs.push_back(MVT::Other);
8659     ValueVTs.push_back(MVT::Glue);
8660     NodeTys = DAG.getVTList(ValueVTs);
8661   } else
8662     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8663 
8664   // Replace the target specific call node with a PATCHPOINT node.
8665   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8666                                          dl, NodeTys, Ops);
8667 
8668   // Update the NodeMap.
8669   if (HasDef) {
8670     if (IsAnyRegCC)
8671       setValue(CS.getInstruction(), SDValue(MN, 0));
8672     else
8673       setValue(CS.getInstruction(), Result.first);
8674   }
8675 
8676   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8677   // call sequence. Furthermore the location of the chain and glue can change
8678   // when the AnyReg calling convention is used and the intrinsic returns a
8679   // value.
8680   if (IsAnyRegCC && HasDef) {
8681     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8682     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8683     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8684   } else
8685     DAG.ReplaceAllUsesWith(Call, MN);
8686   DAG.DeleteNode(Call);
8687 
8688   // Inform the Frame Information that we have a patchpoint in this function.
8689   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8690 }
8691 
8692 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8693                                             unsigned Intrinsic) {
8694   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8695   SDValue Op1 = getValue(I.getArgOperand(0));
8696   SDValue Op2;
8697   if (I.getNumArgOperands() > 1)
8698     Op2 = getValue(I.getArgOperand(1));
8699   SDLoc dl = getCurSDLoc();
8700   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8701   SDValue Res;
8702   FastMathFlags FMF;
8703   if (isa<FPMathOperator>(I))
8704     FMF = I.getFastMathFlags();
8705 
8706   switch (Intrinsic) {
8707   case Intrinsic::experimental_vector_reduce_fadd:
8708     if (FMF.isFast())
8709       Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2);
8710     else
8711       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8712     break;
8713   case Intrinsic::experimental_vector_reduce_fmul:
8714     if (FMF.isFast())
8715       Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2);
8716     else
8717       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8718     break;
8719   case Intrinsic::experimental_vector_reduce_add:
8720     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8721     break;
8722   case Intrinsic::experimental_vector_reduce_mul:
8723     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8724     break;
8725   case Intrinsic::experimental_vector_reduce_and:
8726     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8727     break;
8728   case Intrinsic::experimental_vector_reduce_or:
8729     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8730     break;
8731   case Intrinsic::experimental_vector_reduce_xor:
8732     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8733     break;
8734   case Intrinsic::experimental_vector_reduce_smax:
8735     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8736     break;
8737   case Intrinsic::experimental_vector_reduce_smin:
8738     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8739     break;
8740   case Intrinsic::experimental_vector_reduce_umax:
8741     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8742     break;
8743   case Intrinsic::experimental_vector_reduce_umin:
8744     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8745     break;
8746   case Intrinsic::experimental_vector_reduce_fmax:
8747     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8748     break;
8749   case Intrinsic::experimental_vector_reduce_fmin:
8750     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8751     break;
8752   default:
8753     llvm_unreachable("Unhandled vector reduce intrinsic");
8754   }
8755   setValue(&I, Res);
8756 }
8757 
8758 /// Returns an AttributeList representing the attributes applied to the return
8759 /// value of the given call.
8760 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8761   SmallVector<Attribute::AttrKind, 2> Attrs;
8762   if (CLI.RetSExt)
8763     Attrs.push_back(Attribute::SExt);
8764   if (CLI.RetZExt)
8765     Attrs.push_back(Attribute::ZExt);
8766   if (CLI.IsInReg)
8767     Attrs.push_back(Attribute::InReg);
8768 
8769   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8770                             Attrs);
8771 }
8772 
8773 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8774 /// implementation, which just calls LowerCall.
8775 /// FIXME: When all targets are
8776 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8777 std::pair<SDValue, SDValue>
8778 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8779   // Handle the incoming return values from the call.
8780   CLI.Ins.clear();
8781   Type *OrigRetTy = CLI.RetTy;
8782   SmallVector<EVT, 4> RetTys;
8783   SmallVector<uint64_t, 4> Offsets;
8784   auto &DL = CLI.DAG.getDataLayout();
8785   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8786 
8787   if (CLI.IsPostTypeLegalization) {
8788     // If we are lowering a libcall after legalization, split the return type.
8789     SmallVector<EVT, 4> OldRetTys = std::move(RetTys);
8790     SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets);
8791     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8792       EVT RetVT = OldRetTys[i];
8793       uint64_t Offset = OldOffsets[i];
8794       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8795       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8796       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8797       RetTys.append(NumRegs, RegisterVT);
8798       for (unsigned j = 0; j != NumRegs; ++j)
8799         Offsets.push_back(Offset + j * RegisterVTByteSZ);
8800     }
8801   }
8802 
8803   SmallVector<ISD::OutputArg, 4> Outs;
8804   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8805 
8806   bool CanLowerReturn =
8807       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8808                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8809 
8810   SDValue DemoteStackSlot;
8811   int DemoteStackIdx = -100;
8812   if (!CanLowerReturn) {
8813     // FIXME: equivalent assert?
8814     // assert(!CS.hasInAllocaArgument() &&
8815     //        "sret demotion is incompatible with inalloca");
8816     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8817     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
8818     MachineFunction &MF = CLI.DAG.getMachineFunction();
8819     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
8820     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
8821                                               DL.getAllocaAddrSpace());
8822 
8823     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
8824     ArgListEntry Entry;
8825     Entry.Node = DemoteStackSlot;
8826     Entry.Ty = StackSlotPtrType;
8827     Entry.IsSExt = false;
8828     Entry.IsZExt = false;
8829     Entry.IsInReg = false;
8830     Entry.IsSRet = true;
8831     Entry.IsNest = false;
8832     Entry.IsByVal = false;
8833     Entry.IsReturned = false;
8834     Entry.IsSwiftSelf = false;
8835     Entry.IsSwiftError = false;
8836     Entry.Alignment = Align;
8837     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
8838     CLI.NumFixedArgs += 1;
8839     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
8840 
8841     // sret demotion isn't compatible with tail-calls, since the sret argument
8842     // points into the callers stack frame.
8843     CLI.IsTailCall = false;
8844   } else {
8845     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
8846         CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
8847     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8848       ISD::ArgFlagsTy Flags;
8849       if (NeedsRegBlock) {
8850         Flags.setInConsecutiveRegs();
8851         if (I == RetTys.size() - 1)
8852           Flags.setInConsecutiveRegsLast();
8853       }
8854       EVT VT = RetTys[I];
8855       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8856                                                      CLI.CallConv, VT);
8857       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8858                                                        CLI.CallConv, VT);
8859       for (unsigned i = 0; i != NumRegs; ++i) {
8860         ISD::InputArg MyFlags;
8861         MyFlags.Flags = Flags;
8862         MyFlags.VT = RegisterVT;
8863         MyFlags.ArgVT = VT;
8864         MyFlags.Used = CLI.IsReturnValueUsed;
8865         if (CLI.RetTy->isPointerTy()) {
8866           MyFlags.Flags.setPointer();
8867           MyFlags.Flags.setPointerAddrSpace(
8868               cast<PointerType>(CLI.RetTy)->getAddressSpace());
8869         }
8870         if (CLI.RetSExt)
8871           MyFlags.Flags.setSExt();
8872         if (CLI.RetZExt)
8873           MyFlags.Flags.setZExt();
8874         if (CLI.IsInReg)
8875           MyFlags.Flags.setInReg();
8876         CLI.Ins.push_back(MyFlags);
8877       }
8878     }
8879   }
8880 
8881   // We push in swifterror return as the last element of CLI.Ins.
8882   ArgListTy &Args = CLI.getArgs();
8883   if (supportSwiftError()) {
8884     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8885       if (Args[i].IsSwiftError) {
8886         ISD::InputArg MyFlags;
8887         MyFlags.VT = getPointerTy(DL);
8888         MyFlags.ArgVT = EVT(getPointerTy(DL));
8889         MyFlags.Flags.setSwiftError();
8890         CLI.Ins.push_back(MyFlags);
8891       }
8892     }
8893   }
8894 
8895   // Handle all of the outgoing arguments.
8896   CLI.Outs.clear();
8897   CLI.OutVals.clear();
8898   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8899     SmallVector<EVT, 4> ValueVTs;
8900     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
8901     // FIXME: Split arguments if CLI.IsPostTypeLegalization
8902     Type *FinalType = Args[i].Ty;
8903     if (Args[i].IsByVal)
8904       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
8905     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
8906         FinalType, CLI.CallConv, CLI.IsVarArg);
8907     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
8908          ++Value) {
8909       EVT VT = ValueVTs[Value];
8910       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
8911       SDValue Op = SDValue(Args[i].Node.getNode(),
8912                            Args[i].Node.getResNo() + Value);
8913       ISD::ArgFlagsTy Flags;
8914 
8915       // Certain targets (such as MIPS), may have a different ABI alignment
8916       // for a type depending on the context. Give the target a chance to
8917       // specify the alignment it wants.
8918       unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL);
8919 
8920       if (Args[i].Ty->isPointerTy()) {
8921         Flags.setPointer();
8922         Flags.setPointerAddrSpace(
8923             cast<PointerType>(Args[i].Ty)->getAddressSpace());
8924       }
8925       if (Args[i].IsZExt)
8926         Flags.setZExt();
8927       if (Args[i].IsSExt)
8928         Flags.setSExt();
8929       if (Args[i].IsInReg) {
8930         // If we are using vectorcall calling convention, a structure that is
8931         // passed InReg - is surely an HVA
8932         if (CLI.CallConv == CallingConv::X86_VectorCall &&
8933             isa<StructType>(FinalType)) {
8934           // The first value of a structure is marked
8935           if (0 == Value)
8936             Flags.setHvaStart();
8937           Flags.setHva();
8938         }
8939         // Set InReg Flag
8940         Flags.setInReg();
8941       }
8942       if (Args[i].IsSRet)
8943         Flags.setSRet();
8944       if (Args[i].IsSwiftSelf)
8945         Flags.setSwiftSelf();
8946       if (Args[i].IsSwiftError)
8947         Flags.setSwiftError();
8948       if (Args[i].IsByVal)
8949         Flags.setByVal();
8950       if (Args[i].IsInAlloca) {
8951         Flags.setInAlloca();
8952         // Set the byval flag for CCAssignFn callbacks that don't know about
8953         // inalloca.  This way we can know how many bytes we should've allocated
8954         // and how many bytes a callee cleanup function will pop.  If we port
8955         // inalloca to more targets, we'll have to add custom inalloca handling
8956         // in the various CC lowering callbacks.
8957         Flags.setByVal();
8958       }
8959       if (Args[i].IsByVal || Args[i].IsInAlloca) {
8960         PointerType *Ty = cast<PointerType>(Args[i].Ty);
8961         Type *ElementTy = Ty->getElementType();
8962         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8963         // For ByVal, alignment should come from FE.  BE will guess if this
8964         // info is not there but there are cases it cannot get right.
8965         unsigned FrameAlign;
8966         if (Args[i].Alignment)
8967           FrameAlign = Args[i].Alignment;
8968         else
8969           FrameAlign = getByValTypeAlignment(ElementTy, DL);
8970         Flags.setByValAlign(FrameAlign);
8971       }
8972       if (Args[i].IsNest)
8973         Flags.setNest();
8974       if (NeedsRegBlock)
8975         Flags.setInConsecutiveRegs();
8976       Flags.setOrigAlign(OriginalAlignment);
8977 
8978       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8979                                                  CLI.CallConv, VT);
8980       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8981                                                         CLI.CallConv, VT);
8982       SmallVector<SDValue, 4> Parts(NumParts);
8983       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
8984 
8985       if (Args[i].IsSExt)
8986         ExtendKind = ISD::SIGN_EXTEND;
8987       else if (Args[i].IsZExt)
8988         ExtendKind = ISD::ZERO_EXTEND;
8989 
8990       // Conservatively only handle 'returned' on non-vectors that can be lowered,
8991       // for now.
8992       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
8993           CanLowerReturn) {
8994         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
8995                "unexpected use of 'returned'");
8996         // Before passing 'returned' to the target lowering code, ensure that
8997         // either the register MVT and the actual EVT are the same size or that
8998         // the return value and argument are extended in the same way; in these
8999         // cases it's safe to pass the argument register value unchanged as the
9000         // return register value (although it's at the target's option whether
9001         // to do so)
9002         // TODO: allow code generation to take advantage of partially preserved
9003         // registers rather than clobbering the entire register when the
9004         // parameter extension method is not compatible with the return
9005         // extension method
9006         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9007             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9008              CLI.RetZExt == Args[i].IsZExt))
9009           Flags.setReturned();
9010       }
9011 
9012       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
9013                      CLI.CS.getInstruction(), CLI.CallConv, ExtendKind);
9014 
9015       for (unsigned j = 0; j != NumParts; ++j) {
9016         // if it isn't first piece, alignment must be 1
9017         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9018                                i < CLI.NumFixedArgs,
9019                                i, j*Parts[j].getValueType().getStoreSize());
9020         if (NumParts > 1 && j == 0)
9021           MyFlags.Flags.setSplit();
9022         else if (j != 0) {
9023           MyFlags.Flags.setOrigAlign(1);
9024           if (j == NumParts - 1)
9025             MyFlags.Flags.setSplitEnd();
9026         }
9027 
9028         CLI.Outs.push_back(MyFlags);
9029         CLI.OutVals.push_back(Parts[j]);
9030       }
9031 
9032       if (NeedsRegBlock && Value == NumValues - 1)
9033         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9034     }
9035   }
9036 
9037   SmallVector<SDValue, 4> InVals;
9038   CLI.Chain = LowerCall(CLI, InVals);
9039 
9040   // Update CLI.InVals to use outside of this function.
9041   CLI.InVals = InVals;
9042 
9043   // Verify that the target's LowerCall behaved as expected.
9044   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9045          "LowerCall didn't return a valid chain!");
9046   assert((!CLI.IsTailCall || InVals.empty()) &&
9047          "LowerCall emitted a return value for a tail call!");
9048   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9049          "LowerCall didn't emit the correct number of values!");
9050 
9051   // For a tail call, the return value is merely live-out and there aren't
9052   // any nodes in the DAG representing it. Return a special value to
9053   // indicate that a tail call has been emitted and no more Instructions
9054   // should be processed in the current block.
9055   if (CLI.IsTailCall) {
9056     CLI.DAG.setRoot(CLI.Chain);
9057     return std::make_pair(SDValue(), SDValue());
9058   }
9059 
9060 #ifndef NDEBUG
9061   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9062     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9063     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9064            "LowerCall emitted a value with the wrong type!");
9065   }
9066 #endif
9067 
9068   SmallVector<SDValue, 4> ReturnValues;
9069   if (!CanLowerReturn) {
9070     // The instruction result is the result of loading from the
9071     // hidden sret parameter.
9072     SmallVector<EVT, 1> PVTs;
9073     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9074 
9075     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9076     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9077     EVT PtrVT = PVTs[0];
9078 
9079     unsigned NumValues = RetTys.size();
9080     ReturnValues.resize(NumValues);
9081     SmallVector<SDValue, 4> Chains(NumValues);
9082 
9083     // An aggregate return value cannot wrap around the address space, so
9084     // offsets to its parts don't wrap either.
9085     SDNodeFlags Flags;
9086     Flags.setNoUnsignedWrap(true);
9087 
9088     for (unsigned i = 0; i < NumValues; ++i) {
9089       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9090                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9091                                                         PtrVT), Flags);
9092       SDValue L = CLI.DAG.getLoad(
9093           RetTys[i], CLI.DL, CLI.Chain, Add,
9094           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9095                                             DemoteStackIdx, Offsets[i]),
9096           /* Alignment = */ 1);
9097       ReturnValues[i] = L;
9098       Chains[i] = L.getValue(1);
9099     }
9100 
9101     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9102   } else {
9103     // Collect the legal value parts into potentially illegal values
9104     // that correspond to the original function's return values.
9105     Optional<ISD::NodeType> AssertOp;
9106     if (CLI.RetSExt)
9107       AssertOp = ISD::AssertSext;
9108     else if (CLI.RetZExt)
9109       AssertOp = ISD::AssertZext;
9110     unsigned CurReg = 0;
9111     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9112       EVT VT = RetTys[I];
9113       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9114                                                      CLI.CallConv, VT);
9115       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9116                                                        CLI.CallConv, VT);
9117 
9118       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9119                                               NumRegs, RegisterVT, VT, nullptr,
9120                                               CLI.CallConv, AssertOp));
9121       CurReg += NumRegs;
9122     }
9123 
9124     // For a function returning void, there is no return value. We can't create
9125     // such a node, so we just return a null return value in that case. In
9126     // that case, nothing will actually look at the value.
9127     if (ReturnValues.empty())
9128       return std::make_pair(SDValue(), CLI.Chain);
9129   }
9130 
9131   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9132                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9133   return std::make_pair(Res, CLI.Chain);
9134 }
9135 
9136 void TargetLowering::LowerOperationWrapper(SDNode *N,
9137                                            SmallVectorImpl<SDValue> &Results,
9138                                            SelectionDAG &DAG) const {
9139   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
9140     Results.push_back(Res);
9141 }
9142 
9143 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9144   llvm_unreachable("LowerOperation not implemented for this target!");
9145 }
9146 
9147 void
9148 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9149   SDValue Op = getNonRegisterValue(V);
9150   assert((Op.getOpcode() != ISD::CopyFromReg ||
9151           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9152          "Copy from a reg to the same reg!");
9153   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
9154 
9155   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9156   // If this is an InlineAsm we have to match the registers required, not the
9157   // notional registers required by the type.
9158 
9159   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9160                    None); // This is not an ABI copy.
9161   SDValue Chain = DAG.getEntryNode();
9162 
9163   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9164                               FuncInfo.PreferredExtendType.end())
9165                                  ? ISD::ANY_EXTEND
9166                                  : FuncInfo.PreferredExtendType[V];
9167   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9168   PendingExports.push_back(Chain);
9169 }
9170 
9171 #include "llvm/CodeGen/SelectionDAGISel.h"
9172 
9173 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9174 /// entry block, return true.  This includes arguments used by switches, since
9175 /// the switch may expand into multiple basic blocks.
9176 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9177   // With FastISel active, we may be splitting blocks, so force creation
9178   // of virtual registers for all non-dead arguments.
9179   if (FastISel)
9180     return A->use_empty();
9181 
9182   const BasicBlock &Entry = A->getParent()->front();
9183   for (const User *U : A->users())
9184     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9185       return false;  // Use not in entry block.
9186 
9187   return true;
9188 }
9189 
9190 using ArgCopyElisionMapTy =
9191     DenseMap<const Argument *,
9192              std::pair<const AllocaInst *, const StoreInst *>>;
9193 
9194 /// Scan the entry block of the function in FuncInfo for arguments that look
9195 /// like copies into a local alloca. Record any copied arguments in
9196 /// ArgCopyElisionCandidates.
9197 static void
9198 findArgumentCopyElisionCandidates(const DataLayout &DL,
9199                                   FunctionLoweringInfo *FuncInfo,
9200                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9201   // Record the state of every static alloca used in the entry block. Argument
9202   // allocas are all used in the entry block, so we need approximately as many
9203   // entries as we have arguments.
9204   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9205   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9206   unsigned NumArgs = FuncInfo->Fn->arg_size();
9207   StaticAllocas.reserve(NumArgs * 2);
9208 
9209   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9210     if (!V)
9211       return nullptr;
9212     V = V->stripPointerCasts();
9213     const auto *AI = dyn_cast<AllocaInst>(V);
9214     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9215       return nullptr;
9216     auto Iter = StaticAllocas.insert({AI, Unknown});
9217     return &Iter.first->second;
9218   };
9219 
9220   // Look for stores of arguments to static allocas. Look through bitcasts and
9221   // GEPs to handle type coercions, as long as the alloca is fully initialized
9222   // by the store. Any non-store use of an alloca escapes it and any subsequent
9223   // unanalyzed store might write it.
9224   // FIXME: Handle structs initialized with multiple stores.
9225   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9226     // Look for stores, and handle non-store uses conservatively.
9227     const auto *SI = dyn_cast<StoreInst>(&I);
9228     if (!SI) {
9229       // We will look through cast uses, so ignore them completely.
9230       if (I.isCast())
9231         continue;
9232       // Ignore debug info intrinsics, they don't escape or store to allocas.
9233       if (isa<DbgInfoIntrinsic>(I))
9234         continue;
9235       // This is an unknown instruction. Assume it escapes or writes to all
9236       // static alloca operands.
9237       for (const Use &U : I.operands()) {
9238         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9239           *Info = StaticAllocaInfo::Clobbered;
9240       }
9241       continue;
9242     }
9243 
9244     // If the stored value is a static alloca, mark it as escaped.
9245     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9246       *Info = StaticAllocaInfo::Clobbered;
9247 
9248     // Check if the destination is a static alloca.
9249     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9250     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9251     if (!Info)
9252       continue;
9253     const AllocaInst *AI = cast<AllocaInst>(Dst);
9254 
9255     // Skip allocas that have been initialized or clobbered.
9256     if (*Info != StaticAllocaInfo::Unknown)
9257       continue;
9258 
9259     // Check if the stored value is an argument, and that this store fully
9260     // initializes the alloca. Don't elide copies from the same argument twice.
9261     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9262     const auto *Arg = dyn_cast<Argument>(Val);
9263     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
9264         Arg->getType()->isEmptyTy() ||
9265         DL.getTypeStoreSize(Arg->getType()) !=
9266             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9267         ArgCopyElisionCandidates.count(Arg)) {
9268       *Info = StaticAllocaInfo::Clobbered;
9269       continue;
9270     }
9271 
9272     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9273                       << '\n');
9274 
9275     // Mark this alloca and store for argument copy elision.
9276     *Info = StaticAllocaInfo::Elidable;
9277     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9278 
9279     // Stop scanning if we've seen all arguments. This will happen early in -O0
9280     // builds, which is useful, because -O0 builds have large entry blocks and
9281     // many allocas.
9282     if (ArgCopyElisionCandidates.size() == NumArgs)
9283       break;
9284   }
9285 }
9286 
9287 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9288 /// ArgVal is a load from a suitable fixed stack object.
9289 static void tryToElideArgumentCopy(
9290     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
9291     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9292     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9293     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9294     SDValue ArgVal, bool &ArgHasUses) {
9295   // Check if this is a load from a fixed stack object.
9296   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9297   if (!LNode)
9298     return;
9299   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9300   if (!FINode)
9301     return;
9302 
9303   // Check that the fixed stack object is the right size and alignment.
9304   // Look at the alignment that the user wrote on the alloca instead of looking
9305   // at the stack object.
9306   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9307   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9308   const AllocaInst *AI = ArgCopyIter->second.first;
9309   int FixedIndex = FINode->getIndex();
9310   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
9311   int OldIndex = AllocaIndex;
9312   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
9313   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9314     LLVM_DEBUG(
9315         dbgs() << "  argument copy elision failed due to bad fixed stack "
9316                   "object size\n");
9317     return;
9318   }
9319   unsigned RequiredAlignment = AI->getAlignment();
9320   if (!RequiredAlignment) {
9321     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
9322         AI->getAllocatedType());
9323   }
9324   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
9325     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9326                          "greater than stack argument alignment ("
9327                       << RequiredAlignment << " vs "
9328                       << MFI.getObjectAlignment(FixedIndex) << ")\n");
9329     return;
9330   }
9331 
9332   // Perform the elision. Delete the old stack object and replace its only use
9333   // in the variable info map. Mark the stack object as mutable.
9334   LLVM_DEBUG({
9335     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9336            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9337            << '\n';
9338   });
9339   MFI.RemoveStackObject(OldIndex);
9340   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9341   AllocaIndex = FixedIndex;
9342   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9343   Chains.push_back(ArgVal.getValue(1));
9344 
9345   // Avoid emitting code for the store implementing the copy.
9346   const StoreInst *SI = ArgCopyIter->second.second;
9347   ElidedArgCopyInstrs.insert(SI);
9348 
9349   // Check for uses of the argument again so that we can avoid exporting ArgVal
9350   // if it is't used by anything other than the store.
9351   for (const Value *U : Arg.users()) {
9352     if (U != SI) {
9353       ArgHasUses = true;
9354       break;
9355     }
9356   }
9357 }
9358 
9359 void SelectionDAGISel::LowerArguments(const Function &F) {
9360   SelectionDAG &DAG = SDB->DAG;
9361   SDLoc dl = SDB->getCurSDLoc();
9362   const DataLayout &DL = DAG.getDataLayout();
9363   SmallVector<ISD::InputArg, 16> Ins;
9364 
9365   if (!FuncInfo->CanLowerReturn) {
9366     // Put in an sret pointer parameter before all the other parameters.
9367     SmallVector<EVT, 1> ValueVTs;
9368     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9369                     F.getReturnType()->getPointerTo(
9370                         DAG.getDataLayout().getAllocaAddrSpace()),
9371                     ValueVTs);
9372 
9373     // NOTE: Assuming that a pointer will never break down to more than one VT
9374     // or one register.
9375     ISD::ArgFlagsTy Flags;
9376     Flags.setSRet();
9377     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9378     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9379                          ISD::InputArg::NoArgIndex, 0);
9380     Ins.push_back(RetArg);
9381   }
9382 
9383   // Look for stores of arguments to static allocas. Mark such arguments with a
9384   // flag to ask the target to give us the memory location of that argument if
9385   // available.
9386   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9387   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
9388 
9389   // Set up the incoming argument description vector.
9390   for (const Argument &Arg : F.args()) {
9391     unsigned ArgNo = Arg.getArgNo();
9392     SmallVector<EVT, 4> ValueVTs;
9393     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9394     bool isArgValueUsed = !Arg.use_empty();
9395     unsigned PartBase = 0;
9396     Type *FinalType = Arg.getType();
9397     if (Arg.hasAttribute(Attribute::ByVal))
9398       FinalType = cast<PointerType>(FinalType)->getElementType();
9399     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9400         FinalType, F.getCallingConv(), F.isVarArg());
9401     for (unsigned Value = 0, NumValues = ValueVTs.size();
9402          Value != NumValues; ++Value) {
9403       EVT VT = ValueVTs[Value];
9404       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9405       ISD::ArgFlagsTy Flags;
9406 
9407       // Certain targets (such as MIPS), may have a different ABI alignment
9408       // for a type depending on the context. Give the target a chance to
9409       // specify the alignment it wants.
9410       unsigned OriginalAlignment =
9411           TLI->getABIAlignmentForCallingConv(ArgTy, DL);
9412 
9413       if (Arg.getType()->isPointerTy()) {
9414         Flags.setPointer();
9415         Flags.setPointerAddrSpace(
9416             cast<PointerType>(Arg.getType())->getAddressSpace());
9417       }
9418       if (Arg.hasAttribute(Attribute::ZExt))
9419         Flags.setZExt();
9420       if (Arg.hasAttribute(Attribute::SExt))
9421         Flags.setSExt();
9422       if (Arg.hasAttribute(Attribute::InReg)) {
9423         // If we are using vectorcall calling convention, a structure that is
9424         // passed InReg - is surely an HVA
9425         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9426             isa<StructType>(Arg.getType())) {
9427           // The first value of a structure is marked
9428           if (0 == Value)
9429             Flags.setHvaStart();
9430           Flags.setHva();
9431         }
9432         // Set InReg Flag
9433         Flags.setInReg();
9434       }
9435       if (Arg.hasAttribute(Attribute::StructRet))
9436         Flags.setSRet();
9437       if (Arg.hasAttribute(Attribute::SwiftSelf))
9438         Flags.setSwiftSelf();
9439       if (Arg.hasAttribute(Attribute::SwiftError))
9440         Flags.setSwiftError();
9441       if (Arg.hasAttribute(Attribute::ByVal))
9442         Flags.setByVal();
9443       if (Arg.hasAttribute(Attribute::InAlloca)) {
9444         Flags.setInAlloca();
9445         // Set the byval flag for CCAssignFn callbacks that don't know about
9446         // inalloca.  This way we can know how many bytes we should've allocated
9447         // and how many bytes a callee cleanup function will pop.  If we port
9448         // inalloca to more targets, we'll have to add custom inalloca handling
9449         // in the various CC lowering callbacks.
9450         Flags.setByVal();
9451       }
9452       if (F.getCallingConv() == CallingConv::X86_INTR) {
9453         // IA Interrupt passes frame (1st parameter) by value in the stack.
9454         if (ArgNo == 0)
9455           Flags.setByVal();
9456       }
9457       if (Flags.isByVal() || Flags.isInAlloca()) {
9458         PointerType *Ty = cast<PointerType>(Arg.getType());
9459         Type *ElementTy = Ty->getElementType();
9460         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
9461         // For ByVal, alignment should be passed from FE.  BE will guess if
9462         // this info is not there but there are cases it cannot get right.
9463         unsigned FrameAlign;
9464         if (Arg.getParamAlignment())
9465           FrameAlign = Arg.getParamAlignment();
9466         else
9467           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9468         Flags.setByValAlign(FrameAlign);
9469       }
9470       if (Arg.hasAttribute(Attribute::Nest))
9471         Flags.setNest();
9472       if (NeedsRegBlock)
9473         Flags.setInConsecutiveRegs();
9474       Flags.setOrigAlign(OriginalAlignment);
9475       if (ArgCopyElisionCandidates.count(&Arg))
9476         Flags.setCopyElisionCandidate();
9477 
9478       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9479           *CurDAG->getContext(), F.getCallingConv(), VT);
9480       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9481           *CurDAG->getContext(), F.getCallingConv(), VT);
9482       for (unsigned i = 0; i != NumRegs; ++i) {
9483         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9484                               ArgNo, PartBase+i*RegisterVT.getStoreSize());
9485         if (NumRegs > 1 && i == 0)
9486           MyFlags.Flags.setSplit();
9487         // if it isn't first piece, alignment must be 1
9488         else if (i > 0) {
9489           MyFlags.Flags.setOrigAlign(1);
9490           if (i == NumRegs - 1)
9491             MyFlags.Flags.setSplitEnd();
9492         }
9493         Ins.push_back(MyFlags);
9494       }
9495       if (NeedsRegBlock && Value == NumValues - 1)
9496         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9497       PartBase += VT.getStoreSize();
9498     }
9499   }
9500 
9501   // Call the target to set up the argument values.
9502   SmallVector<SDValue, 8> InVals;
9503   SDValue NewRoot = TLI->LowerFormalArguments(
9504       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9505 
9506   // Verify that the target's LowerFormalArguments behaved as expected.
9507   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9508          "LowerFormalArguments didn't return a valid chain!");
9509   assert(InVals.size() == Ins.size() &&
9510          "LowerFormalArguments didn't emit the correct number of values!");
9511   LLVM_DEBUG({
9512     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9513       assert(InVals[i].getNode() &&
9514              "LowerFormalArguments emitted a null value!");
9515       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9516              "LowerFormalArguments emitted a value with the wrong type!");
9517     }
9518   });
9519 
9520   // Update the DAG with the new chain value resulting from argument lowering.
9521   DAG.setRoot(NewRoot);
9522 
9523   // Set up the argument values.
9524   unsigned i = 0;
9525   if (!FuncInfo->CanLowerReturn) {
9526     // Create a virtual register for the sret pointer, and put in a copy
9527     // from the sret argument into it.
9528     SmallVector<EVT, 1> ValueVTs;
9529     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9530                     F.getReturnType()->getPointerTo(
9531                         DAG.getDataLayout().getAllocaAddrSpace()),
9532                     ValueVTs);
9533     MVT VT = ValueVTs[0].getSimpleVT();
9534     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9535     Optional<ISD::NodeType> AssertOp = None;
9536     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9537                                         nullptr, F.getCallingConv(), AssertOp);
9538 
9539     MachineFunction& MF = SDB->DAG.getMachineFunction();
9540     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9541     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9542     FuncInfo->DemoteRegister = SRetReg;
9543     NewRoot =
9544         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9545     DAG.setRoot(NewRoot);
9546 
9547     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9548     ++i;
9549   }
9550 
9551   SmallVector<SDValue, 4> Chains;
9552   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9553   for (const Argument &Arg : F.args()) {
9554     SmallVector<SDValue, 4> ArgValues;
9555     SmallVector<EVT, 4> ValueVTs;
9556     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9557     unsigned NumValues = ValueVTs.size();
9558     if (NumValues == 0)
9559       continue;
9560 
9561     bool ArgHasUses = !Arg.use_empty();
9562 
9563     // Elide the copying store if the target loaded this argument from a
9564     // suitable fixed stack object.
9565     if (Ins[i].Flags.isCopyElisionCandidate()) {
9566       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9567                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9568                              InVals[i], ArgHasUses);
9569     }
9570 
9571     // If this argument is unused then remember its value. It is used to generate
9572     // debugging information.
9573     bool isSwiftErrorArg =
9574         TLI->supportSwiftError() &&
9575         Arg.hasAttribute(Attribute::SwiftError);
9576     if (!ArgHasUses && !isSwiftErrorArg) {
9577       SDB->setUnusedArgValue(&Arg, InVals[i]);
9578 
9579       // Also remember any frame index for use in FastISel.
9580       if (FrameIndexSDNode *FI =
9581           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9582         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9583     }
9584 
9585     for (unsigned Val = 0; Val != NumValues; ++Val) {
9586       EVT VT = ValueVTs[Val];
9587       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9588                                                       F.getCallingConv(), VT);
9589       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9590           *CurDAG->getContext(), F.getCallingConv(), VT);
9591 
9592       // Even an apparant 'unused' swifterror argument needs to be returned. So
9593       // we do generate a copy for it that can be used on return from the
9594       // function.
9595       if (ArgHasUses || isSwiftErrorArg) {
9596         Optional<ISD::NodeType> AssertOp;
9597         if (Arg.hasAttribute(Attribute::SExt))
9598           AssertOp = ISD::AssertSext;
9599         else if (Arg.hasAttribute(Attribute::ZExt))
9600           AssertOp = ISD::AssertZext;
9601 
9602         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9603                                              PartVT, VT, nullptr,
9604                                              F.getCallingConv(), AssertOp));
9605       }
9606 
9607       i += NumParts;
9608     }
9609 
9610     // We don't need to do anything else for unused arguments.
9611     if (ArgValues.empty())
9612       continue;
9613 
9614     // Note down frame index.
9615     if (FrameIndexSDNode *FI =
9616         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9617       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9618 
9619     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9620                                      SDB->getCurSDLoc());
9621 
9622     SDB->setValue(&Arg, Res);
9623     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9624       // We want to associate the argument with the frame index, among
9625       // involved operands, that correspond to the lowest address. The
9626       // getCopyFromParts function, called earlier, is swapping the order of
9627       // the operands to BUILD_PAIR depending on endianness. The result of
9628       // that swapping is that the least significant bits of the argument will
9629       // be in the first operand of the BUILD_PAIR node, and the most
9630       // significant bits will be in the second operand.
9631       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9632       if (LoadSDNode *LNode =
9633           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9634         if (FrameIndexSDNode *FI =
9635             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9636           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9637     }
9638 
9639     // Update the SwiftErrorVRegDefMap.
9640     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9641       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9642       if (TargetRegisterInfo::isVirtualRegister(Reg))
9643         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
9644                                            FuncInfo->SwiftErrorArg, Reg);
9645     }
9646 
9647     // If this argument is live outside of the entry block, insert a copy from
9648     // wherever we got it to the vreg that other BB's will reference it as.
9649     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
9650       // If we can, though, try to skip creating an unnecessary vreg.
9651       // FIXME: This isn't very clean... it would be nice to make this more
9652       // general.  It's also subtly incompatible with the hacks FastISel
9653       // uses with vregs.
9654       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9655       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
9656         FuncInfo->ValueMap[&Arg] = Reg;
9657         continue;
9658       }
9659     }
9660     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9661       FuncInfo->InitializeRegForValue(&Arg);
9662       SDB->CopyToExportRegsIfNeeded(&Arg);
9663     }
9664   }
9665 
9666   if (!Chains.empty()) {
9667     Chains.push_back(NewRoot);
9668     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9669   }
9670 
9671   DAG.setRoot(NewRoot);
9672 
9673   assert(i == InVals.size() && "Argument register count mismatch!");
9674 
9675   // If any argument copy elisions occurred and we have debug info, update the
9676   // stale frame indices used in the dbg.declare variable info table.
9677   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9678   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9679     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9680       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9681       if (I != ArgCopyElisionFrameIndexMap.end())
9682         VI.Slot = I->second;
9683     }
9684   }
9685 
9686   // Finally, if the target has anything special to do, allow it to do so.
9687   EmitFunctionEntryCode();
9688 }
9689 
9690 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9691 /// ensure constants are generated when needed.  Remember the virtual registers
9692 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9693 /// directly add them, because expansion might result in multiple MBB's for one
9694 /// BB.  As such, the start of the BB might correspond to a different MBB than
9695 /// the end.
9696 void
9697 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9698   const Instruction *TI = LLVMBB->getTerminator();
9699 
9700   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9701 
9702   // Check PHI nodes in successors that expect a value to be available from this
9703   // block.
9704   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9705     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9706     if (!isa<PHINode>(SuccBB->begin())) continue;
9707     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9708 
9709     // If this terminator has multiple identical successors (common for
9710     // switches), only handle each succ once.
9711     if (!SuccsHandled.insert(SuccMBB).second)
9712       continue;
9713 
9714     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9715 
9716     // At this point we know that there is a 1-1 correspondence between LLVM PHI
9717     // nodes and Machine PHI nodes, but the incoming operands have not been
9718     // emitted yet.
9719     for (const PHINode &PN : SuccBB->phis()) {
9720       // Ignore dead phi's.
9721       if (PN.use_empty())
9722         continue;
9723 
9724       // Skip empty types
9725       if (PN.getType()->isEmptyTy())
9726         continue;
9727 
9728       unsigned Reg;
9729       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9730 
9731       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9732         unsigned &RegOut = ConstantsOut[C];
9733         if (RegOut == 0) {
9734           RegOut = FuncInfo.CreateRegs(C->getType());
9735           CopyValueToVirtualRegister(C, RegOut);
9736         }
9737         Reg = RegOut;
9738       } else {
9739         DenseMap<const Value *, unsigned>::iterator I =
9740           FuncInfo.ValueMap.find(PHIOp);
9741         if (I != FuncInfo.ValueMap.end())
9742           Reg = I->second;
9743         else {
9744           assert(isa<AllocaInst>(PHIOp) &&
9745                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9746                  "Didn't codegen value into a register!??");
9747           Reg = FuncInfo.CreateRegs(PHIOp->getType());
9748           CopyValueToVirtualRegister(PHIOp, Reg);
9749         }
9750       }
9751 
9752       // Remember that this register needs to added to the machine PHI node as
9753       // the input for this MBB.
9754       SmallVector<EVT, 4> ValueVTs;
9755       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9756       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9757       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9758         EVT VT = ValueVTs[vti];
9759         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9760         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9761           FuncInfo.PHINodesToUpdate.push_back(
9762               std::make_pair(&*MBBI++, Reg + i));
9763         Reg += NumRegisters;
9764       }
9765     }
9766   }
9767 
9768   ConstantsOut.clear();
9769 }
9770 
9771 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9772 /// is 0.
9773 MachineBasicBlock *
9774 SelectionDAGBuilder::StackProtectorDescriptor::
9775 AddSuccessorMBB(const BasicBlock *BB,
9776                 MachineBasicBlock *ParentMBB,
9777                 bool IsLikely,
9778                 MachineBasicBlock *SuccMBB) {
9779   // If SuccBB has not been created yet, create it.
9780   if (!SuccMBB) {
9781     MachineFunction *MF = ParentMBB->getParent();
9782     MachineFunction::iterator BBI(ParentMBB);
9783     SuccMBB = MF->CreateMachineBasicBlock(BB);
9784     MF->insert(++BBI, SuccMBB);
9785   }
9786   // Add it as a successor of ParentMBB.
9787   ParentMBB->addSuccessor(
9788       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9789   return SuccMBB;
9790 }
9791 
9792 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9793   MachineFunction::iterator I(MBB);
9794   if (++I == FuncInfo.MF->end())
9795     return nullptr;
9796   return &*I;
9797 }
9798 
9799 /// During lowering new call nodes can be created (such as memset, etc.).
9800 /// Those will become new roots of the current DAG, but complications arise
9801 /// when they are tail calls. In such cases, the call lowering will update
9802 /// the root, but the builder still needs to know that a tail call has been
9803 /// lowered in order to avoid generating an additional return.
9804 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
9805   // If the node is null, we do have a tail call.
9806   if (MaybeTC.getNode() != nullptr)
9807     DAG.setRoot(MaybeTC);
9808   else
9809     HasTailCall = true;
9810 }
9811 
9812 uint64_t
9813 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters,
9814                                        unsigned First, unsigned Last) const {
9815   assert(Last >= First);
9816   const APInt &LowCase = Clusters[First].Low->getValue();
9817   const APInt &HighCase = Clusters[Last].High->getValue();
9818   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
9819 
9820   // FIXME: A range of consecutive cases has 100% density, but only requires one
9821   // comparison to lower. We should discriminate against such consecutive ranges
9822   // in jump tables.
9823 
9824   return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
9825 }
9826 
9827 uint64_t SelectionDAGBuilder::getJumpTableNumCases(
9828     const SmallVectorImpl<unsigned> &TotalCases, unsigned First,
9829     unsigned Last) const {
9830   assert(Last >= First);
9831   assert(TotalCases[Last] >= TotalCases[First]);
9832   uint64_t NumCases =
9833       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
9834   return NumCases;
9835 }
9836 
9837 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
9838                                          unsigned First, unsigned Last,
9839                                          const SwitchInst *SI,
9840                                          MachineBasicBlock *DefaultMBB,
9841                                          CaseCluster &JTCluster) {
9842   assert(First <= Last);
9843 
9844   auto Prob = BranchProbability::getZero();
9845   unsigned NumCmps = 0;
9846   std::vector<MachineBasicBlock*> Table;
9847   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
9848 
9849   // Initialize probabilities in JTProbs.
9850   for (unsigned I = First; I <= Last; ++I)
9851     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
9852 
9853   for (unsigned I = First; I <= Last; ++I) {
9854     assert(Clusters[I].Kind == CC_Range);
9855     Prob += Clusters[I].Prob;
9856     const APInt &Low = Clusters[I].Low->getValue();
9857     const APInt &High = Clusters[I].High->getValue();
9858     NumCmps += (Low == High) ? 1 : 2;
9859     if (I != First) {
9860       // Fill the gap between this and the previous cluster.
9861       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
9862       assert(PreviousHigh.slt(Low));
9863       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
9864       for (uint64_t J = 0; J < Gap; J++)
9865         Table.push_back(DefaultMBB);
9866     }
9867     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
9868     for (uint64_t J = 0; J < ClusterSize; ++J)
9869       Table.push_back(Clusters[I].MBB);
9870     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
9871   }
9872 
9873   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9874   unsigned NumDests = JTProbs.size();
9875   if (TLI.isSuitableForBitTests(
9876           NumDests, NumCmps, Clusters[First].Low->getValue(),
9877           Clusters[Last].High->getValue(), DAG.getDataLayout())) {
9878     // Clusters[First..Last] should be lowered as bit tests instead.
9879     return false;
9880   }
9881 
9882   // Create the MBB that will load from and jump through the table.
9883   // Note: We create it here, but it's not inserted into the function yet.
9884   MachineFunction *CurMF = FuncInfo.MF;
9885   MachineBasicBlock *JumpTableMBB =
9886       CurMF->CreateMachineBasicBlock(SI->getParent());
9887 
9888   // Add successors. Note: use table order for determinism.
9889   SmallPtrSet<MachineBasicBlock *, 8> Done;
9890   for (MachineBasicBlock *Succ : Table) {
9891     if (Done.count(Succ))
9892       continue;
9893     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
9894     Done.insert(Succ);
9895   }
9896   JumpTableMBB->normalizeSuccProbs();
9897 
9898   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
9899                      ->createJumpTableIndex(Table);
9900 
9901   // Set up the jump table info.
9902   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
9903   JumpTableHeader JTH(Clusters[First].Low->getValue(),
9904                       Clusters[Last].High->getValue(), SI->getCondition(),
9905                       nullptr, false);
9906   JTCases.emplace_back(std::move(JTH), std::move(JT));
9907 
9908   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
9909                                      JTCases.size() - 1, Prob);
9910   return true;
9911 }
9912 
9913 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
9914                                          const SwitchInst *SI,
9915                                          MachineBasicBlock *DefaultMBB) {
9916 #ifndef NDEBUG
9917   // Clusters must be non-empty, sorted, and only contain Range clusters.
9918   assert(!Clusters.empty());
9919   for (CaseCluster &C : Clusters)
9920     assert(C.Kind == CC_Range);
9921   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
9922     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
9923 #endif
9924 
9925   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9926   if (!TLI.areJTsAllowed(SI->getParent()->getParent()))
9927     return;
9928 
9929   const int64_t N = Clusters.size();
9930   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
9931   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
9932 
9933   if (N < 2 || N < MinJumpTableEntries)
9934     return;
9935 
9936   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
9937   SmallVector<unsigned, 8> TotalCases(N);
9938   for (unsigned i = 0; i < N; ++i) {
9939     const APInt &Hi = Clusters[i].High->getValue();
9940     const APInt &Lo = Clusters[i].Low->getValue();
9941     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
9942     if (i != 0)
9943       TotalCases[i] += TotalCases[i - 1];
9944   }
9945 
9946   // Cheap case: the whole range may be suitable for jump table.
9947   uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
9948   uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
9949   assert(NumCases < UINT64_MAX / 100);
9950   assert(Range >= NumCases);
9951   if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9952     CaseCluster JTCluster;
9953     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
9954       Clusters[0] = JTCluster;
9955       Clusters.resize(1);
9956       return;
9957     }
9958   }
9959 
9960   // The algorithm below is not suitable for -O0.
9961   if (TM.getOptLevel() == CodeGenOpt::None)
9962     return;
9963 
9964   // Split Clusters into minimum number of dense partitions. The algorithm uses
9965   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
9966   // for the Case Statement'" (1994), but builds the MinPartitions array in
9967   // reverse order to make it easier to reconstruct the partitions in ascending
9968   // order. In the choice between two optimal partitionings, it picks the one
9969   // which yields more jump tables.
9970 
9971   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9972   SmallVector<unsigned, 8> MinPartitions(N);
9973   // LastElement[i] is the last element of the partition starting at i.
9974   SmallVector<unsigned, 8> LastElement(N);
9975   // PartitionsScore[i] is used to break ties when choosing between two
9976   // partitionings resulting in the same number of partitions.
9977   SmallVector<unsigned, 8> PartitionsScore(N);
9978   // For PartitionsScore, a small number of comparisons is considered as good as
9979   // a jump table and a single comparison is considered better than a jump
9980   // table.
9981   enum PartitionScores : unsigned {
9982     NoTable = 0,
9983     Table = 1,
9984     FewCases = 1,
9985     SingleCase = 2
9986   };
9987 
9988   // Base case: There is only one way to partition Clusters[N-1].
9989   MinPartitions[N - 1] = 1;
9990   LastElement[N - 1] = N - 1;
9991   PartitionsScore[N - 1] = PartitionScores::SingleCase;
9992 
9993   // Note: loop indexes are signed to avoid underflow.
9994   for (int64_t i = N - 2; i >= 0; i--) {
9995     // Find optimal partitioning of Clusters[i..N-1].
9996     // Baseline: Put Clusters[i] into a partition on its own.
9997     MinPartitions[i] = MinPartitions[i + 1] + 1;
9998     LastElement[i] = i;
9999     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
10000 
10001     // Search for a solution that results in fewer partitions.
10002     for (int64_t j = N - 1; j > i; j--) {
10003       // Try building a partition from Clusters[i..j].
10004       uint64_t Range = getJumpTableRange(Clusters, i, j);
10005       uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j);
10006       assert(NumCases < UINT64_MAX / 100);
10007       assert(Range >= NumCases);
10008       if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
10009         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
10010         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
10011         int64_t NumEntries = j - i + 1;
10012 
10013         if (NumEntries == 1)
10014           Score += PartitionScores::SingleCase;
10015         else if (NumEntries <= SmallNumberOfEntries)
10016           Score += PartitionScores::FewCases;
10017         else if (NumEntries >= MinJumpTableEntries)
10018           Score += PartitionScores::Table;
10019 
10020         // If this leads to fewer partitions, or to the same number of
10021         // partitions with better score, it is a better partitioning.
10022         if (NumPartitions < MinPartitions[i] ||
10023             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
10024           MinPartitions[i] = NumPartitions;
10025           LastElement[i] = j;
10026           PartitionsScore[i] = Score;
10027         }
10028       }
10029     }
10030   }
10031 
10032   // Iterate over the partitions, replacing some with jump tables in-place.
10033   unsigned DstIndex = 0;
10034   for (unsigned First = 0, Last; First < N; First = Last + 1) {
10035     Last = LastElement[First];
10036     assert(Last >= First);
10037     assert(DstIndex <= First);
10038     unsigned NumClusters = Last - First + 1;
10039 
10040     CaseCluster JTCluster;
10041     if (NumClusters >= MinJumpTableEntries &&
10042         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
10043       Clusters[DstIndex++] = JTCluster;
10044     } else {
10045       for (unsigned I = First; I <= Last; ++I)
10046         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
10047     }
10048   }
10049   Clusters.resize(DstIndex);
10050 }
10051 
10052 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
10053                                         unsigned First, unsigned Last,
10054                                         const SwitchInst *SI,
10055                                         CaseCluster &BTCluster) {
10056   assert(First <= Last);
10057   if (First == Last)
10058     return false;
10059 
10060   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
10061   unsigned NumCmps = 0;
10062   for (int64_t I = First; I <= Last; ++I) {
10063     assert(Clusters[I].Kind == CC_Range);
10064     Dests.set(Clusters[I].MBB->getNumber());
10065     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
10066   }
10067   unsigned NumDests = Dests.count();
10068 
10069   APInt Low = Clusters[First].Low->getValue();
10070   APInt High = Clusters[Last].High->getValue();
10071   assert(Low.slt(High));
10072 
10073   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10074   const DataLayout &DL = DAG.getDataLayout();
10075   if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL))
10076     return false;
10077 
10078   APInt LowBound;
10079   APInt CmpRange;
10080 
10081   const int BitWidth = TLI.getPointerTy(DL).getSizeInBits();
10082   assert(TLI.rangeFitsInWord(Low, High, DL) &&
10083          "Case range must fit in bit mask!");
10084 
10085   // Check if the clusters cover a contiguous range such that no value in the
10086   // range will jump to the default statement.
10087   bool ContiguousRange = true;
10088   for (int64_t I = First + 1; I <= Last; ++I) {
10089     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
10090       ContiguousRange = false;
10091       break;
10092     }
10093   }
10094 
10095   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
10096     // Optimize the case where all the case values fit in a word without having
10097     // to subtract minValue. In this case, we can optimize away the subtraction.
10098     LowBound = APInt::getNullValue(Low.getBitWidth());
10099     CmpRange = High;
10100     ContiguousRange = false;
10101   } else {
10102     LowBound = Low;
10103     CmpRange = High - Low;
10104   }
10105 
10106   CaseBitsVector CBV;
10107   auto TotalProb = BranchProbability::getZero();
10108   for (unsigned i = First; i <= Last; ++i) {
10109     // Find the CaseBits for this destination.
10110     unsigned j;
10111     for (j = 0; j < CBV.size(); ++j)
10112       if (CBV[j].BB == Clusters[i].MBB)
10113         break;
10114     if (j == CBV.size())
10115       CBV.push_back(
10116           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
10117     CaseBits *CB = &CBV[j];
10118 
10119     // Update Mask, Bits and ExtraProb.
10120     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
10121     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
10122     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
10123     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
10124     CB->Bits += Hi - Lo + 1;
10125     CB->ExtraProb += Clusters[i].Prob;
10126     TotalProb += Clusters[i].Prob;
10127   }
10128 
10129   BitTestInfo BTI;
10130   llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) {
10131     // Sort by probability first, number of bits second, bit mask third.
10132     if (a.ExtraProb != b.ExtraProb)
10133       return a.ExtraProb > b.ExtraProb;
10134     if (a.Bits != b.Bits)
10135       return a.Bits > b.Bits;
10136     return a.Mask < b.Mask;
10137   });
10138 
10139   for (auto &CB : CBV) {
10140     MachineBasicBlock *BitTestBB =
10141         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
10142     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
10143   }
10144   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
10145                             SI->getCondition(), -1U, MVT::Other, false,
10146                             ContiguousRange, nullptr, nullptr, std::move(BTI),
10147                             TotalProb);
10148 
10149   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
10150                                     BitTestCases.size() - 1, TotalProb);
10151   return true;
10152 }
10153 
10154 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
10155                                               const SwitchInst *SI) {
10156 // Partition Clusters into as few subsets as possible, where each subset has a
10157 // range that fits in a machine word and has <= 3 unique destinations.
10158 
10159 #ifndef NDEBUG
10160   // Clusters must be sorted and contain Range or JumpTable clusters.
10161   assert(!Clusters.empty());
10162   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
10163   for (const CaseCluster &C : Clusters)
10164     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
10165   for (unsigned i = 1; i < Clusters.size(); ++i)
10166     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
10167 #endif
10168 
10169   // The algorithm below is not suitable for -O0.
10170   if (TM.getOptLevel() == CodeGenOpt::None)
10171     return;
10172 
10173   // If target does not have legal shift left, do not emit bit tests at all.
10174   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10175   const DataLayout &DL = DAG.getDataLayout();
10176 
10177   EVT PTy = TLI.getPointerTy(DL);
10178   if (!TLI.isOperationLegal(ISD::SHL, PTy))
10179     return;
10180 
10181   int BitWidth = PTy.getSizeInBits();
10182   const int64_t N = Clusters.size();
10183 
10184   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
10185   SmallVector<unsigned, 8> MinPartitions(N);
10186   // LastElement[i] is the last element of the partition starting at i.
10187   SmallVector<unsigned, 8> LastElement(N);
10188 
10189   // FIXME: This might not be the best algorithm for finding bit test clusters.
10190 
10191   // Base case: There is only one way to partition Clusters[N-1].
10192   MinPartitions[N - 1] = 1;
10193   LastElement[N - 1] = N - 1;
10194 
10195   // Note: loop indexes are signed to avoid underflow.
10196   for (int64_t i = N - 2; i >= 0; --i) {
10197     // Find optimal partitioning of Clusters[i..N-1].
10198     // Baseline: Put Clusters[i] into a partition on its own.
10199     MinPartitions[i] = MinPartitions[i + 1] + 1;
10200     LastElement[i] = i;
10201 
10202     // Search for a solution that results in fewer partitions.
10203     // Note: the search is limited by BitWidth, reducing time complexity.
10204     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
10205       // Try building a partition from Clusters[i..j].
10206 
10207       // Check the range.
10208       if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(),
10209                                Clusters[j].High->getValue(), DL))
10210         continue;
10211 
10212       // Check nbr of destinations and cluster types.
10213       // FIXME: This works, but doesn't seem very efficient.
10214       bool RangesOnly = true;
10215       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
10216       for (int64_t k = i; k <= j; k++) {
10217         if (Clusters[k].Kind != CC_Range) {
10218           RangesOnly = false;
10219           break;
10220         }
10221         Dests.set(Clusters[k].MBB->getNumber());
10222       }
10223       if (!RangesOnly || Dests.count() > 3)
10224         break;
10225 
10226       // Check if it's a better partition.
10227       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
10228       if (NumPartitions < MinPartitions[i]) {
10229         // Found a better partition.
10230         MinPartitions[i] = NumPartitions;
10231         LastElement[i] = j;
10232       }
10233     }
10234   }
10235 
10236   // Iterate over the partitions, replacing with bit-test clusters in-place.
10237   unsigned DstIndex = 0;
10238   for (unsigned First = 0, Last; First < N; First = Last + 1) {
10239     Last = LastElement[First];
10240     assert(First <= Last);
10241     assert(DstIndex <= First);
10242 
10243     CaseCluster BitTestCluster;
10244     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
10245       Clusters[DstIndex++] = BitTestCluster;
10246     } else {
10247       size_t NumClusters = Last - First + 1;
10248       std::memmove(&Clusters[DstIndex], &Clusters[First],
10249                    sizeof(Clusters[0]) * NumClusters);
10250       DstIndex += NumClusters;
10251     }
10252   }
10253   Clusters.resize(DstIndex);
10254 }
10255 
10256 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10257                                         MachineBasicBlock *SwitchMBB,
10258                                         MachineBasicBlock *DefaultMBB) {
10259   MachineFunction *CurMF = FuncInfo.MF;
10260   MachineBasicBlock *NextMBB = nullptr;
10261   MachineFunction::iterator BBI(W.MBB);
10262   if (++BBI != FuncInfo.MF->end())
10263     NextMBB = &*BBI;
10264 
10265   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10266 
10267   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10268 
10269   if (Size == 2 && W.MBB == SwitchMBB) {
10270     // If any two of the cases has the same destination, and if one value
10271     // is the same as the other, but has one bit unset that the other has set,
10272     // use bit manipulation to do two compares at once.  For example:
10273     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10274     // TODO: This could be extended to merge any 2 cases in switches with 3
10275     // cases.
10276     // TODO: Handle cases where W.CaseBB != SwitchBB.
10277     CaseCluster &Small = *W.FirstCluster;
10278     CaseCluster &Big = *W.LastCluster;
10279 
10280     if (Small.Low == Small.High && Big.Low == Big.High &&
10281         Small.MBB == Big.MBB) {
10282       const APInt &SmallValue = Small.Low->getValue();
10283       const APInt &BigValue = Big.Low->getValue();
10284 
10285       // Check that there is only one bit different.
10286       APInt CommonBit = BigValue ^ SmallValue;
10287       if (CommonBit.isPowerOf2()) {
10288         SDValue CondLHS = getValue(Cond);
10289         EVT VT = CondLHS.getValueType();
10290         SDLoc DL = getCurSDLoc();
10291 
10292         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10293                                  DAG.getConstant(CommonBit, DL, VT));
10294         SDValue Cond = DAG.getSetCC(
10295             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10296             ISD::SETEQ);
10297 
10298         // Update successor info.
10299         // Both Small and Big will jump to Small.BB, so we sum up the
10300         // probabilities.
10301         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10302         if (BPI)
10303           addSuccessorWithProb(
10304               SwitchMBB, DefaultMBB,
10305               // The default destination is the first successor in IR.
10306               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10307         else
10308           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10309 
10310         // Insert the true branch.
10311         SDValue BrCond =
10312             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10313                         DAG.getBasicBlock(Small.MBB));
10314         // Insert the false branch.
10315         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10316                              DAG.getBasicBlock(DefaultMBB));
10317 
10318         DAG.setRoot(BrCond);
10319         return;
10320       }
10321     }
10322   }
10323 
10324   if (TM.getOptLevel() != CodeGenOpt::None) {
10325     // Here, we order cases by probability so the most likely case will be
10326     // checked first. However, two clusters can have the same probability in
10327     // which case their relative ordering is non-deterministic. So we use Low
10328     // as a tie-breaker as clusters are guaranteed to never overlap.
10329     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10330                [](const CaseCluster &a, const CaseCluster &b) {
10331       return a.Prob != b.Prob ?
10332              a.Prob > b.Prob :
10333              a.Low->getValue().slt(b.Low->getValue());
10334     });
10335 
10336     // Rearrange the case blocks so that the last one falls through if possible
10337     // without changing the order of probabilities.
10338     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10339       --I;
10340       if (I->Prob > W.LastCluster->Prob)
10341         break;
10342       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10343         std::swap(*I, *W.LastCluster);
10344         break;
10345       }
10346     }
10347   }
10348 
10349   // Compute total probability.
10350   BranchProbability DefaultProb = W.DefaultProb;
10351   BranchProbability UnhandledProbs = DefaultProb;
10352   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10353     UnhandledProbs += I->Prob;
10354 
10355   MachineBasicBlock *CurMBB = W.MBB;
10356   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10357     bool FallthroughUnreachable = false;
10358     MachineBasicBlock *Fallthrough;
10359     if (I == W.LastCluster) {
10360       // For the last cluster, fall through to the default destination.
10361       Fallthrough = DefaultMBB;
10362       FallthroughUnreachable = isa<UnreachableInst>(
10363           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10364     } else {
10365       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10366       CurMF->insert(BBI, Fallthrough);
10367       // Put Cond in a virtual register to make it available from the new blocks.
10368       ExportFromCurrentBlock(Cond);
10369     }
10370     UnhandledProbs -= I->Prob;
10371 
10372     switch (I->Kind) {
10373       case CC_JumpTable: {
10374         // FIXME: Optimize away range check based on pivot comparisons.
10375         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
10376         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
10377 
10378         // The jump block hasn't been inserted yet; insert it here.
10379         MachineBasicBlock *JumpMBB = JT->MBB;
10380         CurMF->insert(BBI, JumpMBB);
10381 
10382         auto JumpProb = I->Prob;
10383         auto FallthroughProb = UnhandledProbs;
10384 
10385         // If the default statement is a target of the jump table, we evenly
10386         // distribute the default probability to successors of CurMBB. Also
10387         // update the probability on the edge from JumpMBB to Fallthrough.
10388         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10389                                               SE = JumpMBB->succ_end();
10390              SI != SE; ++SI) {
10391           if (*SI == DefaultMBB) {
10392             JumpProb += DefaultProb / 2;
10393             FallthroughProb -= DefaultProb / 2;
10394             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10395             JumpMBB->normalizeSuccProbs();
10396             break;
10397           }
10398         }
10399 
10400         if (FallthroughUnreachable) {
10401           // Skip the range check if the fallthrough block is unreachable.
10402           JTH->OmitRangeCheck = true;
10403         }
10404 
10405         if (!JTH->OmitRangeCheck)
10406           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10407         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10408         CurMBB->normalizeSuccProbs();
10409 
10410         // The jump table header will be inserted in our current block, do the
10411         // range check, and fall through to our fallthrough block.
10412         JTH->HeaderBB = CurMBB;
10413         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10414 
10415         // If we're in the right place, emit the jump table header right now.
10416         if (CurMBB == SwitchMBB) {
10417           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10418           JTH->Emitted = true;
10419         }
10420         break;
10421       }
10422       case CC_BitTests: {
10423         // FIXME: If Fallthrough is unreachable, skip the range check.
10424 
10425         // FIXME: Optimize away range check based on pivot comparisons.
10426         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
10427 
10428         // The bit test blocks haven't been inserted yet; insert them here.
10429         for (BitTestCase &BTC : BTB->Cases)
10430           CurMF->insert(BBI, BTC.ThisBB);
10431 
10432         // Fill in fields of the BitTestBlock.
10433         BTB->Parent = CurMBB;
10434         BTB->Default = Fallthrough;
10435 
10436         BTB->DefaultProb = UnhandledProbs;
10437         // If the cases in bit test don't form a contiguous range, we evenly
10438         // distribute the probability on the edge to Fallthrough to two
10439         // successors of CurMBB.
10440         if (!BTB->ContiguousRange) {
10441           BTB->Prob += DefaultProb / 2;
10442           BTB->DefaultProb -= DefaultProb / 2;
10443         }
10444 
10445         // If we're in the right place, emit the bit test header right now.
10446         if (CurMBB == SwitchMBB) {
10447           visitBitTestHeader(*BTB, SwitchMBB);
10448           BTB->Emitted = true;
10449         }
10450         break;
10451       }
10452       case CC_Range: {
10453         const Value *RHS, *LHS, *MHS;
10454         ISD::CondCode CC;
10455         if (I->Low == I->High) {
10456           // Check Cond == I->Low.
10457           CC = ISD::SETEQ;
10458           LHS = Cond;
10459           RHS=I->Low;
10460           MHS = nullptr;
10461         } else {
10462           // Check I->Low <= Cond <= I->High.
10463           CC = ISD::SETLE;
10464           LHS = I->Low;
10465           MHS = Cond;
10466           RHS = I->High;
10467         }
10468 
10469         // If Fallthrough is unreachable, fold away the comparison.
10470         if (FallthroughUnreachable)
10471           CC = ISD::SETTRUE;
10472 
10473         // The false probability is the sum of all unhandled cases.
10474         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10475                      getCurSDLoc(), I->Prob, UnhandledProbs);
10476 
10477         if (CurMBB == SwitchMBB)
10478           visitSwitchCase(CB, SwitchMBB);
10479         else
10480           SwitchCases.push_back(CB);
10481 
10482         break;
10483       }
10484     }
10485     CurMBB = Fallthrough;
10486   }
10487 }
10488 
10489 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10490                                               CaseClusterIt First,
10491                                               CaseClusterIt Last) {
10492   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10493     if (X.Prob != CC.Prob)
10494       return X.Prob > CC.Prob;
10495 
10496     // Ties are broken by comparing the case value.
10497     return X.Low->getValue().slt(CC.Low->getValue());
10498   });
10499 }
10500 
10501 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10502                                         const SwitchWorkListItem &W,
10503                                         Value *Cond,
10504                                         MachineBasicBlock *SwitchMBB) {
10505   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10506          "Clusters not sorted?");
10507 
10508   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10509 
10510   // Balance the tree based on branch probabilities to create a near-optimal (in
10511   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10512   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10513   CaseClusterIt LastLeft = W.FirstCluster;
10514   CaseClusterIt FirstRight = W.LastCluster;
10515   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10516   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10517 
10518   // Move LastLeft and FirstRight towards each other from opposite directions to
10519   // find a partitioning of the clusters which balances the probability on both
10520   // sides. If LeftProb and RightProb are equal, alternate which side is
10521   // taken to ensure 0-probability nodes are distributed evenly.
10522   unsigned I = 0;
10523   while (LastLeft + 1 < FirstRight) {
10524     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10525       LeftProb += (++LastLeft)->Prob;
10526     else
10527       RightProb += (--FirstRight)->Prob;
10528     I++;
10529   }
10530 
10531   while (true) {
10532     // Our binary search tree differs from a typical BST in that ours can have up
10533     // to three values in each leaf. The pivot selection above doesn't take that
10534     // into account, which means the tree might require more nodes and be less
10535     // efficient. We compensate for this here.
10536 
10537     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10538     unsigned NumRight = W.LastCluster - FirstRight + 1;
10539 
10540     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10541       // If one side has less than 3 clusters, and the other has more than 3,
10542       // consider taking a cluster from the other side.
10543 
10544       if (NumLeft < NumRight) {
10545         // Consider moving the first cluster on the right to the left side.
10546         CaseCluster &CC = *FirstRight;
10547         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10548         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10549         if (LeftSideRank <= RightSideRank) {
10550           // Moving the cluster to the left does not demote it.
10551           ++LastLeft;
10552           ++FirstRight;
10553           continue;
10554         }
10555       } else {
10556         assert(NumRight < NumLeft);
10557         // Consider moving the last element on the left to the right side.
10558         CaseCluster &CC = *LastLeft;
10559         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10560         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10561         if (RightSideRank <= LeftSideRank) {
10562           // Moving the cluster to the right does not demot it.
10563           --LastLeft;
10564           --FirstRight;
10565           continue;
10566         }
10567       }
10568     }
10569     break;
10570   }
10571 
10572   assert(LastLeft + 1 == FirstRight);
10573   assert(LastLeft >= W.FirstCluster);
10574   assert(FirstRight <= W.LastCluster);
10575 
10576   // Use the first element on the right as pivot since we will make less-than
10577   // comparisons against it.
10578   CaseClusterIt PivotCluster = FirstRight;
10579   assert(PivotCluster > W.FirstCluster);
10580   assert(PivotCluster <= W.LastCluster);
10581 
10582   CaseClusterIt FirstLeft = W.FirstCluster;
10583   CaseClusterIt LastRight = W.LastCluster;
10584 
10585   const ConstantInt *Pivot = PivotCluster->Low;
10586 
10587   // New blocks will be inserted immediately after the current one.
10588   MachineFunction::iterator BBI(W.MBB);
10589   ++BBI;
10590 
10591   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10592   // we can branch to its destination directly if it's squeezed exactly in
10593   // between the known lower bound and Pivot - 1.
10594   MachineBasicBlock *LeftMBB;
10595   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10596       FirstLeft->Low == W.GE &&
10597       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10598     LeftMBB = FirstLeft->MBB;
10599   } else {
10600     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10601     FuncInfo.MF->insert(BBI, LeftMBB);
10602     WorkList.push_back(
10603         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10604     // Put Cond in a virtual register to make it available from the new blocks.
10605     ExportFromCurrentBlock(Cond);
10606   }
10607 
10608   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10609   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10610   // directly if RHS.High equals the current upper bound.
10611   MachineBasicBlock *RightMBB;
10612   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10613       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10614     RightMBB = FirstRight->MBB;
10615   } else {
10616     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10617     FuncInfo.MF->insert(BBI, RightMBB);
10618     WorkList.push_back(
10619         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10620     // Put Cond in a virtual register to make it available from the new blocks.
10621     ExportFromCurrentBlock(Cond);
10622   }
10623 
10624   // Create the CaseBlock record that will be used to lower the branch.
10625   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10626                getCurSDLoc(), LeftProb, RightProb);
10627 
10628   if (W.MBB == SwitchMBB)
10629     visitSwitchCase(CB, SwitchMBB);
10630   else
10631     SwitchCases.push_back(CB);
10632 }
10633 
10634 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10635 // from the swith statement.
10636 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10637                                             BranchProbability PeeledCaseProb) {
10638   if (PeeledCaseProb == BranchProbability::getOne())
10639     return BranchProbability::getZero();
10640   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10641 
10642   uint32_t Numerator = CaseProb.getNumerator();
10643   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10644   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10645 }
10646 
10647 // Try to peel the top probability case if it exceeds the threshold.
10648 // Return current MachineBasicBlock for the switch statement if the peeling
10649 // does not occur.
10650 // If the peeling is performed, return the newly created MachineBasicBlock
10651 // for the peeled switch statement. Also update Clusters to remove the peeled
10652 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10653 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10654     const SwitchInst &SI, CaseClusterVector &Clusters,
10655     BranchProbability &PeeledCaseProb) {
10656   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10657   // Don't perform if there is only one cluster or optimizing for size.
10658   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10659       TM.getOptLevel() == CodeGenOpt::None ||
10660       SwitchMBB->getParent()->getFunction().hasMinSize())
10661     return SwitchMBB;
10662 
10663   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10664   unsigned PeeledCaseIndex = 0;
10665   bool SwitchPeeled = false;
10666   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10667     CaseCluster &CC = Clusters[Index];
10668     if (CC.Prob < TopCaseProb)
10669       continue;
10670     TopCaseProb = CC.Prob;
10671     PeeledCaseIndex = Index;
10672     SwitchPeeled = true;
10673   }
10674   if (!SwitchPeeled)
10675     return SwitchMBB;
10676 
10677   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10678                     << TopCaseProb << "\n");
10679 
10680   // Record the MBB for the peeled switch statement.
10681   MachineFunction::iterator BBI(SwitchMBB);
10682   ++BBI;
10683   MachineBasicBlock *PeeledSwitchMBB =
10684       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10685   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10686 
10687   ExportFromCurrentBlock(SI.getCondition());
10688   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10689   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10690                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10691   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10692 
10693   Clusters.erase(PeeledCaseIt);
10694   for (CaseCluster &CC : Clusters) {
10695     LLVM_DEBUG(
10696         dbgs() << "Scale the probablity for one cluster, before scaling: "
10697                << CC.Prob << "\n");
10698     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10699     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10700   }
10701   PeeledCaseProb = TopCaseProb;
10702   return PeeledSwitchMBB;
10703 }
10704 
10705 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10706   // Extract cases from the switch.
10707   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10708   CaseClusterVector Clusters;
10709   Clusters.reserve(SI.getNumCases());
10710   for (auto I : SI.cases()) {
10711     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10712     const ConstantInt *CaseVal = I.getCaseValue();
10713     BranchProbability Prob =
10714         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10715             : BranchProbability(1, SI.getNumCases() + 1);
10716     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10717   }
10718 
10719   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10720 
10721   // Cluster adjacent cases with the same destination. We do this at all
10722   // optimization levels because it's cheap to do and will make codegen faster
10723   // if there are many clusters.
10724   sortAndRangeify(Clusters);
10725 
10726   // The branch probablity of the peeled case.
10727   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10728   MachineBasicBlock *PeeledSwitchMBB =
10729       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10730 
10731   // If there is only the default destination, jump there directly.
10732   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10733   if (Clusters.empty()) {
10734     assert(PeeledSwitchMBB == SwitchMBB);
10735     SwitchMBB->addSuccessor(DefaultMBB);
10736     if (DefaultMBB != NextBlock(SwitchMBB)) {
10737       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10738                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10739     }
10740     return;
10741   }
10742 
10743   findJumpTables(Clusters, &SI, DefaultMBB);
10744   findBitTestClusters(Clusters, &SI);
10745 
10746   LLVM_DEBUG({
10747     dbgs() << "Case clusters: ";
10748     for (const CaseCluster &C : Clusters) {
10749       if (C.Kind == CC_JumpTable)
10750         dbgs() << "JT:";
10751       if (C.Kind == CC_BitTests)
10752         dbgs() << "BT:";
10753 
10754       C.Low->getValue().print(dbgs(), true);
10755       if (C.Low != C.High) {
10756         dbgs() << '-';
10757         C.High->getValue().print(dbgs(), true);
10758       }
10759       dbgs() << ' ';
10760     }
10761     dbgs() << '\n';
10762   });
10763 
10764   assert(!Clusters.empty());
10765   SwitchWorkList WorkList;
10766   CaseClusterIt First = Clusters.begin();
10767   CaseClusterIt Last = Clusters.end() - 1;
10768   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10769   // Scale the branchprobability for DefaultMBB if the peel occurs and
10770   // DefaultMBB is not replaced.
10771   if (PeeledCaseProb != BranchProbability::getZero() &&
10772       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10773     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10774   WorkList.push_back(
10775       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10776 
10777   while (!WorkList.empty()) {
10778     SwitchWorkListItem W = WorkList.back();
10779     WorkList.pop_back();
10780     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10781 
10782     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10783         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10784       // For optimized builds, lower large range as a balanced binary tree.
10785       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10786       continue;
10787     }
10788 
10789     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10790   }
10791 }
10792