xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 2bb8b26aa836aea1f87ef5469aed325c7f202d37)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "isel"
15 #include "SDNodeDbgValue.h"
16 #include "SelectionDAGBuilder.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/PostOrderIterator.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Constants.h"
23 #include "llvm/CallingConv.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/InlineAsm.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/Intrinsics.h"
30 #include "llvm/IntrinsicInst.h"
31 #include "llvm/LLVMContext.h"
32 #include "llvm/Module.h"
33 #include "llvm/CodeGen/Analysis.h"
34 #include "llvm/CodeGen/FastISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCStrategy.h"
37 #include "llvm/CodeGen/GCMetadata.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineJumpTableInfo.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/MachineRegisterInfo.h"
44 #include "llvm/CodeGen/PseudoSourceValue.h"
45 #include "llvm/CodeGen/SelectionDAG.h"
46 #include "llvm/Analysis/DebugInfo.h"
47 #include "llvm/Target/TargetData.h"
48 #include "llvm/Target/TargetFrameLowering.h"
49 #include "llvm/Target/TargetInstrInfo.h"
50 #include "llvm/Target/TargetIntrinsicInfo.h"
51 #include "llvm/Target/TargetLowering.h"
52 #include "llvm/Target/TargetOptions.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 using namespace llvm;
60 
61 /// LimitFloatPrecision - Generate low-precision inline sequences for
62 /// some float libcalls (6, 8 or 12 bits).
63 static unsigned LimitFloatPrecision;
64 
65 static cl::opt<unsigned, true>
66 LimitFPPrecision("limit-float-precision",
67                  cl::desc("Generate low-precision inline sequences "
68                           "for some float libcalls"),
69                  cl::location(LimitFloatPrecision),
70                  cl::init(0));
71 
72 // Limit the width of DAG chains. This is important in general to prevent
73 // prevent DAG-based analysis from blowing up. For example, alias analysis and
74 // load clustering may not complete in reasonable time. It is difficult to
75 // recognize and avoid this situation within each individual analysis, and
76 // future analyses are likely to have the same behavior. Limiting DAG width is
77 // the safe approach, and will be especially important with global DAGs.
78 //
79 // MaxParallelChains default is arbitrarily high to avoid affecting
80 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
81 // sequence over this should have been converted to llvm.memcpy by the
82 // frontend. It easy to induce this behavior with .ll code such as:
83 // %buffer = alloca [4096 x i8]
84 // %data = load [4096 x i8]* %argPtr
85 // store [4096 x i8] %data, [4096 x i8]* %buffer
86 static const unsigned MaxParallelChains = 64;
87 
88 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
89                                       const SDValue *Parts, unsigned NumParts,
90                                       EVT PartVT, EVT ValueVT);
91 
92 /// getCopyFromParts - Create a value that contains the specified legal parts
93 /// combined into the value they represent.  If the parts combine to a type
94 /// larger then ValueVT then AssertOp can be used to specify whether the extra
95 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
96 /// (ISD::AssertSext).
97 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
98                                 const SDValue *Parts,
99                                 unsigned NumParts, EVT PartVT, EVT ValueVT,
100                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
101   if (ValueVT.isVector())
102     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
103 
104   assert(NumParts > 0 && "No parts to assemble!");
105   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
106   SDValue Val = Parts[0];
107 
108   if (NumParts > 1) {
109     // Assemble the value from multiple parts.
110     if (ValueVT.isInteger()) {
111       unsigned PartBits = PartVT.getSizeInBits();
112       unsigned ValueBits = ValueVT.getSizeInBits();
113 
114       // Assemble the power of 2 part.
115       unsigned RoundParts = NumParts & (NumParts - 1) ?
116         1 << Log2_32(NumParts) : NumParts;
117       unsigned RoundBits = PartBits * RoundParts;
118       EVT RoundVT = RoundBits == ValueBits ?
119         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
120       SDValue Lo, Hi;
121 
122       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
123 
124       if (RoundParts > 2) {
125         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
126                               PartVT, HalfVT);
127         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
128                               RoundParts / 2, PartVT, HalfVT);
129       } else {
130         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
131         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
132       }
133 
134       if (TLI.isBigEndian())
135         std::swap(Lo, Hi);
136 
137       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
138 
139       if (RoundParts < NumParts) {
140         // Assemble the trailing non-power-of-2 part.
141         unsigned OddParts = NumParts - RoundParts;
142         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
143         Hi = getCopyFromParts(DAG, DL,
144                               Parts + RoundParts, OddParts, PartVT, OddVT);
145 
146         // Combine the round and odd parts.
147         Lo = Val;
148         if (TLI.isBigEndian())
149           std::swap(Lo, Hi);
150         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
151         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
152         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
153                          DAG.getConstant(Lo.getValueType().getSizeInBits(),
154                                          TLI.getPointerTy()));
155         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
156         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
157       }
158     } else if (PartVT.isFloatingPoint()) {
159       // FP split into multiple FP parts (for ppcf128)
160       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
161              "Unexpected split");
162       SDValue Lo, Hi;
163       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
164       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
165       if (TLI.isBigEndian())
166         std::swap(Lo, Hi);
167       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
168     } else {
169       // FP split into integer parts (soft fp)
170       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
171              !PartVT.isVector() && "Unexpected split");
172       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
173       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
174     }
175   }
176 
177   // There is now one part, held in Val.  Correct it to match ValueVT.
178   PartVT = Val.getValueType();
179 
180   if (PartVT == ValueVT)
181     return Val;
182 
183   if (PartVT.isInteger() && ValueVT.isInteger()) {
184     if (ValueVT.bitsLT(PartVT)) {
185       // For a truncate, see if we have any information to
186       // indicate whether the truncated bits will always be
187       // zero or sign-extension.
188       if (AssertOp != ISD::DELETED_NODE)
189         Val = DAG.getNode(AssertOp, DL, PartVT, Val,
190                           DAG.getValueType(ValueVT));
191       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
192     }
193     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
194   }
195 
196   if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
197     // FP_ROUND's are always exact here.
198     if (ValueVT.bitsLT(Val.getValueType()))
199       return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
200                          DAG.getIntPtrConstant(1));
201 
202     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
203   }
204 
205   if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
206     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
207 
208   llvm_unreachable("Unknown mismatch!");
209   return SDValue();
210 }
211 
212 /// getCopyFromParts - Create a value that contains the specified legal parts
213 /// combined into the value they represent.  If the parts combine to a type
214 /// larger then ValueVT then AssertOp can be used to specify whether the extra
215 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
216 /// (ISD::AssertSext).
217 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
218                                       const SDValue *Parts, unsigned NumParts,
219                                       EVT PartVT, EVT ValueVT) {
220   assert(ValueVT.isVector() && "Not a vector value");
221   assert(NumParts > 0 && "No parts to assemble!");
222   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
223   SDValue Val = Parts[0];
224 
225   // Handle a multi-element vector.
226   if (NumParts > 1) {
227     EVT IntermediateVT, RegisterVT;
228     unsigned NumIntermediates;
229     unsigned NumRegs =
230     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
231                                NumIntermediates, RegisterVT);
232     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
233     NumParts = NumRegs; // Silence a compiler warning.
234     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
235     assert(RegisterVT == Parts[0].getValueType() &&
236            "Part type doesn't match part!");
237 
238     // Assemble the parts into intermediate operands.
239     SmallVector<SDValue, 8> Ops(NumIntermediates);
240     if (NumIntermediates == NumParts) {
241       // If the register was not expanded, truncate or copy the value,
242       // as appropriate.
243       for (unsigned i = 0; i != NumParts; ++i)
244         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
245                                   PartVT, IntermediateVT);
246     } else if (NumParts > 0) {
247       // If the intermediate type was expanded, build the intermediate
248       // operands from the parts.
249       assert(NumParts % NumIntermediates == 0 &&
250              "Must expand into a divisible number of parts!");
251       unsigned Factor = NumParts / NumIntermediates;
252       for (unsigned i = 0; i != NumIntermediates; ++i)
253         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
254                                   PartVT, IntermediateVT);
255     }
256 
257     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
258     // intermediate operands.
259     Val = DAG.getNode(IntermediateVT.isVector() ?
260                       ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
261                       ValueVT, &Ops[0], NumIntermediates);
262   }
263 
264   // There is now one part, held in Val.  Correct it to match ValueVT.
265   PartVT = Val.getValueType();
266 
267   if (PartVT == ValueVT)
268     return Val;
269 
270   if (PartVT.isVector()) {
271     // If the element type of the source/dest vectors are the same, but the
272     // parts vector has more elements than the value vector, then we have a
273     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
274     // elements we want.
275     if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
276       assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
277              "Cannot narrow, it would be a lossy transformation");
278       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
279                          DAG.getIntPtrConstant(0));
280     }
281 
282     // Vector/Vector bitcast.
283     if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
284       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
285 
286     assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
287       "Cannot handle this kind of promotion");
288     // Promoted vector extract
289     bool Smaller = ValueVT.bitsLE(PartVT);
290     return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
291                        DL, ValueVT, Val);
292 
293   }
294 
295   // Trivial bitcast if the types are the same size and the destination
296   // vector type is legal.
297   if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
298       TLI.isTypeLegal(ValueVT))
299     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300 
301   // Handle cases such as i8 -> <1 x i1>
302   assert(ValueVT.getVectorNumElements() == 1 &&
303          "Only trivial scalar-to-vector conversions should get here!");
304 
305   if (ValueVT.getVectorNumElements() == 1 &&
306       ValueVT.getVectorElementType() != PartVT) {
307     bool Smaller = ValueVT.bitsLE(PartVT);
308     Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
309                        DL, ValueVT.getScalarType(), Val);
310   }
311 
312   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
313 }
314 
315 
316 
317 
318 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
319                                  SDValue Val, SDValue *Parts, unsigned NumParts,
320                                  EVT PartVT);
321 
322 /// getCopyToParts - Create a series of nodes that contain the specified value
323 /// split into legal parts.  If the parts contain more bits than Val, then, for
324 /// integers, ExtendKind can be used to specify how to generate the extra bits.
325 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
326                            SDValue Val, SDValue *Parts, unsigned NumParts,
327                            EVT PartVT,
328                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
329   EVT ValueVT = Val.getValueType();
330 
331   // Handle the vector case separately.
332   if (ValueVT.isVector())
333     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
334 
335   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
336   unsigned PartBits = PartVT.getSizeInBits();
337   unsigned OrigNumParts = NumParts;
338   assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
339 
340   if (NumParts == 0)
341     return;
342 
343   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
344   if (PartVT == ValueVT) {
345     assert(NumParts == 1 && "No-op copy with multiple parts!");
346     Parts[0] = Val;
347     return;
348   }
349 
350   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
351     // If the parts cover more bits than the value has, promote the value.
352     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
353       assert(NumParts == 1 && "Do not know what to promote to!");
354       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
355     } else {
356       assert(PartVT.isInteger() && ValueVT.isInteger() &&
357              "Unknown mismatch!");
358       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
359       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
360     }
361   } else if (PartBits == ValueVT.getSizeInBits()) {
362     // Different types of the same size.
363     assert(NumParts == 1 && PartVT != ValueVT);
364     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
365   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
366     // If the parts cover less bits than value has, truncate the value.
367     assert(PartVT.isInteger() && ValueVT.isInteger() &&
368            "Unknown mismatch!");
369     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
370     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
371   }
372 
373   // The value may have changed - recompute ValueVT.
374   ValueVT = Val.getValueType();
375   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
376          "Failed to tile the value with PartVT!");
377 
378   if (NumParts == 1) {
379     assert(PartVT == ValueVT && "Type conversion failed!");
380     Parts[0] = Val;
381     return;
382   }
383 
384   // Expand the value into multiple parts.
385   if (NumParts & (NumParts - 1)) {
386     // The number of parts is not a power of 2.  Split off and copy the tail.
387     assert(PartVT.isInteger() && ValueVT.isInteger() &&
388            "Do not know what to expand to!");
389     unsigned RoundParts = 1 << Log2_32(NumParts);
390     unsigned RoundBits = RoundParts * PartBits;
391     unsigned OddParts = NumParts - RoundParts;
392     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
393                                  DAG.getIntPtrConstant(RoundBits));
394     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
395 
396     if (TLI.isBigEndian())
397       // The odd parts were reversed by getCopyToParts - unreverse them.
398       std::reverse(Parts + RoundParts, Parts + NumParts);
399 
400     NumParts = RoundParts;
401     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
402     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
403   }
404 
405   // The number of parts is a power of 2.  Repeatedly bisect the value using
406   // EXTRACT_ELEMENT.
407   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
408                          EVT::getIntegerVT(*DAG.getContext(),
409                                            ValueVT.getSizeInBits()),
410                          Val);
411 
412   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
413     for (unsigned i = 0; i < NumParts; i += StepSize) {
414       unsigned ThisBits = StepSize * PartBits / 2;
415       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
416       SDValue &Part0 = Parts[i];
417       SDValue &Part1 = Parts[i+StepSize/2];
418 
419       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
420                           ThisVT, Part0, DAG.getIntPtrConstant(1));
421       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
422                           ThisVT, Part0, DAG.getIntPtrConstant(0));
423 
424       if (ThisBits == PartBits && ThisVT != PartVT) {
425         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
426         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
427       }
428     }
429   }
430 
431   if (TLI.isBigEndian())
432     std::reverse(Parts, Parts + OrigNumParts);
433 }
434 
435 
436 /// getCopyToPartsVector - Create a series of nodes that contain the specified
437 /// value split into legal parts.
438 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
439                                  SDValue Val, SDValue *Parts, unsigned NumParts,
440                                  EVT PartVT) {
441   EVT ValueVT = Val.getValueType();
442   assert(ValueVT.isVector() && "Not a vector");
443   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
444 
445   if (NumParts == 1) {
446     if (PartVT == ValueVT) {
447       // Nothing to do.
448     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
449       // Bitconvert vector->vector case.
450       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
451     } else if (PartVT.isVector() &&
452                PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
453                PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
454       EVT ElementVT = PartVT.getVectorElementType();
455       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
456       // undef elements.
457       SmallVector<SDValue, 16> Ops;
458       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
459         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
460                                   ElementVT, Val, DAG.getIntPtrConstant(i)));
461 
462       for (unsigned i = ValueVT.getVectorNumElements(),
463            e = PartVT.getVectorNumElements(); i != e; ++i)
464         Ops.push_back(DAG.getUNDEF(ElementVT));
465 
466       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
467 
468       // FIXME: Use CONCAT for 2x -> 4x.
469 
470       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
471       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
472     } else if (PartVT.isVector() &&
473                PartVT.getVectorElementType().bitsGE(
474                  ValueVT.getVectorElementType()) &&
475                PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
476 
477       // Promoted vector extract
478       bool Smaller = PartVT.bitsLE(ValueVT);
479       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
480                         DL, PartVT, Val);
481     } else{
482       // Vector -> scalar conversion.
483       assert(ValueVT.getVectorNumElements() == 1 &&
484              "Only trivial vector-to-scalar conversions should get here!");
485       Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
486                         PartVT, Val, DAG.getIntPtrConstant(0));
487 
488       bool Smaller = ValueVT.bitsLE(PartVT);
489       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
490                          DL, PartVT, Val);
491     }
492 
493     Parts[0] = Val;
494     return;
495   }
496 
497   // Handle a multi-element vector.
498   EVT IntermediateVT, RegisterVT;
499   unsigned NumIntermediates;
500   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
501                                                 IntermediateVT,
502                                                 NumIntermediates, RegisterVT);
503   unsigned NumElements = ValueVT.getVectorNumElements();
504 
505   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
506   NumParts = NumRegs; // Silence a compiler warning.
507   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
508 
509   // Split the vector into intermediate operands.
510   SmallVector<SDValue, 8> Ops(NumIntermediates);
511   for (unsigned i = 0; i != NumIntermediates; ++i) {
512     if (IntermediateVT.isVector())
513       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
514                            IntermediateVT, Val,
515                    DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
516     else
517       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
518                            IntermediateVT, Val, DAG.getIntPtrConstant(i));
519   }
520 
521   // Split the intermediate operands into legal parts.
522   if (NumParts == NumIntermediates) {
523     // If the register was not expanded, promote or copy the value,
524     // as appropriate.
525     for (unsigned i = 0; i != NumParts; ++i)
526       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
527   } else if (NumParts > 0) {
528     // If the intermediate type was expanded, split each the value into
529     // legal parts.
530     assert(NumParts % NumIntermediates == 0 &&
531            "Must expand into a divisible number of parts!");
532     unsigned Factor = NumParts / NumIntermediates;
533     for (unsigned i = 0; i != NumIntermediates; ++i)
534       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
535   }
536 }
537 
538 
539 
540 
541 namespace {
542   /// RegsForValue - This struct represents the registers (physical or virtual)
543   /// that a particular set of values is assigned, and the type information
544   /// about the value. The most common situation is to represent one value at a
545   /// time, but struct or array values are handled element-wise as multiple
546   /// values.  The splitting of aggregates is performed recursively, so that we
547   /// never have aggregate-typed registers. The values at this point do not
548   /// necessarily have legal types, so each value may require one or more
549   /// registers of some legal type.
550   ///
551   struct RegsForValue {
552     /// ValueVTs - The value types of the values, which may not be legal, and
553     /// may need be promoted or synthesized from one or more registers.
554     ///
555     SmallVector<EVT, 4> ValueVTs;
556 
557     /// RegVTs - The value types of the registers. This is the same size as
558     /// ValueVTs and it records, for each value, what the type of the assigned
559     /// register or registers are. (Individual values are never synthesized
560     /// from more than one type of register.)
561     ///
562     /// With virtual registers, the contents of RegVTs is redundant with TLI's
563     /// getRegisterType member function, however when with physical registers
564     /// it is necessary to have a separate record of the types.
565     ///
566     SmallVector<EVT, 4> RegVTs;
567 
568     /// Regs - This list holds the registers assigned to the values.
569     /// Each legal or promoted value requires one register, and each
570     /// expanded value requires multiple registers.
571     ///
572     SmallVector<unsigned, 4> Regs;
573 
574     RegsForValue() {}
575 
576     RegsForValue(const SmallVector<unsigned, 4> &regs,
577                  EVT regvt, EVT valuevt)
578       : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
579 
580     RegsForValue(LLVMContext &Context, const TargetLowering &tli,
581                  unsigned Reg, const Type *Ty) {
582       ComputeValueVTs(tli, Ty, ValueVTs);
583 
584       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
585         EVT ValueVT = ValueVTs[Value];
586         unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
587         EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
588         for (unsigned i = 0; i != NumRegs; ++i)
589           Regs.push_back(Reg + i);
590         RegVTs.push_back(RegisterVT);
591         Reg += NumRegs;
592       }
593     }
594 
595     /// areValueTypesLegal - Return true if types of all the values are legal.
596     bool areValueTypesLegal(const TargetLowering &TLI) {
597       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
598         EVT RegisterVT = RegVTs[Value];
599         if (!TLI.isTypeLegal(RegisterVT))
600           return false;
601       }
602       return true;
603     }
604 
605     /// append - Add the specified values to this one.
606     void append(const RegsForValue &RHS) {
607       ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
608       RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
609       Regs.append(RHS.Regs.begin(), RHS.Regs.end());
610     }
611 
612     /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
613     /// this value and returns the result as a ValueVTs value.  This uses
614     /// Chain/Flag as the input and updates them for the output Chain/Flag.
615     /// If the Flag pointer is NULL, no flag is used.
616     SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
617                             DebugLoc dl,
618                             SDValue &Chain, SDValue *Flag) const;
619 
620     /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
621     /// specified value into the registers specified by this object.  This uses
622     /// Chain/Flag as the input and updates them for the output Chain/Flag.
623     /// If the Flag pointer is NULL, no flag is used.
624     void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
625                        SDValue &Chain, SDValue *Flag) const;
626 
627     /// AddInlineAsmOperands - Add this value to the specified inlineasm node
628     /// operand list.  This adds the code marker, matching input operand index
629     /// (if applicable), and includes the number of values added into it.
630     void AddInlineAsmOperands(unsigned Kind,
631                               bool HasMatching, unsigned MatchingIdx,
632                               SelectionDAG &DAG,
633                               std::vector<SDValue> &Ops) const;
634   };
635 }
636 
637 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
638 /// this value and returns the result as a ValueVT value.  This uses
639 /// Chain/Flag as the input and updates them for the output Chain/Flag.
640 /// If the Flag pointer is NULL, no flag is used.
641 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
642                                       FunctionLoweringInfo &FuncInfo,
643                                       DebugLoc dl,
644                                       SDValue &Chain, SDValue *Flag) const {
645   // A Value with type {} or [0 x %t] needs no registers.
646   if (ValueVTs.empty())
647     return SDValue();
648 
649   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
650 
651   // Assemble the legal parts into the final values.
652   SmallVector<SDValue, 4> Values(ValueVTs.size());
653   SmallVector<SDValue, 8> Parts;
654   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
655     // Copy the legal parts from the registers.
656     EVT ValueVT = ValueVTs[Value];
657     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
658     EVT RegisterVT = RegVTs[Value];
659 
660     Parts.resize(NumRegs);
661     for (unsigned i = 0; i != NumRegs; ++i) {
662       SDValue P;
663       if (Flag == 0) {
664         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
665       } else {
666         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
667         *Flag = P.getValue(2);
668       }
669 
670       Chain = P.getValue(1);
671       Parts[i] = P;
672 
673       // If the source register was virtual and if we know something about it,
674       // add an assert node.
675       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
676           !RegisterVT.isInteger() || RegisterVT.isVector())
677         continue;
678 
679       const FunctionLoweringInfo::LiveOutInfo *LOI =
680         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
681       if (!LOI)
682         continue;
683 
684       unsigned RegSize = RegisterVT.getSizeInBits();
685       unsigned NumSignBits = LOI->NumSignBits;
686       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
687 
688       // FIXME: We capture more information than the dag can represent.  For
689       // now, just use the tightest assertzext/assertsext possible.
690       bool isSExt = true;
691       EVT FromVT(MVT::Other);
692       if (NumSignBits == RegSize)
693         isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
694       else if (NumZeroBits >= RegSize-1)
695         isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
696       else if (NumSignBits > RegSize-8)
697         isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
698       else if (NumZeroBits >= RegSize-8)
699         isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
700       else if (NumSignBits > RegSize-16)
701         isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
702       else if (NumZeroBits >= RegSize-16)
703         isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
704       else if (NumSignBits > RegSize-32)
705         isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
706       else if (NumZeroBits >= RegSize-32)
707         isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
708       else
709         continue;
710 
711       // Add an assertion node.
712       assert(FromVT != MVT::Other);
713       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
714                              RegisterVT, P, DAG.getValueType(FromVT));
715     }
716 
717     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
718                                      NumRegs, RegisterVT, ValueVT);
719     Part += NumRegs;
720     Parts.clear();
721   }
722 
723   return DAG.getNode(ISD::MERGE_VALUES, dl,
724                      DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
725                      &Values[0], ValueVTs.size());
726 }
727 
728 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
729 /// specified value into the registers specified by this object.  This uses
730 /// Chain/Flag as the input and updates them for the output Chain/Flag.
731 /// If the Flag pointer is NULL, no flag is used.
732 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
733                                  SDValue &Chain, SDValue *Flag) const {
734   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
735 
736   // Get the list of the values's legal parts.
737   unsigned NumRegs = Regs.size();
738   SmallVector<SDValue, 8> Parts(NumRegs);
739   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
740     EVT ValueVT = ValueVTs[Value];
741     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
742     EVT RegisterVT = RegVTs[Value];
743 
744     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
745                    &Parts[Part], NumParts, RegisterVT);
746     Part += NumParts;
747   }
748 
749   // Copy the parts into the registers.
750   SmallVector<SDValue, 8> Chains(NumRegs);
751   for (unsigned i = 0; i != NumRegs; ++i) {
752     SDValue Part;
753     if (Flag == 0) {
754       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
755     } else {
756       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
757       *Flag = Part.getValue(1);
758     }
759 
760     Chains[i] = Part.getValue(0);
761   }
762 
763   if (NumRegs == 1 || Flag)
764     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
765     // flagged to it. That is the CopyToReg nodes and the user are considered
766     // a single scheduling unit. If we create a TokenFactor and return it as
767     // chain, then the TokenFactor is both a predecessor (operand) of the
768     // user as well as a successor (the TF operands are flagged to the user).
769     // c1, f1 = CopyToReg
770     // c2, f2 = CopyToReg
771     // c3     = TokenFactor c1, c2
772     // ...
773     //        = op c3, ..., f2
774     Chain = Chains[NumRegs-1];
775   else
776     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
777 }
778 
779 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
780 /// operand list.  This adds the code marker and includes the number of
781 /// values added into it.
782 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
783                                         unsigned MatchingIdx,
784                                         SelectionDAG &DAG,
785                                         std::vector<SDValue> &Ops) const {
786   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
787 
788   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
789   if (HasMatching)
790     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
791   SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
792   Ops.push_back(Res);
793 
794   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
795     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
796     EVT RegisterVT = RegVTs[Value];
797     for (unsigned i = 0; i != NumRegs; ++i) {
798       assert(Reg < Regs.size() && "Mismatch in # registers expected");
799       Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
800     }
801   }
802 }
803 
804 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
805   AA = &aa;
806   GFI = gfi;
807   TD = DAG.getTarget().getTargetData();
808 }
809 
810 /// clear - Clear out the current SelectionDAG and the associated
811 /// state and prepare this SelectionDAGBuilder object to be used
812 /// for a new block. This doesn't clear out information about
813 /// additional blocks that are needed to complete switch lowering
814 /// or PHI node updating; that information is cleared out as it is
815 /// consumed.
816 void SelectionDAGBuilder::clear() {
817   NodeMap.clear();
818   UnusedArgNodeMap.clear();
819   PendingLoads.clear();
820   PendingExports.clear();
821   CurDebugLoc = DebugLoc();
822   HasTailCall = false;
823 }
824 
825 /// clearDanglingDebugInfo - Clear the dangling debug information
826 /// map. This function is seperated from the clear so that debug
827 /// information that is dangling in a basic block can be properly
828 /// resolved in a different basic block. This allows the
829 /// SelectionDAG to resolve dangling debug information attached
830 /// to PHI nodes.
831 void SelectionDAGBuilder::clearDanglingDebugInfo() {
832   DanglingDebugInfoMap.clear();
833 }
834 
835 /// getRoot - Return the current virtual root of the Selection DAG,
836 /// flushing any PendingLoad items. This must be done before emitting
837 /// a store or any other node that may need to be ordered after any
838 /// prior load instructions.
839 ///
840 SDValue SelectionDAGBuilder::getRoot() {
841   if (PendingLoads.empty())
842     return DAG.getRoot();
843 
844   if (PendingLoads.size() == 1) {
845     SDValue Root = PendingLoads[0];
846     DAG.setRoot(Root);
847     PendingLoads.clear();
848     return Root;
849   }
850 
851   // Otherwise, we have to make a token factor node.
852   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
853                                &PendingLoads[0], PendingLoads.size());
854   PendingLoads.clear();
855   DAG.setRoot(Root);
856   return Root;
857 }
858 
859 /// getControlRoot - Similar to getRoot, but instead of flushing all the
860 /// PendingLoad items, flush all the PendingExports items. It is necessary
861 /// to do this before emitting a terminator instruction.
862 ///
863 SDValue SelectionDAGBuilder::getControlRoot() {
864   SDValue Root = DAG.getRoot();
865 
866   if (PendingExports.empty())
867     return Root;
868 
869   // Turn all of the CopyToReg chains into one factored node.
870   if (Root.getOpcode() != ISD::EntryToken) {
871     unsigned i = 0, e = PendingExports.size();
872     for (; i != e; ++i) {
873       assert(PendingExports[i].getNode()->getNumOperands() > 1);
874       if (PendingExports[i].getNode()->getOperand(0) == Root)
875         break;  // Don't add the root if we already indirectly depend on it.
876     }
877 
878     if (i == e)
879       PendingExports.push_back(Root);
880   }
881 
882   Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
883                      &PendingExports[0],
884                      PendingExports.size());
885   PendingExports.clear();
886   DAG.setRoot(Root);
887   return Root;
888 }
889 
890 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
891   if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
892   DAG.AssignOrdering(Node, SDNodeOrder);
893 
894   for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
895     AssignOrderingToNode(Node->getOperand(I).getNode());
896 }
897 
898 void SelectionDAGBuilder::visit(const Instruction &I) {
899   // Set up outgoing PHI node register values before emitting the terminator.
900   if (isa<TerminatorInst>(&I))
901     HandlePHINodesInSuccessorBlocks(I.getParent());
902 
903   CurDebugLoc = I.getDebugLoc();
904 
905   visit(I.getOpcode(), I);
906 
907   if (!isa<TerminatorInst>(&I) && !HasTailCall)
908     CopyToExportRegsIfNeeded(&I);
909 
910   CurDebugLoc = DebugLoc();
911 }
912 
913 void SelectionDAGBuilder::visitPHI(const PHINode &) {
914   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
915 }
916 
917 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
918   // Note: this doesn't use InstVisitor, because it has to work with
919   // ConstantExpr's in addition to instructions.
920   switch (Opcode) {
921   default: llvm_unreachable("Unknown instruction type encountered!");
922     // Build the switch statement using the Instruction.def file.
923 #define HANDLE_INST(NUM, OPCODE, CLASS) \
924     case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
925 #include "llvm/Instruction.def"
926   }
927 
928   // Assign the ordering to the freshly created DAG nodes.
929   if (NodeMap.count(&I)) {
930     ++SDNodeOrder;
931     AssignOrderingToNode(getValue(&I).getNode());
932   }
933 }
934 
935 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
936 // generate the debug data structures now that we've seen its definition.
937 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
938                                                    SDValue Val) {
939   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
940   if (DDI.getDI()) {
941     const DbgValueInst *DI = DDI.getDI();
942     DebugLoc dl = DDI.getdl();
943     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
944     MDNode *Variable = DI->getVariable();
945     uint64_t Offset = DI->getOffset();
946     SDDbgValue *SDV;
947     if (Val.getNode()) {
948       if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
949         SDV = DAG.getDbgValue(Variable, Val.getNode(),
950                               Val.getResNo(), Offset, dl, DbgSDNodeOrder);
951         DAG.AddDbgValue(SDV, Val.getNode(), false);
952       }
953     } else
954       DEBUG(dbgs() << "Dropping debug info for " << DI);
955     DanglingDebugInfoMap[V] = DanglingDebugInfo();
956   }
957 }
958 
959 // getValue - Return an SDValue for the given Value.
960 SDValue SelectionDAGBuilder::getValue(const Value *V) {
961   // If we already have an SDValue for this value, use it. It's important
962   // to do this first, so that we don't create a CopyFromReg if we already
963   // have a regular SDValue.
964   SDValue &N = NodeMap[V];
965   if (N.getNode()) return N;
966 
967   // If there's a virtual register allocated and initialized for this
968   // value, use it.
969   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
970   if (It != FuncInfo.ValueMap.end()) {
971     unsigned InReg = It->second;
972     RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
973     SDValue Chain = DAG.getEntryNode();
974     N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL);
975     resolveDanglingDebugInfo(V, N);
976     return N;
977   }
978 
979   // Otherwise create a new SDValue and remember it.
980   SDValue Val = getValueImpl(V);
981   NodeMap[V] = Val;
982   resolveDanglingDebugInfo(V, Val);
983   return Val;
984 }
985 
986 /// getNonRegisterValue - Return an SDValue for the given Value, but
987 /// don't look in FuncInfo.ValueMap for a virtual register.
988 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
989   // If we already have an SDValue for this value, use it.
990   SDValue &N = NodeMap[V];
991   if (N.getNode()) return N;
992 
993   // Otherwise create a new SDValue and remember it.
994   SDValue Val = getValueImpl(V);
995   NodeMap[V] = Val;
996   resolveDanglingDebugInfo(V, Val);
997   return Val;
998 }
999 
1000 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1001 /// Create an SDValue for the given value.
1002 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1003   if (const Constant *C = dyn_cast<Constant>(V)) {
1004     EVT VT = TLI.getValueType(V->getType(), true);
1005 
1006     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1007       return DAG.getConstant(*CI, VT);
1008 
1009     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1010       return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1011 
1012     if (isa<ConstantPointerNull>(C))
1013       return DAG.getConstant(0, TLI.getPointerTy());
1014 
1015     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1016       return DAG.getConstantFP(*CFP, VT);
1017 
1018     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1019       return DAG.getUNDEF(VT);
1020 
1021     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1022       visit(CE->getOpcode(), *CE);
1023       SDValue N1 = NodeMap[V];
1024       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1025       return N1;
1026     }
1027 
1028     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1029       SmallVector<SDValue, 4> Constants;
1030       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1031            OI != OE; ++OI) {
1032         SDNode *Val = getValue(*OI).getNode();
1033         // If the operand is an empty aggregate, there are no values.
1034         if (!Val) continue;
1035         // Add each leaf value from the operand to the Constants list
1036         // to form a flattened list of all the values.
1037         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1038           Constants.push_back(SDValue(Val, i));
1039       }
1040 
1041       return DAG.getMergeValues(&Constants[0], Constants.size(),
1042                                 getCurDebugLoc());
1043     }
1044 
1045     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1046       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1047              "Unknown struct or array constant!");
1048 
1049       SmallVector<EVT, 4> ValueVTs;
1050       ComputeValueVTs(TLI, C->getType(), ValueVTs);
1051       unsigned NumElts = ValueVTs.size();
1052       if (NumElts == 0)
1053         return SDValue(); // empty struct
1054       SmallVector<SDValue, 4> Constants(NumElts);
1055       for (unsigned i = 0; i != NumElts; ++i) {
1056         EVT EltVT = ValueVTs[i];
1057         if (isa<UndefValue>(C))
1058           Constants[i] = DAG.getUNDEF(EltVT);
1059         else if (EltVT.isFloatingPoint())
1060           Constants[i] = DAG.getConstantFP(0, EltVT);
1061         else
1062           Constants[i] = DAG.getConstant(0, EltVT);
1063       }
1064 
1065       return DAG.getMergeValues(&Constants[0], NumElts,
1066                                 getCurDebugLoc());
1067     }
1068 
1069     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1070       return DAG.getBlockAddress(BA, VT);
1071 
1072     const VectorType *VecTy = cast<VectorType>(V->getType());
1073     unsigned NumElements = VecTy->getNumElements();
1074 
1075     // Now that we know the number and type of the elements, get that number of
1076     // elements into the Ops array based on what kind of constant it is.
1077     SmallVector<SDValue, 16> Ops;
1078     if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1079       for (unsigned i = 0; i != NumElements; ++i)
1080         Ops.push_back(getValue(CP->getOperand(i)));
1081     } else {
1082       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1083       EVT EltVT = TLI.getValueType(VecTy->getElementType());
1084 
1085       SDValue Op;
1086       if (EltVT.isFloatingPoint())
1087         Op = DAG.getConstantFP(0, EltVT);
1088       else
1089         Op = DAG.getConstant(0, EltVT);
1090       Ops.assign(NumElements, Op);
1091     }
1092 
1093     // Create a BUILD_VECTOR node.
1094     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1095                                     VT, &Ops[0], Ops.size());
1096   }
1097 
1098   // If this is a static alloca, generate it as the frameindex instead of
1099   // computation.
1100   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1101     DenseMap<const AllocaInst*, int>::iterator SI =
1102       FuncInfo.StaticAllocaMap.find(AI);
1103     if (SI != FuncInfo.StaticAllocaMap.end())
1104       return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1105   }
1106 
1107   // If this is an instruction which fast-isel has deferred, select it now.
1108   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1109     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1110     RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1111     SDValue Chain = DAG.getEntryNode();
1112     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1113   }
1114 
1115   llvm_unreachable("Can't get register for value!");
1116   return SDValue();
1117 }
1118 
1119 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1120   SDValue Chain = getControlRoot();
1121   SmallVector<ISD::OutputArg, 8> Outs;
1122   SmallVector<SDValue, 8> OutVals;
1123 
1124   if (!FuncInfo.CanLowerReturn) {
1125     unsigned DemoteReg = FuncInfo.DemoteRegister;
1126     const Function *F = I.getParent()->getParent();
1127 
1128     // Emit a store of the return value through the virtual register.
1129     // Leave Outs empty so that LowerReturn won't try to load return
1130     // registers the usual way.
1131     SmallVector<EVT, 1> PtrValueVTs;
1132     ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1133                     PtrValueVTs);
1134 
1135     SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1136     SDValue RetOp = getValue(I.getOperand(0));
1137 
1138     SmallVector<EVT, 4> ValueVTs;
1139     SmallVector<uint64_t, 4> Offsets;
1140     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1141     unsigned NumValues = ValueVTs.size();
1142 
1143     SmallVector<SDValue, 4> Chains(NumValues);
1144     for (unsigned i = 0; i != NumValues; ++i) {
1145       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1146                                 RetPtr.getValueType(), RetPtr,
1147                                 DAG.getIntPtrConstant(Offsets[i]));
1148       Chains[i] =
1149         DAG.getStore(Chain, getCurDebugLoc(),
1150                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1151                      // FIXME: better loc info would be nice.
1152                      Add, MachinePointerInfo(), false, false, 0);
1153     }
1154 
1155     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1156                         MVT::Other, &Chains[0], NumValues);
1157   } else if (I.getNumOperands() != 0) {
1158     SmallVector<EVT, 4> ValueVTs;
1159     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1160     unsigned NumValues = ValueVTs.size();
1161     if (NumValues) {
1162       SDValue RetOp = getValue(I.getOperand(0));
1163       for (unsigned j = 0, f = NumValues; j != f; ++j) {
1164         EVT VT = ValueVTs[j];
1165 
1166         ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1167 
1168         const Function *F = I.getParent()->getParent();
1169         if (F->paramHasAttr(0, Attribute::SExt))
1170           ExtendKind = ISD::SIGN_EXTEND;
1171         else if (F->paramHasAttr(0, Attribute::ZExt))
1172           ExtendKind = ISD::ZERO_EXTEND;
1173 
1174         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1175           VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1176 
1177         unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1178         EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1179         SmallVector<SDValue, 4> Parts(NumParts);
1180         getCopyToParts(DAG, getCurDebugLoc(),
1181                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1182                        &Parts[0], NumParts, PartVT, ExtendKind);
1183 
1184         // 'inreg' on function refers to return value
1185         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1186         if (F->paramHasAttr(0, Attribute::InReg))
1187           Flags.setInReg();
1188 
1189         // Propagate extension type if any
1190         if (ExtendKind == ISD::SIGN_EXTEND)
1191           Flags.setSExt();
1192         else if (ExtendKind == ISD::ZERO_EXTEND)
1193           Flags.setZExt();
1194 
1195         for (unsigned i = 0; i < NumParts; ++i) {
1196           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1197                                         /*isfixed=*/true));
1198           OutVals.push_back(Parts[i]);
1199         }
1200       }
1201     }
1202   }
1203 
1204   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1205   CallingConv::ID CallConv =
1206     DAG.getMachineFunction().getFunction()->getCallingConv();
1207   Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1208                           Outs, OutVals, getCurDebugLoc(), DAG);
1209 
1210   // Verify that the target's LowerReturn behaved as expected.
1211   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1212          "LowerReturn didn't return a valid chain!");
1213 
1214   // Update the DAG with the new chain value resulting from return lowering.
1215   DAG.setRoot(Chain);
1216 }
1217 
1218 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1219 /// created for it, emit nodes to copy the value into the virtual
1220 /// registers.
1221 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1222   // Skip empty types
1223   if (V->getType()->isEmptyTy())
1224     return;
1225 
1226   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1227   if (VMI != FuncInfo.ValueMap.end()) {
1228     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1229     CopyValueToVirtualRegister(V, VMI->second);
1230   }
1231 }
1232 
1233 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1234 /// the current basic block, add it to ValueMap now so that we'll get a
1235 /// CopyTo/FromReg.
1236 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1237   // No need to export constants.
1238   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1239 
1240   // Already exported?
1241   if (FuncInfo.isExportedInst(V)) return;
1242 
1243   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1244   CopyValueToVirtualRegister(V, Reg);
1245 }
1246 
1247 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1248                                                      const BasicBlock *FromBB) {
1249   // The operands of the setcc have to be in this block.  We don't know
1250   // how to export them from some other block.
1251   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1252     // Can export from current BB.
1253     if (VI->getParent() == FromBB)
1254       return true;
1255 
1256     // Is already exported, noop.
1257     return FuncInfo.isExportedInst(V);
1258   }
1259 
1260   // If this is an argument, we can export it if the BB is the entry block or
1261   // if it is already exported.
1262   if (isa<Argument>(V)) {
1263     if (FromBB == &FromBB->getParent()->getEntryBlock())
1264       return true;
1265 
1266     // Otherwise, can only export this if it is already exported.
1267     return FuncInfo.isExportedInst(V);
1268   }
1269 
1270   // Otherwise, constants can always be exported.
1271   return true;
1272 }
1273 
1274 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1275 uint32_t SelectionDAGBuilder::getEdgeWeight(MachineBasicBlock *Src,
1276                                             MachineBasicBlock *Dst) {
1277   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1278   if (!BPI)
1279     return 0;
1280   BasicBlock *SrcBB = const_cast<BasicBlock*>(Src->getBasicBlock());
1281   BasicBlock *DstBB = const_cast<BasicBlock*>(Dst->getBasicBlock());
1282   return BPI->getEdgeWeight(SrcBB, DstBB);
1283 }
1284 
1285 void SelectionDAGBuilder::addSuccessorWithWeight(MachineBasicBlock *Src,
1286                                                  MachineBasicBlock *Dst) {
1287   uint32_t weight = getEdgeWeight(Src, Dst);
1288   Src->addSuccessor(Dst, weight);
1289 }
1290 
1291 
1292 static bool InBlock(const Value *V, const BasicBlock *BB) {
1293   if (const Instruction *I = dyn_cast<Instruction>(V))
1294     return I->getParent() == BB;
1295   return true;
1296 }
1297 
1298 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1299 /// This function emits a branch and is used at the leaves of an OR or an
1300 /// AND operator tree.
1301 ///
1302 void
1303 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1304                                                   MachineBasicBlock *TBB,
1305                                                   MachineBasicBlock *FBB,
1306                                                   MachineBasicBlock *CurBB,
1307                                                   MachineBasicBlock *SwitchBB) {
1308   const BasicBlock *BB = CurBB->getBasicBlock();
1309 
1310   // If the leaf of the tree is a comparison, merge the condition into
1311   // the caseblock.
1312   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1313     // The operands of the cmp have to be in this block.  We don't know
1314     // how to export them from some other block.  If this is the first block
1315     // of the sequence, no exporting is needed.
1316     if (CurBB == SwitchBB ||
1317         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1318          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1319       ISD::CondCode Condition;
1320       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1321         Condition = getICmpCondCode(IC->getPredicate());
1322       } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1323         Condition = getFCmpCondCode(FC->getPredicate());
1324       } else {
1325         Condition = ISD::SETEQ; // silence warning.
1326         llvm_unreachable("Unknown compare instruction");
1327       }
1328 
1329       CaseBlock CB(Condition, BOp->getOperand(0),
1330                    BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1331       SwitchCases.push_back(CB);
1332       return;
1333     }
1334   }
1335 
1336   // Create a CaseBlock record representing this branch.
1337   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1338                NULL, TBB, FBB, CurBB);
1339   SwitchCases.push_back(CB);
1340 }
1341 
1342 /// FindMergedConditions - If Cond is an expression like
1343 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1344                                                MachineBasicBlock *TBB,
1345                                                MachineBasicBlock *FBB,
1346                                                MachineBasicBlock *CurBB,
1347                                                MachineBasicBlock *SwitchBB,
1348                                                unsigned Opc) {
1349   // If this node is not part of the or/and tree, emit it as a branch.
1350   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1351   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1352       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1353       BOp->getParent() != CurBB->getBasicBlock() ||
1354       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1355       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1356     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1357     return;
1358   }
1359 
1360   //  Create TmpBB after CurBB.
1361   MachineFunction::iterator BBI = CurBB;
1362   MachineFunction &MF = DAG.getMachineFunction();
1363   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1364   CurBB->getParent()->insert(++BBI, TmpBB);
1365 
1366   if (Opc == Instruction::Or) {
1367     // Codegen X | Y as:
1368     //   jmp_if_X TBB
1369     //   jmp TmpBB
1370     // TmpBB:
1371     //   jmp_if_Y TBB
1372     //   jmp FBB
1373     //
1374 
1375     // Emit the LHS condition.
1376     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1377 
1378     // Emit the RHS condition into TmpBB.
1379     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1380   } else {
1381     assert(Opc == Instruction::And && "Unknown merge op!");
1382     // Codegen X & Y as:
1383     //   jmp_if_X TmpBB
1384     //   jmp FBB
1385     // TmpBB:
1386     //   jmp_if_Y TBB
1387     //   jmp FBB
1388     //
1389     //  This requires creation of TmpBB after CurBB.
1390 
1391     // Emit the LHS condition.
1392     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1393 
1394     // Emit the RHS condition into TmpBB.
1395     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1396   }
1397 }
1398 
1399 /// If the set of cases should be emitted as a series of branches, return true.
1400 /// If we should emit this as a bunch of and/or'd together conditions, return
1401 /// false.
1402 bool
1403 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1404   if (Cases.size() != 2) return true;
1405 
1406   // If this is two comparisons of the same values or'd or and'd together, they
1407   // will get folded into a single comparison, so don't emit two blocks.
1408   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1409        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1410       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1411        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1412     return false;
1413   }
1414 
1415   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1416   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1417   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1418       Cases[0].CC == Cases[1].CC &&
1419       isa<Constant>(Cases[0].CmpRHS) &&
1420       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1421     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1422       return false;
1423     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1424       return false;
1425   }
1426 
1427   return true;
1428 }
1429 
1430 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1431   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1432 
1433   // Update machine-CFG edges.
1434   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1435 
1436   // Figure out which block is immediately after the current one.
1437   MachineBasicBlock *NextBlock = 0;
1438   MachineFunction::iterator BBI = BrMBB;
1439   if (++BBI != FuncInfo.MF->end())
1440     NextBlock = BBI;
1441 
1442   if (I.isUnconditional()) {
1443     // Update machine-CFG edges.
1444     BrMBB->addSuccessor(Succ0MBB);
1445 
1446     // If this is not a fall-through branch, emit the branch.
1447     if (Succ0MBB != NextBlock)
1448       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1449                               MVT::Other, getControlRoot(),
1450                               DAG.getBasicBlock(Succ0MBB)));
1451 
1452     return;
1453   }
1454 
1455   // If this condition is one of the special cases we handle, do special stuff
1456   // now.
1457   const Value *CondVal = I.getCondition();
1458   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1459 
1460   // If this is a series of conditions that are or'd or and'd together, emit
1461   // this as a sequence of branches instead of setcc's with and/or operations.
1462   // As long as jumps are not expensive, this should improve performance.
1463   // For example, instead of something like:
1464   //     cmp A, B
1465   //     C = seteq
1466   //     cmp D, E
1467   //     F = setle
1468   //     or C, F
1469   //     jnz foo
1470   // Emit:
1471   //     cmp A, B
1472   //     je foo
1473   //     cmp D, E
1474   //     jle foo
1475   //
1476   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1477     if (!TLI.isJumpExpensive() &&
1478         BOp->hasOneUse() &&
1479         (BOp->getOpcode() == Instruction::And ||
1480          BOp->getOpcode() == Instruction::Or)) {
1481       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1482                            BOp->getOpcode());
1483       // If the compares in later blocks need to use values not currently
1484       // exported from this block, export them now.  This block should always
1485       // be the first entry.
1486       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1487 
1488       // Allow some cases to be rejected.
1489       if (ShouldEmitAsBranches(SwitchCases)) {
1490         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1491           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1492           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1493         }
1494 
1495         // Emit the branch for this block.
1496         visitSwitchCase(SwitchCases[0], BrMBB);
1497         SwitchCases.erase(SwitchCases.begin());
1498         return;
1499       }
1500 
1501       // Okay, we decided not to do this, remove any inserted MBB's and clear
1502       // SwitchCases.
1503       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1504         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1505 
1506       SwitchCases.clear();
1507     }
1508   }
1509 
1510   // Create a CaseBlock record representing this branch.
1511   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1512                NULL, Succ0MBB, Succ1MBB, BrMBB);
1513 
1514   // Use visitSwitchCase to actually insert the fast branch sequence for this
1515   // cond branch.
1516   visitSwitchCase(CB, BrMBB);
1517 }
1518 
1519 /// visitSwitchCase - Emits the necessary code to represent a single node in
1520 /// the binary search tree resulting from lowering a switch instruction.
1521 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1522                                           MachineBasicBlock *SwitchBB) {
1523   SDValue Cond;
1524   SDValue CondLHS = getValue(CB.CmpLHS);
1525   DebugLoc dl = getCurDebugLoc();
1526 
1527   // Build the setcc now.
1528   if (CB.CmpMHS == NULL) {
1529     // Fold "(X == true)" to X and "(X == false)" to !X to
1530     // handle common cases produced by branch lowering.
1531     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1532         CB.CC == ISD::SETEQ)
1533       Cond = CondLHS;
1534     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1535              CB.CC == ISD::SETEQ) {
1536       SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1537       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1538     } else
1539       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1540   } else {
1541     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1542 
1543     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1544     const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1545 
1546     SDValue CmpOp = getValue(CB.CmpMHS);
1547     EVT VT = CmpOp.getValueType();
1548 
1549     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1550       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1551                           ISD::SETLE);
1552     } else {
1553       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1554                                 VT, CmpOp, DAG.getConstant(Low, VT));
1555       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1556                           DAG.getConstant(High-Low, VT), ISD::SETULE);
1557     }
1558   }
1559 
1560   // Update successor info
1561   addSuccessorWithWeight(SwitchBB, CB.TrueBB);
1562   addSuccessorWithWeight(SwitchBB, CB.FalseBB);
1563 
1564   // Set NextBlock to be the MBB immediately after the current one, if any.
1565   // This is used to avoid emitting unnecessary branches to the next block.
1566   MachineBasicBlock *NextBlock = 0;
1567   MachineFunction::iterator BBI = SwitchBB;
1568   if (++BBI != FuncInfo.MF->end())
1569     NextBlock = BBI;
1570 
1571   // If the lhs block is the next block, invert the condition so that we can
1572   // fall through to the lhs instead of the rhs block.
1573   if (CB.TrueBB == NextBlock) {
1574     std::swap(CB.TrueBB, CB.FalseBB);
1575     SDValue True = DAG.getConstant(1, Cond.getValueType());
1576     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1577   }
1578 
1579   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1580                                MVT::Other, getControlRoot(), Cond,
1581                                DAG.getBasicBlock(CB.TrueBB));
1582 
1583   // Insert the false branch. Do this even if it's a fall through branch,
1584   // this makes it easier to do DAG optimizations which require inverting
1585   // the branch condition.
1586   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1587                        DAG.getBasicBlock(CB.FalseBB));
1588 
1589   DAG.setRoot(BrCond);
1590 }
1591 
1592 /// visitJumpTable - Emit JumpTable node in the current MBB
1593 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1594   // Emit the code for the jump table
1595   assert(JT.Reg != -1U && "Should lower JT Header first!");
1596   EVT PTy = TLI.getPointerTy();
1597   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1598                                      JT.Reg, PTy);
1599   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1600   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1601                                     MVT::Other, Index.getValue(1),
1602                                     Table, Index);
1603   DAG.setRoot(BrJumpTable);
1604 }
1605 
1606 /// visitJumpTableHeader - This function emits necessary code to produce index
1607 /// in the JumpTable from switch case.
1608 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1609                                                JumpTableHeader &JTH,
1610                                                MachineBasicBlock *SwitchBB) {
1611   // Subtract the lowest switch case value from the value being switched on and
1612   // conditional branch to default mbb if the result is greater than the
1613   // difference between smallest and largest cases.
1614   SDValue SwitchOp = getValue(JTH.SValue);
1615   EVT VT = SwitchOp.getValueType();
1616   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1617                             DAG.getConstant(JTH.First, VT));
1618 
1619   // The SDNode we just created, which holds the value being switched on minus
1620   // the smallest case value, needs to be copied to a virtual register so it
1621   // can be used as an index into the jump table in a subsequent basic block.
1622   // This value may be smaller or larger than the target's pointer type, and
1623   // therefore require extension or truncating.
1624   SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1625 
1626   unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1627   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1628                                     JumpTableReg, SwitchOp);
1629   JT.Reg = JumpTableReg;
1630 
1631   // Emit the range check for the jump table, and branch to the default block
1632   // for the switch statement if the value being switched on exceeds the largest
1633   // case in the switch.
1634   SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1635                              TLI.getSetCCResultType(Sub.getValueType()), Sub,
1636                              DAG.getConstant(JTH.Last-JTH.First,VT),
1637                              ISD::SETUGT);
1638 
1639   // Set NextBlock to be the MBB immediately after the current one, if any.
1640   // This is used to avoid emitting unnecessary branches to the next block.
1641   MachineBasicBlock *NextBlock = 0;
1642   MachineFunction::iterator BBI = SwitchBB;
1643 
1644   if (++BBI != FuncInfo.MF->end())
1645     NextBlock = BBI;
1646 
1647   SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1648                                MVT::Other, CopyTo, CMP,
1649                                DAG.getBasicBlock(JT.Default));
1650 
1651   if (JT.MBB != NextBlock)
1652     BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1653                          DAG.getBasicBlock(JT.MBB));
1654 
1655   DAG.setRoot(BrCond);
1656 }
1657 
1658 /// visitBitTestHeader - This function emits necessary code to produce value
1659 /// suitable for "bit tests"
1660 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1661                                              MachineBasicBlock *SwitchBB) {
1662   // Subtract the minimum value
1663   SDValue SwitchOp = getValue(B.SValue);
1664   EVT VT = SwitchOp.getValueType();
1665   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1666                             DAG.getConstant(B.First, VT));
1667 
1668   // Check range
1669   SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1670                                   TLI.getSetCCResultType(Sub.getValueType()),
1671                                   Sub, DAG.getConstant(B.Range, VT),
1672                                   ISD::SETUGT);
1673 
1674   // Determine the type of the test operands.
1675   bool UsePtrType = false;
1676   if (!TLI.isTypeLegal(VT))
1677     UsePtrType = true;
1678   else {
1679     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1680       if ((uint64_t)((int64_t)B.Cases[i].Mask >> VT.getSizeInBits()) + 1 >= 2) {
1681         // Switch table case range are encoded into series of masks.
1682         // Just use pointer type, it's guaranteed to fit.
1683         UsePtrType = true;
1684         break;
1685       }
1686   }
1687   if (UsePtrType) {
1688     VT = TLI.getPointerTy();
1689     Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1690   }
1691 
1692   B.RegVT = VT;
1693   B.Reg = FuncInfo.CreateReg(VT);
1694   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1695                                     B.Reg, Sub);
1696 
1697   // Set NextBlock to be the MBB immediately after the current one, if any.
1698   // This is used to avoid emitting unnecessary branches to the next block.
1699   MachineBasicBlock *NextBlock = 0;
1700   MachineFunction::iterator BBI = SwitchBB;
1701   if (++BBI != FuncInfo.MF->end())
1702     NextBlock = BBI;
1703 
1704   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1705 
1706   addSuccessorWithWeight(SwitchBB, B.Default);
1707   addSuccessorWithWeight(SwitchBB, MBB);
1708 
1709   SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1710                                 MVT::Other, CopyTo, RangeCmp,
1711                                 DAG.getBasicBlock(B.Default));
1712 
1713   if (MBB != NextBlock)
1714     BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1715                           DAG.getBasicBlock(MBB));
1716 
1717   DAG.setRoot(BrRange);
1718 }
1719 
1720 /// visitBitTestCase - this function produces one "bit test"
1721 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1722                                            MachineBasicBlock* NextMBB,
1723                                            unsigned Reg,
1724                                            BitTestCase &B,
1725                                            MachineBasicBlock *SwitchBB) {
1726   EVT VT = BB.RegVT;
1727   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1728                                        Reg, VT);
1729   SDValue Cmp;
1730   if (CountPopulation_64(B.Mask) == 1) {
1731     // Testing for a single bit; just compare the shift count with what it
1732     // would need to be to shift a 1 bit in that position.
1733     Cmp = DAG.getSetCC(getCurDebugLoc(),
1734                        TLI.getSetCCResultType(VT),
1735                        ShiftOp,
1736                        DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1737                        ISD::SETEQ);
1738   } else {
1739     // Make desired shift
1740     SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1741                                     DAG.getConstant(1, VT), ShiftOp);
1742 
1743     // Emit bit tests and jumps
1744     SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1745                                 VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1746     Cmp = DAG.getSetCC(getCurDebugLoc(),
1747                        TLI.getSetCCResultType(VT),
1748                        AndOp, DAG.getConstant(0, VT),
1749                        ISD::SETNE);
1750   }
1751 
1752   addSuccessorWithWeight(SwitchBB, B.TargetBB);
1753   addSuccessorWithWeight(SwitchBB, NextMBB);
1754 
1755   SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1756                               MVT::Other, getControlRoot(),
1757                               Cmp, DAG.getBasicBlock(B.TargetBB));
1758 
1759   // Set NextBlock to be the MBB immediately after the current one, if any.
1760   // This is used to avoid emitting unnecessary branches to the next block.
1761   MachineBasicBlock *NextBlock = 0;
1762   MachineFunction::iterator BBI = SwitchBB;
1763   if (++BBI != FuncInfo.MF->end())
1764     NextBlock = BBI;
1765 
1766   if (NextMBB != NextBlock)
1767     BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1768                         DAG.getBasicBlock(NextMBB));
1769 
1770   DAG.setRoot(BrAnd);
1771 }
1772 
1773 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1774   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1775 
1776   // Retrieve successors.
1777   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1778   MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1779 
1780   const Value *Callee(I.getCalledValue());
1781   if (isa<InlineAsm>(Callee))
1782     visitInlineAsm(&I);
1783   else
1784     LowerCallTo(&I, getValue(Callee), false, LandingPad);
1785 
1786   // If the value of the invoke is used outside of its defining block, make it
1787   // available as a virtual register.
1788   CopyToExportRegsIfNeeded(&I);
1789 
1790   // Update successor info
1791   InvokeMBB->addSuccessor(Return);
1792   InvokeMBB->addSuccessor(LandingPad);
1793 
1794   // Drop into normal successor.
1795   DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1796                           MVT::Other, getControlRoot(),
1797                           DAG.getBasicBlock(Return)));
1798 }
1799 
1800 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1801 }
1802 
1803 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1804 /// small case ranges).
1805 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1806                                                  CaseRecVector& WorkList,
1807                                                  const Value* SV,
1808                                                  MachineBasicBlock *Default,
1809                                                  MachineBasicBlock *SwitchBB) {
1810   Case& BackCase  = *(CR.Range.second-1);
1811 
1812   // Size is the number of Cases represented by this range.
1813   size_t Size = CR.Range.second - CR.Range.first;
1814   if (Size > 3)
1815     return false;
1816 
1817   // Get the MachineFunction which holds the current MBB.  This is used when
1818   // inserting any additional MBBs necessary to represent the switch.
1819   MachineFunction *CurMF = FuncInfo.MF;
1820 
1821   // Figure out which block is immediately after the current one.
1822   MachineBasicBlock *NextBlock = 0;
1823   MachineFunction::iterator BBI = CR.CaseBB;
1824 
1825   if (++BBI != FuncInfo.MF->end())
1826     NextBlock = BBI;
1827 
1828   // If any two of the cases has the same destination, and if one value
1829   // is the same as the other, but has one bit unset that the other has set,
1830   // use bit manipulation to do two compares at once.  For example:
1831   // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1832   // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1833   // TODO: Handle cases where CR.CaseBB != SwitchBB.
1834   if (Size == 2 && CR.CaseBB == SwitchBB) {
1835     Case &Small = *CR.Range.first;
1836     Case &Big = *(CR.Range.second-1);
1837 
1838     if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1839       const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1840       const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1841 
1842       // Check that there is only one bit different.
1843       if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1844           (SmallValue | BigValue) == BigValue) {
1845         // Isolate the common bit.
1846         APInt CommonBit = BigValue & ~SmallValue;
1847         assert((SmallValue | CommonBit) == BigValue &&
1848                CommonBit.countPopulation() == 1 && "Not a common bit?");
1849 
1850         SDValue CondLHS = getValue(SV);
1851         EVT VT = CondLHS.getValueType();
1852         DebugLoc DL = getCurDebugLoc();
1853 
1854         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1855                                  DAG.getConstant(CommonBit, VT));
1856         SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1857                                     Or, DAG.getConstant(BigValue, VT),
1858                                     ISD::SETEQ);
1859 
1860         // Update successor info.
1861         SwitchBB->addSuccessor(Small.BB);
1862         SwitchBB->addSuccessor(Default);
1863 
1864         // Insert the true branch.
1865         SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1866                                      getControlRoot(), Cond,
1867                                      DAG.getBasicBlock(Small.BB));
1868 
1869         // Insert the false branch.
1870         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1871                              DAG.getBasicBlock(Default));
1872 
1873         DAG.setRoot(BrCond);
1874         return true;
1875       }
1876     }
1877   }
1878 
1879   // Rearrange the case blocks so that the last one falls through if possible.
1880   if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1881     // The last case block won't fall through into 'NextBlock' if we emit the
1882     // branches in this order.  See if rearranging a case value would help.
1883     for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1884       if (I->BB == NextBlock) {
1885         std::swap(*I, BackCase);
1886         break;
1887       }
1888     }
1889   }
1890 
1891   // Create a CaseBlock record representing a conditional branch to
1892   // the Case's target mbb if the value being switched on SV is equal
1893   // to C.
1894   MachineBasicBlock *CurBlock = CR.CaseBB;
1895   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1896     MachineBasicBlock *FallThrough;
1897     if (I != E-1) {
1898       FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1899       CurMF->insert(BBI, FallThrough);
1900 
1901       // Put SV in a virtual register to make it available from the new blocks.
1902       ExportFromCurrentBlock(SV);
1903     } else {
1904       // If the last case doesn't match, go to the default block.
1905       FallThrough = Default;
1906     }
1907 
1908     const Value *RHS, *LHS, *MHS;
1909     ISD::CondCode CC;
1910     if (I->High == I->Low) {
1911       // This is just small small case range :) containing exactly 1 case
1912       CC = ISD::SETEQ;
1913       LHS = SV; RHS = I->High; MHS = NULL;
1914     } else {
1915       CC = ISD::SETLE;
1916       LHS = I->Low; MHS = SV; RHS = I->High;
1917     }
1918     CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1919 
1920     // If emitting the first comparison, just call visitSwitchCase to emit the
1921     // code into the current block.  Otherwise, push the CaseBlock onto the
1922     // vector to be later processed by SDISel, and insert the node's MBB
1923     // before the next MBB.
1924     if (CurBlock == SwitchBB)
1925       visitSwitchCase(CB, SwitchBB);
1926     else
1927       SwitchCases.push_back(CB);
1928 
1929     CurBlock = FallThrough;
1930   }
1931 
1932   return true;
1933 }
1934 
1935 static inline bool areJTsAllowed(const TargetLowering &TLI) {
1936   return !DisableJumpTables &&
1937           (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1938            TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1939 }
1940 
1941 static APInt ComputeRange(const APInt &First, const APInt &Last) {
1942   uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1943   APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
1944   return (LastExt - FirstExt + 1ULL);
1945 }
1946 
1947 /// handleJTSwitchCase - Emit jumptable for current switch case range
1948 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1949                                              CaseRecVector& WorkList,
1950                                              const Value* SV,
1951                                              MachineBasicBlock* Default,
1952                                              MachineBasicBlock *SwitchBB) {
1953   Case& FrontCase = *CR.Range.first;
1954   Case& BackCase  = *(CR.Range.second-1);
1955 
1956   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1957   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1958 
1959   APInt TSize(First.getBitWidth(), 0);
1960   for (CaseItr I = CR.Range.first, E = CR.Range.second;
1961        I!=E; ++I)
1962     TSize += I->size();
1963 
1964   if (!areJTsAllowed(TLI) || TSize.ult(4))
1965     return false;
1966 
1967   APInt Range = ComputeRange(First, Last);
1968   double Density = TSize.roundToDouble() / Range.roundToDouble();
1969   if (Density < 0.4)
1970     return false;
1971 
1972   DEBUG(dbgs() << "Lowering jump table\n"
1973                << "First entry: " << First << ". Last entry: " << Last << '\n'
1974                << "Range: " << Range
1975                << ". Size: " << TSize << ". Density: " << Density << "\n\n");
1976 
1977   // Get the MachineFunction which holds the current MBB.  This is used when
1978   // inserting any additional MBBs necessary to represent the switch.
1979   MachineFunction *CurMF = FuncInfo.MF;
1980 
1981   // Figure out which block is immediately after the current one.
1982   MachineFunction::iterator BBI = CR.CaseBB;
1983   ++BBI;
1984 
1985   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1986 
1987   // Create a new basic block to hold the code for loading the address
1988   // of the jump table, and jumping to it.  Update successor information;
1989   // we will either branch to the default case for the switch, or the jump
1990   // table.
1991   MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1992   CurMF->insert(BBI, JumpTableBB);
1993 
1994   addSuccessorWithWeight(CR.CaseBB, Default);
1995   addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
1996 
1997   // Build a vector of destination BBs, corresponding to each target
1998   // of the jump table. If the value of the jump table slot corresponds to
1999   // a case statement, push the case's BB onto the vector, otherwise, push
2000   // the default BB.
2001   std::vector<MachineBasicBlock*> DestBBs;
2002   APInt TEI = First;
2003   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2004     const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2005     const APInt &High = cast<ConstantInt>(I->High)->getValue();
2006 
2007     if (Low.sle(TEI) && TEI.sle(High)) {
2008       DestBBs.push_back(I->BB);
2009       if (TEI==High)
2010         ++I;
2011     } else {
2012       DestBBs.push_back(Default);
2013     }
2014   }
2015 
2016   // Update successor info. Add one edge to each unique successor.
2017   BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2018   for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2019          E = DestBBs.end(); I != E; ++I) {
2020     if (!SuccsHandled[(*I)->getNumber()]) {
2021       SuccsHandled[(*I)->getNumber()] = true;
2022       addSuccessorWithWeight(JumpTableBB, *I);
2023     }
2024   }
2025 
2026   // Create a jump table index for this jump table.
2027   unsigned JTEncoding = TLI.getJumpTableEncoding();
2028   unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2029                        ->createJumpTableIndex(DestBBs);
2030 
2031   // Set the jump table information so that we can codegen it as a second
2032   // MachineBasicBlock
2033   JumpTable JT(-1U, JTI, JumpTableBB, Default);
2034   JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2035   if (CR.CaseBB == SwitchBB)
2036     visitJumpTableHeader(JT, JTH, SwitchBB);
2037 
2038   JTCases.push_back(JumpTableBlock(JTH, JT));
2039 
2040   return true;
2041 }
2042 
2043 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2044 /// 2 subtrees.
2045 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2046                                                   CaseRecVector& WorkList,
2047                                                   const Value* SV,
2048                                                   MachineBasicBlock *Default,
2049                                                   MachineBasicBlock *SwitchBB) {
2050   // Get the MachineFunction which holds the current MBB.  This is used when
2051   // inserting any additional MBBs necessary to represent the switch.
2052   MachineFunction *CurMF = FuncInfo.MF;
2053 
2054   // Figure out which block is immediately after the current one.
2055   MachineFunction::iterator BBI = CR.CaseBB;
2056   ++BBI;
2057 
2058   Case& FrontCase = *CR.Range.first;
2059   Case& BackCase  = *(CR.Range.second-1);
2060   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2061 
2062   // Size is the number of Cases represented by this range.
2063   unsigned Size = CR.Range.second - CR.Range.first;
2064 
2065   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2066   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2067   double FMetric = 0;
2068   CaseItr Pivot = CR.Range.first + Size/2;
2069 
2070   // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2071   // (heuristically) allow us to emit JumpTable's later.
2072   APInt TSize(First.getBitWidth(), 0);
2073   for (CaseItr I = CR.Range.first, E = CR.Range.second;
2074        I!=E; ++I)
2075     TSize += I->size();
2076 
2077   APInt LSize = FrontCase.size();
2078   APInt RSize = TSize-LSize;
2079   DEBUG(dbgs() << "Selecting best pivot: \n"
2080                << "First: " << First << ", Last: " << Last <<'\n'
2081                << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2082   for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2083        J!=E; ++I, ++J) {
2084     const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2085     const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2086     APInt Range = ComputeRange(LEnd, RBegin);
2087     assert((Range - 2ULL).isNonNegative() &&
2088            "Invalid case distance");
2089     // Use volatile double here to avoid excess precision issues on some hosts,
2090     // e.g. that use 80-bit X87 registers.
2091     volatile double LDensity =
2092        (double)LSize.roundToDouble() /
2093                            (LEnd - First + 1ULL).roundToDouble();
2094     volatile double RDensity =
2095       (double)RSize.roundToDouble() /
2096                            (Last - RBegin + 1ULL).roundToDouble();
2097     double Metric = Range.logBase2()*(LDensity+RDensity);
2098     // Should always split in some non-trivial place
2099     DEBUG(dbgs() <<"=>Step\n"
2100                  << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2101                  << "LDensity: " << LDensity
2102                  << ", RDensity: " << RDensity << '\n'
2103                  << "Metric: " << Metric << '\n');
2104     if (FMetric < Metric) {
2105       Pivot = J;
2106       FMetric = Metric;
2107       DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2108     }
2109 
2110     LSize += J->size();
2111     RSize -= J->size();
2112   }
2113   if (areJTsAllowed(TLI)) {
2114     // If our case is dense we *really* should handle it earlier!
2115     assert((FMetric > 0) && "Should handle dense range earlier!");
2116   } else {
2117     Pivot = CR.Range.first + Size/2;
2118   }
2119 
2120   CaseRange LHSR(CR.Range.first, Pivot);
2121   CaseRange RHSR(Pivot, CR.Range.second);
2122   Constant *C = Pivot->Low;
2123   MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2124 
2125   // We know that we branch to the LHS if the Value being switched on is
2126   // less than the Pivot value, C.  We use this to optimize our binary
2127   // tree a bit, by recognizing that if SV is greater than or equal to the
2128   // LHS's Case Value, and that Case Value is exactly one less than the
2129   // Pivot's Value, then we can branch directly to the LHS's Target,
2130   // rather than creating a leaf node for it.
2131   if ((LHSR.second - LHSR.first) == 1 &&
2132       LHSR.first->High == CR.GE &&
2133       cast<ConstantInt>(C)->getValue() ==
2134       (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2135     TrueBB = LHSR.first->BB;
2136   } else {
2137     TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2138     CurMF->insert(BBI, TrueBB);
2139     WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2140 
2141     // Put SV in a virtual register to make it available from the new blocks.
2142     ExportFromCurrentBlock(SV);
2143   }
2144 
2145   // Similar to the optimization above, if the Value being switched on is
2146   // known to be less than the Constant CR.LT, and the current Case Value
2147   // is CR.LT - 1, then we can branch directly to the target block for
2148   // the current Case Value, rather than emitting a RHS leaf node for it.
2149   if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2150       cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2151       (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2152     FalseBB = RHSR.first->BB;
2153   } else {
2154     FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2155     CurMF->insert(BBI, FalseBB);
2156     WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2157 
2158     // Put SV in a virtual register to make it available from the new blocks.
2159     ExportFromCurrentBlock(SV);
2160   }
2161 
2162   // Create a CaseBlock record representing a conditional branch to
2163   // the LHS node if the value being switched on SV is less than C.
2164   // Otherwise, branch to LHS.
2165   CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2166 
2167   if (CR.CaseBB == SwitchBB)
2168     visitSwitchCase(CB, SwitchBB);
2169   else
2170     SwitchCases.push_back(CB);
2171 
2172   return true;
2173 }
2174 
2175 /// handleBitTestsSwitchCase - if current case range has few destination and
2176 /// range span less, than machine word bitwidth, encode case range into series
2177 /// of masks and emit bit tests with these masks.
2178 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2179                                                    CaseRecVector& WorkList,
2180                                                    const Value* SV,
2181                                                    MachineBasicBlock* Default,
2182                                                    MachineBasicBlock *SwitchBB){
2183   EVT PTy = TLI.getPointerTy();
2184   unsigned IntPtrBits = PTy.getSizeInBits();
2185 
2186   Case& FrontCase = *CR.Range.first;
2187   Case& BackCase  = *(CR.Range.second-1);
2188 
2189   // Get the MachineFunction which holds the current MBB.  This is used when
2190   // inserting any additional MBBs necessary to represent the switch.
2191   MachineFunction *CurMF = FuncInfo.MF;
2192 
2193   // If target does not have legal shift left, do not emit bit tests at all.
2194   if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2195     return false;
2196 
2197   size_t numCmps = 0;
2198   for (CaseItr I = CR.Range.first, E = CR.Range.second;
2199        I!=E; ++I) {
2200     // Single case counts one, case range - two.
2201     numCmps += (I->Low == I->High ? 1 : 2);
2202   }
2203 
2204   // Count unique destinations
2205   SmallSet<MachineBasicBlock*, 4> Dests;
2206   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2207     Dests.insert(I->BB);
2208     if (Dests.size() > 3)
2209       // Don't bother the code below, if there are too much unique destinations
2210       return false;
2211   }
2212   DEBUG(dbgs() << "Total number of unique destinations: "
2213         << Dests.size() << '\n'
2214         << "Total number of comparisons: " << numCmps << '\n');
2215 
2216   // Compute span of values.
2217   const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2218   const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2219   APInt cmpRange = maxValue - minValue;
2220 
2221   DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2222                << "Low bound: " << minValue << '\n'
2223                << "High bound: " << maxValue << '\n');
2224 
2225   if (cmpRange.uge(IntPtrBits) ||
2226       (!(Dests.size() == 1 && numCmps >= 3) &&
2227        !(Dests.size() == 2 && numCmps >= 5) &&
2228        !(Dests.size() >= 3 && numCmps >= 6)))
2229     return false;
2230 
2231   DEBUG(dbgs() << "Emitting bit tests\n");
2232   APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2233 
2234   // Optimize the case where all the case values fit in a
2235   // word without having to subtract minValue. In this case,
2236   // we can optimize away the subtraction.
2237   if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2238     cmpRange = maxValue;
2239   } else {
2240     lowBound = minValue;
2241   }
2242 
2243   CaseBitsVector CasesBits;
2244   unsigned i, count = 0;
2245 
2246   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2247     MachineBasicBlock* Dest = I->BB;
2248     for (i = 0; i < count; ++i)
2249       if (Dest == CasesBits[i].BB)
2250         break;
2251 
2252     if (i == count) {
2253       assert((count < 3) && "Too much destinations to test!");
2254       CasesBits.push_back(CaseBits(0, Dest, 0));
2255       count++;
2256     }
2257 
2258     const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2259     const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2260 
2261     uint64_t lo = (lowValue - lowBound).getZExtValue();
2262     uint64_t hi = (highValue - lowBound).getZExtValue();
2263 
2264     for (uint64_t j = lo; j <= hi; j++) {
2265       CasesBits[i].Mask |=  1ULL << j;
2266       CasesBits[i].Bits++;
2267     }
2268 
2269   }
2270   std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2271 
2272   BitTestInfo BTC;
2273 
2274   // Figure out which block is immediately after the current one.
2275   MachineFunction::iterator BBI = CR.CaseBB;
2276   ++BBI;
2277 
2278   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2279 
2280   DEBUG(dbgs() << "Cases:\n");
2281   for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2282     DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2283                  << ", Bits: " << CasesBits[i].Bits
2284                  << ", BB: " << CasesBits[i].BB << '\n');
2285 
2286     MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2287     CurMF->insert(BBI, CaseBB);
2288     BTC.push_back(BitTestCase(CasesBits[i].Mask,
2289                               CaseBB,
2290                               CasesBits[i].BB));
2291 
2292     // Put SV in a virtual register to make it available from the new blocks.
2293     ExportFromCurrentBlock(SV);
2294   }
2295 
2296   BitTestBlock BTB(lowBound, cmpRange, SV,
2297                    -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2298                    CR.CaseBB, Default, BTC);
2299 
2300   if (CR.CaseBB == SwitchBB)
2301     visitBitTestHeader(BTB, SwitchBB);
2302 
2303   BitTestCases.push_back(BTB);
2304 
2305   return true;
2306 }
2307 
2308 /// Clusterify - Transform simple list of Cases into list of CaseRange's
2309 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2310                                        const SwitchInst& SI) {
2311   size_t numCmps = 0;
2312 
2313   // Start with "simple" cases
2314   for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2315     MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2316     Cases.push_back(Case(SI.getSuccessorValue(i),
2317                          SI.getSuccessorValue(i),
2318                          SMBB));
2319   }
2320   std::sort(Cases.begin(), Cases.end(), CaseCmp());
2321 
2322   // Merge case into clusters
2323   if (Cases.size() >= 2)
2324     // Must recompute end() each iteration because it may be
2325     // invalidated by erase if we hold on to it
2326     for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2327          J != Cases.end(); ) {
2328       const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2329       const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2330       MachineBasicBlock* nextBB = J->BB;
2331       MachineBasicBlock* currentBB = I->BB;
2332 
2333       // If the two neighboring cases go to the same destination, merge them
2334       // into a single case.
2335       if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2336         I->High = J->High;
2337         J = Cases.erase(J);
2338       } else {
2339         I = J++;
2340       }
2341     }
2342 
2343   for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2344     if (I->Low != I->High)
2345       // A range counts double, since it requires two compares.
2346       ++numCmps;
2347   }
2348 
2349   return numCmps;
2350 }
2351 
2352 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2353                                            MachineBasicBlock *Last) {
2354   // Update JTCases.
2355   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2356     if (JTCases[i].first.HeaderBB == First)
2357       JTCases[i].first.HeaderBB = Last;
2358 
2359   // Update BitTestCases.
2360   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2361     if (BitTestCases[i].Parent == First)
2362       BitTestCases[i].Parent = Last;
2363 }
2364 
2365 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2366   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2367 
2368   // Figure out which block is immediately after the current one.
2369   MachineBasicBlock *NextBlock = 0;
2370   MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2371 
2372   // If there is only the default destination, branch to it if it is not the
2373   // next basic block.  Otherwise, just fall through.
2374   if (SI.getNumOperands() == 2) {
2375     // Update machine-CFG edges.
2376 
2377     // If this is not a fall-through branch, emit the branch.
2378     SwitchMBB->addSuccessor(Default);
2379     if (Default != NextBlock)
2380       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2381                               MVT::Other, getControlRoot(),
2382                               DAG.getBasicBlock(Default)));
2383 
2384     return;
2385   }
2386 
2387   // If there are any non-default case statements, create a vector of Cases
2388   // representing each one, and sort the vector so that we can efficiently
2389   // create a binary search tree from them.
2390   CaseVector Cases;
2391   size_t numCmps = Clusterify(Cases, SI);
2392   DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2393                << ". Total compares: " << numCmps << '\n');
2394   numCmps = 0;
2395 
2396   // Get the Value to be switched on and default basic blocks, which will be
2397   // inserted into CaseBlock records, representing basic blocks in the binary
2398   // search tree.
2399   const Value *SV = SI.getOperand(0);
2400 
2401   // Push the initial CaseRec onto the worklist
2402   CaseRecVector WorkList;
2403   WorkList.push_back(CaseRec(SwitchMBB,0,0,
2404                              CaseRange(Cases.begin(),Cases.end())));
2405 
2406   while (!WorkList.empty()) {
2407     // Grab a record representing a case range to process off the worklist
2408     CaseRec CR = WorkList.back();
2409     WorkList.pop_back();
2410 
2411     if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2412       continue;
2413 
2414     // If the range has few cases (two or less) emit a series of specific
2415     // tests.
2416     if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2417       continue;
2418 
2419     // If the switch has more than 5 blocks, and at least 40% dense, and the
2420     // target supports indirect branches, then emit a jump table rather than
2421     // lowering the switch to a binary tree of conditional branches.
2422     if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2423       continue;
2424 
2425     // Emit binary tree. We need to pick a pivot, and push left and right ranges
2426     // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2427     handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2428   }
2429 }
2430 
2431 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2432   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2433 
2434   // Update machine-CFG edges with unique successors.
2435   SmallVector<BasicBlock*, 32> succs;
2436   succs.reserve(I.getNumSuccessors());
2437   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2438     succs.push_back(I.getSuccessor(i));
2439   array_pod_sort(succs.begin(), succs.end());
2440   succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2441   for (unsigned i = 0, e = succs.size(); i != e; ++i) {
2442     MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]];
2443     addSuccessorWithWeight(IndirectBrMBB, Succ);
2444   }
2445 
2446   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2447                           MVT::Other, getControlRoot(),
2448                           getValue(I.getAddress())));
2449 }
2450 
2451 void SelectionDAGBuilder::visitFSub(const User &I) {
2452   // -0.0 - X --> fneg
2453   const Type *Ty = I.getType();
2454   if (isa<Constant>(I.getOperand(0)) &&
2455       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2456     SDValue Op2 = getValue(I.getOperand(1));
2457     setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2458                              Op2.getValueType(), Op2));
2459     return;
2460   }
2461 
2462   visitBinary(I, ISD::FSUB);
2463 }
2464 
2465 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2466   SDValue Op1 = getValue(I.getOperand(0));
2467   SDValue Op2 = getValue(I.getOperand(1));
2468   setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2469                            Op1.getValueType(), Op1, Op2));
2470 }
2471 
2472 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2473   SDValue Op1 = getValue(I.getOperand(0));
2474   SDValue Op2 = getValue(I.getOperand(1));
2475 
2476   MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2477 
2478   // Coerce the shift amount to the right type if we can.
2479   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2480     unsigned ShiftSize = ShiftTy.getSizeInBits();
2481     unsigned Op2Size = Op2.getValueType().getSizeInBits();
2482     DebugLoc DL = getCurDebugLoc();
2483 
2484     // If the operand is smaller than the shift count type, promote it.
2485     if (ShiftSize > Op2Size)
2486       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2487 
2488     // If the operand is larger than the shift count type but the shift
2489     // count type has enough bits to represent any shift value, truncate
2490     // it now. This is a common case and it exposes the truncate to
2491     // optimization early.
2492     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2493       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2494     // Otherwise we'll need to temporarily settle for some other convenient
2495     // type.  Type legalization will make adjustments once the shiftee is split.
2496     else
2497       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2498   }
2499 
2500   setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2501                            Op1.getValueType(), Op1, Op2));
2502 }
2503 
2504 void SelectionDAGBuilder::visitSDiv(const User &I) {
2505   SDValue Op1 = getValue(I.getOperand(0));
2506   SDValue Op2 = getValue(I.getOperand(1));
2507 
2508   // Turn exact SDivs into multiplications.
2509   // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2510   // exact bit.
2511   if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2512       !isa<ConstantSDNode>(Op1) &&
2513       isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2514     setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2515   else
2516     setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2517                              Op1, Op2));
2518 }
2519 
2520 void SelectionDAGBuilder::visitICmp(const User &I) {
2521   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2522   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2523     predicate = IC->getPredicate();
2524   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2525     predicate = ICmpInst::Predicate(IC->getPredicate());
2526   SDValue Op1 = getValue(I.getOperand(0));
2527   SDValue Op2 = getValue(I.getOperand(1));
2528   ISD::CondCode Opcode = getICmpCondCode(predicate);
2529 
2530   EVT DestVT = TLI.getValueType(I.getType());
2531   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2532 }
2533 
2534 void SelectionDAGBuilder::visitFCmp(const User &I) {
2535   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2536   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2537     predicate = FC->getPredicate();
2538   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2539     predicate = FCmpInst::Predicate(FC->getPredicate());
2540   SDValue Op1 = getValue(I.getOperand(0));
2541   SDValue Op2 = getValue(I.getOperand(1));
2542   ISD::CondCode Condition = getFCmpCondCode(predicate);
2543   EVT DestVT = TLI.getValueType(I.getType());
2544   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2545 }
2546 
2547 void SelectionDAGBuilder::visitSelect(const User &I) {
2548   SmallVector<EVT, 4> ValueVTs;
2549   ComputeValueVTs(TLI, I.getType(), ValueVTs);
2550   unsigned NumValues = ValueVTs.size();
2551   if (NumValues == 0) return;
2552 
2553   SmallVector<SDValue, 4> Values(NumValues);
2554   SDValue Cond     = getValue(I.getOperand(0));
2555   SDValue TrueVal  = getValue(I.getOperand(1));
2556   SDValue FalseVal = getValue(I.getOperand(2));
2557 
2558   for (unsigned i = 0; i != NumValues; ++i)
2559     Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2560                           TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2561                             Cond,
2562                             SDValue(TrueVal.getNode(),
2563                                     TrueVal.getResNo() + i),
2564                             SDValue(FalseVal.getNode(),
2565                                     FalseVal.getResNo() + i));
2566 
2567   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2568                            DAG.getVTList(&ValueVTs[0], NumValues),
2569                            &Values[0], NumValues));
2570 }
2571 
2572 void SelectionDAGBuilder::visitTrunc(const User &I) {
2573   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2574   SDValue N = getValue(I.getOperand(0));
2575   EVT DestVT = TLI.getValueType(I.getType());
2576   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2577 }
2578 
2579 void SelectionDAGBuilder::visitZExt(const User &I) {
2580   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2581   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2582   SDValue N = getValue(I.getOperand(0));
2583   EVT DestVT = TLI.getValueType(I.getType());
2584   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2585 }
2586 
2587 void SelectionDAGBuilder::visitSExt(const User &I) {
2588   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2589   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2590   SDValue N = getValue(I.getOperand(0));
2591   EVT DestVT = TLI.getValueType(I.getType());
2592   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2593 }
2594 
2595 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2596   // FPTrunc is never a no-op cast, no need to check
2597   SDValue N = getValue(I.getOperand(0));
2598   EVT DestVT = TLI.getValueType(I.getType());
2599   setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2600                            DestVT, N, DAG.getIntPtrConstant(0)));
2601 }
2602 
2603 void SelectionDAGBuilder::visitFPExt(const User &I){
2604   // FPTrunc is never a no-op cast, no need to check
2605   SDValue N = getValue(I.getOperand(0));
2606   EVT DestVT = TLI.getValueType(I.getType());
2607   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2608 }
2609 
2610 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2611   // FPToUI is never a no-op cast, no need to check
2612   SDValue N = getValue(I.getOperand(0));
2613   EVT DestVT = TLI.getValueType(I.getType());
2614   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2615 }
2616 
2617 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2618   // FPToSI is never a no-op cast, no need to check
2619   SDValue N = getValue(I.getOperand(0));
2620   EVT DestVT = TLI.getValueType(I.getType());
2621   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2622 }
2623 
2624 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2625   // UIToFP is never a no-op cast, no need to check
2626   SDValue N = getValue(I.getOperand(0));
2627   EVT DestVT = TLI.getValueType(I.getType());
2628   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2629 }
2630 
2631 void SelectionDAGBuilder::visitSIToFP(const User &I){
2632   // SIToFP is never a no-op cast, no need to check
2633   SDValue N = getValue(I.getOperand(0));
2634   EVT DestVT = TLI.getValueType(I.getType());
2635   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2636 }
2637 
2638 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2639   // What to do depends on the size of the integer and the size of the pointer.
2640   // We can either truncate, zero extend, or no-op, accordingly.
2641   SDValue N = getValue(I.getOperand(0));
2642   EVT DestVT = TLI.getValueType(I.getType());
2643   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2644 }
2645 
2646 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2647   // What to do depends on the size of the integer and the size of the pointer.
2648   // We can either truncate, zero extend, or no-op, accordingly.
2649   SDValue N = getValue(I.getOperand(0));
2650   EVT DestVT = TLI.getValueType(I.getType());
2651   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2652 }
2653 
2654 void SelectionDAGBuilder::visitBitCast(const User &I) {
2655   SDValue N = getValue(I.getOperand(0));
2656   EVT DestVT = TLI.getValueType(I.getType());
2657 
2658   // BitCast assures us that source and destination are the same size so this is
2659   // either a BITCAST or a no-op.
2660   if (DestVT != N.getValueType())
2661     setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2662                              DestVT, N)); // convert types.
2663   else
2664     setValue(&I, N);            // noop cast.
2665 }
2666 
2667 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2668   SDValue InVec = getValue(I.getOperand(0));
2669   SDValue InVal = getValue(I.getOperand(1));
2670   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2671                               TLI.getPointerTy(),
2672                               getValue(I.getOperand(2)));
2673   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2674                            TLI.getValueType(I.getType()),
2675                            InVec, InVal, InIdx));
2676 }
2677 
2678 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2679   SDValue InVec = getValue(I.getOperand(0));
2680   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2681                               TLI.getPointerTy(),
2682                               getValue(I.getOperand(1)));
2683   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2684                            TLI.getValueType(I.getType()), InVec, InIdx));
2685 }
2686 
2687 // Utility for visitShuffleVector - Returns true if the mask is mask starting
2688 // from SIndx and increasing to the element length (undefs are allowed).
2689 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2690   unsigned MaskNumElts = Mask.size();
2691   for (unsigned i = 0; i != MaskNumElts; ++i)
2692     if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2693       return false;
2694   return true;
2695 }
2696 
2697 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2698   SmallVector<int, 8> Mask;
2699   SDValue Src1 = getValue(I.getOperand(0));
2700   SDValue Src2 = getValue(I.getOperand(1));
2701 
2702   // Convert the ConstantVector mask operand into an array of ints, with -1
2703   // representing undef values.
2704   SmallVector<Constant*, 8> MaskElts;
2705   cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2706   unsigned MaskNumElts = MaskElts.size();
2707   for (unsigned i = 0; i != MaskNumElts; ++i) {
2708     if (isa<UndefValue>(MaskElts[i]))
2709       Mask.push_back(-1);
2710     else
2711       Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2712   }
2713 
2714   EVT VT = TLI.getValueType(I.getType());
2715   EVT SrcVT = Src1.getValueType();
2716   unsigned SrcNumElts = SrcVT.getVectorNumElements();
2717 
2718   if (SrcNumElts == MaskNumElts) {
2719     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2720                                       &Mask[0]));
2721     return;
2722   }
2723 
2724   // Normalize the shuffle vector since mask and vector length don't match.
2725   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2726     // Mask is longer than the source vectors and is a multiple of the source
2727     // vectors.  We can use concatenate vector to make the mask and vectors
2728     // lengths match.
2729     if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2730       // The shuffle is concatenating two vectors together.
2731       setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2732                                VT, Src1, Src2));
2733       return;
2734     }
2735 
2736     // Pad both vectors with undefs to make them the same length as the mask.
2737     unsigned NumConcat = MaskNumElts / SrcNumElts;
2738     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2739     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2740     SDValue UndefVal = DAG.getUNDEF(SrcVT);
2741 
2742     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2743     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2744     MOps1[0] = Src1;
2745     MOps2[0] = Src2;
2746 
2747     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2748                                                   getCurDebugLoc(), VT,
2749                                                   &MOps1[0], NumConcat);
2750     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2751                                                   getCurDebugLoc(), VT,
2752                                                   &MOps2[0], NumConcat);
2753 
2754     // Readjust mask for new input vector length.
2755     SmallVector<int, 8> MappedOps;
2756     for (unsigned i = 0; i != MaskNumElts; ++i) {
2757       int Idx = Mask[i];
2758       if (Idx < (int)SrcNumElts)
2759         MappedOps.push_back(Idx);
2760       else
2761         MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2762     }
2763 
2764     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2765                                       &MappedOps[0]));
2766     return;
2767   }
2768 
2769   if (SrcNumElts > MaskNumElts) {
2770     // Analyze the access pattern of the vector to see if we can extract
2771     // two subvectors and do the shuffle. The analysis is done by calculating
2772     // the range of elements the mask access on both vectors.
2773     int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2774     int MaxRange[2] = {-1, -1};
2775 
2776     for (unsigned i = 0; i != MaskNumElts; ++i) {
2777       int Idx = Mask[i];
2778       int Input = 0;
2779       if (Idx < 0)
2780         continue;
2781 
2782       if (Idx >= (int)SrcNumElts) {
2783         Input = 1;
2784         Idx -= SrcNumElts;
2785       }
2786       if (Idx > MaxRange[Input])
2787         MaxRange[Input] = Idx;
2788       if (Idx < MinRange[Input])
2789         MinRange[Input] = Idx;
2790     }
2791 
2792     // Check if the access is smaller than the vector size and can we find
2793     // a reasonable extract index.
2794     int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2795                                  // Extract.
2796     int StartIdx[2];  // StartIdx to extract from
2797     for (int Input=0; Input < 2; ++Input) {
2798       if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2799         RangeUse[Input] = 0; // Unused
2800         StartIdx[Input] = 0;
2801       } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2802         // Fits within range but we should see if we can find a good
2803         // start index that is a multiple of the mask length.
2804         if (MaxRange[Input] < (int)MaskNumElts) {
2805           RangeUse[Input] = 1; // Extract from beginning of the vector
2806           StartIdx[Input] = 0;
2807         } else {
2808           StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2809           if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2810               StartIdx[Input] + MaskNumElts <= SrcNumElts)
2811             RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2812         }
2813       }
2814     }
2815 
2816     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2817       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2818       return;
2819     }
2820     else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2821       // Extract appropriate subvector and generate a vector shuffle
2822       for (int Input=0; Input < 2; ++Input) {
2823         SDValue &Src = Input == 0 ? Src1 : Src2;
2824         if (RangeUse[Input] == 0)
2825           Src = DAG.getUNDEF(VT);
2826         else
2827           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2828                             Src, DAG.getIntPtrConstant(StartIdx[Input]));
2829       }
2830 
2831       // Calculate new mask.
2832       SmallVector<int, 8> MappedOps;
2833       for (unsigned i = 0; i != MaskNumElts; ++i) {
2834         int Idx = Mask[i];
2835         if (Idx < 0)
2836           MappedOps.push_back(Idx);
2837         else if (Idx < (int)SrcNumElts)
2838           MappedOps.push_back(Idx - StartIdx[0]);
2839         else
2840           MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2841       }
2842 
2843       setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2844                                         &MappedOps[0]));
2845       return;
2846     }
2847   }
2848 
2849   // We can't use either concat vectors or extract subvectors so fall back to
2850   // replacing the shuffle with extract and build vector.
2851   // to insert and build vector.
2852   EVT EltVT = VT.getVectorElementType();
2853   EVT PtrVT = TLI.getPointerTy();
2854   SmallVector<SDValue,8> Ops;
2855   for (unsigned i = 0; i != MaskNumElts; ++i) {
2856     if (Mask[i] < 0) {
2857       Ops.push_back(DAG.getUNDEF(EltVT));
2858     } else {
2859       int Idx = Mask[i];
2860       SDValue Res;
2861 
2862       if (Idx < (int)SrcNumElts)
2863         Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2864                           EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2865       else
2866         Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2867                           EltVT, Src2,
2868                           DAG.getConstant(Idx - SrcNumElts, PtrVT));
2869 
2870       Ops.push_back(Res);
2871     }
2872   }
2873 
2874   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2875                            VT, &Ops[0], Ops.size()));
2876 }
2877 
2878 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2879   const Value *Op0 = I.getOperand(0);
2880   const Value *Op1 = I.getOperand(1);
2881   const Type *AggTy = I.getType();
2882   const Type *ValTy = Op1->getType();
2883   bool IntoUndef = isa<UndefValue>(Op0);
2884   bool FromUndef = isa<UndefValue>(Op1);
2885 
2886   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end());
2887 
2888   SmallVector<EVT, 4> AggValueVTs;
2889   ComputeValueVTs(TLI, AggTy, AggValueVTs);
2890   SmallVector<EVT, 4> ValValueVTs;
2891   ComputeValueVTs(TLI, ValTy, ValValueVTs);
2892 
2893   unsigned NumAggValues = AggValueVTs.size();
2894   unsigned NumValValues = ValValueVTs.size();
2895   SmallVector<SDValue, 4> Values(NumAggValues);
2896 
2897   SDValue Agg = getValue(Op0);
2898   unsigned i = 0;
2899   // Copy the beginning value(s) from the original aggregate.
2900   for (; i != LinearIndex; ++i)
2901     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2902                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2903   // Copy values from the inserted value(s).
2904   if (NumValValues) {
2905     SDValue Val = getValue(Op1);
2906     for (; i != LinearIndex + NumValValues; ++i)
2907       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2908                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2909   }
2910   // Copy remaining value(s) from the original aggregate.
2911   for (; i != NumAggValues; ++i)
2912     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2913                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2914 
2915   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2916                            DAG.getVTList(&AggValueVTs[0], NumAggValues),
2917                            &Values[0], NumAggValues));
2918 }
2919 
2920 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2921   const Value *Op0 = I.getOperand(0);
2922   const Type *AggTy = Op0->getType();
2923   const Type *ValTy = I.getType();
2924   bool OutOfUndef = isa<UndefValue>(Op0);
2925 
2926   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end());
2927 
2928   SmallVector<EVT, 4> ValValueVTs;
2929   ComputeValueVTs(TLI, ValTy, ValValueVTs);
2930 
2931   unsigned NumValValues = ValValueVTs.size();
2932 
2933   // Ignore a extractvalue that produces an empty object
2934   if (!NumValValues) {
2935     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
2936     return;
2937   }
2938 
2939   SmallVector<SDValue, 4> Values(NumValValues);
2940 
2941   SDValue Agg = getValue(Op0);
2942   // Copy out the selected value(s).
2943   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2944     Values[i - LinearIndex] =
2945       OutOfUndef ?
2946         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2947         SDValue(Agg.getNode(), Agg.getResNo() + i);
2948 
2949   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2950                            DAG.getVTList(&ValValueVTs[0], NumValValues),
2951                            &Values[0], NumValValues));
2952 }
2953 
2954 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2955   SDValue N = getValue(I.getOperand(0));
2956   const Type *Ty = I.getOperand(0)->getType();
2957 
2958   for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2959        OI != E; ++OI) {
2960     const Value *Idx = *OI;
2961     if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2962       unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2963       if (Field) {
2964         // N = N + Offset
2965         uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2966         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2967                         DAG.getIntPtrConstant(Offset));
2968       }
2969 
2970       Ty = StTy->getElementType(Field);
2971     } else {
2972       Ty = cast<SequentialType>(Ty)->getElementType();
2973 
2974       // If this is a constant subscript, handle it quickly.
2975       if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2976         if (CI->isZero()) continue;
2977         uint64_t Offs =
2978             TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2979         SDValue OffsVal;
2980         EVT PTy = TLI.getPointerTy();
2981         unsigned PtrBits = PTy.getSizeInBits();
2982         if (PtrBits < 64)
2983           OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2984                                 TLI.getPointerTy(),
2985                                 DAG.getConstant(Offs, MVT::i64));
2986         else
2987           OffsVal = DAG.getIntPtrConstant(Offs);
2988 
2989         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2990                         OffsVal);
2991         continue;
2992       }
2993 
2994       // N = N + Idx * ElementSize;
2995       APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2996                                 TD->getTypeAllocSize(Ty));
2997       SDValue IdxN = getValue(Idx);
2998 
2999       // If the index is smaller or larger than intptr_t, truncate or extend
3000       // it.
3001       IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3002 
3003       // If this is a multiply by a power of two, turn it into a shl
3004       // immediately.  This is a very common case.
3005       if (ElementSize != 1) {
3006         if (ElementSize.isPowerOf2()) {
3007           unsigned Amt = ElementSize.logBase2();
3008           IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3009                              N.getValueType(), IdxN,
3010                              DAG.getConstant(Amt, TLI.getPointerTy()));
3011         } else {
3012           SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
3013           IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3014                              N.getValueType(), IdxN, Scale);
3015         }
3016       }
3017 
3018       N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3019                       N.getValueType(), N, IdxN);
3020     }
3021   }
3022 
3023   setValue(&I, N);
3024 }
3025 
3026 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3027   // If this is a fixed sized alloca in the entry block of the function,
3028   // allocate it statically on the stack.
3029   if (FuncInfo.StaticAllocaMap.count(&I))
3030     return;   // getValue will auto-populate this.
3031 
3032   const Type *Ty = I.getAllocatedType();
3033   uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
3034   unsigned Align =
3035     std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
3036              I.getAlignment());
3037 
3038   SDValue AllocSize = getValue(I.getArraySize());
3039 
3040   EVT IntPtr = TLI.getPointerTy();
3041   if (AllocSize.getValueType() != IntPtr)
3042     AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3043 
3044   AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3045                           AllocSize,
3046                           DAG.getConstant(TySize, IntPtr));
3047 
3048   // Handle alignment.  If the requested alignment is less than or equal to
3049   // the stack alignment, ignore it.  If the size is greater than or equal to
3050   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3051   unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3052   if (Align <= StackAlign)
3053     Align = 0;
3054 
3055   // Round the size of the allocation up to the stack alignment size
3056   // by add SA-1 to the size.
3057   AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3058                           AllocSize.getValueType(), AllocSize,
3059                           DAG.getIntPtrConstant(StackAlign-1));
3060 
3061   // Mask out the low bits for alignment purposes.
3062   AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3063                           AllocSize.getValueType(), AllocSize,
3064                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3065 
3066   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3067   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3068   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3069                             VTs, Ops, 3);
3070   setValue(&I, DSA);
3071   DAG.setRoot(DSA.getValue(1));
3072 
3073   // Inform the Frame Information that we have just allocated a variable-sized
3074   // object.
3075   FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3076 }
3077 
3078 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3079   const Value *SV = I.getOperand(0);
3080   SDValue Ptr = getValue(SV);
3081 
3082   const Type *Ty = I.getType();
3083 
3084   bool isVolatile = I.isVolatile();
3085   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3086   unsigned Alignment = I.getAlignment();
3087   const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3088 
3089   SmallVector<EVT, 4> ValueVTs;
3090   SmallVector<uint64_t, 4> Offsets;
3091   ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3092   unsigned NumValues = ValueVTs.size();
3093   if (NumValues == 0)
3094     return;
3095 
3096   SDValue Root;
3097   bool ConstantMemory = false;
3098   if (I.isVolatile() || NumValues > MaxParallelChains)
3099     // Serialize volatile loads with other side effects.
3100     Root = getRoot();
3101   else if (AA->pointsToConstantMemory(
3102              AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3103     // Do not serialize (non-volatile) loads of constant memory with anything.
3104     Root = DAG.getEntryNode();
3105     ConstantMemory = true;
3106   } else {
3107     // Do not serialize non-volatile loads against each other.
3108     Root = DAG.getRoot();
3109   }
3110 
3111   SmallVector<SDValue, 4> Values(NumValues);
3112   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3113                                           NumValues));
3114   EVT PtrVT = Ptr.getValueType();
3115   unsigned ChainI = 0;
3116   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3117     // Serializing loads here may result in excessive register pressure, and
3118     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3119     // could recover a bit by hoisting nodes upward in the chain by recognizing
3120     // they are side-effect free or do not alias. The optimizer should really
3121     // avoid this case by converting large object/array copies to llvm.memcpy
3122     // (MaxParallelChains should always remain as failsafe).
3123     if (ChainI == MaxParallelChains) {
3124       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3125       SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3126                                   MVT::Other, &Chains[0], ChainI);
3127       Root = Chain;
3128       ChainI = 0;
3129     }
3130     SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3131                             PtrVT, Ptr,
3132                             DAG.getConstant(Offsets[i], PtrVT));
3133     SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3134                             A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3135                             isNonTemporal, Alignment, TBAAInfo);
3136 
3137     Values[i] = L;
3138     Chains[ChainI] = L.getValue(1);
3139   }
3140 
3141   if (!ConstantMemory) {
3142     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3143                                 MVT::Other, &Chains[0], ChainI);
3144     if (isVolatile)
3145       DAG.setRoot(Chain);
3146     else
3147       PendingLoads.push_back(Chain);
3148   }
3149 
3150   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3151                            DAG.getVTList(&ValueVTs[0], NumValues),
3152                            &Values[0], NumValues));
3153 }
3154 
3155 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3156   const Value *SrcV = I.getOperand(0);
3157   const Value *PtrV = I.getOperand(1);
3158 
3159   SmallVector<EVT, 4> ValueVTs;
3160   SmallVector<uint64_t, 4> Offsets;
3161   ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3162   unsigned NumValues = ValueVTs.size();
3163   if (NumValues == 0)
3164     return;
3165 
3166   // Get the lowered operands. Note that we do this after
3167   // checking if NumResults is zero, because with zero results
3168   // the operands won't have values in the map.
3169   SDValue Src = getValue(SrcV);
3170   SDValue Ptr = getValue(PtrV);
3171 
3172   SDValue Root = getRoot();
3173   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3174                                           NumValues));
3175   EVT PtrVT = Ptr.getValueType();
3176   bool isVolatile = I.isVolatile();
3177   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3178   unsigned Alignment = I.getAlignment();
3179   const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3180 
3181   unsigned ChainI = 0;
3182   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3183     // See visitLoad comments.
3184     if (ChainI == MaxParallelChains) {
3185       SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3186                                   MVT::Other, &Chains[0], ChainI);
3187       Root = Chain;
3188       ChainI = 0;
3189     }
3190     SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3191                               DAG.getConstant(Offsets[i], PtrVT));
3192     SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3193                               SDValue(Src.getNode(), Src.getResNo() + i),
3194                               Add, MachinePointerInfo(PtrV, Offsets[i]),
3195                               isVolatile, isNonTemporal, Alignment, TBAAInfo);
3196     Chains[ChainI] = St;
3197   }
3198 
3199   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3200                                   MVT::Other, &Chains[0], ChainI);
3201   ++SDNodeOrder;
3202   AssignOrderingToNode(StoreNode.getNode());
3203   DAG.setRoot(StoreNode);
3204 }
3205 
3206 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3207 /// node.
3208 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3209                                                unsigned Intrinsic) {
3210   bool HasChain = !I.doesNotAccessMemory();
3211   bool OnlyLoad = HasChain && I.onlyReadsMemory();
3212 
3213   // Build the operand list.
3214   SmallVector<SDValue, 8> Ops;
3215   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3216     if (OnlyLoad) {
3217       // We don't need to serialize loads against other loads.
3218       Ops.push_back(DAG.getRoot());
3219     } else {
3220       Ops.push_back(getRoot());
3221     }
3222   }
3223 
3224   // Info is set by getTgtMemInstrinsic
3225   TargetLowering::IntrinsicInfo Info;
3226   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3227 
3228   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3229   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3230       Info.opc == ISD::INTRINSIC_W_CHAIN)
3231     Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3232 
3233   // Add all operands of the call to the operand list.
3234   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3235     SDValue Op = getValue(I.getArgOperand(i));
3236     assert(TLI.isTypeLegal(Op.getValueType()) &&
3237            "Intrinsic uses a non-legal type?");
3238     Ops.push_back(Op);
3239   }
3240 
3241   SmallVector<EVT, 4> ValueVTs;
3242   ComputeValueVTs(TLI, I.getType(), ValueVTs);
3243 #ifndef NDEBUG
3244   for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3245     assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3246            "Intrinsic uses a non-legal type?");
3247   }
3248 #endif // NDEBUG
3249 
3250   if (HasChain)
3251     ValueVTs.push_back(MVT::Other);
3252 
3253   SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3254 
3255   // Create the node.
3256   SDValue Result;
3257   if (IsTgtIntrinsic) {
3258     // This is target intrinsic that touches memory
3259     Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3260                                      VTs, &Ops[0], Ops.size(),
3261                                      Info.memVT,
3262                                    MachinePointerInfo(Info.ptrVal, Info.offset),
3263                                      Info.align, Info.vol,
3264                                      Info.readMem, Info.writeMem);
3265   } else if (!HasChain) {
3266     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3267                          VTs, &Ops[0], Ops.size());
3268   } else if (!I.getType()->isVoidTy()) {
3269     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3270                          VTs, &Ops[0], Ops.size());
3271   } else {
3272     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3273                          VTs, &Ops[0], Ops.size());
3274   }
3275 
3276   if (HasChain) {
3277     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3278     if (OnlyLoad)
3279       PendingLoads.push_back(Chain);
3280     else
3281       DAG.setRoot(Chain);
3282   }
3283 
3284   if (!I.getType()->isVoidTy()) {
3285     if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3286       EVT VT = TLI.getValueType(PTy);
3287       Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3288     }
3289 
3290     setValue(&I, Result);
3291   }
3292 }
3293 
3294 /// GetSignificand - Get the significand and build it into a floating-point
3295 /// number with exponent of 1:
3296 ///
3297 ///   Op = (Op & 0x007fffff) | 0x3f800000;
3298 ///
3299 /// where Op is the hexidecimal representation of floating point value.
3300 static SDValue
3301 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3302   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3303                            DAG.getConstant(0x007fffff, MVT::i32));
3304   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3305                            DAG.getConstant(0x3f800000, MVT::i32));
3306   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3307 }
3308 
3309 /// GetExponent - Get the exponent:
3310 ///
3311 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3312 ///
3313 /// where Op is the hexidecimal representation of floating point value.
3314 static SDValue
3315 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3316             DebugLoc dl) {
3317   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3318                            DAG.getConstant(0x7f800000, MVT::i32));
3319   SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3320                            DAG.getConstant(23, TLI.getPointerTy()));
3321   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3322                            DAG.getConstant(127, MVT::i32));
3323   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3324 }
3325 
3326 /// getF32Constant - Get 32-bit floating point constant.
3327 static SDValue
3328 getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3329   return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3330 }
3331 
3332 /// Inlined utility function to implement binary input atomic intrinsics for
3333 /// visitIntrinsicCall: I is a call instruction
3334 ///                     Op is the associated NodeType for I
3335 const char *
3336 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3337                                            ISD::NodeType Op) {
3338   SDValue Root = getRoot();
3339   SDValue L =
3340     DAG.getAtomic(Op, getCurDebugLoc(),
3341                   getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
3342                   Root,
3343                   getValue(I.getArgOperand(0)),
3344                   getValue(I.getArgOperand(1)),
3345                   I.getArgOperand(0));
3346   setValue(&I, L);
3347   DAG.setRoot(L.getValue(1));
3348   return 0;
3349 }
3350 
3351 // implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3352 const char *
3353 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3354   SDValue Op1 = getValue(I.getArgOperand(0));
3355   SDValue Op2 = getValue(I.getArgOperand(1));
3356 
3357   SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3358   setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3359   return 0;
3360 }
3361 
3362 /// visitExp - Lower an exp intrinsic. Handles the special sequences for
3363 /// limited-precision mode.
3364 void
3365 SelectionDAGBuilder::visitExp(const CallInst &I) {
3366   SDValue result;
3367   DebugLoc dl = getCurDebugLoc();
3368 
3369   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3370       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3371     SDValue Op = getValue(I.getArgOperand(0));
3372 
3373     // Put the exponent in the right bit position for later addition to the
3374     // final result:
3375     //
3376     //   #define LOG2OFe 1.4426950f
3377     //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3378     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3379                              getF32Constant(DAG, 0x3fb8aa3b));
3380     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3381 
3382     //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3383     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3384     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3385 
3386     //   IntegerPartOfX <<= 23;
3387     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3388                                  DAG.getConstant(23, TLI.getPointerTy()));
3389 
3390     if (LimitFloatPrecision <= 6) {
3391       // For floating-point precision of 6:
3392       //
3393       //   TwoToFractionalPartOfX =
3394       //     0.997535578f +
3395       //       (0.735607626f + 0.252464424f * x) * x;
3396       //
3397       // error 0.0144103317, which is 6 bits
3398       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3399                                getF32Constant(DAG, 0x3e814304));
3400       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3401                                getF32Constant(DAG, 0x3f3c50c8));
3402       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3403       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3404                                getF32Constant(DAG, 0x3f7f5e7e));
3405       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3406 
3407       // Add the exponent into the result in integer domain.
3408       SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3409                                TwoToFracPartOfX, IntegerPartOfX);
3410 
3411       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3412     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3413       // For floating-point precision of 12:
3414       //
3415       //   TwoToFractionalPartOfX =
3416       //     0.999892986f +
3417       //       (0.696457318f +
3418       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3419       //
3420       // 0.000107046256 error, which is 13 to 14 bits
3421       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3422                                getF32Constant(DAG, 0x3da235e3));
3423       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3424                                getF32Constant(DAG, 0x3e65b8f3));
3425       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3426       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3427                                getF32Constant(DAG, 0x3f324b07));
3428       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3429       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3430                                getF32Constant(DAG, 0x3f7ff8fd));
3431       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3432 
3433       // Add the exponent into the result in integer domain.
3434       SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3435                                TwoToFracPartOfX, IntegerPartOfX);
3436 
3437       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3438     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3439       // For floating-point precision of 18:
3440       //
3441       //   TwoToFractionalPartOfX =
3442       //     0.999999982f +
3443       //       (0.693148872f +
3444       //         (0.240227044f +
3445       //           (0.554906021e-1f +
3446       //             (0.961591928e-2f +
3447       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3448       //
3449       // error 2.47208000*10^(-7), which is better than 18 bits
3450       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3451                                getF32Constant(DAG, 0x3924b03e));
3452       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3453                                getF32Constant(DAG, 0x3ab24b87));
3454       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3455       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3456                                getF32Constant(DAG, 0x3c1d8c17));
3457       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3458       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3459                                getF32Constant(DAG, 0x3d634a1d));
3460       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3461       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3462                                getF32Constant(DAG, 0x3e75fe14));
3463       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3464       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3465                                 getF32Constant(DAG, 0x3f317234));
3466       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3467       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3468                                 getF32Constant(DAG, 0x3f800000));
3469       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3470                                              MVT::i32, t13);
3471 
3472       // Add the exponent into the result in integer domain.
3473       SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3474                                 TwoToFracPartOfX, IntegerPartOfX);
3475 
3476       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3477     }
3478   } else {
3479     // No special expansion.
3480     result = DAG.getNode(ISD::FEXP, dl,
3481                          getValue(I.getArgOperand(0)).getValueType(),
3482                          getValue(I.getArgOperand(0)));
3483   }
3484 
3485   setValue(&I, result);
3486 }
3487 
3488 /// visitLog - Lower a log intrinsic. Handles the special sequences for
3489 /// limited-precision mode.
3490 void
3491 SelectionDAGBuilder::visitLog(const CallInst &I) {
3492   SDValue result;
3493   DebugLoc dl = getCurDebugLoc();
3494 
3495   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3496       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3497     SDValue Op = getValue(I.getArgOperand(0));
3498     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3499 
3500     // Scale the exponent by log(2) [0.69314718f].
3501     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3502     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3503                                         getF32Constant(DAG, 0x3f317218));
3504 
3505     // Get the significand and build it into a floating-point number with
3506     // exponent of 1.
3507     SDValue X = GetSignificand(DAG, Op1, dl);
3508 
3509     if (LimitFloatPrecision <= 6) {
3510       // For floating-point precision of 6:
3511       //
3512       //   LogofMantissa =
3513       //     -1.1609546f +
3514       //       (1.4034025f - 0.23903021f * x) * x;
3515       //
3516       // error 0.0034276066, which is better than 8 bits
3517       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3518                                getF32Constant(DAG, 0xbe74c456));
3519       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3520                                getF32Constant(DAG, 0x3fb3a2b1));
3521       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3522       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3523                                           getF32Constant(DAG, 0x3f949a29));
3524 
3525       result = DAG.getNode(ISD::FADD, dl,
3526                            MVT::f32, LogOfExponent, LogOfMantissa);
3527     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3528       // For floating-point precision of 12:
3529       //
3530       //   LogOfMantissa =
3531       //     -1.7417939f +
3532       //       (2.8212026f +
3533       //         (-1.4699568f +
3534       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3535       //
3536       // error 0.000061011436, which is 14 bits
3537       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3538                                getF32Constant(DAG, 0xbd67b6d6));
3539       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3540                                getF32Constant(DAG, 0x3ee4f4b8));
3541       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3542       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3543                                getF32Constant(DAG, 0x3fbc278b));
3544       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3545       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3546                                getF32Constant(DAG, 0x40348e95));
3547       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3548       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3549                                           getF32Constant(DAG, 0x3fdef31a));
3550 
3551       result = DAG.getNode(ISD::FADD, dl,
3552                            MVT::f32, LogOfExponent, LogOfMantissa);
3553     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3554       // For floating-point precision of 18:
3555       //
3556       //   LogOfMantissa =
3557       //     -2.1072184f +
3558       //       (4.2372794f +
3559       //         (-3.7029485f +
3560       //           (2.2781945f +
3561       //             (-0.87823314f +
3562       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3563       //
3564       // error 0.0000023660568, which is better than 18 bits
3565       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3566                                getF32Constant(DAG, 0xbc91e5ac));
3567       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3568                                getF32Constant(DAG, 0x3e4350aa));
3569       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3570       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3571                                getF32Constant(DAG, 0x3f60d3e3));
3572       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3573       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3574                                getF32Constant(DAG, 0x4011cdf0));
3575       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3576       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3577                                getF32Constant(DAG, 0x406cfd1c));
3578       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3579       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3580                                getF32Constant(DAG, 0x408797cb));
3581       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3582       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3583                                           getF32Constant(DAG, 0x4006dcab));
3584 
3585       result = DAG.getNode(ISD::FADD, dl,
3586                            MVT::f32, LogOfExponent, LogOfMantissa);
3587     }
3588   } else {
3589     // No special expansion.
3590     result = DAG.getNode(ISD::FLOG, dl,
3591                          getValue(I.getArgOperand(0)).getValueType(),
3592                          getValue(I.getArgOperand(0)));
3593   }
3594 
3595   setValue(&I, result);
3596 }
3597 
3598 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3599 /// limited-precision mode.
3600 void
3601 SelectionDAGBuilder::visitLog2(const CallInst &I) {
3602   SDValue result;
3603   DebugLoc dl = getCurDebugLoc();
3604 
3605   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3606       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3607     SDValue Op = getValue(I.getArgOperand(0));
3608     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3609 
3610     // Get the exponent.
3611     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3612 
3613     // Get the significand and build it into a floating-point number with
3614     // exponent of 1.
3615     SDValue X = GetSignificand(DAG, Op1, dl);
3616 
3617     // Different possible minimax approximations of significand in
3618     // floating-point for various degrees of accuracy over [1,2].
3619     if (LimitFloatPrecision <= 6) {
3620       // For floating-point precision of 6:
3621       //
3622       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3623       //
3624       // error 0.0049451742, which is more than 7 bits
3625       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3626                                getF32Constant(DAG, 0xbeb08fe0));
3627       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3628                                getF32Constant(DAG, 0x40019463));
3629       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3630       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3631                                            getF32Constant(DAG, 0x3fd6633d));
3632 
3633       result = DAG.getNode(ISD::FADD, dl,
3634                            MVT::f32, LogOfExponent, Log2ofMantissa);
3635     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3636       // For floating-point precision of 12:
3637       //
3638       //   Log2ofMantissa =
3639       //     -2.51285454f +
3640       //       (4.07009056f +
3641       //         (-2.12067489f +
3642       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3643       //
3644       // error 0.0000876136000, which is better than 13 bits
3645       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3646                                getF32Constant(DAG, 0xbda7262e));
3647       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3648                                getF32Constant(DAG, 0x3f25280b));
3649       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3650       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3651                                getF32Constant(DAG, 0x4007b923));
3652       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3653       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3654                                getF32Constant(DAG, 0x40823e2f));
3655       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3656       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3657                                            getF32Constant(DAG, 0x4020d29c));
3658 
3659       result = DAG.getNode(ISD::FADD, dl,
3660                            MVT::f32, LogOfExponent, Log2ofMantissa);
3661     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3662       // For floating-point precision of 18:
3663       //
3664       //   Log2ofMantissa =
3665       //     -3.0400495f +
3666       //       (6.1129976f +
3667       //         (-5.3420409f +
3668       //           (3.2865683f +
3669       //             (-1.2669343f +
3670       //               (0.27515199f -
3671       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3672       //
3673       // error 0.0000018516, which is better than 18 bits
3674       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3675                                getF32Constant(DAG, 0xbcd2769e));
3676       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3677                                getF32Constant(DAG, 0x3e8ce0b9));
3678       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3679       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3680                                getF32Constant(DAG, 0x3fa22ae7));
3681       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3682       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3683                                getF32Constant(DAG, 0x40525723));
3684       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3685       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3686                                getF32Constant(DAG, 0x40aaf200));
3687       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3688       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3689                                getF32Constant(DAG, 0x40c39dad));
3690       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3691       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3692                                            getF32Constant(DAG, 0x4042902c));
3693 
3694       result = DAG.getNode(ISD::FADD, dl,
3695                            MVT::f32, LogOfExponent, Log2ofMantissa);
3696     }
3697   } else {
3698     // No special expansion.
3699     result = DAG.getNode(ISD::FLOG2, dl,
3700                          getValue(I.getArgOperand(0)).getValueType(),
3701                          getValue(I.getArgOperand(0)));
3702   }
3703 
3704   setValue(&I, result);
3705 }
3706 
3707 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3708 /// limited-precision mode.
3709 void
3710 SelectionDAGBuilder::visitLog10(const CallInst &I) {
3711   SDValue result;
3712   DebugLoc dl = getCurDebugLoc();
3713 
3714   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3715       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3716     SDValue Op = getValue(I.getArgOperand(0));
3717     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3718 
3719     // Scale the exponent by log10(2) [0.30102999f].
3720     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3721     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3722                                         getF32Constant(DAG, 0x3e9a209a));
3723 
3724     // Get the significand and build it into a floating-point number with
3725     // exponent of 1.
3726     SDValue X = GetSignificand(DAG, Op1, dl);
3727 
3728     if (LimitFloatPrecision <= 6) {
3729       // For floating-point precision of 6:
3730       //
3731       //   Log10ofMantissa =
3732       //     -0.50419619f +
3733       //       (0.60948995f - 0.10380950f * x) * x;
3734       //
3735       // error 0.0014886165, which is 6 bits
3736       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3737                                getF32Constant(DAG, 0xbdd49a13));
3738       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3739                                getF32Constant(DAG, 0x3f1c0789));
3740       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3741       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3742                                             getF32Constant(DAG, 0x3f011300));
3743 
3744       result = DAG.getNode(ISD::FADD, dl,
3745                            MVT::f32, LogOfExponent, Log10ofMantissa);
3746     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3747       // For floating-point precision of 12:
3748       //
3749       //   Log10ofMantissa =
3750       //     -0.64831180f +
3751       //       (0.91751397f +
3752       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3753       //
3754       // error 0.00019228036, which is better than 12 bits
3755       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3756                                getF32Constant(DAG, 0x3d431f31));
3757       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3758                                getF32Constant(DAG, 0x3ea21fb2));
3759       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3760       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3761                                getF32Constant(DAG, 0x3f6ae232));
3762       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3763       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3764                                             getF32Constant(DAG, 0x3f25f7c3));
3765 
3766       result = DAG.getNode(ISD::FADD, dl,
3767                            MVT::f32, LogOfExponent, Log10ofMantissa);
3768     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3769       // For floating-point precision of 18:
3770       //
3771       //   Log10ofMantissa =
3772       //     -0.84299375f +
3773       //       (1.5327582f +
3774       //         (-1.0688956f +
3775       //           (0.49102474f +
3776       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3777       //
3778       // error 0.0000037995730, which is better than 18 bits
3779       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3780                                getF32Constant(DAG, 0x3c5d51ce));
3781       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3782                                getF32Constant(DAG, 0x3e00685a));
3783       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3784       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3785                                getF32Constant(DAG, 0x3efb6798));
3786       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3787       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3788                                getF32Constant(DAG, 0x3f88d192));
3789       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3790       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3791                                getF32Constant(DAG, 0x3fc4316c));
3792       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3793       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3794                                             getF32Constant(DAG, 0x3f57ce70));
3795 
3796       result = DAG.getNode(ISD::FADD, dl,
3797                            MVT::f32, LogOfExponent, Log10ofMantissa);
3798     }
3799   } else {
3800     // No special expansion.
3801     result = DAG.getNode(ISD::FLOG10, dl,
3802                          getValue(I.getArgOperand(0)).getValueType(),
3803                          getValue(I.getArgOperand(0)));
3804   }
3805 
3806   setValue(&I, result);
3807 }
3808 
3809 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3810 /// limited-precision mode.
3811 void
3812 SelectionDAGBuilder::visitExp2(const CallInst &I) {
3813   SDValue result;
3814   DebugLoc dl = getCurDebugLoc();
3815 
3816   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3817       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3818     SDValue Op = getValue(I.getArgOperand(0));
3819 
3820     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3821 
3822     //   FractionalPartOfX = x - (float)IntegerPartOfX;
3823     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3824     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3825 
3826     //   IntegerPartOfX <<= 23;
3827     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3828                                  DAG.getConstant(23, TLI.getPointerTy()));
3829 
3830     if (LimitFloatPrecision <= 6) {
3831       // For floating-point precision of 6:
3832       //
3833       //   TwoToFractionalPartOfX =
3834       //     0.997535578f +
3835       //       (0.735607626f + 0.252464424f * x) * x;
3836       //
3837       // error 0.0144103317, which is 6 bits
3838       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3839                                getF32Constant(DAG, 0x3e814304));
3840       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3841                                getF32Constant(DAG, 0x3f3c50c8));
3842       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3843       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3844                                getF32Constant(DAG, 0x3f7f5e7e));
3845       SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3846       SDValue TwoToFractionalPartOfX =
3847         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3848 
3849       result = DAG.getNode(ISD::BITCAST, dl,
3850                            MVT::f32, TwoToFractionalPartOfX);
3851     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3852       // For floating-point precision of 12:
3853       //
3854       //   TwoToFractionalPartOfX =
3855       //     0.999892986f +
3856       //       (0.696457318f +
3857       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3858       //
3859       // error 0.000107046256, which is 13 to 14 bits
3860       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3861                                getF32Constant(DAG, 0x3da235e3));
3862       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3863                                getF32Constant(DAG, 0x3e65b8f3));
3864       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3865       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3866                                getF32Constant(DAG, 0x3f324b07));
3867       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3868       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3869                                getF32Constant(DAG, 0x3f7ff8fd));
3870       SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
3871       SDValue TwoToFractionalPartOfX =
3872         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3873 
3874       result = DAG.getNode(ISD::BITCAST, dl,
3875                            MVT::f32, TwoToFractionalPartOfX);
3876     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3877       // For floating-point precision of 18:
3878       //
3879       //   TwoToFractionalPartOfX =
3880       //     0.999999982f +
3881       //       (0.693148872f +
3882       //         (0.240227044f +
3883       //           (0.554906021e-1f +
3884       //             (0.961591928e-2f +
3885       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3886       // error 2.47208000*10^(-7), which is better than 18 bits
3887       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3888                                getF32Constant(DAG, 0x3924b03e));
3889       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3890                                getF32Constant(DAG, 0x3ab24b87));
3891       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3892       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3893                                getF32Constant(DAG, 0x3c1d8c17));
3894       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3895       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3896                                getF32Constant(DAG, 0x3d634a1d));
3897       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3898       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3899                                getF32Constant(DAG, 0x3e75fe14));
3900       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3901       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3902                                 getF32Constant(DAG, 0x3f317234));
3903       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3904       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3905                                 getF32Constant(DAG, 0x3f800000));
3906       SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
3907       SDValue TwoToFractionalPartOfX =
3908         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3909 
3910       result = DAG.getNode(ISD::BITCAST, dl,
3911                            MVT::f32, TwoToFractionalPartOfX);
3912     }
3913   } else {
3914     // No special expansion.
3915     result = DAG.getNode(ISD::FEXP2, dl,
3916                          getValue(I.getArgOperand(0)).getValueType(),
3917                          getValue(I.getArgOperand(0)));
3918   }
3919 
3920   setValue(&I, result);
3921 }
3922 
3923 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
3924 /// limited-precision mode with x == 10.0f.
3925 void
3926 SelectionDAGBuilder::visitPow(const CallInst &I) {
3927   SDValue result;
3928   const Value *Val = I.getArgOperand(0);
3929   DebugLoc dl = getCurDebugLoc();
3930   bool IsExp10 = false;
3931 
3932   if (getValue(Val).getValueType() == MVT::f32 &&
3933       getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
3934       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3935     if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3936       if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3937         APFloat Ten(10.0f);
3938         IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3939       }
3940     }
3941   }
3942 
3943   if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3944     SDValue Op = getValue(I.getArgOperand(1));
3945 
3946     // Put the exponent in the right bit position for later addition to the
3947     // final result:
3948     //
3949     //   #define LOG2OF10 3.3219281f
3950     //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3951     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3952                              getF32Constant(DAG, 0x40549a78));
3953     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3954 
3955     //   FractionalPartOfX = x - (float)IntegerPartOfX;
3956     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3957     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3958 
3959     //   IntegerPartOfX <<= 23;
3960     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3961                                  DAG.getConstant(23, TLI.getPointerTy()));
3962 
3963     if (LimitFloatPrecision <= 6) {
3964       // For floating-point precision of 6:
3965       //
3966       //   twoToFractionalPartOfX =
3967       //     0.997535578f +
3968       //       (0.735607626f + 0.252464424f * x) * x;
3969       //
3970       // error 0.0144103317, which is 6 bits
3971       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3972                                getF32Constant(DAG, 0x3e814304));
3973       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3974                                getF32Constant(DAG, 0x3f3c50c8));
3975       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3976       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3977                                getF32Constant(DAG, 0x3f7f5e7e));
3978       SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3979       SDValue TwoToFractionalPartOfX =
3980         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3981 
3982       result = DAG.getNode(ISD::BITCAST, dl,
3983                            MVT::f32, TwoToFractionalPartOfX);
3984     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3985       // For floating-point precision of 12:
3986       //
3987       //   TwoToFractionalPartOfX =
3988       //     0.999892986f +
3989       //       (0.696457318f +
3990       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3991       //
3992       // error 0.000107046256, which is 13 to 14 bits
3993       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3994                                getF32Constant(DAG, 0x3da235e3));
3995       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3996                                getF32Constant(DAG, 0x3e65b8f3));
3997       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3998       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3999                                getF32Constant(DAG, 0x3f324b07));
4000       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4001       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4002                                getF32Constant(DAG, 0x3f7ff8fd));
4003       SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4004       SDValue TwoToFractionalPartOfX =
4005         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4006 
4007       result = DAG.getNode(ISD::BITCAST, dl,
4008                            MVT::f32, TwoToFractionalPartOfX);
4009     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4010       // For floating-point precision of 18:
4011       //
4012       //   TwoToFractionalPartOfX =
4013       //     0.999999982f +
4014       //       (0.693148872f +
4015       //         (0.240227044f +
4016       //           (0.554906021e-1f +
4017       //             (0.961591928e-2f +
4018       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4019       // error 2.47208000*10^(-7), which is better than 18 bits
4020       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4021                                getF32Constant(DAG, 0x3924b03e));
4022       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4023                                getF32Constant(DAG, 0x3ab24b87));
4024       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4025       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4026                                getF32Constant(DAG, 0x3c1d8c17));
4027       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4028       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4029                                getF32Constant(DAG, 0x3d634a1d));
4030       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4031       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4032                                getF32Constant(DAG, 0x3e75fe14));
4033       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4034       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4035                                 getF32Constant(DAG, 0x3f317234));
4036       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4037       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4038                                 getF32Constant(DAG, 0x3f800000));
4039       SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4040       SDValue TwoToFractionalPartOfX =
4041         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4042 
4043       result = DAG.getNode(ISD::BITCAST, dl,
4044                            MVT::f32, TwoToFractionalPartOfX);
4045     }
4046   } else {
4047     // No special expansion.
4048     result = DAG.getNode(ISD::FPOW, dl,
4049                          getValue(I.getArgOperand(0)).getValueType(),
4050                          getValue(I.getArgOperand(0)),
4051                          getValue(I.getArgOperand(1)));
4052   }
4053 
4054   setValue(&I, result);
4055 }
4056 
4057 
4058 /// ExpandPowI - Expand a llvm.powi intrinsic.
4059 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4060                           SelectionDAG &DAG) {
4061   // If RHS is a constant, we can expand this out to a multiplication tree,
4062   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4063   // optimizing for size, we only want to do this if the expansion would produce
4064   // a small number of multiplies, otherwise we do the full expansion.
4065   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4066     // Get the exponent as a positive value.
4067     unsigned Val = RHSC->getSExtValue();
4068     if ((int)Val < 0) Val = -Val;
4069 
4070     // powi(x, 0) -> 1.0
4071     if (Val == 0)
4072       return DAG.getConstantFP(1.0, LHS.getValueType());
4073 
4074     const Function *F = DAG.getMachineFunction().getFunction();
4075     if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4076         // If optimizing for size, don't insert too many multiplies.  This
4077         // inserts up to 5 multiplies.
4078         CountPopulation_32(Val)+Log2_32(Val) < 7) {
4079       // We use the simple binary decomposition method to generate the multiply
4080       // sequence.  There are more optimal ways to do this (for example,
4081       // powi(x,15) generates one more multiply than it should), but this has
4082       // the benefit of being both really simple and much better than a libcall.
4083       SDValue Res;  // Logically starts equal to 1.0
4084       SDValue CurSquare = LHS;
4085       while (Val) {
4086         if (Val & 1) {
4087           if (Res.getNode())
4088             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4089           else
4090             Res = CurSquare;  // 1.0*CurSquare.
4091         }
4092 
4093         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4094                                 CurSquare, CurSquare);
4095         Val >>= 1;
4096       }
4097 
4098       // If the original was negative, invert the result, producing 1/(x*x*x).
4099       if (RHSC->getSExtValue() < 0)
4100         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4101                           DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4102       return Res;
4103     }
4104   }
4105 
4106   // Otherwise, expand to a libcall.
4107   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4108 }
4109 
4110 // getTruncatedArgReg - Find underlying register used for an truncated
4111 // argument.
4112 static unsigned getTruncatedArgReg(const SDValue &N) {
4113   if (N.getOpcode() != ISD::TRUNCATE)
4114     return 0;
4115 
4116   const SDValue &Ext = N.getOperand(0);
4117   if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4118     const SDValue &CFR = Ext.getOperand(0);
4119     if (CFR.getOpcode() == ISD::CopyFromReg)
4120       return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4121     else
4122       if (CFR.getOpcode() == ISD::TRUNCATE)
4123         return getTruncatedArgReg(CFR);
4124   }
4125   return 0;
4126 }
4127 
4128 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4129 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4130 /// At the end of instruction selection, they will be inserted to the entry BB.
4131 bool
4132 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4133                                               int64_t Offset,
4134                                               const SDValue &N) {
4135   const Argument *Arg = dyn_cast<Argument>(V);
4136   if (!Arg)
4137     return false;
4138 
4139   MachineFunction &MF = DAG.getMachineFunction();
4140   const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4141   const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4142 
4143   // Ignore inlined function arguments here.
4144   DIVariable DV(Variable);
4145   if (DV.isInlinedFnArgument(MF.getFunction()))
4146     return false;
4147 
4148   unsigned Reg = 0;
4149   if (Arg->hasByValAttr()) {
4150     // Byval arguments' frame index is recorded during argument lowering.
4151     // Use this info directly.
4152     Reg = TRI->getFrameRegister(MF);
4153     Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
4154     // If byval argument ofset is not recorded then ignore this.
4155     if (!Offset)
4156       Reg = 0;
4157   }
4158 
4159   if (N.getNode()) {
4160     if (N.getOpcode() == ISD::CopyFromReg)
4161       Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4162     else
4163       Reg = getTruncatedArgReg(N);
4164     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4165       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4166       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4167       if (PR)
4168         Reg = PR;
4169     }
4170   }
4171 
4172   if (!Reg) {
4173     // Check if ValueMap has reg number.
4174     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4175     if (VMI != FuncInfo.ValueMap.end())
4176       Reg = VMI->second;
4177   }
4178 
4179   if (!Reg && N.getNode()) {
4180     // Check if frame index is available.
4181     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4182       if (FrameIndexSDNode *FINode =
4183           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4184         Reg = TRI->getFrameRegister(MF);
4185         Offset = FINode->getIndex();
4186       }
4187   }
4188 
4189   if (!Reg)
4190     return false;
4191 
4192   MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4193                                     TII->get(TargetOpcode::DBG_VALUE))
4194     .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4195   FuncInfo.ArgDbgValues.push_back(&*MIB);
4196   return true;
4197 }
4198 
4199 // VisualStudio defines setjmp as _setjmp
4200 #if defined(_MSC_VER) && defined(setjmp) && \
4201                          !defined(setjmp_undefined_for_msvc)
4202 #  pragma push_macro("setjmp")
4203 #  undef setjmp
4204 #  define setjmp_undefined_for_msvc
4205 #endif
4206 
4207 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4208 /// we want to emit this as a call to a named external function, return the name
4209 /// otherwise lower it and return null.
4210 const char *
4211 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4212   DebugLoc dl = getCurDebugLoc();
4213   SDValue Res;
4214 
4215   switch (Intrinsic) {
4216   default:
4217     // By default, turn this into a target intrinsic node.
4218     visitTargetIntrinsic(I, Intrinsic);
4219     return 0;
4220   case Intrinsic::vastart:  visitVAStart(I); return 0;
4221   case Intrinsic::vaend:    visitVAEnd(I); return 0;
4222   case Intrinsic::vacopy:   visitVACopy(I); return 0;
4223   case Intrinsic::returnaddress:
4224     setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4225                              getValue(I.getArgOperand(0))));
4226     return 0;
4227   case Intrinsic::frameaddress:
4228     setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4229                              getValue(I.getArgOperand(0))));
4230     return 0;
4231   case Intrinsic::setjmp:
4232     return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4233   case Intrinsic::longjmp:
4234     return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4235   case Intrinsic::memcpy: {
4236     // Assert for address < 256 since we support only user defined address
4237     // spaces.
4238     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4239            < 256 &&
4240            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4241            < 256 &&
4242            "Unknown address space");
4243     SDValue Op1 = getValue(I.getArgOperand(0));
4244     SDValue Op2 = getValue(I.getArgOperand(1));
4245     SDValue Op3 = getValue(I.getArgOperand(2));
4246     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4247     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4248     DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4249                               MachinePointerInfo(I.getArgOperand(0)),
4250                               MachinePointerInfo(I.getArgOperand(1))));
4251     return 0;
4252   }
4253   case Intrinsic::memset: {
4254     // Assert for address < 256 since we support only user defined address
4255     // spaces.
4256     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4257            < 256 &&
4258            "Unknown address space");
4259     SDValue Op1 = getValue(I.getArgOperand(0));
4260     SDValue Op2 = getValue(I.getArgOperand(1));
4261     SDValue Op3 = getValue(I.getArgOperand(2));
4262     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4263     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4264     DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4265                               MachinePointerInfo(I.getArgOperand(0))));
4266     return 0;
4267   }
4268   case Intrinsic::memmove: {
4269     // Assert for address < 256 since we support only user defined address
4270     // spaces.
4271     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4272            < 256 &&
4273            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4274            < 256 &&
4275            "Unknown address space");
4276     SDValue Op1 = getValue(I.getArgOperand(0));
4277     SDValue Op2 = getValue(I.getArgOperand(1));
4278     SDValue Op3 = getValue(I.getArgOperand(2));
4279     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4280     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4281     DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4282                                MachinePointerInfo(I.getArgOperand(0)),
4283                                MachinePointerInfo(I.getArgOperand(1))));
4284     return 0;
4285   }
4286   case Intrinsic::dbg_declare: {
4287     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4288     MDNode *Variable = DI.getVariable();
4289     const Value *Address = DI.getAddress();
4290     if (!Address || !DIVariable(DI.getVariable()).Verify())
4291       return 0;
4292 
4293     // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4294     // but do not always have a corresponding SDNode built.  The SDNodeOrder
4295     // absolute, but not relative, values are different depending on whether
4296     // debug info exists.
4297     ++SDNodeOrder;
4298 
4299     // Check if address has undef value.
4300     if (isa<UndefValue>(Address) ||
4301         (Address->use_empty() && !isa<Argument>(Address))) {
4302       DEBUG(dbgs() << "Dropping debug info for " << DI);
4303       return 0;
4304     }
4305 
4306     SDValue &N = NodeMap[Address];
4307     if (!N.getNode() && isa<Argument>(Address))
4308       // Check unused arguments map.
4309       N = UnusedArgNodeMap[Address];
4310     SDDbgValue *SDV;
4311     if (N.getNode()) {
4312       // Parameters are handled specially.
4313       bool isParameter =
4314         DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4315       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4316         Address = BCI->getOperand(0);
4317       const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4318 
4319       if (isParameter && !AI) {
4320         FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4321         if (FINode)
4322           // Byval parameter.  We have a frame index at this point.
4323           SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4324                                 0, dl, SDNodeOrder);
4325         else {
4326           // Address is an argument, so try to emit its dbg value using
4327           // virtual register info from the FuncInfo.ValueMap.
4328           EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4329           return 0;
4330         }
4331       } else if (AI)
4332         SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4333                               0, dl, SDNodeOrder);
4334       else {
4335         // Can't do anything with other non-AI cases yet.
4336         DEBUG(dbgs() << "Dropping debug info for " << DI);
4337         return 0;
4338       }
4339       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4340     } else {
4341       // If Address is an argument then try to emit its dbg value using
4342       // virtual register info from the FuncInfo.ValueMap.
4343       if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4344         // If variable is pinned by a alloca in dominating bb then
4345         // use StaticAllocaMap.
4346         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4347           if (AI->getParent() != DI.getParent()) {
4348             DenseMap<const AllocaInst*, int>::iterator SI =
4349               FuncInfo.StaticAllocaMap.find(AI);
4350             if (SI != FuncInfo.StaticAllocaMap.end()) {
4351               SDV = DAG.getDbgValue(Variable, SI->second,
4352                                     0, dl, SDNodeOrder);
4353               DAG.AddDbgValue(SDV, 0, false);
4354               return 0;
4355             }
4356           }
4357         }
4358         DEBUG(dbgs() << "Dropping debug info for " << DI);
4359       }
4360     }
4361     return 0;
4362   }
4363   case Intrinsic::dbg_value: {
4364     const DbgValueInst &DI = cast<DbgValueInst>(I);
4365     if (!DIVariable(DI.getVariable()).Verify())
4366       return 0;
4367 
4368     MDNode *Variable = DI.getVariable();
4369     uint64_t Offset = DI.getOffset();
4370     const Value *V = DI.getValue();
4371     if (!V)
4372       return 0;
4373 
4374     // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4375     // but do not always have a corresponding SDNode built.  The SDNodeOrder
4376     // absolute, but not relative, values are different depending on whether
4377     // debug info exists.
4378     ++SDNodeOrder;
4379     SDDbgValue *SDV;
4380     if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
4381       SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4382       DAG.AddDbgValue(SDV, 0, false);
4383     } else {
4384       // Do not use getValue() in here; we don't want to generate code at
4385       // this point if it hasn't been done yet.
4386       SDValue N = NodeMap[V];
4387       if (!N.getNode() && isa<Argument>(V))
4388         // Check unused arguments map.
4389         N = UnusedArgNodeMap[V];
4390       if (N.getNode()) {
4391         if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4392           SDV = DAG.getDbgValue(Variable, N.getNode(),
4393                                 N.getResNo(), Offset, dl, SDNodeOrder);
4394           DAG.AddDbgValue(SDV, N.getNode(), false);
4395         }
4396       } else if (!V->use_empty() ) {
4397         // Do not call getValue(V) yet, as we don't want to generate code.
4398         // Remember it for later.
4399         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4400         DanglingDebugInfoMap[V] = DDI;
4401       } else {
4402         // We may expand this to cover more cases.  One case where we have no
4403         // data available is an unreferenced parameter.
4404         DEBUG(dbgs() << "Dropping debug info for " << DI);
4405       }
4406     }
4407 
4408     // Build a debug info table entry.
4409     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4410       V = BCI->getOperand(0);
4411     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4412     // Don't handle byval struct arguments or VLAs, for example.
4413     if (!AI)
4414       return 0;
4415     DenseMap<const AllocaInst*, int>::iterator SI =
4416       FuncInfo.StaticAllocaMap.find(AI);
4417     if (SI == FuncInfo.StaticAllocaMap.end())
4418       return 0; // VLAs.
4419     int FI = SI->second;
4420 
4421     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4422     if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4423       MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4424     return 0;
4425   }
4426   case Intrinsic::eh_exception: {
4427     // Insert the EXCEPTIONADDR instruction.
4428     assert(FuncInfo.MBB->isLandingPad() &&
4429            "Call to eh.exception not in landing pad!");
4430     SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4431     SDValue Ops[1];
4432     Ops[0] = DAG.getRoot();
4433     SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4434     setValue(&I, Op);
4435     DAG.setRoot(Op.getValue(1));
4436     return 0;
4437   }
4438 
4439   case Intrinsic::eh_selector: {
4440     MachineBasicBlock *CallMBB = FuncInfo.MBB;
4441     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4442     if (CallMBB->isLandingPad())
4443       AddCatchInfo(I, &MMI, CallMBB);
4444     else {
4445 #ifndef NDEBUG
4446       FuncInfo.CatchInfoLost.insert(&I);
4447 #endif
4448       // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4449       unsigned Reg = TLI.getExceptionSelectorRegister();
4450       if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4451     }
4452 
4453     // Insert the EHSELECTION instruction.
4454     SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4455     SDValue Ops[2];
4456     Ops[0] = getValue(I.getArgOperand(0));
4457     Ops[1] = getRoot();
4458     SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4459     DAG.setRoot(Op.getValue(1));
4460     setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4461     return 0;
4462   }
4463 
4464   case Intrinsic::eh_typeid_for: {
4465     // Find the type id for the given typeinfo.
4466     GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4467     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4468     Res = DAG.getConstant(TypeID, MVT::i32);
4469     setValue(&I, Res);
4470     return 0;
4471   }
4472 
4473   case Intrinsic::eh_return_i32:
4474   case Intrinsic::eh_return_i64:
4475     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4476     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4477                             MVT::Other,
4478                             getControlRoot(),
4479                             getValue(I.getArgOperand(0)),
4480                             getValue(I.getArgOperand(1))));
4481     return 0;
4482   case Intrinsic::eh_unwind_init:
4483     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4484     return 0;
4485   case Intrinsic::eh_dwarf_cfa: {
4486     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4487                                         TLI.getPointerTy());
4488     SDValue Offset = DAG.getNode(ISD::ADD, dl,
4489                                  TLI.getPointerTy(),
4490                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4491                                              TLI.getPointerTy()),
4492                                  CfaArg);
4493     SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4494                              TLI.getPointerTy(),
4495                              DAG.getConstant(0, TLI.getPointerTy()));
4496     setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4497                              FA, Offset));
4498     return 0;
4499   }
4500   case Intrinsic::eh_sjlj_callsite: {
4501     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4502     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4503     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4504     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4505 
4506     MMI.setCurrentCallSite(CI->getZExtValue());
4507     return 0;
4508   }
4509   case Intrinsic::eh_sjlj_setjmp: {
4510     setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4511                              getValue(I.getArgOperand(0))));
4512     return 0;
4513   }
4514   case Intrinsic::eh_sjlj_longjmp: {
4515     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4516                             getRoot(), getValue(I.getArgOperand(0))));
4517     return 0;
4518   }
4519   case Intrinsic::eh_sjlj_dispatch_setup: {
4520     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
4521                             getRoot(), getValue(I.getArgOperand(0))));
4522     return 0;
4523   }
4524 
4525   case Intrinsic::x86_mmx_pslli_w:
4526   case Intrinsic::x86_mmx_pslli_d:
4527   case Intrinsic::x86_mmx_pslli_q:
4528   case Intrinsic::x86_mmx_psrli_w:
4529   case Intrinsic::x86_mmx_psrli_d:
4530   case Intrinsic::x86_mmx_psrli_q:
4531   case Intrinsic::x86_mmx_psrai_w:
4532   case Intrinsic::x86_mmx_psrai_d: {
4533     SDValue ShAmt = getValue(I.getArgOperand(1));
4534     if (isa<ConstantSDNode>(ShAmt)) {
4535       visitTargetIntrinsic(I, Intrinsic);
4536       return 0;
4537     }
4538     unsigned NewIntrinsic = 0;
4539     EVT ShAmtVT = MVT::v2i32;
4540     switch (Intrinsic) {
4541     case Intrinsic::x86_mmx_pslli_w:
4542       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4543       break;
4544     case Intrinsic::x86_mmx_pslli_d:
4545       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4546       break;
4547     case Intrinsic::x86_mmx_pslli_q:
4548       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4549       break;
4550     case Intrinsic::x86_mmx_psrli_w:
4551       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4552       break;
4553     case Intrinsic::x86_mmx_psrli_d:
4554       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4555       break;
4556     case Intrinsic::x86_mmx_psrli_q:
4557       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4558       break;
4559     case Intrinsic::x86_mmx_psrai_w:
4560       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4561       break;
4562     case Intrinsic::x86_mmx_psrai_d:
4563       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4564       break;
4565     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4566     }
4567 
4568     // The vector shift intrinsics with scalars uses 32b shift amounts but
4569     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4570     // to be zero.
4571     // We must do this early because v2i32 is not a legal type.
4572     DebugLoc dl = getCurDebugLoc();
4573     SDValue ShOps[2];
4574     ShOps[0] = ShAmt;
4575     ShOps[1] = DAG.getConstant(0, MVT::i32);
4576     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4577     EVT DestVT = TLI.getValueType(I.getType());
4578     ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4579     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4580                        DAG.getConstant(NewIntrinsic, MVT::i32),
4581                        getValue(I.getArgOperand(0)), ShAmt);
4582     setValue(&I, Res);
4583     return 0;
4584   }
4585   case Intrinsic::convertff:
4586   case Intrinsic::convertfsi:
4587   case Intrinsic::convertfui:
4588   case Intrinsic::convertsif:
4589   case Intrinsic::convertuif:
4590   case Intrinsic::convertss:
4591   case Intrinsic::convertsu:
4592   case Intrinsic::convertus:
4593   case Intrinsic::convertuu: {
4594     ISD::CvtCode Code = ISD::CVT_INVALID;
4595     switch (Intrinsic) {
4596     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4597     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4598     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4599     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4600     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4601     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4602     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4603     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4604     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4605     }
4606     EVT DestVT = TLI.getValueType(I.getType());
4607     const Value *Op1 = I.getArgOperand(0);
4608     Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4609                                DAG.getValueType(DestVT),
4610                                DAG.getValueType(getValue(Op1).getValueType()),
4611                                getValue(I.getArgOperand(1)),
4612                                getValue(I.getArgOperand(2)),
4613                                Code);
4614     setValue(&I, Res);
4615     return 0;
4616   }
4617   case Intrinsic::sqrt:
4618     setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4619                              getValue(I.getArgOperand(0)).getValueType(),
4620                              getValue(I.getArgOperand(0))));
4621     return 0;
4622   case Intrinsic::powi:
4623     setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4624                             getValue(I.getArgOperand(1)), DAG));
4625     return 0;
4626   case Intrinsic::sin:
4627     setValue(&I, DAG.getNode(ISD::FSIN, dl,
4628                              getValue(I.getArgOperand(0)).getValueType(),
4629                              getValue(I.getArgOperand(0))));
4630     return 0;
4631   case Intrinsic::cos:
4632     setValue(&I, DAG.getNode(ISD::FCOS, dl,
4633                              getValue(I.getArgOperand(0)).getValueType(),
4634                              getValue(I.getArgOperand(0))));
4635     return 0;
4636   case Intrinsic::log:
4637     visitLog(I);
4638     return 0;
4639   case Intrinsic::log2:
4640     visitLog2(I);
4641     return 0;
4642   case Intrinsic::log10:
4643     visitLog10(I);
4644     return 0;
4645   case Intrinsic::exp:
4646     visitExp(I);
4647     return 0;
4648   case Intrinsic::exp2:
4649     visitExp2(I);
4650     return 0;
4651   case Intrinsic::pow:
4652     visitPow(I);
4653     return 0;
4654   case Intrinsic::convert_to_fp16:
4655     setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4656                              MVT::i16, getValue(I.getArgOperand(0))));
4657     return 0;
4658   case Intrinsic::convert_from_fp16:
4659     setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4660                              MVT::f32, getValue(I.getArgOperand(0))));
4661     return 0;
4662   case Intrinsic::pcmarker: {
4663     SDValue Tmp = getValue(I.getArgOperand(0));
4664     DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4665     return 0;
4666   }
4667   case Intrinsic::readcyclecounter: {
4668     SDValue Op = getRoot();
4669     Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4670                       DAG.getVTList(MVT::i64, MVT::Other),
4671                       &Op, 1);
4672     setValue(&I, Res);
4673     DAG.setRoot(Res.getValue(1));
4674     return 0;
4675   }
4676   case Intrinsic::bswap:
4677     setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4678                              getValue(I.getArgOperand(0)).getValueType(),
4679                              getValue(I.getArgOperand(0))));
4680     return 0;
4681   case Intrinsic::cttz: {
4682     SDValue Arg = getValue(I.getArgOperand(0));
4683     EVT Ty = Arg.getValueType();
4684     setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4685     return 0;
4686   }
4687   case Intrinsic::ctlz: {
4688     SDValue Arg = getValue(I.getArgOperand(0));
4689     EVT Ty = Arg.getValueType();
4690     setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4691     return 0;
4692   }
4693   case Intrinsic::ctpop: {
4694     SDValue Arg = getValue(I.getArgOperand(0));
4695     EVT Ty = Arg.getValueType();
4696     setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4697     return 0;
4698   }
4699   case Intrinsic::stacksave: {
4700     SDValue Op = getRoot();
4701     Res = DAG.getNode(ISD::STACKSAVE, dl,
4702                       DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4703     setValue(&I, Res);
4704     DAG.setRoot(Res.getValue(1));
4705     return 0;
4706   }
4707   case Intrinsic::stackrestore: {
4708     Res = getValue(I.getArgOperand(0));
4709     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4710     return 0;
4711   }
4712   case Intrinsic::stackprotector: {
4713     // Emit code into the DAG to store the stack guard onto the stack.
4714     MachineFunction &MF = DAG.getMachineFunction();
4715     MachineFrameInfo *MFI = MF.getFrameInfo();
4716     EVT PtrTy = TLI.getPointerTy();
4717 
4718     SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4719     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4720 
4721     int FI = FuncInfo.StaticAllocaMap[Slot];
4722     MFI->setStackProtectorIndex(FI);
4723 
4724     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4725 
4726     // Store the stack protector onto the stack.
4727     Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4728                        MachinePointerInfo::getFixedStack(FI),
4729                        true, false, 0);
4730     setValue(&I, Res);
4731     DAG.setRoot(Res);
4732     return 0;
4733   }
4734   case Intrinsic::objectsize: {
4735     // If we don't know by now, we're never going to know.
4736     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4737 
4738     assert(CI && "Non-constant type in __builtin_object_size?");
4739 
4740     SDValue Arg = getValue(I.getCalledValue());
4741     EVT Ty = Arg.getValueType();
4742 
4743     if (CI->isZero())
4744       Res = DAG.getConstant(-1ULL, Ty);
4745     else
4746       Res = DAG.getConstant(0, Ty);
4747 
4748     setValue(&I, Res);
4749     return 0;
4750   }
4751   case Intrinsic::var_annotation:
4752     // Discard annotate attributes
4753     return 0;
4754 
4755   case Intrinsic::init_trampoline: {
4756     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
4757 
4758     SDValue Ops[6];
4759     Ops[0] = getRoot();
4760     Ops[1] = getValue(I.getArgOperand(0));
4761     Ops[2] = getValue(I.getArgOperand(1));
4762     Ops[3] = getValue(I.getArgOperand(2));
4763     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
4764     Ops[5] = DAG.getSrcValue(F);
4765 
4766     Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4767                       DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4768                       Ops, 6);
4769 
4770     setValue(&I, Res);
4771     DAG.setRoot(Res.getValue(1));
4772     return 0;
4773   }
4774   case Intrinsic::gcroot:
4775     if (GFI) {
4776       const Value *Alloca = I.getArgOperand(0);
4777       const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
4778 
4779       FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4780       GFI->addStackRoot(FI->getIndex(), TypeMap);
4781     }
4782     return 0;
4783   case Intrinsic::gcread:
4784   case Intrinsic::gcwrite:
4785     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4786     return 0;
4787   case Intrinsic::flt_rounds:
4788     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4789     return 0;
4790 
4791   case Intrinsic::expect: {
4792     // Just replace __builtin_expect(exp, c) with EXP.
4793     setValue(&I, getValue(I.getArgOperand(0)));
4794     return 0;
4795   }
4796 
4797   case Intrinsic::trap: {
4798     StringRef TrapFuncName = getTrapFunctionName();
4799     if (TrapFuncName.empty()) {
4800       DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4801       return 0;
4802     }
4803     TargetLowering::ArgListTy Args;
4804     std::pair<SDValue, SDValue> Result =
4805       TLI.LowerCallTo(getRoot(), I.getType(),
4806                  false, false, false, false, 0, CallingConv::C,
4807                  /*isTailCall=*/false, /*isReturnValueUsed=*/true,
4808                  DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
4809                  Args, DAG, getCurDebugLoc());
4810     DAG.setRoot(Result.second);
4811     return 0;
4812   }
4813   case Intrinsic::uadd_with_overflow:
4814     return implVisitAluOverflow(I, ISD::UADDO);
4815   case Intrinsic::sadd_with_overflow:
4816     return implVisitAluOverflow(I, ISD::SADDO);
4817   case Intrinsic::usub_with_overflow:
4818     return implVisitAluOverflow(I, ISD::USUBO);
4819   case Intrinsic::ssub_with_overflow:
4820     return implVisitAluOverflow(I, ISD::SSUBO);
4821   case Intrinsic::umul_with_overflow:
4822     return implVisitAluOverflow(I, ISD::UMULO);
4823   case Intrinsic::smul_with_overflow:
4824     return implVisitAluOverflow(I, ISD::SMULO);
4825 
4826   case Intrinsic::prefetch: {
4827     SDValue Ops[5];
4828     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4829     Ops[0] = getRoot();
4830     Ops[1] = getValue(I.getArgOperand(0));
4831     Ops[2] = getValue(I.getArgOperand(1));
4832     Ops[3] = getValue(I.getArgOperand(2));
4833     Ops[4] = getValue(I.getArgOperand(3));
4834     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
4835                                         DAG.getVTList(MVT::Other),
4836                                         &Ops[0], 5,
4837                                         EVT::getIntegerVT(*Context, 8),
4838                                         MachinePointerInfo(I.getArgOperand(0)),
4839                                         0, /* align */
4840                                         false, /* volatile */
4841                                         rw==0, /* read */
4842                                         rw==1)); /* write */
4843     return 0;
4844   }
4845   case Intrinsic::memory_barrier: {
4846     SDValue Ops[6];
4847     Ops[0] = getRoot();
4848     for (int x = 1; x < 6; ++x)
4849       Ops[x] = getValue(I.getArgOperand(x - 1));
4850 
4851     DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4852     return 0;
4853   }
4854   case Intrinsic::atomic_cmp_swap: {
4855     SDValue Root = getRoot();
4856     SDValue L =
4857       DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4858                     getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
4859                     Root,
4860                     getValue(I.getArgOperand(0)),
4861                     getValue(I.getArgOperand(1)),
4862                     getValue(I.getArgOperand(2)),
4863                     MachinePointerInfo(I.getArgOperand(0)));
4864     setValue(&I, L);
4865     DAG.setRoot(L.getValue(1));
4866     return 0;
4867   }
4868   case Intrinsic::atomic_load_add:
4869     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4870   case Intrinsic::atomic_load_sub:
4871     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4872   case Intrinsic::atomic_load_or:
4873     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4874   case Intrinsic::atomic_load_xor:
4875     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4876   case Intrinsic::atomic_load_and:
4877     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4878   case Intrinsic::atomic_load_nand:
4879     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4880   case Intrinsic::atomic_load_max:
4881     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4882   case Intrinsic::atomic_load_min:
4883     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4884   case Intrinsic::atomic_load_umin:
4885     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4886   case Intrinsic::atomic_load_umax:
4887     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4888   case Intrinsic::atomic_swap:
4889     return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4890 
4891   case Intrinsic::invariant_start:
4892   case Intrinsic::lifetime_start:
4893     // Discard region information.
4894     setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4895     return 0;
4896   case Intrinsic::invariant_end:
4897   case Intrinsic::lifetime_end:
4898     // Discard region information.
4899     return 0;
4900   }
4901 }
4902 
4903 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4904                                       bool isTailCall,
4905                                       MachineBasicBlock *LandingPad) {
4906   const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4907   const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4908   const Type *RetTy = FTy->getReturnType();
4909   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4910   MCSymbol *BeginLabel = 0;
4911 
4912   TargetLowering::ArgListTy Args;
4913   TargetLowering::ArgListEntry Entry;
4914   Args.reserve(CS.arg_size());
4915 
4916   // Check whether the function can return without sret-demotion.
4917   SmallVector<ISD::OutputArg, 4> Outs;
4918   SmallVector<uint64_t, 4> Offsets;
4919   GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4920                 Outs, TLI, &Offsets);
4921 
4922   bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4923 					   DAG.getMachineFunction(),
4924 					   FTy->isVarArg(), Outs,
4925 					   FTy->getContext());
4926 
4927   SDValue DemoteStackSlot;
4928   int DemoteStackIdx = -100;
4929 
4930   if (!CanLowerReturn) {
4931     uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4932                       FTy->getReturnType());
4933     unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4934                       FTy->getReturnType());
4935     MachineFunction &MF = DAG.getMachineFunction();
4936     DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4937     const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4938 
4939     DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
4940     Entry.Node = DemoteStackSlot;
4941     Entry.Ty = StackSlotPtrType;
4942     Entry.isSExt = false;
4943     Entry.isZExt = false;
4944     Entry.isInReg = false;
4945     Entry.isSRet = true;
4946     Entry.isNest = false;
4947     Entry.isByVal = false;
4948     Entry.Alignment = Align;
4949     Args.push_back(Entry);
4950     RetTy = Type::getVoidTy(FTy->getContext());
4951   }
4952 
4953   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4954        i != e; ++i) {
4955     const Value *V = *i;
4956 
4957     // Skip empty types
4958     if (V->getType()->isEmptyTy())
4959       continue;
4960 
4961     SDValue ArgNode = getValue(V);
4962     Entry.Node = ArgNode; Entry.Ty = V->getType();
4963 
4964     unsigned attrInd = i - CS.arg_begin() + 1;
4965     Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4966     Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4967     Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4968     Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4969     Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4970     Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4971     Entry.Alignment = CS.getParamAlignment(attrInd);
4972     Args.push_back(Entry);
4973   }
4974 
4975   if (LandingPad) {
4976     // Insert a label before the invoke call to mark the try range.  This can be
4977     // used to detect deletion of the invoke via the MachineModuleInfo.
4978     BeginLabel = MMI.getContext().CreateTempSymbol();
4979 
4980     // For SjLj, keep track of which landing pads go with which invokes
4981     // so as to maintain the ordering of pads in the LSDA.
4982     unsigned CallSiteIndex = MMI.getCurrentCallSite();
4983     if (CallSiteIndex) {
4984       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4985       // Now that the call site is handled, stop tracking it.
4986       MMI.setCurrentCallSite(0);
4987     }
4988 
4989     // Both PendingLoads and PendingExports must be flushed here;
4990     // this call might not return.
4991     (void)getRoot();
4992     DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
4993   }
4994 
4995   // Check if target-independent constraints permit a tail call here.
4996   // Target-dependent constraints are checked within TLI.LowerCallTo.
4997   if (isTailCall &&
4998       !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
4999     isTailCall = false;
5000 
5001   // If there's a possibility that fast-isel has already selected some amount
5002   // of the current basic block, don't emit a tail call.
5003   if (isTailCall && EnableFastISel)
5004     isTailCall = false;
5005 
5006   std::pair<SDValue,SDValue> Result =
5007     TLI.LowerCallTo(getRoot(), RetTy,
5008                     CS.paramHasAttr(0, Attribute::SExt),
5009                     CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
5010                     CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
5011                     CS.getCallingConv(),
5012                     isTailCall,
5013                     !CS.getInstruction()->use_empty(),
5014                     Callee, Args, DAG, getCurDebugLoc());
5015   assert((isTailCall || Result.second.getNode()) &&
5016          "Non-null chain expected with non-tail call!");
5017   assert((Result.second.getNode() || !Result.first.getNode()) &&
5018          "Null value expected with tail call!");
5019   if (Result.first.getNode()) {
5020     setValue(CS.getInstruction(), Result.first);
5021   } else if (!CanLowerReturn && Result.second.getNode()) {
5022     // The instruction result is the result of loading from the
5023     // hidden sret parameter.
5024     SmallVector<EVT, 1> PVTs;
5025     const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5026 
5027     ComputeValueVTs(TLI, PtrRetTy, PVTs);
5028     assert(PVTs.size() == 1 && "Pointers should fit in one register");
5029     EVT PtrVT = PVTs[0];
5030     unsigned NumValues = Outs.size();
5031     SmallVector<SDValue, 4> Values(NumValues);
5032     SmallVector<SDValue, 4> Chains(NumValues);
5033 
5034     for (unsigned i = 0; i < NumValues; ++i) {
5035       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5036                                 DemoteStackSlot,
5037                                 DAG.getConstant(Offsets[i], PtrVT));
5038       SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
5039                               Add,
5040                   MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5041                               false, false, 1);
5042       Values[i] = L;
5043       Chains[i] = L.getValue(1);
5044     }
5045 
5046     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5047                                 MVT::Other, &Chains[0], NumValues);
5048     PendingLoads.push_back(Chain);
5049 
5050     // Collect the legal value parts into potentially illegal values
5051     // that correspond to the original function's return values.
5052     SmallVector<EVT, 4> RetTys;
5053     RetTy = FTy->getReturnType();
5054     ComputeValueVTs(TLI, RetTy, RetTys);
5055     ISD::NodeType AssertOp = ISD::DELETED_NODE;
5056     SmallVector<SDValue, 4> ReturnValues;
5057     unsigned CurReg = 0;
5058     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5059       EVT VT = RetTys[I];
5060       EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
5061       unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
5062 
5063       SDValue ReturnValue =
5064         getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
5065                          RegisterVT, VT, AssertOp);
5066       ReturnValues.push_back(ReturnValue);
5067       CurReg += NumRegs;
5068     }
5069 
5070     setValue(CS.getInstruction(),
5071              DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5072                          DAG.getVTList(&RetTys[0], RetTys.size()),
5073                          &ReturnValues[0], ReturnValues.size()));
5074   }
5075 
5076   // Assign order to nodes here. If the call does not produce a result, it won't
5077   // be mapped to a SDNode and visit() will not assign it an order number.
5078   if (!Result.second.getNode()) {
5079     // As a special case, a null chain means that a tail call has been emitted and
5080     // the DAG root is already updated.
5081     HasTailCall = true;
5082     ++SDNodeOrder;
5083     AssignOrderingToNode(DAG.getRoot().getNode());
5084   } else {
5085     DAG.setRoot(Result.second);
5086     ++SDNodeOrder;
5087     AssignOrderingToNode(Result.second.getNode());
5088   }
5089 
5090   if (LandingPad) {
5091     // Insert a label at the end of the invoke call to mark the try range.  This
5092     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5093     MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5094     DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5095 
5096     // Inform MachineModuleInfo of range.
5097     MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5098   }
5099 }
5100 
5101 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5102 /// value is equal or not-equal to zero.
5103 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5104   for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5105        UI != E; ++UI) {
5106     if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5107       if (IC->isEquality())
5108         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5109           if (C->isNullValue())
5110             continue;
5111     // Unknown instruction.
5112     return false;
5113   }
5114   return true;
5115 }
5116 
5117 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5118                              const Type *LoadTy,
5119                              SelectionDAGBuilder &Builder) {
5120 
5121   // Check to see if this load can be trivially constant folded, e.g. if the
5122   // input is from a string literal.
5123   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5124     // Cast pointer to the type we really want to load.
5125     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5126                                          PointerType::getUnqual(LoadTy));
5127 
5128     if (const Constant *LoadCst =
5129           ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5130                                        Builder.TD))
5131       return Builder.getValue(LoadCst);
5132   }
5133 
5134   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5135   // still constant memory, the input chain can be the entry node.
5136   SDValue Root;
5137   bool ConstantMemory = false;
5138 
5139   // Do not serialize (non-volatile) loads of constant memory with anything.
5140   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5141     Root = Builder.DAG.getEntryNode();
5142     ConstantMemory = true;
5143   } else {
5144     // Do not serialize non-volatile loads against each other.
5145     Root = Builder.DAG.getRoot();
5146   }
5147 
5148   SDValue Ptr = Builder.getValue(PtrVal);
5149   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5150                                         Ptr, MachinePointerInfo(PtrVal),
5151                                         false /*volatile*/,
5152                                         false /*nontemporal*/, 1 /* align=1 */);
5153 
5154   if (!ConstantMemory)
5155     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5156   return LoadVal;
5157 }
5158 
5159 
5160 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5161 /// If so, return true and lower it, otherwise return false and it will be
5162 /// lowered like a normal call.
5163 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5164   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5165   if (I.getNumArgOperands() != 3)
5166     return false;
5167 
5168   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5169   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5170       !I.getArgOperand(2)->getType()->isIntegerTy() ||
5171       !I.getType()->isIntegerTy())
5172     return false;
5173 
5174   const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5175 
5176   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5177   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5178   if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5179     bool ActuallyDoIt = true;
5180     MVT LoadVT;
5181     const Type *LoadTy;
5182     switch (Size->getZExtValue()) {
5183     default:
5184       LoadVT = MVT::Other;
5185       LoadTy = 0;
5186       ActuallyDoIt = false;
5187       break;
5188     case 2:
5189       LoadVT = MVT::i16;
5190       LoadTy = Type::getInt16Ty(Size->getContext());
5191       break;
5192     case 4:
5193       LoadVT = MVT::i32;
5194       LoadTy = Type::getInt32Ty(Size->getContext());
5195       break;
5196     case 8:
5197       LoadVT = MVT::i64;
5198       LoadTy = Type::getInt64Ty(Size->getContext());
5199       break;
5200         /*
5201     case 16:
5202       LoadVT = MVT::v4i32;
5203       LoadTy = Type::getInt32Ty(Size->getContext());
5204       LoadTy = VectorType::get(LoadTy, 4);
5205       break;
5206          */
5207     }
5208 
5209     // This turns into unaligned loads.  We only do this if the target natively
5210     // supports the MVT we'll be loading or if it is small enough (<= 4) that
5211     // we'll only produce a small number of byte loads.
5212 
5213     // Require that we can find a legal MVT, and only do this if the target
5214     // supports unaligned loads of that type.  Expanding into byte loads would
5215     // bloat the code.
5216     if (ActuallyDoIt && Size->getZExtValue() > 4) {
5217       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5218       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5219       if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5220         ActuallyDoIt = false;
5221     }
5222 
5223     if (ActuallyDoIt) {
5224       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5225       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5226 
5227       SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5228                                  ISD::SETNE);
5229       EVT CallVT = TLI.getValueType(I.getType(), true);
5230       setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5231       return true;
5232     }
5233   }
5234 
5235 
5236   return false;
5237 }
5238 
5239 
5240 void SelectionDAGBuilder::visitCall(const CallInst &I) {
5241   // Handle inline assembly differently.
5242   if (isa<InlineAsm>(I.getCalledValue())) {
5243     visitInlineAsm(&I);
5244     return;
5245   }
5246 
5247   // See if any floating point values are being passed to this function. This is
5248   // used to emit an undefined reference to fltused on Windows.
5249   const FunctionType *FT =
5250     cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
5251   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5252   if (FT->isVarArg() &&
5253       !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
5254     for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
5255       const Type* T = I.getArgOperand(i)->getType();
5256       for (po_iterator<const Type*> i = po_begin(T), e = po_end(T);
5257            i != e; ++i) {
5258         if (!i->isFloatingPointTy()) continue;
5259         MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
5260         break;
5261       }
5262     }
5263   }
5264 
5265   const char *RenameFn = 0;
5266   if (Function *F = I.getCalledFunction()) {
5267     if (F->isDeclaration()) {
5268       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5269         if (unsigned IID = II->getIntrinsicID(F)) {
5270           RenameFn = visitIntrinsicCall(I, IID);
5271           if (!RenameFn)
5272             return;
5273         }
5274       }
5275       if (unsigned IID = F->getIntrinsicID()) {
5276         RenameFn = visitIntrinsicCall(I, IID);
5277         if (!RenameFn)
5278           return;
5279       }
5280     }
5281 
5282     // Check for well-known libc/libm calls.  If the function is internal, it
5283     // can't be a library call.
5284     if (!F->hasLocalLinkage() && F->hasName()) {
5285       StringRef Name = F->getName();
5286       if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
5287         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5288             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5289             I.getType() == I.getArgOperand(0)->getType() &&
5290             I.getType() == I.getArgOperand(1)->getType()) {
5291           SDValue LHS = getValue(I.getArgOperand(0));
5292           SDValue RHS = getValue(I.getArgOperand(1));
5293           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5294                                    LHS.getValueType(), LHS, RHS));
5295           return;
5296         }
5297       } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
5298         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5299             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5300             I.getType() == I.getArgOperand(0)->getType()) {
5301           SDValue Tmp = getValue(I.getArgOperand(0));
5302           setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5303                                    Tmp.getValueType(), Tmp));
5304           return;
5305         }
5306       } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
5307         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5308             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5309             I.getType() == I.getArgOperand(0)->getType() &&
5310             I.onlyReadsMemory()) {
5311           SDValue Tmp = getValue(I.getArgOperand(0));
5312           setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5313                                    Tmp.getValueType(), Tmp));
5314           return;
5315         }
5316       } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
5317         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5318             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5319             I.getType() == I.getArgOperand(0)->getType() &&
5320             I.onlyReadsMemory()) {
5321           SDValue Tmp = getValue(I.getArgOperand(0));
5322           setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5323                                    Tmp.getValueType(), Tmp));
5324           return;
5325         }
5326       } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
5327         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5328             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5329             I.getType() == I.getArgOperand(0)->getType() &&
5330             I.onlyReadsMemory()) {
5331           SDValue Tmp = getValue(I.getArgOperand(0));
5332           setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5333                                    Tmp.getValueType(), Tmp));
5334           return;
5335         }
5336       } else if (Name == "memcmp") {
5337         if (visitMemCmpCall(I))
5338           return;
5339       }
5340     }
5341   }
5342 
5343   SDValue Callee;
5344   if (!RenameFn)
5345     Callee = getValue(I.getCalledValue());
5346   else
5347     Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5348 
5349   // Check if we can potentially perform a tail call. More detailed checking is
5350   // be done within LowerCallTo, after more information about the call is known.
5351   LowerCallTo(&I, Callee, I.isTailCall());
5352 }
5353 
5354 namespace {
5355 
5356 /// AsmOperandInfo - This contains information for each constraint that we are
5357 /// lowering.
5358 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5359 public:
5360   /// CallOperand - If this is the result output operand or a clobber
5361   /// this is null, otherwise it is the incoming operand to the CallInst.
5362   /// This gets modified as the asm is processed.
5363   SDValue CallOperand;
5364 
5365   /// AssignedRegs - If this is a register or register class operand, this
5366   /// contains the set of register corresponding to the operand.
5367   RegsForValue AssignedRegs;
5368 
5369   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5370     : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5371   }
5372 
5373   /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5374   /// busy in OutputRegs/InputRegs.
5375   void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5376                          std::set<unsigned> &OutputRegs,
5377                          std::set<unsigned> &InputRegs,
5378                          const TargetRegisterInfo &TRI) const {
5379     if (isOutReg) {
5380       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5381         MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5382     }
5383     if (isInReg) {
5384       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5385         MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5386     }
5387   }
5388 
5389   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5390   /// corresponds to.  If there is no Value* for this operand, it returns
5391   /// MVT::Other.
5392   EVT getCallOperandValEVT(LLVMContext &Context,
5393                            const TargetLowering &TLI,
5394                            const TargetData *TD) const {
5395     if (CallOperandVal == 0) return MVT::Other;
5396 
5397     if (isa<BasicBlock>(CallOperandVal))
5398       return TLI.getPointerTy();
5399 
5400     const llvm::Type *OpTy = CallOperandVal->getType();
5401 
5402     // FIXME: code duplicated from TargetLowering::ParseConstraints().
5403     // If this is an indirect operand, the operand is a pointer to the
5404     // accessed type.
5405     if (isIndirect) {
5406       const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5407       if (!PtrTy)
5408         report_fatal_error("Indirect operand for inline asm not a pointer!");
5409       OpTy = PtrTy->getElementType();
5410     }
5411 
5412     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5413     if (const StructType *STy = dyn_cast<StructType>(OpTy))
5414       if (STy->getNumElements() == 1)
5415         OpTy = STy->getElementType(0);
5416 
5417     // If OpTy is not a single value, it may be a struct/union that we
5418     // can tile with integers.
5419     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5420       unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5421       switch (BitSize) {
5422       default: break;
5423       case 1:
5424       case 8:
5425       case 16:
5426       case 32:
5427       case 64:
5428       case 128:
5429         OpTy = IntegerType::get(Context, BitSize);
5430         break;
5431       }
5432     }
5433 
5434     return TLI.getValueType(OpTy, true);
5435   }
5436 
5437 private:
5438   /// MarkRegAndAliases - Mark the specified register and all aliases in the
5439   /// specified set.
5440   static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5441                                 const TargetRegisterInfo &TRI) {
5442     assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5443     Regs.insert(Reg);
5444     if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5445       for (; *Aliases; ++Aliases)
5446         Regs.insert(*Aliases);
5447   }
5448 };
5449 
5450 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5451 
5452 } // end anonymous namespace
5453 
5454 /// GetRegistersForValue - Assign registers (virtual or physical) for the
5455 /// specified operand.  We prefer to assign virtual registers, to allow the
5456 /// register allocator to handle the assignment process.  However, if the asm
5457 /// uses features that we can't model on machineinstrs, we have SDISel do the
5458 /// allocation.  This produces generally horrible, but correct, code.
5459 ///
5460 ///   OpInfo describes the operand.
5461 ///   Input and OutputRegs are the set of already allocated physical registers.
5462 ///
5463 static void GetRegistersForValue(SelectionDAG &DAG,
5464                                  const TargetLowering &TLI,
5465                                  DebugLoc DL,
5466                                  SDISelAsmOperandInfo &OpInfo,
5467                                  std::set<unsigned> &OutputRegs,
5468                                  std::set<unsigned> &InputRegs) {
5469   LLVMContext &Context = *DAG.getContext();
5470 
5471   // Compute whether this value requires an input register, an output register,
5472   // or both.
5473   bool isOutReg = false;
5474   bool isInReg = false;
5475   switch (OpInfo.Type) {
5476   case InlineAsm::isOutput:
5477     isOutReg = true;
5478 
5479     // If there is an input constraint that matches this, we need to reserve
5480     // the input register so no other inputs allocate to it.
5481     isInReg = OpInfo.hasMatchingInput();
5482     break;
5483   case InlineAsm::isInput:
5484     isInReg = true;
5485     isOutReg = false;
5486     break;
5487   case InlineAsm::isClobber:
5488     isOutReg = true;
5489     isInReg = true;
5490     break;
5491   }
5492 
5493 
5494   MachineFunction &MF = DAG.getMachineFunction();
5495   SmallVector<unsigned, 4> Regs;
5496 
5497   // If this is a constraint for a single physreg, or a constraint for a
5498   // register class, find it.
5499   std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5500     TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5501                                      OpInfo.ConstraintVT);
5502 
5503   unsigned NumRegs = 1;
5504   if (OpInfo.ConstraintVT != MVT::Other) {
5505     // If this is a FP input in an integer register (or visa versa) insert a bit
5506     // cast of the input value.  More generally, handle any case where the input
5507     // value disagrees with the register class we plan to stick this in.
5508     if (OpInfo.Type == InlineAsm::isInput &&
5509         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5510       // Try to convert to the first EVT that the reg class contains.  If the
5511       // types are identical size, use a bitcast to convert (e.g. two differing
5512       // vector types).
5513       EVT RegVT = *PhysReg.second->vt_begin();
5514       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5515         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5516                                          RegVT, OpInfo.CallOperand);
5517         OpInfo.ConstraintVT = RegVT;
5518       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5519         // If the input is a FP value and we want it in FP registers, do a
5520         // bitcast to the corresponding integer type.  This turns an f64 value
5521         // into i64, which can be passed with two i32 values on a 32-bit
5522         // machine.
5523         RegVT = EVT::getIntegerVT(Context,
5524                                   OpInfo.ConstraintVT.getSizeInBits());
5525         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5526                                          RegVT, OpInfo.CallOperand);
5527         OpInfo.ConstraintVT = RegVT;
5528       }
5529     }
5530 
5531     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5532   }
5533 
5534   EVT RegVT;
5535   EVT ValueVT = OpInfo.ConstraintVT;
5536 
5537   // If this is a constraint for a specific physical register, like {r17},
5538   // assign it now.
5539   if (unsigned AssignedReg = PhysReg.first) {
5540     const TargetRegisterClass *RC = PhysReg.second;
5541     if (OpInfo.ConstraintVT == MVT::Other)
5542       ValueVT = *RC->vt_begin();
5543 
5544     // Get the actual register value type.  This is important, because the user
5545     // may have asked for (e.g.) the AX register in i32 type.  We need to
5546     // remember that AX is actually i16 to get the right extension.
5547     RegVT = *RC->vt_begin();
5548 
5549     // This is a explicit reference to a physical register.
5550     Regs.push_back(AssignedReg);
5551 
5552     // If this is an expanded reference, add the rest of the regs to Regs.
5553     if (NumRegs != 1) {
5554       TargetRegisterClass::iterator I = RC->begin();
5555       for (; *I != AssignedReg; ++I)
5556         assert(I != RC->end() && "Didn't find reg!");
5557 
5558       // Already added the first reg.
5559       --NumRegs; ++I;
5560       for (; NumRegs; --NumRegs, ++I) {
5561         assert(I != RC->end() && "Ran out of registers to allocate!");
5562         Regs.push_back(*I);
5563       }
5564     }
5565 
5566     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5567     const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5568     OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5569     return;
5570   }
5571 
5572   // Otherwise, if this was a reference to an LLVM register class, create vregs
5573   // for this reference.
5574   if (const TargetRegisterClass *RC = PhysReg.second) {
5575     RegVT = *RC->vt_begin();
5576     if (OpInfo.ConstraintVT == MVT::Other)
5577       ValueVT = RegVT;
5578 
5579     // Create the appropriate number of virtual registers.
5580     MachineRegisterInfo &RegInfo = MF.getRegInfo();
5581     for (; NumRegs; --NumRegs)
5582       Regs.push_back(RegInfo.createVirtualRegister(RC));
5583 
5584     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5585     return;
5586   }
5587 
5588   // Otherwise, we couldn't allocate enough registers for this.
5589 }
5590 
5591 /// visitInlineAsm - Handle a call to an InlineAsm object.
5592 ///
5593 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5594   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5595 
5596   /// ConstraintOperands - Information about all of the constraints.
5597   SDISelAsmOperandInfoVector ConstraintOperands;
5598 
5599   std::set<unsigned> OutputRegs, InputRegs;
5600 
5601   TargetLowering::AsmOperandInfoVector
5602     TargetConstraints = TLI.ParseConstraints(CS);
5603 
5604   bool hasMemory = false;
5605 
5606   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5607   unsigned ResNo = 0;   // ResNo - The result number of the next output.
5608   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5609     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5610     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5611 
5612     EVT OpVT = MVT::Other;
5613 
5614     // Compute the value type for each operand.
5615     switch (OpInfo.Type) {
5616     case InlineAsm::isOutput:
5617       // Indirect outputs just consume an argument.
5618       if (OpInfo.isIndirect) {
5619         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5620         break;
5621       }
5622 
5623       // The return value of the call is this value.  As such, there is no
5624       // corresponding argument.
5625       assert(!CS.getType()->isVoidTy() &&
5626              "Bad inline asm!");
5627       if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5628         OpVT = TLI.getValueType(STy->getElementType(ResNo));
5629       } else {
5630         assert(ResNo == 0 && "Asm only has one result!");
5631         OpVT = TLI.getValueType(CS.getType());
5632       }
5633       ++ResNo;
5634       break;
5635     case InlineAsm::isInput:
5636       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5637       break;
5638     case InlineAsm::isClobber:
5639       // Nothing to do.
5640       break;
5641     }
5642 
5643     // If this is an input or an indirect output, process the call argument.
5644     // BasicBlocks are labels, currently appearing only in asm's.
5645     if (OpInfo.CallOperandVal) {
5646       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5647         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5648       } else {
5649         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5650       }
5651 
5652       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5653     }
5654 
5655     OpInfo.ConstraintVT = OpVT;
5656 
5657     // Indirect operand accesses access memory.
5658     if (OpInfo.isIndirect)
5659       hasMemory = true;
5660     else {
5661       for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5662         TargetLowering::ConstraintType
5663           CType = TLI.getConstraintType(OpInfo.Codes[j]);
5664         if (CType == TargetLowering::C_Memory) {
5665           hasMemory = true;
5666           break;
5667         }
5668       }
5669     }
5670   }
5671 
5672   SDValue Chain, Flag;
5673 
5674   // We won't need to flush pending loads if this asm doesn't touch
5675   // memory and is nonvolatile.
5676   if (hasMemory || IA->hasSideEffects())
5677     Chain = getRoot();
5678   else
5679     Chain = DAG.getRoot();
5680 
5681   // Second pass over the constraints: compute which constraint option to use
5682   // and assign registers to constraints that want a specific physreg.
5683   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5684     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5685 
5686     // If this is an output operand with a matching input operand, look up the
5687     // matching input. If their types mismatch, e.g. one is an integer, the
5688     // other is floating point, or their sizes are different, flag it as an
5689     // error.
5690     if (OpInfo.hasMatchingInput()) {
5691       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5692 
5693       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5694         if ((OpInfo.ConstraintVT.isInteger() !=
5695              Input.ConstraintVT.isInteger()) ||
5696             (OpInfo.ConstraintVT.getSizeInBits() !=
5697              Input.ConstraintVT.getSizeInBits())) {
5698           report_fatal_error("Unsupported asm: input constraint"
5699                              " with a matching output constraint of"
5700                              " incompatible type!");
5701         }
5702         Input.ConstraintVT = OpInfo.ConstraintVT;
5703       }
5704     }
5705 
5706     // Compute the constraint code and ConstraintType to use.
5707     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5708 
5709     // If this is a memory input, and if the operand is not indirect, do what we
5710     // need to to provide an address for the memory input.
5711     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5712         !OpInfo.isIndirect) {
5713       assert((OpInfo.isMultipleAlternative ||
5714               (OpInfo.Type == InlineAsm::isInput)) &&
5715              "Can only indirectify direct input operands!");
5716 
5717       // Memory operands really want the address of the value.  If we don't have
5718       // an indirect input, put it in the constpool if we can, otherwise spill
5719       // it to a stack slot.
5720       // TODO: This isn't quite right. We need to handle these according to
5721       // the addressing mode that the constraint wants. Also, this may take
5722       // an additional register for the computation and we don't want that
5723       // either.
5724 
5725       // If the operand is a float, integer, or vector constant, spill to a
5726       // constant pool entry to get its address.
5727       const Value *OpVal = OpInfo.CallOperandVal;
5728       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5729           isa<ConstantVector>(OpVal)) {
5730         OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5731                                                  TLI.getPointerTy());
5732       } else {
5733         // Otherwise, create a stack slot and emit a store to it before the
5734         // asm.
5735         const Type *Ty = OpVal->getType();
5736         uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5737         unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5738         MachineFunction &MF = DAG.getMachineFunction();
5739         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5740         SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5741         Chain = DAG.getStore(Chain, getCurDebugLoc(),
5742                              OpInfo.CallOperand, StackSlot,
5743                              MachinePointerInfo::getFixedStack(SSFI),
5744                              false, false, 0);
5745         OpInfo.CallOperand = StackSlot;
5746       }
5747 
5748       // There is no longer a Value* corresponding to this operand.
5749       OpInfo.CallOperandVal = 0;
5750 
5751       // It is now an indirect operand.
5752       OpInfo.isIndirect = true;
5753     }
5754 
5755     // If this constraint is for a specific register, allocate it before
5756     // anything else.
5757     if (OpInfo.ConstraintType == TargetLowering::C_Register)
5758       GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5759                            InputRegs);
5760   }
5761 
5762   // Second pass - Loop over all of the operands, assigning virtual or physregs
5763   // to register class operands.
5764   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5765     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5766 
5767     // C_Register operands have already been allocated, Other/Memory don't need
5768     // to be.
5769     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5770       GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5771                            InputRegs);
5772   }
5773 
5774   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5775   std::vector<SDValue> AsmNodeOperands;
5776   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5777   AsmNodeOperands.push_back(
5778           DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5779                                       TLI.getPointerTy()));
5780 
5781   // If we have a !srcloc metadata node associated with it, we want to attach
5782   // this to the ultimately generated inline asm machineinstr.  To do this, we
5783   // pass in the third operand as this (potentially null) inline asm MDNode.
5784   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5785   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5786 
5787   // Remember the HasSideEffect and AlignStack bits as operand 3.
5788   unsigned ExtraInfo = 0;
5789   if (IA->hasSideEffects())
5790     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
5791   if (IA->isAlignStack())
5792     ExtraInfo |= InlineAsm::Extra_IsAlignStack;
5793   AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
5794                                                   TLI.getPointerTy()));
5795 
5796   // Loop over all of the inputs, copying the operand values into the
5797   // appropriate registers and processing the output regs.
5798   RegsForValue RetValRegs;
5799 
5800   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5801   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5802 
5803   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5804     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5805 
5806     switch (OpInfo.Type) {
5807     case InlineAsm::isOutput: {
5808       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5809           OpInfo.ConstraintType != TargetLowering::C_Register) {
5810         // Memory output, or 'other' output (e.g. 'X' constraint).
5811         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5812 
5813         // Add information to the INLINEASM node to know about this output.
5814         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5815         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5816                                                         TLI.getPointerTy()));
5817         AsmNodeOperands.push_back(OpInfo.CallOperand);
5818         break;
5819       }
5820 
5821       // Otherwise, this is a register or register class output.
5822 
5823       // Copy the output from the appropriate register.  Find a register that
5824       // we can use.
5825       if (OpInfo.AssignedRegs.Regs.empty())
5826         report_fatal_error("Couldn't allocate output reg for constraint '" +
5827                            Twine(OpInfo.ConstraintCode) + "'!");
5828 
5829       // If this is an indirect operand, store through the pointer after the
5830       // asm.
5831       if (OpInfo.isIndirect) {
5832         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5833                                                       OpInfo.CallOperandVal));
5834       } else {
5835         // This is the result value of the call.
5836         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5837         // Concatenate this output onto the outputs list.
5838         RetValRegs.append(OpInfo.AssignedRegs);
5839       }
5840 
5841       // Add information to the INLINEASM node to know that this register is
5842       // set.
5843       OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5844                                            InlineAsm::Kind_RegDefEarlyClobber :
5845                                                InlineAsm::Kind_RegDef,
5846                                                false,
5847                                                0,
5848                                                DAG,
5849                                                AsmNodeOperands);
5850       break;
5851     }
5852     case InlineAsm::isInput: {
5853       SDValue InOperandVal = OpInfo.CallOperand;
5854 
5855       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5856         // If this is required to match an output register we have already set,
5857         // just use its register.
5858         unsigned OperandNo = OpInfo.getMatchedOperand();
5859 
5860         // Scan until we find the definition we already emitted of this operand.
5861         // When we find it, create a RegsForValue operand.
5862         unsigned CurOp = InlineAsm::Op_FirstOperand;
5863         for (; OperandNo; --OperandNo) {
5864           // Advance to the next operand.
5865           unsigned OpFlag =
5866             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5867           assert((InlineAsm::isRegDefKind(OpFlag) ||
5868                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5869                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5870           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5871         }
5872 
5873         unsigned OpFlag =
5874           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5875         if (InlineAsm::isRegDefKind(OpFlag) ||
5876             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5877           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5878           if (OpInfo.isIndirect) {
5879             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5880             LLVMContext &Ctx = *DAG.getContext();
5881             Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5882                           " don't know how to handle tied "
5883                           "indirect register inputs");
5884           }
5885 
5886           RegsForValue MatchedRegs;
5887           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5888           EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5889           MatchedRegs.RegVTs.push_back(RegVT);
5890           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5891           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5892                i != e; ++i)
5893             MatchedRegs.Regs.push_back
5894               (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5895 
5896           // Use the produced MatchedRegs object to
5897           MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5898                                     Chain, &Flag);
5899           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5900                                            true, OpInfo.getMatchedOperand(),
5901                                            DAG, AsmNodeOperands);
5902           break;
5903         }
5904 
5905         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5906         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5907                "Unexpected number of operands");
5908         // Add information to the INLINEASM node to know about this input.
5909         // See InlineAsm.h isUseOperandTiedToDef.
5910         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5911                                                     OpInfo.getMatchedOperand());
5912         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5913                                                         TLI.getPointerTy()));
5914         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5915         break;
5916       }
5917 
5918       // Treat indirect 'X' constraint as memory.
5919       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
5920           OpInfo.isIndirect)
5921         OpInfo.ConstraintType = TargetLowering::C_Memory;
5922 
5923       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5924         std::vector<SDValue> Ops;
5925         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
5926                                          Ops, DAG);
5927         if (Ops.empty())
5928           report_fatal_error("Invalid operand for inline asm constraint '" +
5929                              Twine(OpInfo.ConstraintCode) + "'!");
5930 
5931         // Add information to the INLINEASM node to know about this input.
5932         unsigned ResOpType =
5933           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5934         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5935                                                         TLI.getPointerTy()));
5936         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5937         break;
5938       }
5939 
5940       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5941         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5942         assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5943                "Memory operands expect pointer values");
5944 
5945         // Add information to the INLINEASM node to know about this input.
5946         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5947         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5948                                                         TLI.getPointerTy()));
5949         AsmNodeOperands.push_back(InOperandVal);
5950         break;
5951       }
5952 
5953       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5954               OpInfo.ConstraintType == TargetLowering::C_Register) &&
5955              "Unknown constraint type!");
5956       assert(!OpInfo.isIndirect &&
5957              "Don't know how to handle indirect register inputs yet!");
5958 
5959       // Copy the input into the appropriate registers.
5960       if (OpInfo.AssignedRegs.Regs.empty() ||
5961           !OpInfo.AssignedRegs.areValueTypesLegal(TLI))
5962         report_fatal_error("Couldn't allocate input reg for constraint '" +
5963                            Twine(OpInfo.ConstraintCode) + "'!");
5964 
5965       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5966                                         Chain, &Flag);
5967 
5968       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
5969                                                DAG, AsmNodeOperands);
5970       break;
5971     }
5972     case InlineAsm::isClobber: {
5973       // Add the clobbered value to the operand list, so that the register
5974       // allocator is aware that the physreg got clobbered.
5975       if (!OpInfo.AssignedRegs.Regs.empty())
5976         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
5977                                                  false, 0, DAG,
5978                                                  AsmNodeOperands);
5979       break;
5980     }
5981     }
5982   }
5983 
5984   // Finish up input operands.  Set the input chain and add the flag last.
5985   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
5986   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5987 
5988   Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5989                       DAG.getVTList(MVT::Other, MVT::Glue),
5990                       &AsmNodeOperands[0], AsmNodeOperands.size());
5991   Flag = Chain.getValue(1);
5992 
5993   // If this asm returns a register value, copy the result from that register
5994   // and set it as the value of the call.
5995   if (!RetValRegs.Regs.empty()) {
5996     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5997                                              Chain, &Flag);
5998 
5999     // FIXME: Why don't we do this for inline asms with MRVs?
6000     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6001       EVT ResultType = TLI.getValueType(CS.getType());
6002 
6003       // If any of the results of the inline asm is a vector, it may have the
6004       // wrong width/num elts.  This can happen for register classes that can
6005       // contain multiple different value types.  The preg or vreg allocated may
6006       // not have the same VT as was expected.  Convert it to the right type
6007       // with bit_convert.
6008       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6009         Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6010                           ResultType, Val);
6011 
6012       } else if (ResultType != Val.getValueType() &&
6013                  ResultType.isInteger() && Val.getValueType().isInteger()) {
6014         // If a result value was tied to an input value, the computed result may
6015         // have a wider width than the expected result.  Extract the relevant
6016         // portion.
6017         Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6018       }
6019 
6020       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6021     }
6022 
6023     setValue(CS.getInstruction(), Val);
6024     // Don't need to use this as a chain in this case.
6025     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6026       return;
6027   }
6028 
6029   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6030 
6031   // Process indirect outputs, first output all of the flagged copies out of
6032   // physregs.
6033   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6034     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6035     const Value *Ptr = IndirectStoresToEmit[i].second;
6036     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6037                                              Chain, &Flag);
6038     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6039   }
6040 
6041   // Emit the non-flagged stores from the physregs.
6042   SmallVector<SDValue, 8> OutChains;
6043   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6044     SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6045                                StoresToEmit[i].first,
6046                                getValue(StoresToEmit[i].second),
6047                                MachinePointerInfo(StoresToEmit[i].second),
6048                                false, false, 0);
6049     OutChains.push_back(Val);
6050   }
6051 
6052   if (!OutChains.empty())
6053     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6054                         &OutChains[0], OutChains.size());
6055 
6056   DAG.setRoot(Chain);
6057 }
6058 
6059 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6060   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6061                           MVT::Other, getRoot(),
6062                           getValue(I.getArgOperand(0)),
6063                           DAG.getSrcValue(I.getArgOperand(0))));
6064 }
6065 
6066 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6067   const TargetData &TD = *TLI.getTargetData();
6068   SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6069                            getRoot(), getValue(I.getOperand(0)),
6070                            DAG.getSrcValue(I.getOperand(0)),
6071                            TD.getABITypeAlignment(I.getType()));
6072   setValue(&I, V);
6073   DAG.setRoot(V.getValue(1));
6074 }
6075 
6076 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6077   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6078                           MVT::Other, getRoot(),
6079                           getValue(I.getArgOperand(0)),
6080                           DAG.getSrcValue(I.getArgOperand(0))));
6081 }
6082 
6083 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6084   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6085                           MVT::Other, getRoot(),
6086                           getValue(I.getArgOperand(0)),
6087                           getValue(I.getArgOperand(1)),
6088                           DAG.getSrcValue(I.getArgOperand(0)),
6089                           DAG.getSrcValue(I.getArgOperand(1))));
6090 }
6091 
6092 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
6093 /// implementation, which just calls LowerCall.
6094 /// FIXME: When all targets are
6095 /// migrated to using LowerCall, this hook should be integrated into SDISel.
6096 std::pair<SDValue, SDValue>
6097 TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
6098                             bool RetSExt, bool RetZExt, bool isVarArg,
6099                             bool isInreg, unsigned NumFixedArgs,
6100                             CallingConv::ID CallConv, bool isTailCall,
6101                             bool isReturnValueUsed,
6102                             SDValue Callee,
6103                             ArgListTy &Args, SelectionDAG &DAG,
6104                             DebugLoc dl) const {
6105   // Handle all of the outgoing arguments.
6106   SmallVector<ISD::OutputArg, 32> Outs;
6107   SmallVector<SDValue, 32> OutVals;
6108   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6109     SmallVector<EVT, 4> ValueVTs;
6110     ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6111     for (unsigned Value = 0, NumValues = ValueVTs.size();
6112          Value != NumValues; ++Value) {
6113       EVT VT = ValueVTs[Value];
6114       const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6115       SDValue Op = SDValue(Args[i].Node.getNode(),
6116                            Args[i].Node.getResNo() + Value);
6117       ISD::ArgFlagsTy Flags;
6118       unsigned OriginalAlignment =
6119         getTargetData()->getABITypeAlignment(ArgTy);
6120 
6121       if (Args[i].isZExt)
6122         Flags.setZExt();
6123       if (Args[i].isSExt)
6124         Flags.setSExt();
6125       if (Args[i].isInReg)
6126         Flags.setInReg();
6127       if (Args[i].isSRet)
6128         Flags.setSRet();
6129       if (Args[i].isByVal) {
6130         Flags.setByVal();
6131         const PointerType *Ty = cast<PointerType>(Args[i].Ty);
6132         const Type *ElementTy = Ty->getElementType();
6133         Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
6134         // For ByVal, alignment should come from FE.  BE will guess if this
6135         // info is not there but there are cases it cannot get right.
6136         unsigned FrameAlign;
6137         if (Args[i].Alignment)
6138           FrameAlign = Args[i].Alignment;
6139         else
6140           FrameAlign = getByValTypeAlignment(ElementTy);
6141         Flags.setByValAlign(FrameAlign);
6142       }
6143       if (Args[i].isNest)
6144         Flags.setNest();
6145       Flags.setOrigAlign(OriginalAlignment);
6146 
6147       EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6148       unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6149       SmallVector<SDValue, 4> Parts(NumParts);
6150       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6151 
6152       if (Args[i].isSExt)
6153         ExtendKind = ISD::SIGN_EXTEND;
6154       else if (Args[i].isZExt)
6155         ExtendKind = ISD::ZERO_EXTEND;
6156 
6157       getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6158                      PartVT, ExtendKind);
6159 
6160       for (unsigned j = 0; j != NumParts; ++j) {
6161         // if it isn't first piece, alignment must be 1
6162         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6163                                i < NumFixedArgs);
6164         if (NumParts > 1 && j == 0)
6165           MyFlags.Flags.setSplit();
6166         else if (j != 0)
6167           MyFlags.Flags.setOrigAlign(1);
6168 
6169         Outs.push_back(MyFlags);
6170         OutVals.push_back(Parts[j]);
6171       }
6172     }
6173   }
6174 
6175   // Handle the incoming return values from the call.
6176   SmallVector<ISD::InputArg, 32> Ins;
6177   SmallVector<EVT, 4> RetTys;
6178   ComputeValueVTs(*this, RetTy, RetTys);
6179   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6180     EVT VT = RetTys[I];
6181     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6182     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6183     for (unsigned i = 0; i != NumRegs; ++i) {
6184       ISD::InputArg MyFlags;
6185       MyFlags.VT = RegisterVT.getSimpleVT();
6186       MyFlags.Used = isReturnValueUsed;
6187       if (RetSExt)
6188         MyFlags.Flags.setSExt();
6189       if (RetZExt)
6190         MyFlags.Flags.setZExt();
6191       if (isInreg)
6192         MyFlags.Flags.setInReg();
6193       Ins.push_back(MyFlags);
6194     }
6195   }
6196 
6197   SmallVector<SDValue, 4> InVals;
6198   Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6199                     Outs, OutVals, Ins, dl, DAG, InVals);
6200 
6201   // Verify that the target's LowerCall behaved as expected.
6202   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6203          "LowerCall didn't return a valid chain!");
6204   assert((!isTailCall || InVals.empty()) &&
6205          "LowerCall emitted a return value for a tail call!");
6206   assert((isTailCall || InVals.size() == Ins.size()) &&
6207          "LowerCall didn't emit the correct number of values!");
6208 
6209   // For a tail call, the return value is merely live-out and there aren't
6210   // any nodes in the DAG representing it. Return a special value to
6211   // indicate that a tail call has been emitted and no more Instructions
6212   // should be processed in the current block.
6213   if (isTailCall) {
6214     DAG.setRoot(Chain);
6215     return std::make_pair(SDValue(), SDValue());
6216   }
6217 
6218   DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6219           assert(InVals[i].getNode() &&
6220                  "LowerCall emitted a null value!");
6221           assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6222                  "LowerCall emitted a value with the wrong type!");
6223         });
6224 
6225   // Collect the legal value parts into potentially illegal values
6226   // that correspond to the original function's return values.
6227   ISD::NodeType AssertOp = ISD::DELETED_NODE;
6228   if (RetSExt)
6229     AssertOp = ISD::AssertSext;
6230   else if (RetZExt)
6231     AssertOp = ISD::AssertZext;
6232   SmallVector<SDValue, 4> ReturnValues;
6233   unsigned CurReg = 0;
6234   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6235     EVT VT = RetTys[I];
6236     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6237     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6238 
6239     ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6240                                             NumRegs, RegisterVT, VT,
6241                                             AssertOp));
6242     CurReg += NumRegs;
6243   }
6244 
6245   // For a function returning void, there is no return value. We can't create
6246   // such a node, so we just return a null return value in that case. In
6247   // that case, nothing will actually look at the value.
6248   if (ReturnValues.empty())
6249     return std::make_pair(SDValue(), Chain);
6250 
6251   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6252                             DAG.getVTList(&RetTys[0], RetTys.size()),
6253                             &ReturnValues[0], ReturnValues.size());
6254   return std::make_pair(Res, Chain);
6255 }
6256 
6257 void TargetLowering::LowerOperationWrapper(SDNode *N,
6258                                            SmallVectorImpl<SDValue> &Results,
6259                                            SelectionDAG &DAG) const {
6260   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6261   if (Res.getNode())
6262     Results.push_back(Res);
6263 }
6264 
6265 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6266   llvm_unreachable("LowerOperation not implemented for this target!");
6267   return SDValue();
6268 }
6269 
6270 void
6271 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6272   SDValue Op = getNonRegisterValue(V);
6273   assert((Op.getOpcode() != ISD::CopyFromReg ||
6274           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6275          "Copy from a reg to the same reg!");
6276   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6277 
6278   RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6279   SDValue Chain = DAG.getEntryNode();
6280   RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6281   PendingExports.push_back(Chain);
6282 }
6283 
6284 #include "llvm/CodeGen/SelectionDAGISel.h"
6285 
6286 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6287 /// entry block, return true.  This includes arguments used by switches, since
6288 /// the switch may expand into multiple basic blocks.
6289 static bool isOnlyUsedInEntryBlock(const Argument *A) {
6290   // With FastISel active, we may be splitting blocks, so force creation
6291   // of virtual registers for all non-dead arguments.
6292   if (EnableFastISel)
6293     return A->use_empty();
6294 
6295   const BasicBlock *Entry = A->getParent()->begin();
6296   for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6297        UI != E; ++UI) {
6298     const User *U = *UI;
6299     if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6300       return false;  // Use not in entry block.
6301   }
6302   return true;
6303 }
6304 
6305 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6306   // If this is the entry block, emit arguments.
6307   const Function &F = *LLVMBB->getParent();
6308   SelectionDAG &DAG = SDB->DAG;
6309   DebugLoc dl = SDB->getCurDebugLoc();
6310   const TargetData *TD = TLI.getTargetData();
6311   SmallVector<ISD::InputArg, 16> Ins;
6312 
6313   // Check whether the function can return without sret-demotion.
6314   SmallVector<ISD::OutputArg, 4> Outs;
6315   GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6316                 Outs, TLI);
6317 
6318   if (!FuncInfo->CanLowerReturn) {
6319     // Put in an sret pointer parameter before all the other parameters.
6320     SmallVector<EVT, 1> ValueVTs;
6321     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6322 
6323     // NOTE: Assuming that a pointer will never break down to more than one VT
6324     // or one register.
6325     ISD::ArgFlagsTy Flags;
6326     Flags.setSRet();
6327     EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6328     ISD::InputArg RetArg(Flags, RegisterVT, true);
6329     Ins.push_back(RetArg);
6330   }
6331 
6332   // Set up the incoming argument description vector.
6333   unsigned Idx = 1;
6334   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6335        I != E; ++I, ++Idx) {
6336     SmallVector<EVT, 4> ValueVTs;
6337     ComputeValueVTs(TLI, I->getType(), ValueVTs);
6338     bool isArgValueUsed = !I->use_empty();
6339     for (unsigned Value = 0, NumValues = ValueVTs.size();
6340          Value != NumValues; ++Value) {
6341       EVT VT = ValueVTs[Value];
6342       const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6343       ISD::ArgFlagsTy Flags;
6344       unsigned OriginalAlignment =
6345         TD->getABITypeAlignment(ArgTy);
6346 
6347       if (F.paramHasAttr(Idx, Attribute::ZExt))
6348         Flags.setZExt();
6349       if (F.paramHasAttr(Idx, Attribute::SExt))
6350         Flags.setSExt();
6351       if (F.paramHasAttr(Idx, Attribute::InReg))
6352         Flags.setInReg();
6353       if (F.paramHasAttr(Idx, Attribute::StructRet))
6354         Flags.setSRet();
6355       if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6356         Flags.setByVal();
6357         const PointerType *Ty = cast<PointerType>(I->getType());
6358         const Type *ElementTy = Ty->getElementType();
6359         Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6360         // For ByVal, alignment should be passed from FE.  BE will guess if
6361         // this info is not there but there are cases it cannot get right.
6362         unsigned FrameAlign;
6363         if (F.getParamAlignment(Idx))
6364           FrameAlign = F.getParamAlignment(Idx);
6365         else
6366           FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6367         Flags.setByValAlign(FrameAlign);
6368       }
6369       if (F.paramHasAttr(Idx, Attribute::Nest))
6370         Flags.setNest();
6371       Flags.setOrigAlign(OriginalAlignment);
6372 
6373       EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6374       unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6375       for (unsigned i = 0; i != NumRegs; ++i) {
6376         ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6377         if (NumRegs > 1 && i == 0)
6378           MyFlags.Flags.setSplit();
6379         // if it isn't first piece, alignment must be 1
6380         else if (i > 0)
6381           MyFlags.Flags.setOrigAlign(1);
6382         Ins.push_back(MyFlags);
6383       }
6384     }
6385   }
6386 
6387   // Call the target to set up the argument values.
6388   SmallVector<SDValue, 8> InVals;
6389   SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6390                                              F.isVarArg(), Ins,
6391                                              dl, DAG, InVals);
6392 
6393   // Verify that the target's LowerFormalArguments behaved as expected.
6394   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6395          "LowerFormalArguments didn't return a valid chain!");
6396   assert(InVals.size() == Ins.size() &&
6397          "LowerFormalArguments didn't emit the correct number of values!");
6398   DEBUG({
6399       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6400         assert(InVals[i].getNode() &&
6401                "LowerFormalArguments emitted a null value!");
6402         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6403                "LowerFormalArguments emitted a value with the wrong type!");
6404       }
6405     });
6406 
6407   // Update the DAG with the new chain value resulting from argument lowering.
6408   DAG.setRoot(NewRoot);
6409 
6410   // Set up the argument values.
6411   unsigned i = 0;
6412   Idx = 1;
6413   if (!FuncInfo->CanLowerReturn) {
6414     // Create a virtual register for the sret pointer, and put in a copy
6415     // from the sret argument into it.
6416     SmallVector<EVT, 1> ValueVTs;
6417     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6418     EVT VT = ValueVTs[0];
6419     EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6420     ISD::NodeType AssertOp = ISD::DELETED_NODE;
6421     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6422                                         RegVT, VT, AssertOp);
6423 
6424     MachineFunction& MF = SDB->DAG.getMachineFunction();
6425     MachineRegisterInfo& RegInfo = MF.getRegInfo();
6426     unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6427     FuncInfo->DemoteRegister = SRetReg;
6428     NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6429                                     SRetReg, ArgValue);
6430     DAG.setRoot(NewRoot);
6431 
6432     // i indexes lowered arguments.  Bump it past the hidden sret argument.
6433     // Idx indexes LLVM arguments.  Don't touch it.
6434     ++i;
6435   }
6436 
6437   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6438       ++I, ++Idx) {
6439     SmallVector<SDValue, 4> ArgValues;
6440     SmallVector<EVT, 4> ValueVTs;
6441     ComputeValueVTs(TLI, I->getType(), ValueVTs);
6442     unsigned NumValues = ValueVTs.size();
6443 
6444     // If this argument is unused then remember its value. It is used to generate
6445     // debugging information.
6446     if (I->use_empty() && NumValues)
6447       SDB->setUnusedArgValue(I, InVals[i]);
6448 
6449     for (unsigned Val = 0; Val != NumValues; ++Val) {
6450       EVT VT = ValueVTs[Val];
6451       EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6452       unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6453 
6454       if (!I->use_empty()) {
6455         ISD::NodeType AssertOp = ISD::DELETED_NODE;
6456         if (F.paramHasAttr(Idx, Attribute::SExt))
6457           AssertOp = ISD::AssertSext;
6458         else if (F.paramHasAttr(Idx, Attribute::ZExt))
6459           AssertOp = ISD::AssertZext;
6460 
6461         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6462                                              NumParts, PartVT, VT,
6463                                              AssertOp));
6464       }
6465 
6466       i += NumParts;
6467     }
6468 
6469     // We don't need to do anything else for unused arguments.
6470     if (ArgValues.empty())
6471       continue;
6472 
6473     // Note down frame index for byval arguments.
6474     if (I->hasByValAttr())
6475       if (FrameIndexSDNode *FI =
6476           dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6477         FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex());
6478 
6479     SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6480                                      SDB->getCurDebugLoc());
6481     SDB->setValue(I, Res);
6482 
6483     // If this argument is live outside of the entry block, insert a copy from
6484     // wherever we got it to the vreg that other BB's will reference it as.
6485     if (!EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6486       // If we can, though, try to skip creating an unnecessary vreg.
6487       // FIXME: This isn't very clean... it would be nice to make this more
6488       // general.  It's also subtly incompatible with the hacks FastISel
6489       // uses with vregs.
6490       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6491       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6492         FuncInfo->ValueMap[I] = Reg;
6493         continue;
6494       }
6495     }
6496     if (!isOnlyUsedInEntryBlock(I)) {
6497       FuncInfo->InitializeRegForValue(I);
6498       SDB->CopyToExportRegsIfNeeded(I);
6499     }
6500   }
6501 
6502   assert(i == InVals.size() && "Argument register count mismatch!");
6503 
6504   // Finally, if the target has anything special to do, allow it to do so.
6505   // FIXME: this should insert code into the DAG!
6506   EmitFunctionEntryCode();
6507 }
6508 
6509 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6510 /// ensure constants are generated when needed.  Remember the virtual registers
6511 /// that need to be added to the Machine PHI nodes as input.  We cannot just
6512 /// directly add them, because expansion might result in multiple MBB's for one
6513 /// BB.  As such, the start of the BB might correspond to a different MBB than
6514 /// the end.
6515 ///
6516 void
6517 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6518   const TerminatorInst *TI = LLVMBB->getTerminator();
6519 
6520   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6521 
6522   // Check successor nodes' PHI nodes that expect a constant to be available
6523   // from this block.
6524   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6525     const BasicBlock *SuccBB = TI->getSuccessor(succ);
6526     if (!isa<PHINode>(SuccBB->begin())) continue;
6527     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6528 
6529     // If this terminator has multiple identical successors (common for
6530     // switches), only handle each succ once.
6531     if (!SuccsHandled.insert(SuccMBB)) continue;
6532 
6533     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6534 
6535     // At this point we know that there is a 1-1 correspondence between LLVM PHI
6536     // nodes and Machine PHI nodes, but the incoming operands have not been
6537     // emitted yet.
6538     for (BasicBlock::const_iterator I = SuccBB->begin();
6539          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6540       // Ignore dead phi's.
6541       if (PN->use_empty()) continue;
6542 
6543       // Skip empty types
6544       if (PN->getType()->isEmptyTy())
6545         continue;
6546 
6547       unsigned Reg;
6548       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6549 
6550       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6551         unsigned &RegOut = ConstantsOut[C];
6552         if (RegOut == 0) {
6553           RegOut = FuncInfo.CreateRegs(C->getType());
6554           CopyValueToVirtualRegister(C, RegOut);
6555         }
6556         Reg = RegOut;
6557       } else {
6558         DenseMap<const Value *, unsigned>::iterator I =
6559           FuncInfo.ValueMap.find(PHIOp);
6560         if (I != FuncInfo.ValueMap.end())
6561           Reg = I->second;
6562         else {
6563           assert(isa<AllocaInst>(PHIOp) &&
6564                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6565                  "Didn't codegen value into a register!??");
6566           Reg = FuncInfo.CreateRegs(PHIOp->getType());
6567           CopyValueToVirtualRegister(PHIOp, Reg);
6568         }
6569       }
6570 
6571       // Remember that this register needs to added to the machine PHI node as
6572       // the input for this MBB.
6573       SmallVector<EVT, 4> ValueVTs;
6574       ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6575       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6576         EVT VT = ValueVTs[vti];
6577         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6578         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6579           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6580         Reg += NumRegisters;
6581       }
6582     }
6583   }
6584   ConstantsOut.clear();
6585 }
6586