1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/Analysis.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/IR/CallingConv.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/InlineAsm.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/Statepoint.h" 52 #include "llvm/MC/MCSymbol.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetFrameLowering.h" 59 #include "llvm/Target/TargetInstrInfo.h" 60 #include "llvm/Target/TargetIntrinsicInfo.h" 61 #include "llvm/Target/TargetLowering.h" 62 #include "llvm/Target/TargetOptions.h" 63 #include "llvm/Target/TargetSelectionDAGInfo.h" 64 #include "llvm/Target/TargetSubtargetInfo.h" 65 #include <algorithm> 66 using namespace llvm; 67 68 #define DEBUG_TYPE "isel" 69 70 /// LimitFloatPrecision - Generate low-precision inline sequences for 71 /// some float libcalls (6, 8 or 12 bits). 72 static unsigned LimitFloatPrecision; 73 74 static cl::opt<unsigned, true> 75 LimitFPPrecision("limit-float-precision", 76 cl::desc("Generate low-precision inline sequences " 77 "for some float libcalls"), 78 cl::location(LimitFloatPrecision), 79 cl::init(0)); 80 81 // Limit the width of DAG chains. This is important in general to prevent 82 // prevent DAG-based analysis from blowing up. For example, alias analysis and 83 // load clustering may not complete in reasonable time. It is difficult to 84 // recognize and avoid this situation within each individual analysis, and 85 // future analyses are likely to have the same behavior. Limiting DAG width is 86 // the safe approach, and will be especially important with global DAGs. 87 // 88 // MaxParallelChains default is arbitrarily high to avoid affecting 89 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 90 // sequence over this should have been converted to llvm.memcpy by the 91 // frontend. It easy to induce this behavior with .ll code such as: 92 // %buffer = alloca [4096 x i8] 93 // %data = load [4096 x i8]* %argPtr 94 // store [4096 x i8] %data, [4096 x i8]* %buffer 95 static const unsigned MaxParallelChains = 64; 96 97 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 98 const SDValue *Parts, unsigned NumParts, 99 MVT PartVT, EVT ValueVT, const Value *V); 100 101 /// getCopyFromParts - Create a value that contains the specified legal parts 102 /// combined into the value they represent. If the parts combine to a type 103 /// larger then ValueVT then AssertOp can be used to specify whether the extra 104 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 105 /// (ISD::AssertSext). 106 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 107 const SDValue *Parts, 108 unsigned NumParts, MVT PartVT, EVT ValueVT, 109 const Value *V, 110 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 111 if (ValueVT.isVector()) 112 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 113 PartVT, ValueVT, V); 114 115 assert(NumParts > 0 && "No parts to assemble!"); 116 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 117 SDValue Val = Parts[0]; 118 119 if (NumParts > 1) { 120 // Assemble the value from multiple parts. 121 if (ValueVT.isInteger()) { 122 unsigned PartBits = PartVT.getSizeInBits(); 123 unsigned ValueBits = ValueVT.getSizeInBits(); 124 125 // Assemble the power of 2 part. 126 unsigned RoundParts = NumParts & (NumParts - 1) ? 127 1 << Log2_32(NumParts) : NumParts; 128 unsigned RoundBits = PartBits * RoundParts; 129 EVT RoundVT = RoundBits == ValueBits ? 130 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 131 SDValue Lo, Hi; 132 133 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 134 135 if (RoundParts > 2) { 136 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 137 PartVT, HalfVT, V); 138 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 139 RoundParts / 2, PartVT, HalfVT, V); 140 } else { 141 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 142 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 143 } 144 145 if (TLI.isBigEndian()) 146 std::swap(Lo, Hi); 147 148 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 149 150 if (RoundParts < NumParts) { 151 // Assemble the trailing non-power-of-2 part. 152 unsigned OddParts = NumParts - RoundParts; 153 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 154 Hi = getCopyFromParts(DAG, DL, 155 Parts + RoundParts, OddParts, PartVT, OddVT, V); 156 157 // Combine the round and odd parts. 158 Lo = Val; 159 if (TLI.isBigEndian()) 160 std::swap(Lo, Hi); 161 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 162 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 163 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 164 DAG.getConstant(Lo.getValueType().getSizeInBits(), 165 TLI.getPointerTy())); 166 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 167 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 168 } 169 } else if (PartVT.isFloatingPoint()) { 170 // FP split into multiple FP parts (for ppcf128) 171 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 172 "Unexpected split"); 173 SDValue Lo, Hi; 174 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 175 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 176 if (TLI.hasBigEndianPartOrdering(ValueVT)) 177 std::swap(Lo, Hi); 178 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 179 } else { 180 // FP split into integer parts (soft fp) 181 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 182 !PartVT.isVector() && "Unexpected split"); 183 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 184 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 185 } 186 } 187 188 // There is now one part, held in Val. Correct it to match ValueVT. 189 EVT PartEVT = Val.getValueType(); 190 191 if (PartEVT == ValueVT) 192 return Val; 193 194 if (PartEVT.isInteger() && ValueVT.isInteger()) { 195 if (ValueVT.bitsLT(PartEVT)) { 196 // For a truncate, see if we have any information to 197 // indicate whether the truncated bits will always be 198 // zero or sign-extension. 199 if (AssertOp != ISD::DELETED_NODE) 200 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 201 DAG.getValueType(ValueVT)); 202 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 203 } 204 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 205 } 206 207 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 208 // FP_ROUND's are always exact here. 209 if (ValueVT.bitsLT(Val.getValueType())) 210 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 211 DAG.getTargetConstant(1, TLI.getPointerTy())); 212 213 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 214 } 215 216 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 217 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 218 219 llvm_unreachable("Unknown mismatch!"); 220 } 221 222 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 223 const Twine &ErrMsg) { 224 const Instruction *I = dyn_cast_or_null<Instruction>(V); 225 if (!V) 226 return Ctx.emitError(ErrMsg); 227 228 const char *AsmError = ", possible invalid constraint for vector type"; 229 if (const CallInst *CI = dyn_cast<CallInst>(I)) 230 if (isa<InlineAsm>(CI->getCalledValue())) 231 return Ctx.emitError(I, ErrMsg + AsmError); 232 233 return Ctx.emitError(I, ErrMsg); 234 } 235 236 /// getCopyFromPartsVector - Create a value that contains the specified legal 237 /// parts combined into the value they represent. If the parts combine to a 238 /// type larger then ValueVT then AssertOp can be used to specify whether the 239 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 240 /// ValueVT (ISD::AssertSext). 241 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 242 const SDValue *Parts, unsigned NumParts, 243 MVT PartVT, EVT ValueVT, const Value *V) { 244 assert(ValueVT.isVector() && "Not a vector value"); 245 assert(NumParts > 0 && "No parts to assemble!"); 246 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 247 SDValue Val = Parts[0]; 248 249 // Handle a multi-element vector. 250 if (NumParts > 1) { 251 EVT IntermediateVT; 252 MVT RegisterVT; 253 unsigned NumIntermediates; 254 unsigned NumRegs = 255 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 256 NumIntermediates, RegisterVT); 257 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 258 NumParts = NumRegs; // Silence a compiler warning. 259 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 260 assert(RegisterVT == Parts[0].getSimpleValueType() && 261 "Part type doesn't match part!"); 262 263 // Assemble the parts into intermediate operands. 264 SmallVector<SDValue, 8> Ops(NumIntermediates); 265 if (NumIntermediates == NumParts) { 266 // If the register was not expanded, truncate or copy the value, 267 // as appropriate. 268 for (unsigned i = 0; i != NumParts; ++i) 269 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 270 PartVT, IntermediateVT, V); 271 } else if (NumParts > 0) { 272 // If the intermediate type was expanded, build the intermediate 273 // operands from the parts. 274 assert(NumParts % NumIntermediates == 0 && 275 "Must expand into a divisible number of parts!"); 276 unsigned Factor = NumParts / NumIntermediates; 277 for (unsigned i = 0; i != NumIntermediates; ++i) 278 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 279 PartVT, IntermediateVT, V); 280 } 281 282 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 283 // intermediate operands. 284 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 285 : ISD::BUILD_VECTOR, 286 DL, ValueVT, Ops); 287 } 288 289 // There is now one part, held in Val. Correct it to match ValueVT. 290 EVT PartEVT = Val.getValueType(); 291 292 if (PartEVT == ValueVT) 293 return Val; 294 295 if (PartEVT.isVector()) { 296 // If the element type of the source/dest vectors are the same, but the 297 // parts vector has more elements than the value vector, then we have a 298 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 299 // elements we want. 300 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 301 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 302 "Cannot narrow, it would be a lossy transformation"); 303 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 304 DAG.getConstant(0, TLI.getVectorIdxTy())); 305 } 306 307 // Vector/Vector bitcast. 308 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 309 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 310 311 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 312 "Cannot handle this kind of promotion"); 313 // Promoted vector extract 314 bool Smaller = ValueVT.bitsLE(PartEVT); 315 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 316 DL, ValueVT, Val); 317 318 } 319 320 // Trivial bitcast if the types are the same size and the destination 321 // vector type is legal. 322 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 323 TLI.isTypeLegal(ValueVT)) 324 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 325 326 // Handle cases such as i8 -> <1 x i1> 327 if (ValueVT.getVectorNumElements() != 1) { 328 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 329 "non-trivial scalar-to-vector conversion"); 330 return DAG.getUNDEF(ValueVT); 331 } 332 333 if (ValueVT.getVectorNumElements() == 1 && 334 ValueVT.getVectorElementType() != PartEVT) { 335 bool Smaller = ValueVT.bitsLE(PartEVT); 336 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 337 DL, ValueVT.getScalarType(), Val); 338 } 339 340 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 341 } 342 343 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 344 SDValue Val, SDValue *Parts, unsigned NumParts, 345 MVT PartVT, const Value *V); 346 347 /// getCopyToParts - Create a series of nodes that contain the specified value 348 /// split into legal parts. If the parts contain more bits than Val, then, for 349 /// integers, ExtendKind can be used to specify how to generate the extra bits. 350 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 351 SDValue Val, SDValue *Parts, unsigned NumParts, 352 MVT PartVT, const Value *V, 353 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 354 EVT ValueVT = Val.getValueType(); 355 356 // Handle the vector case separately. 357 if (ValueVT.isVector()) 358 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 359 360 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 361 unsigned PartBits = PartVT.getSizeInBits(); 362 unsigned OrigNumParts = NumParts; 363 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 364 365 if (NumParts == 0) 366 return; 367 368 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 369 EVT PartEVT = PartVT; 370 if (PartEVT == ValueVT) { 371 assert(NumParts == 1 && "No-op copy with multiple parts!"); 372 Parts[0] = Val; 373 return; 374 } 375 376 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 377 // If the parts cover more bits than the value has, promote the value. 378 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 379 assert(NumParts == 1 && "Do not know what to promote to!"); 380 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 381 } else { 382 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 383 ValueVT.isInteger() && 384 "Unknown mismatch!"); 385 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 386 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 387 if (PartVT == MVT::x86mmx) 388 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 389 } 390 } else if (PartBits == ValueVT.getSizeInBits()) { 391 // Different types of the same size. 392 assert(NumParts == 1 && PartEVT != ValueVT); 393 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 394 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 395 // If the parts cover less bits than value has, truncate the value. 396 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 397 ValueVT.isInteger() && 398 "Unknown mismatch!"); 399 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 400 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 401 if (PartVT == MVT::x86mmx) 402 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 403 } 404 405 // The value may have changed - recompute ValueVT. 406 ValueVT = Val.getValueType(); 407 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 408 "Failed to tile the value with PartVT!"); 409 410 if (NumParts == 1) { 411 if (PartEVT != ValueVT) 412 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 413 "scalar-to-vector conversion failed"); 414 415 Parts[0] = Val; 416 return; 417 } 418 419 // Expand the value into multiple parts. 420 if (NumParts & (NumParts - 1)) { 421 // The number of parts is not a power of 2. Split off and copy the tail. 422 assert(PartVT.isInteger() && ValueVT.isInteger() && 423 "Do not know what to expand to!"); 424 unsigned RoundParts = 1 << Log2_32(NumParts); 425 unsigned RoundBits = RoundParts * PartBits; 426 unsigned OddParts = NumParts - RoundParts; 427 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 428 DAG.getIntPtrConstant(RoundBits)); 429 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 430 431 if (TLI.isBigEndian()) 432 // The odd parts were reversed by getCopyToParts - unreverse them. 433 std::reverse(Parts + RoundParts, Parts + NumParts); 434 435 NumParts = RoundParts; 436 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 437 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 438 } 439 440 // The number of parts is a power of 2. Repeatedly bisect the value using 441 // EXTRACT_ELEMENT. 442 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 443 EVT::getIntegerVT(*DAG.getContext(), 444 ValueVT.getSizeInBits()), 445 Val); 446 447 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 448 for (unsigned i = 0; i < NumParts; i += StepSize) { 449 unsigned ThisBits = StepSize * PartBits / 2; 450 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 451 SDValue &Part0 = Parts[i]; 452 SDValue &Part1 = Parts[i+StepSize/2]; 453 454 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 455 ThisVT, Part0, DAG.getIntPtrConstant(1)); 456 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 457 ThisVT, Part0, DAG.getIntPtrConstant(0)); 458 459 if (ThisBits == PartBits && ThisVT != PartVT) { 460 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 461 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 462 } 463 } 464 } 465 466 if (TLI.isBigEndian()) 467 std::reverse(Parts, Parts + OrigNumParts); 468 } 469 470 471 /// getCopyToPartsVector - Create a series of nodes that contain the specified 472 /// value split into legal parts. 473 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 474 SDValue Val, SDValue *Parts, unsigned NumParts, 475 MVT PartVT, const Value *V) { 476 EVT ValueVT = Val.getValueType(); 477 assert(ValueVT.isVector() && "Not a vector"); 478 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 479 480 if (NumParts == 1) { 481 EVT PartEVT = PartVT; 482 if (PartEVT == ValueVT) { 483 // Nothing to do. 484 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 485 // Bitconvert vector->vector case. 486 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 487 } else if (PartVT.isVector() && 488 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 489 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 490 EVT ElementVT = PartVT.getVectorElementType(); 491 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 492 // undef elements. 493 SmallVector<SDValue, 16> Ops; 494 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 495 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 496 ElementVT, Val, DAG.getConstant(i, 497 TLI.getVectorIdxTy()))); 498 499 for (unsigned i = ValueVT.getVectorNumElements(), 500 e = PartVT.getVectorNumElements(); i != e; ++i) 501 Ops.push_back(DAG.getUNDEF(ElementVT)); 502 503 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 504 505 // FIXME: Use CONCAT for 2x -> 4x. 506 507 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 508 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 509 } else if (PartVT.isVector() && 510 PartEVT.getVectorElementType().bitsGE( 511 ValueVT.getVectorElementType()) && 512 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 513 514 // Promoted vector extract 515 bool Smaller = PartEVT.bitsLE(ValueVT); 516 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 517 DL, PartVT, Val); 518 } else{ 519 // Vector -> scalar conversion. 520 assert(ValueVT.getVectorNumElements() == 1 && 521 "Only trivial vector-to-scalar conversions should get here!"); 522 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 523 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 524 525 bool Smaller = ValueVT.bitsLE(PartVT); 526 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 527 DL, PartVT, Val); 528 } 529 530 Parts[0] = Val; 531 return; 532 } 533 534 // Handle a multi-element vector. 535 EVT IntermediateVT; 536 MVT RegisterVT; 537 unsigned NumIntermediates; 538 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 539 IntermediateVT, 540 NumIntermediates, RegisterVT); 541 unsigned NumElements = ValueVT.getVectorNumElements(); 542 543 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 544 NumParts = NumRegs; // Silence a compiler warning. 545 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 546 547 // Split the vector into intermediate operands. 548 SmallVector<SDValue, 8> Ops(NumIntermediates); 549 for (unsigned i = 0; i != NumIntermediates; ++i) { 550 if (IntermediateVT.isVector()) 551 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 552 IntermediateVT, Val, 553 DAG.getConstant(i * (NumElements / NumIntermediates), 554 TLI.getVectorIdxTy())); 555 else 556 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 557 IntermediateVT, Val, 558 DAG.getConstant(i, TLI.getVectorIdxTy())); 559 } 560 561 // Split the intermediate operands into legal parts. 562 if (NumParts == NumIntermediates) { 563 // If the register was not expanded, promote or copy the value, 564 // as appropriate. 565 for (unsigned i = 0; i != NumParts; ++i) 566 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 567 } else if (NumParts > 0) { 568 // If the intermediate type was expanded, split each the value into 569 // legal parts. 570 assert(NumIntermediates != 0 && "division by zero"); 571 assert(NumParts % NumIntermediates == 0 && 572 "Must expand into a divisible number of parts!"); 573 unsigned Factor = NumParts / NumIntermediates; 574 for (unsigned i = 0; i != NumIntermediates; ++i) 575 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 576 } 577 } 578 579 namespace { 580 /// RegsForValue - This struct represents the registers (physical or virtual) 581 /// that a particular set of values is assigned, and the type information 582 /// about the value. The most common situation is to represent one value at a 583 /// time, but struct or array values are handled element-wise as multiple 584 /// values. The splitting of aggregates is performed recursively, so that we 585 /// never have aggregate-typed registers. The values at this point do not 586 /// necessarily have legal types, so each value may require one or more 587 /// registers of some legal type. 588 /// 589 struct RegsForValue { 590 /// ValueVTs - The value types of the values, which may not be legal, and 591 /// may need be promoted or synthesized from one or more registers. 592 /// 593 SmallVector<EVT, 4> ValueVTs; 594 595 /// RegVTs - The value types of the registers. This is the same size as 596 /// ValueVTs and it records, for each value, what the type of the assigned 597 /// register or registers are. (Individual values are never synthesized 598 /// from more than one type of register.) 599 /// 600 /// With virtual registers, the contents of RegVTs is redundant with TLI's 601 /// getRegisterType member function, however when with physical registers 602 /// it is necessary to have a separate record of the types. 603 /// 604 SmallVector<MVT, 4> RegVTs; 605 606 /// Regs - This list holds the registers assigned to the values. 607 /// Each legal or promoted value requires one register, and each 608 /// expanded value requires multiple registers. 609 /// 610 SmallVector<unsigned, 4> Regs; 611 612 RegsForValue() {} 613 614 RegsForValue(const SmallVector<unsigned, 4> ®s, 615 MVT regvt, EVT valuevt) 616 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 617 618 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 619 unsigned Reg, Type *Ty) { 620 ComputeValueVTs(tli, Ty, ValueVTs); 621 622 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 623 EVT ValueVT = ValueVTs[Value]; 624 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 625 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 626 for (unsigned i = 0; i != NumRegs; ++i) 627 Regs.push_back(Reg + i); 628 RegVTs.push_back(RegisterVT); 629 Reg += NumRegs; 630 } 631 } 632 633 /// append - Add the specified values to this one. 634 void append(const RegsForValue &RHS) { 635 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 636 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 637 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 638 } 639 640 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 641 /// this value and returns the result as a ValueVTs value. This uses 642 /// Chain/Flag as the input and updates them for the output Chain/Flag. 643 /// If the Flag pointer is NULL, no flag is used. 644 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 645 SDLoc dl, 646 SDValue &Chain, SDValue *Flag, 647 const Value *V = nullptr) const; 648 649 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 650 /// specified value into the registers specified by this object. This uses 651 /// Chain/Flag as the input and updates them for the output Chain/Flag. 652 /// If the Flag pointer is NULL, no flag is used. 653 void 654 getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, SDValue &Chain, 655 SDValue *Flag, const Value *V, 656 ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const; 657 658 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 659 /// operand list. This adds the code marker, matching input operand index 660 /// (if applicable), and includes the number of values added into it. 661 void AddInlineAsmOperands(unsigned Kind, 662 bool HasMatching, unsigned MatchingIdx, 663 SelectionDAG &DAG, 664 std::vector<SDValue> &Ops) const; 665 }; 666 } 667 668 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 669 /// this value and returns the result as a ValueVT value. This uses 670 /// Chain/Flag as the input and updates them for the output Chain/Flag. 671 /// If the Flag pointer is NULL, no flag is used. 672 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 673 FunctionLoweringInfo &FuncInfo, 674 SDLoc dl, 675 SDValue &Chain, SDValue *Flag, 676 const Value *V) const { 677 // A Value with type {} or [0 x %t] needs no registers. 678 if (ValueVTs.empty()) 679 return SDValue(); 680 681 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 682 683 // Assemble the legal parts into the final values. 684 SmallVector<SDValue, 4> Values(ValueVTs.size()); 685 SmallVector<SDValue, 8> Parts; 686 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 687 // Copy the legal parts from the registers. 688 EVT ValueVT = ValueVTs[Value]; 689 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 690 MVT RegisterVT = RegVTs[Value]; 691 692 Parts.resize(NumRegs); 693 for (unsigned i = 0; i != NumRegs; ++i) { 694 SDValue P; 695 if (!Flag) { 696 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 697 } else { 698 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 699 *Flag = P.getValue(2); 700 } 701 702 Chain = P.getValue(1); 703 Parts[i] = P; 704 705 // If the source register was virtual and if we know something about it, 706 // add an assert node. 707 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 708 !RegisterVT.isInteger() || RegisterVT.isVector()) 709 continue; 710 711 const FunctionLoweringInfo::LiveOutInfo *LOI = 712 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 713 if (!LOI) 714 continue; 715 716 unsigned RegSize = RegisterVT.getSizeInBits(); 717 unsigned NumSignBits = LOI->NumSignBits; 718 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 719 720 if (NumZeroBits == RegSize) { 721 // The current value is a zero. 722 // Explicitly express that as it would be easier for 723 // optimizations to kick in. 724 Parts[i] = DAG.getConstant(0, RegisterVT); 725 continue; 726 } 727 728 // FIXME: We capture more information than the dag can represent. For 729 // now, just use the tightest assertzext/assertsext possible. 730 bool isSExt = true; 731 EVT FromVT(MVT::Other); 732 if (NumSignBits == RegSize) 733 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 734 else if (NumZeroBits >= RegSize-1) 735 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 736 else if (NumSignBits > RegSize-8) 737 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 738 else if (NumZeroBits >= RegSize-8) 739 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 740 else if (NumSignBits > RegSize-16) 741 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 742 else if (NumZeroBits >= RegSize-16) 743 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 744 else if (NumSignBits > RegSize-32) 745 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 746 else if (NumZeroBits >= RegSize-32) 747 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 748 else 749 continue; 750 751 // Add an assertion node. 752 assert(FromVT != MVT::Other); 753 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 754 RegisterVT, P, DAG.getValueType(FromVT)); 755 } 756 757 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 758 NumRegs, RegisterVT, ValueVT, V); 759 Part += NumRegs; 760 Parts.clear(); 761 } 762 763 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 764 } 765 766 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 767 /// specified value into the registers specified by this object. This uses 768 /// Chain/Flag as the input and updates them for the output Chain/Flag. 769 /// If the Flag pointer is NULL, no flag is used. 770 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 771 SDValue &Chain, SDValue *Flag, const Value *V, 772 ISD::NodeType PreferredExtendType) const { 773 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 774 ISD::NodeType ExtendKind = PreferredExtendType; 775 776 // Get the list of the values's legal parts. 777 unsigned NumRegs = Regs.size(); 778 SmallVector<SDValue, 8> Parts(NumRegs); 779 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 780 EVT ValueVT = ValueVTs[Value]; 781 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 782 MVT RegisterVT = RegVTs[Value]; 783 784 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 785 ExtendKind = ISD::ZERO_EXTEND; 786 787 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 788 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 789 Part += NumParts; 790 } 791 792 // Copy the parts into the registers. 793 SmallVector<SDValue, 8> Chains(NumRegs); 794 for (unsigned i = 0; i != NumRegs; ++i) { 795 SDValue Part; 796 if (!Flag) { 797 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 798 } else { 799 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 800 *Flag = Part.getValue(1); 801 } 802 803 Chains[i] = Part.getValue(0); 804 } 805 806 if (NumRegs == 1 || Flag) 807 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 808 // flagged to it. That is the CopyToReg nodes and the user are considered 809 // a single scheduling unit. If we create a TokenFactor and return it as 810 // chain, then the TokenFactor is both a predecessor (operand) of the 811 // user as well as a successor (the TF operands are flagged to the user). 812 // c1, f1 = CopyToReg 813 // c2, f2 = CopyToReg 814 // c3 = TokenFactor c1, c2 815 // ... 816 // = op c3, ..., f2 817 Chain = Chains[NumRegs-1]; 818 else 819 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 820 } 821 822 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 823 /// operand list. This adds the code marker and includes the number of 824 /// values added into it. 825 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 826 unsigned MatchingIdx, 827 SelectionDAG &DAG, 828 std::vector<SDValue> &Ops) const { 829 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 830 831 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 832 if (HasMatching) 833 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 834 else if (!Regs.empty() && 835 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 836 // Put the register class of the virtual registers in the flag word. That 837 // way, later passes can recompute register class constraints for inline 838 // assembly as well as normal instructions. 839 // Don't do this for tied operands that can use the regclass information 840 // from the def. 841 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 842 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 843 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 844 } 845 846 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 847 Ops.push_back(Res); 848 849 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 850 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 851 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 852 MVT RegisterVT = RegVTs[Value]; 853 for (unsigned i = 0; i != NumRegs; ++i) { 854 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 855 unsigned TheReg = Regs[Reg++]; 856 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 857 858 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 859 // If we clobbered the stack pointer, MFI should know about it. 860 assert(DAG.getMachineFunction().getFrameInfo()-> 861 hasInlineAsmWithSPAdjust()); 862 } 863 } 864 } 865 } 866 867 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 868 const TargetLibraryInfo *li) { 869 AA = &aa; 870 GFI = gfi; 871 LibInfo = li; 872 DL = DAG.getTarget().getDataLayout(); 873 Context = DAG.getContext(); 874 LPadToCallSiteMap.clear(); 875 } 876 877 /// clear - Clear out the current SelectionDAG and the associated 878 /// state and prepare this SelectionDAGBuilder object to be used 879 /// for a new block. This doesn't clear out information about 880 /// additional blocks that are needed to complete switch lowering 881 /// or PHI node updating; that information is cleared out as it is 882 /// consumed. 883 void SelectionDAGBuilder::clear() { 884 NodeMap.clear(); 885 UnusedArgNodeMap.clear(); 886 PendingLoads.clear(); 887 PendingExports.clear(); 888 CurInst = nullptr; 889 HasTailCall = false; 890 SDNodeOrder = LowestSDNodeOrder; 891 StatepointLowering.clear(); 892 } 893 894 /// clearDanglingDebugInfo - Clear the dangling debug information 895 /// map. This function is separated from the clear so that debug 896 /// information that is dangling in a basic block can be properly 897 /// resolved in a different basic block. This allows the 898 /// SelectionDAG to resolve dangling debug information attached 899 /// to PHI nodes. 900 void SelectionDAGBuilder::clearDanglingDebugInfo() { 901 DanglingDebugInfoMap.clear(); 902 } 903 904 /// getRoot - Return the current virtual root of the Selection DAG, 905 /// flushing any PendingLoad items. This must be done before emitting 906 /// a store or any other node that may need to be ordered after any 907 /// prior load instructions. 908 /// 909 SDValue SelectionDAGBuilder::getRoot() { 910 if (PendingLoads.empty()) 911 return DAG.getRoot(); 912 913 if (PendingLoads.size() == 1) { 914 SDValue Root = PendingLoads[0]; 915 DAG.setRoot(Root); 916 PendingLoads.clear(); 917 return Root; 918 } 919 920 // Otherwise, we have to make a token factor node. 921 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 922 PendingLoads); 923 PendingLoads.clear(); 924 DAG.setRoot(Root); 925 return Root; 926 } 927 928 /// getControlRoot - Similar to getRoot, but instead of flushing all the 929 /// PendingLoad items, flush all the PendingExports items. It is necessary 930 /// to do this before emitting a terminator instruction. 931 /// 932 SDValue SelectionDAGBuilder::getControlRoot() { 933 SDValue Root = DAG.getRoot(); 934 935 if (PendingExports.empty()) 936 return Root; 937 938 // Turn all of the CopyToReg chains into one factored node. 939 if (Root.getOpcode() != ISD::EntryToken) { 940 unsigned i = 0, e = PendingExports.size(); 941 for (; i != e; ++i) { 942 assert(PendingExports[i].getNode()->getNumOperands() > 1); 943 if (PendingExports[i].getNode()->getOperand(0) == Root) 944 break; // Don't add the root if we already indirectly depend on it. 945 } 946 947 if (i == e) 948 PendingExports.push_back(Root); 949 } 950 951 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 952 PendingExports); 953 PendingExports.clear(); 954 DAG.setRoot(Root); 955 return Root; 956 } 957 958 void SelectionDAGBuilder::visit(const Instruction &I) { 959 // Set up outgoing PHI node register values before emitting the terminator. 960 if (isa<TerminatorInst>(&I)) 961 HandlePHINodesInSuccessorBlocks(I.getParent()); 962 963 ++SDNodeOrder; 964 965 CurInst = &I; 966 967 visit(I.getOpcode(), I); 968 969 if (!isa<TerminatorInst>(&I) && !HasTailCall) 970 CopyToExportRegsIfNeeded(&I); 971 972 CurInst = nullptr; 973 } 974 975 void SelectionDAGBuilder::visitPHI(const PHINode &) { 976 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 977 } 978 979 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 980 // Note: this doesn't use InstVisitor, because it has to work with 981 // ConstantExpr's in addition to instructions. 982 switch (Opcode) { 983 default: llvm_unreachable("Unknown instruction type encountered!"); 984 // Build the switch statement using the Instruction.def file. 985 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 986 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 987 #include "llvm/IR/Instruction.def" 988 } 989 } 990 991 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 992 // generate the debug data structures now that we've seen its definition. 993 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 994 SDValue Val) { 995 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 996 if (DDI.getDI()) { 997 const DbgValueInst *DI = DDI.getDI(); 998 DebugLoc dl = DDI.getdl(); 999 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1000 MDNode *Variable = DI->getVariable(); 1001 MDNode *Expr = DI->getExpression(); 1002 uint64_t Offset = DI->getOffset(); 1003 // A dbg.value for an alloca is always indirect. 1004 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 1005 SDDbgValue *SDV; 1006 if (Val.getNode()) { 1007 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, Offset, IsIndirect, 1008 Val)) { 1009 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 1010 IsIndirect, Offset, dl, DbgSDNodeOrder); 1011 DAG.AddDbgValue(SDV, Val.getNode(), false); 1012 } 1013 } else 1014 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1015 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1016 } 1017 } 1018 1019 /// getCopyFromRegs - If there was virtual register allocated for the value V 1020 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1021 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1022 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1023 SDValue res; 1024 1025 if (It != FuncInfo.ValueMap.end()) { 1026 unsigned InReg = It->second; 1027 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg, 1028 Ty); 1029 SDValue Chain = DAG.getEntryNode(); 1030 res = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1031 resolveDanglingDebugInfo(V, res); 1032 } 1033 1034 return res; 1035 } 1036 1037 /// getValue - Return an SDValue for the given Value. 1038 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1039 // If we already have an SDValue for this value, use it. It's important 1040 // to do this first, so that we don't create a CopyFromReg if we already 1041 // have a regular SDValue. 1042 SDValue &N = NodeMap[V]; 1043 if (N.getNode()) return N; 1044 1045 // If there's a virtual register allocated and initialized for this 1046 // value, use it. 1047 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 1048 if (copyFromReg.getNode()) { 1049 return copyFromReg; 1050 } 1051 1052 // Otherwise create a new SDValue and remember it. 1053 SDValue Val = getValueImpl(V); 1054 NodeMap[V] = Val; 1055 resolveDanglingDebugInfo(V, Val); 1056 return Val; 1057 } 1058 1059 /// getNonRegisterValue - Return an SDValue for the given Value, but 1060 /// don't look in FuncInfo.ValueMap for a virtual register. 1061 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1062 // If we already have an SDValue for this value, use it. 1063 SDValue &N = NodeMap[V]; 1064 if (N.getNode()) return N; 1065 1066 // Otherwise create a new SDValue and remember it. 1067 SDValue Val = getValueImpl(V); 1068 NodeMap[V] = Val; 1069 resolveDanglingDebugInfo(V, Val); 1070 return Val; 1071 } 1072 1073 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1074 /// Create an SDValue for the given value. 1075 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1076 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1077 1078 if (const Constant *C = dyn_cast<Constant>(V)) { 1079 EVT VT = TLI.getValueType(V->getType(), true); 1080 1081 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1082 return DAG.getConstant(*CI, VT); 1083 1084 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1085 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1086 1087 if (isa<ConstantPointerNull>(C)) { 1088 unsigned AS = V->getType()->getPointerAddressSpace(); 1089 return DAG.getConstant(0, TLI.getPointerTy(AS)); 1090 } 1091 1092 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1093 return DAG.getConstantFP(*CFP, VT); 1094 1095 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1096 return DAG.getUNDEF(VT); 1097 1098 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1099 visit(CE->getOpcode(), *CE); 1100 SDValue N1 = NodeMap[V]; 1101 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1102 return N1; 1103 } 1104 1105 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1106 SmallVector<SDValue, 4> Constants; 1107 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1108 OI != OE; ++OI) { 1109 SDNode *Val = getValue(*OI).getNode(); 1110 // If the operand is an empty aggregate, there are no values. 1111 if (!Val) continue; 1112 // Add each leaf value from the operand to the Constants list 1113 // to form a flattened list of all the values. 1114 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1115 Constants.push_back(SDValue(Val, i)); 1116 } 1117 1118 return DAG.getMergeValues(Constants, getCurSDLoc()); 1119 } 1120 1121 if (const ConstantDataSequential *CDS = 1122 dyn_cast<ConstantDataSequential>(C)) { 1123 SmallVector<SDValue, 4> Ops; 1124 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1125 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1126 // Add each leaf value from the operand to the Constants list 1127 // to form a flattened list of all the values. 1128 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1129 Ops.push_back(SDValue(Val, i)); 1130 } 1131 1132 if (isa<ArrayType>(CDS->getType())) 1133 return DAG.getMergeValues(Ops, getCurSDLoc()); 1134 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1135 VT, Ops); 1136 } 1137 1138 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1139 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1140 "Unknown struct or array constant!"); 1141 1142 SmallVector<EVT, 4> ValueVTs; 1143 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1144 unsigned NumElts = ValueVTs.size(); 1145 if (NumElts == 0) 1146 return SDValue(); // empty struct 1147 SmallVector<SDValue, 4> Constants(NumElts); 1148 for (unsigned i = 0; i != NumElts; ++i) { 1149 EVT EltVT = ValueVTs[i]; 1150 if (isa<UndefValue>(C)) 1151 Constants[i] = DAG.getUNDEF(EltVT); 1152 else if (EltVT.isFloatingPoint()) 1153 Constants[i] = DAG.getConstantFP(0, EltVT); 1154 else 1155 Constants[i] = DAG.getConstant(0, EltVT); 1156 } 1157 1158 return DAG.getMergeValues(Constants, getCurSDLoc()); 1159 } 1160 1161 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1162 return DAG.getBlockAddress(BA, VT); 1163 1164 VectorType *VecTy = cast<VectorType>(V->getType()); 1165 unsigned NumElements = VecTy->getNumElements(); 1166 1167 // Now that we know the number and type of the elements, get that number of 1168 // elements into the Ops array based on what kind of constant it is. 1169 SmallVector<SDValue, 16> Ops; 1170 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1171 for (unsigned i = 0; i != NumElements; ++i) 1172 Ops.push_back(getValue(CV->getOperand(i))); 1173 } else { 1174 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1175 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1176 1177 SDValue Op; 1178 if (EltVT.isFloatingPoint()) 1179 Op = DAG.getConstantFP(0, EltVT); 1180 else 1181 Op = DAG.getConstant(0, EltVT); 1182 Ops.assign(NumElements, Op); 1183 } 1184 1185 // Create a BUILD_VECTOR node. 1186 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1187 } 1188 1189 // If this is a static alloca, generate it as the frameindex instead of 1190 // computation. 1191 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1192 DenseMap<const AllocaInst*, int>::iterator SI = 1193 FuncInfo.StaticAllocaMap.find(AI); 1194 if (SI != FuncInfo.StaticAllocaMap.end()) 1195 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1196 } 1197 1198 // If this is an instruction which fast-isel has deferred, select it now. 1199 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1200 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1201 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1202 SDValue Chain = DAG.getEntryNode(); 1203 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1204 } 1205 1206 llvm_unreachable("Can't get register for value!"); 1207 } 1208 1209 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1210 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1211 SDValue Chain = getControlRoot(); 1212 SmallVector<ISD::OutputArg, 8> Outs; 1213 SmallVector<SDValue, 8> OutVals; 1214 1215 if (!FuncInfo.CanLowerReturn) { 1216 unsigned DemoteReg = FuncInfo.DemoteRegister; 1217 const Function *F = I.getParent()->getParent(); 1218 1219 // Emit a store of the return value through the virtual register. 1220 // Leave Outs empty so that LowerReturn won't try to load return 1221 // registers the usual way. 1222 SmallVector<EVT, 1> PtrValueVTs; 1223 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1224 PtrValueVTs); 1225 1226 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1227 SDValue RetOp = getValue(I.getOperand(0)); 1228 1229 SmallVector<EVT, 4> ValueVTs; 1230 SmallVector<uint64_t, 4> Offsets; 1231 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1232 unsigned NumValues = ValueVTs.size(); 1233 1234 SmallVector<SDValue, 4> Chains(NumValues); 1235 for (unsigned i = 0; i != NumValues; ++i) { 1236 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1237 RetPtr.getValueType(), RetPtr, 1238 DAG.getIntPtrConstant(Offsets[i])); 1239 Chains[i] = 1240 DAG.getStore(Chain, getCurSDLoc(), 1241 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1242 // FIXME: better loc info would be nice. 1243 Add, MachinePointerInfo(), false, false, 0); 1244 } 1245 1246 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1247 MVT::Other, Chains); 1248 } else if (I.getNumOperands() != 0) { 1249 SmallVector<EVT, 4> ValueVTs; 1250 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1251 unsigned NumValues = ValueVTs.size(); 1252 if (NumValues) { 1253 SDValue RetOp = getValue(I.getOperand(0)); 1254 1255 const Function *F = I.getParent()->getParent(); 1256 1257 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1258 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1259 Attribute::SExt)) 1260 ExtendKind = ISD::SIGN_EXTEND; 1261 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1262 Attribute::ZExt)) 1263 ExtendKind = ISD::ZERO_EXTEND; 1264 1265 LLVMContext &Context = F->getContext(); 1266 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1267 Attribute::InReg); 1268 1269 for (unsigned j = 0; j != NumValues; ++j) { 1270 EVT VT = ValueVTs[j]; 1271 1272 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1273 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1274 1275 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1276 MVT PartVT = TLI.getRegisterType(Context, VT); 1277 SmallVector<SDValue, 4> Parts(NumParts); 1278 getCopyToParts(DAG, getCurSDLoc(), 1279 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1280 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1281 1282 // 'inreg' on function refers to return value 1283 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1284 if (RetInReg) 1285 Flags.setInReg(); 1286 1287 // Propagate extension type if any 1288 if (ExtendKind == ISD::SIGN_EXTEND) 1289 Flags.setSExt(); 1290 else if (ExtendKind == ISD::ZERO_EXTEND) 1291 Flags.setZExt(); 1292 1293 for (unsigned i = 0; i < NumParts; ++i) { 1294 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1295 VT, /*isfixed=*/true, 0, 0)); 1296 OutVals.push_back(Parts[i]); 1297 } 1298 } 1299 } 1300 } 1301 1302 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1303 CallingConv::ID CallConv = 1304 DAG.getMachineFunction().getFunction()->getCallingConv(); 1305 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1306 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1307 1308 // Verify that the target's LowerReturn behaved as expected. 1309 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1310 "LowerReturn didn't return a valid chain!"); 1311 1312 // Update the DAG with the new chain value resulting from return lowering. 1313 DAG.setRoot(Chain); 1314 } 1315 1316 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1317 /// created for it, emit nodes to copy the value into the virtual 1318 /// registers. 1319 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1320 // Skip empty types 1321 if (V->getType()->isEmptyTy()) 1322 return; 1323 1324 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1325 if (VMI != FuncInfo.ValueMap.end()) { 1326 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1327 CopyValueToVirtualRegister(V, VMI->second); 1328 } 1329 } 1330 1331 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1332 /// the current basic block, add it to ValueMap now so that we'll get a 1333 /// CopyTo/FromReg. 1334 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1335 // No need to export constants. 1336 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1337 1338 // Already exported? 1339 if (FuncInfo.isExportedInst(V)) return; 1340 1341 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1342 CopyValueToVirtualRegister(V, Reg); 1343 } 1344 1345 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1346 const BasicBlock *FromBB) { 1347 // The operands of the setcc have to be in this block. We don't know 1348 // how to export them from some other block. 1349 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1350 // Can export from current BB. 1351 if (VI->getParent() == FromBB) 1352 return true; 1353 1354 // Is already exported, noop. 1355 return FuncInfo.isExportedInst(V); 1356 } 1357 1358 // If this is an argument, we can export it if the BB is the entry block or 1359 // if it is already exported. 1360 if (isa<Argument>(V)) { 1361 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1362 return true; 1363 1364 // Otherwise, can only export this if it is already exported. 1365 return FuncInfo.isExportedInst(V); 1366 } 1367 1368 // Otherwise, constants can always be exported. 1369 return true; 1370 } 1371 1372 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1373 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1374 const MachineBasicBlock *Dst) const { 1375 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1376 if (!BPI) 1377 return 0; 1378 const BasicBlock *SrcBB = Src->getBasicBlock(); 1379 const BasicBlock *DstBB = Dst->getBasicBlock(); 1380 return BPI->getEdgeWeight(SrcBB, DstBB); 1381 } 1382 1383 void SelectionDAGBuilder:: 1384 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1385 uint32_t Weight /* = 0 */) { 1386 if (!Weight) 1387 Weight = getEdgeWeight(Src, Dst); 1388 Src->addSuccessor(Dst, Weight); 1389 } 1390 1391 1392 static bool InBlock(const Value *V, const BasicBlock *BB) { 1393 if (const Instruction *I = dyn_cast<Instruction>(V)) 1394 return I->getParent() == BB; 1395 return true; 1396 } 1397 1398 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1399 /// This function emits a branch and is used at the leaves of an OR or an 1400 /// AND operator tree. 1401 /// 1402 void 1403 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1404 MachineBasicBlock *TBB, 1405 MachineBasicBlock *FBB, 1406 MachineBasicBlock *CurBB, 1407 MachineBasicBlock *SwitchBB, 1408 uint32_t TWeight, 1409 uint32_t FWeight) { 1410 const BasicBlock *BB = CurBB->getBasicBlock(); 1411 1412 // If the leaf of the tree is a comparison, merge the condition into 1413 // the caseblock. 1414 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1415 // The operands of the cmp have to be in this block. We don't know 1416 // how to export them from some other block. If this is the first block 1417 // of the sequence, no exporting is needed. 1418 if (CurBB == SwitchBB || 1419 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1420 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1421 ISD::CondCode Condition; 1422 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1423 Condition = getICmpCondCode(IC->getPredicate()); 1424 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1425 Condition = getFCmpCondCode(FC->getPredicate()); 1426 if (TM.Options.NoNaNsFPMath) 1427 Condition = getFCmpCodeWithoutNaN(Condition); 1428 } else { 1429 (void)Condition; // silence warning. 1430 llvm_unreachable("Unknown compare instruction"); 1431 } 1432 1433 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1434 TBB, FBB, CurBB, TWeight, FWeight); 1435 SwitchCases.push_back(CB); 1436 return; 1437 } 1438 } 1439 1440 // Create a CaseBlock record representing this branch. 1441 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1442 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1443 SwitchCases.push_back(CB); 1444 } 1445 1446 /// Scale down both weights to fit into uint32_t. 1447 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1448 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1449 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1450 NewTrue = NewTrue / Scale; 1451 NewFalse = NewFalse / Scale; 1452 } 1453 1454 /// FindMergedConditions - If Cond is an expression like 1455 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1456 MachineBasicBlock *TBB, 1457 MachineBasicBlock *FBB, 1458 MachineBasicBlock *CurBB, 1459 MachineBasicBlock *SwitchBB, 1460 unsigned Opc, uint32_t TWeight, 1461 uint32_t FWeight) { 1462 // If this node is not part of the or/and tree, emit it as a branch. 1463 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1464 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1465 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1466 BOp->getParent() != CurBB->getBasicBlock() || 1467 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1468 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1469 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1470 TWeight, FWeight); 1471 return; 1472 } 1473 1474 // Create TmpBB after CurBB. 1475 MachineFunction::iterator BBI = CurBB; 1476 MachineFunction &MF = DAG.getMachineFunction(); 1477 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1478 CurBB->getParent()->insert(++BBI, TmpBB); 1479 1480 if (Opc == Instruction::Or) { 1481 // Codegen X | Y as: 1482 // BB1: 1483 // jmp_if_X TBB 1484 // jmp TmpBB 1485 // TmpBB: 1486 // jmp_if_Y TBB 1487 // jmp FBB 1488 // 1489 1490 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1491 // The requirement is that 1492 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1493 // = TrueProb for orignal BB. 1494 // Assuming the orignal weights are A and B, one choice is to set BB1's 1495 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1496 // assumes that 1497 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1498 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1499 // TmpBB, but the math is more complicated. 1500 1501 uint64_t NewTrueWeight = TWeight; 1502 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1503 ScaleWeights(NewTrueWeight, NewFalseWeight); 1504 // Emit the LHS condition. 1505 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1506 NewTrueWeight, NewFalseWeight); 1507 1508 NewTrueWeight = TWeight; 1509 NewFalseWeight = 2 * (uint64_t)FWeight; 1510 ScaleWeights(NewTrueWeight, NewFalseWeight); 1511 // Emit the RHS condition into TmpBB. 1512 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1513 NewTrueWeight, NewFalseWeight); 1514 } else { 1515 assert(Opc == Instruction::And && "Unknown merge op!"); 1516 // Codegen X & Y as: 1517 // BB1: 1518 // jmp_if_X TmpBB 1519 // jmp FBB 1520 // TmpBB: 1521 // jmp_if_Y TBB 1522 // jmp FBB 1523 // 1524 // This requires creation of TmpBB after CurBB. 1525 1526 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1527 // The requirement is that 1528 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1529 // = FalseProb for orignal BB. 1530 // Assuming the orignal weights are A and B, one choice is to set BB1's 1531 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1532 // assumes that 1533 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1534 1535 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1536 uint64_t NewFalseWeight = FWeight; 1537 ScaleWeights(NewTrueWeight, NewFalseWeight); 1538 // Emit the LHS condition. 1539 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1540 NewTrueWeight, NewFalseWeight); 1541 1542 NewTrueWeight = 2 * (uint64_t)TWeight; 1543 NewFalseWeight = FWeight; 1544 ScaleWeights(NewTrueWeight, NewFalseWeight); 1545 // Emit the RHS condition into TmpBB. 1546 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1547 NewTrueWeight, NewFalseWeight); 1548 } 1549 } 1550 1551 /// If the set of cases should be emitted as a series of branches, return true. 1552 /// If we should emit this as a bunch of and/or'd together conditions, return 1553 /// false. 1554 bool 1555 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1556 if (Cases.size() != 2) return true; 1557 1558 // If this is two comparisons of the same values or'd or and'd together, they 1559 // will get folded into a single comparison, so don't emit two blocks. 1560 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1561 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1562 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1563 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1564 return false; 1565 } 1566 1567 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1568 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1569 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1570 Cases[0].CC == Cases[1].CC && 1571 isa<Constant>(Cases[0].CmpRHS) && 1572 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1573 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1574 return false; 1575 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1576 return false; 1577 } 1578 1579 return true; 1580 } 1581 1582 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1583 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1584 1585 // Update machine-CFG edges. 1586 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1587 1588 if (I.isUnconditional()) { 1589 // Update machine-CFG edges. 1590 BrMBB->addSuccessor(Succ0MBB); 1591 1592 // If this is not a fall-through branch or optimizations are switched off, 1593 // emit the branch. 1594 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1595 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1596 MVT::Other, getControlRoot(), 1597 DAG.getBasicBlock(Succ0MBB))); 1598 1599 return; 1600 } 1601 1602 // If this condition is one of the special cases we handle, do special stuff 1603 // now. 1604 const Value *CondVal = I.getCondition(); 1605 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1606 1607 // If this is a series of conditions that are or'd or and'd together, emit 1608 // this as a sequence of branches instead of setcc's with and/or operations. 1609 // As long as jumps are not expensive, this should improve performance. 1610 // For example, instead of something like: 1611 // cmp A, B 1612 // C = seteq 1613 // cmp D, E 1614 // F = setle 1615 // or C, F 1616 // jnz foo 1617 // Emit: 1618 // cmp A, B 1619 // je foo 1620 // cmp D, E 1621 // jle foo 1622 // 1623 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1624 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1625 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1626 BOp->getOpcode() == Instruction::Or)) { 1627 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1628 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1629 getEdgeWeight(BrMBB, Succ1MBB)); 1630 // If the compares in later blocks need to use values not currently 1631 // exported from this block, export them now. This block should always 1632 // be the first entry. 1633 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1634 1635 // Allow some cases to be rejected. 1636 if (ShouldEmitAsBranches(SwitchCases)) { 1637 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1638 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1639 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1640 } 1641 1642 // Emit the branch for this block. 1643 visitSwitchCase(SwitchCases[0], BrMBB); 1644 SwitchCases.erase(SwitchCases.begin()); 1645 return; 1646 } 1647 1648 // Okay, we decided not to do this, remove any inserted MBB's and clear 1649 // SwitchCases. 1650 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1651 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1652 1653 SwitchCases.clear(); 1654 } 1655 } 1656 1657 // Create a CaseBlock record representing this branch. 1658 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1659 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1660 1661 // Use visitSwitchCase to actually insert the fast branch sequence for this 1662 // cond branch. 1663 visitSwitchCase(CB, BrMBB); 1664 } 1665 1666 /// visitSwitchCase - Emits the necessary code to represent a single node in 1667 /// the binary search tree resulting from lowering a switch instruction. 1668 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1669 MachineBasicBlock *SwitchBB) { 1670 SDValue Cond; 1671 SDValue CondLHS = getValue(CB.CmpLHS); 1672 SDLoc dl = getCurSDLoc(); 1673 1674 // Build the setcc now. 1675 if (!CB.CmpMHS) { 1676 // Fold "(X == true)" to X and "(X == false)" to !X to 1677 // handle common cases produced by branch lowering. 1678 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1679 CB.CC == ISD::SETEQ) 1680 Cond = CondLHS; 1681 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1682 CB.CC == ISD::SETEQ) { 1683 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1684 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1685 } else 1686 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1687 } else { 1688 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1689 1690 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1691 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1692 1693 SDValue CmpOp = getValue(CB.CmpMHS); 1694 EVT VT = CmpOp.getValueType(); 1695 1696 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1697 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1698 ISD::SETLE); 1699 } else { 1700 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1701 VT, CmpOp, DAG.getConstant(Low, VT)); 1702 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1703 DAG.getConstant(High-Low, VT), ISD::SETULE); 1704 } 1705 } 1706 1707 // Update successor info 1708 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1709 // TrueBB and FalseBB are always different unless the incoming IR is 1710 // degenerate. This only happens when running llc on weird IR. 1711 if (CB.TrueBB != CB.FalseBB) 1712 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1713 1714 // If the lhs block is the next block, invert the condition so that we can 1715 // fall through to the lhs instead of the rhs block. 1716 if (CB.TrueBB == NextBlock(SwitchBB)) { 1717 std::swap(CB.TrueBB, CB.FalseBB); 1718 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1719 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1720 } 1721 1722 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1723 MVT::Other, getControlRoot(), Cond, 1724 DAG.getBasicBlock(CB.TrueBB)); 1725 1726 // Insert the false branch. Do this even if it's a fall through branch, 1727 // this makes it easier to do DAG optimizations which require inverting 1728 // the branch condition. 1729 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1730 DAG.getBasicBlock(CB.FalseBB)); 1731 1732 DAG.setRoot(BrCond); 1733 } 1734 1735 /// visitJumpTable - Emit JumpTable node in the current MBB 1736 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1737 // Emit the code for the jump table 1738 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1739 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(); 1740 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1741 JT.Reg, PTy); 1742 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1743 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1744 MVT::Other, Index.getValue(1), 1745 Table, Index); 1746 DAG.setRoot(BrJumpTable); 1747 } 1748 1749 /// visitJumpTableHeader - This function emits necessary code to produce index 1750 /// in the JumpTable from switch case. 1751 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1752 JumpTableHeader &JTH, 1753 MachineBasicBlock *SwitchBB) { 1754 // Subtract the lowest switch case value from the value being switched on and 1755 // conditional branch to default mbb if the result is greater than the 1756 // difference between smallest and largest cases. 1757 SDValue SwitchOp = getValue(JTH.SValue); 1758 EVT VT = SwitchOp.getValueType(); 1759 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1760 DAG.getConstant(JTH.First, VT)); 1761 1762 // The SDNode we just created, which holds the value being switched on minus 1763 // the smallest case value, needs to be copied to a virtual register so it 1764 // can be used as an index into the jump table in a subsequent basic block. 1765 // This value may be smaller or larger than the target's pointer type, and 1766 // therefore require extension or truncating. 1767 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1768 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI.getPointerTy()); 1769 1770 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1771 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1772 JumpTableReg, SwitchOp); 1773 JT.Reg = JumpTableReg; 1774 1775 // Emit the range check for the jump table, and branch to the default block 1776 // for the switch statement if the value being switched on exceeds the largest 1777 // case in the switch. 1778 SDValue CMP = 1779 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1780 Sub.getValueType()), 1781 Sub, DAG.getConstant(JTH.Last - JTH.First, VT), ISD::SETUGT); 1782 1783 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1784 MVT::Other, CopyTo, CMP, 1785 DAG.getBasicBlock(JT.Default)); 1786 1787 // Avoid emitting unnecessary branches to the next block. 1788 if (JT.MBB != NextBlock(SwitchBB)) 1789 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1790 DAG.getBasicBlock(JT.MBB)); 1791 1792 DAG.setRoot(BrCond); 1793 } 1794 1795 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1796 /// tail spliced into a stack protector check success bb. 1797 /// 1798 /// For a high level explanation of how this fits into the stack protector 1799 /// generation see the comment on the declaration of class 1800 /// StackProtectorDescriptor. 1801 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1802 MachineBasicBlock *ParentBB) { 1803 1804 // First create the loads to the guard/stack slot for the comparison. 1805 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1806 EVT PtrTy = TLI.getPointerTy(); 1807 1808 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1809 int FI = MFI->getStackProtectorIndex(); 1810 1811 const Value *IRGuard = SPD.getGuard(); 1812 SDValue GuardPtr = getValue(IRGuard); 1813 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1814 1815 unsigned Align = 1816 TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1817 1818 SDValue Guard; 1819 1820 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1821 // guard value from the virtual register holding the value. Otherwise, emit a 1822 // volatile load to retrieve the stack guard value. 1823 unsigned GuardReg = SPD.getGuardReg(); 1824 1825 if (GuardReg && TLI.useLoadStackGuardNode()) 1826 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), GuardReg, 1827 PtrTy); 1828 else 1829 Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1830 GuardPtr, MachinePointerInfo(IRGuard, 0), 1831 true, false, false, Align); 1832 1833 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1834 StackSlotPtr, 1835 MachinePointerInfo::getFixedStack(FI), 1836 true, false, false, Align); 1837 1838 // Perform the comparison via a subtract/getsetcc. 1839 EVT VT = Guard.getValueType(); 1840 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1841 1842 SDValue Cmp = 1843 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1844 Sub.getValueType()), 1845 Sub, DAG.getConstant(0, VT), ISD::SETNE); 1846 1847 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1848 // branch to failure MBB. 1849 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1850 MVT::Other, StackSlot.getOperand(0), 1851 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1852 // Otherwise branch to success MBB. 1853 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1854 MVT::Other, BrCond, 1855 DAG.getBasicBlock(SPD.getSuccessMBB())); 1856 1857 DAG.setRoot(Br); 1858 } 1859 1860 /// Codegen the failure basic block for a stack protector check. 1861 /// 1862 /// A failure stack protector machine basic block consists simply of a call to 1863 /// __stack_chk_fail(). 1864 /// 1865 /// For a high level explanation of how this fits into the stack protector 1866 /// generation see the comment on the declaration of class 1867 /// StackProtectorDescriptor. 1868 void 1869 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1870 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1871 SDValue Chain = 1872 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1873 nullptr, 0, false, getCurSDLoc(), false, false).second; 1874 DAG.setRoot(Chain); 1875 } 1876 1877 /// visitBitTestHeader - This function emits necessary code to produce value 1878 /// suitable for "bit tests" 1879 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1880 MachineBasicBlock *SwitchBB) { 1881 // Subtract the minimum value 1882 SDValue SwitchOp = getValue(B.SValue); 1883 EVT VT = SwitchOp.getValueType(); 1884 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1885 DAG.getConstant(B.First, VT)); 1886 1887 // Check range 1888 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1889 SDValue RangeCmp = 1890 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1891 Sub.getValueType()), 1892 Sub, DAG.getConstant(B.Range, VT), ISD::SETUGT); 1893 1894 // Determine the type of the test operands. 1895 bool UsePtrType = false; 1896 if (!TLI.isTypeLegal(VT)) 1897 UsePtrType = true; 1898 else { 1899 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1900 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1901 // Switch table case range are encoded into series of masks. 1902 // Just use pointer type, it's guaranteed to fit. 1903 UsePtrType = true; 1904 break; 1905 } 1906 } 1907 if (UsePtrType) { 1908 VT = TLI.getPointerTy(); 1909 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1910 } 1911 1912 B.RegVT = VT.getSimpleVT(); 1913 B.Reg = FuncInfo.CreateReg(B.RegVT); 1914 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1915 B.Reg, Sub); 1916 1917 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1918 1919 addSuccessorWithWeight(SwitchBB, B.Default); 1920 addSuccessorWithWeight(SwitchBB, MBB); 1921 1922 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1923 MVT::Other, CopyTo, RangeCmp, 1924 DAG.getBasicBlock(B.Default)); 1925 1926 // Avoid emitting unnecessary branches to the next block. 1927 if (MBB != NextBlock(SwitchBB)) 1928 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1929 DAG.getBasicBlock(MBB)); 1930 1931 DAG.setRoot(BrRange); 1932 } 1933 1934 /// visitBitTestCase - this function produces one "bit test" 1935 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1936 MachineBasicBlock* NextMBB, 1937 uint32_t BranchWeightToNext, 1938 unsigned Reg, 1939 BitTestCase &B, 1940 MachineBasicBlock *SwitchBB) { 1941 MVT VT = BB.RegVT; 1942 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1943 Reg, VT); 1944 SDValue Cmp; 1945 unsigned PopCount = countPopulation(B.Mask); 1946 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1947 if (PopCount == 1) { 1948 // Testing for a single bit; just compare the shift count with what it 1949 // would need to be to shift a 1 bit in that position. 1950 Cmp = DAG.getSetCC( 1951 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1952 DAG.getConstant(countTrailingZeros(B.Mask), VT), ISD::SETEQ); 1953 } else if (PopCount == BB.Range) { 1954 // There is only one zero bit in the range, test for it directly. 1955 Cmp = DAG.getSetCC( 1956 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1957 DAG.getConstant(countTrailingOnes(B.Mask), VT), ISD::SETNE); 1958 } else { 1959 // Make desired shift 1960 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1961 DAG.getConstant(1, VT), ShiftOp); 1962 1963 // Emit bit tests and jumps 1964 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1965 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1966 Cmp = DAG.getSetCC(getCurSDLoc(), 1967 TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp, 1968 DAG.getConstant(0, VT), ISD::SETNE); 1969 } 1970 1971 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1972 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1973 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1974 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1975 1976 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1977 MVT::Other, getControlRoot(), 1978 Cmp, DAG.getBasicBlock(B.TargetBB)); 1979 1980 // Avoid emitting unnecessary branches to the next block. 1981 if (NextMBB != NextBlock(SwitchBB)) 1982 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 1983 DAG.getBasicBlock(NextMBB)); 1984 1985 DAG.setRoot(BrAnd); 1986 } 1987 1988 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1989 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1990 1991 // Retrieve successors. 1992 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1993 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1994 1995 const Value *Callee(I.getCalledValue()); 1996 const Function *Fn = dyn_cast<Function>(Callee); 1997 if (isa<InlineAsm>(Callee)) 1998 visitInlineAsm(&I); 1999 else if (Fn && Fn->isIntrinsic()) { 2000 switch (Fn->getIntrinsicID()) { 2001 default: 2002 llvm_unreachable("Cannot invoke this intrinsic"); 2003 case Intrinsic::donothing: 2004 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2005 break; 2006 case Intrinsic::experimental_patchpoint_void: 2007 case Intrinsic::experimental_patchpoint_i64: 2008 visitPatchpoint(&I, LandingPad); 2009 break; 2010 case Intrinsic::experimental_gc_statepoint: 2011 LowerStatepoint(ImmutableStatepoint(&I), LandingPad); 2012 break; 2013 } 2014 } else 2015 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2016 2017 // If the value of the invoke is used outside of its defining block, make it 2018 // available as a virtual register. 2019 // We already took care of the exported value for the statepoint instruction 2020 // during call to the LowerStatepoint. 2021 if (!isStatepoint(I)) { 2022 CopyToExportRegsIfNeeded(&I); 2023 } 2024 2025 // Update successor info 2026 addSuccessorWithWeight(InvokeMBB, Return); 2027 addSuccessorWithWeight(InvokeMBB, LandingPad); 2028 2029 // Drop into normal successor. 2030 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2031 MVT::Other, getControlRoot(), 2032 DAG.getBasicBlock(Return))); 2033 } 2034 2035 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2036 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2037 } 2038 2039 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2040 assert(FuncInfo.MBB->isLandingPad() && 2041 "Call to landingpad not in landing pad!"); 2042 2043 MachineBasicBlock *MBB = FuncInfo.MBB; 2044 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2045 AddLandingPadInfo(LP, MMI, MBB); 2046 2047 // If there aren't registers to copy the values into (e.g., during SjLj 2048 // exceptions), then don't bother to create these DAG nodes. 2049 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2050 if (TLI.getExceptionPointerRegister() == 0 && 2051 TLI.getExceptionSelectorRegister() == 0) 2052 return; 2053 2054 SmallVector<EVT, 2> ValueVTs; 2055 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 2056 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2057 2058 // Get the two live-in registers as SDValues. The physregs have already been 2059 // copied into virtual registers. 2060 SDValue Ops[2]; 2061 if (FuncInfo.ExceptionPointerVirtReg) { 2062 Ops[0] = DAG.getZExtOrTrunc( 2063 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2064 FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()), 2065 getCurSDLoc(), ValueVTs[0]); 2066 } else { 2067 Ops[0] = DAG.getConstant(0, TLI.getPointerTy()); 2068 } 2069 Ops[1] = DAG.getZExtOrTrunc( 2070 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2071 FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()), 2072 getCurSDLoc(), ValueVTs[1]); 2073 2074 // Merge into one. 2075 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2076 DAG.getVTList(ValueVTs), Ops); 2077 setValue(&LP, Res); 2078 } 2079 2080 unsigned 2081 SelectionDAGBuilder::visitLandingPadClauseBB(GlobalValue *ClauseGV, 2082 MachineBasicBlock *LPadBB) { 2083 SDValue Chain = getControlRoot(); 2084 2085 // Get the typeid that we will dispatch on later. 2086 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2087 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy()); 2088 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 2089 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(ClauseGV); 2090 SDValue Sel = DAG.getConstant(TypeID, TLI.getPointerTy()); 2091 Chain = DAG.getCopyToReg(Chain, getCurSDLoc(), VReg, Sel); 2092 2093 // Branch to the main landing pad block. 2094 MachineBasicBlock *ClauseMBB = FuncInfo.MBB; 2095 ClauseMBB->addSuccessor(LPadBB); 2096 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, Chain, 2097 DAG.getBasicBlock(LPadBB))); 2098 return VReg; 2099 } 2100 2101 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 2102 /// small case ranges). 2103 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 2104 CaseRecVector& WorkList, 2105 const Value* SV, 2106 MachineBasicBlock *Default, 2107 MachineBasicBlock *SwitchBB) { 2108 // Size is the number of Cases represented by this range. 2109 size_t Size = CR.Range.second - CR.Range.first; 2110 if (Size > 3) 2111 return false; 2112 2113 // Get the MachineFunction which holds the current MBB. This is used when 2114 // inserting any additional MBBs necessary to represent the switch. 2115 MachineFunction *CurMF = FuncInfo.MF; 2116 2117 // Figure out which block is immediately after the current one. 2118 MachineBasicBlock *NextMBB = nullptr; 2119 MachineFunction::iterator BBI = CR.CaseBB; 2120 if (++BBI != FuncInfo.MF->end()) 2121 NextMBB = BBI; 2122 2123 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2124 // If any two of the cases has the same destination, and if one value 2125 // is the same as the other, but has one bit unset that the other has set, 2126 // use bit manipulation to do two compares at once. For example: 2127 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 2128 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 2129 // TODO: Handle cases where CR.CaseBB != SwitchBB. 2130 if (Size == 2 && CR.CaseBB == SwitchBB) { 2131 Case &Small = *CR.Range.first; 2132 Case &Big = *(CR.Range.second-1); 2133 2134 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 2135 const APInt& SmallValue = Small.Low->getValue(); 2136 const APInt& BigValue = Big.Low->getValue(); 2137 2138 // Check that there is only one bit different. 2139 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 2140 (SmallValue | BigValue) == BigValue) { 2141 // Isolate the common bit. 2142 APInt CommonBit = BigValue & ~SmallValue; 2143 assert((SmallValue | CommonBit) == BigValue && 2144 CommonBit.countPopulation() == 1 && "Not a common bit?"); 2145 2146 SDValue CondLHS = getValue(SV); 2147 EVT VT = CondLHS.getValueType(); 2148 SDLoc DL = getCurSDLoc(); 2149 2150 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 2151 DAG.getConstant(CommonBit, VT)); 2152 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 2153 Or, DAG.getConstant(BigValue, VT), 2154 ISD::SETEQ); 2155 2156 // Update successor info. 2157 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2158 addSuccessorWithWeight(SwitchBB, Small.BB, 2159 Small.ExtraWeight + Big.ExtraWeight); 2160 addSuccessorWithWeight(SwitchBB, Default, 2161 // The default destination is the first successor in IR. 2162 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2163 2164 // Insert the true branch. 2165 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2166 getControlRoot(), Cond, 2167 DAG.getBasicBlock(Small.BB)); 2168 2169 // Insert the false branch. 2170 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2171 DAG.getBasicBlock(Default)); 2172 2173 DAG.setRoot(BrCond); 2174 return true; 2175 } 2176 } 2177 } 2178 2179 // Order cases by weight so the most likely case will be checked first. 2180 uint32_t UnhandledWeights = 0; 2181 if (BPI) { 2182 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2183 uint32_t IWeight = I->ExtraWeight; 2184 UnhandledWeights += IWeight; 2185 for (CaseItr J = CR.Range.first; J < I; ++J) { 2186 uint32_t JWeight = J->ExtraWeight; 2187 if (IWeight > JWeight) 2188 std::swap(*I, *J); 2189 } 2190 } 2191 } 2192 // Rearrange the case blocks so that the last one falls through if possible. 2193 Case &BackCase = *(CR.Range.second-1); 2194 if (Size > 1 && NextMBB && Default != NextMBB && BackCase.BB != NextMBB) { 2195 // The last case block won't fall through into 'NextMBB' if we emit the 2196 // branches in this order. See if rearranging a case value would help. 2197 // We start at the bottom as it's the case with the least weight. 2198 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) 2199 if (I->BB == NextMBB) { 2200 std::swap(*I, BackCase); 2201 break; 2202 } 2203 } 2204 2205 // Create a CaseBlock record representing a conditional branch to 2206 // the Case's target mbb if the value being switched on SV is equal 2207 // to C. 2208 MachineBasicBlock *CurBlock = CR.CaseBB; 2209 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2210 MachineBasicBlock *FallThrough; 2211 if (I != E-1) { 2212 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2213 CurMF->insert(BBI, FallThrough); 2214 2215 // Put SV in a virtual register to make it available from the new blocks. 2216 ExportFromCurrentBlock(SV); 2217 } else { 2218 // If the last case doesn't match, go to the default block. 2219 FallThrough = Default; 2220 } 2221 2222 const Value *RHS, *LHS, *MHS; 2223 ISD::CondCode CC; 2224 if (I->High == I->Low) { 2225 // This is just small small case range :) containing exactly 1 case 2226 CC = ISD::SETEQ; 2227 LHS = SV; RHS = I->High; MHS = nullptr; 2228 } else { 2229 CC = ISD::SETLE; 2230 LHS = I->Low; MHS = SV; RHS = I->High; 2231 } 2232 2233 // The false weight should be sum of all un-handled cases. 2234 UnhandledWeights -= I->ExtraWeight; 2235 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2236 /* me */ CurBlock, 2237 /* trueweight */ I->ExtraWeight, 2238 /* falseweight */ UnhandledWeights); 2239 2240 // If emitting the first comparison, just call visitSwitchCase to emit the 2241 // code into the current block. Otherwise, push the CaseBlock onto the 2242 // vector to be later processed by SDISel, and insert the node's MBB 2243 // before the next MBB. 2244 if (CurBlock == SwitchBB) 2245 visitSwitchCase(CB, SwitchBB); 2246 else 2247 SwitchCases.push_back(CB); 2248 2249 CurBlock = FallThrough; 2250 } 2251 2252 return true; 2253 } 2254 2255 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2256 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2257 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 2258 } 2259 2260 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2261 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2262 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2263 return (LastExt - FirstExt + 1ULL); 2264 } 2265 2266 /// handleJTSwitchCase - Emit jumptable for current switch case range 2267 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2268 CaseRecVector &WorkList, 2269 const Value *SV, 2270 MachineBasicBlock *Default, 2271 MachineBasicBlock *SwitchBB) { 2272 Case& FrontCase = *CR.Range.first; 2273 Case& BackCase = *(CR.Range.second-1); 2274 2275 const APInt &First = FrontCase.Low->getValue(); 2276 const APInt &Last = BackCase.High->getValue(); 2277 2278 APInt TSize(First.getBitWidth(), 0); 2279 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2280 TSize += I->size(); 2281 2282 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2283 if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries())) 2284 return false; 2285 2286 APInt Range = ComputeRange(First, Last); 2287 // The density is TSize / Range. Require at least 40%. 2288 // It should not be possible for IntTSize to saturate for sane code, but make 2289 // sure we handle Range saturation correctly. 2290 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2291 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2292 if (IntTSize * 10 < IntRange * 4) 2293 return false; 2294 2295 DEBUG(dbgs() << "Lowering jump table\n" 2296 << "First entry: " << First << ". Last entry: " << Last << '\n' 2297 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2298 2299 // Get the MachineFunction which holds the current MBB. This is used when 2300 // inserting any additional MBBs necessary to represent the switch. 2301 MachineFunction *CurMF = FuncInfo.MF; 2302 2303 // Figure out which block is immediately after the current one. 2304 MachineFunction::iterator BBI = CR.CaseBB; 2305 ++BBI; 2306 2307 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2308 2309 // Create a new basic block to hold the code for loading the address 2310 // of the jump table, and jumping to it. Update successor information; 2311 // we will either branch to the default case for the switch, or the jump 2312 // table. 2313 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2314 CurMF->insert(BBI, JumpTableBB); 2315 2316 addSuccessorWithWeight(CR.CaseBB, Default); 2317 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2318 2319 // Build a vector of destination BBs, corresponding to each target 2320 // of the jump table. If the value of the jump table slot corresponds to 2321 // a case statement, push the case's BB onto the vector, otherwise, push 2322 // the default BB. 2323 std::vector<MachineBasicBlock*> DestBBs; 2324 APInt TEI = First; 2325 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2326 const APInt &Low = I->Low->getValue(); 2327 const APInt &High = I->High->getValue(); 2328 2329 if (Low.sle(TEI) && TEI.sle(High)) { 2330 DestBBs.push_back(I->BB); 2331 if (TEI==High) 2332 ++I; 2333 } else { 2334 DestBBs.push_back(Default); 2335 } 2336 } 2337 2338 // Calculate weight for each unique destination in CR. 2339 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2340 if (FuncInfo.BPI) { 2341 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2342 DestWeights[I->BB] += I->ExtraWeight; 2343 } 2344 2345 // Update successor info. Add one edge to each unique successor. 2346 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2347 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2348 E = DestBBs.end(); I != E; ++I) { 2349 if (!SuccsHandled[(*I)->getNumber()]) { 2350 SuccsHandled[(*I)->getNumber()] = true; 2351 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2352 DestWeights.find(*I); 2353 addSuccessorWithWeight(JumpTableBB, *I, 2354 Itr != DestWeights.end() ? Itr->second : 0); 2355 } 2356 } 2357 2358 // Create a jump table index for this jump table. 2359 unsigned JTEncoding = TLI.getJumpTableEncoding(); 2360 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2361 ->createJumpTableIndex(DestBBs); 2362 2363 // Set the jump table information so that we can codegen it as a second 2364 // MachineBasicBlock 2365 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2366 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2367 if (CR.CaseBB == SwitchBB) 2368 visitJumpTableHeader(JT, JTH, SwitchBB); 2369 2370 JTCases.push_back(JumpTableBlock(JTH, JT)); 2371 return true; 2372 } 2373 2374 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2375 /// 2 subtrees. 2376 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2377 CaseRecVector& WorkList, 2378 const Value* SV, 2379 MachineBasicBlock* SwitchBB) { 2380 Case& FrontCase = *CR.Range.first; 2381 Case& BackCase = *(CR.Range.second-1); 2382 2383 // Size is the number of Cases represented by this range. 2384 unsigned Size = CR.Range.second - CR.Range.first; 2385 2386 const APInt &First = FrontCase.Low->getValue(); 2387 const APInt &Last = BackCase.High->getValue(); 2388 double FMetric = 0; 2389 CaseItr Pivot = CR.Range.first + Size/2; 2390 2391 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2392 // (heuristically) allow us to emit JumpTable's later. 2393 APInt TSize(First.getBitWidth(), 0); 2394 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2395 I!=E; ++I) 2396 TSize += I->size(); 2397 2398 APInt LSize = FrontCase.size(); 2399 APInt RSize = TSize-LSize; 2400 DEBUG(dbgs() << "Selecting best pivot: \n" 2401 << "First: " << First << ", Last: " << Last <<'\n' 2402 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2403 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2404 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2405 J!=E; ++I, ++J) { 2406 const APInt &LEnd = I->High->getValue(); 2407 const APInt &RBegin = J->Low->getValue(); 2408 APInt Range = ComputeRange(LEnd, RBegin); 2409 assert((Range - 2ULL).isNonNegative() && 2410 "Invalid case distance"); 2411 // Use volatile double here to avoid excess precision issues on some hosts, 2412 // e.g. that use 80-bit X87 registers. 2413 // Only consider the density of sub-ranges that actually have sufficient 2414 // entries to be lowered as a jump table. 2415 volatile double LDensity = 2416 LSize.ult(TLI.getMinimumJumpTableEntries()) 2417 ? 0.0 2418 : LSize.roundToDouble() / (LEnd - First + 1ULL).roundToDouble(); 2419 volatile double RDensity = 2420 RSize.ult(TLI.getMinimumJumpTableEntries()) 2421 ? 0.0 2422 : RSize.roundToDouble() / (Last - RBegin + 1ULL).roundToDouble(); 2423 volatile double Metric = Range.logBase2() * (LDensity + RDensity); 2424 // Should always split in some non-trivial place 2425 DEBUG(dbgs() <<"=>Step\n" 2426 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2427 << "LDensity: " << LDensity 2428 << ", RDensity: " << RDensity << '\n' 2429 << "Metric: " << Metric << '\n'); 2430 if (FMetric < Metric) { 2431 Pivot = J; 2432 FMetric = Metric; 2433 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2434 } 2435 2436 LSize += J->size(); 2437 RSize -= J->size(); 2438 } 2439 2440 if (FMetric == 0 || !areJTsAllowed(TLI)) 2441 Pivot = CR.Range.first + Size/2; 2442 splitSwitchCase(CR, Pivot, WorkList, SV, SwitchBB); 2443 return true; 2444 } 2445 2446 void SelectionDAGBuilder::splitSwitchCase(CaseRec &CR, CaseItr Pivot, 2447 CaseRecVector &WorkList, 2448 const Value *SV, 2449 MachineBasicBlock *SwitchBB) { 2450 // Get the MachineFunction which holds the current MBB. This is used when 2451 // inserting any additional MBBs necessary to represent the switch. 2452 MachineFunction *CurMF = FuncInfo.MF; 2453 2454 // Figure out which block is immediately after the current one. 2455 MachineFunction::iterator BBI = CR.CaseBB; 2456 ++BBI; 2457 2458 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2459 2460 CaseRange LHSR(CR.Range.first, Pivot); 2461 CaseRange RHSR(Pivot, CR.Range.second); 2462 const ConstantInt *C = Pivot->Low; 2463 MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr; 2464 2465 // We know that we branch to the LHS if the Value being switched on is 2466 // less than the Pivot value, C. We use this to optimize our binary 2467 // tree a bit, by recognizing that if SV is greater than or equal to the 2468 // LHS's Case Value, and that Case Value is exactly one less than the 2469 // Pivot's Value, then we can branch directly to the LHS's Target, 2470 // rather than creating a leaf node for it. 2471 if ((LHSR.second - LHSR.first) == 1 && LHSR.first->High == CR.GE && 2472 C->getValue() == (CR.GE->getValue() + 1LL)) { 2473 TrueBB = LHSR.first->BB; 2474 } else { 2475 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2476 CurMF->insert(BBI, TrueBB); 2477 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2478 2479 // Put SV in a virtual register to make it available from the new blocks. 2480 ExportFromCurrentBlock(SV); 2481 } 2482 2483 // Similar to the optimization above, if the Value being switched on is 2484 // known to be less than the Constant CR.LT, and the current Case Value 2485 // is CR.LT - 1, then we can branch directly to the target block for 2486 // the current Case Value, rather than emitting a RHS leaf node for it. 2487 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2488 RHSR.first->Low->getValue() == (CR.LT->getValue() - 1LL)) { 2489 FalseBB = RHSR.first->BB; 2490 } else { 2491 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2492 CurMF->insert(BBI, FalseBB); 2493 WorkList.push_back(CaseRec(FalseBB, CR.LT, C, RHSR)); 2494 2495 // Put SV in a virtual register to make it available from the new blocks. 2496 ExportFromCurrentBlock(SV); 2497 } 2498 2499 // Create a CaseBlock record representing a conditional branch to 2500 // the LHS node if the value being switched on SV is less than C. 2501 // Otherwise, branch to LHS. 2502 CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB); 2503 2504 if (CR.CaseBB == SwitchBB) 2505 visitSwitchCase(CB, SwitchBB); 2506 else 2507 SwitchCases.push_back(CB); 2508 } 2509 2510 /// handleBitTestsSwitchCase - if current case range has few destination and 2511 /// range span less, than machine word bitwidth, encode case range into series 2512 /// of masks and emit bit tests with these masks. 2513 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2514 CaseRecVector& WorkList, 2515 const Value* SV, 2516 MachineBasicBlock* Default, 2517 MachineBasicBlock* SwitchBB) { 2518 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2519 EVT PTy = TLI.getPointerTy(); 2520 unsigned IntPtrBits = PTy.getSizeInBits(); 2521 2522 Case& FrontCase = *CR.Range.first; 2523 Case& BackCase = *(CR.Range.second-1); 2524 2525 // Get the MachineFunction which holds the current MBB. This is used when 2526 // inserting any additional MBBs necessary to represent the switch. 2527 MachineFunction *CurMF = FuncInfo.MF; 2528 2529 // If target does not have legal shift left, do not emit bit tests at all. 2530 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 2531 return false; 2532 2533 size_t numCmps = 0; 2534 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2535 // Single case counts one, case range - two. 2536 numCmps += (I->Low == I->High ? 1 : 2); 2537 } 2538 2539 // Count unique destinations 2540 SmallSet<MachineBasicBlock*, 4> Dests; 2541 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2542 Dests.insert(I->BB); 2543 if (Dests.size() > 3) 2544 // Don't bother the code below, if there are too much unique destinations 2545 return false; 2546 } 2547 DEBUG(dbgs() << "Total number of unique destinations: " 2548 << Dests.size() << '\n' 2549 << "Total number of comparisons: " << numCmps << '\n'); 2550 2551 // Compute span of values. 2552 const APInt& minValue = FrontCase.Low->getValue(); 2553 const APInt& maxValue = BackCase.High->getValue(); 2554 APInt cmpRange = maxValue - minValue; 2555 2556 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2557 << "Low bound: " << minValue << '\n' 2558 << "High bound: " << maxValue << '\n'); 2559 2560 if (cmpRange.uge(IntPtrBits) || 2561 (!(Dests.size() == 1 && numCmps >= 3) && 2562 !(Dests.size() == 2 && numCmps >= 5) && 2563 !(Dests.size() >= 3 && numCmps >= 6))) 2564 return false; 2565 2566 DEBUG(dbgs() << "Emitting bit tests\n"); 2567 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2568 2569 // Optimize the case where all the case values fit in a 2570 // word without having to subtract minValue. In this case, 2571 // we can optimize away the subtraction. 2572 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2573 cmpRange = maxValue; 2574 } else { 2575 lowBound = minValue; 2576 } 2577 2578 CaseBitsVector CasesBits; 2579 unsigned i, count = 0; 2580 2581 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2582 MachineBasicBlock* Dest = I->BB; 2583 for (i = 0; i < count; ++i) 2584 if (Dest == CasesBits[i].BB) 2585 break; 2586 2587 if (i == count) { 2588 assert((count < 3) && "Too much destinations to test!"); 2589 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2590 count++; 2591 } 2592 2593 const APInt& lowValue = I->Low->getValue(); 2594 const APInt& highValue = I->High->getValue(); 2595 2596 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2597 uint64_t hi = (highValue - lowBound).getZExtValue(); 2598 CasesBits[i].ExtraWeight += I->ExtraWeight; 2599 2600 for (uint64_t j = lo; j <= hi; j++) { 2601 CasesBits[i].Mask |= 1ULL << j; 2602 CasesBits[i].Bits++; 2603 } 2604 2605 } 2606 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2607 2608 BitTestInfo BTC; 2609 2610 // Figure out which block is immediately after the current one. 2611 MachineFunction::iterator BBI = CR.CaseBB; 2612 ++BBI; 2613 2614 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2615 2616 DEBUG(dbgs() << "Cases:\n"); 2617 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2618 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2619 << ", Bits: " << CasesBits[i].Bits 2620 << ", BB: " << CasesBits[i].BB << '\n'); 2621 2622 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2623 CurMF->insert(BBI, CaseBB); 2624 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2625 CaseBB, 2626 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2627 2628 // Put SV in a virtual register to make it available from the new blocks. 2629 ExportFromCurrentBlock(SV); 2630 } 2631 2632 BitTestBlock BTB(lowBound, cmpRange, SV, 2633 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2634 CR.CaseBB, Default, std::move(BTC)); 2635 2636 if (CR.CaseBB == SwitchBB) 2637 visitBitTestHeader(BTB, SwitchBB); 2638 2639 BitTestCases.push_back(std::move(BTB)); 2640 2641 return true; 2642 } 2643 2644 void SelectionDAGBuilder::Clusterify(CaseVector &Cases, const SwitchInst *SI) { 2645 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2646 2647 // Extract cases from the switch and sort them. 2648 typedef std::pair<const ConstantInt*, unsigned> CasePair; 2649 std::vector<CasePair> Sorted; 2650 Sorted.reserve(SI->getNumCases()); 2651 for (auto I : SI->cases()) 2652 Sorted.push_back(std::make_pair(I.getCaseValue(), I.getSuccessorIndex())); 2653 std::sort(Sorted.begin(), Sorted.end(), [](CasePair a, CasePair b) { 2654 return a.first->getValue().slt(b.first->getValue()); 2655 }); 2656 2657 // Merge adjacent cases with the same destination, build Cases vector. 2658 assert(Cases.empty() && "Cases should be empty before Clusterify;"); 2659 Cases.reserve(SI->getNumCases()); 2660 MachineBasicBlock *PreviousSucc = nullptr; 2661 for (CasePair &CP : Sorted) { 2662 const ConstantInt *CaseVal = CP.first; 2663 unsigned SuccIndex = CP.second; 2664 MachineBasicBlock *Succ = FuncInfo.MBBMap[SI->getSuccessor(SuccIndex)]; 2665 uint32_t Weight = BPI ? BPI->getEdgeWeight(SI->getParent(), SuccIndex) : 0; 2666 2667 if (PreviousSucc == Succ && 2668 (CaseVal->getValue() - Cases.back().High->getValue()) == 1) { 2669 // If this case has the same successor and is a neighbour, merge it into 2670 // the previous cluster. 2671 Cases.back().High = CaseVal; 2672 Cases.back().ExtraWeight += Weight; 2673 } else { 2674 Cases.push_back(Case(CaseVal, CaseVal, Succ, Weight)); 2675 } 2676 2677 PreviousSucc = Succ; 2678 } 2679 2680 DEBUG({ 2681 size_t numCmps = 0; 2682 for (auto &I : Cases) 2683 // A range counts double, since it requires two compares. 2684 numCmps += I.Low != I.High ? 2 : 1; 2685 2686 dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2687 << ". Total compares: " << numCmps << '\n'; 2688 }); 2689 } 2690 2691 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2692 MachineBasicBlock *Last) { 2693 // Update JTCases. 2694 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2695 if (JTCases[i].first.HeaderBB == First) 2696 JTCases[i].first.HeaderBB = Last; 2697 2698 // Update BitTestCases. 2699 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2700 if (BitTestCases[i].Parent == First) 2701 BitTestCases[i].Parent = Last; 2702 } 2703 2704 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2705 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2706 2707 // Create a vector of Cases, sorted so that we can efficiently create a binary 2708 // search tree from them. 2709 CaseVector Cases; 2710 Clusterify(Cases, &SI); 2711 2712 // Get the default destination MBB. 2713 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2714 2715 if (isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()) && 2716 !Cases.empty()) { 2717 // Replace an unreachable default destination with the most popular case 2718 // destination. 2719 DenseMap<const BasicBlock *, unsigned> Popularity; 2720 unsigned MaxPop = 0; 2721 const BasicBlock *MaxBB = nullptr; 2722 for (auto I : SI.cases()) { 2723 const BasicBlock *BB = I.getCaseSuccessor(); 2724 if (++Popularity[BB] > MaxPop) { 2725 MaxPop = Popularity[BB]; 2726 MaxBB = BB; 2727 } 2728 } 2729 2730 // Set new default. 2731 assert(MaxPop > 0); 2732 assert(MaxBB); 2733 Default = FuncInfo.MBBMap[MaxBB]; 2734 2735 // Remove cases that were pointing to the destination that is now the default. 2736 Cases.erase(std::remove_if(Cases.begin(), Cases.end(), 2737 [&](const Case &C) { return C.BB == Default; }), 2738 Cases.end()); 2739 } 2740 2741 // If there is only the default destination, go there directly. 2742 if (Cases.empty()) { 2743 // Update machine-CFG edges. 2744 SwitchMBB->addSuccessor(Default); 2745 2746 // If this is not a fall-through branch, emit the branch. 2747 if (Default != NextBlock(SwitchMBB)) { 2748 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2749 getControlRoot(), DAG.getBasicBlock(Default))); 2750 } 2751 return; 2752 } 2753 2754 // Get the Value to be switched on. 2755 const Value *SV = SI.getCondition(); 2756 2757 // Push the initial CaseRec onto the worklist 2758 CaseRecVector WorkList; 2759 WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr, 2760 CaseRange(Cases.begin(),Cases.end()))); 2761 2762 while (!WorkList.empty()) { 2763 // Grab a record representing a case range to process off the worklist 2764 CaseRec CR = WorkList.back(); 2765 WorkList.pop_back(); 2766 2767 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2768 continue; 2769 2770 // If the range has few cases (two or less) emit a series of specific 2771 // tests. 2772 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2773 continue; 2774 2775 // If the switch has more than N blocks, and is at least 40% dense, and the 2776 // target supports indirect branches, then emit a jump table rather than 2777 // lowering the switch to a binary tree of conditional branches. 2778 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2779 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2780 continue; 2781 2782 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2783 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2784 handleBTSplitSwitchCase(CR, WorkList, SV, SwitchMBB); 2785 } 2786 } 2787 2788 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2789 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2790 2791 // Update machine-CFG edges with unique successors. 2792 SmallSet<BasicBlock*, 32> Done; 2793 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2794 BasicBlock *BB = I.getSuccessor(i); 2795 bool Inserted = Done.insert(BB).second; 2796 if (!Inserted) 2797 continue; 2798 2799 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2800 addSuccessorWithWeight(IndirectBrMBB, Succ); 2801 } 2802 2803 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2804 MVT::Other, getControlRoot(), 2805 getValue(I.getAddress()))); 2806 } 2807 2808 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2809 if (DAG.getTarget().Options.TrapUnreachable) 2810 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2811 } 2812 2813 void SelectionDAGBuilder::visitFSub(const User &I) { 2814 // -0.0 - X --> fneg 2815 Type *Ty = I.getType(); 2816 if (isa<Constant>(I.getOperand(0)) && 2817 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2818 SDValue Op2 = getValue(I.getOperand(1)); 2819 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2820 Op2.getValueType(), Op2)); 2821 return; 2822 } 2823 2824 visitBinary(I, ISD::FSUB); 2825 } 2826 2827 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2828 SDValue Op1 = getValue(I.getOperand(0)); 2829 SDValue Op2 = getValue(I.getOperand(1)); 2830 2831 bool nuw = false; 2832 bool nsw = false; 2833 bool exact = false; 2834 if (const OverflowingBinaryOperator *OFBinOp = 2835 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2836 nuw = OFBinOp->hasNoUnsignedWrap(); 2837 nsw = OFBinOp->hasNoSignedWrap(); 2838 } 2839 if (const PossiblyExactOperator *ExactOp = 2840 dyn_cast<const PossiblyExactOperator>(&I)) 2841 exact = ExactOp->isExact(); 2842 2843 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2844 Op1, Op2, nuw, nsw, exact); 2845 setValue(&I, BinNodeValue); 2846 } 2847 2848 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2849 SDValue Op1 = getValue(I.getOperand(0)); 2850 SDValue Op2 = getValue(I.getOperand(1)); 2851 2852 EVT ShiftTy = 2853 DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType()); 2854 2855 // Coerce the shift amount to the right type if we can. 2856 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2857 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2858 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2859 SDLoc DL = getCurSDLoc(); 2860 2861 // If the operand is smaller than the shift count type, promote it. 2862 if (ShiftSize > Op2Size) 2863 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2864 2865 // If the operand is larger than the shift count type but the shift 2866 // count type has enough bits to represent any shift value, truncate 2867 // it now. This is a common case and it exposes the truncate to 2868 // optimization early. 2869 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2870 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2871 // Otherwise we'll need to temporarily settle for some other convenient 2872 // type. Type legalization will make adjustments once the shiftee is split. 2873 else 2874 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2875 } 2876 2877 bool nuw = false; 2878 bool nsw = false; 2879 bool exact = false; 2880 2881 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2882 2883 if (const OverflowingBinaryOperator *OFBinOp = 2884 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2885 nuw = OFBinOp->hasNoUnsignedWrap(); 2886 nsw = OFBinOp->hasNoSignedWrap(); 2887 } 2888 if (const PossiblyExactOperator *ExactOp = 2889 dyn_cast<const PossiblyExactOperator>(&I)) 2890 exact = ExactOp->isExact(); 2891 } 2892 2893 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2894 nuw, nsw, exact); 2895 setValue(&I, Res); 2896 } 2897 2898 void SelectionDAGBuilder::visitSDiv(const User &I) { 2899 SDValue Op1 = getValue(I.getOperand(0)); 2900 SDValue Op2 = getValue(I.getOperand(1)); 2901 2902 // Turn exact SDivs into multiplications. 2903 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2904 // exact bit. 2905 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2906 !isa<ConstantSDNode>(Op1) && 2907 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2908 setValue(&I, DAG.getTargetLoweringInfo() 2909 .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG)); 2910 else 2911 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2912 Op1, Op2)); 2913 } 2914 2915 void SelectionDAGBuilder::visitICmp(const User &I) { 2916 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2917 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2918 predicate = IC->getPredicate(); 2919 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2920 predicate = ICmpInst::Predicate(IC->getPredicate()); 2921 SDValue Op1 = getValue(I.getOperand(0)); 2922 SDValue Op2 = getValue(I.getOperand(1)); 2923 ISD::CondCode Opcode = getICmpCondCode(predicate); 2924 2925 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2926 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2927 } 2928 2929 void SelectionDAGBuilder::visitFCmp(const User &I) { 2930 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2931 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2932 predicate = FC->getPredicate(); 2933 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2934 predicate = FCmpInst::Predicate(FC->getPredicate()); 2935 SDValue Op1 = getValue(I.getOperand(0)); 2936 SDValue Op2 = getValue(I.getOperand(1)); 2937 ISD::CondCode Condition = getFCmpCondCode(predicate); 2938 if (TM.Options.NoNaNsFPMath) 2939 Condition = getFCmpCodeWithoutNaN(Condition); 2940 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2941 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2942 } 2943 2944 void SelectionDAGBuilder::visitSelect(const User &I) { 2945 SmallVector<EVT, 4> ValueVTs; 2946 ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs); 2947 unsigned NumValues = ValueVTs.size(); 2948 if (NumValues == 0) return; 2949 2950 SmallVector<SDValue, 4> Values(NumValues); 2951 SDValue Cond = getValue(I.getOperand(0)); 2952 SDValue TrueVal = getValue(I.getOperand(1)); 2953 SDValue FalseVal = getValue(I.getOperand(2)); 2954 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2955 ISD::VSELECT : ISD::SELECT; 2956 2957 for (unsigned i = 0; i != NumValues; ++i) 2958 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2959 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2960 Cond, 2961 SDValue(TrueVal.getNode(), 2962 TrueVal.getResNo() + i), 2963 SDValue(FalseVal.getNode(), 2964 FalseVal.getResNo() + i)); 2965 2966 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2967 DAG.getVTList(ValueVTs), Values)); 2968 } 2969 2970 void SelectionDAGBuilder::visitTrunc(const User &I) { 2971 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2972 SDValue N = getValue(I.getOperand(0)); 2973 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2974 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2975 } 2976 2977 void SelectionDAGBuilder::visitZExt(const User &I) { 2978 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2979 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2980 SDValue N = getValue(I.getOperand(0)); 2981 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2982 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2983 } 2984 2985 void SelectionDAGBuilder::visitSExt(const User &I) { 2986 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2987 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2988 SDValue N = getValue(I.getOperand(0)); 2989 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2990 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2991 } 2992 2993 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2994 // FPTrunc is never a no-op cast, no need to check 2995 SDValue N = getValue(I.getOperand(0)); 2996 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2997 EVT DestVT = TLI.getValueType(I.getType()); 2998 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), DestVT, N, 2999 DAG.getTargetConstant(0, TLI.getPointerTy()))); 3000 } 3001 3002 void SelectionDAGBuilder::visitFPExt(const User &I) { 3003 // FPExt is never a no-op cast, no need to check 3004 SDValue N = getValue(I.getOperand(0)); 3005 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3006 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3007 } 3008 3009 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3010 // FPToUI is never a no-op cast, no need to check 3011 SDValue N = getValue(I.getOperand(0)); 3012 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3013 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3014 } 3015 3016 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3017 // FPToSI is never a no-op cast, no need to check 3018 SDValue N = getValue(I.getOperand(0)); 3019 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3020 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3021 } 3022 3023 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3024 // UIToFP is never a no-op cast, no need to check 3025 SDValue N = getValue(I.getOperand(0)); 3026 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3027 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3028 } 3029 3030 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3031 // SIToFP is never a no-op cast, no need to check 3032 SDValue N = getValue(I.getOperand(0)); 3033 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3034 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3035 } 3036 3037 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3038 // What to do depends on the size of the integer and the size of the pointer. 3039 // We can either truncate, zero extend, or no-op, accordingly. 3040 SDValue N = getValue(I.getOperand(0)); 3041 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3042 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3043 } 3044 3045 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3046 // What to do depends on the size of the integer and the size of the pointer. 3047 // We can either truncate, zero extend, or no-op, accordingly. 3048 SDValue N = getValue(I.getOperand(0)); 3049 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3050 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3051 } 3052 3053 void SelectionDAGBuilder::visitBitCast(const User &I) { 3054 SDValue N = getValue(I.getOperand(0)); 3055 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3056 3057 // BitCast assures us that source and destination are the same size so this is 3058 // either a BITCAST or a no-op. 3059 if (DestVT != N.getValueType()) 3060 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 3061 DestVT, N)); // convert types. 3062 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3063 // might fold any kind of constant expression to an integer constant and that 3064 // is not what we are looking for. Only regcognize a bitcast of a genuine 3065 // constant integer as an opaque constant. 3066 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3067 setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false, 3068 /*isOpaque*/true)); 3069 else 3070 setValue(&I, N); // noop cast. 3071 } 3072 3073 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3074 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3075 const Value *SV = I.getOperand(0); 3076 SDValue N = getValue(SV); 3077 EVT DestVT = TLI.getValueType(I.getType()); 3078 3079 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3080 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3081 3082 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3083 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3084 3085 setValue(&I, N); 3086 } 3087 3088 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3089 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3090 SDValue InVec = getValue(I.getOperand(0)); 3091 SDValue InVal = getValue(I.getOperand(1)); 3092 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 3093 getCurSDLoc(), TLI.getVectorIdxTy()); 3094 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3095 TLI.getValueType(I.getType()), InVec, InVal, InIdx)); 3096 } 3097 3098 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3099 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3100 SDValue InVec = getValue(I.getOperand(0)); 3101 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 3102 getCurSDLoc(), TLI.getVectorIdxTy()); 3103 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3104 TLI.getValueType(I.getType()), InVec, InIdx)); 3105 } 3106 3107 // Utility for visitShuffleVector - Return true if every element in Mask, 3108 // beginning from position Pos and ending in Pos+Size, falls within the 3109 // specified sequential range [L, L+Pos). or is undef. 3110 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 3111 unsigned Pos, unsigned Size, int Low) { 3112 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 3113 if (Mask[i] >= 0 && Mask[i] != Low) 3114 return false; 3115 return true; 3116 } 3117 3118 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3119 SDValue Src1 = getValue(I.getOperand(0)); 3120 SDValue Src2 = getValue(I.getOperand(1)); 3121 3122 SmallVector<int, 8> Mask; 3123 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3124 unsigned MaskNumElts = Mask.size(); 3125 3126 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3127 EVT VT = TLI.getValueType(I.getType()); 3128 EVT SrcVT = Src1.getValueType(); 3129 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3130 3131 if (SrcNumElts == MaskNumElts) { 3132 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3133 &Mask[0])); 3134 return; 3135 } 3136 3137 // Normalize the shuffle vector since mask and vector length don't match. 3138 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 3139 // Mask is longer than the source vectors and is a multiple of the source 3140 // vectors. We can use concatenate vector to make the mask and vectors 3141 // lengths match. 3142 if (SrcNumElts*2 == MaskNumElts) { 3143 // First check for Src1 in low and Src2 in high 3144 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 3145 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 3146 // The shuffle is concatenating two vectors together. 3147 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3148 VT, Src1, Src2)); 3149 return; 3150 } 3151 // Then check for Src2 in low and Src1 in high 3152 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 3153 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 3154 // The shuffle is concatenating two vectors together. 3155 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3156 VT, Src2, Src1)); 3157 return; 3158 } 3159 } 3160 3161 // Pad both vectors with undefs to make them the same length as the mask. 3162 unsigned NumConcat = MaskNumElts / SrcNumElts; 3163 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 3164 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 3165 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3166 3167 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3168 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3169 MOps1[0] = Src1; 3170 MOps2[0] = Src2; 3171 3172 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3173 getCurSDLoc(), VT, MOps1); 3174 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3175 getCurSDLoc(), VT, MOps2); 3176 3177 // Readjust mask for new input vector length. 3178 SmallVector<int, 8> MappedOps; 3179 for (unsigned i = 0; i != MaskNumElts; ++i) { 3180 int Idx = Mask[i]; 3181 if (Idx >= (int)SrcNumElts) 3182 Idx -= SrcNumElts - MaskNumElts; 3183 MappedOps.push_back(Idx); 3184 } 3185 3186 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3187 &MappedOps[0])); 3188 return; 3189 } 3190 3191 if (SrcNumElts > MaskNumElts) { 3192 // Analyze the access pattern of the vector to see if we can extract 3193 // two subvectors and do the shuffle. The analysis is done by calculating 3194 // the range of elements the mask access on both vectors. 3195 int MinRange[2] = { static_cast<int>(SrcNumElts), 3196 static_cast<int>(SrcNumElts)}; 3197 int MaxRange[2] = {-1, -1}; 3198 3199 for (unsigned i = 0; i != MaskNumElts; ++i) { 3200 int Idx = Mask[i]; 3201 unsigned Input = 0; 3202 if (Idx < 0) 3203 continue; 3204 3205 if (Idx >= (int)SrcNumElts) { 3206 Input = 1; 3207 Idx -= SrcNumElts; 3208 } 3209 if (Idx > MaxRange[Input]) 3210 MaxRange[Input] = Idx; 3211 if (Idx < MinRange[Input]) 3212 MinRange[Input] = Idx; 3213 } 3214 3215 // Check if the access is smaller than the vector size and can we find 3216 // a reasonable extract index. 3217 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3218 // Extract. 3219 int StartIdx[2]; // StartIdx to extract from 3220 for (unsigned Input = 0; Input < 2; ++Input) { 3221 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3222 RangeUse[Input] = 0; // Unused 3223 StartIdx[Input] = 0; 3224 continue; 3225 } 3226 3227 // Find a good start index that is a multiple of the mask length. Then 3228 // see if the rest of the elements are in range. 3229 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3230 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3231 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3232 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3233 } 3234 3235 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3236 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3237 return; 3238 } 3239 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3240 // Extract appropriate subvector and generate a vector shuffle 3241 for (unsigned Input = 0; Input < 2; ++Input) { 3242 SDValue &Src = Input == 0 ? Src1 : Src2; 3243 if (RangeUse[Input] == 0) 3244 Src = DAG.getUNDEF(VT); 3245 else 3246 Src = DAG.getNode( 3247 ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, Src, 3248 DAG.getConstant(StartIdx[Input], TLI.getVectorIdxTy())); 3249 } 3250 3251 // Calculate new mask. 3252 SmallVector<int, 8> MappedOps; 3253 for (unsigned i = 0; i != MaskNumElts; ++i) { 3254 int Idx = Mask[i]; 3255 if (Idx >= 0) { 3256 if (Idx < (int)SrcNumElts) 3257 Idx -= StartIdx[0]; 3258 else 3259 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3260 } 3261 MappedOps.push_back(Idx); 3262 } 3263 3264 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3265 &MappedOps[0])); 3266 return; 3267 } 3268 } 3269 3270 // We can't use either concat vectors or extract subvectors so fall back to 3271 // replacing the shuffle with extract and build vector. 3272 // to insert and build vector. 3273 EVT EltVT = VT.getVectorElementType(); 3274 EVT IdxVT = TLI.getVectorIdxTy(); 3275 SmallVector<SDValue,8> Ops; 3276 for (unsigned i = 0; i != MaskNumElts; ++i) { 3277 int Idx = Mask[i]; 3278 SDValue Res; 3279 3280 if (Idx < 0) { 3281 Res = DAG.getUNDEF(EltVT); 3282 } else { 3283 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3284 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3285 3286 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3287 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 3288 } 3289 3290 Ops.push_back(Res); 3291 } 3292 3293 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops)); 3294 } 3295 3296 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3297 const Value *Op0 = I.getOperand(0); 3298 const Value *Op1 = I.getOperand(1); 3299 Type *AggTy = I.getType(); 3300 Type *ValTy = Op1->getType(); 3301 bool IntoUndef = isa<UndefValue>(Op0); 3302 bool FromUndef = isa<UndefValue>(Op1); 3303 3304 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3305 3306 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3307 SmallVector<EVT, 4> AggValueVTs; 3308 ComputeValueVTs(TLI, AggTy, AggValueVTs); 3309 SmallVector<EVT, 4> ValValueVTs; 3310 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3311 3312 unsigned NumAggValues = AggValueVTs.size(); 3313 unsigned NumValValues = ValValueVTs.size(); 3314 SmallVector<SDValue, 4> Values(NumAggValues); 3315 3316 // Ignore an insertvalue that produces an empty object 3317 if (!NumAggValues) { 3318 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3319 return; 3320 } 3321 3322 SDValue Agg = getValue(Op0); 3323 unsigned i = 0; 3324 // Copy the beginning value(s) from the original aggregate. 3325 for (; i != LinearIndex; ++i) 3326 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3327 SDValue(Agg.getNode(), Agg.getResNo() + i); 3328 // Copy values from the inserted value(s). 3329 if (NumValValues) { 3330 SDValue Val = getValue(Op1); 3331 for (; i != LinearIndex + NumValValues; ++i) 3332 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3333 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3334 } 3335 // Copy remaining value(s) from the original aggregate. 3336 for (; i != NumAggValues; ++i) 3337 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3338 SDValue(Agg.getNode(), Agg.getResNo() + i); 3339 3340 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3341 DAG.getVTList(AggValueVTs), Values)); 3342 } 3343 3344 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3345 const Value *Op0 = I.getOperand(0); 3346 Type *AggTy = Op0->getType(); 3347 Type *ValTy = I.getType(); 3348 bool OutOfUndef = isa<UndefValue>(Op0); 3349 3350 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3351 3352 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3353 SmallVector<EVT, 4> ValValueVTs; 3354 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3355 3356 unsigned NumValValues = ValValueVTs.size(); 3357 3358 // Ignore a extractvalue that produces an empty object 3359 if (!NumValValues) { 3360 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3361 return; 3362 } 3363 3364 SmallVector<SDValue, 4> Values(NumValValues); 3365 3366 SDValue Agg = getValue(Op0); 3367 // Copy out the selected value(s). 3368 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3369 Values[i - LinearIndex] = 3370 OutOfUndef ? 3371 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3372 SDValue(Agg.getNode(), Agg.getResNo() + i); 3373 3374 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3375 DAG.getVTList(ValValueVTs), Values)); 3376 } 3377 3378 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3379 Value *Op0 = I.getOperand(0); 3380 // Note that the pointer operand may be a vector of pointers. Take the scalar 3381 // element which holds a pointer. 3382 Type *Ty = Op0->getType()->getScalarType(); 3383 unsigned AS = Ty->getPointerAddressSpace(); 3384 SDValue N = getValue(Op0); 3385 3386 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3387 OI != E; ++OI) { 3388 const Value *Idx = *OI; 3389 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3390 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3391 if (Field) { 3392 // N = N + Offset 3393 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3394 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3395 DAG.getConstant(Offset, N.getValueType())); 3396 } 3397 3398 Ty = StTy->getElementType(Field); 3399 } else { 3400 Ty = cast<SequentialType>(Ty)->getElementType(); 3401 MVT PtrTy = DAG.getTargetLoweringInfo().getPointerTy(AS); 3402 unsigned PtrSize = PtrTy.getSizeInBits(); 3403 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 3404 3405 // If this is a constant subscript, handle it quickly. 3406 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 3407 if (CI->isZero()) 3408 continue; 3409 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3410 SDValue OffsVal = DAG.getConstant(Offs, PtrTy); 3411 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, OffsVal); 3412 continue; 3413 } 3414 3415 // N = N + Idx * ElementSize; 3416 SDValue IdxN = getValue(Idx); 3417 3418 // If the index is smaller or larger than intptr_t, truncate or extend 3419 // it. 3420 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3421 3422 // If this is a multiply by a power of two, turn it into a shl 3423 // immediately. This is a very common case. 3424 if (ElementSize != 1) { 3425 if (ElementSize.isPowerOf2()) { 3426 unsigned Amt = ElementSize.logBase2(); 3427 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3428 N.getValueType(), IdxN, 3429 DAG.getConstant(Amt, IdxN.getValueType())); 3430 } else { 3431 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3432 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3433 N.getValueType(), IdxN, Scale); 3434 } 3435 } 3436 3437 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3438 N.getValueType(), N, IdxN); 3439 } 3440 } 3441 3442 setValue(&I, N); 3443 } 3444 3445 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3446 // If this is a fixed sized alloca in the entry block of the function, 3447 // allocate it statically on the stack. 3448 if (FuncInfo.StaticAllocaMap.count(&I)) 3449 return; // getValue will auto-populate this. 3450 3451 Type *Ty = I.getAllocatedType(); 3452 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3453 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 3454 unsigned Align = 3455 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), 3456 I.getAlignment()); 3457 3458 SDValue AllocSize = getValue(I.getArraySize()); 3459 3460 EVT IntPtr = TLI.getPointerTy(); 3461 if (AllocSize.getValueType() != IntPtr) 3462 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3463 3464 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3465 AllocSize, 3466 DAG.getConstant(TySize, IntPtr)); 3467 3468 // Handle alignment. If the requested alignment is less than or equal to 3469 // the stack alignment, ignore it. If the size is greater than or equal to 3470 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3471 unsigned StackAlign = 3472 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3473 if (Align <= StackAlign) 3474 Align = 0; 3475 3476 // Round the size of the allocation up to the stack alignment size 3477 // by add SA-1 to the size. 3478 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3479 AllocSize.getValueType(), AllocSize, 3480 DAG.getIntPtrConstant(StackAlign-1)); 3481 3482 // Mask out the low bits for alignment purposes. 3483 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3484 AllocSize.getValueType(), AllocSize, 3485 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3486 3487 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3488 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3489 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops); 3490 setValue(&I, DSA); 3491 DAG.setRoot(DSA.getValue(1)); 3492 3493 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3494 } 3495 3496 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3497 if (I.isAtomic()) 3498 return visitAtomicLoad(I); 3499 3500 const Value *SV = I.getOperand(0); 3501 SDValue Ptr = getValue(SV); 3502 3503 Type *Ty = I.getType(); 3504 3505 bool isVolatile = I.isVolatile(); 3506 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3507 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3508 unsigned Alignment = I.getAlignment(); 3509 3510 AAMDNodes AAInfo; 3511 I.getAAMetadata(AAInfo); 3512 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3513 3514 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3515 SmallVector<EVT, 4> ValueVTs; 3516 SmallVector<uint64_t, 4> Offsets; 3517 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3518 unsigned NumValues = ValueVTs.size(); 3519 if (NumValues == 0) 3520 return; 3521 3522 SDValue Root; 3523 bool ConstantMemory = false; 3524 if (isVolatile || NumValues > MaxParallelChains) 3525 // Serialize volatile loads with other side effects. 3526 Root = getRoot(); 3527 else if (AA->pointsToConstantMemory( 3528 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 3529 // Do not serialize (non-volatile) loads of constant memory with anything. 3530 Root = DAG.getEntryNode(); 3531 ConstantMemory = true; 3532 } else { 3533 // Do not serialize non-volatile loads against each other. 3534 Root = DAG.getRoot(); 3535 } 3536 3537 if (isVolatile) 3538 Root = TLI.prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG); 3539 3540 SmallVector<SDValue, 4> Values(NumValues); 3541 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3542 NumValues)); 3543 EVT PtrVT = Ptr.getValueType(); 3544 unsigned ChainI = 0; 3545 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3546 // Serializing loads here may result in excessive register pressure, and 3547 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3548 // could recover a bit by hoisting nodes upward in the chain by recognizing 3549 // they are side-effect free or do not alias. The optimizer should really 3550 // avoid this case by converting large object/array copies to llvm.memcpy 3551 // (MaxParallelChains should always remain as failsafe). 3552 if (ChainI == MaxParallelChains) { 3553 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3554 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3555 makeArrayRef(Chains.data(), ChainI)); 3556 Root = Chain; 3557 ChainI = 0; 3558 } 3559 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3560 PtrVT, Ptr, 3561 DAG.getConstant(Offsets[i], PtrVT)); 3562 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3563 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3564 isNonTemporal, isInvariant, Alignment, AAInfo, 3565 Ranges); 3566 3567 Values[i] = L; 3568 Chains[ChainI] = L.getValue(1); 3569 } 3570 3571 if (!ConstantMemory) { 3572 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3573 makeArrayRef(Chains.data(), ChainI)); 3574 if (isVolatile) 3575 DAG.setRoot(Chain); 3576 else 3577 PendingLoads.push_back(Chain); 3578 } 3579 3580 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3581 DAG.getVTList(ValueVTs), Values)); 3582 } 3583 3584 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3585 if (I.isAtomic()) 3586 return visitAtomicStore(I); 3587 3588 const Value *SrcV = I.getOperand(0); 3589 const Value *PtrV = I.getOperand(1); 3590 3591 SmallVector<EVT, 4> ValueVTs; 3592 SmallVector<uint64_t, 4> Offsets; 3593 ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(), 3594 ValueVTs, &Offsets); 3595 unsigned NumValues = ValueVTs.size(); 3596 if (NumValues == 0) 3597 return; 3598 3599 // Get the lowered operands. Note that we do this after 3600 // checking if NumResults is zero, because with zero results 3601 // the operands won't have values in the map. 3602 SDValue Src = getValue(SrcV); 3603 SDValue Ptr = getValue(PtrV); 3604 3605 SDValue Root = getRoot(); 3606 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3607 NumValues)); 3608 EVT PtrVT = Ptr.getValueType(); 3609 bool isVolatile = I.isVolatile(); 3610 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3611 unsigned Alignment = I.getAlignment(); 3612 3613 AAMDNodes AAInfo; 3614 I.getAAMetadata(AAInfo); 3615 3616 unsigned ChainI = 0; 3617 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3618 // See visitLoad comments. 3619 if (ChainI == MaxParallelChains) { 3620 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3621 makeArrayRef(Chains.data(), ChainI)); 3622 Root = Chain; 3623 ChainI = 0; 3624 } 3625 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3626 DAG.getConstant(Offsets[i], PtrVT)); 3627 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3628 SDValue(Src.getNode(), Src.getResNo() + i), 3629 Add, MachinePointerInfo(PtrV, Offsets[i]), 3630 isVolatile, isNonTemporal, Alignment, AAInfo); 3631 Chains[ChainI] = St; 3632 } 3633 3634 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3635 makeArrayRef(Chains.data(), ChainI)); 3636 DAG.setRoot(StoreNode); 3637 } 3638 3639 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3640 SDLoc sdl = getCurSDLoc(); 3641 3642 // llvm.masked.store.*(Src0, Ptr, alignemt, Mask) 3643 Value *PtrOperand = I.getArgOperand(1); 3644 SDValue Ptr = getValue(PtrOperand); 3645 SDValue Src0 = getValue(I.getArgOperand(0)); 3646 SDValue Mask = getValue(I.getArgOperand(3)); 3647 EVT VT = Src0.getValueType(); 3648 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3649 if (!Alignment) 3650 Alignment = DAG.getEVTAlignment(VT); 3651 3652 AAMDNodes AAInfo; 3653 I.getAAMetadata(AAInfo); 3654 3655 MachineMemOperand *MMO = 3656 DAG.getMachineFunction(). 3657 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3658 MachineMemOperand::MOStore, VT.getStoreSize(), 3659 Alignment, AAInfo); 3660 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3661 MMO, false); 3662 DAG.setRoot(StoreNode); 3663 setValue(&I, StoreNode); 3664 } 3665 3666 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3667 SDLoc sdl = getCurSDLoc(); 3668 3669 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3670 Value *PtrOperand = I.getArgOperand(0); 3671 SDValue Ptr = getValue(PtrOperand); 3672 SDValue Src0 = getValue(I.getArgOperand(3)); 3673 SDValue Mask = getValue(I.getArgOperand(2)); 3674 3675 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3676 EVT VT = TLI.getValueType(I.getType()); 3677 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3678 if (!Alignment) 3679 Alignment = DAG.getEVTAlignment(VT); 3680 3681 AAMDNodes AAInfo; 3682 I.getAAMetadata(AAInfo); 3683 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3684 3685 SDValue InChain = DAG.getRoot(); 3686 if (AA->pointsToConstantMemory( 3687 AliasAnalysis::Location(PtrOperand, 3688 AA->getTypeStoreSize(I.getType()), 3689 AAInfo))) { 3690 // Do not serialize (non-volatile) loads of constant memory with anything. 3691 InChain = DAG.getEntryNode(); 3692 } 3693 3694 MachineMemOperand *MMO = 3695 DAG.getMachineFunction(). 3696 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3697 MachineMemOperand::MOLoad, VT.getStoreSize(), 3698 Alignment, AAInfo, Ranges); 3699 3700 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3701 ISD::NON_EXTLOAD); 3702 SDValue OutChain = Load.getValue(1); 3703 DAG.setRoot(OutChain); 3704 setValue(&I, Load); 3705 } 3706 3707 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3708 SDLoc dl = getCurSDLoc(); 3709 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3710 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3711 SynchronizationScope Scope = I.getSynchScope(); 3712 3713 SDValue InChain = getRoot(); 3714 3715 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3716 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3717 SDValue L = DAG.getAtomicCmpSwap( 3718 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3719 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3720 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3721 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3722 3723 SDValue OutChain = L.getValue(2); 3724 3725 setValue(&I, L); 3726 DAG.setRoot(OutChain); 3727 } 3728 3729 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3730 SDLoc dl = getCurSDLoc(); 3731 ISD::NodeType NT; 3732 switch (I.getOperation()) { 3733 default: llvm_unreachable("Unknown atomicrmw operation"); 3734 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3735 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3736 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3737 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3738 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3739 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3740 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3741 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3742 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3743 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3744 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3745 } 3746 AtomicOrdering Order = I.getOrdering(); 3747 SynchronizationScope Scope = I.getSynchScope(); 3748 3749 SDValue InChain = getRoot(); 3750 3751 SDValue L = 3752 DAG.getAtomic(NT, dl, 3753 getValue(I.getValOperand()).getSimpleValueType(), 3754 InChain, 3755 getValue(I.getPointerOperand()), 3756 getValue(I.getValOperand()), 3757 I.getPointerOperand(), 3758 /* Alignment=*/ 0, Order, Scope); 3759 3760 SDValue OutChain = L.getValue(1); 3761 3762 setValue(&I, L); 3763 DAG.setRoot(OutChain); 3764 } 3765 3766 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3767 SDLoc dl = getCurSDLoc(); 3768 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3769 SDValue Ops[3]; 3770 Ops[0] = getRoot(); 3771 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); 3772 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); 3773 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3774 } 3775 3776 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3777 SDLoc dl = getCurSDLoc(); 3778 AtomicOrdering Order = I.getOrdering(); 3779 SynchronizationScope Scope = I.getSynchScope(); 3780 3781 SDValue InChain = getRoot(); 3782 3783 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3784 EVT VT = TLI.getValueType(I.getType()); 3785 3786 if (I.getAlignment() < VT.getSizeInBits() / 8) 3787 report_fatal_error("Cannot generate unaligned atomic load"); 3788 3789 MachineMemOperand *MMO = 3790 DAG.getMachineFunction(). 3791 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3792 MachineMemOperand::MOVolatile | 3793 MachineMemOperand::MOLoad, 3794 VT.getStoreSize(), 3795 I.getAlignment() ? I.getAlignment() : 3796 DAG.getEVTAlignment(VT)); 3797 3798 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3799 SDValue L = 3800 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3801 getValue(I.getPointerOperand()), MMO, 3802 Order, Scope); 3803 3804 SDValue OutChain = L.getValue(1); 3805 3806 setValue(&I, L); 3807 DAG.setRoot(OutChain); 3808 } 3809 3810 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3811 SDLoc dl = getCurSDLoc(); 3812 3813 AtomicOrdering Order = I.getOrdering(); 3814 SynchronizationScope Scope = I.getSynchScope(); 3815 3816 SDValue InChain = getRoot(); 3817 3818 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3819 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3820 3821 if (I.getAlignment() < VT.getSizeInBits() / 8) 3822 report_fatal_error("Cannot generate unaligned atomic store"); 3823 3824 SDValue OutChain = 3825 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3826 InChain, 3827 getValue(I.getPointerOperand()), 3828 getValue(I.getValueOperand()), 3829 I.getPointerOperand(), I.getAlignment(), 3830 Order, Scope); 3831 3832 DAG.setRoot(OutChain); 3833 } 3834 3835 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3836 /// node. 3837 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3838 unsigned Intrinsic) { 3839 bool HasChain = !I.doesNotAccessMemory(); 3840 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3841 3842 // Build the operand list. 3843 SmallVector<SDValue, 8> Ops; 3844 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3845 if (OnlyLoad) { 3846 // We don't need to serialize loads against other loads. 3847 Ops.push_back(DAG.getRoot()); 3848 } else { 3849 Ops.push_back(getRoot()); 3850 } 3851 } 3852 3853 // Info is set by getTgtMemInstrinsic 3854 TargetLowering::IntrinsicInfo Info; 3855 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3856 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3857 3858 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3859 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3860 Info.opc == ISD::INTRINSIC_W_CHAIN) 3861 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy())); 3862 3863 // Add all operands of the call to the operand list. 3864 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3865 SDValue Op = getValue(I.getArgOperand(i)); 3866 Ops.push_back(Op); 3867 } 3868 3869 SmallVector<EVT, 4> ValueVTs; 3870 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3871 3872 if (HasChain) 3873 ValueVTs.push_back(MVT::Other); 3874 3875 SDVTList VTs = DAG.getVTList(ValueVTs); 3876 3877 // Create the node. 3878 SDValue Result; 3879 if (IsTgtIntrinsic) { 3880 // This is target intrinsic that touches memory 3881 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3882 VTs, Ops, Info.memVT, 3883 MachinePointerInfo(Info.ptrVal, Info.offset), 3884 Info.align, Info.vol, 3885 Info.readMem, Info.writeMem, Info.size); 3886 } else if (!HasChain) { 3887 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3888 } else if (!I.getType()->isVoidTy()) { 3889 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3890 } else { 3891 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3892 } 3893 3894 if (HasChain) { 3895 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3896 if (OnlyLoad) 3897 PendingLoads.push_back(Chain); 3898 else 3899 DAG.setRoot(Chain); 3900 } 3901 3902 if (!I.getType()->isVoidTy()) { 3903 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3904 EVT VT = TLI.getValueType(PTy); 3905 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3906 } 3907 3908 setValue(&I, Result); 3909 } 3910 } 3911 3912 /// GetSignificand - Get the significand and build it into a floating-point 3913 /// number with exponent of 1: 3914 /// 3915 /// Op = (Op & 0x007fffff) | 0x3f800000; 3916 /// 3917 /// where Op is the hexadecimal representation of floating point value. 3918 static SDValue 3919 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3920 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3921 DAG.getConstant(0x007fffff, MVT::i32)); 3922 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3923 DAG.getConstant(0x3f800000, MVT::i32)); 3924 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3925 } 3926 3927 /// GetExponent - Get the exponent: 3928 /// 3929 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3930 /// 3931 /// where Op is the hexadecimal representation of floating point value. 3932 static SDValue 3933 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3934 SDLoc dl) { 3935 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3936 DAG.getConstant(0x7f800000, MVT::i32)); 3937 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3938 DAG.getConstant(23, TLI.getPointerTy())); 3939 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3940 DAG.getConstant(127, MVT::i32)); 3941 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3942 } 3943 3944 /// getF32Constant - Get 32-bit floating point constant. 3945 static SDValue 3946 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3947 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3948 MVT::f32); 3949 } 3950 3951 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3952 SelectionDAG &DAG) { 3953 // IntegerPartOfX = ((int32_t)(t0); 3954 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3955 3956 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3957 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3958 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3959 3960 // IntegerPartOfX <<= 23; 3961 IntegerPartOfX = DAG.getNode( 3962 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3963 DAG.getConstant(23, DAG.getTargetLoweringInfo().getPointerTy())); 3964 3965 SDValue TwoToFractionalPartOfX; 3966 if (LimitFloatPrecision <= 6) { 3967 // For floating-point precision of 6: 3968 // 3969 // TwoToFractionalPartOfX = 3970 // 0.997535578f + 3971 // (0.735607626f + 0.252464424f * x) * x; 3972 // 3973 // error 0.0144103317, which is 6 bits 3974 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3975 getF32Constant(DAG, 0x3e814304)); 3976 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3977 getF32Constant(DAG, 0x3f3c50c8)); 3978 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3979 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3980 getF32Constant(DAG, 0x3f7f5e7e)); 3981 } else if (LimitFloatPrecision <= 12) { 3982 // For floating-point precision of 12: 3983 // 3984 // TwoToFractionalPartOfX = 3985 // 0.999892986f + 3986 // (0.696457318f + 3987 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3988 // 3989 // error 0.000107046256, which is 13 to 14 bits 3990 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3991 getF32Constant(DAG, 0x3da235e3)); 3992 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3993 getF32Constant(DAG, 0x3e65b8f3)); 3994 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3995 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3996 getF32Constant(DAG, 0x3f324b07)); 3997 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3998 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3999 getF32Constant(DAG, 0x3f7ff8fd)); 4000 } else { // LimitFloatPrecision <= 18 4001 // For floating-point precision of 18: 4002 // 4003 // TwoToFractionalPartOfX = 4004 // 0.999999982f + 4005 // (0.693148872f + 4006 // (0.240227044f + 4007 // (0.554906021e-1f + 4008 // (0.961591928e-2f + 4009 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4010 // error 2.47208000*10^(-7), which is better than 18 bits 4011 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4012 getF32Constant(DAG, 0x3924b03e)); 4013 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4014 getF32Constant(DAG, 0x3ab24b87)); 4015 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4016 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4017 getF32Constant(DAG, 0x3c1d8c17)); 4018 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4019 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4020 getF32Constant(DAG, 0x3d634a1d)); 4021 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4022 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4023 getF32Constant(DAG, 0x3e75fe14)); 4024 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4025 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4026 getF32Constant(DAG, 0x3f317234)); 4027 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4028 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4029 getF32Constant(DAG, 0x3f800000)); 4030 } 4031 4032 // Add the exponent into the result in integer domain. 4033 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4034 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4035 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4036 } 4037 4038 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4039 /// limited-precision mode. 4040 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4041 const TargetLowering &TLI) { 4042 if (Op.getValueType() == MVT::f32 && 4043 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4044 4045 // Put the exponent in the right bit position for later addition to the 4046 // final result: 4047 // 4048 // #define LOG2OFe 1.4426950f 4049 // t0 = Op * LOG2OFe 4050 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4051 getF32Constant(DAG, 0x3fb8aa3b)); 4052 return getLimitedPrecisionExp2(t0, dl, DAG); 4053 } 4054 4055 // No special expansion. 4056 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4057 } 4058 4059 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4060 /// limited-precision mode. 4061 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4062 const TargetLowering &TLI) { 4063 if (Op.getValueType() == MVT::f32 && 4064 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4065 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4066 4067 // Scale the exponent by log(2) [0.69314718f]. 4068 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4069 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4070 getF32Constant(DAG, 0x3f317218)); 4071 4072 // Get the significand and build it into a floating-point number with 4073 // exponent of 1. 4074 SDValue X = GetSignificand(DAG, Op1, dl); 4075 4076 SDValue LogOfMantissa; 4077 if (LimitFloatPrecision <= 6) { 4078 // For floating-point precision of 6: 4079 // 4080 // LogofMantissa = 4081 // -1.1609546f + 4082 // (1.4034025f - 0.23903021f * x) * x; 4083 // 4084 // error 0.0034276066, which is better than 8 bits 4085 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4086 getF32Constant(DAG, 0xbe74c456)); 4087 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4088 getF32Constant(DAG, 0x3fb3a2b1)); 4089 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4090 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4091 getF32Constant(DAG, 0x3f949a29)); 4092 } else if (LimitFloatPrecision <= 12) { 4093 // For floating-point precision of 12: 4094 // 4095 // LogOfMantissa = 4096 // -1.7417939f + 4097 // (2.8212026f + 4098 // (-1.4699568f + 4099 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4100 // 4101 // error 0.000061011436, which is 14 bits 4102 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4103 getF32Constant(DAG, 0xbd67b6d6)); 4104 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4105 getF32Constant(DAG, 0x3ee4f4b8)); 4106 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4107 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4108 getF32Constant(DAG, 0x3fbc278b)); 4109 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4110 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4111 getF32Constant(DAG, 0x40348e95)); 4112 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4113 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4114 getF32Constant(DAG, 0x3fdef31a)); 4115 } else { // LimitFloatPrecision <= 18 4116 // For floating-point precision of 18: 4117 // 4118 // LogOfMantissa = 4119 // -2.1072184f + 4120 // (4.2372794f + 4121 // (-3.7029485f + 4122 // (2.2781945f + 4123 // (-0.87823314f + 4124 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4125 // 4126 // error 0.0000023660568, which is better than 18 bits 4127 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4128 getF32Constant(DAG, 0xbc91e5ac)); 4129 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4130 getF32Constant(DAG, 0x3e4350aa)); 4131 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4132 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4133 getF32Constant(DAG, 0x3f60d3e3)); 4134 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4135 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4136 getF32Constant(DAG, 0x4011cdf0)); 4137 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4138 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4139 getF32Constant(DAG, 0x406cfd1c)); 4140 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4141 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4142 getF32Constant(DAG, 0x408797cb)); 4143 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4144 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4145 getF32Constant(DAG, 0x4006dcab)); 4146 } 4147 4148 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4149 } 4150 4151 // No special expansion. 4152 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4153 } 4154 4155 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4156 /// limited-precision mode. 4157 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4158 const TargetLowering &TLI) { 4159 if (Op.getValueType() == MVT::f32 && 4160 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4161 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4162 4163 // Get the exponent. 4164 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4165 4166 // Get the significand and build it into a floating-point number with 4167 // exponent of 1. 4168 SDValue X = GetSignificand(DAG, Op1, dl); 4169 4170 // Different possible minimax approximations of significand in 4171 // floating-point for various degrees of accuracy over [1,2]. 4172 SDValue Log2ofMantissa; 4173 if (LimitFloatPrecision <= 6) { 4174 // For floating-point precision of 6: 4175 // 4176 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4177 // 4178 // error 0.0049451742, which is more than 7 bits 4179 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4180 getF32Constant(DAG, 0xbeb08fe0)); 4181 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4182 getF32Constant(DAG, 0x40019463)); 4183 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4184 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4185 getF32Constant(DAG, 0x3fd6633d)); 4186 } else if (LimitFloatPrecision <= 12) { 4187 // For floating-point precision of 12: 4188 // 4189 // Log2ofMantissa = 4190 // -2.51285454f + 4191 // (4.07009056f + 4192 // (-2.12067489f + 4193 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4194 // 4195 // error 0.0000876136000, which is better than 13 bits 4196 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4197 getF32Constant(DAG, 0xbda7262e)); 4198 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4199 getF32Constant(DAG, 0x3f25280b)); 4200 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4201 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4202 getF32Constant(DAG, 0x4007b923)); 4203 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4204 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4205 getF32Constant(DAG, 0x40823e2f)); 4206 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4207 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4208 getF32Constant(DAG, 0x4020d29c)); 4209 } else { // LimitFloatPrecision <= 18 4210 // For floating-point precision of 18: 4211 // 4212 // Log2ofMantissa = 4213 // -3.0400495f + 4214 // (6.1129976f + 4215 // (-5.3420409f + 4216 // (3.2865683f + 4217 // (-1.2669343f + 4218 // (0.27515199f - 4219 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4220 // 4221 // error 0.0000018516, which is better than 18 bits 4222 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4223 getF32Constant(DAG, 0xbcd2769e)); 4224 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4225 getF32Constant(DAG, 0x3e8ce0b9)); 4226 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4227 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4228 getF32Constant(DAG, 0x3fa22ae7)); 4229 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4230 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4231 getF32Constant(DAG, 0x40525723)); 4232 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4233 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4234 getF32Constant(DAG, 0x40aaf200)); 4235 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4236 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4237 getF32Constant(DAG, 0x40c39dad)); 4238 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4239 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4240 getF32Constant(DAG, 0x4042902c)); 4241 } 4242 4243 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4244 } 4245 4246 // No special expansion. 4247 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4248 } 4249 4250 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4251 /// limited-precision mode. 4252 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4253 const TargetLowering &TLI) { 4254 if (Op.getValueType() == MVT::f32 && 4255 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4256 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4257 4258 // Scale the exponent by log10(2) [0.30102999f]. 4259 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4260 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4261 getF32Constant(DAG, 0x3e9a209a)); 4262 4263 // Get the significand and build it into a floating-point number with 4264 // exponent of 1. 4265 SDValue X = GetSignificand(DAG, Op1, dl); 4266 4267 SDValue Log10ofMantissa; 4268 if (LimitFloatPrecision <= 6) { 4269 // For floating-point precision of 6: 4270 // 4271 // Log10ofMantissa = 4272 // -0.50419619f + 4273 // (0.60948995f - 0.10380950f * x) * x; 4274 // 4275 // error 0.0014886165, which is 6 bits 4276 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4277 getF32Constant(DAG, 0xbdd49a13)); 4278 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4279 getF32Constant(DAG, 0x3f1c0789)); 4280 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4281 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4282 getF32Constant(DAG, 0x3f011300)); 4283 } else if (LimitFloatPrecision <= 12) { 4284 // For floating-point precision of 12: 4285 // 4286 // Log10ofMantissa = 4287 // -0.64831180f + 4288 // (0.91751397f + 4289 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4290 // 4291 // error 0.00019228036, which is better than 12 bits 4292 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4293 getF32Constant(DAG, 0x3d431f31)); 4294 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4295 getF32Constant(DAG, 0x3ea21fb2)); 4296 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4297 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4298 getF32Constant(DAG, 0x3f6ae232)); 4299 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4300 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4301 getF32Constant(DAG, 0x3f25f7c3)); 4302 } else { // LimitFloatPrecision <= 18 4303 // For floating-point precision of 18: 4304 // 4305 // Log10ofMantissa = 4306 // -0.84299375f + 4307 // (1.5327582f + 4308 // (-1.0688956f + 4309 // (0.49102474f + 4310 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4311 // 4312 // error 0.0000037995730, which is better than 18 bits 4313 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4314 getF32Constant(DAG, 0x3c5d51ce)); 4315 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4316 getF32Constant(DAG, 0x3e00685a)); 4317 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4318 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4319 getF32Constant(DAG, 0x3efb6798)); 4320 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4321 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4322 getF32Constant(DAG, 0x3f88d192)); 4323 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4324 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4325 getF32Constant(DAG, 0x3fc4316c)); 4326 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4327 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4328 getF32Constant(DAG, 0x3f57ce70)); 4329 } 4330 4331 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4332 } 4333 4334 // No special expansion. 4335 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4336 } 4337 4338 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4339 /// limited-precision mode. 4340 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4341 const TargetLowering &TLI) { 4342 if (Op.getValueType() == MVT::f32 && 4343 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4344 return getLimitedPrecisionExp2(Op, dl, DAG); 4345 4346 // No special expansion. 4347 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4348 } 4349 4350 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4351 /// limited-precision mode with x == 10.0f. 4352 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4353 SelectionDAG &DAG, const TargetLowering &TLI) { 4354 bool IsExp10 = false; 4355 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4356 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4357 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4358 APFloat Ten(10.0f); 4359 IsExp10 = LHSC->isExactlyValue(Ten); 4360 } 4361 } 4362 4363 if (IsExp10) { 4364 // Put the exponent in the right bit position for later addition to the 4365 // final result: 4366 // 4367 // #define LOG2OF10 3.3219281f 4368 // t0 = Op * LOG2OF10; 4369 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4370 getF32Constant(DAG, 0x40549a78)); 4371 return getLimitedPrecisionExp2(t0, dl, DAG); 4372 } 4373 4374 // No special expansion. 4375 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4376 } 4377 4378 4379 /// ExpandPowI - Expand a llvm.powi intrinsic. 4380 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4381 SelectionDAG &DAG) { 4382 // If RHS is a constant, we can expand this out to a multiplication tree, 4383 // otherwise we end up lowering to a call to __powidf2 (for example). When 4384 // optimizing for size, we only want to do this if the expansion would produce 4385 // a small number of multiplies, otherwise we do the full expansion. 4386 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4387 // Get the exponent as a positive value. 4388 unsigned Val = RHSC->getSExtValue(); 4389 if ((int)Val < 0) Val = -Val; 4390 4391 // powi(x, 0) -> 1.0 4392 if (Val == 0) 4393 return DAG.getConstantFP(1.0, LHS.getValueType()); 4394 4395 const Function *F = DAG.getMachineFunction().getFunction(); 4396 if (!F->hasFnAttribute(Attribute::OptimizeForSize) || 4397 // If optimizing for size, don't insert too many multiplies. This 4398 // inserts up to 5 multiplies. 4399 countPopulation(Val) + Log2_32(Val) < 7) { 4400 // We use the simple binary decomposition method to generate the multiply 4401 // sequence. There are more optimal ways to do this (for example, 4402 // powi(x,15) generates one more multiply than it should), but this has 4403 // the benefit of being both really simple and much better than a libcall. 4404 SDValue Res; // Logically starts equal to 1.0 4405 SDValue CurSquare = LHS; 4406 while (Val) { 4407 if (Val & 1) { 4408 if (Res.getNode()) 4409 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4410 else 4411 Res = CurSquare; // 1.0*CurSquare. 4412 } 4413 4414 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4415 CurSquare, CurSquare); 4416 Val >>= 1; 4417 } 4418 4419 // If the original was negative, invert the result, producing 1/(x*x*x). 4420 if (RHSC->getSExtValue() < 0) 4421 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4422 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4423 return Res; 4424 } 4425 } 4426 4427 // Otherwise, expand to a libcall. 4428 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4429 } 4430 4431 // getTruncatedArgReg - Find underlying register used for an truncated 4432 // argument. 4433 static unsigned getTruncatedArgReg(const SDValue &N) { 4434 if (N.getOpcode() != ISD::TRUNCATE) 4435 return 0; 4436 4437 const SDValue &Ext = N.getOperand(0); 4438 if (Ext.getOpcode() == ISD::AssertZext || 4439 Ext.getOpcode() == ISD::AssertSext) { 4440 const SDValue &CFR = Ext.getOperand(0); 4441 if (CFR.getOpcode() == ISD::CopyFromReg) 4442 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4443 if (CFR.getOpcode() == ISD::TRUNCATE) 4444 return getTruncatedArgReg(CFR); 4445 } 4446 return 0; 4447 } 4448 4449 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4450 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4451 /// At the end of instruction selection, they will be inserted to the entry BB. 4452 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, 4453 MDNode *Variable, 4454 MDNode *Expr, int64_t Offset, 4455 bool IsIndirect, 4456 const SDValue &N) { 4457 const Argument *Arg = dyn_cast<Argument>(V); 4458 if (!Arg) 4459 return false; 4460 4461 MachineFunction &MF = DAG.getMachineFunction(); 4462 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4463 4464 // Ignore inlined function arguments here. 4465 DIVariable DV(Variable); 4466 if (DV.isInlinedFnArgument(MF.getFunction())) 4467 return false; 4468 4469 Optional<MachineOperand> Op; 4470 // Some arguments' frame index is recorded during argument lowering. 4471 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4472 Op = MachineOperand::CreateFI(FI); 4473 4474 if (!Op && N.getNode()) { 4475 unsigned Reg; 4476 if (N.getOpcode() == ISD::CopyFromReg) 4477 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4478 else 4479 Reg = getTruncatedArgReg(N); 4480 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4481 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4482 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4483 if (PR) 4484 Reg = PR; 4485 } 4486 if (Reg) 4487 Op = MachineOperand::CreateReg(Reg, false); 4488 } 4489 4490 if (!Op) { 4491 // Check if ValueMap has reg number. 4492 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4493 if (VMI != FuncInfo.ValueMap.end()) 4494 Op = MachineOperand::CreateReg(VMI->second, false); 4495 } 4496 4497 if (!Op && N.getNode()) 4498 // Check if frame index is available. 4499 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4500 if (FrameIndexSDNode *FINode = 4501 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4502 Op = MachineOperand::CreateFI(FINode->getIndex()); 4503 4504 if (!Op) 4505 return false; 4506 4507 if (Op->isReg()) 4508 FuncInfo.ArgDbgValues.push_back( 4509 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE), 4510 IsIndirect, Op->getReg(), Offset, Variable, Expr)); 4511 else 4512 FuncInfo.ArgDbgValues.push_back( 4513 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) 4514 .addOperand(*Op) 4515 .addImm(Offset) 4516 .addMetadata(Variable) 4517 .addMetadata(Expr)); 4518 4519 return true; 4520 } 4521 4522 // VisualStudio defines setjmp as _setjmp 4523 #if defined(_MSC_VER) && defined(setjmp) && \ 4524 !defined(setjmp_undefined_for_msvc) 4525 # pragma push_macro("setjmp") 4526 # undef setjmp 4527 # define setjmp_undefined_for_msvc 4528 #endif 4529 4530 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4531 /// we want to emit this as a call to a named external function, return the name 4532 /// otherwise lower it and return null. 4533 const char * 4534 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4535 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4536 SDLoc sdl = getCurSDLoc(); 4537 DebugLoc dl = getCurDebugLoc(); 4538 SDValue Res; 4539 4540 switch (Intrinsic) { 4541 default: 4542 // By default, turn this into a target intrinsic node. 4543 visitTargetIntrinsic(I, Intrinsic); 4544 return nullptr; 4545 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4546 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4547 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4548 case Intrinsic::returnaddress: 4549 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(), 4550 getValue(I.getArgOperand(0)))); 4551 return nullptr; 4552 case Intrinsic::frameaddress: 4553 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4554 getValue(I.getArgOperand(0)))); 4555 return nullptr; 4556 case Intrinsic::read_register: { 4557 Value *Reg = I.getArgOperand(0); 4558 SDValue RegName = 4559 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4560 EVT VT = TLI.getValueType(I.getType()); 4561 setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName)); 4562 return nullptr; 4563 } 4564 case Intrinsic::write_register: { 4565 Value *Reg = I.getArgOperand(0); 4566 Value *RegValue = I.getArgOperand(1); 4567 SDValue Chain = getValue(RegValue).getOperand(0); 4568 SDValue RegName = 4569 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4570 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4571 RegName, getValue(RegValue))); 4572 return nullptr; 4573 } 4574 case Intrinsic::setjmp: 4575 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4576 case Intrinsic::longjmp: 4577 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4578 case Intrinsic::memcpy: { 4579 // FIXME: this definition of "user defined address space" is x86-specific 4580 // Assert for address < 256 since we support only user defined address 4581 // spaces. 4582 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4583 < 256 && 4584 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4585 < 256 && 4586 "Unknown address space"); 4587 SDValue Op1 = getValue(I.getArgOperand(0)); 4588 SDValue Op2 = getValue(I.getArgOperand(1)); 4589 SDValue Op3 = getValue(I.getArgOperand(2)); 4590 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4591 if (!Align) 4592 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4593 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4594 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, 4595 MachinePointerInfo(I.getArgOperand(0)), 4596 MachinePointerInfo(I.getArgOperand(1)))); 4597 return nullptr; 4598 } 4599 case Intrinsic::memset: { 4600 // FIXME: this definition of "user defined address space" is x86-specific 4601 // Assert for address < 256 since we support only user defined address 4602 // spaces. 4603 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4604 < 256 && 4605 "Unknown address space"); 4606 SDValue Op1 = getValue(I.getArgOperand(0)); 4607 SDValue Op2 = getValue(I.getArgOperand(1)); 4608 SDValue Op3 = getValue(I.getArgOperand(2)); 4609 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4610 if (!Align) 4611 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4612 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4613 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4614 MachinePointerInfo(I.getArgOperand(0)))); 4615 return nullptr; 4616 } 4617 case Intrinsic::memmove: { 4618 // FIXME: this definition of "user defined address space" is x86-specific 4619 // Assert for address < 256 since we support only user defined address 4620 // spaces. 4621 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4622 < 256 && 4623 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4624 < 256 && 4625 "Unknown address space"); 4626 SDValue Op1 = getValue(I.getArgOperand(0)); 4627 SDValue Op2 = getValue(I.getArgOperand(1)); 4628 SDValue Op3 = getValue(I.getArgOperand(2)); 4629 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4630 if (!Align) 4631 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4632 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4633 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4634 MachinePointerInfo(I.getArgOperand(0)), 4635 MachinePointerInfo(I.getArgOperand(1)))); 4636 return nullptr; 4637 } 4638 case Intrinsic::dbg_declare: { 4639 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4640 MDNode *Variable = DI.getVariable(); 4641 MDNode *Expression = DI.getExpression(); 4642 const Value *Address = DI.getAddress(); 4643 DIVariable DIVar(Variable); 4644 assert((!DIVar || DIVar.isVariable()) && 4645 "Variable in DbgDeclareInst should be either null or a DIVariable."); 4646 if (!Address || !DIVar) { 4647 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4648 return nullptr; 4649 } 4650 4651 // Check if address has undef value. 4652 if (isa<UndefValue>(Address) || 4653 (Address->use_empty() && !isa<Argument>(Address))) { 4654 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4655 return nullptr; 4656 } 4657 4658 SDValue &N = NodeMap[Address]; 4659 if (!N.getNode() && isa<Argument>(Address)) 4660 // Check unused arguments map. 4661 N = UnusedArgNodeMap[Address]; 4662 SDDbgValue *SDV; 4663 if (N.getNode()) { 4664 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4665 Address = BCI->getOperand(0); 4666 // Parameters are handled specially. 4667 bool isParameter = 4668 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4669 isa<Argument>(Address)); 4670 4671 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4672 4673 if (isParameter && !AI) { 4674 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4675 if (FINode) 4676 // Byval parameter. We have a frame index at this point. 4677 SDV = DAG.getFrameIndexDbgValue( 4678 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4679 else { 4680 // Address is an argument, so try to emit its dbg value using 4681 // virtual register info from the FuncInfo.ValueMap. 4682 EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false, N); 4683 return nullptr; 4684 } 4685 } else if (AI) 4686 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4687 true, 0, dl, SDNodeOrder); 4688 else { 4689 // Can't do anything with other non-AI cases yet. 4690 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4691 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4692 DEBUG(Address->dump()); 4693 return nullptr; 4694 } 4695 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4696 } else { 4697 // If Address is an argument then try to emit its dbg value using 4698 // virtual register info from the FuncInfo.ValueMap. 4699 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false, 4700 N)) { 4701 // If variable is pinned by a alloca in dominating bb then 4702 // use StaticAllocaMap. 4703 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4704 if (AI->getParent() != DI.getParent()) { 4705 DenseMap<const AllocaInst*, int>::iterator SI = 4706 FuncInfo.StaticAllocaMap.find(AI); 4707 if (SI != FuncInfo.StaticAllocaMap.end()) { 4708 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4709 0, dl, SDNodeOrder); 4710 DAG.AddDbgValue(SDV, nullptr, false); 4711 return nullptr; 4712 } 4713 } 4714 } 4715 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4716 } 4717 } 4718 return nullptr; 4719 } 4720 case Intrinsic::dbg_value: { 4721 const DbgValueInst &DI = cast<DbgValueInst>(I); 4722 DIVariable DIVar(DI.getVariable()); 4723 assert((!DIVar || DIVar.isVariable()) && 4724 "Variable in DbgValueInst should be either null or a DIVariable."); 4725 if (!DIVar) 4726 return nullptr; 4727 4728 MDNode *Variable = DI.getVariable(); 4729 MDNode *Expression = DI.getExpression(); 4730 uint64_t Offset = DI.getOffset(); 4731 const Value *V = DI.getValue(); 4732 if (!V) 4733 return nullptr; 4734 4735 SDDbgValue *SDV; 4736 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4737 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4738 SDNodeOrder); 4739 DAG.AddDbgValue(SDV, nullptr, false); 4740 } else { 4741 // Do not use getValue() in here; we don't want to generate code at 4742 // this point if it hasn't been done yet. 4743 SDValue N = NodeMap[V]; 4744 if (!N.getNode() && isa<Argument>(V)) 4745 // Check unused arguments map. 4746 N = UnusedArgNodeMap[V]; 4747 if (N.getNode()) { 4748 // A dbg.value for an alloca is always indirect. 4749 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4750 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, Offset, 4751 IsIndirect, N)) { 4752 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4753 IsIndirect, Offset, dl, SDNodeOrder); 4754 DAG.AddDbgValue(SDV, N.getNode(), false); 4755 } 4756 } else if (!V->use_empty() ) { 4757 // Do not call getValue(V) yet, as we don't want to generate code. 4758 // Remember it for later. 4759 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4760 DanglingDebugInfoMap[V] = DDI; 4761 } else { 4762 // We may expand this to cover more cases. One case where we have no 4763 // data available is an unreferenced parameter. 4764 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4765 } 4766 } 4767 4768 // Build a debug info table entry. 4769 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4770 V = BCI->getOperand(0); 4771 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4772 // Don't handle byval struct arguments or VLAs, for example. 4773 if (!AI) { 4774 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4775 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4776 return nullptr; 4777 } 4778 DenseMap<const AllocaInst*, int>::iterator SI = 4779 FuncInfo.StaticAllocaMap.find(AI); 4780 if (SI == FuncInfo.StaticAllocaMap.end()) 4781 return nullptr; // VLAs. 4782 return nullptr; 4783 } 4784 4785 case Intrinsic::eh_typeid_for: { 4786 // Find the type id for the given typeinfo. 4787 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4788 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4789 Res = DAG.getConstant(TypeID, MVT::i32); 4790 setValue(&I, Res); 4791 return nullptr; 4792 } 4793 4794 case Intrinsic::eh_return_i32: 4795 case Intrinsic::eh_return_i64: 4796 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4797 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4798 MVT::Other, 4799 getControlRoot(), 4800 getValue(I.getArgOperand(0)), 4801 getValue(I.getArgOperand(1)))); 4802 return nullptr; 4803 case Intrinsic::eh_unwind_init: 4804 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4805 return nullptr; 4806 case Intrinsic::eh_dwarf_cfa: { 4807 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4808 TLI.getPointerTy()); 4809 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4810 CfaArg.getValueType(), 4811 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4812 CfaArg.getValueType()), 4813 CfaArg); 4814 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4815 DAG.getConstant(0, TLI.getPointerTy())); 4816 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4817 FA, Offset)); 4818 return nullptr; 4819 } 4820 case Intrinsic::eh_sjlj_callsite: { 4821 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4822 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4823 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4824 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4825 4826 MMI.setCurrentCallSite(CI->getZExtValue()); 4827 return nullptr; 4828 } 4829 case Intrinsic::eh_sjlj_functioncontext: { 4830 // Get and store the index of the function context. 4831 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4832 AllocaInst *FnCtx = 4833 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4834 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4835 MFI->setFunctionContextIndex(FI); 4836 return nullptr; 4837 } 4838 case Intrinsic::eh_sjlj_setjmp: { 4839 SDValue Ops[2]; 4840 Ops[0] = getRoot(); 4841 Ops[1] = getValue(I.getArgOperand(0)); 4842 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4843 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4844 setValue(&I, Op.getValue(0)); 4845 DAG.setRoot(Op.getValue(1)); 4846 return nullptr; 4847 } 4848 case Intrinsic::eh_sjlj_longjmp: { 4849 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4850 getRoot(), getValue(I.getArgOperand(0)))); 4851 return nullptr; 4852 } 4853 4854 case Intrinsic::masked_load: 4855 visitMaskedLoad(I); 4856 return nullptr; 4857 case Intrinsic::masked_store: 4858 visitMaskedStore(I); 4859 return nullptr; 4860 case Intrinsic::x86_mmx_pslli_w: 4861 case Intrinsic::x86_mmx_pslli_d: 4862 case Intrinsic::x86_mmx_pslli_q: 4863 case Intrinsic::x86_mmx_psrli_w: 4864 case Intrinsic::x86_mmx_psrli_d: 4865 case Intrinsic::x86_mmx_psrli_q: 4866 case Intrinsic::x86_mmx_psrai_w: 4867 case Intrinsic::x86_mmx_psrai_d: { 4868 SDValue ShAmt = getValue(I.getArgOperand(1)); 4869 if (isa<ConstantSDNode>(ShAmt)) { 4870 visitTargetIntrinsic(I, Intrinsic); 4871 return nullptr; 4872 } 4873 unsigned NewIntrinsic = 0; 4874 EVT ShAmtVT = MVT::v2i32; 4875 switch (Intrinsic) { 4876 case Intrinsic::x86_mmx_pslli_w: 4877 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4878 break; 4879 case Intrinsic::x86_mmx_pslli_d: 4880 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4881 break; 4882 case Intrinsic::x86_mmx_pslli_q: 4883 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4884 break; 4885 case Intrinsic::x86_mmx_psrli_w: 4886 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4887 break; 4888 case Intrinsic::x86_mmx_psrli_d: 4889 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4890 break; 4891 case Intrinsic::x86_mmx_psrli_q: 4892 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4893 break; 4894 case Intrinsic::x86_mmx_psrai_w: 4895 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4896 break; 4897 case Intrinsic::x86_mmx_psrai_d: 4898 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4899 break; 4900 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4901 } 4902 4903 // The vector shift intrinsics with scalars uses 32b shift amounts but 4904 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4905 // to be zero. 4906 // We must do this early because v2i32 is not a legal type. 4907 SDValue ShOps[2]; 4908 ShOps[0] = ShAmt; 4909 ShOps[1] = DAG.getConstant(0, MVT::i32); 4910 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4911 EVT DestVT = TLI.getValueType(I.getType()); 4912 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4913 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4914 DAG.getConstant(NewIntrinsic, MVT::i32), 4915 getValue(I.getArgOperand(0)), ShAmt); 4916 setValue(&I, Res); 4917 return nullptr; 4918 } 4919 case Intrinsic::convertff: 4920 case Intrinsic::convertfsi: 4921 case Intrinsic::convertfui: 4922 case Intrinsic::convertsif: 4923 case Intrinsic::convertuif: 4924 case Intrinsic::convertss: 4925 case Intrinsic::convertsu: 4926 case Intrinsic::convertus: 4927 case Intrinsic::convertuu: { 4928 ISD::CvtCode Code = ISD::CVT_INVALID; 4929 switch (Intrinsic) { 4930 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4931 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4932 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4933 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4934 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4935 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4936 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4937 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4938 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4939 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4940 } 4941 EVT DestVT = TLI.getValueType(I.getType()); 4942 const Value *Op1 = I.getArgOperand(0); 4943 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4944 DAG.getValueType(DestVT), 4945 DAG.getValueType(getValue(Op1).getValueType()), 4946 getValue(I.getArgOperand(1)), 4947 getValue(I.getArgOperand(2)), 4948 Code); 4949 setValue(&I, Res); 4950 return nullptr; 4951 } 4952 case Intrinsic::powi: 4953 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4954 getValue(I.getArgOperand(1)), DAG)); 4955 return nullptr; 4956 case Intrinsic::log: 4957 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4958 return nullptr; 4959 case Intrinsic::log2: 4960 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4961 return nullptr; 4962 case Intrinsic::log10: 4963 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4964 return nullptr; 4965 case Intrinsic::exp: 4966 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4967 return nullptr; 4968 case Intrinsic::exp2: 4969 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4970 return nullptr; 4971 case Intrinsic::pow: 4972 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4973 getValue(I.getArgOperand(1)), DAG, TLI)); 4974 return nullptr; 4975 case Intrinsic::sqrt: 4976 case Intrinsic::fabs: 4977 case Intrinsic::sin: 4978 case Intrinsic::cos: 4979 case Intrinsic::floor: 4980 case Intrinsic::ceil: 4981 case Intrinsic::trunc: 4982 case Intrinsic::rint: 4983 case Intrinsic::nearbyint: 4984 case Intrinsic::round: { 4985 unsigned Opcode; 4986 switch (Intrinsic) { 4987 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4988 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4989 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4990 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4991 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4992 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4993 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4994 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4995 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4996 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4997 case Intrinsic::round: Opcode = ISD::FROUND; break; 4998 } 4999 5000 setValue(&I, DAG.getNode(Opcode, sdl, 5001 getValue(I.getArgOperand(0)).getValueType(), 5002 getValue(I.getArgOperand(0)))); 5003 return nullptr; 5004 } 5005 case Intrinsic::minnum: 5006 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 5007 getValue(I.getArgOperand(0)).getValueType(), 5008 getValue(I.getArgOperand(0)), 5009 getValue(I.getArgOperand(1)))); 5010 return nullptr; 5011 case Intrinsic::maxnum: 5012 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 5013 getValue(I.getArgOperand(0)).getValueType(), 5014 getValue(I.getArgOperand(0)), 5015 getValue(I.getArgOperand(1)))); 5016 return nullptr; 5017 case Intrinsic::copysign: 5018 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5019 getValue(I.getArgOperand(0)).getValueType(), 5020 getValue(I.getArgOperand(0)), 5021 getValue(I.getArgOperand(1)))); 5022 return nullptr; 5023 case Intrinsic::fma: 5024 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5025 getValue(I.getArgOperand(0)).getValueType(), 5026 getValue(I.getArgOperand(0)), 5027 getValue(I.getArgOperand(1)), 5028 getValue(I.getArgOperand(2)))); 5029 return nullptr; 5030 case Intrinsic::fmuladd: { 5031 EVT VT = TLI.getValueType(I.getType()); 5032 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5033 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5034 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5035 getValue(I.getArgOperand(0)).getValueType(), 5036 getValue(I.getArgOperand(0)), 5037 getValue(I.getArgOperand(1)), 5038 getValue(I.getArgOperand(2)))); 5039 } else { 5040 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5041 getValue(I.getArgOperand(0)).getValueType(), 5042 getValue(I.getArgOperand(0)), 5043 getValue(I.getArgOperand(1))); 5044 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5045 getValue(I.getArgOperand(0)).getValueType(), 5046 Mul, 5047 getValue(I.getArgOperand(2))); 5048 setValue(&I, Add); 5049 } 5050 return nullptr; 5051 } 5052 case Intrinsic::convert_to_fp16: 5053 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5054 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5055 getValue(I.getArgOperand(0)), 5056 DAG.getTargetConstant(0, MVT::i32)))); 5057 return nullptr; 5058 case Intrinsic::convert_from_fp16: 5059 setValue(&I, 5060 DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()), 5061 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5062 getValue(I.getArgOperand(0))))); 5063 return nullptr; 5064 case Intrinsic::pcmarker: { 5065 SDValue Tmp = getValue(I.getArgOperand(0)); 5066 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5067 return nullptr; 5068 } 5069 case Intrinsic::readcyclecounter: { 5070 SDValue Op = getRoot(); 5071 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5072 DAG.getVTList(MVT::i64, MVT::Other), Op); 5073 setValue(&I, Res); 5074 DAG.setRoot(Res.getValue(1)); 5075 return nullptr; 5076 } 5077 case Intrinsic::bswap: 5078 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5079 getValue(I.getArgOperand(0)).getValueType(), 5080 getValue(I.getArgOperand(0)))); 5081 return nullptr; 5082 case Intrinsic::cttz: { 5083 SDValue Arg = getValue(I.getArgOperand(0)); 5084 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5085 EVT Ty = Arg.getValueType(); 5086 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5087 sdl, Ty, Arg)); 5088 return nullptr; 5089 } 5090 case Intrinsic::ctlz: { 5091 SDValue Arg = getValue(I.getArgOperand(0)); 5092 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5093 EVT Ty = Arg.getValueType(); 5094 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5095 sdl, Ty, Arg)); 5096 return nullptr; 5097 } 5098 case Intrinsic::ctpop: { 5099 SDValue Arg = getValue(I.getArgOperand(0)); 5100 EVT Ty = Arg.getValueType(); 5101 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5102 return nullptr; 5103 } 5104 case Intrinsic::stacksave: { 5105 SDValue Op = getRoot(); 5106 Res = DAG.getNode(ISD::STACKSAVE, sdl, 5107 DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op); 5108 setValue(&I, Res); 5109 DAG.setRoot(Res.getValue(1)); 5110 return nullptr; 5111 } 5112 case Intrinsic::stackrestore: { 5113 Res = getValue(I.getArgOperand(0)); 5114 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5115 return nullptr; 5116 } 5117 case Intrinsic::stackprotector: { 5118 // Emit code into the DAG to store the stack guard onto the stack. 5119 MachineFunction &MF = DAG.getMachineFunction(); 5120 MachineFrameInfo *MFI = MF.getFrameInfo(); 5121 EVT PtrTy = TLI.getPointerTy(); 5122 SDValue Src, Chain = getRoot(); 5123 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 5124 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 5125 5126 // See if Ptr is a bitcast. If it is, look through it and see if we can get 5127 // global variable __stack_chk_guard. 5128 if (!GV) 5129 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 5130 if (BC->getOpcode() == Instruction::BitCast) 5131 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 5132 5133 if (GV && TLI.useLoadStackGuardNode()) { 5134 // Emit a LOAD_STACK_GUARD node. 5135 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 5136 sdl, PtrTy, Chain); 5137 MachinePointerInfo MPInfo(GV); 5138 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 5139 unsigned Flags = MachineMemOperand::MOLoad | 5140 MachineMemOperand::MOInvariant; 5141 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 5142 PtrTy.getSizeInBits() / 8, 5143 DAG.getEVTAlignment(PtrTy)); 5144 Node->setMemRefs(MemRefs, MemRefs + 1); 5145 5146 // Copy the guard value to a virtual register so that it can be 5147 // retrieved in the epilogue. 5148 Src = SDValue(Node, 0); 5149 const TargetRegisterClass *RC = 5150 TLI.getRegClassFor(Src.getSimpleValueType()); 5151 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 5152 5153 SPDescriptor.setGuardReg(Reg); 5154 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 5155 } else { 5156 Src = getValue(I.getArgOperand(0)); // The guard's value. 5157 } 5158 5159 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5160 5161 int FI = FuncInfo.StaticAllocaMap[Slot]; 5162 MFI->setStackProtectorIndex(FI); 5163 5164 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5165 5166 // Store the stack protector onto the stack. 5167 Res = DAG.getStore(Chain, sdl, Src, FIN, 5168 MachinePointerInfo::getFixedStack(FI), 5169 true, false, 0); 5170 setValue(&I, Res); 5171 DAG.setRoot(Res); 5172 return nullptr; 5173 } 5174 case Intrinsic::objectsize: { 5175 // If we don't know by now, we're never going to know. 5176 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5177 5178 assert(CI && "Non-constant type in __builtin_object_size?"); 5179 5180 SDValue Arg = getValue(I.getCalledValue()); 5181 EVT Ty = Arg.getValueType(); 5182 5183 if (CI->isZero()) 5184 Res = DAG.getConstant(-1ULL, Ty); 5185 else 5186 Res = DAG.getConstant(0, Ty); 5187 5188 setValue(&I, Res); 5189 return nullptr; 5190 } 5191 case Intrinsic::annotation: 5192 case Intrinsic::ptr_annotation: 5193 // Drop the intrinsic, but forward the value 5194 setValue(&I, getValue(I.getOperand(0))); 5195 return nullptr; 5196 case Intrinsic::assume: 5197 case Intrinsic::var_annotation: 5198 // Discard annotate attributes and assumptions 5199 return nullptr; 5200 5201 case Intrinsic::init_trampoline: { 5202 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5203 5204 SDValue Ops[6]; 5205 Ops[0] = getRoot(); 5206 Ops[1] = getValue(I.getArgOperand(0)); 5207 Ops[2] = getValue(I.getArgOperand(1)); 5208 Ops[3] = getValue(I.getArgOperand(2)); 5209 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5210 Ops[5] = DAG.getSrcValue(F); 5211 5212 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5213 5214 DAG.setRoot(Res); 5215 return nullptr; 5216 } 5217 case Intrinsic::adjust_trampoline: { 5218 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5219 TLI.getPointerTy(), 5220 getValue(I.getArgOperand(0)))); 5221 return nullptr; 5222 } 5223 case Intrinsic::gcroot: 5224 if (GFI) { 5225 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5226 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5227 5228 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5229 GFI->addStackRoot(FI->getIndex(), TypeMap); 5230 } 5231 return nullptr; 5232 case Intrinsic::gcread: 5233 case Intrinsic::gcwrite: 5234 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5235 case Intrinsic::flt_rounds: 5236 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5237 return nullptr; 5238 5239 case Intrinsic::expect: { 5240 // Just replace __builtin_expect(exp, c) with EXP. 5241 setValue(&I, getValue(I.getArgOperand(0))); 5242 return nullptr; 5243 } 5244 5245 case Intrinsic::debugtrap: 5246 case Intrinsic::trap: { 5247 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5248 if (TrapFuncName.empty()) { 5249 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5250 ISD::TRAP : ISD::DEBUGTRAP; 5251 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5252 return nullptr; 5253 } 5254 TargetLowering::ArgListTy Args; 5255 5256 TargetLowering::CallLoweringInfo CLI(DAG); 5257 CLI.setDebugLoc(sdl).setChain(getRoot()) 5258 .setCallee(CallingConv::C, I.getType(), 5259 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 5260 std::move(Args), 0); 5261 5262 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5263 DAG.setRoot(Result.second); 5264 return nullptr; 5265 } 5266 5267 case Intrinsic::uadd_with_overflow: 5268 case Intrinsic::sadd_with_overflow: 5269 case Intrinsic::usub_with_overflow: 5270 case Intrinsic::ssub_with_overflow: 5271 case Intrinsic::umul_with_overflow: 5272 case Intrinsic::smul_with_overflow: { 5273 ISD::NodeType Op; 5274 switch (Intrinsic) { 5275 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5276 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5277 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5278 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5279 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5280 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5281 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5282 } 5283 SDValue Op1 = getValue(I.getArgOperand(0)); 5284 SDValue Op2 = getValue(I.getArgOperand(1)); 5285 5286 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5287 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5288 return nullptr; 5289 } 5290 case Intrinsic::prefetch: { 5291 SDValue Ops[5]; 5292 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5293 Ops[0] = getRoot(); 5294 Ops[1] = getValue(I.getArgOperand(0)); 5295 Ops[2] = getValue(I.getArgOperand(1)); 5296 Ops[3] = getValue(I.getArgOperand(2)); 5297 Ops[4] = getValue(I.getArgOperand(3)); 5298 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5299 DAG.getVTList(MVT::Other), Ops, 5300 EVT::getIntegerVT(*Context, 8), 5301 MachinePointerInfo(I.getArgOperand(0)), 5302 0, /* align */ 5303 false, /* volatile */ 5304 rw==0, /* read */ 5305 rw==1)); /* write */ 5306 return nullptr; 5307 } 5308 case Intrinsic::lifetime_start: 5309 case Intrinsic::lifetime_end: { 5310 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5311 // Stack coloring is not enabled in O0, discard region information. 5312 if (TM.getOptLevel() == CodeGenOpt::None) 5313 return nullptr; 5314 5315 SmallVector<Value *, 4> Allocas; 5316 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5317 5318 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5319 E = Allocas.end(); Object != E; ++Object) { 5320 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5321 5322 // Could not find an Alloca. 5323 if (!LifetimeObject) 5324 continue; 5325 5326 // First check that the Alloca is static, otherwise it won't have a 5327 // valid frame index. 5328 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5329 if (SI == FuncInfo.StaticAllocaMap.end()) 5330 return nullptr; 5331 5332 int FI = SI->second; 5333 5334 SDValue Ops[2]; 5335 Ops[0] = getRoot(); 5336 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); 5337 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5338 5339 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5340 DAG.setRoot(Res); 5341 } 5342 return nullptr; 5343 } 5344 case Intrinsic::invariant_start: 5345 // Discard region information. 5346 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 5347 return nullptr; 5348 case Intrinsic::invariant_end: 5349 // Discard region information. 5350 return nullptr; 5351 case Intrinsic::stackprotectorcheck: { 5352 // Do not actually emit anything for this basic block. Instead we initialize 5353 // the stack protector descriptor and export the guard variable so we can 5354 // access it in FinishBasicBlock. 5355 const BasicBlock *BB = I.getParent(); 5356 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5357 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5358 5359 // Flush our exports since we are going to process a terminator. 5360 (void)getControlRoot(); 5361 return nullptr; 5362 } 5363 case Intrinsic::clear_cache: 5364 return TLI.getClearCacheBuiltinName(); 5365 case Intrinsic::donothing: 5366 // ignore 5367 return nullptr; 5368 case Intrinsic::experimental_stackmap: { 5369 visitStackmap(I); 5370 return nullptr; 5371 } 5372 case Intrinsic::experimental_patchpoint_void: 5373 case Intrinsic::experimental_patchpoint_i64: { 5374 visitPatchpoint(&I); 5375 return nullptr; 5376 } 5377 case Intrinsic::experimental_gc_statepoint: { 5378 visitStatepoint(I); 5379 return nullptr; 5380 } 5381 case Intrinsic::experimental_gc_result_int: 5382 case Intrinsic::experimental_gc_result_float: 5383 case Intrinsic::experimental_gc_result_ptr: 5384 case Intrinsic::experimental_gc_result: { 5385 visitGCResult(I); 5386 return nullptr; 5387 } 5388 case Intrinsic::experimental_gc_relocate: { 5389 visitGCRelocate(I); 5390 return nullptr; 5391 } 5392 case Intrinsic::instrprof_increment: 5393 llvm_unreachable("instrprof failed to lower an increment"); 5394 5395 case Intrinsic::frameescape: { 5396 MachineFunction &MF = DAG.getMachineFunction(); 5397 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5398 5399 // Directly emit some FRAME_ALLOC machine instrs. Label assignment emission 5400 // is the same on all targets. 5401 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5402 AllocaInst *Slot = 5403 cast<AllocaInst>(I.getArgOperand(Idx)->stripPointerCasts()); 5404 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5405 "can only escape static allocas"); 5406 int FI = FuncInfo.StaticAllocaMap[Slot]; 5407 MCSymbol *FrameAllocSym = 5408 MF.getMMI().getContext().getOrCreateFrameAllocSymbol(MF.getName(), 5409 Idx); 5410 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5411 TII->get(TargetOpcode::FRAME_ALLOC)) 5412 .addSym(FrameAllocSym) 5413 .addFrameIndex(FI); 5414 } 5415 5416 return nullptr; 5417 } 5418 5419 case Intrinsic::framerecover: { 5420 // i8* @llvm.framerecover(i8* %fn, i8* %fp, i32 %idx) 5421 MachineFunction &MF = DAG.getMachineFunction(); 5422 MVT PtrVT = TLI.getPointerTy(0); 5423 5424 // Get the symbol that defines the frame offset. 5425 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5426 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5427 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5428 MCSymbol *FrameAllocSym = 5429 MF.getMMI().getContext().getOrCreateFrameAllocSymbol(Fn->getName(), 5430 IdxVal); 5431 5432 // Create a TargetExternalSymbol for the label to avoid any target lowering 5433 // that would make this PC relative. 5434 StringRef Name = FrameAllocSym->getName(); 5435 assert(Name.data()[Name.size()] == '\0' && "not null terminated"); 5436 SDValue OffsetSym = DAG.getTargetExternalSymbol(Name.data(), PtrVT); 5437 SDValue OffsetVal = 5438 DAG.getNode(ISD::FRAME_ALLOC_RECOVER, sdl, PtrVT, OffsetSym); 5439 5440 // Add the offset to the FP. 5441 Value *FP = I.getArgOperand(1); 5442 SDValue FPVal = getValue(FP); 5443 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5444 setValue(&I, Add); 5445 5446 return nullptr; 5447 } 5448 case Intrinsic::eh_begincatch: 5449 case Intrinsic::eh_endcatch: 5450 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 5451 } 5452 } 5453 5454 std::pair<SDValue, SDValue> 5455 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5456 MachineBasicBlock *LandingPad) { 5457 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5458 MCSymbol *BeginLabel = nullptr; 5459 5460 if (LandingPad) { 5461 // Insert a label before the invoke call to mark the try range. This can be 5462 // used to detect deletion of the invoke via the MachineModuleInfo. 5463 BeginLabel = MMI.getContext().CreateTempSymbol(); 5464 5465 // For SjLj, keep track of which landing pads go with which invokes 5466 // so as to maintain the ordering of pads in the LSDA. 5467 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5468 if (CallSiteIndex) { 5469 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5470 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5471 5472 // Now that the call site is handled, stop tracking it. 5473 MMI.setCurrentCallSite(0); 5474 } 5475 5476 // Both PendingLoads and PendingExports must be flushed here; 5477 // this call might not return. 5478 (void)getRoot(); 5479 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5480 5481 CLI.setChain(getRoot()); 5482 } 5483 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5484 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5485 5486 assert((CLI.IsTailCall || Result.second.getNode()) && 5487 "Non-null chain expected with non-tail call!"); 5488 assert((Result.second.getNode() || !Result.first.getNode()) && 5489 "Null value expected with tail call!"); 5490 5491 if (!Result.second.getNode()) { 5492 // As a special case, a null chain means that a tail call has been emitted 5493 // and the DAG root is already updated. 5494 HasTailCall = true; 5495 5496 // Since there's no actual continuation from this block, nothing can be 5497 // relying on us setting vregs for them. 5498 PendingExports.clear(); 5499 } else { 5500 DAG.setRoot(Result.second); 5501 } 5502 5503 if (LandingPad) { 5504 // Insert a label at the end of the invoke call to mark the try range. This 5505 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5506 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5507 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5508 5509 // Inform MachineModuleInfo of range. 5510 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5511 } 5512 5513 return Result; 5514 } 5515 5516 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5517 bool isTailCall, 5518 MachineBasicBlock *LandingPad) { 5519 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5520 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5521 Type *RetTy = FTy->getReturnType(); 5522 5523 TargetLowering::ArgListTy Args; 5524 TargetLowering::ArgListEntry Entry; 5525 Args.reserve(CS.arg_size()); 5526 5527 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5528 i != e; ++i) { 5529 const Value *V = *i; 5530 5531 // Skip empty types 5532 if (V->getType()->isEmptyTy()) 5533 continue; 5534 5535 SDValue ArgNode = getValue(V); 5536 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5537 5538 // Skip the first return-type Attribute to get to params. 5539 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5540 Args.push_back(Entry); 5541 } 5542 5543 // Check if target-independent constraints permit a tail call here. 5544 // Target-dependent constraints are checked within TLI->LowerCallTo. 5545 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5546 isTailCall = false; 5547 5548 TargetLowering::CallLoweringInfo CLI(DAG); 5549 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5550 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5551 .setTailCall(isTailCall); 5552 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5553 5554 if (Result.first.getNode()) 5555 setValue(CS.getInstruction(), Result.first); 5556 } 5557 5558 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5559 /// value is equal or not-equal to zero. 5560 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5561 for (const User *U : V->users()) { 5562 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5563 if (IC->isEquality()) 5564 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5565 if (C->isNullValue()) 5566 continue; 5567 // Unknown instruction. 5568 return false; 5569 } 5570 return true; 5571 } 5572 5573 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5574 Type *LoadTy, 5575 SelectionDAGBuilder &Builder) { 5576 5577 // Check to see if this load can be trivially constant folded, e.g. if the 5578 // input is from a string literal. 5579 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5580 // Cast pointer to the type we really want to load. 5581 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5582 PointerType::getUnqual(LoadTy)); 5583 5584 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5585 const_cast<Constant *>(LoadInput), *Builder.DL)) 5586 return Builder.getValue(LoadCst); 5587 } 5588 5589 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5590 // still constant memory, the input chain can be the entry node. 5591 SDValue Root; 5592 bool ConstantMemory = false; 5593 5594 // Do not serialize (non-volatile) loads of constant memory with anything. 5595 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5596 Root = Builder.DAG.getEntryNode(); 5597 ConstantMemory = true; 5598 } else { 5599 // Do not serialize non-volatile loads against each other. 5600 Root = Builder.DAG.getRoot(); 5601 } 5602 5603 SDValue Ptr = Builder.getValue(PtrVal); 5604 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5605 Ptr, MachinePointerInfo(PtrVal), 5606 false /*volatile*/, 5607 false /*nontemporal*/, 5608 false /*isinvariant*/, 1 /* align=1 */); 5609 5610 if (!ConstantMemory) 5611 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5612 return LoadVal; 5613 } 5614 5615 /// processIntegerCallValue - Record the value for an instruction that 5616 /// produces an integer result, converting the type where necessary. 5617 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5618 SDValue Value, 5619 bool IsSigned) { 5620 EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5621 if (IsSigned) 5622 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5623 else 5624 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5625 setValue(&I, Value); 5626 } 5627 5628 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5629 /// If so, return true and lower it, otherwise return false and it will be 5630 /// lowered like a normal call. 5631 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5632 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5633 if (I.getNumArgOperands() != 3) 5634 return false; 5635 5636 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5637 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5638 !I.getArgOperand(2)->getType()->isIntegerTy() || 5639 !I.getType()->isIntegerTy()) 5640 return false; 5641 5642 const Value *Size = I.getArgOperand(2); 5643 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5644 if (CSize && CSize->getZExtValue() == 0) { 5645 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5646 setValue(&I, DAG.getConstant(0, CallVT)); 5647 return true; 5648 } 5649 5650 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5651 std::pair<SDValue, SDValue> Res = 5652 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5653 getValue(LHS), getValue(RHS), getValue(Size), 5654 MachinePointerInfo(LHS), 5655 MachinePointerInfo(RHS)); 5656 if (Res.first.getNode()) { 5657 processIntegerCallValue(I, Res.first, true); 5658 PendingLoads.push_back(Res.second); 5659 return true; 5660 } 5661 5662 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5663 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5664 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5665 bool ActuallyDoIt = true; 5666 MVT LoadVT; 5667 Type *LoadTy; 5668 switch (CSize->getZExtValue()) { 5669 default: 5670 LoadVT = MVT::Other; 5671 LoadTy = nullptr; 5672 ActuallyDoIt = false; 5673 break; 5674 case 2: 5675 LoadVT = MVT::i16; 5676 LoadTy = Type::getInt16Ty(CSize->getContext()); 5677 break; 5678 case 4: 5679 LoadVT = MVT::i32; 5680 LoadTy = Type::getInt32Ty(CSize->getContext()); 5681 break; 5682 case 8: 5683 LoadVT = MVT::i64; 5684 LoadTy = Type::getInt64Ty(CSize->getContext()); 5685 break; 5686 /* 5687 case 16: 5688 LoadVT = MVT::v4i32; 5689 LoadTy = Type::getInt32Ty(CSize->getContext()); 5690 LoadTy = VectorType::get(LoadTy, 4); 5691 break; 5692 */ 5693 } 5694 5695 // This turns into unaligned loads. We only do this if the target natively 5696 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5697 // we'll only produce a small number of byte loads. 5698 5699 // Require that we can find a legal MVT, and only do this if the target 5700 // supports unaligned loads of that type. Expanding into byte loads would 5701 // bloat the code. 5702 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5703 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5704 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5705 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5706 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5707 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5708 // TODO: Check alignment of src and dest ptrs. 5709 if (!TLI.isTypeLegal(LoadVT) || 5710 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5711 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5712 ActuallyDoIt = false; 5713 } 5714 5715 if (ActuallyDoIt) { 5716 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5717 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5718 5719 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5720 ISD::SETNE); 5721 processIntegerCallValue(I, Res, false); 5722 return true; 5723 } 5724 } 5725 5726 5727 return false; 5728 } 5729 5730 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5731 /// form. If so, return true and lower it, otherwise return false and it 5732 /// will be lowered like a normal call. 5733 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5734 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5735 if (I.getNumArgOperands() != 3) 5736 return false; 5737 5738 const Value *Src = I.getArgOperand(0); 5739 const Value *Char = I.getArgOperand(1); 5740 const Value *Length = I.getArgOperand(2); 5741 if (!Src->getType()->isPointerTy() || 5742 !Char->getType()->isIntegerTy() || 5743 !Length->getType()->isIntegerTy() || 5744 !I.getType()->isPointerTy()) 5745 return false; 5746 5747 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5748 std::pair<SDValue, SDValue> Res = 5749 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5750 getValue(Src), getValue(Char), getValue(Length), 5751 MachinePointerInfo(Src)); 5752 if (Res.first.getNode()) { 5753 setValue(&I, Res.first); 5754 PendingLoads.push_back(Res.second); 5755 return true; 5756 } 5757 5758 return false; 5759 } 5760 5761 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5762 /// optimized form. If so, return true and lower it, otherwise return false 5763 /// and it will be lowered like a normal call. 5764 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5765 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5766 if (I.getNumArgOperands() != 2) 5767 return false; 5768 5769 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5770 if (!Arg0->getType()->isPointerTy() || 5771 !Arg1->getType()->isPointerTy() || 5772 !I.getType()->isPointerTy()) 5773 return false; 5774 5775 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5776 std::pair<SDValue, SDValue> Res = 5777 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5778 getValue(Arg0), getValue(Arg1), 5779 MachinePointerInfo(Arg0), 5780 MachinePointerInfo(Arg1), isStpcpy); 5781 if (Res.first.getNode()) { 5782 setValue(&I, Res.first); 5783 DAG.setRoot(Res.second); 5784 return true; 5785 } 5786 5787 return false; 5788 } 5789 5790 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5791 /// If so, return true and lower it, otherwise return false and it will be 5792 /// lowered like a normal call. 5793 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5794 // Verify that the prototype makes sense. int strcmp(void*,void*) 5795 if (I.getNumArgOperands() != 2) 5796 return false; 5797 5798 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5799 if (!Arg0->getType()->isPointerTy() || 5800 !Arg1->getType()->isPointerTy() || 5801 !I.getType()->isIntegerTy()) 5802 return false; 5803 5804 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5805 std::pair<SDValue, SDValue> Res = 5806 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5807 getValue(Arg0), getValue(Arg1), 5808 MachinePointerInfo(Arg0), 5809 MachinePointerInfo(Arg1)); 5810 if (Res.first.getNode()) { 5811 processIntegerCallValue(I, Res.first, true); 5812 PendingLoads.push_back(Res.second); 5813 return true; 5814 } 5815 5816 return false; 5817 } 5818 5819 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5820 /// form. If so, return true and lower it, otherwise return false and it 5821 /// will be lowered like a normal call. 5822 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5823 // Verify that the prototype makes sense. size_t strlen(char *) 5824 if (I.getNumArgOperands() != 1) 5825 return false; 5826 5827 const Value *Arg0 = I.getArgOperand(0); 5828 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5829 return false; 5830 5831 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5832 std::pair<SDValue, SDValue> Res = 5833 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5834 getValue(Arg0), MachinePointerInfo(Arg0)); 5835 if (Res.first.getNode()) { 5836 processIntegerCallValue(I, Res.first, false); 5837 PendingLoads.push_back(Res.second); 5838 return true; 5839 } 5840 5841 return false; 5842 } 5843 5844 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5845 /// form. If so, return true and lower it, otherwise return false and it 5846 /// will be lowered like a normal call. 5847 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5848 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5849 if (I.getNumArgOperands() != 2) 5850 return false; 5851 5852 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5853 if (!Arg0->getType()->isPointerTy() || 5854 !Arg1->getType()->isIntegerTy() || 5855 !I.getType()->isIntegerTy()) 5856 return false; 5857 5858 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5859 std::pair<SDValue, SDValue> Res = 5860 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5861 getValue(Arg0), getValue(Arg1), 5862 MachinePointerInfo(Arg0)); 5863 if (Res.first.getNode()) { 5864 processIntegerCallValue(I, Res.first, false); 5865 PendingLoads.push_back(Res.second); 5866 return true; 5867 } 5868 5869 return false; 5870 } 5871 5872 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5873 /// operation (as expected), translate it to an SDNode with the specified opcode 5874 /// and return true. 5875 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5876 unsigned Opcode) { 5877 // Sanity check that it really is a unary floating-point call. 5878 if (I.getNumArgOperands() != 1 || 5879 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5880 I.getType() != I.getArgOperand(0)->getType() || 5881 !I.onlyReadsMemory()) 5882 return false; 5883 5884 SDValue Tmp = getValue(I.getArgOperand(0)); 5885 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5886 return true; 5887 } 5888 5889 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5890 /// operation (as expected), translate it to an SDNode with the specified opcode 5891 /// and return true. 5892 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5893 unsigned Opcode) { 5894 // Sanity check that it really is a binary floating-point call. 5895 if (I.getNumArgOperands() != 2 || 5896 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5897 I.getType() != I.getArgOperand(0)->getType() || 5898 I.getType() != I.getArgOperand(1)->getType() || 5899 !I.onlyReadsMemory()) 5900 return false; 5901 5902 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5903 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5904 EVT VT = Tmp0.getValueType(); 5905 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5906 return true; 5907 } 5908 5909 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5910 // Handle inline assembly differently. 5911 if (isa<InlineAsm>(I.getCalledValue())) { 5912 visitInlineAsm(&I); 5913 return; 5914 } 5915 5916 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5917 ComputeUsesVAFloatArgument(I, &MMI); 5918 5919 const char *RenameFn = nullptr; 5920 if (Function *F = I.getCalledFunction()) { 5921 if (F->isDeclaration()) { 5922 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5923 if (unsigned IID = II->getIntrinsicID(F)) { 5924 RenameFn = visitIntrinsicCall(I, IID); 5925 if (!RenameFn) 5926 return; 5927 } 5928 } 5929 if (unsigned IID = F->getIntrinsicID()) { 5930 RenameFn = visitIntrinsicCall(I, IID); 5931 if (!RenameFn) 5932 return; 5933 } 5934 } 5935 5936 // Check for well-known libc/libm calls. If the function is internal, it 5937 // can't be a library call. 5938 LibFunc::Func Func; 5939 if (!F->hasLocalLinkage() && F->hasName() && 5940 LibInfo->getLibFunc(F->getName(), Func) && 5941 LibInfo->hasOptimizedCodeGen(Func)) { 5942 switch (Func) { 5943 default: break; 5944 case LibFunc::copysign: 5945 case LibFunc::copysignf: 5946 case LibFunc::copysignl: 5947 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5948 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5949 I.getType() == I.getArgOperand(0)->getType() && 5950 I.getType() == I.getArgOperand(1)->getType() && 5951 I.onlyReadsMemory()) { 5952 SDValue LHS = getValue(I.getArgOperand(0)); 5953 SDValue RHS = getValue(I.getArgOperand(1)); 5954 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5955 LHS.getValueType(), LHS, RHS)); 5956 return; 5957 } 5958 break; 5959 case LibFunc::fabs: 5960 case LibFunc::fabsf: 5961 case LibFunc::fabsl: 5962 if (visitUnaryFloatCall(I, ISD::FABS)) 5963 return; 5964 break; 5965 case LibFunc::fmin: 5966 case LibFunc::fminf: 5967 case LibFunc::fminl: 5968 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5969 return; 5970 break; 5971 case LibFunc::fmax: 5972 case LibFunc::fmaxf: 5973 case LibFunc::fmaxl: 5974 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5975 return; 5976 break; 5977 case LibFunc::sin: 5978 case LibFunc::sinf: 5979 case LibFunc::sinl: 5980 if (visitUnaryFloatCall(I, ISD::FSIN)) 5981 return; 5982 break; 5983 case LibFunc::cos: 5984 case LibFunc::cosf: 5985 case LibFunc::cosl: 5986 if (visitUnaryFloatCall(I, ISD::FCOS)) 5987 return; 5988 break; 5989 case LibFunc::sqrt: 5990 case LibFunc::sqrtf: 5991 case LibFunc::sqrtl: 5992 case LibFunc::sqrt_finite: 5993 case LibFunc::sqrtf_finite: 5994 case LibFunc::sqrtl_finite: 5995 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5996 return; 5997 break; 5998 case LibFunc::floor: 5999 case LibFunc::floorf: 6000 case LibFunc::floorl: 6001 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6002 return; 6003 break; 6004 case LibFunc::nearbyint: 6005 case LibFunc::nearbyintf: 6006 case LibFunc::nearbyintl: 6007 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6008 return; 6009 break; 6010 case LibFunc::ceil: 6011 case LibFunc::ceilf: 6012 case LibFunc::ceill: 6013 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6014 return; 6015 break; 6016 case LibFunc::rint: 6017 case LibFunc::rintf: 6018 case LibFunc::rintl: 6019 if (visitUnaryFloatCall(I, ISD::FRINT)) 6020 return; 6021 break; 6022 case LibFunc::round: 6023 case LibFunc::roundf: 6024 case LibFunc::roundl: 6025 if (visitUnaryFloatCall(I, ISD::FROUND)) 6026 return; 6027 break; 6028 case LibFunc::trunc: 6029 case LibFunc::truncf: 6030 case LibFunc::truncl: 6031 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6032 return; 6033 break; 6034 case LibFunc::log2: 6035 case LibFunc::log2f: 6036 case LibFunc::log2l: 6037 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6038 return; 6039 break; 6040 case LibFunc::exp2: 6041 case LibFunc::exp2f: 6042 case LibFunc::exp2l: 6043 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6044 return; 6045 break; 6046 case LibFunc::memcmp: 6047 if (visitMemCmpCall(I)) 6048 return; 6049 break; 6050 case LibFunc::memchr: 6051 if (visitMemChrCall(I)) 6052 return; 6053 break; 6054 case LibFunc::strcpy: 6055 if (visitStrCpyCall(I, false)) 6056 return; 6057 break; 6058 case LibFunc::stpcpy: 6059 if (visitStrCpyCall(I, true)) 6060 return; 6061 break; 6062 case LibFunc::strcmp: 6063 if (visitStrCmpCall(I)) 6064 return; 6065 break; 6066 case LibFunc::strlen: 6067 if (visitStrLenCall(I)) 6068 return; 6069 break; 6070 case LibFunc::strnlen: 6071 if (visitStrNLenCall(I)) 6072 return; 6073 break; 6074 } 6075 } 6076 } 6077 6078 SDValue Callee; 6079 if (!RenameFn) 6080 Callee = getValue(I.getCalledValue()); 6081 else 6082 Callee = DAG.getExternalSymbol(RenameFn, 6083 DAG.getTargetLoweringInfo().getPointerTy()); 6084 6085 // Check if we can potentially perform a tail call. More detailed checking is 6086 // be done within LowerCallTo, after more information about the call is known. 6087 LowerCallTo(&I, Callee, I.isTailCall()); 6088 } 6089 6090 namespace { 6091 6092 /// AsmOperandInfo - This contains information for each constraint that we are 6093 /// lowering. 6094 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6095 public: 6096 /// CallOperand - If this is the result output operand or a clobber 6097 /// this is null, otherwise it is the incoming operand to the CallInst. 6098 /// This gets modified as the asm is processed. 6099 SDValue CallOperand; 6100 6101 /// AssignedRegs - If this is a register or register class operand, this 6102 /// contains the set of register corresponding to the operand. 6103 RegsForValue AssignedRegs; 6104 6105 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6106 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6107 } 6108 6109 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6110 /// corresponds to. If there is no Value* for this operand, it returns 6111 /// MVT::Other. 6112 EVT getCallOperandValEVT(LLVMContext &Context, 6113 const TargetLowering &TLI, 6114 const DataLayout *DL) const { 6115 if (!CallOperandVal) return MVT::Other; 6116 6117 if (isa<BasicBlock>(CallOperandVal)) 6118 return TLI.getPointerTy(); 6119 6120 llvm::Type *OpTy = CallOperandVal->getType(); 6121 6122 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6123 // If this is an indirect operand, the operand is a pointer to the 6124 // accessed type. 6125 if (isIndirect) { 6126 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6127 if (!PtrTy) 6128 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6129 OpTy = PtrTy->getElementType(); 6130 } 6131 6132 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6133 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6134 if (STy->getNumElements() == 1) 6135 OpTy = STy->getElementType(0); 6136 6137 // If OpTy is not a single value, it may be a struct/union that we 6138 // can tile with integers. 6139 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6140 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 6141 switch (BitSize) { 6142 default: break; 6143 case 1: 6144 case 8: 6145 case 16: 6146 case 32: 6147 case 64: 6148 case 128: 6149 OpTy = IntegerType::get(Context, BitSize); 6150 break; 6151 } 6152 } 6153 6154 return TLI.getValueType(OpTy, true); 6155 } 6156 }; 6157 6158 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6159 6160 } // end anonymous namespace 6161 6162 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6163 /// specified operand. We prefer to assign virtual registers, to allow the 6164 /// register allocator to handle the assignment process. However, if the asm 6165 /// uses features that we can't model on machineinstrs, we have SDISel do the 6166 /// allocation. This produces generally horrible, but correct, code. 6167 /// 6168 /// OpInfo describes the operand. 6169 /// 6170 static void GetRegistersForValue(SelectionDAG &DAG, 6171 const TargetLowering &TLI, 6172 SDLoc DL, 6173 SDISelAsmOperandInfo &OpInfo) { 6174 LLVMContext &Context = *DAG.getContext(); 6175 6176 MachineFunction &MF = DAG.getMachineFunction(); 6177 SmallVector<unsigned, 4> Regs; 6178 6179 // If this is a constraint for a single physreg, or a constraint for a 6180 // register class, find it. 6181 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6182 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6183 OpInfo.ConstraintCode, 6184 OpInfo.ConstraintVT); 6185 6186 unsigned NumRegs = 1; 6187 if (OpInfo.ConstraintVT != MVT::Other) { 6188 // If this is a FP input in an integer register (or visa versa) insert a bit 6189 // cast of the input value. More generally, handle any case where the input 6190 // value disagrees with the register class we plan to stick this in. 6191 if (OpInfo.Type == InlineAsm::isInput && 6192 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6193 // Try to convert to the first EVT that the reg class contains. If the 6194 // types are identical size, use a bitcast to convert (e.g. two differing 6195 // vector types). 6196 MVT RegVT = *PhysReg.second->vt_begin(); 6197 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6198 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6199 RegVT, OpInfo.CallOperand); 6200 OpInfo.ConstraintVT = RegVT; 6201 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6202 // If the input is a FP value and we want it in FP registers, do a 6203 // bitcast to the corresponding integer type. This turns an f64 value 6204 // into i64, which can be passed with two i32 values on a 32-bit 6205 // machine. 6206 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6207 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6208 RegVT, OpInfo.CallOperand); 6209 OpInfo.ConstraintVT = RegVT; 6210 } 6211 } 6212 6213 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6214 } 6215 6216 MVT RegVT; 6217 EVT ValueVT = OpInfo.ConstraintVT; 6218 6219 // If this is a constraint for a specific physical register, like {r17}, 6220 // assign it now. 6221 if (unsigned AssignedReg = PhysReg.first) { 6222 const TargetRegisterClass *RC = PhysReg.second; 6223 if (OpInfo.ConstraintVT == MVT::Other) 6224 ValueVT = *RC->vt_begin(); 6225 6226 // Get the actual register value type. This is important, because the user 6227 // may have asked for (e.g.) the AX register in i32 type. We need to 6228 // remember that AX is actually i16 to get the right extension. 6229 RegVT = *RC->vt_begin(); 6230 6231 // This is a explicit reference to a physical register. 6232 Regs.push_back(AssignedReg); 6233 6234 // If this is an expanded reference, add the rest of the regs to Regs. 6235 if (NumRegs != 1) { 6236 TargetRegisterClass::iterator I = RC->begin(); 6237 for (; *I != AssignedReg; ++I) 6238 assert(I != RC->end() && "Didn't find reg!"); 6239 6240 // Already added the first reg. 6241 --NumRegs; ++I; 6242 for (; NumRegs; --NumRegs, ++I) { 6243 assert(I != RC->end() && "Ran out of registers to allocate!"); 6244 Regs.push_back(*I); 6245 } 6246 } 6247 6248 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6249 return; 6250 } 6251 6252 // Otherwise, if this was a reference to an LLVM register class, create vregs 6253 // for this reference. 6254 if (const TargetRegisterClass *RC = PhysReg.second) { 6255 RegVT = *RC->vt_begin(); 6256 if (OpInfo.ConstraintVT == MVT::Other) 6257 ValueVT = RegVT; 6258 6259 // Create the appropriate number of virtual registers. 6260 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6261 for (; NumRegs; --NumRegs) 6262 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6263 6264 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6265 return; 6266 } 6267 6268 // Otherwise, we couldn't allocate enough registers for this. 6269 } 6270 6271 /// visitInlineAsm - Handle a call to an InlineAsm object. 6272 /// 6273 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6274 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6275 6276 /// ConstraintOperands - Information about all of the constraints. 6277 SDISelAsmOperandInfoVector ConstraintOperands; 6278 6279 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6280 TargetLowering::AsmOperandInfoVector TargetConstraints = 6281 TLI.ParseConstraints(DAG.getSubtarget().getRegisterInfo(), CS); 6282 6283 bool hasMemory = false; 6284 6285 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6286 unsigned ResNo = 0; // ResNo - The result number of the next output. 6287 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6288 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6289 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6290 6291 MVT OpVT = MVT::Other; 6292 6293 // Compute the value type for each operand. 6294 switch (OpInfo.Type) { 6295 case InlineAsm::isOutput: 6296 // Indirect outputs just consume an argument. 6297 if (OpInfo.isIndirect) { 6298 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6299 break; 6300 } 6301 6302 // The return value of the call is this value. As such, there is no 6303 // corresponding argument. 6304 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6305 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6306 OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo)); 6307 } else { 6308 assert(ResNo == 0 && "Asm only has one result!"); 6309 OpVT = TLI.getSimpleValueType(CS.getType()); 6310 } 6311 ++ResNo; 6312 break; 6313 case InlineAsm::isInput: 6314 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6315 break; 6316 case InlineAsm::isClobber: 6317 // Nothing to do. 6318 break; 6319 } 6320 6321 // If this is an input or an indirect output, process the call argument. 6322 // BasicBlocks are labels, currently appearing only in asm's. 6323 if (OpInfo.CallOperandVal) { 6324 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6325 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6326 } else { 6327 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6328 } 6329 6330 OpVT = 6331 OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT(); 6332 } 6333 6334 OpInfo.ConstraintVT = OpVT; 6335 6336 // Indirect operand accesses access memory. 6337 if (OpInfo.isIndirect) 6338 hasMemory = true; 6339 else { 6340 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6341 TargetLowering::ConstraintType 6342 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6343 if (CType == TargetLowering::C_Memory) { 6344 hasMemory = true; 6345 break; 6346 } 6347 } 6348 } 6349 } 6350 6351 SDValue Chain, Flag; 6352 6353 // We won't need to flush pending loads if this asm doesn't touch 6354 // memory and is nonvolatile. 6355 if (hasMemory || IA->hasSideEffects()) 6356 Chain = getRoot(); 6357 else 6358 Chain = DAG.getRoot(); 6359 6360 // Second pass over the constraints: compute which constraint option to use 6361 // and assign registers to constraints that want a specific physreg. 6362 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6363 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6364 6365 // If this is an output operand with a matching input operand, look up the 6366 // matching input. If their types mismatch, e.g. one is an integer, the 6367 // other is floating point, or their sizes are different, flag it as an 6368 // error. 6369 if (OpInfo.hasMatchingInput()) { 6370 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6371 6372 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6373 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6374 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6375 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6376 OpInfo.ConstraintVT); 6377 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6378 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6379 Input.ConstraintVT); 6380 if ((OpInfo.ConstraintVT.isInteger() != 6381 Input.ConstraintVT.isInteger()) || 6382 (MatchRC.second != InputRC.second)) { 6383 report_fatal_error("Unsupported asm: input constraint" 6384 " with a matching output constraint of" 6385 " incompatible type!"); 6386 } 6387 Input.ConstraintVT = OpInfo.ConstraintVT; 6388 } 6389 } 6390 6391 // Compute the constraint code and ConstraintType to use. 6392 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6393 6394 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6395 OpInfo.Type == InlineAsm::isClobber) 6396 continue; 6397 6398 // If this is a memory input, and if the operand is not indirect, do what we 6399 // need to to provide an address for the memory input. 6400 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6401 !OpInfo.isIndirect) { 6402 assert((OpInfo.isMultipleAlternative || 6403 (OpInfo.Type == InlineAsm::isInput)) && 6404 "Can only indirectify direct input operands!"); 6405 6406 // Memory operands really want the address of the value. If we don't have 6407 // an indirect input, put it in the constpool if we can, otherwise spill 6408 // it to a stack slot. 6409 // TODO: This isn't quite right. We need to handle these according to 6410 // the addressing mode that the constraint wants. Also, this may take 6411 // an additional register for the computation and we don't want that 6412 // either. 6413 6414 // If the operand is a float, integer, or vector constant, spill to a 6415 // constant pool entry to get its address. 6416 const Value *OpVal = OpInfo.CallOperandVal; 6417 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6418 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6419 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6420 TLI.getPointerTy()); 6421 } else { 6422 // Otherwise, create a stack slot and emit a store to it before the 6423 // asm. 6424 Type *Ty = OpVal->getType(); 6425 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 6426 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty); 6427 MachineFunction &MF = DAG.getMachineFunction(); 6428 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6429 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 6430 Chain = DAG.getStore(Chain, getCurSDLoc(), 6431 OpInfo.CallOperand, StackSlot, 6432 MachinePointerInfo::getFixedStack(SSFI), 6433 false, false, 0); 6434 OpInfo.CallOperand = StackSlot; 6435 } 6436 6437 // There is no longer a Value* corresponding to this operand. 6438 OpInfo.CallOperandVal = nullptr; 6439 6440 // It is now an indirect operand. 6441 OpInfo.isIndirect = true; 6442 } 6443 6444 // If this constraint is for a specific register, allocate it before 6445 // anything else. 6446 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6447 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6448 } 6449 6450 // Second pass - Loop over all of the operands, assigning virtual or physregs 6451 // to register class operands. 6452 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6453 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6454 6455 // C_Register operands have already been allocated, Other/Memory don't need 6456 // to be. 6457 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6458 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6459 } 6460 6461 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6462 std::vector<SDValue> AsmNodeOperands; 6463 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6464 AsmNodeOperands.push_back( 6465 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6466 TLI.getPointerTy())); 6467 6468 // If we have a !srcloc metadata node associated with it, we want to attach 6469 // this to the ultimately generated inline asm machineinstr. To do this, we 6470 // pass in the third operand as this (potentially null) inline asm MDNode. 6471 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6472 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6473 6474 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6475 // bits as operand 3. 6476 unsigned ExtraInfo = 0; 6477 if (IA->hasSideEffects()) 6478 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6479 if (IA->isAlignStack()) 6480 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6481 // Set the asm dialect. 6482 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6483 6484 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6485 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6486 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6487 6488 // Compute the constraint code and ConstraintType to use. 6489 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6490 6491 // Ideally, we would only check against memory constraints. However, the 6492 // meaning of an other constraint can be target-specific and we can't easily 6493 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6494 // for other constriants as well. 6495 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6496 OpInfo.ConstraintType == TargetLowering::C_Other) { 6497 if (OpInfo.Type == InlineAsm::isInput) 6498 ExtraInfo |= InlineAsm::Extra_MayLoad; 6499 else if (OpInfo.Type == InlineAsm::isOutput) 6500 ExtraInfo |= InlineAsm::Extra_MayStore; 6501 else if (OpInfo.Type == InlineAsm::isClobber) 6502 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6503 } 6504 } 6505 6506 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6507 TLI.getPointerTy())); 6508 6509 // Loop over all of the inputs, copying the operand values into the 6510 // appropriate registers and processing the output regs. 6511 RegsForValue RetValRegs; 6512 6513 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6514 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6515 6516 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6517 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6518 6519 switch (OpInfo.Type) { 6520 case InlineAsm::isOutput: { 6521 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6522 OpInfo.ConstraintType != TargetLowering::C_Register) { 6523 // Memory output, or 'other' output (e.g. 'X' constraint). 6524 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6525 6526 unsigned ConstraintID = 6527 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6528 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6529 "Failed to convert memory constraint code to constraint id."); 6530 6531 // Add information to the INLINEASM node to know about this output. 6532 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6533 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6534 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, MVT::i32)); 6535 AsmNodeOperands.push_back(OpInfo.CallOperand); 6536 break; 6537 } 6538 6539 // Otherwise, this is a register or register class output. 6540 6541 // Copy the output from the appropriate register. Find a register that 6542 // we can use. 6543 if (OpInfo.AssignedRegs.Regs.empty()) { 6544 LLVMContext &Ctx = *DAG.getContext(); 6545 Ctx.emitError(CS.getInstruction(), 6546 "couldn't allocate output register for constraint '" + 6547 Twine(OpInfo.ConstraintCode) + "'"); 6548 return; 6549 } 6550 6551 // If this is an indirect operand, store through the pointer after the 6552 // asm. 6553 if (OpInfo.isIndirect) { 6554 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6555 OpInfo.CallOperandVal)); 6556 } else { 6557 // This is the result value of the call. 6558 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6559 // Concatenate this output onto the outputs list. 6560 RetValRegs.append(OpInfo.AssignedRegs); 6561 } 6562 6563 // Add information to the INLINEASM node to know that this register is 6564 // set. 6565 OpInfo.AssignedRegs 6566 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6567 ? InlineAsm::Kind_RegDefEarlyClobber 6568 : InlineAsm::Kind_RegDef, 6569 false, 0, DAG, AsmNodeOperands); 6570 break; 6571 } 6572 case InlineAsm::isInput: { 6573 SDValue InOperandVal = OpInfo.CallOperand; 6574 6575 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6576 // If this is required to match an output register we have already set, 6577 // just use its register. 6578 unsigned OperandNo = OpInfo.getMatchedOperand(); 6579 6580 // Scan until we find the definition we already emitted of this operand. 6581 // When we find it, create a RegsForValue operand. 6582 unsigned CurOp = InlineAsm::Op_FirstOperand; 6583 for (; OperandNo; --OperandNo) { 6584 // Advance to the next operand. 6585 unsigned OpFlag = 6586 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6587 assert((InlineAsm::isRegDefKind(OpFlag) || 6588 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6589 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6590 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6591 } 6592 6593 unsigned OpFlag = 6594 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6595 if (InlineAsm::isRegDefKind(OpFlag) || 6596 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6597 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6598 if (OpInfo.isIndirect) { 6599 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6600 LLVMContext &Ctx = *DAG.getContext(); 6601 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6602 " don't know how to handle tied " 6603 "indirect register inputs"); 6604 return; 6605 } 6606 6607 RegsForValue MatchedRegs; 6608 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6609 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6610 MatchedRegs.RegVTs.push_back(RegVT); 6611 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6612 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6613 i != e; ++i) { 6614 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6615 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6616 else { 6617 LLVMContext &Ctx = *DAG.getContext(); 6618 Ctx.emitError(CS.getInstruction(), 6619 "inline asm error: This value" 6620 " type register class is not natively supported!"); 6621 return; 6622 } 6623 } 6624 // Use the produced MatchedRegs object to 6625 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6626 Chain, &Flag, CS.getInstruction()); 6627 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6628 true, OpInfo.getMatchedOperand(), 6629 DAG, AsmNodeOperands); 6630 break; 6631 } 6632 6633 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6634 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6635 "Unexpected number of operands"); 6636 // Add information to the INLINEASM node to know about this input. 6637 // See InlineAsm.h isUseOperandTiedToDef. 6638 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6639 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6640 OpInfo.getMatchedOperand()); 6641 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6642 TLI.getPointerTy())); 6643 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6644 break; 6645 } 6646 6647 // Treat indirect 'X' constraint as memory. 6648 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6649 OpInfo.isIndirect) 6650 OpInfo.ConstraintType = TargetLowering::C_Memory; 6651 6652 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6653 std::vector<SDValue> Ops; 6654 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6655 Ops, DAG); 6656 if (Ops.empty()) { 6657 LLVMContext &Ctx = *DAG.getContext(); 6658 Ctx.emitError(CS.getInstruction(), 6659 "invalid operand for inline asm constraint '" + 6660 Twine(OpInfo.ConstraintCode) + "'"); 6661 return; 6662 } 6663 6664 // Add information to the INLINEASM node to know about this input. 6665 unsigned ResOpType = 6666 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6667 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6668 TLI.getPointerTy())); 6669 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6670 break; 6671 } 6672 6673 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6674 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6675 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6676 "Memory operands expect pointer values"); 6677 6678 unsigned ConstraintID = 6679 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6680 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6681 "Failed to convert memory constraint code to constraint id."); 6682 6683 // Add information to the INLINEASM node to know about this input. 6684 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6685 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6686 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, MVT::i32)); 6687 AsmNodeOperands.push_back(InOperandVal); 6688 break; 6689 } 6690 6691 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6692 OpInfo.ConstraintType == TargetLowering::C_Register) && 6693 "Unknown constraint type!"); 6694 6695 // TODO: Support this. 6696 if (OpInfo.isIndirect) { 6697 LLVMContext &Ctx = *DAG.getContext(); 6698 Ctx.emitError(CS.getInstruction(), 6699 "Don't know how to handle indirect register inputs yet " 6700 "for constraint '" + 6701 Twine(OpInfo.ConstraintCode) + "'"); 6702 return; 6703 } 6704 6705 // Copy the input into the appropriate registers. 6706 if (OpInfo.AssignedRegs.Regs.empty()) { 6707 LLVMContext &Ctx = *DAG.getContext(); 6708 Ctx.emitError(CS.getInstruction(), 6709 "couldn't allocate input reg for constraint '" + 6710 Twine(OpInfo.ConstraintCode) + "'"); 6711 return; 6712 } 6713 6714 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6715 Chain, &Flag, CS.getInstruction()); 6716 6717 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6718 DAG, AsmNodeOperands); 6719 break; 6720 } 6721 case InlineAsm::isClobber: { 6722 // Add the clobbered value to the operand list, so that the register 6723 // allocator is aware that the physreg got clobbered. 6724 if (!OpInfo.AssignedRegs.Regs.empty()) 6725 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6726 false, 0, DAG, 6727 AsmNodeOperands); 6728 break; 6729 } 6730 } 6731 } 6732 6733 // Finish up input operands. Set the input chain and add the flag last. 6734 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6735 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6736 6737 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6738 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6739 Flag = Chain.getValue(1); 6740 6741 // If this asm returns a register value, copy the result from that register 6742 // and set it as the value of the call. 6743 if (!RetValRegs.Regs.empty()) { 6744 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6745 Chain, &Flag, CS.getInstruction()); 6746 6747 // FIXME: Why don't we do this for inline asms with MRVs? 6748 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6749 EVT ResultType = TLI.getValueType(CS.getType()); 6750 6751 // If any of the results of the inline asm is a vector, it may have the 6752 // wrong width/num elts. This can happen for register classes that can 6753 // contain multiple different value types. The preg or vreg allocated may 6754 // not have the same VT as was expected. Convert it to the right type 6755 // with bit_convert. 6756 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6757 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6758 ResultType, Val); 6759 6760 } else if (ResultType != Val.getValueType() && 6761 ResultType.isInteger() && Val.getValueType().isInteger()) { 6762 // If a result value was tied to an input value, the computed result may 6763 // have a wider width than the expected result. Extract the relevant 6764 // portion. 6765 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6766 } 6767 6768 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6769 } 6770 6771 setValue(CS.getInstruction(), Val); 6772 // Don't need to use this as a chain in this case. 6773 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6774 return; 6775 } 6776 6777 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6778 6779 // Process indirect outputs, first output all of the flagged copies out of 6780 // physregs. 6781 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6782 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6783 const Value *Ptr = IndirectStoresToEmit[i].second; 6784 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6785 Chain, &Flag, IA); 6786 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6787 } 6788 6789 // Emit the non-flagged stores from the physregs. 6790 SmallVector<SDValue, 8> OutChains; 6791 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6792 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6793 StoresToEmit[i].first, 6794 getValue(StoresToEmit[i].second), 6795 MachinePointerInfo(StoresToEmit[i].second), 6796 false, false, 0); 6797 OutChains.push_back(Val); 6798 } 6799 6800 if (!OutChains.empty()) 6801 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6802 6803 DAG.setRoot(Chain); 6804 } 6805 6806 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6807 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6808 MVT::Other, getRoot(), 6809 getValue(I.getArgOperand(0)), 6810 DAG.getSrcValue(I.getArgOperand(0)))); 6811 } 6812 6813 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6814 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6815 const DataLayout &DL = *TLI.getDataLayout(); 6816 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(), 6817 getRoot(), getValue(I.getOperand(0)), 6818 DAG.getSrcValue(I.getOperand(0)), 6819 DL.getABITypeAlignment(I.getType())); 6820 setValue(&I, V); 6821 DAG.setRoot(V.getValue(1)); 6822 } 6823 6824 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6825 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6826 MVT::Other, getRoot(), 6827 getValue(I.getArgOperand(0)), 6828 DAG.getSrcValue(I.getArgOperand(0)))); 6829 } 6830 6831 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6832 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6833 MVT::Other, getRoot(), 6834 getValue(I.getArgOperand(0)), 6835 getValue(I.getArgOperand(1)), 6836 DAG.getSrcValue(I.getArgOperand(0)), 6837 DAG.getSrcValue(I.getArgOperand(1)))); 6838 } 6839 6840 /// \brief Lower an argument list according to the target calling convention. 6841 /// 6842 /// \return A tuple of <return-value, token-chain> 6843 /// 6844 /// This is a helper for lowering intrinsics that follow a target calling 6845 /// convention or require stack pointer adjustment. Only a subset of the 6846 /// intrinsic's operands need to participate in the calling convention. 6847 std::pair<SDValue, SDValue> 6848 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 6849 unsigned NumArgs, SDValue Callee, 6850 bool UseVoidTy, 6851 MachineBasicBlock *LandingPad, 6852 bool IsPatchPoint) { 6853 TargetLowering::ArgListTy Args; 6854 Args.reserve(NumArgs); 6855 6856 // Populate the argument list. 6857 // Attributes for args start at offset 1, after the return attribute. 6858 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6859 ArgI != ArgE; ++ArgI) { 6860 const Value *V = CS->getOperand(ArgI); 6861 6862 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6863 6864 TargetLowering::ArgListEntry Entry; 6865 Entry.Node = getValue(V); 6866 Entry.Ty = V->getType(); 6867 Entry.setAttributes(&CS, AttrI); 6868 Args.push_back(Entry); 6869 } 6870 6871 Type *retTy = UseVoidTy ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6872 TargetLowering::CallLoweringInfo CLI(DAG); 6873 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6874 .setCallee(CS.getCallingConv(), retTy, Callee, std::move(Args), NumArgs) 6875 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6876 6877 return lowerInvokable(CLI, LandingPad); 6878 } 6879 6880 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6881 /// or patchpoint target node's operand list. 6882 /// 6883 /// Constants are converted to TargetConstants purely as an optimization to 6884 /// avoid constant materialization and register allocation. 6885 /// 6886 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6887 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6888 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6889 /// address materialization and register allocation, but may also be required 6890 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6891 /// alloca in the entry block, then the runtime may assume that the alloca's 6892 /// StackMap location can be read immediately after compilation and that the 6893 /// location is valid at any point during execution (this is similar to the 6894 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6895 /// only available in a register, then the runtime would need to trap when 6896 /// execution reaches the StackMap in order to read the alloca's location. 6897 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6898 SmallVectorImpl<SDValue> &Ops, 6899 SelectionDAGBuilder &Builder) { 6900 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6901 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6902 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6903 Ops.push_back( 6904 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 6905 Ops.push_back( 6906 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 6907 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6908 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6909 Ops.push_back( 6910 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6911 } else 6912 Ops.push_back(OpVal); 6913 } 6914 } 6915 6916 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6917 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6918 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6919 // [live variables...]) 6920 6921 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6922 6923 SDValue Chain, InFlag, Callee, NullPtr; 6924 SmallVector<SDValue, 32> Ops; 6925 6926 SDLoc DL = getCurSDLoc(); 6927 Callee = getValue(CI.getCalledValue()); 6928 NullPtr = DAG.getIntPtrConstant(0, true); 6929 6930 // The stackmap intrinsic only records the live variables (the arguemnts 6931 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6932 // intrinsic, this won't be lowered to a function call. This means we don't 6933 // have to worry about calling conventions and target specific lowering code. 6934 // Instead we perform the call lowering right here. 6935 // 6936 // chain, flag = CALLSEQ_START(chain, 0) 6937 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6938 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6939 // 6940 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6941 InFlag = Chain.getValue(1); 6942 6943 // Add the <id> and <numBytes> constants. 6944 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6945 Ops.push_back(DAG.getTargetConstant( 6946 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6947 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6948 Ops.push_back(DAG.getTargetConstant( 6949 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6950 6951 // Push live variables for the stack map. 6952 addStackMapLiveVars(&CI, 2, Ops, *this); 6953 6954 // We are not pushing any register mask info here on the operands list, 6955 // because the stackmap doesn't clobber anything. 6956 6957 // Push the chain and the glue flag. 6958 Ops.push_back(Chain); 6959 Ops.push_back(InFlag); 6960 6961 // Create the STACKMAP node. 6962 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6963 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6964 Chain = SDValue(SM, 0); 6965 InFlag = Chain.getValue(1); 6966 6967 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6968 6969 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6970 6971 // Set the root to the target-lowered call chain. 6972 DAG.setRoot(Chain); 6973 6974 // Inform the Frame Information that we have a stackmap in this function. 6975 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6976 } 6977 6978 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6979 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6980 MachineBasicBlock *LandingPad) { 6981 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6982 // i32 <numBytes>, 6983 // i8* <target>, 6984 // i32 <numArgs>, 6985 // [Args...], 6986 // [live variables...]) 6987 6988 CallingConv::ID CC = CS.getCallingConv(); 6989 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6990 bool HasDef = !CS->getType()->isVoidTy(); 6991 SDValue Callee = getValue(CS->getOperand(2)); // <target> 6992 6993 // Get the real number of arguments participating in the call <numArgs> 6994 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6995 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6996 6997 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6998 // Intrinsics include all meta-operands up to but not including CC. 6999 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7000 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7001 "Not enough arguments provided to the patchpoint intrinsic"); 7002 7003 // For AnyRegCC the arguments are lowered later on manually. 7004 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7005 std::pair<SDValue, SDValue> Result = 7006 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, 7007 LandingPad, true); 7008 7009 SDNode *CallEnd = Result.second.getNode(); 7010 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7011 CallEnd = CallEnd->getOperand(0).getNode(); 7012 7013 /// Get a call instruction from the call sequence chain. 7014 /// Tail calls are not allowed. 7015 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7016 "Expected a callseq node."); 7017 SDNode *Call = CallEnd->getOperand(0).getNode(); 7018 bool HasGlue = Call->getGluedNode(); 7019 7020 // Replace the target specific call node with the patchable intrinsic. 7021 SmallVector<SDValue, 8> Ops; 7022 7023 // Add the <id> and <numBytes> constants. 7024 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7025 Ops.push_back(DAG.getTargetConstant( 7026 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 7027 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7028 Ops.push_back(DAG.getTargetConstant( 7029 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 7030 7031 // Assume that the Callee is a constant address. 7032 // FIXME: handle function symbols in the future. 7033 Ops.push_back( 7034 DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(), 7035 /*isTarget=*/true)); 7036 7037 // Adjust <numArgs> to account for any arguments that have been passed on the 7038 // stack instead. 7039 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7040 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7041 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7042 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 7043 7044 // Add the calling convention 7045 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); 7046 7047 // Add the arguments we omitted previously. The register allocator should 7048 // place these in any free register. 7049 if (IsAnyRegCC) 7050 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7051 Ops.push_back(getValue(CS.getArgument(i))); 7052 7053 // Push the arguments from the call instruction up to the register mask. 7054 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7055 Ops.append(Call->op_begin() + 2, e); 7056 7057 // Push live variables for the stack map. 7058 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, Ops, *this); 7059 7060 // Push the register mask info. 7061 if (HasGlue) 7062 Ops.push_back(*(Call->op_end()-2)); 7063 else 7064 Ops.push_back(*(Call->op_end()-1)); 7065 7066 // Push the chain (this is originally the first operand of the call, but 7067 // becomes now the last or second to last operand). 7068 Ops.push_back(*(Call->op_begin())); 7069 7070 // Push the glue flag (last operand). 7071 if (HasGlue) 7072 Ops.push_back(*(Call->op_end()-1)); 7073 7074 SDVTList NodeTys; 7075 if (IsAnyRegCC && HasDef) { 7076 // Create the return types based on the intrinsic definition 7077 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7078 SmallVector<EVT, 3> ValueVTs; 7079 ComputeValueVTs(TLI, CS->getType(), ValueVTs); 7080 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7081 7082 // There is always a chain and a glue type at the end 7083 ValueVTs.push_back(MVT::Other); 7084 ValueVTs.push_back(MVT::Glue); 7085 NodeTys = DAG.getVTList(ValueVTs); 7086 } else 7087 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7088 7089 // Replace the target specific call node with a PATCHPOINT node. 7090 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7091 getCurSDLoc(), NodeTys, Ops); 7092 7093 // Update the NodeMap. 7094 if (HasDef) { 7095 if (IsAnyRegCC) 7096 setValue(CS.getInstruction(), SDValue(MN, 0)); 7097 else 7098 setValue(CS.getInstruction(), Result.first); 7099 } 7100 7101 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7102 // call sequence. Furthermore the location of the chain and glue can change 7103 // when the AnyReg calling convention is used and the intrinsic returns a 7104 // value. 7105 if (IsAnyRegCC && HasDef) { 7106 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7107 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7108 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7109 } else 7110 DAG.ReplaceAllUsesWith(Call, MN); 7111 DAG.DeleteNode(Call); 7112 7113 // Inform the Frame Information that we have a patchpoint in this function. 7114 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7115 } 7116 7117 /// Returns an AttributeSet representing the attributes applied to the return 7118 /// value of the given call. 7119 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7120 SmallVector<Attribute::AttrKind, 2> Attrs; 7121 if (CLI.RetSExt) 7122 Attrs.push_back(Attribute::SExt); 7123 if (CLI.RetZExt) 7124 Attrs.push_back(Attribute::ZExt); 7125 if (CLI.IsInReg) 7126 Attrs.push_back(Attribute::InReg); 7127 7128 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7129 Attrs); 7130 } 7131 7132 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7133 /// implementation, which just calls LowerCall. 7134 /// FIXME: When all targets are 7135 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7136 std::pair<SDValue, SDValue> 7137 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7138 // Handle the incoming return values from the call. 7139 CLI.Ins.clear(); 7140 Type *OrigRetTy = CLI.RetTy; 7141 SmallVector<EVT, 4> RetTys; 7142 SmallVector<uint64_t, 4> Offsets; 7143 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 7144 7145 SmallVector<ISD::OutputArg, 4> Outs; 7146 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 7147 7148 bool CanLowerReturn = 7149 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7150 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7151 7152 SDValue DemoteStackSlot; 7153 int DemoteStackIdx = -100; 7154 if (!CanLowerReturn) { 7155 // FIXME: equivalent assert? 7156 // assert(!CS.hasInAllocaArgument() && 7157 // "sret demotion is incompatible with inalloca"); 7158 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 7159 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 7160 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7161 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7162 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7163 7164 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 7165 ArgListEntry Entry; 7166 Entry.Node = DemoteStackSlot; 7167 Entry.Ty = StackSlotPtrType; 7168 Entry.isSExt = false; 7169 Entry.isZExt = false; 7170 Entry.isInReg = false; 7171 Entry.isSRet = true; 7172 Entry.isNest = false; 7173 Entry.isByVal = false; 7174 Entry.isReturned = false; 7175 Entry.Alignment = Align; 7176 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7177 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7178 } else { 7179 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7180 EVT VT = RetTys[I]; 7181 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7182 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7183 for (unsigned i = 0; i != NumRegs; ++i) { 7184 ISD::InputArg MyFlags; 7185 MyFlags.VT = RegisterVT; 7186 MyFlags.ArgVT = VT; 7187 MyFlags.Used = CLI.IsReturnValueUsed; 7188 if (CLI.RetSExt) 7189 MyFlags.Flags.setSExt(); 7190 if (CLI.RetZExt) 7191 MyFlags.Flags.setZExt(); 7192 if (CLI.IsInReg) 7193 MyFlags.Flags.setInReg(); 7194 CLI.Ins.push_back(MyFlags); 7195 } 7196 } 7197 } 7198 7199 // Handle all of the outgoing arguments. 7200 CLI.Outs.clear(); 7201 CLI.OutVals.clear(); 7202 ArgListTy &Args = CLI.getArgs(); 7203 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7204 SmallVector<EVT, 4> ValueVTs; 7205 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 7206 Type *FinalType = Args[i].Ty; 7207 if (Args[i].isByVal) 7208 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7209 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7210 FinalType, CLI.CallConv, CLI.IsVarArg); 7211 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7212 ++Value) { 7213 EVT VT = ValueVTs[Value]; 7214 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7215 SDValue Op = SDValue(Args[i].Node.getNode(), 7216 Args[i].Node.getResNo() + Value); 7217 ISD::ArgFlagsTy Flags; 7218 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 7219 7220 if (Args[i].isZExt) 7221 Flags.setZExt(); 7222 if (Args[i].isSExt) 7223 Flags.setSExt(); 7224 if (Args[i].isInReg) 7225 Flags.setInReg(); 7226 if (Args[i].isSRet) 7227 Flags.setSRet(); 7228 if (Args[i].isByVal) 7229 Flags.setByVal(); 7230 if (Args[i].isInAlloca) { 7231 Flags.setInAlloca(); 7232 // Set the byval flag for CCAssignFn callbacks that don't know about 7233 // inalloca. This way we can know how many bytes we should've allocated 7234 // and how many bytes a callee cleanup function will pop. If we port 7235 // inalloca to more targets, we'll have to add custom inalloca handling 7236 // in the various CC lowering callbacks. 7237 Flags.setByVal(); 7238 } 7239 if (Args[i].isByVal || Args[i].isInAlloca) { 7240 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7241 Type *ElementTy = Ty->getElementType(); 7242 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 7243 // For ByVal, alignment should come from FE. BE will guess if this 7244 // info is not there but there are cases it cannot get right. 7245 unsigned FrameAlign; 7246 if (Args[i].Alignment) 7247 FrameAlign = Args[i].Alignment; 7248 else 7249 FrameAlign = getByValTypeAlignment(ElementTy); 7250 Flags.setByValAlign(FrameAlign); 7251 } 7252 if (Args[i].isNest) 7253 Flags.setNest(); 7254 if (NeedsRegBlock) 7255 Flags.setInConsecutiveRegs(); 7256 Flags.setOrigAlign(OriginalAlignment); 7257 7258 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7259 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7260 SmallVector<SDValue, 4> Parts(NumParts); 7261 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7262 7263 if (Args[i].isSExt) 7264 ExtendKind = ISD::SIGN_EXTEND; 7265 else if (Args[i].isZExt) 7266 ExtendKind = ISD::ZERO_EXTEND; 7267 7268 // Conservatively only handle 'returned' on non-vectors for now 7269 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7270 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7271 "unexpected use of 'returned'"); 7272 // Before passing 'returned' to the target lowering code, ensure that 7273 // either the register MVT and the actual EVT are the same size or that 7274 // the return value and argument are extended in the same way; in these 7275 // cases it's safe to pass the argument register value unchanged as the 7276 // return register value (although it's at the target's option whether 7277 // to do so) 7278 // TODO: allow code generation to take advantage of partially preserved 7279 // registers rather than clobbering the entire register when the 7280 // parameter extension method is not compatible with the return 7281 // extension method 7282 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7283 (ExtendKind != ISD::ANY_EXTEND && 7284 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7285 Flags.setReturned(); 7286 } 7287 7288 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7289 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7290 7291 for (unsigned j = 0; j != NumParts; ++j) { 7292 // if it isn't first piece, alignment must be 1 7293 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7294 i < CLI.NumFixedArgs, 7295 i, j*Parts[j].getValueType().getStoreSize()); 7296 if (NumParts > 1 && j == 0) 7297 MyFlags.Flags.setSplit(); 7298 else if (j != 0) 7299 MyFlags.Flags.setOrigAlign(1); 7300 7301 CLI.Outs.push_back(MyFlags); 7302 CLI.OutVals.push_back(Parts[j]); 7303 } 7304 7305 if (NeedsRegBlock && Value == NumValues - 1) 7306 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7307 } 7308 } 7309 7310 SmallVector<SDValue, 4> InVals; 7311 CLI.Chain = LowerCall(CLI, InVals); 7312 7313 // Verify that the target's LowerCall behaved as expected. 7314 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7315 "LowerCall didn't return a valid chain!"); 7316 assert((!CLI.IsTailCall || InVals.empty()) && 7317 "LowerCall emitted a return value for a tail call!"); 7318 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7319 "LowerCall didn't emit the correct number of values!"); 7320 7321 // For a tail call, the return value is merely live-out and there aren't 7322 // any nodes in the DAG representing it. Return a special value to 7323 // indicate that a tail call has been emitted and no more Instructions 7324 // should be processed in the current block. 7325 if (CLI.IsTailCall) { 7326 CLI.DAG.setRoot(CLI.Chain); 7327 return std::make_pair(SDValue(), SDValue()); 7328 } 7329 7330 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7331 assert(InVals[i].getNode() && 7332 "LowerCall emitted a null value!"); 7333 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7334 "LowerCall emitted a value with the wrong type!"); 7335 }); 7336 7337 SmallVector<SDValue, 4> ReturnValues; 7338 if (!CanLowerReturn) { 7339 // The instruction result is the result of loading from the 7340 // hidden sret parameter. 7341 SmallVector<EVT, 1> PVTs; 7342 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7343 7344 ComputeValueVTs(*this, PtrRetTy, PVTs); 7345 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7346 EVT PtrVT = PVTs[0]; 7347 7348 unsigned NumValues = RetTys.size(); 7349 ReturnValues.resize(NumValues); 7350 SmallVector<SDValue, 4> Chains(NumValues); 7351 7352 for (unsigned i = 0; i < NumValues; ++i) { 7353 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7354 CLI.DAG.getConstant(Offsets[i], PtrVT)); 7355 SDValue L = CLI.DAG.getLoad( 7356 RetTys[i], CLI.DL, CLI.Chain, Add, 7357 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 7358 false, false, 1); 7359 ReturnValues[i] = L; 7360 Chains[i] = L.getValue(1); 7361 } 7362 7363 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7364 } else { 7365 // Collect the legal value parts into potentially illegal values 7366 // that correspond to the original function's return values. 7367 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7368 if (CLI.RetSExt) 7369 AssertOp = ISD::AssertSext; 7370 else if (CLI.RetZExt) 7371 AssertOp = ISD::AssertZext; 7372 unsigned CurReg = 0; 7373 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7374 EVT VT = RetTys[I]; 7375 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7376 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7377 7378 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7379 NumRegs, RegisterVT, VT, nullptr, 7380 AssertOp)); 7381 CurReg += NumRegs; 7382 } 7383 7384 // For a function returning void, there is no return value. We can't create 7385 // such a node, so we just return a null return value in that case. In 7386 // that case, nothing will actually look at the value. 7387 if (ReturnValues.empty()) 7388 return std::make_pair(SDValue(), CLI.Chain); 7389 } 7390 7391 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7392 CLI.DAG.getVTList(RetTys), ReturnValues); 7393 return std::make_pair(Res, CLI.Chain); 7394 } 7395 7396 void TargetLowering::LowerOperationWrapper(SDNode *N, 7397 SmallVectorImpl<SDValue> &Results, 7398 SelectionDAG &DAG) const { 7399 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7400 if (Res.getNode()) 7401 Results.push_back(Res); 7402 } 7403 7404 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7405 llvm_unreachable("LowerOperation not implemented for this target!"); 7406 } 7407 7408 void 7409 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7410 SDValue Op = getNonRegisterValue(V); 7411 assert((Op.getOpcode() != ISD::CopyFromReg || 7412 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7413 "Copy from a reg to the same reg!"); 7414 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7415 7416 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7417 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 7418 SDValue Chain = DAG.getEntryNode(); 7419 7420 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7421 FuncInfo.PreferredExtendType.end()) 7422 ? ISD::ANY_EXTEND 7423 : FuncInfo.PreferredExtendType[V]; 7424 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7425 PendingExports.push_back(Chain); 7426 } 7427 7428 #include "llvm/CodeGen/SelectionDAGISel.h" 7429 7430 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7431 /// entry block, return true. This includes arguments used by switches, since 7432 /// the switch may expand into multiple basic blocks. 7433 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7434 // With FastISel active, we may be splitting blocks, so force creation 7435 // of virtual registers for all non-dead arguments. 7436 if (FastISel) 7437 return A->use_empty(); 7438 7439 const BasicBlock *Entry = A->getParent()->begin(); 7440 for (const User *U : A->users()) 7441 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7442 return false; // Use not in entry block. 7443 7444 return true; 7445 } 7446 7447 void SelectionDAGISel::LowerArguments(const Function &F) { 7448 SelectionDAG &DAG = SDB->DAG; 7449 SDLoc dl = SDB->getCurSDLoc(); 7450 const DataLayout *DL = TLI->getDataLayout(); 7451 SmallVector<ISD::InputArg, 16> Ins; 7452 7453 if (!FuncInfo->CanLowerReturn) { 7454 // Put in an sret pointer parameter before all the other parameters. 7455 SmallVector<EVT, 1> ValueVTs; 7456 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7457 7458 // NOTE: Assuming that a pointer will never break down to more than one VT 7459 // or one register. 7460 ISD::ArgFlagsTy Flags; 7461 Flags.setSRet(); 7462 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7463 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7464 ISD::InputArg::NoArgIndex, 0); 7465 Ins.push_back(RetArg); 7466 } 7467 7468 // Set up the incoming argument description vector. 7469 unsigned Idx = 1; 7470 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7471 I != E; ++I, ++Idx) { 7472 SmallVector<EVT, 4> ValueVTs; 7473 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7474 bool isArgValueUsed = !I->use_empty(); 7475 unsigned PartBase = 0; 7476 Type *FinalType = I->getType(); 7477 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7478 FinalType = cast<PointerType>(FinalType)->getElementType(); 7479 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7480 FinalType, F.getCallingConv(), F.isVarArg()); 7481 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7482 Value != NumValues; ++Value) { 7483 EVT VT = ValueVTs[Value]; 7484 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7485 ISD::ArgFlagsTy Flags; 7486 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7487 7488 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7489 Flags.setZExt(); 7490 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7491 Flags.setSExt(); 7492 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7493 Flags.setInReg(); 7494 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7495 Flags.setSRet(); 7496 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7497 Flags.setByVal(); 7498 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7499 Flags.setInAlloca(); 7500 // Set the byval flag for CCAssignFn callbacks that don't know about 7501 // inalloca. This way we can know how many bytes we should've allocated 7502 // and how many bytes a callee cleanup function will pop. If we port 7503 // inalloca to more targets, we'll have to add custom inalloca handling 7504 // in the various CC lowering callbacks. 7505 Flags.setByVal(); 7506 } 7507 if (Flags.isByVal() || Flags.isInAlloca()) { 7508 PointerType *Ty = cast<PointerType>(I->getType()); 7509 Type *ElementTy = Ty->getElementType(); 7510 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7511 // For ByVal, alignment should be passed from FE. BE will guess if 7512 // this info is not there but there are cases it cannot get right. 7513 unsigned FrameAlign; 7514 if (F.getParamAlignment(Idx)) 7515 FrameAlign = F.getParamAlignment(Idx); 7516 else 7517 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7518 Flags.setByValAlign(FrameAlign); 7519 } 7520 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7521 Flags.setNest(); 7522 if (NeedsRegBlock) 7523 Flags.setInConsecutiveRegs(); 7524 Flags.setOrigAlign(OriginalAlignment); 7525 7526 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7527 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7528 for (unsigned i = 0; i != NumRegs; ++i) { 7529 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7530 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7531 if (NumRegs > 1 && i == 0) 7532 MyFlags.Flags.setSplit(); 7533 // if it isn't first piece, alignment must be 1 7534 else if (i > 0) 7535 MyFlags.Flags.setOrigAlign(1); 7536 Ins.push_back(MyFlags); 7537 } 7538 if (NeedsRegBlock && Value == NumValues - 1) 7539 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7540 PartBase += VT.getStoreSize(); 7541 } 7542 } 7543 7544 // Call the target to set up the argument values. 7545 SmallVector<SDValue, 8> InVals; 7546 SDValue NewRoot = TLI->LowerFormalArguments( 7547 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7548 7549 // Verify that the target's LowerFormalArguments behaved as expected. 7550 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7551 "LowerFormalArguments didn't return a valid chain!"); 7552 assert(InVals.size() == Ins.size() && 7553 "LowerFormalArguments didn't emit the correct number of values!"); 7554 DEBUG({ 7555 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7556 assert(InVals[i].getNode() && 7557 "LowerFormalArguments emitted a null value!"); 7558 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7559 "LowerFormalArguments emitted a value with the wrong type!"); 7560 } 7561 }); 7562 7563 // Update the DAG with the new chain value resulting from argument lowering. 7564 DAG.setRoot(NewRoot); 7565 7566 // Set up the argument values. 7567 unsigned i = 0; 7568 Idx = 1; 7569 if (!FuncInfo->CanLowerReturn) { 7570 // Create a virtual register for the sret pointer, and put in a copy 7571 // from the sret argument into it. 7572 SmallVector<EVT, 1> ValueVTs; 7573 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7574 MVT VT = ValueVTs[0].getSimpleVT(); 7575 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7576 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7577 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7578 RegVT, VT, nullptr, AssertOp); 7579 7580 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7581 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7582 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7583 FuncInfo->DemoteRegister = SRetReg; 7584 NewRoot = 7585 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7586 DAG.setRoot(NewRoot); 7587 7588 // i indexes lowered arguments. Bump it past the hidden sret argument. 7589 // Idx indexes LLVM arguments. Don't touch it. 7590 ++i; 7591 } 7592 7593 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7594 ++I, ++Idx) { 7595 SmallVector<SDValue, 4> ArgValues; 7596 SmallVector<EVT, 4> ValueVTs; 7597 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7598 unsigned NumValues = ValueVTs.size(); 7599 7600 // If this argument is unused then remember its value. It is used to generate 7601 // debugging information. 7602 if (I->use_empty() && NumValues) { 7603 SDB->setUnusedArgValue(I, InVals[i]); 7604 7605 // Also remember any frame index for use in FastISel. 7606 if (FrameIndexSDNode *FI = 7607 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7608 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7609 } 7610 7611 for (unsigned Val = 0; Val != NumValues; ++Val) { 7612 EVT VT = ValueVTs[Val]; 7613 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7614 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7615 7616 if (!I->use_empty()) { 7617 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7618 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7619 AssertOp = ISD::AssertSext; 7620 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7621 AssertOp = ISD::AssertZext; 7622 7623 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7624 NumParts, PartVT, VT, 7625 nullptr, AssertOp)); 7626 } 7627 7628 i += NumParts; 7629 } 7630 7631 // We don't need to do anything else for unused arguments. 7632 if (ArgValues.empty()) 7633 continue; 7634 7635 // Note down frame index. 7636 if (FrameIndexSDNode *FI = 7637 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7638 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7639 7640 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7641 SDB->getCurSDLoc()); 7642 7643 SDB->setValue(I, Res); 7644 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7645 if (LoadSDNode *LNode = 7646 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7647 if (FrameIndexSDNode *FI = 7648 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7649 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7650 } 7651 7652 // If this argument is live outside of the entry block, insert a copy from 7653 // wherever we got it to the vreg that other BB's will reference it as. 7654 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7655 // If we can, though, try to skip creating an unnecessary vreg. 7656 // FIXME: This isn't very clean... it would be nice to make this more 7657 // general. It's also subtly incompatible with the hacks FastISel 7658 // uses with vregs. 7659 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7660 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7661 FuncInfo->ValueMap[I] = Reg; 7662 continue; 7663 } 7664 } 7665 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7666 FuncInfo->InitializeRegForValue(I); 7667 SDB->CopyToExportRegsIfNeeded(I); 7668 } 7669 } 7670 7671 assert(i == InVals.size() && "Argument register count mismatch!"); 7672 7673 // Finally, if the target has anything special to do, allow it to do so. 7674 EmitFunctionEntryCode(); 7675 } 7676 7677 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7678 /// ensure constants are generated when needed. Remember the virtual registers 7679 /// that need to be added to the Machine PHI nodes as input. We cannot just 7680 /// directly add them, because expansion might result in multiple MBB's for one 7681 /// BB. As such, the start of the BB might correspond to a different MBB than 7682 /// the end. 7683 /// 7684 void 7685 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7686 const TerminatorInst *TI = LLVMBB->getTerminator(); 7687 7688 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7689 7690 // Check PHI nodes in successors that expect a value to be available from this 7691 // block. 7692 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7693 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7694 if (!isa<PHINode>(SuccBB->begin())) continue; 7695 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7696 7697 // If this terminator has multiple identical successors (common for 7698 // switches), only handle each succ once. 7699 if (!SuccsHandled.insert(SuccMBB).second) 7700 continue; 7701 7702 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7703 7704 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7705 // nodes and Machine PHI nodes, but the incoming operands have not been 7706 // emitted yet. 7707 for (BasicBlock::const_iterator I = SuccBB->begin(); 7708 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7709 // Ignore dead phi's. 7710 if (PN->use_empty()) continue; 7711 7712 // Skip empty types 7713 if (PN->getType()->isEmptyTy()) 7714 continue; 7715 7716 unsigned Reg; 7717 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7718 7719 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7720 unsigned &RegOut = ConstantsOut[C]; 7721 if (RegOut == 0) { 7722 RegOut = FuncInfo.CreateRegs(C->getType()); 7723 CopyValueToVirtualRegister(C, RegOut); 7724 } 7725 Reg = RegOut; 7726 } else { 7727 DenseMap<const Value *, unsigned>::iterator I = 7728 FuncInfo.ValueMap.find(PHIOp); 7729 if (I != FuncInfo.ValueMap.end()) 7730 Reg = I->second; 7731 else { 7732 assert(isa<AllocaInst>(PHIOp) && 7733 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7734 "Didn't codegen value into a register!??"); 7735 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7736 CopyValueToVirtualRegister(PHIOp, Reg); 7737 } 7738 } 7739 7740 // Remember that this register needs to added to the machine PHI node as 7741 // the input for this MBB. 7742 SmallVector<EVT, 4> ValueVTs; 7743 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7744 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 7745 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7746 EVT VT = ValueVTs[vti]; 7747 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7748 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7749 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7750 Reg += NumRegisters; 7751 } 7752 } 7753 } 7754 7755 ConstantsOut.clear(); 7756 } 7757 7758 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7759 /// is 0. 7760 MachineBasicBlock * 7761 SelectionDAGBuilder::StackProtectorDescriptor:: 7762 AddSuccessorMBB(const BasicBlock *BB, 7763 MachineBasicBlock *ParentMBB, 7764 bool IsLikely, 7765 MachineBasicBlock *SuccMBB) { 7766 // If SuccBB has not been created yet, create it. 7767 if (!SuccMBB) { 7768 MachineFunction *MF = ParentMBB->getParent(); 7769 MachineFunction::iterator BBI = ParentMBB; 7770 SuccMBB = MF->CreateMachineBasicBlock(BB); 7771 MF->insert(++BBI, SuccMBB); 7772 } 7773 // Add it as a successor of ParentMBB. 7774 ParentMBB->addSuccessor( 7775 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7776 return SuccMBB; 7777 } 7778 7779 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7780 MachineFunction::iterator I = MBB; 7781 if (++I == FuncInfo.MF->end()) 7782 return nullptr; 7783 return I; 7784 } 7785