1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetFrameLowering.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetOptions.h" 64 #include "llvm/Target/TargetSelectionDAGInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 using namespace llvm; 68 69 #define DEBUG_TYPE "isel" 70 71 /// LimitFloatPrecision - Generate low-precision inline sequences for 72 /// some float libcalls (6, 8 or 12 bits). 73 static unsigned LimitFloatPrecision; 74 75 static cl::opt<unsigned, true> 76 LimitFPPrecision("limit-float-precision", 77 cl::desc("Generate low-precision inline sequences " 78 "for some float libcalls"), 79 cl::location(LimitFloatPrecision), 80 cl::init(0)); 81 82 static cl::opt<bool> 83 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 84 cl::desc("Enable fast-math-flags for DAG nodes")); 85 86 // Limit the width of DAG chains. This is important in general to prevent 87 // DAG-based analysis from blowing up. For example, alias analysis and 88 // load clustering may not complete in reasonable time. It is difficult to 89 // recognize and avoid this situation within each individual analysis, and 90 // future analyses are likely to have the same behavior. Limiting DAG width is 91 // the safe approach and will be especially important with global DAGs. 92 // 93 // MaxParallelChains default is arbitrarily high to avoid affecting 94 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 95 // sequence over this should have been converted to llvm.memcpy by the 96 // frontend. It easy to induce this behavior with .ll code such as: 97 // %buffer = alloca [4096 x i8] 98 // %data = load [4096 x i8]* %argPtr 99 // store [4096 x i8] %data, [4096 x i8]* %buffer 100 static const unsigned MaxParallelChains = 64; 101 102 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 103 const SDValue *Parts, unsigned NumParts, 104 MVT PartVT, EVT ValueVT, const Value *V); 105 106 /// getCopyFromParts - Create a value that contains the specified legal parts 107 /// combined into the value they represent. If the parts combine to a type 108 /// larger then ValueVT then AssertOp can be used to specify whether the extra 109 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 110 /// (ISD::AssertSext). 111 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 112 const SDValue *Parts, 113 unsigned NumParts, MVT PartVT, EVT ValueVT, 114 const Value *V, 115 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 116 if (ValueVT.isVector()) 117 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 118 PartVT, ValueVT, V); 119 120 assert(NumParts > 0 && "No parts to assemble!"); 121 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 122 SDValue Val = Parts[0]; 123 124 if (NumParts > 1) { 125 // Assemble the value from multiple parts. 126 if (ValueVT.isInteger()) { 127 unsigned PartBits = PartVT.getSizeInBits(); 128 unsigned ValueBits = ValueVT.getSizeInBits(); 129 130 // Assemble the power of 2 part. 131 unsigned RoundParts = NumParts & (NumParts - 1) ? 132 1 << Log2_32(NumParts) : NumParts; 133 unsigned RoundBits = PartBits * RoundParts; 134 EVT RoundVT = RoundBits == ValueBits ? 135 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 136 SDValue Lo, Hi; 137 138 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 139 140 if (RoundParts > 2) { 141 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 142 PartVT, HalfVT, V); 143 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 144 RoundParts / 2, PartVT, HalfVT, V); 145 } else { 146 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 147 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 148 } 149 150 if (DAG.getDataLayout().isBigEndian()) 151 std::swap(Lo, Hi); 152 153 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 154 155 if (RoundParts < NumParts) { 156 // Assemble the trailing non-power-of-2 part. 157 unsigned OddParts = NumParts - RoundParts; 158 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 159 Hi = getCopyFromParts(DAG, DL, 160 Parts + RoundParts, OddParts, PartVT, OddVT, V); 161 162 // Combine the round and odd parts. 163 Lo = Val; 164 if (DAG.getDataLayout().isBigEndian()) 165 std::swap(Lo, Hi); 166 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 167 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 168 Hi = 169 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 170 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 171 TLI.getPointerTy(DAG.getDataLayout()))); 172 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 173 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 174 } 175 } else if (PartVT.isFloatingPoint()) { 176 // FP split into multiple FP parts (for ppcf128) 177 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 178 "Unexpected split"); 179 SDValue Lo, Hi; 180 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 181 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 182 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 183 std::swap(Lo, Hi); 184 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 185 } else { 186 // FP split into integer parts (soft fp) 187 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 188 !PartVT.isVector() && "Unexpected split"); 189 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 190 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 191 } 192 } 193 194 // There is now one part, held in Val. Correct it to match ValueVT. 195 EVT PartEVT = Val.getValueType(); 196 197 if (PartEVT == ValueVT) 198 return Val; 199 200 if (PartEVT.isInteger() && ValueVT.isInteger()) { 201 if (ValueVT.bitsLT(PartEVT)) { 202 // For a truncate, see if we have any information to 203 // indicate whether the truncated bits will always be 204 // zero or sign-extension. 205 if (AssertOp != ISD::DELETED_NODE) 206 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 207 DAG.getValueType(ValueVT)); 208 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 209 } 210 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 211 } 212 213 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 214 // FP_ROUND's are always exact here. 215 if (ValueVT.bitsLT(Val.getValueType())) 216 return DAG.getNode( 217 ISD::FP_ROUND, DL, ValueVT, Val, 218 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 219 220 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 221 } 222 223 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 224 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 225 226 llvm_unreachable("Unknown mismatch!"); 227 } 228 229 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 230 const Twine &ErrMsg) { 231 const Instruction *I = dyn_cast_or_null<Instruction>(V); 232 if (!V) 233 return Ctx.emitError(ErrMsg); 234 235 const char *AsmError = ", possible invalid constraint for vector type"; 236 if (const CallInst *CI = dyn_cast<CallInst>(I)) 237 if (isa<InlineAsm>(CI->getCalledValue())) 238 return Ctx.emitError(I, ErrMsg + AsmError); 239 240 return Ctx.emitError(I, ErrMsg); 241 } 242 243 /// getCopyFromPartsVector - Create a value that contains the specified legal 244 /// parts combined into the value they represent. If the parts combine to a 245 /// type larger then ValueVT then AssertOp can be used to specify whether the 246 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 247 /// ValueVT (ISD::AssertSext). 248 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 249 const SDValue *Parts, unsigned NumParts, 250 MVT PartVT, EVT ValueVT, const Value *V) { 251 assert(ValueVT.isVector() && "Not a vector value"); 252 assert(NumParts > 0 && "No parts to assemble!"); 253 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 254 SDValue Val = Parts[0]; 255 256 // Handle a multi-element vector. 257 if (NumParts > 1) { 258 EVT IntermediateVT; 259 MVT RegisterVT; 260 unsigned NumIntermediates; 261 unsigned NumRegs = 262 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 263 NumIntermediates, RegisterVT); 264 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 265 NumParts = NumRegs; // Silence a compiler warning. 266 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 267 assert(RegisterVT.getSizeInBits() == 268 Parts[0].getSimpleValueType().getSizeInBits() && 269 "Part type sizes don't match!"); 270 271 // Assemble the parts into intermediate operands. 272 SmallVector<SDValue, 8> Ops(NumIntermediates); 273 if (NumIntermediates == NumParts) { 274 // If the register was not expanded, truncate or copy the value, 275 // as appropriate. 276 for (unsigned i = 0; i != NumParts; ++i) 277 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 278 PartVT, IntermediateVT, V); 279 } else if (NumParts > 0) { 280 // If the intermediate type was expanded, build the intermediate 281 // operands from the parts. 282 assert(NumParts % NumIntermediates == 0 && 283 "Must expand into a divisible number of parts!"); 284 unsigned Factor = NumParts / NumIntermediates; 285 for (unsigned i = 0; i != NumIntermediates; ++i) 286 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 287 PartVT, IntermediateVT, V); 288 } 289 290 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 291 // intermediate operands. 292 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 293 : ISD::BUILD_VECTOR, 294 DL, ValueVT, Ops); 295 } 296 297 // There is now one part, held in Val. Correct it to match ValueVT. 298 EVT PartEVT = Val.getValueType(); 299 300 if (PartEVT == ValueVT) 301 return Val; 302 303 if (PartEVT.isVector()) { 304 // If the element type of the source/dest vectors are the same, but the 305 // parts vector has more elements than the value vector, then we have a 306 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 307 // elements we want. 308 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 309 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 310 "Cannot narrow, it would be a lossy transformation"); 311 return DAG.getNode( 312 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 313 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 314 } 315 316 // Vector/Vector bitcast. 317 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 318 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 319 320 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 321 "Cannot handle this kind of promotion"); 322 // Promoted vector extract 323 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 324 325 } 326 327 // Trivial bitcast if the types are the same size and the destination 328 // vector type is legal. 329 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 330 TLI.isTypeLegal(ValueVT)) 331 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 332 333 // Handle cases such as i8 -> <1 x i1> 334 if (ValueVT.getVectorNumElements() != 1) { 335 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 336 "non-trivial scalar-to-vector conversion"); 337 return DAG.getUNDEF(ValueVT); 338 } 339 340 if (ValueVT.getVectorNumElements() == 1 && 341 ValueVT.getVectorElementType() != PartEVT) 342 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 343 344 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 345 } 346 347 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 348 SDValue Val, SDValue *Parts, unsigned NumParts, 349 MVT PartVT, const Value *V); 350 351 /// getCopyToParts - Create a series of nodes that contain the specified value 352 /// split into legal parts. If the parts contain more bits than Val, then, for 353 /// integers, ExtendKind can be used to specify how to generate the extra bits. 354 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 355 SDValue Val, SDValue *Parts, unsigned NumParts, 356 MVT PartVT, const Value *V, 357 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 358 EVT ValueVT = Val.getValueType(); 359 360 // Handle the vector case separately. 361 if (ValueVT.isVector()) 362 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 363 364 unsigned PartBits = PartVT.getSizeInBits(); 365 unsigned OrigNumParts = NumParts; 366 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 367 "Copying to an illegal type!"); 368 369 if (NumParts == 0) 370 return; 371 372 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 373 EVT PartEVT = PartVT; 374 if (PartEVT == ValueVT) { 375 assert(NumParts == 1 && "No-op copy with multiple parts!"); 376 Parts[0] = Val; 377 return; 378 } 379 380 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 381 // If the parts cover more bits than the value has, promote the value. 382 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 383 assert(NumParts == 1 && "Do not know what to promote to!"); 384 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 385 } else { 386 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 387 ValueVT.isInteger() && 388 "Unknown mismatch!"); 389 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 390 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 391 if (PartVT == MVT::x86mmx) 392 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 393 } 394 } else if (PartBits == ValueVT.getSizeInBits()) { 395 // Different types of the same size. 396 assert(NumParts == 1 && PartEVT != ValueVT); 397 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 398 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 399 // If the parts cover less bits than value has, truncate the value. 400 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 401 ValueVT.isInteger() && 402 "Unknown mismatch!"); 403 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 404 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 405 if (PartVT == MVT::x86mmx) 406 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 407 } 408 409 // The value may have changed - recompute ValueVT. 410 ValueVT = Val.getValueType(); 411 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 412 "Failed to tile the value with PartVT!"); 413 414 if (NumParts == 1) { 415 if (PartEVT != ValueVT) 416 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 417 "scalar-to-vector conversion failed"); 418 419 Parts[0] = Val; 420 return; 421 } 422 423 // Expand the value into multiple parts. 424 if (NumParts & (NumParts - 1)) { 425 // The number of parts is not a power of 2. Split off and copy the tail. 426 assert(PartVT.isInteger() && ValueVT.isInteger() && 427 "Do not know what to expand to!"); 428 unsigned RoundParts = 1 << Log2_32(NumParts); 429 unsigned RoundBits = RoundParts * PartBits; 430 unsigned OddParts = NumParts - RoundParts; 431 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 432 DAG.getIntPtrConstant(RoundBits, DL)); 433 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 434 435 if (DAG.getDataLayout().isBigEndian()) 436 // The odd parts were reversed by getCopyToParts - unreverse them. 437 std::reverse(Parts + RoundParts, Parts + NumParts); 438 439 NumParts = RoundParts; 440 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 441 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 442 } 443 444 // The number of parts is a power of 2. Repeatedly bisect the value using 445 // EXTRACT_ELEMENT. 446 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 447 EVT::getIntegerVT(*DAG.getContext(), 448 ValueVT.getSizeInBits()), 449 Val); 450 451 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 452 for (unsigned i = 0; i < NumParts; i += StepSize) { 453 unsigned ThisBits = StepSize * PartBits / 2; 454 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 455 SDValue &Part0 = Parts[i]; 456 SDValue &Part1 = Parts[i+StepSize/2]; 457 458 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 459 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 460 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 461 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 462 463 if (ThisBits == PartBits && ThisVT != PartVT) { 464 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 465 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 466 } 467 } 468 } 469 470 if (DAG.getDataLayout().isBigEndian()) 471 std::reverse(Parts, Parts + OrigNumParts); 472 } 473 474 475 /// getCopyToPartsVector - Create a series of nodes that contain the specified 476 /// value split into legal parts. 477 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 478 SDValue Val, SDValue *Parts, unsigned NumParts, 479 MVT PartVT, const Value *V) { 480 EVT ValueVT = Val.getValueType(); 481 assert(ValueVT.isVector() && "Not a vector"); 482 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 483 484 if (NumParts == 1) { 485 EVT PartEVT = PartVT; 486 if (PartEVT == ValueVT) { 487 // Nothing to do. 488 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 489 // Bitconvert vector->vector case. 490 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 491 } else if (PartVT.isVector() && 492 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 493 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 494 EVT ElementVT = PartVT.getVectorElementType(); 495 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 496 // undef elements. 497 SmallVector<SDValue, 16> Ops; 498 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 499 Ops.push_back(DAG.getNode( 500 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 501 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 502 503 for (unsigned i = ValueVT.getVectorNumElements(), 504 e = PartVT.getVectorNumElements(); i != e; ++i) 505 Ops.push_back(DAG.getUNDEF(ElementVT)); 506 507 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 508 509 // FIXME: Use CONCAT for 2x -> 4x. 510 511 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 512 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 513 } else if (PartVT.isVector() && 514 PartEVT.getVectorElementType().bitsGE( 515 ValueVT.getVectorElementType()) && 516 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 517 518 // Promoted vector extract 519 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 520 } else{ 521 // Vector -> scalar conversion. 522 assert(ValueVT.getVectorNumElements() == 1 && 523 "Only trivial vector-to-scalar conversions should get here!"); 524 Val = DAG.getNode( 525 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 526 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 527 528 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 529 } 530 531 Parts[0] = Val; 532 return; 533 } 534 535 // Handle a multi-element vector. 536 EVT IntermediateVT; 537 MVT RegisterVT; 538 unsigned NumIntermediates; 539 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 540 IntermediateVT, 541 NumIntermediates, RegisterVT); 542 unsigned NumElements = ValueVT.getVectorNumElements(); 543 544 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 545 NumParts = NumRegs; // Silence a compiler warning. 546 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 547 548 // Split the vector into intermediate operands. 549 SmallVector<SDValue, 8> Ops(NumIntermediates); 550 for (unsigned i = 0; i != NumIntermediates; ++i) { 551 if (IntermediateVT.isVector()) 552 Ops[i] = 553 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 554 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 555 TLI.getVectorIdxTy(DAG.getDataLayout()))); 556 else 557 Ops[i] = DAG.getNode( 558 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 559 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 560 } 561 562 // Split the intermediate operands into legal parts. 563 if (NumParts == NumIntermediates) { 564 // If the register was not expanded, promote or copy the value, 565 // as appropriate. 566 for (unsigned i = 0; i != NumParts; ++i) 567 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 568 } else if (NumParts > 0) { 569 // If the intermediate type was expanded, split each the value into 570 // legal parts. 571 assert(NumIntermediates != 0 && "division by zero"); 572 assert(NumParts % NumIntermediates == 0 && 573 "Must expand into a divisible number of parts!"); 574 unsigned Factor = NumParts / NumIntermediates; 575 for (unsigned i = 0; i != NumIntermediates; ++i) 576 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 577 } 578 } 579 580 RegsForValue::RegsForValue() {} 581 582 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 583 EVT valuevt) 584 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 585 586 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 587 const DataLayout &DL, unsigned Reg, Type *Ty) { 588 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 589 590 for (EVT ValueVT : ValueVTs) { 591 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 592 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 593 for (unsigned i = 0; i != NumRegs; ++i) 594 Regs.push_back(Reg + i); 595 RegVTs.push_back(RegisterVT); 596 Reg += NumRegs; 597 } 598 } 599 600 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 601 /// this value and returns the result as a ValueVT value. This uses 602 /// Chain/Flag as the input and updates them for the output Chain/Flag. 603 /// If the Flag pointer is NULL, no flag is used. 604 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 605 FunctionLoweringInfo &FuncInfo, 606 SDLoc dl, 607 SDValue &Chain, SDValue *Flag, 608 const Value *V) const { 609 // A Value with type {} or [0 x %t] needs no registers. 610 if (ValueVTs.empty()) 611 return SDValue(); 612 613 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 614 615 // Assemble the legal parts into the final values. 616 SmallVector<SDValue, 4> Values(ValueVTs.size()); 617 SmallVector<SDValue, 8> Parts; 618 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 619 // Copy the legal parts from the registers. 620 EVT ValueVT = ValueVTs[Value]; 621 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 622 MVT RegisterVT = RegVTs[Value]; 623 624 Parts.resize(NumRegs); 625 for (unsigned i = 0; i != NumRegs; ++i) { 626 SDValue P; 627 if (!Flag) { 628 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 629 } else { 630 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 631 *Flag = P.getValue(2); 632 } 633 634 Chain = P.getValue(1); 635 Parts[i] = P; 636 637 // If the source register was virtual and if we know something about it, 638 // add an assert node. 639 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 640 !RegisterVT.isInteger() || RegisterVT.isVector()) 641 continue; 642 643 const FunctionLoweringInfo::LiveOutInfo *LOI = 644 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 645 if (!LOI) 646 continue; 647 648 unsigned RegSize = RegisterVT.getSizeInBits(); 649 unsigned NumSignBits = LOI->NumSignBits; 650 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 651 652 if (NumZeroBits == RegSize) { 653 // The current value is a zero. 654 // Explicitly express that as it would be easier for 655 // optimizations to kick in. 656 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 657 continue; 658 } 659 660 // FIXME: We capture more information than the dag can represent. For 661 // now, just use the tightest assertzext/assertsext possible. 662 bool isSExt = true; 663 EVT FromVT(MVT::Other); 664 if (NumSignBits == RegSize) 665 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 666 else if (NumZeroBits >= RegSize-1) 667 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 668 else if (NumSignBits > RegSize-8) 669 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 670 else if (NumZeroBits >= RegSize-8) 671 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 672 else if (NumSignBits > RegSize-16) 673 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 674 else if (NumZeroBits >= RegSize-16) 675 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 676 else if (NumSignBits > RegSize-32) 677 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 678 else if (NumZeroBits >= RegSize-32) 679 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 680 else 681 continue; 682 683 // Add an assertion node. 684 assert(FromVT != MVT::Other); 685 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 686 RegisterVT, P, DAG.getValueType(FromVT)); 687 } 688 689 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 690 NumRegs, RegisterVT, ValueVT, V); 691 Part += NumRegs; 692 Parts.clear(); 693 } 694 695 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 696 } 697 698 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 699 /// specified value into the registers specified by this object. This uses 700 /// Chain/Flag as the input and updates them for the output Chain/Flag. 701 /// If the Flag pointer is NULL, no flag is used. 702 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 703 SDValue &Chain, SDValue *Flag, const Value *V, 704 ISD::NodeType PreferredExtendType) const { 705 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 706 ISD::NodeType ExtendKind = PreferredExtendType; 707 708 // Get the list of the values's legal parts. 709 unsigned NumRegs = Regs.size(); 710 SmallVector<SDValue, 8> Parts(NumRegs); 711 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 712 EVT ValueVT = ValueVTs[Value]; 713 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 714 MVT RegisterVT = RegVTs[Value]; 715 716 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 717 ExtendKind = ISD::ZERO_EXTEND; 718 719 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 720 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 721 Part += NumParts; 722 } 723 724 // Copy the parts into the registers. 725 SmallVector<SDValue, 8> Chains(NumRegs); 726 for (unsigned i = 0; i != NumRegs; ++i) { 727 SDValue Part; 728 if (!Flag) { 729 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 730 } else { 731 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 732 *Flag = Part.getValue(1); 733 } 734 735 Chains[i] = Part.getValue(0); 736 } 737 738 if (NumRegs == 1 || Flag) 739 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 740 // flagged to it. That is the CopyToReg nodes and the user are considered 741 // a single scheduling unit. If we create a TokenFactor and return it as 742 // chain, then the TokenFactor is both a predecessor (operand) of the 743 // user as well as a successor (the TF operands are flagged to the user). 744 // c1, f1 = CopyToReg 745 // c2, f2 = CopyToReg 746 // c3 = TokenFactor c1, c2 747 // ... 748 // = op c3, ..., f2 749 Chain = Chains[NumRegs-1]; 750 else 751 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 752 } 753 754 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 755 /// operand list. This adds the code marker and includes the number of 756 /// values added into it. 757 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 758 unsigned MatchingIdx, SDLoc dl, 759 SelectionDAG &DAG, 760 std::vector<SDValue> &Ops) const { 761 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 762 763 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 764 if (HasMatching) 765 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 766 else if (!Regs.empty() && 767 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 768 // Put the register class of the virtual registers in the flag word. That 769 // way, later passes can recompute register class constraints for inline 770 // assembly as well as normal instructions. 771 // Don't do this for tied operands that can use the regclass information 772 // from the def. 773 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 774 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 775 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 776 } 777 778 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 779 Ops.push_back(Res); 780 781 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 782 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 783 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 784 MVT RegisterVT = RegVTs[Value]; 785 for (unsigned i = 0; i != NumRegs; ++i) { 786 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 787 unsigned TheReg = Regs[Reg++]; 788 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 789 790 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 791 // If we clobbered the stack pointer, MFI should know about it. 792 assert(DAG.getMachineFunction().getFrameInfo()-> 793 hasOpaqueSPAdjustment()); 794 } 795 } 796 } 797 } 798 799 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 800 const TargetLibraryInfo *li) { 801 AA = &aa; 802 GFI = gfi; 803 LibInfo = li; 804 DL = &DAG.getDataLayout(); 805 Context = DAG.getContext(); 806 LPadToCallSiteMap.clear(); 807 } 808 809 /// clear - Clear out the current SelectionDAG and the associated 810 /// state and prepare this SelectionDAGBuilder object to be used 811 /// for a new block. This doesn't clear out information about 812 /// additional blocks that are needed to complete switch lowering 813 /// or PHI node updating; that information is cleared out as it is 814 /// consumed. 815 void SelectionDAGBuilder::clear() { 816 NodeMap.clear(); 817 UnusedArgNodeMap.clear(); 818 PendingLoads.clear(); 819 PendingExports.clear(); 820 CurInst = nullptr; 821 HasTailCall = false; 822 SDNodeOrder = LowestSDNodeOrder; 823 StatepointLowering.clear(); 824 } 825 826 /// clearDanglingDebugInfo - Clear the dangling debug information 827 /// map. This function is separated from the clear so that debug 828 /// information that is dangling in a basic block can be properly 829 /// resolved in a different basic block. This allows the 830 /// SelectionDAG to resolve dangling debug information attached 831 /// to PHI nodes. 832 void SelectionDAGBuilder::clearDanglingDebugInfo() { 833 DanglingDebugInfoMap.clear(); 834 } 835 836 /// getRoot - Return the current virtual root of the Selection DAG, 837 /// flushing any PendingLoad items. This must be done before emitting 838 /// a store or any other node that may need to be ordered after any 839 /// prior load instructions. 840 /// 841 SDValue SelectionDAGBuilder::getRoot() { 842 if (PendingLoads.empty()) 843 return DAG.getRoot(); 844 845 if (PendingLoads.size() == 1) { 846 SDValue Root = PendingLoads[0]; 847 DAG.setRoot(Root); 848 PendingLoads.clear(); 849 return Root; 850 } 851 852 // Otherwise, we have to make a token factor node. 853 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 854 PendingLoads); 855 PendingLoads.clear(); 856 DAG.setRoot(Root); 857 return Root; 858 } 859 860 /// getControlRoot - Similar to getRoot, but instead of flushing all the 861 /// PendingLoad items, flush all the PendingExports items. It is necessary 862 /// to do this before emitting a terminator instruction. 863 /// 864 SDValue SelectionDAGBuilder::getControlRoot() { 865 SDValue Root = DAG.getRoot(); 866 867 if (PendingExports.empty()) 868 return Root; 869 870 // Turn all of the CopyToReg chains into one factored node. 871 if (Root.getOpcode() != ISD::EntryToken) { 872 unsigned i = 0, e = PendingExports.size(); 873 for (; i != e; ++i) { 874 assert(PendingExports[i].getNode()->getNumOperands() > 1); 875 if (PendingExports[i].getNode()->getOperand(0) == Root) 876 break; // Don't add the root if we already indirectly depend on it. 877 } 878 879 if (i == e) 880 PendingExports.push_back(Root); 881 } 882 883 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 884 PendingExports); 885 PendingExports.clear(); 886 DAG.setRoot(Root); 887 return Root; 888 } 889 890 void SelectionDAGBuilder::visit(const Instruction &I) { 891 // Set up outgoing PHI node register values before emitting the terminator. 892 if (isa<TerminatorInst>(&I)) 893 HandlePHINodesInSuccessorBlocks(I.getParent()); 894 895 ++SDNodeOrder; 896 897 CurInst = &I; 898 899 visit(I.getOpcode(), I); 900 901 if (!isa<TerminatorInst>(&I) && !HasTailCall) 902 CopyToExportRegsIfNeeded(&I); 903 904 CurInst = nullptr; 905 } 906 907 void SelectionDAGBuilder::visitPHI(const PHINode &) { 908 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 909 } 910 911 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 912 // Note: this doesn't use InstVisitor, because it has to work with 913 // ConstantExpr's in addition to instructions. 914 switch (Opcode) { 915 default: llvm_unreachable("Unknown instruction type encountered!"); 916 // Build the switch statement using the Instruction.def file. 917 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 918 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 919 #include "llvm/IR/Instruction.def" 920 } 921 } 922 923 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 924 // generate the debug data structures now that we've seen its definition. 925 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 926 SDValue Val) { 927 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 928 if (DDI.getDI()) { 929 const DbgValueInst *DI = DDI.getDI(); 930 DebugLoc dl = DDI.getdl(); 931 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 932 DILocalVariable *Variable = DI->getVariable(); 933 DIExpression *Expr = DI->getExpression(); 934 assert(Variable->isValidLocationForIntrinsic(dl) && 935 "Expected inlined-at fields to agree"); 936 uint64_t Offset = DI->getOffset(); 937 // A dbg.value for an alloca is always indirect. 938 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 939 SDDbgValue *SDV; 940 if (Val.getNode()) { 941 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 942 Val)) { 943 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 944 IsIndirect, Offset, dl, DbgSDNodeOrder); 945 DAG.AddDbgValue(SDV, Val.getNode(), false); 946 } 947 } else 948 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 949 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 950 } 951 } 952 953 /// getCopyFromRegs - If there was virtual register allocated for the value V 954 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 955 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 956 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 957 SDValue Result; 958 959 if (It != FuncInfo.ValueMap.end()) { 960 unsigned InReg = It->second; 961 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 962 DAG.getDataLayout(), InReg, Ty); 963 SDValue Chain = DAG.getEntryNode(); 964 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 965 resolveDanglingDebugInfo(V, Result); 966 } 967 968 return Result; 969 } 970 971 /// getValue - Return an SDValue for the given Value. 972 SDValue SelectionDAGBuilder::getValue(const Value *V) { 973 // If we already have an SDValue for this value, use it. It's important 974 // to do this first, so that we don't create a CopyFromReg if we already 975 // have a regular SDValue. 976 SDValue &N = NodeMap[V]; 977 if (N.getNode()) return N; 978 979 // If there's a virtual register allocated and initialized for this 980 // value, use it. 981 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 982 if (copyFromReg.getNode()) { 983 return copyFromReg; 984 } 985 986 // Otherwise create a new SDValue and remember it. 987 SDValue Val = getValueImpl(V); 988 NodeMap[V] = Val; 989 resolveDanglingDebugInfo(V, Val); 990 return Val; 991 } 992 993 // Return true if SDValue exists for the given Value 994 bool SelectionDAGBuilder::findValue(const Value *V) const { 995 return (NodeMap.find(V) != NodeMap.end()) || 996 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 997 } 998 999 /// getNonRegisterValue - Return an SDValue for the given Value, but 1000 /// don't look in FuncInfo.ValueMap for a virtual register. 1001 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1002 // If we already have an SDValue for this value, use it. 1003 SDValue &N = NodeMap[V]; 1004 if (N.getNode()) { 1005 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1006 // Remove the debug location from the node as the node is about to be used 1007 // in a location which may differ from the original debug location. This 1008 // is relevant to Constant and ConstantFP nodes because they can appear 1009 // as constant expressions inside PHI nodes. 1010 N->setDebugLoc(DebugLoc()); 1011 } 1012 return N; 1013 } 1014 1015 // Otherwise create a new SDValue and remember it. 1016 SDValue Val = getValueImpl(V); 1017 NodeMap[V] = Val; 1018 resolveDanglingDebugInfo(V, Val); 1019 return Val; 1020 } 1021 1022 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1023 /// Create an SDValue for the given value. 1024 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1025 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1026 1027 if (const Constant *C = dyn_cast<Constant>(V)) { 1028 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1029 1030 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1031 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1032 1033 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1034 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1035 1036 if (isa<ConstantPointerNull>(C)) { 1037 unsigned AS = V->getType()->getPointerAddressSpace(); 1038 return DAG.getConstant(0, getCurSDLoc(), 1039 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1040 } 1041 1042 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1043 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1044 1045 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1046 return DAG.getUNDEF(VT); 1047 1048 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1049 visit(CE->getOpcode(), *CE); 1050 SDValue N1 = NodeMap[V]; 1051 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1052 return N1; 1053 } 1054 1055 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1056 SmallVector<SDValue, 4> Constants; 1057 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1058 OI != OE; ++OI) { 1059 SDNode *Val = getValue(*OI).getNode(); 1060 // If the operand is an empty aggregate, there are no values. 1061 if (!Val) continue; 1062 // Add each leaf value from the operand to the Constants list 1063 // to form a flattened list of all the values. 1064 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1065 Constants.push_back(SDValue(Val, i)); 1066 } 1067 1068 return DAG.getMergeValues(Constants, getCurSDLoc()); 1069 } 1070 1071 if (const ConstantDataSequential *CDS = 1072 dyn_cast<ConstantDataSequential>(C)) { 1073 SmallVector<SDValue, 4> Ops; 1074 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1075 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1076 // Add each leaf value from the operand to the Constants list 1077 // to form a flattened list of all the values. 1078 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1079 Ops.push_back(SDValue(Val, i)); 1080 } 1081 1082 if (isa<ArrayType>(CDS->getType())) 1083 return DAG.getMergeValues(Ops, getCurSDLoc()); 1084 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1085 VT, Ops); 1086 } 1087 1088 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1089 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1090 "Unknown struct or array constant!"); 1091 1092 SmallVector<EVT, 4> ValueVTs; 1093 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1094 unsigned NumElts = ValueVTs.size(); 1095 if (NumElts == 0) 1096 return SDValue(); // empty struct 1097 SmallVector<SDValue, 4> Constants(NumElts); 1098 for (unsigned i = 0; i != NumElts; ++i) { 1099 EVT EltVT = ValueVTs[i]; 1100 if (isa<UndefValue>(C)) 1101 Constants[i] = DAG.getUNDEF(EltVT); 1102 else if (EltVT.isFloatingPoint()) 1103 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1104 else 1105 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1106 } 1107 1108 return DAG.getMergeValues(Constants, getCurSDLoc()); 1109 } 1110 1111 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1112 return DAG.getBlockAddress(BA, VT); 1113 1114 VectorType *VecTy = cast<VectorType>(V->getType()); 1115 unsigned NumElements = VecTy->getNumElements(); 1116 1117 // Now that we know the number and type of the elements, get that number of 1118 // elements into the Ops array based on what kind of constant it is. 1119 SmallVector<SDValue, 16> Ops; 1120 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1121 for (unsigned i = 0; i != NumElements; ++i) 1122 Ops.push_back(getValue(CV->getOperand(i))); 1123 } else { 1124 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1125 EVT EltVT = 1126 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1127 1128 SDValue Op; 1129 if (EltVT.isFloatingPoint()) 1130 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1131 else 1132 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1133 Ops.assign(NumElements, Op); 1134 } 1135 1136 // Create a BUILD_VECTOR node. 1137 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1138 } 1139 1140 // If this is a static alloca, generate it as the frameindex instead of 1141 // computation. 1142 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1143 DenseMap<const AllocaInst*, int>::iterator SI = 1144 FuncInfo.StaticAllocaMap.find(AI); 1145 if (SI != FuncInfo.StaticAllocaMap.end()) 1146 return DAG.getFrameIndex(SI->second, 1147 TLI.getPointerTy(DAG.getDataLayout())); 1148 } 1149 1150 // If this is an instruction which fast-isel has deferred, select it now. 1151 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1152 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1153 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1154 Inst->getType()); 1155 SDValue Chain = DAG.getEntryNode(); 1156 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1157 } 1158 1159 llvm_unreachable("Can't get register for value!"); 1160 } 1161 1162 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1163 llvm_unreachable("should never codegen catchpads"); 1164 } 1165 1166 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1167 // Update machine-CFG edge. 1168 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1169 FuncInfo.MBB->addSuccessor(TargetMBB); 1170 1171 // Figure out the funclet membership for the catchret's successor. 1172 // This will be used by the FuncletLayout pass to determine how to order the 1173 // BB's. 1174 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1175 WinEHFuncInfo &EHInfo = 1176 MMI.getWinEHFuncInfo(DAG.getMachineFunction().getFunction()); 1177 const BasicBlock *SuccessorColor = EHInfo.CatchRetSuccessorColorMap[&I]; 1178 assert(SuccessorColor && "No parent funclet for catchret!"); 1179 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1180 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1181 1182 // Create the terminator node. 1183 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1184 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1185 DAG.getBasicBlock(SuccessorColorMBB)); 1186 DAG.setRoot(Ret); 1187 } 1188 1189 void SelectionDAGBuilder::visitCatchEndPad(const CatchEndPadInst &I) { 1190 llvm_unreachable("should never codegen catchendpads"); 1191 } 1192 1193 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1194 // Don't emit any special code for the cleanuppad instruction. It just marks 1195 // the start of a funclet. 1196 FuncInfo.MBB->setIsEHFuncletEntry(); 1197 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1198 } 1199 1200 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1201 /// many places it could ultimately go. In the IR, we have a single unwind 1202 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1203 /// This function skips over imaginary basic blocks that hold catchpad, 1204 /// terminatepad, or catchendpad instructions, and finds all the "real" machine 1205 /// basic block destinations. 1206 static void 1207 findUnwindDestinations(FunctionLoweringInfo &FuncInfo, 1208 const BasicBlock *EHPadBB, 1209 SmallVectorImpl<MachineBasicBlock *> &UnwindDests) { 1210 EHPersonality Personality = 1211 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1212 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1213 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1214 while (EHPadBB) { 1215 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1216 if (isa<LandingPadInst>(Pad)) { 1217 // Stop on landingpads. They are not funclets. 1218 UnwindDests.push_back(FuncInfo.MBBMap[EHPadBB]); 1219 break; 1220 } else if (isa<CleanupPadInst>(Pad)) { 1221 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1222 // personalities. 1223 UnwindDests.push_back(FuncInfo.MBBMap[EHPadBB]); 1224 UnwindDests.back()->setIsEHFuncletEntry(); 1225 break; 1226 } else if (const auto *CPI = dyn_cast<CatchPadInst>(Pad)) { 1227 // Add the catchpad handler to the possible destinations. 1228 UnwindDests.push_back(FuncInfo.MBBMap[CPI->getNormalDest()]); 1229 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1230 if (IsMSVCCXX || IsCoreCLR) 1231 UnwindDests.back()->setIsEHFuncletEntry(); 1232 EHPadBB = CPI->getUnwindDest(); 1233 } else if (const auto *CEPI = dyn_cast<CatchEndPadInst>(Pad)) { 1234 EHPadBB = CEPI->getUnwindDest(); 1235 } else if (const auto *CEPI = dyn_cast<CleanupEndPadInst>(Pad)) { 1236 EHPadBB = CEPI->getUnwindDest(); 1237 } 1238 } 1239 } 1240 1241 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1242 // Update successor info. 1243 // FIXME: The weights for catchpads will be wrong. 1244 SmallVector<MachineBasicBlock *, 1> UnwindDests; 1245 findUnwindDestinations(FuncInfo, I.getUnwindDest(), UnwindDests); 1246 for (MachineBasicBlock *UnwindDest : UnwindDests) { 1247 UnwindDest->setIsEHPad(); 1248 addSuccessorWithWeight(FuncInfo.MBB, UnwindDest); 1249 } 1250 1251 // Create the terminator node. 1252 SDValue Ret = 1253 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1254 DAG.setRoot(Ret); 1255 } 1256 1257 void SelectionDAGBuilder::visitCleanupEndPad(const CleanupEndPadInst &I) { 1258 report_fatal_error("visitCleanupEndPad not yet implemented!"); 1259 } 1260 1261 void SelectionDAGBuilder::visitTerminatePad(const TerminatePadInst &TPI) { 1262 report_fatal_error("visitTerminatePad not yet implemented!"); 1263 } 1264 1265 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1266 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1267 auto &DL = DAG.getDataLayout(); 1268 SDValue Chain = getControlRoot(); 1269 SmallVector<ISD::OutputArg, 8> Outs; 1270 SmallVector<SDValue, 8> OutVals; 1271 1272 if (!FuncInfo.CanLowerReturn) { 1273 unsigned DemoteReg = FuncInfo.DemoteRegister; 1274 const Function *F = I.getParent()->getParent(); 1275 1276 // Emit a store of the return value through the virtual register. 1277 // Leave Outs empty so that LowerReturn won't try to load return 1278 // registers the usual way. 1279 SmallVector<EVT, 1> PtrValueVTs; 1280 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1281 PtrValueVTs); 1282 1283 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1284 SDValue RetOp = getValue(I.getOperand(0)); 1285 1286 SmallVector<EVT, 4> ValueVTs; 1287 SmallVector<uint64_t, 4> Offsets; 1288 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1289 unsigned NumValues = ValueVTs.size(); 1290 1291 SmallVector<SDValue, 4> Chains(NumValues); 1292 for (unsigned i = 0; i != NumValues; ++i) { 1293 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1294 RetPtr.getValueType(), RetPtr, 1295 DAG.getIntPtrConstant(Offsets[i], 1296 getCurSDLoc())); 1297 Chains[i] = 1298 DAG.getStore(Chain, getCurSDLoc(), 1299 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1300 // FIXME: better loc info would be nice. 1301 Add, MachinePointerInfo(), false, false, 0); 1302 } 1303 1304 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1305 MVT::Other, Chains); 1306 } else if (I.getNumOperands() != 0) { 1307 SmallVector<EVT, 4> ValueVTs; 1308 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1309 unsigned NumValues = ValueVTs.size(); 1310 if (NumValues) { 1311 SDValue RetOp = getValue(I.getOperand(0)); 1312 1313 const Function *F = I.getParent()->getParent(); 1314 1315 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1316 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1317 Attribute::SExt)) 1318 ExtendKind = ISD::SIGN_EXTEND; 1319 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1320 Attribute::ZExt)) 1321 ExtendKind = ISD::ZERO_EXTEND; 1322 1323 LLVMContext &Context = F->getContext(); 1324 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1325 Attribute::InReg); 1326 1327 for (unsigned j = 0; j != NumValues; ++j) { 1328 EVT VT = ValueVTs[j]; 1329 1330 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1331 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1332 1333 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1334 MVT PartVT = TLI.getRegisterType(Context, VT); 1335 SmallVector<SDValue, 4> Parts(NumParts); 1336 getCopyToParts(DAG, getCurSDLoc(), 1337 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1338 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1339 1340 // 'inreg' on function refers to return value 1341 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1342 if (RetInReg) 1343 Flags.setInReg(); 1344 1345 // Propagate extension type if any 1346 if (ExtendKind == ISD::SIGN_EXTEND) 1347 Flags.setSExt(); 1348 else if (ExtendKind == ISD::ZERO_EXTEND) 1349 Flags.setZExt(); 1350 1351 for (unsigned i = 0; i < NumParts; ++i) { 1352 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1353 VT, /*isfixed=*/true, 0, 0)); 1354 OutVals.push_back(Parts[i]); 1355 } 1356 } 1357 } 1358 } 1359 1360 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1361 CallingConv::ID CallConv = 1362 DAG.getMachineFunction().getFunction()->getCallingConv(); 1363 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1364 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1365 1366 // Verify that the target's LowerReturn behaved as expected. 1367 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1368 "LowerReturn didn't return a valid chain!"); 1369 1370 // Update the DAG with the new chain value resulting from return lowering. 1371 DAG.setRoot(Chain); 1372 } 1373 1374 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1375 /// created for it, emit nodes to copy the value into the virtual 1376 /// registers. 1377 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1378 // Skip empty types 1379 if (V->getType()->isEmptyTy()) 1380 return; 1381 1382 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1383 if (VMI != FuncInfo.ValueMap.end()) { 1384 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1385 CopyValueToVirtualRegister(V, VMI->second); 1386 } 1387 } 1388 1389 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1390 /// the current basic block, add it to ValueMap now so that we'll get a 1391 /// CopyTo/FromReg. 1392 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1393 // No need to export constants. 1394 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1395 1396 // Already exported? 1397 if (FuncInfo.isExportedInst(V)) return; 1398 1399 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1400 CopyValueToVirtualRegister(V, Reg); 1401 } 1402 1403 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1404 const BasicBlock *FromBB) { 1405 // The operands of the setcc have to be in this block. We don't know 1406 // how to export them from some other block. 1407 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1408 // Can export from current BB. 1409 if (VI->getParent() == FromBB) 1410 return true; 1411 1412 // Is already exported, noop. 1413 return FuncInfo.isExportedInst(V); 1414 } 1415 1416 // If this is an argument, we can export it if the BB is the entry block or 1417 // if it is already exported. 1418 if (isa<Argument>(V)) { 1419 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1420 return true; 1421 1422 // Otherwise, can only export this if it is already exported. 1423 return FuncInfo.isExportedInst(V); 1424 } 1425 1426 // Otherwise, constants can always be exported. 1427 return true; 1428 } 1429 1430 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1431 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1432 const MachineBasicBlock *Dst) const { 1433 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1434 if (!BPI) 1435 return 0; 1436 const BasicBlock *SrcBB = Src->getBasicBlock(); 1437 const BasicBlock *DstBB = Dst->getBasicBlock(); 1438 return BPI->getEdgeWeight(SrcBB, DstBB); 1439 } 1440 1441 void SelectionDAGBuilder:: 1442 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1443 uint32_t Weight /* = 0 */) { 1444 if (!Weight) 1445 Weight = getEdgeWeight(Src, Dst); 1446 Src->addSuccessor(Dst, Weight); 1447 } 1448 1449 1450 static bool InBlock(const Value *V, const BasicBlock *BB) { 1451 if (const Instruction *I = dyn_cast<Instruction>(V)) 1452 return I->getParent() == BB; 1453 return true; 1454 } 1455 1456 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1457 /// This function emits a branch and is used at the leaves of an OR or an 1458 /// AND operator tree. 1459 /// 1460 void 1461 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1462 MachineBasicBlock *TBB, 1463 MachineBasicBlock *FBB, 1464 MachineBasicBlock *CurBB, 1465 MachineBasicBlock *SwitchBB, 1466 uint32_t TWeight, 1467 uint32_t FWeight) { 1468 const BasicBlock *BB = CurBB->getBasicBlock(); 1469 1470 // If the leaf of the tree is a comparison, merge the condition into 1471 // the caseblock. 1472 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1473 // The operands of the cmp have to be in this block. We don't know 1474 // how to export them from some other block. If this is the first block 1475 // of the sequence, no exporting is needed. 1476 if (CurBB == SwitchBB || 1477 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1478 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1479 ISD::CondCode Condition; 1480 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1481 Condition = getICmpCondCode(IC->getPredicate()); 1482 } else { 1483 const FCmpInst *FC = cast<FCmpInst>(Cond); 1484 Condition = getFCmpCondCode(FC->getPredicate()); 1485 if (TM.Options.NoNaNsFPMath) 1486 Condition = getFCmpCodeWithoutNaN(Condition); 1487 } 1488 1489 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1490 TBB, FBB, CurBB, TWeight, FWeight); 1491 SwitchCases.push_back(CB); 1492 return; 1493 } 1494 } 1495 1496 // Create a CaseBlock record representing this branch. 1497 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1498 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1499 SwitchCases.push_back(CB); 1500 } 1501 1502 /// Scale down both weights to fit into uint32_t. 1503 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1504 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1505 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1506 NewTrue = NewTrue / Scale; 1507 NewFalse = NewFalse / Scale; 1508 } 1509 1510 /// FindMergedConditions - If Cond is an expression like 1511 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1512 MachineBasicBlock *TBB, 1513 MachineBasicBlock *FBB, 1514 MachineBasicBlock *CurBB, 1515 MachineBasicBlock *SwitchBB, 1516 Instruction::BinaryOps Opc, 1517 uint32_t TWeight, 1518 uint32_t FWeight) { 1519 // If this node is not part of the or/and tree, emit it as a branch. 1520 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1521 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1522 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1523 BOp->getParent() != CurBB->getBasicBlock() || 1524 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1525 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1526 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1527 TWeight, FWeight); 1528 return; 1529 } 1530 1531 // Create TmpBB after CurBB. 1532 MachineFunction::iterator BBI = CurBB; 1533 MachineFunction &MF = DAG.getMachineFunction(); 1534 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1535 CurBB->getParent()->insert(++BBI, TmpBB); 1536 1537 if (Opc == Instruction::Or) { 1538 // Codegen X | Y as: 1539 // BB1: 1540 // jmp_if_X TBB 1541 // jmp TmpBB 1542 // TmpBB: 1543 // jmp_if_Y TBB 1544 // jmp FBB 1545 // 1546 1547 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1548 // The requirement is that 1549 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1550 // = TrueProb for original BB. 1551 // Assuming the original weights are A and B, one choice is to set BB1's 1552 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1553 // assumes that 1554 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1555 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1556 // TmpBB, but the math is more complicated. 1557 1558 uint64_t NewTrueWeight = TWeight; 1559 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1560 ScaleWeights(NewTrueWeight, NewFalseWeight); 1561 // Emit the LHS condition. 1562 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1563 NewTrueWeight, NewFalseWeight); 1564 1565 NewTrueWeight = TWeight; 1566 NewFalseWeight = 2 * (uint64_t)FWeight; 1567 ScaleWeights(NewTrueWeight, NewFalseWeight); 1568 // Emit the RHS condition into TmpBB. 1569 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1570 NewTrueWeight, NewFalseWeight); 1571 } else { 1572 assert(Opc == Instruction::And && "Unknown merge op!"); 1573 // Codegen X & Y as: 1574 // BB1: 1575 // jmp_if_X TmpBB 1576 // jmp FBB 1577 // TmpBB: 1578 // jmp_if_Y TBB 1579 // jmp FBB 1580 // 1581 // This requires creation of TmpBB after CurBB. 1582 1583 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1584 // The requirement is that 1585 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1586 // = FalseProb for original BB. 1587 // Assuming the original weights are A and B, one choice is to set BB1's 1588 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1589 // assumes that 1590 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1591 1592 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1593 uint64_t NewFalseWeight = FWeight; 1594 ScaleWeights(NewTrueWeight, NewFalseWeight); 1595 // Emit the LHS condition. 1596 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1597 NewTrueWeight, NewFalseWeight); 1598 1599 NewTrueWeight = 2 * (uint64_t)TWeight; 1600 NewFalseWeight = FWeight; 1601 ScaleWeights(NewTrueWeight, NewFalseWeight); 1602 // Emit the RHS condition into TmpBB. 1603 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1604 NewTrueWeight, NewFalseWeight); 1605 } 1606 } 1607 1608 /// If the set of cases should be emitted as a series of branches, return true. 1609 /// If we should emit this as a bunch of and/or'd together conditions, return 1610 /// false. 1611 bool 1612 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1613 if (Cases.size() != 2) return true; 1614 1615 // If this is two comparisons of the same values or'd or and'd together, they 1616 // will get folded into a single comparison, so don't emit two blocks. 1617 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1618 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1619 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1620 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1621 return false; 1622 } 1623 1624 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1625 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1626 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1627 Cases[0].CC == Cases[1].CC && 1628 isa<Constant>(Cases[0].CmpRHS) && 1629 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1630 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1631 return false; 1632 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1633 return false; 1634 } 1635 1636 return true; 1637 } 1638 1639 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1640 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1641 1642 // Update machine-CFG edges. 1643 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1644 1645 if (I.isUnconditional()) { 1646 // Update machine-CFG edges. 1647 BrMBB->addSuccessor(Succ0MBB); 1648 1649 // If this is not a fall-through branch or optimizations are switched off, 1650 // emit the branch. 1651 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1652 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1653 MVT::Other, getControlRoot(), 1654 DAG.getBasicBlock(Succ0MBB))); 1655 1656 return; 1657 } 1658 1659 // If this condition is one of the special cases we handle, do special stuff 1660 // now. 1661 const Value *CondVal = I.getCondition(); 1662 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1663 1664 // If this is a series of conditions that are or'd or and'd together, emit 1665 // this as a sequence of branches instead of setcc's with and/or operations. 1666 // As long as jumps are not expensive, this should improve performance. 1667 // For example, instead of something like: 1668 // cmp A, B 1669 // C = seteq 1670 // cmp D, E 1671 // F = setle 1672 // or C, F 1673 // jnz foo 1674 // Emit: 1675 // cmp A, B 1676 // je foo 1677 // cmp D, E 1678 // jle foo 1679 // 1680 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1681 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1682 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1683 !I.getMetadata(LLVMContext::MD_unpredictable) && 1684 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1685 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1686 Opcode, getEdgeWeight(BrMBB, Succ0MBB), 1687 getEdgeWeight(BrMBB, Succ1MBB)); 1688 // If the compares in later blocks need to use values not currently 1689 // exported from this block, export them now. This block should always 1690 // be the first entry. 1691 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1692 1693 // Allow some cases to be rejected. 1694 if (ShouldEmitAsBranches(SwitchCases)) { 1695 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1696 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1697 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1698 } 1699 1700 // Emit the branch for this block. 1701 visitSwitchCase(SwitchCases[0], BrMBB); 1702 SwitchCases.erase(SwitchCases.begin()); 1703 return; 1704 } 1705 1706 // Okay, we decided not to do this, remove any inserted MBB's and clear 1707 // SwitchCases. 1708 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1709 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1710 1711 SwitchCases.clear(); 1712 } 1713 } 1714 1715 // Create a CaseBlock record representing this branch. 1716 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1717 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1718 1719 // Use visitSwitchCase to actually insert the fast branch sequence for this 1720 // cond branch. 1721 visitSwitchCase(CB, BrMBB); 1722 } 1723 1724 /// visitSwitchCase - Emits the necessary code to represent a single node in 1725 /// the binary search tree resulting from lowering a switch instruction. 1726 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1727 MachineBasicBlock *SwitchBB) { 1728 SDValue Cond; 1729 SDValue CondLHS = getValue(CB.CmpLHS); 1730 SDLoc dl = getCurSDLoc(); 1731 1732 // Build the setcc now. 1733 if (!CB.CmpMHS) { 1734 // Fold "(X == true)" to X and "(X == false)" to !X to 1735 // handle common cases produced by branch lowering. 1736 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1737 CB.CC == ISD::SETEQ) 1738 Cond = CondLHS; 1739 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1740 CB.CC == ISD::SETEQ) { 1741 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1742 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1743 } else 1744 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1745 } else { 1746 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1747 1748 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1749 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1750 1751 SDValue CmpOp = getValue(CB.CmpMHS); 1752 EVT VT = CmpOp.getValueType(); 1753 1754 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1755 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1756 ISD::SETLE); 1757 } else { 1758 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1759 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1760 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1761 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1762 } 1763 } 1764 1765 // Update successor info 1766 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1767 // TrueBB and FalseBB are always different unless the incoming IR is 1768 // degenerate. This only happens when running llc on weird IR. 1769 if (CB.TrueBB != CB.FalseBB) 1770 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1771 1772 // If the lhs block is the next block, invert the condition so that we can 1773 // fall through to the lhs instead of the rhs block. 1774 if (CB.TrueBB == NextBlock(SwitchBB)) { 1775 std::swap(CB.TrueBB, CB.FalseBB); 1776 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1777 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1778 } 1779 1780 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1781 MVT::Other, getControlRoot(), Cond, 1782 DAG.getBasicBlock(CB.TrueBB)); 1783 1784 // Insert the false branch. Do this even if it's a fall through branch, 1785 // this makes it easier to do DAG optimizations which require inverting 1786 // the branch condition. 1787 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1788 DAG.getBasicBlock(CB.FalseBB)); 1789 1790 DAG.setRoot(BrCond); 1791 } 1792 1793 /// visitJumpTable - Emit JumpTable node in the current MBB 1794 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1795 // Emit the code for the jump table 1796 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1797 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1798 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1799 JT.Reg, PTy); 1800 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1801 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1802 MVT::Other, Index.getValue(1), 1803 Table, Index); 1804 DAG.setRoot(BrJumpTable); 1805 } 1806 1807 /// visitJumpTableHeader - This function emits necessary code to produce index 1808 /// in the JumpTable from switch case. 1809 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1810 JumpTableHeader &JTH, 1811 MachineBasicBlock *SwitchBB) { 1812 SDLoc dl = getCurSDLoc(); 1813 1814 // Subtract the lowest switch case value from the value being switched on and 1815 // conditional branch to default mbb if the result is greater than the 1816 // difference between smallest and largest cases. 1817 SDValue SwitchOp = getValue(JTH.SValue); 1818 EVT VT = SwitchOp.getValueType(); 1819 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1820 DAG.getConstant(JTH.First, dl, VT)); 1821 1822 // The SDNode we just created, which holds the value being switched on minus 1823 // the smallest case value, needs to be copied to a virtual register so it 1824 // can be used as an index into the jump table in a subsequent basic block. 1825 // This value may be smaller or larger than the target's pointer type, and 1826 // therefore require extension or truncating. 1827 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1828 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1829 1830 unsigned JumpTableReg = 1831 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1832 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1833 JumpTableReg, SwitchOp); 1834 JT.Reg = JumpTableReg; 1835 1836 // Emit the range check for the jump table, and branch to the default block 1837 // for the switch statement if the value being switched on exceeds the largest 1838 // case in the switch. 1839 SDValue CMP = DAG.getSetCC( 1840 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1841 Sub.getValueType()), 1842 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1843 1844 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1845 MVT::Other, CopyTo, CMP, 1846 DAG.getBasicBlock(JT.Default)); 1847 1848 // Avoid emitting unnecessary branches to the next block. 1849 if (JT.MBB != NextBlock(SwitchBB)) 1850 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1851 DAG.getBasicBlock(JT.MBB)); 1852 1853 DAG.setRoot(BrCond); 1854 } 1855 1856 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1857 /// tail spliced into a stack protector check success bb. 1858 /// 1859 /// For a high level explanation of how this fits into the stack protector 1860 /// generation see the comment on the declaration of class 1861 /// StackProtectorDescriptor. 1862 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1863 MachineBasicBlock *ParentBB) { 1864 1865 // First create the loads to the guard/stack slot for the comparison. 1866 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1867 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1868 1869 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1870 int FI = MFI->getStackProtectorIndex(); 1871 1872 const Value *IRGuard = SPD.getGuard(); 1873 SDValue GuardPtr = getValue(IRGuard); 1874 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1875 1876 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1877 1878 SDValue Guard; 1879 SDLoc dl = getCurSDLoc(); 1880 1881 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1882 // guard value from the virtual register holding the value. Otherwise, emit a 1883 // volatile load to retrieve the stack guard value. 1884 unsigned GuardReg = SPD.getGuardReg(); 1885 1886 if (GuardReg && TLI.useLoadStackGuardNode()) 1887 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1888 PtrTy); 1889 else 1890 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1891 GuardPtr, MachinePointerInfo(IRGuard, 0), 1892 true, false, false, Align); 1893 1894 SDValue StackSlot = DAG.getLoad( 1895 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1896 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1897 false, false, Align); 1898 1899 // Perform the comparison via a subtract/getsetcc. 1900 EVT VT = Guard.getValueType(); 1901 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1902 1903 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1904 *DAG.getContext(), 1905 Sub.getValueType()), 1906 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1907 1908 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1909 // branch to failure MBB. 1910 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1911 MVT::Other, StackSlot.getOperand(0), 1912 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1913 // Otherwise branch to success MBB. 1914 SDValue Br = DAG.getNode(ISD::BR, dl, 1915 MVT::Other, BrCond, 1916 DAG.getBasicBlock(SPD.getSuccessMBB())); 1917 1918 DAG.setRoot(Br); 1919 } 1920 1921 /// Codegen the failure basic block for a stack protector check. 1922 /// 1923 /// A failure stack protector machine basic block consists simply of a call to 1924 /// __stack_chk_fail(). 1925 /// 1926 /// For a high level explanation of how this fits into the stack protector 1927 /// generation see the comment on the declaration of class 1928 /// StackProtectorDescriptor. 1929 void 1930 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1931 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1932 SDValue Chain = 1933 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1934 nullptr, 0, false, getCurSDLoc(), false, false).second; 1935 DAG.setRoot(Chain); 1936 } 1937 1938 /// visitBitTestHeader - This function emits necessary code to produce value 1939 /// suitable for "bit tests" 1940 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1941 MachineBasicBlock *SwitchBB) { 1942 SDLoc dl = getCurSDLoc(); 1943 1944 // Subtract the minimum value 1945 SDValue SwitchOp = getValue(B.SValue); 1946 EVT VT = SwitchOp.getValueType(); 1947 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1948 DAG.getConstant(B.First, dl, VT)); 1949 1950 // Check range 1951 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1952 SDValue RangeCmp = DAG.getSetCC( 1953 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1954 Sub.getValueType()), 1955 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 1956 1957 // Determine the type of the test operands. 1958 bool UsePtrType = false; 1959 if (!TLI.isTypeLegal(VT)) 1960 UsePtrType = true; 1961 else { 1962 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1963 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1964 // Switch table case range are encoded into series of masks. 1965 // Just use pointer type, it's guaranteed to fit. 1966 UsePtrType = true; 1967 break; 1968 } 1969 } 1970 if (UsePtrType) { 1971 VT = TLI.getPointerTy(DAG.getDataLayout()); 1972 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 1973 } 1974 1975 B.RegVT = VT.getSimpleVT(); 1976 B.Reg = FuncInfo.CreateReg(B.RegVT); 1977 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 1978 1979 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1980 1981 addSuccessorWithWeight(SwitchBB, B.Default, B.DefaultWeight); 1982 addSuccessorWithWeight(SwitchBB, MBB, B.Weight); 1983 1984 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 1985 MVT::Other, CopyTo, RangeCmp, 1986 DAG.getBasicBlock(B.Default)); 1987 1988 // Avoid emitting unnecessary branches to the next block. 1989 if (MBB != NextBlock(SwitchBB)) 1990 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 1991 DAG.getBasicBlock(MBB)); 1992 1993 DAG.setRoot(BrRange); 1994 } 1995 1996 /// visitBitTestCase - this function produces one "bit test" 1997 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1998 MachineBasicBlock* NextMBB, 1999 uint32_t BranchWeightToNext, 2000 unsigned Reg, 2001 BitTestCase &B, 2002 MachineBasicBlock *SwitchBB) { 2003 SDLoc dl = getCurSDLoc(); 2004 MVT VT = BB.RegVT; 2005 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2006 SDValue Cmp; 2007 unsigned PopCount = countPopulation(B.Mask); 2008 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2009 if (PopCount == 1) { 2010 // Testing for a single bit; just compare the shift count with what it 2011 // would need to be to shift a 1 bit in that position. 2012 Cmp = DAG.getSetCC( 2013 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2014 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2015 ISD::SETEQ); 2016 } else if (PopCount == BB.Range) { 2017 // There is only one zero bit in the range, test for it directly. 2018 Cmp = DAG.getSetCC( 2019 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2020 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2021 ISD::SETNE); 2022 } else { 2023 // Make desired shift 2024 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2025 DAG.getConstant(1, dl, VT), ShiftOp); 2026 2027 // Emit bit tests and jumps 2028 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2029 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2030 Cmp = DAG.getSetCC( 2031 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2032 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2033 } 2034 2035 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 2036 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 2037 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 2038 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 2039 2040 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2041 MVT::Other, getControlRoot(), 2042 Cmp, DAG.getBasicBlock(B.TargetBB)); 2043 2044 // Avoid emitting unnecessary branches to the next block. 2045 if (NextMBB != NextBlock(SwitchBB)) 2046 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2047 DAG.getBasicBlock(NextMBB)); 2048 2049 DAG.setRoot(BrAnd); 2050 } 2051 2052 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2053 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2054 2055 // Retrieve successors. Look through artificial IR level blocks like catchpads 2056 // and catchendpads for successors. 2057 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2058 const BasicBlock *EHPadBB = I.getSuccessor(1); 2059 2060 const Value *Callee(I.getCalledValue()); 2061 const Function *Fn = dyn_cast<Function>(Callee); 2062 if (isa<InlineAsm>(Callee)) 2063 visitInlineAsm(&I); 2064 else if (Fn && Fn->isIntrinsic()) { 2065 switch (Fn->getIntrinsicID()) { 2066 default: 2067 llvm_unreachable("Cannot invoke this intrinsic"); 2068 case Intrinsic::donothing: 2069 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2070 break; 2071 case Intrinsic::experimental_patchpoint_void: 2072 case Intrinsic::experimental_patchpoint_i64: 2073 visitPatchpoint(&I, EHPadBB); 2074 break; 2075 case Intrinsic::experimental_gc_statepoint: 2076 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2077 break; 2078 } 2079 } else 2080 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2081 2082 // If the value of the invoke is used outside of its defining block, make it 2083 // available as a virtual register. 2084 // We already took care of the exported value for the statepoint instruction 2085 // during call to the LowerStatepoint. 2086 if (!isStatepoint(I)) { 2087 CopyToExportRegsIfNeeded(&I); 2088 } 2089 2090 SmallVector<MachineBasicBlock *, 1> UnwindDests; 2091 findUnwindDestinations(FuncInfo, EHPadBB, UnwindDests); 2092 2093 // Update successor info. 2094 // FIXME: The weights for catchpads will be wrong. 2095 addSuccessorWithWeight(InvokeMBB, Return); 2096 for (MachineBasicBlock *UnwindDest : UnwindDests) { 2097 UnwindDest->setIsEHPad(); 2098 addSuccessorWithWeight(InvokeMBB, UnwindDest); 2099 } 2100 2101 // Drop into normal successor. 2102 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2103 MVT::Other, getControlRoot(), 2104 DAG.getBasicBlock(Return))); 2105 } 2106 2107 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2108 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2109 } 2110 2111 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2112 assert(FuncInfo.MBB->isEHPad() && 2113 "Call to landingpad not in landing pad!"); 2114 2115 MachineBasicBlock *MBB = FuncInfo.MBB; 2116 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2117 AddLandingPadInfo(LP, MMI, MBB); 2118 2119 // If there aren't registers to copy the values into (e.g., during SjLj 2120 // exceptions), then don't bother to create these DAG nodes. 2121 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2122 if (TLI.getExceptionPointerRegister() == 0 && 2123 TLI.getExceptionSelectorRegister() == 0) 2124 return; 2125 2126 SmallVector<EVT, 2> ValueVTs; 2127 SDLoc dl = getCurSDLoc(); 2128 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2129 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2130 2131 // Get the two live-in registers as SDValues. The physregs have already been 2132 // copied into virtual registers. 2133 SDValue Ops[2]; 2134 if (FuncInfo.ExceptionPointerVirtReg) { 2135 Ops[0] = DAG.getZExtOrTrunc( 2136 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2137 FuncInfo.ExceptionPointerVirtReg, 2138 TLI.getPointerTy(DAG.getDataLayout())), 2139 dl, ValueVTs[0]); 2140 } else { 2141 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2142 } 2143 Ops[1] = DAG.getZExtOrTrunc( 2144 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2145 FuncInfo.ExceptionSelectorVirtReg, 2146 TLI.getPointerTy(DAG.getDataLayout())), 2147 dl, ValueVTs[1]); 2148 2149 // Merge into one. 2150 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2151 DAG.getVTList(ValueVTs), Ops); 2152 setValue(&LP, Res); 2153 } 2154 2155 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2156 #ifndef NDEBUG 2157 for (const CaseCluster &CC : Clusters) 2158 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2159 #endif 2160 2161 std::sort(Clusters.begin(), Clusters.end(), 2162 [](const CaseCluster &a, const CaseCluster &b) { 2163 return a.Low->getValue().slt(b.Low->getValue()); 2164 }); 2165 2166 // Merge adjacent clusters with the same destination. 2167 const unsigned N = Clusters.size(); 2168 unsigned DstIndex = 0; 2169 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2170 CaseCluster &CC = Clusters[SrcIndex]; 2171 const ConstantInt *CaseVal = CC.Low; 2172 MachineBasicBlock *Succ = CC.MBB; 2173 2174 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2175 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2176 // If this case has the same successor and is a neighbour, merge it into 2177 // the previous cluster. 2178 Clusters[DstIndex - 1].High = CaseVal; 2179 Clusters[DstIndex - 1].Weight += CC.Weight; 2180 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2181 } else { 2182 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2183 sizeof(Clusters[SrcIndex])); 2184 } 2185 } 2186 Clusters.resize(DstIndex); 2187 } 2188 2189 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2190 MachineBasicBlock *Last) { 2191 // Update JTCases. 2192 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2193 if (JTCases[i].first.HeaderBB == First) 2194 JTCases[i].first.HeaderBB = Last; 2195 2196 // Update BitTestCases. 2197 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2198 if (BitTestCases[i].Parent == First) 2199 BitTestCases[i].Parent = Last; 2200 } 2201 2202 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2203 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2204 2205 // Update machine-CFG edges with unique successors. 2206 SmallSet<BasicBlock*, 32> Done; 2207 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2208 BasicBlock *BB = I.getSuccessor(i); 2209 bool Inserted = Done.insert(BB).second; 2210 if (!Inserted) 2211 continue; 2212 2213 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2214 addSuccessorWithWeight(IndirectBrMBB, Succ); 2215 } 2216 2217 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2218 MVT::Other, getControlRoot(), 2219 getValue(I.getAddress()))); 2220 } 2221 2222 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2223 if (DAG.getTarget().Options.TrapUnreachable) 2224 DAG.setRoot( 2225 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2226 } 2227 2228 void SelectionDAGBuilder::visitFSub(const User &I) { 2229 // -0.0 - X --> fneg 2230 Type *Ty = I.getType(); 2231 if (isa<Constant>(I.getOperand(0)) && 2232 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2233 SDValue Op2 = getValue(I.getOperand(1)); 2234 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2235 Op2.getValueType(), Op2)); 2236 return; 2237 } 2238 2239 visitBinary(I, ISD::FSUB); 2240 } 2241 2242 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2243 SDValue Op1 = getValue(I.getOperand(0)); 2244 SDValue Op2 = getValue(I.getOperand(1)); 2245 2246 bool nuw = false; 2247 bool nsw = false; 2248 bool exact = false; 2249 FastMathFlags FMF; 2250 2251 if (const OverflowingBinaryOperator *OFBinOp = 2252 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2253 nuw = OFBinOp->hasNoUnsignedWrap(); 2254 nsw = OFBinOp->hasNoSignedWrap(); 2255 } 2256 if (const PossiblyExactOperator *ExactOp = 2257 dyn_cast<const PossiblyExactOperator>(&I)) 2258 exact = ExactOp->isExact(); 2259 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2260 FMF = FPOp->getFastMathFlags(); 2261 2262 SDNodeFlags Flags; 2263 Flags.setExact(exact); 2264 Flags.setNoSignedWrap(nsw); 2265 Flags.setNoUnsignedWrap(nuw); 2266 if (EnableFMFInDAG) { 2267 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2268 Flags.setNoInfs(FMF.noInfs()); 2269 Flags.setNoNaNs(FMF.noNaNs()); 2270 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2271 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2272 } 2273 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2274 Op1, Op2, &Flags); 2275 setValue(&I, BinNodeValue); 2276 } 2277 2278 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2279 SDValue Op1 = getValue(I.getOperand(0)); 2280 SDValue Op2 = getValue(I.getOperand(1)); 2281 2282 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2283 Op2.getValueType(), DAG.getDataLayout()); 2284 2285 // Coerce the shift amount to the right type if we can. 2286 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2287 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2288 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2289 SDLoc DL = getCurSDLoc(); 2290 2291 // If the operand is smaller than the shift count type, promote it. 2292 if (ShiftSize > Op2Size) 2293 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2294 2295 // If the operand is larger than the shift count type but the shift 2296 // count type has enough bits to represent any shift value, truncate 2297 // it now. This is a common case and it exposes the truncate to 2298 // optimization early. 2299 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2300 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2301 // Otherwise we'll need to temporarily settle for some other convenient 2302 // type. Type legalization will make adjustments once the shiftee is split. 2303 else 2304 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2305 } 2306 2307 bool nuw = false; 2308 bool nsw = false; 2309 bool exact = false; 2310 2311 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2312 2313 if (const OverflowingBinaryOperator *OFBinOp = 2314 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2315 nuw = OFBinOp->hasNoUnsignedWrap(); 2316 nsw = OFBinOp->hasNoSignedWrap(); 2317 } 2318 if (const PossiblyExactOperator *ExactOp = 2319 dyn_cast<const PossiblyExactOperator>(&I)) 2320 exact = ExactOp->isExact(); 2321 } 2322 SDNodeFlags Flags; 2323 Flags.setExact(exact); 2324 Flags.setNoSignedWrap(nsw); 2325 Flags.setNoUnsignedWrap(nuw); 2326 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2327 &Flags); 2328 setValue(&I, Res); 2329 } 2330 2331 void SelectionDAGBuilder::visitSDiv(const User &I) { 2332 SDValue Op1 = getValue(I.getOperand(0)); 2333 SDValue Op2 = getValue(I.getOperand(1)); 2334 2335 SDNodeFlags Flags; 2336 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2337 cast<PossiblyExactOperator>(&I)->isExact()); 2338 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2339 Op2, &Flags)); 2340 } 2341 2342 void SelectionDAGBuilder::visitICmp(const User &I) { 2343 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2344 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2345 predicate = IC->getPredicate(); 2346 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2347 predicate = ICmpInst::Predicate(IC->getPredicate()); 2348 SDValue Op1 = getValue(I.getOperand(0)); 2349 SDValue Op2 = getValue(I.getOperand(1)); 2350 ISD::CondCode Opcode = getICmpCondCode(predicate); 2351 2352 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2353 I.getType()); 2354 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2355 } 2356 2357 void SelectionDAGBuilder::visitFCmp(const User &I) { 2358 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2359 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2360 predicate = FC->getPredicate(); 2361 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2362 predicate = FCmpInst::Predicate(FC->getPredicate()); 2363 SDValue Op1 = getValue(I.getOperand(0)); 2364 SDValue Op2 = getValue(I.getOperand(1)); 2365 ISD::CondCode Condition = getFCmpCondCode(predicate); 2366 2367 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2368 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2369 // further optimization, but currently FMF is only applicable to binary nodes. 2370 if (TM.Options.NoNaNsFPMath) 2371 Condition = getFCmpCodeWithoutNaN(Condition); 2372 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2373 I.getType()); 2374 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2375 } 2376 2377 void SelectionDAGBuilder::visitSelect(const User &I) { 2378 SmallVector<EVT, 4> ValueVTs; 2379 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2380 ValueVTs); 2381 unsigned NumValues = ValueVTs.size(); 2382 if (NumValues == 0) return; 2383 2384 SmallVector<SDValue, 4> Values(NumValues); 2385 SDValue Cond = getValue(I.getOperand(0)); 2386 SDValue LHSVal = getValue(I.getOperand(1)); 2387 SDValue RHSVal = getValue(I.getOperand(2)); 2388 auto BaseOps = {Cond}; 2389 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2390 ISD::VSELECT : ISD::SELECT; 2391 2392 // Min/max matching is only viable if all output VTs are the same. 2393 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2394 EVT VT = ValueVTs[0]; 2395 LLVMContext &Ctx = *DAG.getContext(); 2396 auto &TLI = DAG.getTargetLoweringInfo(); 2397 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2398 VT = TLI.getTypeToTransformTo(Ctx, VT); 2399 2400 Value *LHS, *RHS; 2401 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2402 ISD::NodeType Opc = ISD::DELETED_NODE; 2403 switch (SPR.Flavor) { 2404 case SPF_UMAX: Opc = ISD::UMAX; break; 2405 case SPF_UMIN: Opc = ISD::UMIN; break; 2406 case SPF_SMAX: Opc = ISD::SMAX; break; 2407 case SPF_SMIN: Opc = ISD::SMIN; break; 2408 case SPF_FMINNUM: 2409 switch (SPR.NaNBehavior) { 2410 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2411 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2412 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2413 case SPNB_RETURNS_ANY: 2414 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ? ISD::FMINNUM 2415 : ISD::FMINNAN; 2416 break; 2417 } 2418 break; 2419 case SPF_FMAXNUM: 2420 switch (SPR.NaNBehavior) { 2421 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2422 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2423 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2424 case SPNB_RETURNS_ANY: 2425 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ? ISD::FMAXNUM 2426 : ISD::FMAXNAN; 2427 break; 2428 } 2429 break; 2430 default: break; 2431 } 2432 2433 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) && 2434 // If the underlying comparison instruction is used by any other instruction, 2435 // the consumed instructions won't be destroyed, so it is not profitable 2436 // to convert to a min/max. 2437 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2438 OpCode = Opc; 2439 LHSVal = getValue(LHS); 2440 RHSVal = getValue(RHS); 2441 BaseOps = {}; 2442 } 2443 } 2444 2445 for (unsigned i = 0; i != NumValues; ++i) { 2446 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2447 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2448 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2449 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2450 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2451 Ops); 2452 } 2453 2454 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2455 DAG.getVTList(ValueVTs), Values)); 2456 } 2457 2458 void SelectionDAGBuilder::visitTrunc(const User &I) { 2459 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2460 SDValue N = getValue(I.getOperand(0)); 2461 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2462 I.getType()); 2463 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2464 } 2465 2466 void SelectionDAGBuilder::visitZExt(const User &I) { 2467 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2468 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2469 SDValue N = getValue(I.getOperand(0)); 2470 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2471 I.getType()); 2472 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2473 } 2474 2475 void SelectionDAGBuilder::visitSExt(const User &I) { 2476 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2477 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2478 SDValue N = getValue(I.getOperand(0)); 2479 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2480 I.getType()); 2481 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2482 } 2483 2484 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2485 // FPTrunc is never a no-op cast, no need to check 2486 SDValue N = getValue(I.getOperand(0)); 2487 SDLoc dl = getCurSDLoc(); 2488 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2489 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2490 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2491 DAG.getTargetConstant( 2492 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2493 } 2494 2495 void SelectionDAGBuilder::visitFPExt(const User &I) { 2496 // FPExt is never a no-op cast, no need to check 2497 SDValue N = getValue(I.getOperand(0)); 2498 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2499 I.getType()); 2500 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2501 } 2502 2503 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2504 // FPToUI is never a no-op cast, no need to check 2505 SDValue N = getValue(I.getOperand(0)); 2506 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2507 I.getType()); 2508 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2509 } 2510 2511 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2512 // FPToSI is never a no-op cast, no need to check 2513 SDValue N = getValue(I.getOperand(0)); 2514 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2515 I.getType()); 2516 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2517 } 2518 2519 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2520 // UIToFP is never a no-op cast, no need to check 2521 SDValue N = getValue(I.getOperand(0)); 2522 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2523 I.getType()); 2524 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2525 } 2526 2527 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2528 // SIToFP is never a no-op cast, no need to check 2529 SDValue N = getValue(I.getOperand(0)); 2530 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2531 I.getType()); 2532 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2533 } 2534 2535 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2536 // What to do depends on the size of the integer and the size of the pointer. 2537 // We can either truncate, zero extend, or no-op, accordingly. 2538 SDValue N = getValue(I.getOperand(0)); 2539 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2540 I.getType()); 2541 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2542 } 2543 2544 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2545 // What to do depends on the size of the integer and the size of the pointer. 2546 // We can either truncate, zero extend, or no-op, accordingly. 2547 SDValue N = getValue(I.getOperand(0)); 2548 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2549 I.getType()); 2550 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2551 } 2552 2553 void SelectionDAGBuilder::visitBitCast(const User &I) { 2554 SDValue N = getValue(I.getOperand(0)); 2555 SDLoc dl = getCurSDLoc(); 2556 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2557 I.getType()); 2558 2559 // BitCast assures us that source and destination are the same size so this is 2560 // either a BITCAST or a no-op. 2561 if (DestVT != N.getValueType()) 2562 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2563 DestVT, N)); // convert types. 2564 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2565 // might fold any kind of constant expression to an integer constant and that 2566 // is not what we are looking for. Only regcognize a bitcast of a genuine 2567 // constant integer as an opaque constant. 2568 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2569 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2570 /*isOpaque*/true)); 2571 else 2572 setValue(&I, N); // noop cast. 2573 } 2574 2575 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2576 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2577 const Value *SV = I.getOperand(0); 2578 SDValue N = getValue(SV); 2579 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2580 2581 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2582 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2583 2584 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2585 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2586 2587 setValue(&I, N); 2588 } 2589 2590 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2591 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2592 SDValue InVec = getValue(I.getOperand(0)); 2593 SDValue InVal = getValue(I.getOperand(1)); 2594 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2595 TLI.getVectorIdxTy(DAG.getDataLayout())); 2596 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2597 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2598 InVec, InVal, InIdx)); 2599 } 2600 2601 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2602 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2603 SDValue InVec = getValue(I.getOperand(0)); 2604 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2605 TLI.getVectorIdxTy(DAG.getDataLayout())); 2606 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2607 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2608 InVec, InIdx)); 2609 } 2610 2611 // Utility for visitShuffleVector - Return true if every element in Mask, 2612 // beginning from position Pos and ending in Pos+Size, falls within the 2613 // specified sequential range [L, L+Pos). or is undef. 2614 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2615 unsigned Pos, unsigned Size, int Low) { 2616 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2617 if (Mask[i] >= 0 && Mask[i] != Low) 2618 return false; 2619 return true; 2620 } 2621 2622 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2623 SDValue Src1 = getValue(I.getOperand(0)); 2624 SDValue Src2 = getValue(I.getOperand(1)); 2625 2626 SmallVector<int, 8> Mask; 2627 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2628 unsigned MaskNumElts = Mask.size(); 2629 2630 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2631 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2632 EVT SrcVT = Src1.getValueType(); 2633 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2634 2635 if (SrcNumElts == MaskNumElts) { 2636 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2637 &Mask[0])); 2638 return; 2639 } 2640 2641 // Normalize the shuffle vector since mask and vector length don't match. 2642 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2643 // Mask is longer than the source vectors and is a multiple of the source 2644 // vectors. We can use concatenate vector to make the mask and vectors 2645 // lengths match. 2646 if (SrcNumElts*2 == MaskNumElts) { 2647 // First check for Src1 in low and Src2 in high 2648 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2649 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2650 // The shuffle is concatenating two vectors together. 2651 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2652 VT, Src1, Src2)); 2653 return; 2654 } 2655 // Then check for Src2 in low and Src1 in high 2656 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2657 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2658 // The shuffle is concatenating two vectors together. 2659 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2660 VT, Src2, Src1)); 2661 return; 2662 } 2663 } 2664 2665 // Pad both vectors with undefs to make them the same length as the mask. 2666 unsigned NumConcat = MaskNumElts / SrcNumElts; 2667 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2668 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2669 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2670 2671 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2672 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2673 MOps1[0] = Src1; 2674 MOps2[0] = Src2; 2675 2676 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2677 getCurSDLoc(), VT, MOps1); 2678 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2679 getCurSDLoc(), VT, MOps2); 2680 2681 // Readjust mask for new input vector length. 2682 SmallVector<int, 8> MappedOps; 2683 for (unsigned i = 0; i != MaskNumElts; ++i) { 2684 int Idx = Mask[i]; 2685 if (Idx >= (int)SrcNumElts) 2686 Idx -= SrcNumElts - MaskNumElts; 2687 MappedOps.push_back(Idx); 2688 } 2689 2690 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2691 &MappedOps[0])); 2692 return; 2693 } 2694 2695 if (SrcNumElts > MaskNumElts) { 2696 // Analyze the access pattern of the vector to see if we can extract 2697 // two subvectors and do the shuffle. The analysis is done by calculating 2698 // the range of elements the mask access on both vectors. 2699 int MinRange[2] = { static_cast<int>(SrcNumElts), 2700 static_cast<int>(SrcNumElts)}; 2701 int MaxRange[2] = {-1, -1}; 2702 2703 for (unsigned i = 0; i != MaskNumElts; ++i) { 2704 int Idx = Mask[i]; 2705 unsigned Input = 0; 2706 if (Idx < 0) 2707 continue; 2708 2709 if (Idx >= (int)SrcNumElts) { 2710 Input = 1; 2711 Idx -= SrcNumElts; 2712 } 2713 if (Idx > MaxRange[Input]) 2714 MaxRange[Input] = Idx; 2715 if (Idx < MinRange[Input]) 2716 MinRange[Input] = Idx; 2717 } 2718 2719 // Check if the access is smaller than the vector size and can we find 2720 // a reasonable extract index. 2721 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2722 // Extract. 2723 int StartIdx[2]; // StartIdx to extract from 2724 for (unsigned Input = 0; Input < 2; ++Input) { 2725 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2726 RangeUse[Input] = 0; // Unused 2727 StartIdx[Input] = 0; 2728 continue; 2729 } 2730 2731 // Find a good start index that is a multiple of the mask length. Then 2732 // see if the rest of the elements are in range. 2733 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2734 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2735 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2736 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2737 } 2738 2739 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2740 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2741 return; 2742 } 2743 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2744 // Extract appropriate subvector and generate a vector shuffle 2745 for (unsigned Input = 0; Input < 2; ++Input) { 2746 SDValue &Src = Input == 0 ? Src1 : Src2; 2747 if (RangeUse[Input] == 0) 2748 Src = DAG.getUNDEF(VT); 2749 else { 2750 SDLoc dl = getCurSDLoc(); 2751 Src = DAG.getNode( 2752 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2753 DAG.getConstant(StartIdx[Input], dl, 2754 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2755 } 2756 } 2757 2758 // Calculate new mask. 2759 SmallVector<int, 8> MappedOps; 2760 for (unsigned i = 0; i != MaskNumElts; ++i) { 2761 int Idx = Mask[i]; 2762 if (Idx >= 0) { 2763 if (Idx < (int)SrcNumElts) 2764 Idx -= StartIdx[0]; 2765 else 2766 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2767 } 2768 MappedOps.push_back(Idx); 2769 } 2770 2771 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2772 &MappedOps[0])); 2773 return; 2774 } 2775 } 2776 2777 // We can't use either concat vectors or extract subvectors so fall back to 2778 // replacing the shuffle with extract and build vector. 2779 // to insert and build vector. 2780 EVT EltVT = VT.getVectorElementType(); 2781 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2782 SDLoc dl = getCurSDLoc(); 2783 SmallVector<SDValue,8> Ops; 2784 for (unsigned i = 0; i != MaskNumElts; ++i) { 2785 int Idx = Mask[i]; 2786 SDValue Res; 2787 2788 if (Idx < 0) { 2789 Res = DAG.getUNDEF(EltVT); 2790 } else { 2791 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2792 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2793 2794 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2795 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2796 } 2797 2798 Ops.push_back(Res); 2799 } 2800 2801 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2802 } 2803 2804 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2805 const Value *Op0 = I.getOperand(0); 2806 const Value *Op1 = I.getOperand(1); 2807 Type *AggTy = I.getType(); 2808 Type *ValTy = Op1->getType(); 2809 bool IntoUndef = isa<UndefValue>(Op0); 2810 bool FromUndef = isa<UndefValue>(Op1); 2811 2812 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2813 2814 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2815 SmallVector<EVT, 4> AggValueVTs; 2816 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2817 SmallVector<EVT, 4> ValValueVTs; 2818 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2819 2820 unsigned NumAggValues = AggValueVTs.size(); 2821 unsigned NumValValues = ValValueVTs.size(); 2822 SmallVector<SDValue, 4> Values(NumAggValues); 2823 2824 // Ignore an insertvalue that produces an empty object 2825 if (!NumAggValues) { 2826 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2827 return; 2828 } 2829 2830 SDValue Agg = getValue(Op0); 2831 unsigned i = 0; 2832 // Copy the beginning value(s) from the original aggregate. 2833 for (; i != LinearIndex; ++i) 2834 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2835 SDValue(Agg.getNode(), Agg.getResNo() + i); 2836 // Copy values from the inserted value(s). 2837 if (NumValValues) { 2838 SDValue Val = getValue(Op1); 2839 for (; i != LinearIndex + NumValValues; ++i) 2840 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2841 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2842 } 2843 // Copy remaining value(s) from the original aggregate. 2844 for (; i != NumAggValues; ++i) 2845 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2846 SDValue(Agg.getNode(), Agg.getResNo() + i); 2847 2848 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2849 DAG.getVTList(AggValueVTs), Values)); 2850 } 2851 2852 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2853 const Value *Op0 = I.getOperand(0); 2854 Type *AggTy = Op0->getType(); 2855 Type *ValTy = I.getType(); 2856 bool OutOfUndef = isa<UndefValue>(Op0); 2857 2858 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2859 2860 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2861 SmallVector<EVT, 4> ValValueVTs; 2862 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2863 2864 unsigned NumValValues = ValValueVTs.size(); 2865 2866 // Ignore a extractvalue that produces an empty object 2867 if (!NumValValues) { 2868 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2869 return; 2870 } 2871 2872 SmallVector<SDValue, 4> Values(NumValValues); 2873 2874 SDValue Agg = getValue(Op0); 2875 // Copy out the selected value(s). 2876 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2877 Values[i - LinearIndex] = 2878 OutOfUndef ? 2879 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2880 SDValue(Agg.getNode(), Agg.getResNo() + i); 2881 2882 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2883 DAG.getVTList(ValValueVTs), Values)); 2884 } 2885 2886 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2887 Value *Op0 = I.getOperand(0); 2888 // Note that the pointer operand may be a vector of pointers. Take the scalar 2889 // element which holds a pointer. 2890 Type *Ty = Op0->getType()->getScalarType(); 2891 unsigned AS = Ty->getPointerAddressSpace(); 2892 SDValue N = getValue(Op0); 2893 SDLoc dl = getCurSDLoc(); 2894 2895 // Normalize Vector GEP - all scalar operands should be converted to the 2896 // splat vector. 2897 unsigned VectorWidth = I.getType()->isVectorTy() ? 2898 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2899 2900 if (VectorWidth && !N.getValueType().isVector()) { 2901 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2902 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2903 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2904 } 2905 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2906 OI != E; ++OI) { 2907 const Value *Idx = *OI; 2908 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2909 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2910 if (Field) { 2911 // N = N + Offset 2912 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2913 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2914 DAG.getConstant(Offset, dl, N.getValueType())); 2915 } 2916 2917 Ty = StTy->getElementType(Field); 2918 } else { 2919 Ty = cast<SequentialType>(Ty)->getElementType(); 2920 MVT PtrTy = 2921 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 2922 unsigned PtrSize = PtrTy.getSizeInBits(); 2923 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2924 2925 // If this is a scalar constant or a splat vector of constants, 2926 // handle it quickly. 2927 const auto *CI = dyn_cast<ConstantInt>(Idx); 2928 if (!CI && isa<ConstantDataVector>(Idx) && 2929 cast<ConstantDataVector>(Idx)->getSplatValue()) 2930 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 2931 2932 if (CI) { 2933 if (CI->isZero()) 2934 continue; 2935 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2936 SDValue OffsVal = VectorWidth ? 2937 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 2938 DAG.getConstant(Offs, dl, PtrTy); 2939 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 2940 continue; 2941 } 2942 2943 // N = N + Idx * ElementSize; 2944 SDValue IdxN = getValue(Idx); 2945 2946 if (!IdxN.getValueType().isVector() && VectorWidth) { 2947 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 2948 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 2949 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2950 } 2951 // If the index is smaller or larger than intptr_t, truncate or extend 2952 // it. 2953 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 2954 2955 // If this is a multiply by a power of two, turn it into a shl 2956 // immediately. This is a very common case. 2957 if (ElementSize != 1) { 2958 if (ElementSize.isPowerOf2()) { 2959 unsigned Amt = ElementSize.logBase2(); 2960 IdxN = DAG.getNode(ISD::SHL, dl, 2961 N.getValueType(), IdxN, 2962 DAG.getConstant(Amt, dl, IdxN.getValueType())); 2963 } else { 2964 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 2965 IdxN = DAG.getNode(ISD::MUL, dl, 2966 N.getValueType(), IdxN, Scale); 2967 } 2968 } 2969 2970 N = DAG.getNode(ISD::ADD, dl, 2971 N.getValueType(), N, IdxN); 2972 } 2973 } 2974 2975 setValue(&I, N); 2976 } 2977 2978 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2979 // If this is a fixed sized alloca in the entry block of the function, 2980 // allocate it statically on the stack. 2981 if (FuncInfo.StaticAllocaMap.count(&I)) 2982 return; // getValue will auto-populate this. 2983 2984 SDLoc dl = getCurSDLoc(); 2985 Type *Ty = I.getAllocatedType(); 2986 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2987 auto &DL = DAG.getDataLayout(); 2988 uint64_t TySize = DL.getTypeAllocSize(Ty); 2989 unsigned Align = 2990 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 2991 2992 SDValue AllocSize = getValue(I.getArraySize()); 2993 2994 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 2995 if (AllocSize.getValueType() != IntPtr) 2996 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 2997 2998 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 2999 AllocSize, 3000 DAG.getConstant(TySize, dl, IntPtr)); 3001 3002 // Handle alignment. If the requested alignment is less than or equal to 3003 // the stack alignment, ignore it. If the size is greater than or equal to 3004 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3005 unsigned StackAlign = 3006 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3007 if (Align <= StackAlign) 3008 Align = 0; 3009 3010 // Round the size of the allocation up to the stack alignment size 3011 // by add SA-1 to the size. 3012 AllocSize = DAG.getNode(ISD::ADD, dl, 3013 AllocSize.getValueType(), AllocSize, 3014 DAG.getIntPtrConstant(StackAlign - 1, dl)); 3015 3016 // Mask out the low bits for alignment purposes. 3017 AllocSize = DAG.getNode(ISD::AND, dl, 3018 AllocSize.getValueType(), AllocSize, 3019 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3020 dl)); 3021 3022 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3023 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3024 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3025 setValue(&I, DSA); 3026 DAG.setRoot(DSA.getValue(1)); 3027 3028 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3029 } 3030 3031 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3032 if (I.isAtomic()) 3033 return visitAtomicLoad(I); 3034 3035 const Value *SV = I.getOperand(0); 3036 SDValue Ptr = getValue(SV); 3037 3038 Type *Ty = I.getType(); 3039 3040 bool isVolatile = I.isVolatile(); 3041 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3042 3043 // The IR notion of invariant_load only guarantees that all *non-faulting* 3044 // invariant loads result in the same value. The MI notion of invariant load 3045 // guarantees that the load can be legally moved to any location within its 3046 // containing function. The MI notion of invariant_load is stronger than the 3047 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3048 // with a guarantee that the location being loaded from is dereferenceable 3049 // throughout the function's lifetime. 3050 3051 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3052 isDereferenceablePointer(SV, DAG.getDataLayout()); 3053 unsigned Alignment = I.getAlignment(); 3054 3055 AAMDNodes AAInfo; 3056 I.getAAMetadata(AAInfo); 3057 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3058 3059 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3060 SmallVector<EVT, 4> ValueVTs; 3061 SmallVector<uint64_t, 4> Offsets; 3062 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3063 unsigned NumValues = ValueVTs.size(); 3064 if (NumValues == 0) 3065 return; 3066 3067 SDValue Root; 3068 bool ConstantMemory = false; 3069 if (isVolatile || NumValues > MaxParallelChains) 3070 // Serialize volatile loads with other side effects. 3071 Root = getRoot(); 3072 else if (AA->pointsToConstantMemory(MemoryLocation( 3073 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3074 // Do not serialize (non-volatile) loads of constant memory with anything. 3075 Root = DAG.getEntryNode(); 3076 ConstantMemory = true; 3077 } else { 3078 // Do not serialize non-volatile loads against each other. 3079 Root = DAG.getRoot(); 3080 } 3081 3082 SDLoc dl = getCurSDLoc(); 3083 3084 if (isVolatile) 3085 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3086 3087 SmallVector<SDValue, 4> Values(NumValues); 3088 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3089 EVT PtrVT = Ptr.getValueType(); 3090 unsigned ChainI = 0; 3091 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3092 // Serializing loads here may result in excessive register pressure, and 3093 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3094 // could recover a bit by hoisting nodes upward in the chain by recognizing 3095 // they are side-effect free or do not alias. The optimizer should really 3096 // avoid this case by converting large object/array copies to llvm.memcpy 3097 // (MaxParallelChains should always remain as failsafe). 3098 if (ChainI == MaxParallelChains) { 3099 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3100 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3101 makeArrayRef(Chains.data(), ChainI)); 3102 Root = Chain; 3103 ChainI = 0; 3104 } 3105 SDValue A = DAG.getNode(ISD::ADD, dl, 3106 PtrVT, Ptr, 3107 DAG.getConstant(Offsets[i], dl, PtrVT)); 3108 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3109 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3110 isNonTemporal, isInvariant, Alignment, AAInfo, 3111 Ranges); 3112 3113 Values[i] = L; 3114 Chains[ChainI] = L.getValue(1); 3115 } 3116 3117 if (!ConstantMemory) { 3118 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3119 makeArrayRef(Chains.data(), ChainI)); 3120 if (isVolatile) 3121 DAG.setRoot(Chain); 3122 else 3123 PendingLoads.push_back(Chain); 3124 } 3125 3126 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3127 DAG.getVTList(ValueVTs), Values)); 3128 } 3129 3130 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3131 if (I.isAtomic()) 3132 return visitAtomicStore(I); 3133 3134 const Value *SrcV = I.getOperand(0); 3135 const Value *PtrV = I.getOperand(1); 3136 3137 SmallVector<EVT, 4> ValueVTs; 3138 SmallVector<uint64_t, 4> Offsets; 3139 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3140 SrcV->getType(), ValueVTs, &Offsets); 3141 unsigned NumValues = ValueVTs.size(); 3142 if (NumValues == 0) 3143 return; 3144 3145 // Get the lowered operands. Note that we do this after 3146 // checking if NumResults is zero, because with zero results 3147 // the operands won't have values in the map. 3148 SDValue Src = getValue(SrcV); 3149 SDValue Ptr = getValue(PtrV); 3150 3151 SDValue Root = getRoot(); 3152 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3153 EVT PtrVT = Ptr.getValueType(); 3154 bool isVolatile = I.isVolatile(); 3155 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3156 unsigned Alignment = I.getAlignment(); 3157 SDLoc dl = getCurSDLoc(); 3158 3159 AAMDNodes AAInfo; 3160 I.getAAMetadata(AAInfo); 3161 3162 unsigned ChainI = 0; 3163 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3164 // See visitLoad comments. 3165 if (ChainI == MaxParallelChains) { 3166 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3167 makeArrayRef(Chains.data(), ChainI)); 3168 Root = Chain; 3169 ChainI = 0; 3170 } 3171 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3172 DAG.getConstant(Offsets[i], dl, PtrVT)); 3173 SDValue St = DAG.getStore(Root, dl, 3174 SDValue(Src.getNode(), Src.getResNo() + i), 3175 Add, MachinePointerInfo(PtrV, Offsets[i]), 3176 isVolatile, isNonTemporal, Alignment, AAInfo); 3177 Chains[ChainI] = St; 3178 } 3179 3180 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3181 makeArrayRef(Chains.data(), ChainI)); 3182 DAG.setRoot(StoreNode); 3183 } 3184 3185 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3186 SDLoc sdl = getCurSDLoc(); 3187 3188 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3189 Value *PtrOperand = I.getArgOperand(1); 3190 SDValue Ptr = getValue(PtrOperand); 3191 SDValue Src0 = getValue(I.getArgOperand(0)); 3192 SDValue Mask = getValue(I.getArgOperand(3)); 3193 EVT VT = Src0.getValueType(); 3194 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3195 if (!Alignment) 3196 Alignment = DAG.getEVTAlignment(VT); 3197 3198 AAMDNodes AAInfo; 3199 I.getAAMetadata(AAInfo); 3200 3201 MachineMemOperand *MMO = 3202 DAG.getMachineFunction(). 3203 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3204 MachineMemOperand::MOStore, VT.getStoreSize(), 3205 Alignment, AAInfo); 3206 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3207 MMO, false); 3208 DAG.setRoot(StoreNode); 3209 setValue(&I, StoreNode); 3210 } 3211 3212 // Get a uniform base for the Gather/Scatter intrinsic. 3213 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3214 // We try to represent it as a base pointer + vector of indices. 3215 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3216 // The first operand of the GEP may be a single pointer or a vector of pointers 3217 // Example: 3218 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3219 // or 3220 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3221 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3222 // 3223 // When the first GEP operand is a single pointer - it is the uniform base we 3224 // are looking for. If first operand of the GEP is a splat vector - we 3225 // extract the spalt value and use it as a uniform base. 3226 // In all other cases the function returns 'false'. 3227 // 3228 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3229 SelectionDAGBuilder* SDB) { 3230 3231 SelectionDAG& DAG = SDB->DAG; 3232 LLVMContext &Context = *DAG.getContext(); 3233 3234 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3235 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3236 if (!GEP || GEP->getNumOperands() > 2) 3237 return false; 3238 3239 Value *GEPPtr = GEP->getPointerOperand(); 3240 if (!GEPPtr->getType()->isVectorTy()) 3241 Ptr = GEPPtr; 3242 else if (!(Ptr = getSplatValue(GEPPtr))) 3243 return false; 3244 3245 Value *IndexVal = GEP->getOperand(1); 3246 3247 // The operands of the GEP may be defined in another basic block. 3248 // In this case we'll not find nodes for the operands. 3249 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3250 return false; 3251 3252 Base = SDB->getValue(Ptr); 3253 Index = SDB->getValue(IndexVal); 3254 3255 // Suppress sign extension. 3256 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3257 if (SDB->findValue(Sext->getOperand(0))) { 3258 IndexVal = Sext->getOperand(0); 3259 Index = SDB->getValue(IndexVal); 3260 } 3261 } 3262 if (!Index.getValueType().isVector()) { 3263 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3264 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3265 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3266 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3267 } 3268 return true; 3269 } 3270 3271 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3272 SDLoc sdl = getCurSDLoc(); 3273 3274 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3275 Value *Ptr = I.getArgOperand(1); 3276 SDValue Src0 = getValue(I.getArgOperand(0)); 3277 SDValue Mask = getValue(I.getArgOperand(3)); 3278 EVT VT = Src0.getValueType(); 3279 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3280 if (!Alignment) 3281 Alignment = DAG.getEVTAlignment(VT); 3282 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3283 3284 AAMDNodes AAInfo; 3285 I.getAAMetadata(AAInfo); 3286 3287 SDValue Base; 3288 SDValue Index; 3289 Value *BasePtr = Ptr; 3290 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3291 3292 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3293 MachineMemOperand *MMO = DAG.getMachineFunction(). 3294 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3295 MachineMemOperand::MOStore, VT.getStoreSize(), 3296 Alignment, AAInfo); 3297 if (!UniformBase) { 3298 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3299 Index = getValue(Ptr); 3300 } 3301 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3302 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3303 Ops, MMO); 3304 DAG.setRoot(Scatter); 3305 setValue(&I, Scatter); 3306 } 3307 3308 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3309 SDLoc sdl = getCurSDLoc(); 3310 3311 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3312 Value *PtrOperand = I.getArgOperand(0); 3313 SDValue Ptr = getValue(PtrOperand); 3314 SDValue Src0 = getValue(I.getArgOperand(3)); 3315 SDValue Mask = getValue(I.getArgOperand(2)); 3316 3317 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3318 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3319 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3320 if (!Alignment) 3321 Alignment = DAG.getEVTAlignment(VT); 3322 3323 AAMDNodes AAInfo; 3324 I.getAAMetadata(AAInfo); 3325 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3326 3327 SDValue InChain = DAG.getRoot(); 3328 if (AA->pointsToConstantMemory(MemoryLocation( 3329 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3330 AAInfo))) { 3331 // Do not serialize (non-volatile) loads of constant memory with anything. 3332 InChain = DAG.getEntryNode(); 3333 } 3334 3335 MachineMemOperand *MMO = 3336 DAG.getMachineFunction(). 3337 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3338 MachineMemOperand::MOLoad, VT.getStoreSize(), 3339 Alignment, AAInfo, Ranges); 3340 3341 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3342 ISD::NON_EXTLOAD); 3343 SDValue OutChain = Load.getValue(1); 3344 DAG.setRoot(OutChain); 3345 setValue(&I, Load); 3346 } 3347 3348 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3349 SDLoc sdl = getCurSDLoc(); 3350 3351 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3352 Value *Ptr = I.getArgOperand(0); 3353 SDValue Src0 = getValue(I.getArgOperand(3)); 3354 SDValue Mask = getValue(I.getArgOperand(2)); 3355 3356 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3357 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3358 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3359 if (!Alignment) 3360 Alignment = DAG.getEVTAlignment(VT); 3361 3362 AAMDNodes AAInfo; 3363 I.getAAMetadata(AAInfo); 3364 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3365 3366 SDValue Root = DAG.getRoot(); 3367 SDValue Base; 3368 SDValue Index; 3369 Value *BasePtr = Ptr; 3370 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3371 bool ConstantMemory = false; 3372 if (UniformBase && 3373 AA->pointsToConstantMemory(MemoryLocation( 3374 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3375 AAInfo))) { 3376 // Do not serialize (non-volatile) loads of constant memory with anything. 3377 Root = DAG.getEntryNode(); 3378 ConstantMemory = true; 3379 } 3380 3381 MachineMemOperand *MMO = 3382 DAG.getMachineFunction(). 3383 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3384 MachineMemOperand::MOLoad, VT.getStoreSize(), 3385 Alignment, AAInfo, Ranges); 3386 3387 if (!UniformBase) { 3388 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3389 Index = getValue(Ptr); 3390 } 3391 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3392 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3393 Ops, MMO); 3394 3395 SDValue OutChain = Gather.getValue(1); 3396 if (!ConstantMemory) 3397 PendingLoads.push_back(OutChain); 3398 setValue(&I, Gather); 3399 } 3400 3401 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3402 SDLoc dl = getCurSDLoc(); 3403 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3404 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3405 SynchronizationScope Scope = I.getSynchScope(); 3406 3407 SDValue InChain = getRoot(); 3408 3409 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3410 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3411 SDValue L = DAG.getAtomicCmpSwap( 3412 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3413 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3414 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3415 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3416 3417 SDValue OutChain = L.getValue(2); 3418 3419 setValue(&I, L); 3420 DAG.setRoot(OutChain); 3421 } 3422 3423 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3424 SDLoc dl = getCurSDLoc(); 3425 ISD::NodeType NT; 3426 switch (I.getOperation()) { 3427 default: llvm_unreachable("Unknown atomicrmw operation"); 3428 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3429 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3430 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3431 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3432 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3433 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3434 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3435 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3436 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3437 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3438 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3439 } 3440 AtomicOrdering Order = I.getOrdering(); 3441 SynchronizationScope Scope = I.getSynchScope(); 3442 3443 SDValue InChain = getRoot(); 3444 3445 SDValue L = 3446 DAG.getAtomic(NT, dl, 3447 getValue(I.getValOperand()).getSimpleValueType(), 3448 InChain, 3449 getValue(I.getPointerOperand()), 3450 getValue(I.getValOperand()), 3451 I.getPointerOperand(), 3452 /* Alignment=*/ 0, Order, Scope); 3453 3454 SDValue OutChain = L.getValue(1); 3455 3456 setValue(&I, L); 3457 DAG.setRoot(OutChain); 3458 } 3459 3460 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3461 SDLoc dl = getCurSDLoc(); 3462 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3463 SDValue Ops[3]; 3464 Ops[0] = getRoot(); 3465 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3466 TLI.getPointerTy(DAG.getDataLayout())); 3467 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3468 TLI.getPointerTy(DAG.getDataLayout())); 3469 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3470 } 3471 3472 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3473 SDLoc dl = getCurSDLoc(); 3474 AtomicOrdering Order = I.getOrdering(); 3475 SynchronizationScope Scope = I.getSynchScope(); 3476 3477 SDValue InChain = getRoot(); 3478 3479 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3480 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3481 3482 if (I.getAlignment() < VT.getSizeInBits() / 8) 3483 report_fatal_error("Cannot generate unaligned atomic load"); 3484 3485 MachineMemOperand *MMO = 3486 DAG.getMachineFunction(). 3487 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3488 MachineMemOperand::MOVolatile | 3489 MachineMemOperand::MOLoad, 3490 VT.getStoreSize(), 3491 I.getAlignment() ? I.getAlignment() : 3492 DAG.getEVTAlignment(VT)); 3493 3494 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3495 SDValue L = 3496 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3497 getValue(I.getPointerOperand()), MMO, 3498 Order, Scope); 3499 3500 SDValue OutChain = L.getValue(1); 3501 3502 setValue(&I, L); 3503 DAG.setRoot(OutChain); 3504 } 3505 3506 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3507 SDLoc dl = getCurSDLoc(); 3508 3509 AtomicOrdering Order = I.getOrdering(); 3510 SynchronizationScope Scope = I.getSynchScope(); 3511 3512 SDValue InChain = getRoot(); 3513 3514 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3515 EVT VT = 3516 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3517 3518 if (I.getAlignment() < VT.getSizeInBits() / 8) 3519 report_fatal_error("Cannot generate unaligned atomic store"); 3520 3521 SDValue OutChain = 3522 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3523 InChain, 3524 getValue(I.getPointerOperand()), 3525 getValue(I.getValueOperand()), 3526 I.getPointerOperand(), I.getAlignment(), 3527 Order, Scope); 3528 3529 DAG.setRoot(OutChain); 3530 } 3531 3532 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3533 /// node. 3534 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3535 unsigned Intrinsic) { 3536 bool HasChain = !I.doesNotAccessMemory(); 3537 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3538 3539 // Build the operand list. 3540 SmallVector<SDValue, 8> Ops; 3541 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3542 if (OnlyLoad) { 3543 // We don't need to serialize loads against other loads. 3544 Ops.push_back(DAG.getRoot()); 3545 } else { 3546 Ops.push_back(getRoot()); 3547 } 3548 } 3549 3550 // Info is set by getTgtMemInstrinsic 3551 TargetLowering::IntrinsicInfo Info; 3552 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3553 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3554 3555 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3556 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3557 Info.opc == ISD::INTRINSIC_W_CHAIN) 3558 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3559 TLI.getPointerTy(DAG.getDataLayout()))); 3560 3561 // Add all operands of the call to the operand list. 3562 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3563 SDValue Op = getValue(I.getArgOperand(i)); 3564 Ops.push_back(Op); 3565 } 3566 3567 SmallVector<EVT, 4> ValueVTs; 3568 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3569 3570 if (HasChain) 3571 ValueVTs.push_back(MVT::Other); 3572 3573 SDVTList VTs = DAG.getVTList(ValueVTs); 3574 3575 // Create the node. 3576 SDValue Result; 3577 if (IsTgtIntrinsic) { 3578 // This is target intrinsic that touches memory 3579 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3580 VTs, Ops, Info.memVT, 3581 MachinePointerInfo(Info.ptrVal, Info.offset), 3582 Info.align, Info.vol, 3583 Info.readMem, Info.writeMem, Info.size); 3584 } else if (!HasChain) { 3585 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3586 } else if (!I.getType()->isVoidTy()) { 3587 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3588 } else { 3589 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3590 } 3591 3592 if (HasChain) { 3593 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3594 if (OnlyLoad) 3595 PendingLoads.push_back(Chain); 3596 else 3597 DAG.setRoot(Chain); 3598 } 3599 3600 if (!I.getType()->isVoidTy()) { 3601 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3602 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3603 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3604 } 3605 3606 setValue(&I, Result); 3607 } 3608 } 3609 3610 /// GetSignificand - Get the significand and build it into a floating-point 3611 /// number with exponent of 1: 3612 /// 3613 /// Op = (Op & 0x007fffff) | 0x3f800000; 3614 /// 3615 /// where Op is the hexadecimal representation of floating point value. 3616 static SDValue 3617 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3618 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3619 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3620 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3621 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3622 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3623 } 3624 3625 /// GetExponent - Get the exponent: 3626 /// 3627 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3628 /// 3629 /// where Op is the hexadecimal representation of floating point value. 3630 static SDValue 3631 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3632 SDLoc dl) { 3633 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3634 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3635 SDValue t1 = DAG.getNode( 3636 ISD::SRL, dl, MVT::i32, t0, 3637 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3638 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3639 DAG.getConstant(127, dl, MVT::i32)); 3640 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3641 } 3642 3643 /// getF32Constant - Get 32-bit floating point constant. 3644 static SDValue 3645 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3646 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3647 MVT::f32); 3648 } 3649 3650 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3651 SelectionDAG &DAG) { 3652 // TODO: What fast-math-flags should be set on the floating-point nodes? 3653 3654 // IntegerPartOfX = ((int32_t)(t0); 3655 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3656 3657 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3658 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3659 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3660 3661 // IntegerPartOfX <<= 23; 3662 IntegerPartOfX = DAG.getNode( 3663 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3664 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3665 DAG.getDataLayout()))); 3666 3667 SDValue TwoToFractionalPartOfX; 3668 if (LimitFloatPrecision <= 6) { 3669 // For floating-point precision of 6: 3670 // 3671 // TwoToFractionalPartOfX = 3672 // 0.997535578f + 3673 // (0.735607626f + 0.252464424f * x) * x; 3674 // 3675 // error 0.0144103317, which is 6 bits 3676 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3677 getF32Constant(DAG, 0x3e814304, dl)); 3678 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3679 getF32Constant(DAG, 0x3f3c50c8, dl)); 3680 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3681 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3682 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3683 } else if (LimitFloatPrecision <= 12) { 3684 // For floating-point precision of 12: 3685 // 3686 // TwoToFractionalPartOfX = 3687 // 0.999892986f + 3688 // (0.696457318f + 3689 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3690 // 3691 // error 0.000107046256, which is 13 to 14 bits 3692 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3693 getF32Constant(DAG, 0x3da235e3, dl)); 3694 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3695 getF32Constant(DAG, 0x3e65b8f3, dl)); 3696 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3697 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3698 getF32Constant(DAG, 0x3f324b07, dl)); 3699 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3700 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3701 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3702 } else { // LimitFloatPrecision <= 18 3703 // For floating-point precision of 18: 3704 // 3705 // TwoToFractionalPartOfX = 3706 // 0.999999982f + 3707 // (0.693148872f + 3708 // (0.240227044f + 3709 // (0.554906021e-1f + 3710 // (0.961591928e-2f + 3711 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3712 // error 2.47208000*10^(-7), which is better than 18 bits 3713 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3714 getF32Constant(DAG, 0x3924b03e, dl)); 3715 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3716 getF32Constant(DAG, 0x3ab24b87, dl)); 3717 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3718 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3719 getF32Constant(DAG, 0x3c1d8c17, dl)); 3720 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3721 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3722 getF32Constant(DAG, 0x3d634a1d, dl)); 3723 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3724 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3725 getF32Constant(DAG, 0x3e75fe14, dl)); 3726 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3727 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3728 getF32Constant(DAG, 0x3f317234, dl)); 3729 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3730 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3731 getF32Constant(DAG, 0x3f800000, dl)); 3732 } 3733 3734 // Add the exponent into the result in integer domain. 3735 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3736 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3737 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3738 } 3739 3740 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3741 /// limited-precision mode. 3742 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3743 const TargetLowering &TLI) { 3744 if (Op.getValueType() == MVT::f32 && 3745 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3746 3747 // Put the exponent in the right bit position for later addition to the 3748 // final result: 3749 // 3750 // #define LOG2OFe 1.4426950f 3751 // t0 = Op * LOG2OFe 3752 3753 // TODO: What fast-math-flags should be set here? 3754 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3755 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3756 return getLimitedPrecisionExp2(t0, dl, DAG); 3757 } 3758 3759 // No special expansion. 3760 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3761 } 3762 3763 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3764 /// limited-precision mode. 3765 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3766 const TargetLowering &TLI) { 3767 3768 // TODO: What fast-math-flags should be set on the floating-point nodes? 3769 3770 if (Op.getValueType() == MVT::f32 && 3771 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3772 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3773 3774 // Scale the exponent by log(2) [0.69314718f]. 3775 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3776 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3777 getF32Constant(DAG, 0x3f317218, dl)); 3778 3779 // Get the significand and build it into a floating-point number with 3780 // exponent of 1. 3781 SDValue X = GetSignificand(DAG, Op1, dl); 3782 3783 SDValue LogOfMantissa; 3784 if (LimitFloatPrecision <= 6) { 3785 // For floating-point precision of 6: 3786 // 3787 // LogofMantissa = 3788 // -1.1609546f + 3789 // (1.4034025f - 0.23903021f * x) * x; 3790 // 3791 // error 0.0034276066, which is better than 8 bits 3792 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3793 getF32Constant(DAG, 0xbe74c456, dl)); 3794 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3795 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3796 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3797 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3798 getF32Constant(DAG, 0x3f949a29, dl)); 3799 } else if (LimitFloatPrecision <= 12) { 3800 // For floating-point precision of 12: 3801 // 3802 // LogOfMantissa = 3803 // -1.7417939f + 3804 // (2.8212026f + 3805 // (-1.4699568f + 3806 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3807 // 3808 // error 0.000061011436, which is 14 bits 3809 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3810 getF32Constant(DAG, 0xbd67b6d6, dl)); 3811 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3812 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3813 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3814 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3815 getF32Constant(DAG, 0x3fbc278b, dl)); 3816 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3817 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3818 getF32Constant(DAG, 0x40348e95, dl)); 3819 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3820 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3821 getF32Constant(DAG, 0x3fdef31a, dl)); 3822 } else { // LimitFloatPrecision <= 18 3823 // For floating-point precision of 18: 3824 // 3825 // LogOfMantissa = 3826 // -2.1072184f + 3827 // (4.2372794f + 3828 // (-3.7029485f + 3829 // (2.2781945f + 3830 // (-0.87823314f + 3831 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3832 // 3833 // error 0.0000023660568, which is better than 18 bits 3834 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3835 getF32Constant(DAG, 0xbc91e5ac, dl)); 3836 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3837 getF32Constant(DAG, 0x3e4350aa, dl)); 3838 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3839 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3840 getF32Constant(DAG, 0x3f60d3e3, dl)); 3841 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3842 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3843 getF32Constant(DAG, 0x4011cdf0, dl)); 3844 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3845 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3846 getF32Constant(DAG, 0x406cfd1c, dl)); 3847 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3848 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3849 getF32Constant(DAG, 0x408797cb, dl)); 3850 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3851 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3852 getF32Constant(DAG, 0x4006dcab, dl)); 3853 } 3854 3855 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3856 } 3857 3858 // No special expansion. 3859 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3860 } 3861 3862 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3863 /// limited-precision mode. 3864 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3865 const TargetLowering &TLI) { 3866 3867 // TODO: What fast-math-flags should be set on the floating-point nodes? 3868 3869 if (Op.getValueType() == MVT::f32 && 3870 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3871 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3872 3873 // Get the exponent. 3874 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3875 3876 // Get the significand and build it into a floating-point number with 3877 // exponent of 1. 3878 SDValue X = GetSignificand(DAG, Op1, dl); 3879 3880 // Different possible minimax approximations of significand in 3881 // floating-point for various degrees of accuracy over [1,2]. 3882 SDValue Log2ofMantissa; 3883 if (LimitFloatPrecision <= 6) { 3884 // For floating-point precision of 6: 3885 // 3886 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3887 // 3888 // error 0.0049451742, which is more than 7 bits 3889 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3890 getF32Constant(DAG, 0xbeb08fe0, dl)); 3891 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3892 getF32Constant(DAG, 0x40019463, dl)); 3893 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3894 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3895 getF32Constant(DAG, 0x3fd6633d, dl)); 3896 } else if (LimitFloatPrecision <= 12) { 3897 // For floating-point precision of 12: 3898 // 3899 // Log2ofMantissa = 3900 // -2.51285454f + 3901 // (4.07009056f + 3902 // (-2.12067489f + 3903 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3904 // 3905 // error 0.0000876136000, which is better than 13 bits 3906 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3907 getF32Constant(DAG, 0xbda7262e, dl)); 3908 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3909 getF32Constant(DAG, 0x3f25280b, dl)); 3910 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3911 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3912 getF32Constant(DAG, 0x4007b923, dl)); 3913 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3914 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3915 getF32Constant(DAG, 0x40823e2f, dl)); 3916 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3917 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3918 getF32Constant(DAG, 0x4020d29c, dl)); 3919 } else { // LimitFloatPrecision <= 18 3920 // For floating-point precision of 18: 3921 // 3922 // Log2ofMantissa = 3923 // -3.0400495f + 3924 // (6.1129976f + 3925 // (-5.3420409f + 3926 // (3.2865683f + 3927 // (-1.2669343f + 3928 // (0.27515199f - 3929 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3930 // 3931 // error 0.0000018516, which is better than 18 bits 3932 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3933 getF32Constant(DAG, 0xbcd2769e, dl)); 3934 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3935 getF32Constant(DAG, 0x3e8ce0b9, dl)); 3936 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3937 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3938 getF32Constant(DAG, 0x3fa22ae7, dl)); 3939 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3940 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3941 getF32Constant(DAG, 0x40525723, dl)); 3942 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3943 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3944 getF32Constant(DAG, 0x40aaf200, dl)); 3945 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3946 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3947 getF32Constant(DAG, 0x40c39dad, dl)); 3948 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3949 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3950 getF32Constant(DAG, 0x4042902c, dl)); 3951 } 3952 3953 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3954 } 3955 3956 // No special expansion. 3957 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3958 } 3959 3960 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3961 /// limited-precision mode. 3962 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3963 const TargetLowering &TLI) { 3964 3965 // TODO: What fast-math-flags should be set on the floating-point nodes? 3966 3967 if (Op.getValueType() == MVT::f32 && 3968 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3969 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3970 3971 // Scale the exponent by log10(2) [0.30102999f]. 3972 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3973 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3974 getF32Constant(DAG, 0x3e9a209a, dl)); 3975 3976 // Get the significand and build it into a floating-point number with 3977 // exponent of 1. 3978 SDValue X = GetSignificand(DAG, Op1, dl); 3979 3980 SDValue Log10ofMantissa; 3981 if (LimitFloatPrecision <= 6) { 3982 // For floating-point precision of 6: 3983 // 3984 // Log10ofMantissa = 3985 // -0.50419619f + 3986 // (0.60948995f - 0.10380950f * x) * x; 3987 // 3988 // error 0.0014886165, which is 6 bits 3989 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3990 getF32Constant(DAG, 0xbdd49a13, dl)); 3991 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3992 getF32Constant(DAG, 0x3f1c0789, dl)); 3993 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3994 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3995 getF32Constant(DAG, 0x3f011300, dl)); 3996 } else if (LimitFloatPrecision <= 12) { 3997 // For floating-point precision of 12: 3998 // 3999 // Log10ofMantissa = 4000 // -0.64831180f + 4001 // (0.91751397f + 4002 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4003 // 4004 // error 0.00019228036, which is better than 12 bits 4005 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4006 getF32Constant(DAG, 0x3d431f31, dl)); 4007 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4008 getF32Constant(DAG, 0x3ea21fb2, dl)); 4009 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4010 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4011 getF32Constant(DAG, 0x3f6ae232, dl)); 4012 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4013 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4014 getF32Constant(DAG, 0x3f25f7c3, dl)); 4015 } else { // LimitFloatPrecision <= 18 4016 // For floating-point precision of 18: 4017 // 4018 // Log10ofMantissa = 4019 // -0.84299375f + 4020 // (1.5327582f + 4021 // (-1.0688956f + 4022 // (0.49102474f + 4023 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4024 // 4025 // error 0.0000037995730, which is better than 18 bits 4026 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4027 getF32Constant(DAG, 0x3c5d51ce, dl)); 4028 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4029 getF32Constant(DAG, 0x3e00685a, dl)); 4030 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4031 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4032 getF32Constant(DAG, 0x3efb6798, dl)); 4033 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4034 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4035 getF32Constant(DAG, 0x3f88d192, dl)); 4036 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4037 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4038 getF32Constant(DAG, 0x3fc4316c, dl)); 4039 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4040 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4041 getF32Constant(DAG, 0x3f57ce70, dl)); 4042 } 4043 4044 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4045 } 4046 4047 // No special expansion. 4048 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4049 } 4050 4051 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4052 /// limited-precision mode. 4053 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4054 const TargetLowering &TLI) { 4055 if (Op.getValueType() == MVT::f32 && 4056 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4057 return getLimitedPrecisionExp2(Op, dl, DAG); 4058 4059 // No special expansion. 4060 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4061 } 4062 4063 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4064 /// limited-precision mode with x == 10.0f. 4065 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4066 SelectionDAG &DAG, const TargetLowering &TLI) { 4067 bool IsExp10 = false; 4068 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4069 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4070 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4071 APFloat Ten(10.0f); 4072 IsExp10 = LHSC->isExactlyValue(Ten); 4073 } 4074 } 4075 4076 // TODO: What fast-math-flags should be set on the FMUL node? 4077 if (IsExp10) { 4078 // Put the exponent in the right bit position for later addition to the 4079 // final result: 4080 // 4081 // #define LOG2OF10 3.3219281f 4082 // t0 = Op * LOG2OF10; 4083 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4084 getF32Constant(DAG, 0x40549a78, dl)); 4085 return getLimitedPrecisionExp2(t0, dl, DAG); 4086 } 4087 4088 // No special expansion. 4089 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4090 } 4091 4092 4093 /// ExpandPowI - Expand a llvm.powi intrinsic. 4094 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4095 SelectionDAG &DAG) { 4096 // If RHS is a constant, we can expand this out to a multiplication tree, 4097 // otherwise we end up lowering to a call to __powidf2 (for example). When 4098 // optimizing for size, we only want to do this if the expansion would produce 4099 // a small number of multiplies, otherwise we do the full expansion. 4100 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4101 // Get the exponent as a positive value. 4102 unsigned Val = RHSC->getSExtValue(); 4103 if ((int)Val < 0) Val = -Val; 4104 4105 // powi(x, 0) -> 1.0 4106 if (Val == 0) 4107 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4108 4109 const Function *F = DAG.getMachineFunction().getFunction(); 4110 if (!F->optForSize() || 4111 // If optimizing for size, don't insert too many multiplies. 4112 // This inserts up to 5 multiplies. 4113 countPopulation(Val) + Log2_32(Val) < 7) { 4114 // We use the simple binary decomposition method to generate the multiply 4115 // sequence. There are more optimal ways to do this (for example, 4116 // powi(x,15) generates one more multiply than it should), but this has 4117 // the benefit of being both really simple and much better than a libcall. 4118 SDValue Res; // Logically starts equal to 1.0 4119 SDValue CurSquare = LHS; 4120 // TODO: Intrinsics should have fast-math-flags that propagate to these 4121 // nodes. 4122 while (Val) { 4123 if (Val & 1) { 4124 if (Res.getNode()) 4125 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4126 else 4127 Res = CurSquare; // 1.0*CurSquare. 4128 } 4129 4130 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4131 CurSquare, CurSquare); 4132 Val >>= 1; 4133 } 4134 4135 // If the original was negative, invert the result, producing 1/(x*x*x). 4136 if (RHSC->getSExtValue() < 0) 4137 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4138 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4139 return Res; 4140 } 4141 } 4142 4143 // Otherwise, expand to a libcall. 4144 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4145 } 4146 4147 // getTruncatedArgReg - Find underlying register used for an truncated 4148 // argument. 4149 static unsigned getTruncatedArgReg(const SDValue &N) { 4150 if (N.getOpcode() != ISD::TRUNCATE) 4151 return 0; 4152 4153 const SDValue &Ext = N.getOperand(0); 4154 if (Ext.getOpcode() == ISD::AssertZext || 4155 Ext.getOpcode() == ISD::AssertSext) { 4156 const SDValue &CFR = Ext.getOperand(0); 4157 if (CFR.getOpcode() == ISD::CopyFromReg) 4158 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4159 if (CFR.getOpcode() == ISD::TRUNCATE) 4160 return getTruncatedArgReg(CFR); 4161 } 4162 return 0; 4163 } 4164 4165 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4166 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4167 /// At the end of instruction selection, they will be inserted to the entry BB. 4168 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4169 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4170 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4171 const Argument *Arg = dyn_cast<Argument>(V); 4172 if (!Arg) 4173 return false; 4174 4175 MachineFunction &MF = DAG.getMachineFunction(); 4176 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4177 4178 // Ignore inlined function arguments here. 4179 // 4180 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4181 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4182 return false; 4183 4184 Optional<MachineOperand> Op; 4185 // Some arguments' frame index is recorded during argument lowering. 4186 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4187 Op = MachineOperand::CreateFI(FI); 4188 4189 if (!Op && N.getNode()) { 4190 unsigned Reg; 4191 if (N.getOpcode() == ISD::CopyFromReg) 4192 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4193 else 4194 Reg = getTruncatedArgReg(N); 4195 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4196 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4197 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4198 if (PR) 4199 Reg = PR; 4200 } 4201 if (Reg) 4202 Op = MachineOperand::CreateReg(Reg, false); 4203 } 4204 4205 if (!Op) { 4206 // Check if ValueMap has reg number. 4207 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4208 if (VMI != FuncInfo.ValueMap.end()) 4209 Op = MachineOperand::CreateReg(VMI->second, false); 4210 } 4211 4212 if (!Op && N.getNode()) 4213 // Check if frame index is available. 4214 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4215 if (FrameIndexSDNode *FINode = 4216 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4217 Op = MachineOperand::CreateFI(FINode->getIndex()); 4218 4219 if (!Op) 4220 return false; 4221 4222 assert(Variable->isValidLocationForIntrinsic(DL) && 4223 "Expected inlined-at fields to agree"); 4224 if (Op->isReg()) 4225 FuncInfo.ArgDbgValues.push_back( 4226 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4227 Op->getReg(), Offset, Variable, Expr)); 4228 else 4229 FuncInfo.ArgDbgValues.push_back( 4230 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4231 .addOperand(*Op) 4232 .addImm(Offset) 4233 .addMetadata(Variable) 4234 .addMetadata(Expr)); 4235 4236 return true; 4237 } 4238 4239 // VisualStudio defines setjmp as _setjmp 4240 #if defined(_MSC_VER) && defined(setjmp) && \ 4241 !defined(setjmp_undefined_for_msvc) 4242 # pragma push_macro("setjmp") 4243 # undef setjmp 4244 # define setjmp_undefined_for_msvc 4245 #endif 4246 4247 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4248 /// we want to emit this as a call to a named external function, return the name 4249 /// otherwise lower it and return null. 4250 const char * 4251 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4252 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4253 SDLoc sdl = getCurSDLoc(); 4254 DebugLoc dl = getCurDebugLoc(); 4255 SDValue Res; 4256 4257 switch (Intrinsic) { 4258 default: 4259 // By default, turn this into a target intrinsic node. 4260 visitTargetIntrinsic(I, Intrinsic); 4261 return nullptr; 4262 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4263 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4264 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4265 case Intrinsic::returnaddress: 4266 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4267 TLI.getPointerTy(DAG.getDataLayout()), 4268 getValue(I.getArgOperand(0)))); 4269 return nullptr; 4270 case Intrinsic::frameaddress: 4271 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4272 TLI.getPointerTy(DAG.getDataLayout()), 4273 getValue(I.getArgOperand(0)))); 4274 return nullptr; 4275 case Intrinsic::read_register: { 4276 Value *Reg = I.getArgOperand(0); 4277 SDValue Chain = getRoot(); 4278 SDValue RegName = 4279 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4280 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4281 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4282 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4283 setValue(&I, Res); 4284 DAG.setRoot(Res.getValue(1)); 4285 return nullptr; 4286 } 4287 case Intrinsic::write_register: { 4288 Value *Reg = I.getArgOperand(0); 4289 Value *RegValue = I.getArgOperand(1); 4290 SDValue Chain = getRoot(); 4291 SDValue RegName = 4292 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4293 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4294 RegName, getValue(RegValue))); 4295 return nullptr; 4296 } 4297 case Intrinsic::setjmp: 4298 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4299 case Intrinsic::longjmp: 4300 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4301 case Intrinsic::memcpy: { 4302 // FIXME: this definition of "user defined address space" is x86-specific 4303 // Assert for address < 256 since we support only user defined address 4304 // spaces. 4305 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4306 < 256 && 4307 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4308 < 256 && 4309 "Unknown address space"); 4310 SDValue Op1 = getValue(I.getArgOperand(0)); 4311 SDValue Op2 = getValue(I.getArgOperand(1)); 4312 SDValue Op3 = getValue(I.getArgOperand(2)); 4313 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4314 if (!Align) 4315 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4316 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4317 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4318 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4319 false, isTC, 4320 MachinePointerInfo(I.getArgOperand(0)), 4321 MachinePointerInfo(I.getArgOperand(1))); 4322 updateDAGForMaybeTailCall(MC); 4323 return nullptr; 4324 } 4325 case Intrinsic::memset: { 4326 // FIXME: this definition of "user defined address space" is x86-specific 4327 // Assert for address < 256 since we support only user defined address 4328 // spaces. 4329 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4330 < 256 && 4331 "Unknown address space"); 4332 SDValue Op1 = getValue(I.getArgOperand(0)); 4333 SDValue Op2 = getValue(I.getArgOperand(1)); 4334 SDValue Op3 = getValue(I.getArgOperand(2)); 4335 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4336 if (!Align) 4337 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4338 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4339 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4340 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4341 isTC, MachinePointerInfo(I.getArgOperand(0))); 4342 updateDAGForMaybeTailCall(MS); 4343 return nullptr; 4344 } 4345 case Intrinsic::memmove: { 4346 // FIXME: this definition of "user defined address space" is x86-specific 4347 // Assert for address < 256 since we support only user defined address 4348 // spaces. 4349 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4350 < 256 && 4351 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4352 < 256 && 4353 "Unknown address space"); 4354 SDValue Op1 = getValue(I.getArgOperand(0)); 4355 SDValue Op2 = getValue(I.getArgOperand(1)); 4356 SDValue Op3 = getValue(I.getArgOperand(2)); 4357 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4358 if (!Align) 4359 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4360 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4361 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4362 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4363 isTC, MachinePointerInfo(I.getArgOperand(0)), 4364 MachinePointerInfo(I.getArgOperand(1))); 4365 updateDAGForMaybeTailCall(MM); 4366 return nullptr; 4367 } 4368 case Intrinsic::dbg_declare: { 4369 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4370 DILocalVariable *Variable = DI.getVariable(); 4371 DIExpression *Expression = DI.getExpression(); 4372 const Value *Address = DI.getAddress(); 4373 assert(Variable && "Missing variable"); 4374 if (!Address) { 4375 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4376 return nullptr; 4377 } 4378 4379 // Check if address has undef value. 4380 if (isa<UndefValue>(Address) || 4381 (Address->use_empty() && !isa<Argument>(Address))) { 4382 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4383 return nullptr; 4384 } 4385 4386 SDValue &N = NodeMap[Address]; 4387 if (!N.getNode() && isa<Argument>(Address)) 4388 // Check unused arguments map. 4389 N = UnusedArgNodeMap[Address]; 4390 SDDbgValue *SDV; 4391 if (N.getNode()) { 4392 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4393 Address = BCI->getOperand(0); 4394 // Parameters are handled specially. 4395 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4396 4397 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4398 4399 if (isParameter && !AI) { 4400 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4401 if (FINode) 4402 // Byval parameter. We have a frame index at this point. 4403 SDV = DAG.getFrameIndexDbgValue( 4404 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4405 else { 4406 // Address is an argument, so try to emit its dbg value using 4407 // virtual register info from the FuncInfo.ValueMap. 4408 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4409 N); 4410 return nullptr; 4411 } 4412 } else { 4413 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4414 true, 0, dl, SDNodeOrder); 4415 } 4416 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4417 } else { 4418 // If Address is an argument then try to emit its dbg value using 4419 // virtual register info from the FuncInfo.ValueMap. 4420 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4421 N)) { 4422 // If variable is pinned by a alloca in dominating bb then 4423 // use StaticAllocaMap. 4424 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4425 if (AI->getParent() != DI.getParent()) { 4426 DenseMap<const AllocaInst*, int>::iterator SI = 4427 FuncInfo.StaticAllocaMap.find(AI); 4428 if (SI != FuncInfo.StaticAllocaMap.end()) { 4429 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4430 0, dl, SDNodeOrder); 4431 DAG.AddDbgValue(SDV, nullptr, false); 4432 return nullptr; 4433 } 4434 } 4435 } 4436 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4437 } 4438 } 4439 return nullptr; 4440 } 4441 case Intrinsic::dbg_value: { 4442 const DbgValueInst &DI = cast<DbgValueInst>(I); 4443 assert(DI.getVariable() && "Missing variable"); 4444 4445 DILocalVariable *Variable = DI.getVariable(); 4446 DIExpression *Expression = DI.getExpression(); 4447 uint64_t Offset = DI.getOffset(); 4448 const Value *V = DI.getValue(); 4449 if (!V) 4450 return nullptr; 4451 4452 SDDbgValue *SDV; 4453 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4454 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4455 SDNodeOrder); 4456 DAG.AddDbgValue(SDV, nullptr, false); 4457 } else { 4458 // Do not use getValue() in here; we don't want to generate code at 4459 // this point if it hasn't been done yet. 4460 SDValue N = NodeMap[V]; 4461 if (!N.getNode() && isa<Argument>(V)) 4462 // Check unused arguments map. 4463 N = UnusedArgNodeMap[V]; 4464 if (N.getNode()) { 4465 // A dbg.value for an alloca is always indirect. 4466 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4467 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4468 IsIndirect, N)) { 4469 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4470 IsIndirect, Offset, dl, SDNodeOrder); 4471 DAG.AddDbgValue(SDV, N.getNode(), false); 4472 } 4473 } else if (!V->use_empty() ) { 4474 // Do not call getValue(V) yet, as we don't want to generate code. 4475 // Remember it for later. 4476 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4477 DanglingDebugInfoMap[V] = DDI; 4478 } else { 4479 // We may expand this to cover more cases. One case where we have no 4480 // data available is an unreferenced parameter. 4481 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4482 } 4483 } 4484 4485 // Build a debug info table entry. 4486 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4487 V = BCI->getOperand(0); 4488 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4489 // Don't handle byval struct arguments or VLAs, for example. 4490 if (!AI) { 4491 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4492 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4493 return nullptr; 4494 } 4495 DenseMap<const AllocaInst*, int>::iterator SI = 4496 FuncInfo.StaticAllocaMap.find(AI); 4497 if (SI == FuncInfo.StaticAllocaMap.end()) 4498 return nullptr; // VLAs. 4499 return nullptr; 4500 } 4501 4502 case Intrinsic::eh_typeid_for: { 4503 // Find the type id for the given typeinfo. 4504 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4505 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4506 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4507 setValue(&I, Res); 4508 return nullptr; 4509 } 4510 4511 case Intrinsic::eh_return_i32: 4512 case Intrinsic::eh_return_i64: 4513 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4514 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4515 MVT::Other, 4516 getControlRoot(), 4517 getValue(I.getArgOperand(0)), 4518 getValue(I.getArgOperand(1)))); 4519 return nullptr; 4520 case Intrinsic::eh_unwind_init: 4521 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4522 return nullptr; 4523 case Intrinsic::eh_dwarf_cfa: { 4524 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4525 TLI.getPointerTy(DAG.getDataLayout())); 4526 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4527 CfaArg.getValueType(), 4528 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4529 CfaArg.getValueType()), 4530 CfaArg); 4531 SDValue FA = DAG.getNode( 4532 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4533 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4534 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4535 FA, Offset)); 4536 return nullptr; 4537 } 4538 case Intrinsic::eh_sjlj_callsite: { 4539 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4540 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4541 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4542 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4543 4544 MMI.setCurrentCallSite(CI->getZExtValue()); 4545 return nullptr; 4546 } 4547 case Intrinsic::eh_sjlj_functioncontext: { 4548 // Get and store the index of the function context. 4549 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4550 AllocaInst *FnCtx = 4551 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4552 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4553 MFI->setFunctionContextIndex(FI); 4554 return nullptr; 4555 } 4556 case Intrinsic::eh_sjlj_setjmp: { 4557 SDValue Ops[2]; 4558 Ops[0] = getRoot(); 4559 Ops[1] = getValue(I.getArgOperand(0)); 4560 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4561 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4562 setValue(&I, Op.getValue(0)); 4563 DAG.setRoot(Op.getValue(1)); 4564 return nullptr; 4565 } 4566 case Intrinsic::eh_sjlj_longjmp: { 4567 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4568 getRoot(), getValue(I.getArgOperand(0)))); 4569 return nullptr; 4570 } 4571 case Intrinsic::eh_sjlj_setup_dispatch: { 4572 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4573 getRoot())); 4574 return nullptr; 4575 } 4576 4577 case Intrinsic::masked_gather: 4578 visitMaskedGather(I); 4579 return nullptr; 4580 case Intrinsic::masked_load: 4581 visitMaskedLoad(I); 4582 return nullptr; 4583 case Intrinsic::masked_scatter: 4584 visitMaskedScatter(I); 4585 return nullptr; 4586 case Intrinsic::masked_store: 4587 visitMaskedStore(I); 4588 return nullptr; 4589 case Intrinsic::x86_mmx_pslli_w: 4590 case Intrinsic::x86_mmx_pslli_d: 4591 case Intrinsic::x86_mmx_pslli_q: 4592 case Intrinsic::x86_mmx_psrli_w: 4593 case Intrinsic::x86_mmx_psrli_d: 4594 case Intrinsic::x86_mmx_psrli_q: 4595 case Intrinsic::x86_mmx_psrai_w: 4596 case Intrinsic::x86_mmx_psrai_d: { 4597 SDValue ShAmt = getValue(I.getArgOperand(1)); 4598 if (isa<ConstantSDNode>(ShAmt)) { 4599 visitTargetIntrinsic(I, Intrinsic); 4600 return nullptr; 4601 } 4602 unsigned NewIntrinsic = 0; 4603 EVT ShAmtVT = MVT::v2i32; 4604 switch (Intrinsic) { 4605 case Intrinsic::x86_mmx_pslli_w: 4606 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4607 break; 4608 case Intrinsic::x86_mmx_pslli_d: 4609 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4610 break; 4611 case Intrinsic::x86_mmx_pslli_q: 4612 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4613 break; 4614 case Intrinsic::x86_mmx_psrli_w: 4615 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4616 break; 4617 case Intrinsic::x86_mmx_psrli_d: 4618 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4619 break; 4620 case Intrinsic::x86_mmx_psrli_q: 4621 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4622 break; 4623 case Intrinsic::x86_mmx_psrai_w: 4624 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4625 break; 4626 case Intrinsic::x86_mmx_psrai_d: 4627 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4628 break; 4629 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4630 } 4631 4632 // The vector shift intrinsics with scalars uses 32b shift amounts but 4633 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4634 // to be zero. 4635 // We must do this early because v2i32 is not a legal type. 4636 SDValue ShOps[2]; 4637 ShOps[0] = ShAmt; 4638 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4639 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4640 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4641 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4642 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4643 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4644 getValue(I.getArgOperand(0)), ShAmt); 4645 setValue(&I, Res); 4646 return nullptr; 4647 } 4648 case Intrinsic::convertff: 4649 case Intrinsic::convertfsi: 4650 case Intrinsic::convertfui: 4651 case Intrinsic::convertsif: 4652 case Intrinsic::convertuif: 4653 case Intrinsic::convertss: 4654 case Intrinsic::convertsu: 4655 case Intrinsic::convertus: 4656 case Intrinsic::convertuu: { 4657 ISD::CvtCode Code = ISD::CVT_INVALID; 4658 switch (Intrinsic) { 4659 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4660 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4661 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4662 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4663 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4664 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4665 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4666 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4667 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4668 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4669 } 4670 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4671 const Value *Op1 = I.getArgOperand(0); 4672 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4673 DAG.getValueType(DestVT), 4674 DAG.getValueType(getValue(Op1).getValueType()), 4675 getValue(I.getArgOperand(1)), 4676 getValue(I.getArgOperand(2)), 4677 Code); 4678 setValue(&I, Res); 4679 return nullptr; 4680 } 4681 case Intrinsic::powi: 4682 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4683 getValue(I.getArgOperand(1)), DAG)); 4684 return nullptr; 4685 case Intrinsic::log: 4686 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4687 return nullptr; 4688 case Intrinsic::log2: 4689 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4690 return nullptr; 4691 case Intrinsic::log10: 4692 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4693 return nullptr; 4694 case Intrinsic::exp: 4695 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4696 return nullptr; 4697 case Intrinsic::exp2: 4698 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4699 return nullptr; 4700 case Intrinsic::pow: 4701 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4702 getValue(I.getArgOperand(1)), DAG, TLI)); 4703 return nullptr; 4704 case Intrinsic::sqrt: 4705 case Intrinsic::fabs: 4706 case Intrinsic::sin: 4707 case Intrinsic::cos: 4708 case Intrinsic::floor: 4709 case Intrinsic::ceil: 4710 case Intrinsic::trunc: 4711 case Intrinsic::rint: 4712 case Intrinsic::nearbyint: 4713 case Intrinsic::round: { 4714 unsigned Opcode; 4715 switch (Intrinsic) { 4716 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4717 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4718 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4719 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4720 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4721 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4722 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4723 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4724 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4725 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4726 case Intrinsic::round: Opcode = ISD::FROUND; break; 4727 } 4728 4729 setValue(&I, DAG.getNode(Opcode, sdl, 4730 getValue(I.getArgOperand(0)).getValueType(), 4731 getValue(I.getArgOperand(0)))); 4732 return nullptr; 4733 } 4734 case Intrinsic::minnum: 4735 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4736 getValue(I.getArgOperand(0)).getValueType(), 4737 getValue(I.getArgOperand(0)), 4738 getValue(I.getArgOperand(1)))); 4739 return nullptr; 4740 case Intrinsic::maxnum: 4741 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4742 getValue(I.getArgOperand(0)).getValueType(), 4743 getValue(I.getArgOperand(0)), 4744 getValue(I.getArgOperand(1)))); 4745 return nullptr; 4746 case Intrinsic::copysign: 4747 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4748 getValue(I.getArgOperand(0)).getValueType(), 4749 getValue(I.getArgOperand(0)), 4750 getValue(I.getArgOperand(1)))); 4751 return nullptr; 4752 case Intrinsic::fma: 4753 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4754 getValue(I.getArgOperand(0)).getValueType(), 4755 getValue(I.getArgOperand(0)), 4756 getValue(I.getArgOperand(1)), 4757 getValue(I.getArgOperand(2)))); 4758 return nullptr; 4759 case Intrinsic::fmuladd: { 4760 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4761 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4762 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4763 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4764 getValue(I.getArgOperand(0)).getValueType(), 4765 getValue(I.getArgOperand(0)), 4766 getValue(I.getArgOperand(1)), 4767 getValue(I.getArgOperand(2)))); 4768 } else { 4769 // TODO: Intrinsic calls should have fast-math-flags. 4770 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4771 getValue(I.getArgOperand(0)).getValueType(), 4772 getValue(I.getArgOperand(0)), 4773 getValue(I.getArgOperand(1))); 4774 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4775 getValue(I.getArgOperand(0)).getValueType(), 4776 Mul, 4777 getValue(I.getArgOperand(2))); 4778 setValue(&I, Add); 4779 } 4780 return nullptr; 4781 } 4782 case Intrinsic::convert_to_fp16: 4783 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4784 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4785 getValue(I.getArgOperand(0)), 4786 DAG.getTargetConstant(0, sdl, 4787 MVT::i32)))); 4788 return nullptr; 4789 case Intrinsic::convert_from_fp16: 4790 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4791 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4792 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4793 getValue(I.getArgOperand(0))))); 4794 return nullptr; 4795 case Intrinsic::pcmarker: { 4796 SDValue Tmp = getValue(I.getArgOperand(0)); 4797 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4798 return nullptr; 4799 } 4800 case Intrinsic::readcyclecounter: { 4801 SDValue Op = getRoot(); 4802 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4803 DAG.getVTList(MVT::i64, MVT::Other), Op); 4804 setValue(&I, Res); 4805 DAG.setRoot(Res.getValue(1)); 4806 return nullptr; 4807 } 4808 case Intrinsic::bswap: 4809 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4810 getValue(I.getArgOperand(0)).getValueType(), 4811 getValue(I.getArgOperand(0)))); 4812 return nullptr; 4813 case Intrinsic::uabsdiff: 4814 setValue(&I, DAG.getNode(ISD::UABSDIFF, sdl, 4815 getValue(I.getArgOperand(0)).getValueType(), 4816 getValue(I.getArgOperand(0)), 4817 getValue(I.getArgOperand(1)))); 4818 return nullptr; 4819 case Intrinsic::sabsdiff: 4820 setValue(&I, DAG.getNode(ISD::SABSDIFF, sdl, 4821 getValue(I.getArgOperand(0)).getValueType(), 4822 getValue(I.getArgOperand(0)), 4823 getValue(I.getArgOperand(1)))); 4824 return nullptr; 4825 case Intrinsic::cttz: { 4826 SDValue Arg = getValue(I.getArgOperand(0)); 4827 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4828 EVT Ty = Arg.getValueType(); 4829 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4830 sdl, Ty, Arg)); 4831 return nullptr; 4832 } 4833 case Intrinsic::ctlz: { 4834 SDValue Arg = getValue(I.getArgOperand(0)); 4835 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4836 EVT Ty = Arg.getValueType(); 4837 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4838 sdl, Ty, Arg)); 4839 return nullptr; 4840 } 4841 case Intrinsic::ctpop: { 4842 SDValue Arg = getValue(I.getArgOperand(0)); 4843 EVT Ty = Arg.getValueType(); 4844 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4845 return nullptr; 4846 } 4847 case Intrinsic::stacksave: { 4848 SDValue Op = getRoot(); 4849 Res = DAG.getNode( 4850 ISD::STACKSAVE, sdl, 4851 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4852 setValue(&I, Res); 4853 DAG.setRoot(Res.getValue(1)); 4854 return nullptr; 4855 } 4856 case Intrinsic::stackrestore: { 4857 Res = getValue(I.getArgOperand(0)); 4858 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4859 return nullptr; 4860 } 4861 case Intrinsic::stackprotector: { 4862 // Emit code into the DAG to store the stack guard onto the stack. 4863 MachineFunction &MF = DAG.getMachineFunction(); 4864 MachineFrameInfo *MFI = MF.getFrameInfo(); 4865 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4866 SDValue Src, Chain = getRoot(); 4867 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4868 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4869 4870 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4871 // global variable __stack_chk_guard. 4872 if (!GV) 4873 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4874 if (BC->getOpcode() == Instruction::BitCast) 4875 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4876 4877 if (GV && TLI.useLoadStackGuardNode()) { 4878 // Emit a LOAD_STACK_GUARD node. 4879 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4880 sdl, PtrTy, Chain); 4881 MachinePointerInfo MPInfo(GV); 4882 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4883 unsigned Flags = MachineMemOperand::MOLoad | 4884 MachineMemOperand::MOInvariant; 4885 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4886 PtrTy.getSizeInBits() / 8, 4887 DAG.getEVTAlignment(PtrTy)); 4888 Node->setMemRefs(MemRefs, MemRefs + 1); 4889 4890 // Copy the guard value to a virtual register so that it can be 4891 // retrieved in the epilogue. 4892 Src = SDValue(Node, 0); 4893 const TargetRegisterClass *RC = 4894 TLI.getRegClassFor(Src.getSimpleValueType()); 4895 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4896 4897 SPDescriptor.setGuardReg(Reg); 4898 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4899 } else { 4900 Src = getValue(I.getArgOperand(0)); // The guard's value. 4901 } 4902 4903 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4904 4905 int FI = FuncInfo.StaticAllocaMap[Slot]; 4906 MFI->setStackProtectorIndex(FI); 4907 4908 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4909 4910 // Store the stack protector onto the stack. 4911 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 4912 DAG.getMachineFunction(), FI), 4913 true, false, 0); 4914 setValue(&I, Res); 4915 DAG.setRoot(Res); 4916 return nullptr; 4917 } 4918 case Intrinsic::objectsize: { 4919 // If we don't know by now, we're never going to know. 4920 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4921 4922 assert(CI && "Non-constant type in __builtin_object_size?"); 4923 4924 SDValue Arg = getValue(I.getCalledValue()); 4925 EVT Ty = Arg.getValueType(); 4926 4927 if (CI->isZero()) 4928 Res = DAG.getConstant(-1ULL, sdl, Ty); 4929 else 4930 Res = DAG.getConstant(0, sdl, Ty); 4931 4932 setValue(&I, Res); 4933 return nullptr; 4934 } 4935 case Intrinsic::annotation: 4936 case Intrinsic::ptr_annotation: 4937 // Drop the intrinsic, but forward the value 4938 setValue(&I, getValue(I.getOperand(0))); 4939 return nullptr; 4940 case Intrinsic::assume: 4941 case Intrinsic::var_annotation: 4942 // Discard annotate attributes and assumptions 4943 return nullptr; 4944 4945 case Intrinsic::init_trampoline: { 4946 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4947 4948 SDValue Ops[6]; 4949 Ops[0] = getRoot(); 4950 Ops[1] = getValue(I.getArgOperand(0)); 4951 Ops[2] = getValue(I.getArgOperand(1)); 4952 Ops[3] = getValue(I.getArgOperand(2)); 4953 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4954 Ops[5] = DAG.getSrcValue(F); 4955 4956 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 4957 4958 DAG.setRoot(Res); 4959 return nullptr; 4960 } 4961 case Intrinsic::adjust_trampoline: { 4962 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 4963 TLI.getPointerTy(DAG.getDataLayout()), 4964 getValue(I.getArgOperand(0)))); 4965 return nullptr; 4966 } 4967 case Intrinsic::gcroot: 4968 if (GFI) { 4969 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 4970 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4971 4972 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4973 GFI->addStackRoot(FI->getIndex(), TypeMap); 4974 } 4975 return nullptr; 4976 case Intrinsic::gcread: 4977 case Intrinsic::gcwrite: 4978 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4979 case Intrinsic::flt_rounds: 4980 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 4981 return nullptr; 4982 4983 case Intrinsic::expect: { 4984 // Just replace __builtin_expect(exp, c) with EXP. 4985 setValue(&I, getValue(I.getArgOperand(0))); 4986 return nullptr; 4987 } 4988 4989 case Intrinsic::debugtrap: 4990 case Intrinsic::trap: { 4991 StringRef TrapFuncName = 4992 I.getAttributes() 4993 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 4994 .getValueAsString(); 4995 if (TrapFuncName.empty()) { 4996 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 4997 ISD::TRAP : ISD::DEBUGTRAP; 4998 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 4999 return nullptr; 5000 } 5001 TargetLowering::ArgListTy Args; 5002 5003 TargetLowering::CallLoweringInfo CLI(DAG); 5004 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5005 CallingConv::C, I.getType(), 5006 DAG.getExternalSymbol(TrapFuncName.data(), 5007 TLI.getPointerTy(DAG.getDataLayout())), 5008 std::move(Args), 0); 5009 5010 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5011 DAG.setRoot(Result.second); 5012 return nullptr; 5013 } 5014 5015 case Intrinsic::uadd_with_overflow: 5016 case Intrinsic::sadd_with_overflow: 5017 case Intrinsic::usub_with_overflow: 5018 case Intrinsic::ssub_with_overflow: 5019 case Intrinsic::umul_with_overflow: 5020 case Intrinsic::smul_with_overflow: { 5021 ISD::NodeType Op; 5022 switch (Intrinsic) { 5023 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5024 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5025 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5026 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5027 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5028 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5029 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5030 } 5031 SDValue Op1 = getValue(I.getArgOperand(0)); 5032 SDValue Op2 = getValue(I.getArgOperand(1)); 5033 5034 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5035 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5036 return nullptr; 5037 } 5038 case Intrinsic::prefetch: { 5039 SDValue Ops[5]; 5040 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5041 Ops[0] = getRoot(); 5042 Ops[1] = getValue(I.getArgOperand(0)); 5043 Ops[2] = getValue(I.getArgOperand(1)); 5044 Ops[3] = getValue(I.getArgOperand(2)); 5045 Ops[4] = getValue(I.getArgOperand(3)); 5046 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5047 DAG.getVTList(MVT::Other), Ops, 5048 EVT::getIntegerVT(*Context, 8), 5049 MachinePointerInfo(I.getArgOperand(0)), 5050 0, /* align */ 5051 false, /* volatile */ 5052 rw==0, /* read */ 5053 rw==1)); /* write */ 5054 return nullptr; 5055 } 5056 case Intrinsic::lifetime_start: 5057 case Intrinsic::lifetime_end: { 5058 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5059 // Stack coloring is not enabled in O0, discard region information. 5060 if (TM.getOptLevel() == CodeGenOpt::None) 5061 return nullptr; 5062 5063 SmallVector<Value *, 4> Allocas; 5064 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5065 5066 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5067 E = Allocas.end(); Object != E; ++Object) { 5068 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5069 5070 // Could not find an Alloca. 5071 if (!LifetimeObject) 5072 continue; 5073 5074 // First check that the Alloca is static, otherwise it won't have a 5075 // valid frame index. 5076 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5077 if (SI == FuncInfo.StaticAllocaMap.end()) 5078 return nullptr; 5079 5080 int FI = SI->second; 5081 5082 SDValue Ops[2]; 5083 Ops[0] = getRoot(); 5084 Ops[1] = 5085 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5086 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5087 5088 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5089 DAG.setRoot(Res); 5090 } 5091 return nullptr; 5092 } 5093 case Intrinsic::invariant_start: 5094 // Discard region information. 5095 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5096 return nullptr; 5097 case Intrinsic::invariant_end: 5098 // Discard region information. 5099 return nullptr; 5100 case Intrinsic::stackprotectorcheck: { 5101 // Do not actually emit anything for this basic block. Instead we initialize 5102 // the stack protector descriptor and export the guard variable so we can 5103 // access it in FinishBasicBlock. 5104 const BasicBlock *BB = I.getParent(); 5105 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5106 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5107 5108 // Flush our exports since we are going to process a terminator. 5109 (void)getControlRoot(); 5110 return nullptr; 5111 } 5112 case Intrinsic::clear_cache: 5113 return TLI.getClearCacheBuiltinName(); 5114 case Intrinsic::eh_actions: 5115 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5116 return nullptr; 5117 case Intrinsic::donothing: 5118 // ignore 5119 return nullptr; 5120 case Intrinsic::experimental_stackmap: { 5121 visitStackmap(I); 5122 return nullptr; 5123 } 5124 case Intrinsic::experimental_patchpoint_void: 5125 case Intrinsic::experimental_patchpoint_i64: { 5126 visitPatchpoint(&I); 5127 return nullptr; 5128 } 5129 case Intrinsic::experimental_gc_statepoint: { 5130 visitStatepoint(I); 5131 return nullptr; 5132 } 5133 case Intrinsic::experimental_gc_result_int: 5134 case Intrinsic::experimental_gc_result_float: 5135 case Intrinsic::experimental_gc_result_ptr: 5136 case Intrinsic::experimental_gc_result: { 5137 visitGCResult(I); 5138 return nullptr; 5139 } 5140 case Intrinsic::experimental_gc_relocate: { 5141 visitGCRelocate(I); 5142 return nullptr; 5143 } 5144 case Intrinsic::instrprof_increment: 5145 llvm_unreachable("instrprof failed to lower an increment"); 5146 5147 case Intrinsic::localescape: { 5148 MachineFunction &MF = DAG.getMachineFunction(); 5149 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5150 5151 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5152 // is the same on all targets. 5153 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5154 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5155 if (isa<ConstantPointerNull>(Arg)) 5156 continue; // Skip null pointers. They represent a hole in index space. 5157 AllocaInst *Slot = cast<AllocaInst>(Arg); 5158 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5159 "can only escape static allocas"); 5160 int FI = FuncInfo.StaticAllocaMap[Slot]; 5161 MCSymbol *FrameAllocSym = 5162 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5163 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5164 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5165 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5166 .addSym(FrameAllocSym) 5167 .addFrameIndex(FI); 5168 } 5169 5170 return nullptr; 5171 } 5172 5173 case Intrinsic::localrecover: { 5174 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5175 MachineFunction &MF = DAG.getMachineFunction(); 5176 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5177 5178 // Get the symbol that defines the frame offset. 5179 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5180 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5181 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5182 MCSymbol *FrameAllocSym = 5183 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5184 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5185 5186 // Create a MCSymbol for the label to avoid any target lowering 5187 // that would make this PC relative. 5188 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5189 SDValue OffsetVal = 5190 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5191 5192 // Add the offset to the FP. 5193 Value *FP = I.getArgOperand(1); 5194 SDValue FPVal = getValue(FP); 5195 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5196 setValue(&I, Add); 5197 5198 return nullptr; 5199 } 5200 case Intrinsic::eh_begincatch: 5201 case Intrinsic::eh_endcatch: 5202 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 5203 case Intrinsic::eh_exceptioncode: { 5204 unsigned Reg = TLI.getExceptionPointerRegister(); 5205 assert(Reg && "cannot get exception code on this platform"); 5206 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5207 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5208 assert(FuncInfo.MBB->isEHPad() && "eh.exceptioncode in non-lpad"); 5209 unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC); 5210 SDValue N = 5211 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5212 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5213 setValue(&I, N); 5214 return nullptr; 5215 } 5216 } 5217 } 5218 5219 std::pair<SDValue, SDValue> 5220 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5221 const BasicBlock *EHPadBB) { 5222 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5223 MCSymbol *BeginLabel = nullptr; 5224 5225 if (EHPadBB) { 5226 // Insert a label before the invoke call to mark the try range. This can be 5227 // used to detect deletion of the invoke via the MachineModuleInfo. 5228 BeginLabel = MMI.getContext().createTempSymbol(); 5229 5230 // For SjLj, keep track of which landing pads go with which invokes 5231 // so as to maintain the ordering of pads in the LSDA. 5232 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5233 if (CallSiteIndex) { 5234 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5235 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5236 5237 // Now that the call site is handled, stop tracking it. 5238 MMI.setCurrentCallSite(0); 5239 } 5240 5241 // Both PendingLoads and PendingExports must be flushed here; 5242 // this call might not return. 5243 (void)getRoot(); 5244 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5245 5246 CLI.setChain(getRoot()); 5247 } 5248 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5249 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5250 5251 assert((CLI.IsTailCall || Result.second.getNode()) && 5252 "Non-null chain expected with non-tail call!"); 5253 assert((Result.second.getNode() || !Result.first.getNode()) && 5254 "Null value expected with tail call!"); 5255 5256 if (!Result.second.getNode()) { 5257 // As a special case, a null chain means that a tail call has been emitted 5258 // and the DAG root is already updated. 5259 HasTailCall = true; 5260 5261 // Since there's no actual continuation from this block, nothing can be 5262 // relying on us setting vregs for them. 5263 PendingExports.clear(); 5264 } else { 5265 DAG.setRoot(Result.second); 5266 } 5267 5268 if (EHPadBB) { 5269 // Insert a label at the end of the invoke call to mark the try range. This 5270 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5271 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5272 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5273 5274 // Inform MachineModuleInfo of range. 5275 if (MMI.hasEHFunclets()) { 5276 WinEHFuncInfo &EHInfo = 5277 MMI.getWinEHFuncInfo(DAG.getMachineFunction().getFunction()); 5278 EHInfo.addIPToStateRange(EHPadBB, BeginLabel, EndLabel); 5279 } else { 5280 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5281 } 5282 } 5283 5284 return Result; 5285 } 5286 5287 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5288 bool isTailCall, 5289 const BasicBlock *EHPadBB) { 5290 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5291 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5292 Type *RetTy = FTy->getReturnType(); 5293 5294 TargetLowering::ArgListTy Args; 5295 TargetLowering::ArgListEntry Entry; 5296 Args.reserve(CS.arg_size()); 5297 5298 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5299 i != e; ++i) { 5300 const Value *V = *i; 5301 5302 // Skip empty types 5303 if (V->getType()->isEmptyTy()) 5304 continue; 5305 5306 SDValue ArgNode = getValue(V); 5307 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5308 5309 // Skip the first return-type Attribute to get to params. 5310 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5311 Args.push_back(Entry); 5312 5313 // If we have an explicit sret argument that is an Instruction, (i.e., it 5314 // might point to function-local memory), we can't meaningfully tail-call. 5315 if (Entry.isSRet && isa<Instruction>(V)) 5316 isTailCall = false; 5317 } 5318 5319 // Check if target-independent constraints permit a tail call here. 5320 // Target-dependent constraints are checked within TLI->LowerCallTo. 5321 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5322 isTailCall = false; 5323 5324 TargetLowering::CallLoweringInfo CLI(DAG); 5325 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5326 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5327 .setTailCall(isTailCall); 5328 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5329 5330 if (Result.first.getNode()) 5331 setValue(CS.getInstruction(), Result.first); 5332 } 5333 5334 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5335 /// value is equal or not-equal to zero. 5336 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5337 for (const User *U : V->users()) { 5338 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5339 if (IC->isEquality()) 5340 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5341 if (C->isNullValue()) 5342 continue; 5343 // Unknown instruction. 5344 return false; 5345 } 5346 return true; 5347 } 5348 5349 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5350 Type *LoadTy, 5351 SelectionDAGBuilder &Builder) { 5352 5353 // Check to see if this load can be trivially constant folded, e.g. if the 5354 // input is from a string literal. 5355 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5356 // Cast pointer to the type we really want to load. 5357 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5358 PointerType::getUnqual(LoadTy)); 5359 5360 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5361 const_cast<Constant *>(LoadInput), *Builder.DL)) 5362 return Builder.getValue(LoadCst); 5363 } 5364 5365 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5366 // still constant memory, the input chain can be the entry node. 5367 SDValue Root; 5368 bool ConstantMemory = false; 5369 5370 // Do not serialize (non-volatile) loads of constant memory with anything. 5371 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5372 Root = Builder.DAG.getEntryNode(); 5373 ConstantMemory = true; 5374 } else { 5375 // Do not serialize non-volatile loads against each other. 5376 Root = Builder.DAG.getRoot(); 5377 } 5378 5379 SDValue Ptr = Builder.getValue(PtrVal); 5380 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5381 Ptr, MachinePointerInfo(PtrVal), 5382 false /*volatile*/, 5383 false /*nontemporal*/, 5384 false /*isinvariant*/, 1 /* align=1 */); 5385 5386 if (!ConstantMemory) 5387 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5388 return LoadVal; 5389 } 5390 5391 /// processIntegerCallValue - Record the value for an instruction that 5392 /// produces an integer result, converting the type where necessary. 5393 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5394 SDValue Value, 5395 bool IsSigned) { 5396 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5397 I.getType(), true); 5398 if (IsSigned) 5399 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5400 else 5401 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5402 setValue(&I, Value); 5403 } 5404 5405 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5406 /// If so, return true and lower it, otherwise return false and it will be 5407 /// lowered like a normal call. 5408 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5409 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5410 if (I.getNumArgOperands() != 3) 5411 return false; 5412 5413 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5414 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5415 !I.getArgOperand(2)->getType()->isIntegerTy() || 5416 !I.getType()->isIntegerTy()) 5417 return false; 5418 5419 const Value *Size = I.getArgOperand(2); 5420 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5421 if (CSize && CSize->getZExtValue() == 0) { 5422 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5423 I.getType(), true); 5424 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5425 return true; 5426 } 5427 5428 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5429 std::pair<SDValue, SDValue> Res = 5430 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5431 getValue(LHS), getValue(RHS), getValue(Size), 5432 MachinePointerInfo(LHS), 5433 MachinePointerInfo(RHS)); 5434 if (Res.first.getNode()) { 5435 processIntegerCallValue(I, Res.first, true); 5436 PendingLoads.push_back(Res.second); 5437 return true; 5438 } 5439 5440 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5441 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5442 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5443 bool ActuallyDoIt = true; 5444 MVT LoadVT; 5445 Type *LoadTy; 5446 switch (CSize->getZExtValue()) { 5447 default: 5448 LoadVT = MVT::Other; 5449 LoadTy = nullptr; 5450 ActuallyDoIt = false; 5451 break; 5452 case 2: 5453 LoadVT = MVT::i16; 5454 LoadTy = Type::getInt16Ty(CSize->getContext()); 5455 break; 5456 case 4: 5457 LoadVT = MVT::i32; 5458 LoadTy = Type::getInt32Ty(CSize->getContext()); 5459 break; 5460 case 8: 5461 LoadVT = MVT::i64; 5462 LoadTy = Type::getInt64Ty(CSize->getContext()); 5463 break; 5464 /* 5465 case 16: 5466 LoadVT = MVT::v4i32; 5467 LoadTy = Type::getInt32Ty(CSize->getContext()); 5468 LoadTy = VectorType::get(LoadTy, 4); 5469 break; 5470 */ 5471 } 5472 5473 // This turns into unaligned loads. We only do this if the target natively 5474 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5475 // we'll only produce a small number of byte loads. 5476 5477 // Require that we can find a legal MVT, and only do this if the target 5478 // supports unaligned loads of that type. Expanding into byte loads would 5479 // bloat the code. 5480 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5481 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5482 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5483 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5484 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5485 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5486 // TODO: Check alignment of src and dest ptrs. 5487 if (!TLI.isTypeLegal(LoadVT) || 5488 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5489 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5490 ActuallyDoIt = false; 5491 } 5492 5493 if (ActuallyDoIt) { 5494 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5495 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5496 5497 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5498 ISD::SETNE); 5499 processIntegerCallValue(I, Res, false); 5500 return true; 5501 } 5502 } 5503 5504 5505 return false; 5506 } 5507 5508 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5509 /// form. If so, return true and lower it, otherwise return false and it 5510 /// will be lowered like a normal call. 5511 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5512 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5513 if (I.getNumArgOperands() != 3) 5514 return false; 5515 5516 const Value *Src = I.getArgOperand(0); 5517 const Value *Char = I.getArgOperand(1); 5518 const Value *Length = I.getArgOperand(2); 5519 if (!Src->getType()->isPointerTy() || 5520 !Char->getType()->isIntegerTy() || 5521 !Length->getType()->isIntegerTy() || 5522 !I.getType()->isPointerTy()) 5523 return false; 5524 5525 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5526 std::pair<SDValue, SDValue> Res = 5527 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5528 getValue(Src), getValue(Char), getValue(Length), 5529 MachinePointerInfo(Src)); 5530 if (Res.first.getNode()) { 5531 setValue(&I, Res.first); 5532 PendingLoads.push_back(Res.second); 5533 return true; 5534 } 5535 5536 return false; 5537 } 5538 5539 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5540 /// optimized form. If so, return true and lower it, otherwise return false 5541 /// and it will be lowered like a normal call. 5542 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5543 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5544 if (I.getNumArgOperands() != 2) 5545 return false; 5546 5547 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5548 if (!Arg0->getType()->isPointerTy() || 5549 !Arg1->getType()->isPointerTy() || 5550 !I.getType()->isPointerTy()) 5551 return false; 5552 5553 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5554 std::pair<SDValue, SDValue> Res = 5555 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5556 getValue(Arg0), getValue(Arg1), 5557 MachinePointerInfo(Arg0), 5558 MachinePointerInfo(Arg1), isStpcpy); 5559 if (Res.first.getNode()) { 5560 setValue(&I, Res.first); 5561 DAG.setRoot(Res.second); 5562 return true; 5563 } 5564 5565 return false; 5566 } 5567 5568 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5569 /// If so, return true and lower it, otherwise return false and it will be 5570 /// lowered like a normal call. 5571 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5572 // Verify that the prototype makes sense. int strcmp(void*,void*) 5573 if (I.getNumArgOperands() != 2) 5574 return false; 5575 5576 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5577 if (!Arg0->getType()->isPointerTy() || 5578 !Arg1->getType()->isPointerTy() || 5579 !I.getType()->isIntegerTy()) 5580 return false; 5581 5582 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5583 std::pair<SDValue, SDValue> Res = 5584 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5585 getValue(Arg0), getValue(Arg1), 5586 MachinePointerInfo(Arg0), 5587 MachinePointerInfo(Arg1)); 5588 if (Res.first.getNode()) { 5589 processIntegerCallValue(I, Res.first, true); 5590 PendingLoads.push_back(Res.second); 5591 return true; 5592 } 5593 5594 return false; 5595 } 5596 5597 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5598 /// form. If so, return true and lower it, otherwise return false and it 5599 /// will be lowered like a normal call. 5600 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5601 // Verify that the prototype makes sense. size_t strlen(char *) 5602 if (I.getNumArgOperands() != 1) 5603 return false; 5604 5605 const Value *Arg0 = I.getArgOperand(0); 5606 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5607 return false; 5608 5609 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5610 std::pair<SDValue, SDValue> Res = 5611 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5612 getValue(Arg0), MachinePointerInfo(Arg0)); 5613 if (Res.first.getNode()) { 5614 processIntegerCallValue(I, Res.first, false); 5615 PendingLoads.push_back(Res.second); 5616 return true; 5617 } 5618 5619 return false; 5620 } 5621 5622 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5623 /// form. If so, return true and lower it, otherwise return false and it 5624 /// will be lowered like a normal call. 5625 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5626 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5627 if (I.getNumArgOperands() != 2) 5628 return false; 5629 5630 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5631 if (!Arg0->getType()->isPointerTy() || 5632 !Arg1->getType()->isIntegerTy() || 5633 !I.getType()->isIntegerTy()) 5634 return false; 5635 5636 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5637 std::pair<SDValue, SDValue> Res = 5638 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5639 getValue(Arg0), getValue(Arg1), 5640 MachinePointerInfo(Arg0)); 5641 if (Res.first.getNode()) { 5642 processIntegerCallValue(I, Res.first, false); 5643 PendingLoads.push_back(Res.second); 5644 return true; 5645 } 5646 5647 return false; 5648 } 5649 5650 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5651 /// operation (as expected), translate it to an SDNode with the specified opcode 5652 /// and return true. 5653 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5654 unsigned Opcode) { 5655 // Sanity check that it really is a unary floating-point call. 5656 if (I.getNumArgOperands() != 1 || 5657 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5658 I.getType() != I.getArgOperand(0)->getType() || 5659 !I.onlyReadsMemory()) 5660 return false; 5661 5662 SDValue Tmp = getValue(I.getArgOperand(0)); 5663 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5664 return true; 5665 } 5666 5667 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5668 /// operation (as expected), translate it to an SDNode with the specified opcode 5669 /// and return true. 5670 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5671 unsigned Opcode) { 5672 // Sanity check that it really is a binary floating-point call. 5673 if (I.getNumArgOperands() != 2 || 5674 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5675 I.getType() != I.getArgOperand(0)->getType() || 5676 I.getType() != I.getArgOperand(1)->getType() || 5677 !I.onlyReadsMemory()) 5678 return false; 5679 5680 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5681 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5682 EVT VT = Tmp0.getValueType(); 5683 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5684 return true; 5685 } 5686 5687 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5688 // Handle inline assembly differently. 5689 if (isa<InlineAsm>(I.getCalledValue())) { 5690 visitInlineAsm(&I); 5691 return; 5692 } 5693 5694 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5695 ComputeUsesVAFloatArgument(I, &MMI); 5696 5697 const char *RenameFn = nullptr; 5698 if (Function *F = I.getCalledFunction()) { 5699 if (F->isDeclaration()) { 5700 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5701 if (unsigned IID = II->getIntrinsicID(F)) { 5702 RenameFn = visitIntrinsicCall(I, IID); 5703 if (!RenameFn) 5704 return; 5705 } 5706 } 5707 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5708 RenameFn = visitIntrinsicCall(I, IID); 5709 if (!RenameFn) 5710 return; 5711 } 5712 } 5713 5714 // Check for well-known libc/libm calls. If the function is internal, it 5715 // can't be a library call. 5716 LibFunc::Func Func; 5717 if (!F->hasLocalLinkage() && F->hasName() && 5718 LibInfo->getLibFunc(F->getName(), Func) && 5719 LibInfo->hasOptimizedCodeGen(Func)) { 5720 switch (Func) { 5721 default: break; 5722 case LibFunc::copysign: 5723 case LibFunc::copysignf: 5724 case LibFunc::copysignl: 5725 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5726 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5727 I.getType() == I.getArgOperand(0)->getType() && 5728 I.getType() == I.getArgOperand(1)->getType() && 5729 I.onlyReadsMemory()) { 5730 SDValue LHS = getValue(I.getArgOperand(0)); 5731 SDValue RHS = getValue(I.getArgOperand(1)); 5732 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5733 LHS.getValueType(), LHS, RHS)); 5734 return; 5735 } 5736 break; 5737 case LibFunc::fabs: 5738 case LibFunc::fabsf: 5739 case LibFunc::fabsl: 5740 if (visitUnaryFloatCall(I, ISD::FABS)) 5741 return; 5742 break; 5743 case LibFunc::fmin: 5744 case LibFunc::fminf: 5745 case LibFunc::fminl: 5746 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5747 return; 5748 break; 5749 case LibFunc::fmax: 5750 case LibFunc::fmaxf: 5751 case LibFunc::fmaxl: 5752 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5753 return; 5754 break; 5755 case LibFunc::sin: 5756 case LibFunc::sinf: 5757 case LibFunc::sinl: 5758 if (visitUnaryFloatCall(I, ISD::FSIN)) 5759 return; 5760 break; 5761 case LibFunc::cos: 5762 case LibFunc::cosf: 5763 case LibFunc::cosl: 5764 if (visitUnaryFloatCall(I, ISD::FCOS)) 5765 return; 5766 break; 5767 case LibFunc::sqrt: 5768 case LibFunc::sqrtf: 5769 case LibFunc::sqrtl: 5770 case LibFunc::sqrt_finite: 5771 case LibFunc::sqrtf_finite: 5772 case LibFunc::sqrtl_finite: 5773 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5774 return; 5775 break; 5776 case LibFunc::floor: 5777 case LibFunc::floorf: 5778 case LibFunc::floorl: 5779 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5780 return; 5781 break; 5782 case LibFunc::nearbyint: 5783 case LibFunc::nearbyintf: 5784 case LibFunc::nearbyintl: 5785 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5786 return; 5787 break; 5788 case LibFunc::ceil: 5789 case LibFunc::ceilf: 5790 case LibFunc::ceill: 5791 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5792 return; 5793 break; 5794 case LibFunc::rint: 5795 case LibFunc::rintf: 5796 case LibFunc::rintl: 5797 if (visitUnaryFloatCall(I, ISD::FRINT)) 5798 return; 5799 break; 5800 case LibFunc::round: 5801 case LibFunc::roundf: 5802 case LibFunc::roundl: 5803 if (visitUnaryFloatCall(I, ISD::FROUND)) 5804 return; 5805 break; 5806 case LibFunc::trunc: 5807 case LibFunc::truncf: 5808 case LibFunc::truncl: 5809 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5810 return; 5811 break; 5812 case LibFunc::log2: 5813 case LibFunc::log2f: 5814 case LibFunc::log2l: 5815 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5816 return; 5817 break; 5818 case LibFunc::exp2: 5819 case LibFunc::exp2f: 5820 case LibFunc::exp2l: 5821 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5822 return; 5823 break; 5824 case LibFunc::memcmp: 5825 if (visitMemCmpCall(I)) 5826 return; 5827 break; 5828 case LibFunc::memchr: 5829 if (visitMemChrCall(I)) 5830 return; 5831 break; 5832 case LibFunc::strcpy: 5833 if (visitStrCpyCall(I, false)) 5834 return; 5835 break; 5836 case LibFunc::stpcpy: 5837 if (visitStrCpyCall(I, true)) 5838 return; 5839 break; 5840 case LibFunc::strcmp: 5841 if (visitStrCmpCall(I)) 5842 return; 5843 break; 5844 case LibFunc::strlen: 5845 if (visitStrLenCall(I)) 5846 return; 5847 break; 5848 case LibFunc::strnlen: 5849 if (visitStrNLenCall(I)) 5850 return; 5851 break; 5852 } 5853 } 5854 } 5855 5856 SDValue Callee; 5857 if (!RenameFn) 5858 Callee = getValue(I.getCalledValue()); 5859 else 5860 Callee = DAG.getExternalSymbol( 5861 RenameFn, 5862 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5863 5864 // Check if we can potentially perform a tail call. More detailed checking is 5865 // be done within LowerCallTo, after more information about the call is known. 5866 LowerCallTo(&I, Callee, I.isTailCall()); 5867 } 5868 5869 namespace { 5870 5871 /// AsmOperandInfo - This contains information for each constraint that we are 5872 /// lowering. 5873 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5874 public: 5875 /// CallOperand - If this is the result output operand or a clobber 5876 /// this is null, otherwise it is the incoming operand to the CallInst. 5877 /// This gets modified as the asm is processed. 5878 SDValue CallOperand; 5879 5880 /// AssignedRegs - If this is a register or register class operand, this 5881 /// contains the set of register corresponding to the operand. 5882 RegsForValue AssignedRegs; 5883 5884 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5885 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5886 } 5887 5888 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5889 /// corresponds to. If there is no Value* for this operand, it returns 5890 /// MVT::Other. 5891 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5892 const DataLayout &DL) const { 5893 if (!CallOperandVal) return MVT::Other; 5894 5895 if (isa<BasicBlock>(CallOperandVal)) 5896 return TLI.getPointerTy(DL); 5897 5898 llvm::Type *OpTy = CallOperandVal->getType(); 5899 5900 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5901 // If this is an indirect operand, the operand is a pointer to the 5902 // accessed type. 5903 if (isIndirect) { 5904 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5905 if (!PtrTy) 5906 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5907 OpTy = PtrTy->getElementType(); 5908 } 5909 5910 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5911 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5912 if (STy->getNumElements() == 1) 5913 OpTy = STy->getElementType(0); 5914 5915 // If OpTy is not a single value, it may be a struct/union that we 5916 // can tile with integers. 5917 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5918 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5919 switch (BitSize) { 5920 default: break; 5921 case 1: 5922 case 8: 5923 case 16: 5924 case 32: 5925 case 64: 5926 case 128: 5927 OpTy = IntegerType::get(Context, BitSize); 5928 break; 5929 } 5930 } 5931 5932 return TLI.getValueType(DL, OpTy, true); 5933 } 5934 }; 5935 5936 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5937 5938 } // end anonymous namespace 5939 5940 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5941 /// specified operand. We prefer to assign virtual registers, to allow the 5942 /// register allocator to handle the assignment process. However, if the asm 5943 /// uses features that we can't model on machineinstrs, we have SDISel do the 5944 /// allocation. This produces generally horrible, but correct, code. 5945 /// 5946 /// OpInfo describes the operand. 5947 /// 5948 static void GetRegistersForValue(SelectionDAG &DAG, 5949 const TargetLowering &TLI, 5950 SDLoc DL, 5951 SDISelAsmOperandInfo &OpInfo) { 5952 LLVMContext &Context = *DAG.getContext(); 5953 5954 MachineFunction &MF = DAG.getMachineFunction(); 5955 SmallVector<unsigned, 4> Regs; 5956 5957 // If this is a constraint for a single physreg, or a constraint for a 5958 // register class, find it. 5959 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 5960 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 5961 OpInfo.ConstraintCode, 5962 OpInfo.ConstraintVT); 5963 5964 unsigned NumRegs = 1; 5965 if (OpInfo.ConstraintVT != MVT::Other) { 5966 // If this is a FP input in an integer register (or visa versa) insert a bit 5967 // cast of the input value. More generally, handle any case where the input 5968 // value disagrees with the register class we plan to stick this in. 5969 if (OpInfo.Type == InlineAsm::isInput && 5970 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5971 // Try to convert to the first EVT that the reg class contains. If the 5972 // types are identical size, use a bitcast to convert (e.g. two differing 5973 // vector types). 5974 MVT RegVT = *PhysReg.second->vt_begin(); 5975 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 5976 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5977 RegVT, OpInfo.CallOperand); 5978 OpInfo.ConstraintVT = RegVT; 5979 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5980 // If the input is a FP value and we want it in FP registers, do a 5981 // bitcast to the corresponding integer type. This turns an f64 value 5982 // into i64, which can be passed with two i32 values on a 32-bit 5983 // machine. 5984 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5985 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5986 RegVT, OpInfo.CallOperand); 5987 OpInfo.ConstraintVT = RegVT; 5988 } 5989 } 5990 5991 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5992 } 5993 5994 MVT RegVT; 5995 EVT ValueVT = OpInfo.ConstraintVT; 5996 5997 // If this is a constraint for a specific physical register, like {r17}, 5998 // assign it now. 5999 if (unsigned AssignedReg = PhysReg.first) { 6000 const TargetRegisterClass *RC = PhysReg.second; 6001 if (OpInfo.ConstraintVT == MVT::Other) 6002 ValueVT = *RC->vt_begin(); 6003 6004 // Get the actual register value type. This is important, because the user 6005 // may have asked for (e.g.) the AX register in i32 type. We need to 6006 // remember that AX is actually i16 to get the right extension. 6007 RegVT = *RC->vt_begin(); 6008 6009 // This is a explicit reference to a physical register. 6010 Regs.push_back(AssignedReg); 6011 6012 // If this is an expanded reference, add the rest of the regs to Regs. 6013 if (NumRegs != 1) { 6014 TargetRegisterClass::iterator I = RC->begin(); 6015 for (; *I != AssignedReg; ++I) 6016 assert(I != RC->end() && "Didn't find reg!"); 6017 6018 // Already added the first reg. 6019 --NumRegs; ++I; 6020 for (; NumRegs; --NumRegs, ++I) { 6021 assert(I != RC->end() && "Ran out of registers to allocate!"); 6022 Regs.push_back(*I); 6023 } 6024 } 6025 6026 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6027 return; 6028 } 6029 6030 // Otherwise, if this was a reference to an LLVM register class, create vregs 6031 // for this reference. 6032 if (const TargetRegisterClass *RC = PhysReg.second) { 6033 RegVT = *RC->vt_begin(); 6034 if (OpInfo.ConstraintVT == MVT::Other) 6035 ValueVT = RegVT; 6036 6037 // Create the appropriate number of virtual registers. 6038 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6039 for (; NumRegs; --NumRegs) 6040 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6041 6042 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6043 return; 6044 } 6045 6046 // Otherwise, we couldn't allocate enough registers for this. 6047 } 6048 6049 /// visitInlineAsm - Handle a call to an InlineAsm object. 6050 /// 6051 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6052 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6053 6054 /// ConstraintOperands - Information about all of the constraints. 6055 SDISelAsmOperandInfoVector ConstraintOperands; 6056 6057 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6058 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6059 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6060 6061 bool hasMemory = false; 6062 6063 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6064 unsigned ResNo = 0; // ResNo - The result number of the next output. 6065 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6066 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6067 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6068 6069 MVT OpVT = MVT::Other; 6070 6071 // Compute the value type for each operand. 6072 switch (OpInfo.Type) { 6073 case InlineAsm::isOutput: 6074 // Indirect outputs just consume an argument. 6075 if (OpInfo.isIndirect) { 6076 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6077 break; 6078 } 6079 6080 // The return value of the call is this value. As such, there is no 6081 // corresponding argument. 6082 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6083 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6084 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6085 STy->getElementType(ResNo)); 6086 } else { 6087 assert(ResNo == 0 && "Asm only has one result!"); 6088 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6089 } 6090 ++ResNo; 6091 break; 6092 case InlineAsm::isInput: 6093 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6094 break; 6095 case InlineAsm::isClobber: 6096 // Nothing to do. 6097 break; 6098 } 6099 6100 // If this is an input or an indirect output, process the call argument. 6101 // BasicBlocks are labels, currently appearing only in asm's. 6102 if (OpInfo.CallOperandVal) { 6103 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6104 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6105 } else { 6106 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6107 } 6108 6109 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6110 DAG.getDataLayout()).getSimpleVT(); 6111 } 6112 6113 OpInfo.ConstraintVT = OpVT; 6114 6115 // Indirect operand accesses access memory. 6116 if (OpInfo.isIndirect) 6117 hasMemory = true; 6118 else { 6119 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6120 TargetLowering::ConstraintType 6121 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6122 if (CType == TargetLowering::C_Memory) { 6123 hasMemory = true; 6124 break; 6125 } 6126 } 6127 } 6128 } 6129 6130 SDValue Chain, Flag; 6131 6132 // We won't need to flush pending loads if this asm doesn't touch 6133 // memory and is nonvolatile. 6134 if (hasMemory || IA->hasSideEffects()) 6135 Chain = getRoot(); 6136 else 6137 Chain = DAG.getRoot(); 6138 6139 // Second pass over the constraints: compute which constraint option to use 6140 // and assign registers to constraints that want a specific physreg. 6141 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6142 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6143 6144 // If this is an output operand with a matching input operand, look up the 6145 // matching input. If their types mismatch, e.g. one is an integer, the 6146 // other is floating point, or their sizes are different, flag it as an 6147 // error. 6148 if (OpInfo.hasMatchingInput()) { 6149 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6150 6151 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6152 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6153 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6154 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6155 OpInfo.ConstraintVT); 6156 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6157 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6158 Input.ConstraintVT); 6159 if ((OpInfo.ConstraintVT.isInteger() != 6160 Input.ConstraintVT.isInteger()) || 6161 (MatchRC.second != InputRC.second)) { 6162 report_fatal_error("Unsupported asm: input constraint" 6163 " with a matching output constraint of" 6164 " incompatible type!"); 6165 } 6166 Input.ConstraintVT = OpInfo.ConstraintVT; 6167 } 6168 } 6169 6170 // Compute the constraint code and ConstraintType to use. 6171 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6172 6173 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6174 OpInfo.Type == InlineAsm::isClobber) 6175 continue; 6176 6177 // If this is a memory input, and if the operand is not indirect, do what we 6178 // need to to provide an address for the memory input. 6179 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6180 !OpInfo.isIndirect) { 6181 assert((OpInfo.isMultipleAlternative || 6182 (OpInfo.Type == InlineAsm::isInput)) && 6183 "Can only indirectify direct input operands!"); 6184 6185 // Memory operands really want the address of the value. If we don't have 6186 // an indirect input, put it in the constpool if we can, otherwise spill 6187 // it to a stack slot. 6188 // TODO: This isn't quite right. We need to handle these according to 6189 // the addressing mode that the constraint wants. Also, this may take 6190 // an additional register for the computation and we don't want that 6191 // either. 6192 6193 // If the operand is a float, integer, or vector constant, spill to a 6194 // constant pool entry to get its address. 6195 const Value *OpVal = OpInfo.CallOperandVal; 6196 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6197 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6198 OpInfo.CallOperand = DAG.getConstantPool( 6199 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6200 } else { 6201 // Otherwise, create a stack slot and emit a store to it before the 6202 // asm. 6203 Type *Ty = OpVal->getType(); 6204 auto &DL = DAG.getDataLayout(); 6205 uint64_t TySize = DL.getTypeAllocSize(Ty); 6206 unsigned Align = DL.getPrefTypeAlignment(Ty); 6207 MachineFunction &MF = DAG.getMachineFunction(); 6208 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6209 SDValue StackSlot = 6210 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6211 Chain = DAG.getStore( 6212 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6213 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6214 false, false, 0); 6215 OpInfo.CallOperand = StackSlot; 6216 } 6217 6218 // There is no longer a Value* corresponding to this operand. 6219 OpInfo.CallOperandVal = nullptr; 6220 6221 // It is now an indirect operand. 6222 OpInfo.isIndirect = true; 6223 } 6224 6225 // If this constraint is for a specific register, allocate it before 6226 // anything else. 6227 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6228 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6229 } 6230 6231 // Second pass - Loop over all of the operands, assigning virtual or physregs 6232 // to register class operands. 6233 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6234 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6235 6236 // C_Register operands have already been allocated, Other/Memory don't need 6237 // to be. 6238 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6239 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6240 } 6241 6242 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6243 std::vector<SDValue> AsmNodeOperands; 6244 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6245 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6246 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6247 6248 // If we have a !srcloc metadata node associated with it, we want to attach 6249 // this to the ultimately generated inline asm machineinstr. To do this, we 6250 // pass in the third operand as this (potentially null) inline asm MDNode. 6251 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6252 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6253 6254 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6255 // bits as operand 3. 6256 unsigned ExtraInfo = 0; 6257 if (IA->hasSideEffects()) 6258 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6259 if (IA->isAlignStack()) 6260 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6261 // Set the asm dialect. 6262 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6263 6264 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6265 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6266 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6267 6268 // Compute the constraint code and ConstraintType to use. 6269 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6270 6271 // Ideally, we would only check against memory constraints. However, the 6272 // meaning of an other constraint can be target-specific and we can't easily 6273 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6274 // for other constriants as well. 6275 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6276 OpInfo.ConstraintType == TargetLowering::C_Other) { 6277 if (OpInfo.Type == InlineAsm::isInput) 6278 ExtraInfo |= InlineAsm::Extra_MayLoad; 6279 else if (OpInfo.Type == InlineAsm::isOutput) 6280 ExtraInfo |= InlineAsm::Extra_MayStore; 6281 else if (OpInfo.Type == InlineAsm::isClobber) 6282 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6283 } 6284 } 6285 6286 AsmNodeOperands.push_back(DAG.getTargetConstant( 6287 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6288 6289 // Loop over all of the inputs, copying the operand values into the 6290 // appropriate registers and processing the output regs. 6291 RegsForValue RetValRegs; 6292 6293 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6294 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6295 6296 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6297 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6298 6299 switch (OpInfo.Type) { 6300 case InlineAsm::isOutput: { 6301 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6302 OpInfo.ConstraintType != TargetLowering::C_Register) { 6303 // Memory output, or 'other' output (e.g. 'X' constraint). 6304 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6305 6306 unsigned ConstraintID = 6307 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6308 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6309 "Failed to convert memory constraint code to constraint id."); 6310 6311 // Add information to the INLINEASM node to know about this output. 6312 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6313 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6314 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6315 MVT::i32)); 6316 AsmNodeOperands.push_back(OpInfo.CallOperand); 6317 break; 6318 } 6319 6320 // Otherwise, this is a register or register class output. 6321 6322 // Copy the output from the appropriate register. Find a register that 6323 // we can use. 6324 if (OpInfo.AssignedRegs.Regs.empty()) { 6325 LLVMContext &Ctx = *DAG.getContext(); 6326 Ctx.emitError(CS.getInstruction(), 6327 "couldn't allocate output register for constraint '" + 6328 Twine(OpInfo.ConstraintCode) + "'"); 6329 return; 6330 } 6331 6332 // If this is an indirect operand, store through the pointer after the 6333 // asm. 6334 if (OpInfo.isIndirect) { 6335 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6336 OpInfo.CallOperandVal)); 6337 } else { 6338 // This is the result value of the call. 6339 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6340 // Concatenate this output onto the outputs list. 6341 RetValRegs.append(OpInfo.AssignedRegs); 6342 } 6343 6344 // Add information to the INLINEASM node to know that this register is 6345 // set. 6346 OpInfo.AssignedRegs 6347 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6348 ? InlineAsm::Kind_RegDefEarlyClobber 6349 : InlineAsm::Kind_RegDef, 6350 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6351 break; 6352 } 6353 case InlineAsm::isInput: { 6354 SDValue InOperandVal = OpInfo.CallOperand; 6355 6356 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6357 // If this is required to match an output register we have already set, 6358 // just use its register. 6359 unsigned OperandNo = OpInfo.getMatchedOperand(); 6360 6361 // Scan until we find the definition we already emitted of this operand. 6362 // When we find it, create a RegsForValue operand. 6363 unsigned CurOp = InlineAsm::Op_FirstOperand; 6364 for (; OperandNo; --OperandNo) { 6365 // Advance to the next operand. 6366 unsigned OpFlag = 6367 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6368 assert((InlineAsm::isRegDefKind(OpFlag) || 6369 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6370 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6371 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6372 } 6373 6374 unsigned OpFlag = 6375 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6376 if (InlineAsm::isRegDefKind(OpFlag) || 6377 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6378 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6379 if (OpInfo.isIndirect) { 6380 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6381 LLVMContext &Ctx = *DAG.getContext(); 6382 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6383 " don't know how to handle tied " 6384 "indirect register inputs"); 6385 return; 6386 } 6387 6388 RegsForValue MatchedRegs; 6389 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6390 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6391 MatchedRegs.RegVTs.push_back(RegVT); 6392 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6393 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6394 i != e; ++i) { 6395 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6396 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6397 else { 6398 LLVMContext &Ctx = *DAG.getContext(); 6399 Ctx.emitError(CS.getInstruction(), 6400 "inline asm error: This value" 6401 " type register class is not natively supported!"); 6402 return; 6403 } 6404 } 6405 SDLoc dl = getCurSDLoc(); 6406 // Use the produced MatchedRegs object to 6407 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6408 Chain, &Flag, CS.getInstruction()); 6409 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6410 true, OpInfo.getMatchedOperand(), dl, 6411 DAG, AsmNodeOperands); 6412 break; 6413 } 6414 6415 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6416 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6417 "Unexpected number of operands"); 6418 // Add information to the INLINEASM node to know about this input. 6419 // See InlineAsm.h isUseOperandTiedToDef. 6420 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6421 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6422 OpInfo.getMatchedOperand()); 6423 AsmNodeOperands.push_back(DAG.getTargetConstant( 6424 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6425 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6426 break; 6427 } 6428 6429 // Treat indirect 'X' constraint as memory. 6430 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6431 OpInfo.isIndirect) 6432 OpInfo.ConstraintType = TargetLowering::C_Memory; 6433 6434 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6435 std::vector<SDValue> Ops; 6436 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6437 Ops, DAG); 6438 if (Ops.empty()) { 6439 LLVMContext &Ctx = *DAG.getContext(); 6440 Ctx.emitError(CS.getInstruction(), 6441 "invalid operand for inline asm constraint '" + 6442 Twine(OpInfo.ConstraintCode) + "'"); 6443 return; 6444 } 6445 6446 // Add information to the INLINEASM node to know about this input. 6447 unsigned ResOpType = 6448 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6449 AsmNodeOperands.push_back(DAG.getTargetConstant( 6450 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6451 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6452 break; 6453 } 6454 6455 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6456 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6457 assert(InOperandVal.getValueType() == 6458 TLI.getPointerTy(DAG.getDataLayout()) && 6459 "Memory operands expect pointer values"); 6460 6461 unsigned ConstraintID = 6462 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6463 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6464 "Failed to convert memory constraint code to constraint id."); 6465 6466 // Add information to the INLINEASM node to know about this input. 6467 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6468 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6469 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6470 getCurSDLoc(), 6471 MVT::i32)); 6472 AsmNodeOperands.push_back(InOperandVal); 6473 break; 6474 } 6475 6476 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6477 OpInfo.ConstraintType == TargetLowering::C_Register) && 6478 "Unknown constraint type!"); 6479 6480 // TODO: Support this. 6481 if (OpInfo.isIndirect) { 6482 LLVMContext &Ctx = *DAG.getContext(); 6483 Ctx.emitError(CS.getInstruction(), 6484 "Don't know how to handle indirect register inputs yet " 6485 "for constraint '" + 6486 Twine(OpInfo.ConstraintCode) + "'"); 6487 return; 6488 } 6489 6490 // Copy the input into the appropriate registers. 6491 if (OpInfo.AssignedRegs.Regs.empty()) { 6492 LLVMContext &Ctx = *DAG.getContext(); 6493 Ctx.emitError(CS.getInstruction(), 6494 "couldn't allocate input reg for constraint '" + 6495 Twine(OpInfo.ConstraintCode) + "'"); 6496 return; 6497 } 6498 6499 SDLoc dl = getCurSDLoc(); 6500 6501 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6502 Chain, &Flag, CS.getInstruction()); 6503 6504 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6505 dl, DAG, AsmNodeOperands); 6506 break; 6507 } 6508 case InlineAsm::isClobber: { 6509 // Add the clobbered value to the operand list, so that the register 6510 // allocator is aware that the physreg got clobbered. 6511 if (!OpInfo.AssignedRegs.Regs.empty()) 6512 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6513 false, 0, getCurSDLoc(), DAG, 6514 AsmNodeOperands); 6515 break; 6516 } 6517 } 6518 } 6519 6520 // Finish up input operands. Set the input chain and add the flag last. 6521 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6522 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6523 6524 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6525 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6526 Flag = Chain.getValue(1); 6527 6528 // If this asm returns a register value, copy the result from that register 6529 // and set it as the value of the call. 6530 if (!RetValRegs.Regs.empty()) { 6531 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6532 Chain, &Flag, CS.getInstruction()); 6533 6534 // FIXME: Why don't we do this for inline asms with MRVs? 6535 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6536 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6537 6538 // If any of the results of the inline asm is a vector, it may have the 6539 // wrong width/num elts. This can happen for register classes that can 6540 // contain multiple different value types. The preg or vreg allocated may 6541 // not have the same VT as was expected. Convert it to the right type 6542 // with bit_convert. 6543 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6544 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6545 ResultType, Val); 6546 6547 } else if (ResultType != Val.getValueType() && 6548 ResultType.isInteger() && Val.getValueType().isInteger()) { 6549 // If a result value was tied to an input value, the computed result may 6550 // have a wider width than the expected result. Extract the relevant 6551 // portion. 6552 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6553 } 6554 6555 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6556 } 6557 6558 setValue(CS.getInstruction(), Val); 6559 // Don't need to use this as a chain in this case. 6560 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6561 return; 6562 } 6563 6564 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6565 6566 // Process indirect outputs, first output all of the flagged copies out of 6567 // physregs. 6568 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6569 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6570 const Value *Ptr = IndirectStoresToEmit[i].second; 6571 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6572 Chain, &Flag, IA); 6573 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6574 } 6575 6576 // Emit the non-flagged stores from the physregs. 6577 SmallVector<SDValue, 8> OutChains; 6578 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6579 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6580 StoresToEmit[i].first, 6581 getValue(StoresToEmit[i].second), 6582 MachinePointerInfo(StoresToEmit[i].second), 6583 false, false, 0); 6584 OutChains.push_back(Val); 6585 } 6586 6587 if (!OutChains.empty()) 6588 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6589 6590 DAG.setRoot(Chain); 6591 } 6592 6593 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6594 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6595 MVT::Other, getRoot(), 6596 getValue(I.getArgOperand(0)), 6597 DAG.getSrcValue(I.getArgOperand(0)))); 6598 } 6599 6600 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6601 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6602 const DataLayout &DL = DAG.getDataLayout(); 6603 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6604 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6605 DAG.getSrcValue(I.getOperand(0)), 6606 DL.getABITypeAlignment(I.getType())); 6607 setValue(&I, V); 6608 DAG.setRoot(V.getValue(1)); 6609 } 6610 6611 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6612 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6613 MVT::Other, getRoot(), 6614 getValue(I.getArgOperand(0)), 6615 DAG.getSrcValue(I.getArgOperand(0)))); 6616 } 6617 6618 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6619 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6620 MVT::Other, getRoot(), 6621 getValue(I.getArgOperand(0)), 6622 getValue(I.getArgOperand(1)), 6623 DAG.getSrcValue(I.getArgOperand(0)), 6624 DAG.getSrcValue(I.getArgOperand(1)))); 6625 } 6626 6627 /// \brief Lower an argument list according to the target calling convention. 6628 /// 6629 /// \return A tuple of <return-value, token-chain> 6630 /// 6631 /// This is a helper for lowering intrinsics that follow a target calling 6632 /// convention or require stack pointer adjustment. Only a subset of the 6633 /// intrinsic's operands need to participate in the calling convention. 6634 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands( 6635 ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, 6636 Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) { 6637 TargetLowering::ArgListTy Args; 6638 Args.reserve(NumArgs); 6639 6640 // Populate the argument list. 6641 // Attributes for args start at offset 1, after the return attribute. 6642 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6643 ArgI != ArgE; ++ArgI) { 6644 const Value *V = CS->getOperand(ArgI); 6645 6646 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6647 6648 TargetLowering::ArgListEntry Entry; 6649 Entry.Node = getValue(V); 6650 Entry.Ty = V->getType(); 6651 Entry.setAttributes(&CS, AttrI); 6652 Args.push_back(Entry); 6653 } 6654 6655 TargetLowering::CallLoweringInfo CLI(DAG); 6656 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6657 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6658 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6659 6660 return lowerInvokable(CLI, EHPadBB); 6661 } 6662 6663 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6664 /// or patchpoint target node's operand list. 6665 /// 6666 /// Constants are converted to TargetConstants purely as an optimization to 6667 /// avoid constant materialization and register allocation. 6668 /// 6669 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6670 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6671 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6672 /// address materialization and register allocation, but may also be required 6673 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6674 /// alloca in the entry block, then the runtime may assume that the alloca's 6675 /// StackMap location can be read immediately after compilation and that the 6676 /// location is valid at any point during execution (this is similar to the 6677 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6678 /// only available in a register, then the runtime would need to trap when 6679 /// execution reaches the StackMap in order to read the alloca's location. 6680 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6681 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6682 SelectionDAGBuilder &Builder) { 6683 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6684 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6685 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6686 Ops.push_back( 6687 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6688 Ops.push_back( 6689 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6690 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6691 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6692 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6693 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6694 } else 6695 Ops.push_back(OpVal); 6696 } 6697 } 6698 6699 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6700 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6701 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6702 // [live variables...]) 6703 6704 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6705 6706 SDValue Chain, InFlag, Callee, NullPtr; 6707 SmallVector<SDValue, 32> Ops; 6708 6709 SDLoc DL = getCurSDLoc(); 6710 Callee = getValue(CI.getCalledValue()); 6711 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6712 6713 // The stackmap intrinsic only records the live variables (the arguemnts 6714 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6715 // intrinsic, this won't be lowered to a function call. This means we don't 6716 // have to worry about calling conventions and target specific lowering code. 6717 // Instead we perform the call lowering right here. 6718 // 6719 // chain, flag = CALLSEQ_START(chain, 0) 6720 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6721 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6722 // 6723 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6724 InFlag = Chain.getValue(1); 6725 6726 // Add the <id> and <numBytes> constants. 6727 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6728 Ops.push_back(DAG.getTargetConstant( 6729 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6730 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6731 Ops.push_back(DAG.getTargetConstant( 6732 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6733 MVT::i32)); 6734 6735 // Push live variables for the stack map. 6736 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6737 6738 // We are not pushing any register mask info here on the operands list, 6739 // because the stackmap doesn't clobber anything. 6740 6741 // Push the chain and the glue flag. 6742 Ops.push_back(Chain); 6743 Ops.push_back(InFlag); 6744 6745 // Create the STACKMAP node. 6746 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6747 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6748 Chain = SDValue(SM, 0); 6749 InFlag = Chain.getValue(1); 6750 6751 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6752 6753 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6754 6755 // Set the root to the target-lowered call chain. 6756 DAG.setRoot(Chain); 6757 6758 // Inform the Frame Information that we have a stackmap in this function. 6759 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6760 } 6761 6762 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6763 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6764 const BasicBlock *EHPadBB) { 6765 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6766 // i32 <numBytes>, 6767 // i8* <target>, 6768 // i32 <numArgs>, 6769 // [Args...], 6770 // [live variables...]) 6771 6772 CallingConv::ID CC = CS.getCallingConv(); 6773 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6774 bool HasDef = !CS->getType()->isVoidTy(); 6775 SDLoc dl = getCurSDLoc(); 6776 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6777 6778 // Handle immediate and symbolic callees. 6779 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6780 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6781 /*isTarget=*/true); 6782 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6783 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6784 SDLoc(SymbolicCallee), 6785 SymbolicCallee->getValueType(0)); 6786 6787 // Get the real number of arguments participating in the call <numArgs> 6788 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6789 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6790 6791 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6792 // Intrinsics include all meta-operands up to but not including CC. 6793 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6794 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6795 "Not enough arguments provided to the patchpoint intrinsic"); 6796 6797 // For AnyRegCC the arguments are lowered later on manually. 6798 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6799 Type *ReturnTy = 6800 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6801 std::pair<SDValue, SDValue> Result = lowerCallOperands( 6802 CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true); 6803 6804 SDNode *CallEnd = Result.second.getNode(); 6805 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6806 CallEnd = CallEnd->getOperand(0).getNode(); 6807 6808 /// Get a call instruction from the call sequence chain. 6809 /// Tail calls are not allowed. 6810 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6811 "Expected a callseq node."); 6812 SDNode *Call = CallEnd->getOperand(0).getNode(); 6813 bool HasGlue = Call->getGluedNode(); 6814 6815 // Replace the target specific call node with the patchable intrinsic. 6816 SmallVector<SDValue, 8> Ops; 6817 6818 // Add the <id> and <numBytes> constants. 6819 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6820 Ops.push_back(DAG.getTargetConstant( 6821 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6822 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6823 Ops.push_back(DAG.getTargetConstant( 6824 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6825 MVT::i32)); 6826 6827 // Add the callee. 6828 Ops.push_back(Callee); 6829 6830 // Adjust <numArgs> to account for any arguments that have been passed on the 6831 // stack instead. 6832 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6833 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6834 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6835 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6836 6837 // Add the calling convention 6838 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6839 6840 // Add the arguments we omitted previously. The register allocator should 6841 // place these in any free register. 6842 if (IsAnyRegCC) 6843 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6844 Ops.push_back(getValue(CS.getArgument(i))); 6845 6846 // Push the arguments from the call instruction up to the register mask. 6847 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6848 Ops.append(Call->op_begin() + 2, e); 6849 6850 // Push live variables for the stack map. 6851 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6852 6853 // Push the register mask info. 6854 if (HasGlue) 6855 Ops.push_back(*(Call->op_end()-2)); 6856 else 6857 Ops.push_back(*(Call->op_end()-1)); 6858 6859 // Push the chain (this is originally the first operand of the call, but 6860 // becomes now the last or second to last operand). 6861 Ops.push_back(*(Call->op_begin())); 6862 6863 // Push the glue flag (last operand). 6864 if (HasGlue) 6865 Ops.push_back(*(Call->op_end()-1)); 6866 6867 SDVTList NodeTys; 6868 if (IsAnyRegCC && HasDef) { 6869 // Create the return types based on the intrinsic definition 6870 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6871 SmallVector<EVT, 3> ValueVTs; 6872 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6873 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6874 6875 // There is always a chain and a glue type at the end 6876 ValueVTs.push_back(MVT::Other); 6877 ValueVTs.push_back(MVT::Glue); 6878 NodeTys = DAG.getVTList(ValueVTs); 6879 } else 6880 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6881 6882 // Replace the target specific call node with a PATCHPOINT node. 6883 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6884 dl, NodeTys, Ops); 6885 6886 // Update the NodeMap. 6887 if (HasDef) { 6888 if (IsAnyRegCC) 6889 setValue(CS.getInstruction(), SDValue(MN, 0)); 6890 else 6891 setValue(CS.getInstruction(), Result.first); 6892 } 6893 6894 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6895 // call sequence. Furthermore the location of the chain and glue can change 6896 // when the AnyReg calling convention is used and the intrinsic returns a 6897 // value. 6898 if (IsAnyRegCC && HasDef) { 6899 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6900 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6901 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6902 } else 6903 DAG.ReplaceAllUsesWith(Call, MN); 6904 DAG.DeleteNode(Call); 6905 6906 // Inform the Frame Information that we have a patchpoint in this function. 6907 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6908 } 6909 6910 /// Returns an AttributeSet representing the attributes applied to the return 6911 /// value of the given call. 6912 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6913 SmallVector<Attribute::AttrKind, 2> Attrs; 6914 if (CLI.RetSExt) 6915 Attrs.push_back(Attribute::SExt); 6916 if (CLI.RetZExt) 6917 Attrs.push_back(Attribute::ZExt); 6918 if (CLI.IsInReg) 6919 Attrs.push_back(Attribute::InReg); 6920 6921 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6922 Attrs); 6923 } 6924 6925 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6926 /// implementation, which just calls LowerCall. 6927 /// FIXME: When all targets are 6928 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6929 std::pair<SDValue, SDValue> 6930 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6931 // Handle the incoming return values from the call. 6932 CLI.Ins.clear(); 6933 Type *OrigRetTy = CLI.RetTy; 6934 SmallVector<EVT, 4> RetTys; 6935 SmallVector<uint64_t, 4> Offsets; 6936 auto &DL = CLI.DAG.getDataLayout(); 6937 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 6938 6939 SmallVector<ISD::OutputArg, 4> Outs; 6940 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 6941 6942 bool CanLowerReturn = 6943 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6944 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6945 6946 SDValue DemoteStackSlot; 6947 int DemoteStackIdx = -100; 6948 if (!CanLowerReturn) { 6949 // FIXME: equivalent assert? 6950 // assert(!CS.hasInAllocaArgument() && 6951 // "sret demotion is incompatible with inalloca"); 6952 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 6953 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 6954 MachineFunction &MF = CLI.DAG.getMachineFunction(); 6955 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6956 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 6957 6958 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 6959 ArgListEntry Entry; 6960 Entry.Node = DemoteStackSlot; 6961 Entry.Ty = StackSlotPtrType; 6962 Entry.isSExt = false; 6963 Entry.isZExt = false; 6964 Entry.isInReg = false; 6965 Entry.isSRet = true; 6966 Entry.isNest = false; 6967 Entry.isByVal = false; 6968 Entry.isReturned = false; 6969 Entry.Alignment = Align; 6970 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 6971 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 6972 6973 // sret demotion isn't compatible with tail-calls, since the sret argument 6974 // points into the callers stack frame. 6975 CLI.IsTailCall = false; 6976 } else { 6977 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6978 EVT VT = RetTys[I]; 6979 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6980 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6981 for (unsigned i = 0; i != NumRegs; ++i) { 6982 ISD::InputArg MyFlags; 6983 MyFlags.VT = RegisterVT; 6984 MyFlags.ArgVT = VT; 6985 MyFlags.Used = CLI.IsReturnValueUsed; 6986 if (CLI.RetSExt) 6987 MyFlags.Flags.setSExt(); 6988 if (CLI.RetZExt) 6989 MyFlags.Flags.setZExt(); 6990 if (CLI.IsInReg) 6991 MyFlags.Flags.setInReg(); 6992 CLI.Ins.push_back(MyFlags); 6993 } 6994 } 6995 } 6996 6997 // Handle all of the outgoing arguments. 6998 CLI.Outs.clear(); 6999 CLI.OutVals.clear(); 7000 ArgListTy &Args = CLI.getArgs(); 7001 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7002 SmallVector<EVT, 4> ValueVTs; 7003 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7004 Type *FinalType = Args[i].Ty; 7005 if (Args[i].isByVal) 7006 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7007 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7008 FinalType, CLI.CallConv, CLI.IsVarArg); 7009 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7010 ++Value) { 7011 EVT VT = ValueVTs[Value]; 7012 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7013 SDValue Op = SDValue(Args[i].Node.getNode(), 7014 Args[i].Node.getResNo() + Value); 7015 ISD::ArgFlagsTy Flags; 7016 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7017 7018 if (Args[i].isZExt) 7019 Flags.setZExt(); 7020 if (Args[i].isSExt) 7021 Flags.setSExt(); 7022 if (Args[i].isInReg) 7023 Flags.setInReg(); 7024 if (Args[i].isSRet) 7025 Flags.setSRet(); 7026 if (Args[i].isByVal) 7027 Flags.setByVal(); 7028 if (Args[i].isInAlloca) { 7029 Flags.setInAlloca(); 7030 // Set the byval flag for CCAssignFn callbacks that don't know about 7031 // inalloca. This way we can know how many bytes we should've allocated 7032 // and how many bytes a callee cleanup function will pop. If we port 7033 // inalloca to more targets, we'll have to add custom inalloca handling 7034 // in the various CC lowering callbacks. 7035 Flags.setByVal(); 7036 } 7037 if (Args[i].isByVal || Args[i].isInAlloca) { 7038 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7039 Type *ElementTy = Ty->getElementType(); 7040 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7041 // For ByVal, alignment should come from FE. BE will guess if this 7042 // info is not there but there are cases it cannot get right. 7043 unsigned FrameAlign; 7044 if (Args[i].Alignment) 7045 FrameAlign = Args[i].Alignment; 7046 else 7047 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7048 Flags.setByValAlign(FrameAlign); 7049 } 7050 if (Args[i].isNest) 7051 Flags.setNest(); 7052 if (NeedsRegBlock) 7053 Flags.setInConsecutiveRegs(); 7054 Flags.setOrigAlign(OriginalAlignment); 7055 7056 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7057 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7058 SmallVector<SDValue, 4> Parts(NumParts); 7059 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7060 7061 if (Args[i].isSExt) 7062 ExtendKind = ISD::SIGN_EXTEND; 7063 else if (Args[i].isZExt) 7064 ExtendKind = ISD::ZERO_EXTEND; 7065 7066 // Conservatively only handle 'returned' on non-vectors for now 7067 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7068 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7069 "unexpected use of 'returned'"); 7070 // Before passing 'returned' to the target lowering code, ensure that 7071 // either the register MVT and the actual EVT are the same size or that 7072 // the return value and argument are extended in the same way; in these 7073 // cases it's safe to pass the argument register value unchanged as the 7074 // return register value (although it's at the target's option whether 7075 // to do so) 7076 // TODO: allow code generation to take advantage of partially preserved 7077 // registers rather than clobbering the entire register when the 7078 // parameter extension method is not compatible with the return 7079 // extension method 7080 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7081 (ExtendKind != ISD::ANY_EXTEND && 7082 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7083 Flags.setReturned(); 7084 } 7085 7086 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7087 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7088 7089 for (unsigned j = 0; j != NumParts; ++j) { 7090 // if it isn't first piece, alignment must be 1 7091 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7092 i < CLI.NumFixedArgs, 7093 i, j*Parts[j].getValueType().getStoreSize()); 7094 if (NumParts > 1 && j == 0) 7095 MyFlags.Flags.setSplit(); 7096 else if (j != 0) 7097 MyFlags.Flags.setOrigAlign(1); 7098 7099 CLI.Outs.push_back(MyFlags); 7100 CLI.OutVals.push_back(Parts[j]); 7101 } 7102 7103 if (NeedsRegBlock && Value == NumValues - 1) 7104 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7105 } 7106 } 7107 7108 SmallVector<SDValue, 4> InVals; 7109 CLI.Chain = LowerCall(CLI, InVals); 7110 7111 // Verify that the target's LowerCall behaved as expected. 7112 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7113 "LowerCall didn't return a valid chain!"); 7114 assert((!CLI.IsTailCall || InVals.empty()) && 7115 "LowerCall emitted a return value for a tail call!"); 7116 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7117 "LowerCall didn't emit the correct number of values!"); 7118 7119 // For a tail call, the return value is merely live-out and there aren't 7120 // any nodes in the DAG representing it. Return a special value to 7121 // indicate that a tail call has been emitted and no more Instructions 7122 // should be processed in the current block. 7123 if (CLI.IsTailCall) { 7124 CLI.DAG.setRoot(CLI.Chain); 7125 return std::make_pair(SDValue(), SDValue()); 7126 } 7127 7128 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7129 assert(InVals[i].getNode() && 7130 "LowerCall emitted a null value!"); 7131 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7132 "LowerCall emitted a value with the wrong type!"); 7133 }); 7134 7135 SmallVector<SDValue, 4> ReturnValues; 7136 if (!CanLowerReturn) { 7137 // The instruction result is the result of loading from the 7138 // hidden sret parameter. 7139 SmallVector<EVT, 1> PVTs; 7140 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7141 7142 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7143 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7144 EVT PtrVT = PVTs[0]; 7145 7146 unsigned NumValues = RetTys.size(); 7147 ReturnValues.resize(NumValues); 7148 SmallVector<SDValue, 4> Chains(NumValues); 7149 7150 for (unsigned i = 0; i < NumValues; ++i) { 7151 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7152 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7153 PtrVT)); 7154 SDValue L = CLI.DAG.getLoad( 7155 RetTys[i], CLI.DL, CLI.Chain, Add, 7156 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7157 DemoteStackIdx, Offsets[i]), 7158 false, false, false, 1); 7159 ReturnValues[i] = L; 7160 Chains[i] = L.getValue(1); 7161 } 7162 7163 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7164 } else { 7165 // Collect the legal value parts into potentially illegal values 7166 // that correspond to the original function's return values. 7167 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7168 if (CLI.RetSExt) 7169 AssertOp = ISD::AssertSext; 7170 else if (CLI.RetZExt) 7171 AssertOp = ISD::AssertZext; 7172 unsigned CurReg = 0; 7173 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7174 EVT VT = RetTys[I]; 7175 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7176 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7177 7178 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7179 NumRegs, RegisterVT, VT, nullptr, 7180 AssertOp)); 7181 CurReg += NumRegs; 7182 } 7183 7184 // For a function returning void, there is no return value. We can't create 7185 // such a node, so we just return a null return value in that case. In 7186 // that case, nothing will actually look at the value. 7187 if (ReturnValues.empty()) 7188 return std::make_pair(SDValue(), CLI.Chain); 7189 } 7190 7191 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7192 CLI.DAG.getVTList(RetTys), ReturnValues); 7193 return std::make_pair(Res, CLI.Chain); 7194 } 7195 7196 void TargetLowering::LowerOperationWrapper(SDNode *N, 7197 SmallVectorImpl<SDValue> &Results, 7198 SelectionDAG &DAG) const { 7199 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7200 if (Res.getNode()) 7201 Results.push_back(Res); 7202 } 7203 7204 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7205 llvm_unreachable("LowerOperation not implemented for this target!"); 7206 } 7207 7208 void 7209 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7210 SDValue Op = getNonRegisterValue(V); 7211 assert((Op.getOpcode() != ISD::CopyFromReg || 7212 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7213 "Copy from a reg to the same reg!"); 7214 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7215 7216 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7217 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7218 V->getType()); 7219 SDValue Chain = DAG.getEntryNode(); 7220 7221 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7222 FuncInfo.PreferredExtendType.end()) 7223 ? ISD::ANY_EXTEND 7224 : FuncInfo.PreferredExtendType[V]; 7225 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7226 PendingExports.push_back(Chain); 7227 } 7228 7229 #include "llvm/CodeGen/SelectionDAGISel.h" 7230 7231 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7232 /// entry block, return true. This includes arguments used by switches, since 7233 /// the switch may expand into multiple basic blocks. 7234 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7235 // With FastISel active, we may be splitting blocks, so force creation 7236 // of virtual registers for all non-dead arguments. 7237 if (FastISel) 7238 return A->use_empty(); 7239 7240 const BasicBlock *Entry = A->getParent()->begin(); 7241 for (const User *U : A->users()) 7242 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7243 return false; // Use not in entry block. 7244 7245 return true; 7246 } 7247 7248 void SelectionDAGISel::LowerArguments(const Function &F) { 7249 SelectionDAG &DAG = SDB->DAG; 7250 SDLoc dl = SDB->getCurSDLoc(); 7251 const DataLayout &DL = DAG.getDataLayout(); 7252 SmallVector<ISD::InputArg, 16> Ins; 7253 7254 if (!FuncInfo->CanLowerReturn) { 7255 // Put in an sret pointer parameter before all the other parameters. 7256 SmallVector<EVT, 1> ValueVTs; 7257 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7258 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7259 7260 // NOTE: Assuming that a pointer will never break down to more than one VT 7261 // or one register. 7262 ISD::ArgFlagsTy Flags; 7263 Flags.setSRet(); 7264 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7265 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7266 ISD::InputArg::NoArgIndex, 0); 7267 Ins.push_back(RetArg); 7268 } 7269 7270 // Set up the incoming argument description vector. 7271 unsigned Idx = 1; 7272 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7273 I != E; ++I, ++Idx) { 7274 SmallVector<EVT, 4> ValueVTs; 7275 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7276 bool isArgValueUsed = !I->use_empty(); 7277 unsigned PartBase = 0; 7278 Type *FinalType = I->getType(); 7279 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7280 FinalType = cast<PointerType>(FinalType)->getElementType(); 7281 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7282 FinalType, F.getCallingConv(), F.isVarArg()); 7283 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7284 Value != NumValues; ++Value) { 7285 EVT VT = ValueVTs[Value]; 7286 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7287 ISD::ArgFlagsTy Flags; 7288 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7289 7290 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7291 Flags.setZExt(); 7292 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7293 Flags.setSExt(); 7294 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7295 Flags.setInReg(); 7296 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7297 Flags.setSRet(); 7298 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7299 Flags.setByVal(); 7300 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7301 Flags.setInAlloca(); 7302 // Set the byval flag for CCAssignFn callbacks that don't know about 7303 // inalloca. This way we can know how many bytes we should've allocated 7304 // and how many bytes a callee cleanup function will pop. If we port 7305 // inalloca to more targets, we'll have to add custom inalloca handling 7306 // in the various CC lowering callbacks. 7307 Flags.setByVal(); 7308 } 7309 if (Flags.isByVal() || Flags.isInAlloca()) { 7310 PointerType *Ty = cast<PointerType>(I->getType()); 7311 Type *ElementTy = Ty->getElementType(); 7312 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7313 // For ByVal, alignment should be passed from FE. BE will guess if 7314 // this info is not there but there are cases it cannot get right. 7315 unsigned FrameAlign; 7316 if (F.getParamAlignment(Idx)) 7317 FrameAlign = F.getParamAlignment(Idx); 7318 else 7319 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7320 Flags.setByValAlign(FrameAlign); 7321 } 7322 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7323 Flags.setNest(); 7324 if (NeedsRegBlock) 7325 Flags.setInConsecutiveRegs(); 7326 Flags.setOrigAlign(OriginalAlignment); 7327 7328 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7329 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7330 for (unsigned i = 0; i != NumRegs; ++i) { 7331 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7332 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7333 if (NumRegs > 1 && i == 0) 7334 MyFlags.Flags.setSplit(); 7335 // if it isn't first piece, alignment must be 1 7336 else if (i > 0) 7337 MyFlags.Flags.setOrigAlign(1); 7338 Ins.push_back(MyFlags); 7339 } 7340 if (NeedsRegBlock && Value == NumValues - 1) 7341 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7342 PartBase += VT.getStoreSize(); 7343 } 7344 } 7345 7346 // Call the target to set up the argument values. 7347 SmallVector<SDValue, 8> InVals; 7348 SDValue NewRoot = TLI->LowerFormalArguments( 7349 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7350 7351 // Verify that the target's LowerFormalArguments behaved as expected. 7352 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7353 "LowerFormalArguments didn't return a valid chain!"); 7354 assert(InVals.size() == Ins.size() && 7355 "LowerFormalArguments didn't emit the correct number of values!"); 7356 DEBUG({ 7357 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7358 assert(InVals[i].getNode() && 7359 "LowerFormalArguments emitted a null value!"); 7360 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7361 "LowerFormalArguments emitted a value with the wrong type!"); 7362 } 7363 }); 7364 7365 // Update the DAG with the new chain value resulting from argument lowering. 7366 DAG.setRoot(NewRoot); 7367 7368 // Set up the argument values. 7369 unsigned i = 0; 7370 Idx = 1; 7371 if (!FuncInfo->CanLowerReturn) { 7372 // Create a virtual register for the sret pointer, and put in a copy 7373 // from the sret argument into it. 7374 SmallVector<EVT, 1> ValueVTs; 7375 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7376 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7377 MVT VT = ValueVTs[0].getSimpleVT(); 7378 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7379 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7380 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7381 RegVT, VT, nullptr, AssertOp); 7382 7383 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7384 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7385 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7386 FuncInfo->DemoteRegister = SRetReg; 7387 NewRoot = 7388 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7389 DAG.setRoot(NewRoot); 7390 7391 // i indexes lowered arguments. Bump it past the hidden sret argument. 7392 // Idx indexes LLVM arguments. Don't touch it. 7393 ++i; 7394 } 7395 7396 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7397 ++I, ++Idx) { 7398 SmallVector<SDValue, 4> ArgValues; 7399 SmallVector<EVT, 4> ValueVTs; 7400 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7401 unsigned NumValues = ValueVTs.size(); 7402 7403 // If this argument is unused then remember its value. It is used to generate 7404 // debugging information. 7405 if (I->use_empty() && NumValues) { 7406 SDB->setUnusedArgValue(I, InVals[i]); 7407 7408 // Also remember any frame index for use in FastISel. 7409 if (FrameIndexSDNode *FI = 7410 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7411 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7412 } 7413 7414 for (unsigned Val = 0; Val != NumValues; ++Val) { 7415 EVT VT = ValueVTs[Val]; 7416 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7417 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7418 7419 if (!I->use_empty()) { 7420 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7421 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7422 AssertOp = ISD::AssertSext; 7423 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7424 AssertOp = ISD::AssertZext; 7425 7426 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7427 NumParts, PartVT, VT, 7428 nullptr, AssertOp)); 7429 } 7430 7431 i += NumParts; 7432 } 7433 7434 // We don't need to do anything else for unused arguments. 7435 if (ArgValues.empty()) 7436 continue; 7437 7438 // Note down frame index. 7439 if (FrameIndexSDNode *FI = 7440 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7441 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7442 7443 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7444 SDB->getCurSDLoc()); 7445 7446 SDB->setValue(I, Res); 7447 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7448 if (LoadSDNode *LNode = 7449 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7450 if (FrameIndexSDNode *FI = 7451 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7452 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7453 } 7454 7455 // If this argument is live outside of the entry block, insert a copy from 7456 // wherever we got it to the vreg that other BB's will reference it as. 7457 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7458 // If we can, though, try to skip creating an unnecessary vreg. 7459 // FIXME: This isn't very clean... it would be nice to make this more 7460 // general. It's also subtly incompatible with the hacks FastISel 7461 // uses with vregs. 7462 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7463 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7464 FuncInfo->ValueMap[I] = Reg; 7465 continue; 7466 } 7467 } 7468 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7469 FuncInfo->InitializeRegForValue(I); 7470 SDB->CopyToExportRegsIfNeeded(I); 7471 } 7472 } 7473 7474 assert(i == InVals.size() && "Argument register count mismatch!"); 7475 7476 // Finally, if the target has anything special to do, allow it to do so. 7477 EmitFunctionEntryCode(); 7478 } 7479 7480 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7481 /// ensure constants are generated when needed. Remember the virtual registers 7482 /// that need to be added to the Machine PHI nodes as input. We cannot just 7483 /// directly add them, because expansion might result in multiple MBB's for one 7484 /// BB. As such, the start of the BB might correspond to a different MBB than 7485 /// the end. 7486 /// 7487 void 7488 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7489 const TerminatorInst *TI = LLVMBB->getTerminator(); 7490 7491 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7492 7493 // Check PHI nodes in successors that expect a value to be available from this 7494 // block. 7495 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7496 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7497 if (!isa<PHINode>(SuccBB->begin())) continue; 7498 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7499 7500 // If this terminator has multiple identical successors (common for 7501 // switches), only handle each succ once. 7502 if (!SuccsHandled.insert(SuccMBB).second) 7503 continue; 7504 7505 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7506 7507 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7508 // nodes and Machine PHI nodes, but the incoming operands have not been 7509 // emitted yet. 7510 for (BasicBlock::const_iterator I = SuccBB->begin(); 7511 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7512 // Ignore dead phi's. 7513 if (PN->use_empty()) continue; 7514 7515 // Skip empty types 7516 if (PN->getType()->isEmptyTy()) 7517 continue; 7518 7519 unsigned Reg; 7520 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7521 7522 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7523 unsigned &RegOut = ConstantsOut[C]; 7524 if (RegOut == 0) { 7525 RegOut = FuncInfo.CreateRegs(C->getType()); 7526 CopyValueToVirtualRegister(C, RegOut); 7527 } 7528 Reg = RegOut; 7529 } else { 7530 DenseMap<const Value *, unsigned>::iterator I = 7531 FuncInfo.ValueMap.find(PHIOp); 7532 if (I != FuncInfo.ValueMap.end()) 7533 Reg = I->second; 7534 else { 7535 assert(isa<AllocaInst>(PHIOp) && 7536 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7537 "Didn't codegen value into a register!??"); 7538 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7539 CopyValueToVirtualRegister(PHIOp, Reg); 7540 } 7541 } 7542 7543 // Remember that this register needs to added to the machine PHI node as 7544 // the input for this MBB. 7545 SmallVector<EVT, 4> ValueVTs; 7546 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7547 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7548 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7549 EVT VT = ValueVTs[vti]; 7550 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7551 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7552 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7553 Reg += NumRegisters; 7554 } 7555 } 7556 } 7557 7558 ConstantsOut.clear(); 7559 } 7560 7561 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7562 /// is 0. 7563 MachineBasicBlock * 7564 SelectionDAGBuilder::StackProtectorDescriptor:: 7565 AddSuccessorMBB(const BasicBlock *BB, 7566 MachineBasicBlock *ParentMBB, 7567 bool IsLikely, 7568 MachineBasicBlock *SuccMBB) { 7569 // If SuccBB has not been created yet, create it. 7570 if (!SuccMBB) { 7571 MachineFunction *MF = ParentMBB->getParent(); 7572 MachineFunction::iterator BBI = ParentMBB; 7573 SuccMBB = MF->CreateMachineBasicBlock(BB); 7574 MF->insert(++BBI, SuccMBB); 7575 } 7576 // Add it as a successor of ParentMBB. 7577 ParentMBB->addSuccessor( 7578 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7579 return SuccMBB; 7580 } 7581 7582 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7583 MachineFunction::iterator I = MBB; 7584 if (++I == FuncInfo.MF->end()) 7585 return nullptr; 7586 return I; 7587 } 7588 7589 /// During lowering new call nodes can be created (such as memset, etc.). 7590 /// Those will become new roots of the current DAG, but complications arise 7591 /// when they are tail calls. In such cases, the call lowering will update 7592 /// the root, but the builder still needs to know that a tail call has been 7593 /// lowered in order to avoid generating an additional return. 7594 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7595 // If the node is null, we do have a tail call. 7596 if (MaybeTC.getNode() != nullptr) 7597 DAG.setRoot(MaybeTC); 7598 else 7599 HasTailCall = true; 7600 } 7601 7602 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7603 unsigned *TotalCases, unsigned First, 7604 unsigned Last) { 7605 assert(Last >= First); 7606 assert(TotalCases[Last] >= TotalCases[First]); 7607 7608 APInt LowCase = Clusters[First].Low->getValue(); 7609 APInt HighCase = Clusters[Last].High->getValue(); 7610 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7611 7612 // FIXME: A range of consecutive cases has 100% density, but only requires one 7613 // comparison to lower. We should discriminate against such consecutive ranges 7614 // in jump tables. 7615 7616 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7617 uint64_t Range = Diff + 1; 7618 7619 uint64_t NumCases = 7620 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7621 7622 assert(NumCases < UINT64_MAX / 100); 7623 assert(Range >= NumCases); 7624 7625 return NumCases * 100 >= Range * MinJumpTableDensity; 7626 } 7627 7628 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7629 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7630 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7631 } 7632 7633 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7634 unsigned First, unsigned Last, 7635 const SwitchInst *SI, 7636 MachineBasicBlock *DefaultMBB, 7637 CaseCluster &JTCluster) { 7638 assert(First <= Last); 7639 7640 uint32_t Weight = 0; 7641 unsigned NumCmps = 0; 7642 std::vector<MachineBasicBlock*> Table; 7643 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7644 for (unsigned I = First; I <= Last; ++I) { 7645 assert(Clusters[I].Kind == CC_Range); 7646 Weight += Clusters[I].Weight; 7647 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7648 APInt Low = Clusters[I].Low->getValue(); 7649 APInt High = Clusters[I].High->getValue(); 7650 NumCmps += (Low == High) ? 1 : 2; 7651 if (I != First) { 7652 // Fill the gap between this and the previous cluster. 7653 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7654 assert(PreviousHigh.slt(Low)); 7655 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7656 for (uint64_t J = 0; J < Gap; J++) 7657 Table.push_back(DefaultMBB); 7658 } 7659 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7660 for (uint64_t J = 0; J < ClusterSize; ++J) 7661 Table.push_back(Clusters[I].MBB); 7662 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7663 } 7664 7665 unsigned NumDests = JTWeights.size(); 7666 if (isSuitableForBitTests(NumDests, NumCmps, 7667 Clusters[First].Low->getValue(), 7668 Clusters[Last].High->getValue())) { 7669 // Clusters[First..Last] should be lowered as bit tests instead. 7670 return false; 7671 } 7672 7673 // Create the MBB that will load from and jump through the table. 7674 // Note: We create it here, but it's not inserted into the function yet. 7675 MachineFunction *CurMF = FuncInfo.MF; 7676 MachineBasicBlock *JumpTableMBB = 7677 CurMF->CreateMachineBasicBlock(SI->getParent()); 7678 7679 // Add successors. Note: use table order for determinism. 7680 SmallPtrSet<MachineBasicBlock *, 8> Done; 7681 for (MachineBasicBlock *Succ : Table) { 7682 if (Done.count(Succ)) 7683 continue; 7684 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7685 Done.insert(Succ); 7686 } 7687 7688 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7689 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7690 ->createJumpTableIndex(Table); 7691 7692 // Set up the jump table info. 7693 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7694 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7695 Clusters[Last].High->getValue(), SI->getCondition(), 7696 nullptr, false); 7697 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7698 7699 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7700 JTCases.size() - 1, Weight); 7701 return true; 7702 } 7703 7704 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7705 const SwitchInst *SI, 7706 MachineBasicBlock *DefaultMBB) { 7707 #ifndef NDEBUG 7708 // Clusters must be non-empty, sorted, and only contain Range clusters. 7709 assert(!Clusters.empty()); 7710 for (CaseCluster &C : Clusters) 7711 assert(C.Kind == CC_Range); 7712 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7713 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7714 #endif 7715 7716 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7717 if (!areJTsAllowed(TLI)) 7718 return; 7719 7720 const int64_t N = Clusters.size(); 7721 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7722 7723 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7724 SmallVector<unsigned, 8> TotalCases(N); 7725 7726 for (unsigned i = 0; i < N; ++i) { 7727 APInt Hi = Clusters[i].High->getValue(); 7728 APInt Lo = Clusters[i].Low->getValue(); 7729 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7730 if (i != 0) 7731 TotalCases[i] += TotalCases[i - 1]; 7732 } 7733 7734 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7735 // Cheap case: the whole range might be suitable for jump table. 7736 CaseCluster JTCluster; 7737 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7738 Clusters[0] = JTCluster; 7739 Clusters.resize(1); 7740 return; 7741 } 7742 } 7743 7744 // The algorithm below is not suitable for -O0. 7745 if (TM.getOptLevel() == CodeGenOpt::None) 7746 return; 7747 7748 // Split Clusters into minimum number of dense partitions. The algorithm uses 7749 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7750 // for the Case Statement'" (1994), but builds the MinPartitions array in 7751 // reverse order to make it easier to reconstruct the partitions in ascending 7752 // order. In the choice between two optimal partitionings, it picks the one 7753 // which yields more jump tables. 7754 7755 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7756 SmallVector<unsigned, 8> MinPartitions(N); 7757 // LastElement[i] is the last element of the partition starting at i. 7758 SmallVector<unsigned, 8> LastElement(N); 7759 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7760 SmallVector<unsigned, 8> NumTables(N); 7761 7762 // Base case: There is only one way to partition Clusters[N-1]. 7763 MinPartitions[N - 1] = 1; 7764 LastElement[N - 1] = N - 1; 7765 assert(MinJumpTableSize > 1); 7766 NumTables[N - 1] = 0; 7767 7768 // Note: loop indexes are signed to avoid underflow. 7769 for (int64_t i = N - 2; i >= 0; i--) { 7770 // Find optimal partitioning of Clusters[i..N-1]. 7771 // Baseline: Put Clusters[i] into a partition on its own. 7772 MinPartitions[i] = MinPartitions[i + 1] + 1; 7773 LastElement[i] = i; 7774 NumTables[i] = NumTables[i + 1]; 7775 7776 // Search for a solution that results in fewer partitions. 7777 for (int64_t j = N - 1; j > i; j--) { 7778 // Try building a partition from Clusters[i..j]. 7779 if (isDense(Clusters, &TotalCases[0], i, j)) { 7780 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7781 bool IsTable = j - i + 1 >= MinJumpTableSize; 7782 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7783 7784 // If this j leads to fewer partitions, or same number of partitions 7785 // with more lookup tables, it is a better partitioning. 7786 if (NumPartitions < MinPartitions[i] || 7787 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7788 MinPartitions[i] = NumPartitions; 7789 LastElement[i] = j; 7790 NumTables[i] = Tables; 7791 } 7792 } 7793 } 7794 } 7795 7796 // Iterate over the partitions, replacing some with jump tables in-place. 7797 unsigned DstIndex = 0; 7798 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7799 Last = LastElement[First]; 7800 assert(Last >= First); 7801 assert(DstIndex <= First); 7802 unsigned NumClusters = Last - First + 1; 7803 7804 CaseCluster JTCluster; 7805 if (NumClusters >= MinJumpTableSize && 7806 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7807 Clusters[DstIndex++] = JTCluster; 7808 } else { 7809 for (unsigned I = First; I <= Last; ++I) 7810 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7811 } 7812 } 7813 Clusters.resize(DstIndex); 7814 } 7815 7816 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7817 // FIXME: Using the pointer type doesn't seem ideal. 7818 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7819 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7820 return Range <= BW; 7821 } 7822 7823 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7824 unsigned NumCmps, 7825 const APInt &Low, 7826 const APInt &High) { 7827 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7828 // range of cases both require only one branch to lower. Just looking at the 7829 // number of clusters and destinations should be enough to decide whether to 7830 // build bit tests. 7831 7832 // To lower a range with bit tests, the range must fit the bitwidth of a 7833 // machine word. 7834 if (!rangeFitsInWord(Low, High)) 7835 return false; 7836 7837 // Decide whether it's profitable to lower this range with bit tests. Each 7838 // destination requires a bit test and branch, and there is an overall range 7839 // check branch. For a small number of clusters, separate comparisons might be 7840 // cheaper, and for many destinations, splitting the range might be better. 7841 return (NumDests == 1 && NumCmps >= 3) || 7842 (NumDests == 2 && NumCmps >= 5) || 7843 (NumDests == 3 && NumCmps >= 6); 7844 } 7845 7846 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7847 unsigned First, unsigned Last, 7848 const SwitchInst *SI, 7849 CaseCluster &BTCluster) { 7850 assert(First <= Last); 7851 if (First == Last) 7852 return false; 7853 7854 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7855 unsigned NumCmps = 0; 7856 for (int64_t I = First; I <= Last; ++I) { 7857 assert(Clusters[I].Kind == CC_Range); 7858 Dests.set(Clusters[I].MBB->getNumber()); 7859 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7860 } 7861 unsigned NumDests = Dests.count(); 7862 7863 APInt Low = Clusters[First].Low->getValue(); 7864 APInt High = Clusters[Last].High->getValue(); 7865 assert(Low.slt(High)); 7866 7867 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7868 return false; 7869 7870 APInt LowBound; 7871 APInt CmpRange; 7872 7873 const int BitWidth = DAG.getTargetLoweringInfo() 7874 .getPointerTy(DAG.getDataLayout()) 7875 .getSizeInBits(); 7876 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7877 7878 // Check if the clusters cover a contiguous range such that no value in the 7879 // range will jump to the default statement. 7880 bool ContiguousRange = true; 7881 for (int64_t I = First + 1; I <= Last; ++I) { 7882 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 7883 ContiguousRange = false; 7884 break; 7885 } 7886 } 7887 7888 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 7889 // Optimize the case where all the case values fit in a word without having 7890 // to subtract minValue. In this case, we can optimize away the subtraction. 7891 LowBound = APInt::getNullValue(Low.getBitWidth()); 7892 CmpRange = High; 7893 ContiguousRange = false; 7894 } else { 7895 LowBound = Low; 7896 CmpRange = High - Low; 7897 } 7898 7899 CaseBitsVector CBV; 7900 uint32_t TotalWeight = 0; 7901 for (unsigned i = First; i <= Last; ++i) { 7902 // Find the CaseBits for this destination. 7903 unsigned j; 7904 for (j = 0; j < CBV.size(); ++j) 7905 if (CBV[j].BB == Clusters[i].MBB) 7906 break; 7907 if (j == CBV.size()) 7908 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7909 CaseBits *CB = &CBV[j]; 7910 7911 // Update Mask, Bits and ExtraWeight. 7912 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7913 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7914 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7915 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7916 CB->Bits += Hi - Lo + 1; 7917 CB->ExtraWeight += Clusters[i].Weight; 7918 TotalWeight += Clusters[i].Weight; 7919 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7920 } 7921 7922 BitTestInfo BTI; 7923 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7924 // Sort by weight first, number of bits second. 7925 if (a.ExtraWeight != b.ExtraWeight) 7926 return a.ExtraWeight > b.ExtraWeight; 7927 return a.Bits > b.Bits; 7928 }); 7929 7930 for (auto &CB : CBV) { 7931 MachineBasicBlock *BitTestBB = 7932 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7933 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7934 } 7935 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 7936 SI->getCondition(), -1U, MVT::Other, false, 7937 ContiguousRange, nullptr, nullptr, std::move(BTI), 7938 TotalWeight); 7939 7940 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7941 BitTestCases.size() - 1, TotalWeight); 7942 return true; 7943 } 7944 7945 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 7946 const SwitchInst *SI) { 7947 // Partition Clusters into as few subsets as possible, where each subset has a 7948 // range that fits in a machine word and has <= 3 unique destinations. 7949 7950 #ifndef NDEBUG 7951 // Clusters must be sorted and contain Range or JumpTable clusters. 7952 assert(!Clusters.empty()); 7953 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 7954 for (const CaseCluster &C : Clusters) 7955 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 7956 for (unsigned i = 1; i < Clusters.size(); ++i) 7957 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 7958 #endif 7959 7960 // The algorithm below is not suitable for -O0. 7961 if (TM.getOptLevel() == CodeGenOpt::None) 7962 return; 7963 7964 // If target does not have legal shift left, do not emit bit tests at all. 7965 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7966 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 7967 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 7968 return; 7969 7970 int BitWidth = PTy.getSizeInBits(); 7971 const int64_t N = Clusters.size(); 7972 7973 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7974 SmallVector<unsigned, 8> MinPartitions(N); 7975 // LastElement[i] is the last element of the partition starting at i. 7976 SmallVector<unsigned, 8> LastElement(N); 7977 7978 // FIXME: This might not be the best algorithm for finding bit test clusters. 7979 7980 // Base case: There is only one way to partition Clusters[N-1]. 7981 MinPartitions[N - 1] = 1; 7982 LastElement[N - 1] = N - 1; 7983 7984 // Note: loop indexes are signed to avoid underflow. 7985 for (int64_t i = N - 2; i >= 0; --i) { 7986 // Find optimal partitioning of Clusters[i..N-1]. 7987 // Baseline: Put Clusters[i] into a partition on its own. 7988 MinPartitions[i] = MinPartitions[i + 1] + 1; 7989 LastElement[i] = i; 7990 7991 // Search for a solution that results in fewer partitions. 7992 // Note: the search is limited by BitWidth, reducing time complexity. 7993 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 7994 // Try building a partition from Clusters[i..j]. 7995 7996 // Check the range. 7997 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 7998 Clusters[j].High->getValue())) 7999 continue; 8000 8001 // Check nbr of destinations and cluster types. 8002 // FIXME: This works, but doesn't seem very efficient. 8003 bool RangesOnly = true; 8004 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8005 for (int64_t k = i; k <= j; k++) { 8006 if (Clusters[k].Kind != CC_Range) { 8007 RangesOnly = false; 8008 break; 8009 } 8010 Dests.set(Clusters[k].MBB->getNumber()); 8011 } 8012 if (!RangesOnly || Dests.count() > 3) 8013 break; 8014 8015 // Check if it's a better partition. 8016 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8017 if (NumPartitions < MinPartitions[i]) { 8018 // Found a better partition. 8019 MinPartitions[i] = NumPartitions; 8020 LastElement[i] = j; 8021 } 8022 } 8023 } 8024 8025 // Iterate over the partitions, replacing with bit-test clusters in-place. 8026 unsigned DstIndex = 0; 8027 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8028 Last = LastElement[First]; 8029 assert(First <= Last); 8030 assert(DstIndex <= First); 8031 8032 CaseCluster BitTestCluster; 8033 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8034 Clusters[DstIndex++] = BitTestCluster; 8035 } else { 8036 size_t NumClusters = Last - First + 1; 8037 std::memmove(&Clusters[DstIndex], &Clusters[First], 8038 sizeof(Clusters[0]) * NumClusters); 8039 DstIndex += NumClusters; 8040 } 8041 } 8042 Clusters.resize(DstIndex); 8043 } 8044 8045 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8046 MachineBasicBlock *SwitchMBB, 8047 MachineBasicBlock *DefaultMBB) { 8048 MachineFunction *CurMF = FuncInfo.MF; 8049 MachineBasicBlock *NextMBB = nullptr; 8050 MachineFunction::iterator BBI = W.MBB; 8051 if (++BBI != FuncInfo.MF->end()) 8052 NextMBB = BBI; 8053 8054 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8055 8056 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8057 8058 if (Size == 2 && W.MBB == SwitchMBB) { 8059 // If any two of the cases has the same destination, and if one value 8060 // is the same as the other, but has one bit unset that the other has set, 8061 // use bit manipulation to do two compares at once. For example: 8062 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8063 // TODO: This could be extended to merge any 2 cases in switches with 3 8064 // cases. 8065 // TODO: Handle cases where W.CaseBB != SwitchBB. 8066 CaseCluster &Small = *W.FirstCluster; 8067 CaseCluster &Big = *W.LastCluster; 8068 8069 if (Small.Low == Small.High && Big.Low == Big.High && 8070 Small.MBB == Big.MBB) { 8071 const APInt &SmallValue = Small.Low->getValue(); 8072 const APInt &BigValue = Big.Low->getValue(); 8073 8074 // Check that there is only one bit different. 8075 APInt CommonBit = BigValue ^ SmallValue; 8076 if (CommonBit.isPowerOf2()) { 8077 SDValue CondLHS = getValue(Cond); 8078 EVT VT = CondLHS.getValueType(); 8079 SDLoc DL = getCurSDLoc(); 8080 8081 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8082 DAG.getConstant(CommonBit, DL, VT)); 8083 SDValue Cond = DAG.getSetCC( 8084 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8085 ISD::SETEQ); 8086 8087 // Update successor info. 8088 // Both Small and Big will jump to Small.BB, so we sum up the weights. 8089 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 8090 addSuccessorWithWeight( 8091 SwitchMBB, DefaultMBB, 8092 // The default destination is the first successor in IR. 8093 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 8094 : 0); 8095 8096 // Insert the true branch. 8097 SDValue BrCond = 8098 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8099 DAG.getBasicBlock(Small.MBB)); 8100 // Insert the false branch. 8101 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8102 DAG.getBasicBlock(DefaultMBB)); 8103 8104 DAG.setRoot(BrCond); 8105 return; 8106 } 8107 } 8108 } 8109 8110 if (TM.getOptLevel() != CodeGenOpt::None) { 8111 // Order cases by weight so the most likely case will be checked first. 8112 std::sort(W.FirstCluster, W.LastCluster + 1, 8113 [](const CaseCluster &a, const CaseCluster &b) { 8114 return a.Weight > b.Weight; 8115 }); 8116 8117 // Rearrange the case blocks so that the last one falls through if possible 8118 // without without changing the order of weights. 8119 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8120 --I; 8121 if (I->Weight > W.LastCluster->Weight) 8122 break; 8123 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8124 std::swap(*I, *W.LastCluster); 8125 break; 8126 } 8127 } 8128 } 8129 8130 // Compute total weight. 8131 uint32_t DefaultWeight = W.DefaultWeight; 8132 uint32_t UnhandledWeights = DefaultWeight; 8133 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 8134 UnhandledWeights += I->Weight; 8135 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 8136 } 8137 8138 MachineBasicBlock *CurMBB = W.MBB; 8139 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8140 MachineBasicBlock *Fallthrough; 8141 if (I == W.LastCluster) { 8142 // For the last cluster, fall through to the default destination. 8143 Fallthrough = DefaultMBB; 8144 } else { 8145 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8146 CurMF->insert(BBI, Fallthrough); 8147 // Put Cond in a virtual register to make it available from the new blocks. 8148 ExportFromCurrentBlock(Cond); 8149 } 8150 UnhandledWeights -= I->Weight; 8151 8152 switch (I->Kind) { 8153 case CC_JumpTable: { 8154 // FIXME: Optimize away range check based on pivot comparisons. 8155 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8156 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8157 8158 // The jump block hasn't been inserted yet; insert it here. 8159 MachineBasicBlock *JumpMBB = JT->MBB; 8160 CurMF->insert(BBI, JumpMBB); 8161 8162 uint32_t JumpWeight = I->Weight; 8163 uint32_t FallthroughWeight = UnhandledWeights; 8164 8165 // If the default statement is a target of the jump table, we evenly 8166 // distribute the default weight to successors of CurMBB. Also update 8167 // the weight on the edge from JumpMBB to Fallthrough. 8168 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8169 SE = JumpMBB->succ_end(); 8170 SI != SE; ++SI) { 8171 if (*SI == DefaultMBB) { 8172 JumpWeight += DefaultWeight / 2; 8173 FallthroughWeight -= DefaultWeight / 2; 8174 JumpMBB->setSuccWeight(SI, DefaultWeight / 2); 8175 break; 8176 } 8177 } 8178 8179 addSuccessorWithWeight(CurMBB, Fallthrough, FallthroughWeight); 8180 addSuccessorWithWeight(CurMBB, JumpMBB, JumpWeight); 8181 8182 // The jump table header will be inserted in our current block, do the 8183 // range check, and fall through to our fallthrough block. 8184 JTH->HeaderBB = CurMBB; 8185 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8186 8187 // If we're in the right place, emit the jump table header right now. 8188 if (CurMBB == SwitchMBB) { 8189 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8190 JTH->Emitted = true; 8191 } 8192 break; 8193 } 8194 case CC_BitTests: { 8195 // FIXME: Optimize away range check based on pivot comparisons. 8196 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8197 8198 // The bit test blocks haven't been inserted yet; insert them here. 8199 for (BitTestCase &BTC : BTB->Cases) 8200 CurMF->insert(BBI, BTC.ThisBB); 8201 8202 // Fill in fields of the BitTestBlock. 8203 BTB->Parent = CurMBB; 8204 BTB->Default = Fallthrough; 8205 8206 BTB->DefaultWeight = UnhandledWeights; 8207 // If the cases in bit test don't form a contiguous range, we evenly 8208 // distribute the weight on the edge to Fallthrough to two successors 8209 // of CurMBB. 8210 if (!BTB->ContiguousRange) { 8211 BTB->Weight += DefaultWeight / 2; 8212 BTB->DefaultWeight -= DefaultWeight / 2; 8213 } 8214 8215 // If we're in the right place, emit the bit test header right now. 8216 if (CurMBB == SwitchMBB) { 8217 visitBitTestHeader(*BTB, SwitchMBB); 8218 BTB->Emitted = true; 8219 } 8220 break; 8221 } 8222 case CC_Range: { 8223 const Value *RHS, *LHS, *MHS; 8224 ISD::CondCode CC; 8225 if (I->Low == I->High) { 8226 // Check Cond == I->Low. 8227 CC = ISD::SETEQ; 8228 LHS = Cond; 8229 RHS=I->Low; 8230 MHS = nullptr; 8231 } else { 8232 // Check I->Low <= Cond <= I->High. 8233 CC = ISD::SETLE; 8234 LHS = I->Low; 8235 MHS = Cond; 8236 RHS = I->High; 8237 } 8238 8239 // The false weight is the sum of all unhandled cases. 8240 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 8241 UnhandledWeights); 8242 8243 if (CurMBB == SwitchMBB) 8244 visitSwitchCase(CB, SwitchMBB); 8245 else 8246 SwitchCases.push_back(CB); 8247 8248 break; 8249 } 8250 } 8251 CurMBB = Fallthrough; 8252 } 8253 } 8254 8255 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8256 CaseClusterIt First, 8257 CaseClusterIt Last) { 8258 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8259 if (X.Weight != CC.Weight) 8260 return X.Weight > CC.Weight; 8261 8262 // Ties are broken by comparing the case value. 8263 return X.Low->getValue().slt(CC.Low->getValue()); 8264 }); 8265 } 8266 8267 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8268 const SwitchWorkListItem &W, 8269 Value *Cond, 8270 MachineBasicBlock *SwitchMBB) { 8271 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8272 "Clusters not sorted?"); 8273 8274 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8275 8276 // Balance the tree based on branch weights to create a near-optimal (in terms 8277 // of search time given key frequency) binary search tree. See e.g. Kurt 8278 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8279 CaseClusterIt LastLeft = W.FirstCluster; 8280 CaseClusterIt FirstRight = W.LastCluster; 8281 uint32_t LeftWeight = LastLeft->Weight + W.DefaultWeight / 2; 8282 uint32_t RightWeight = FirstRight->Weight + W.DefaultWeight / 2; 8283 8284 // Move LastLeft and FirstRight towards each other from opposite directions to 8285 // find a partitioning of the clusters which balances the weight on both 8286 // sides. If LeftWeight and RightWeight are equal, alternate which side is 8287 // taken to ensure 0-weight nodes are distributed evenly. 8288 unsigned I = 0; 8289 while (LastLeft + 1 < FirstRight) { 8290 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 8291 LeftWeight += (++LastLeft)->Weight; 8292 else 8293 RightWeight += (--FirstRight)->Weight; 8294 I++; 8295 } 8296 8297 for (;;) { 8298 // Our binary search tree differs from a typical BST in that ours can have up 8299 // to three values in each leaf. The pivot selection above doesn't take that 8300 // into account, which means the tree might require more nodes and be less 8301 // efficient. We compensate for this here. 8302 8303 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8304 unsigned NumRight = W.LastCluster - FirstRight + 1; 8305 8306 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8307 // If one side has less than 3 clusters, and the other has more than 3, 8308 // consider taking a cluster from the other side. 8309 8310 if (NumLeft < NumRight) { 8311 // Consider moving the first cluster on the right to the left side. 8312 CaseCluster &CC = *FirstRight; 8313 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8314 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8315 if (LeftSideRank <= RightSideRank) { 8316 // Moving the cluster to the left does not demote it. 8317 ++LastLeft; 8318 ++FirstRight; 8319 continue; 8320 } 8321 } else { 8322 assert(NumRight < NumLeft); 8323 // Consider moving the last element on the left to the right side. 8324 CaseCluster &CC = *LastLeft; 8325 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8326 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8327 if (RightSideRank <= LeftSideRank) { 8328 // Moving the cluster to the right does not demot it. 8329 --LastLeft; 8330 --FirstRight; 8331 continue; 8332 } 8333 } 8334 } 8335 break; 8336 } 8337 8338 assert(LastLeft + 1 == FirstRight); 8339 assert(LastLeft >= W.FirstCluster); 8340 assert(FirstRight <= W.LastCluster); 8341 8342 // Use the first element on the right as pivot since we will make less-than 8343 // comparisons against it. 8344 CaseClusterIt PivotCluster = FirstRight; 8345 assert(PivotCluster > W.FirstCluster); 8346 assert(PivotCluster <= W.LastCluster); 8347 8348 CaseClusterIt FirstLeft = W.FirstCluster; 8349 CaseClusterIt LastRight = W.LastCluster; 8350 8351 const ConstantInt *Pivot = PivotCluster->Low; 8352 8353 // New blocks will be inserted immediately after the current one. 8354 MachineFunction::iterator BBI = W.MBB; 8355 ++BBI; 8356 8357 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8358 // we can branch to its destination directly if it's squeezed exactly in 8359 // between the known lower bound and Pivot - 1. 8360 MachineBasicBlock *LeftMBB; 8361 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8362 FirstLeft->Low == W.GE && 8363 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8364 LeftMBB = FirstLeft->MBB; 8365 } else { 8366 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8367 FuncInfo.MF->insert(BBI, LeftMBB); 8368 WorkList.push_back( 8369 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultWeight / 2}); 8370 // Put Cond in a virtual register to make it available from the new blocks. 8371 ExportFromCurrentBlock(Cond); 8372 } 8373 8374 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8375 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8376 // directly if RHS.High equals the current upper bound. 8377 MachineBasicBlock *RightMBB; 8378 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8379 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8380 RightMBB = FirstRight->MBB; 8381 } else { 8382 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8383 FuncInfo.MF->insert(BBI, RightMBB); 8384 WorkList.push_back( 8385 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultWeight / 2}); 8386 // Put Cond in a virtual register to make it available from the new blocks. 8387 ExportFromCurrentBlock(Cond); 8388 } 8389 8390 // Create the CaseBlock record that will be used to lower the branch. 8391 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8392 LeftWeight, RightWeight); 8393 8394 if (W.MBB == SwitchMBB) 8395 visitSwitchCase(CB, SwitchMBB); 8396 else 8397 SwitchCases.push_back(CB); 8398 } 8399 8400 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8401 // Extract cases from the switch. 8402 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8403 CaseClusterVector Clusters; 8404 Clusters.reserve(SI.getNumCases()); 8405 for (auto I : SI.cases()) { 8406 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8407 const ConstantInt *CaseVal = I.getCaseValue(); 8408 uint32_t Weight = 8409 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8410 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8411 } 8412 8413 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8414 8415 // Cluster adjacent cases with the same destination. We do this at all 8416 // optimization levels because it's cheap to do and will make codegen faster 8417 // if there are many clusters. 8418 sortAndRangeify(Clusters); 8419 8420 if (TM.getOptLevel() != CodeGenOpt::None) { 8421 // Replace an unreachable default with the most popular destination. 8422 // FIXME: Exploit unreachable default more aggressively. 8423 bool UnreachableDefault = 8424 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8425 if (UnreachableDefault && !Clusters.empty()) { 8426 DenseMap<const BasicBlock *, unsigned> Popularity; 8427 unsigned MaxPop = 0; 8428 const BasicBlock *MaxBB = nullptr; 8429 for (auto I : SI.cases()) { 8430 const BasicBlock *BB = I.getCaseSuccessor(); 8431 if (++Popularity[BB] > MaxPop) { 8432 MaxPop = Popularity[BB]; 8433 MaxBB = BB; 8434 } 8435 } 8436 // Set new default. 8437 assert(MaxPop > 0 && MaxBB); 8438 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8439 8440 // Remove cases that were pointing to the destination that is now the 8441 // default. 8442 CaseClusterVector New; 8443 New.reserve(Clusters.size()); 8444 for (CaseCluster &CC : Clusters) { 8445 if (CC.MBB != DefaultMBB) 8446 New.push_back(CC); 8447 } 8448 Clusters = std::move(New); 8449 } 8450 } 8451 8452 // If there is only the default destination, jump there directly. 8453 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8454 if (Clusters.empty()) { 8455 SwitchMBB->addSuccessor(DefaultMBB); 8456 if (DefaultMBB != NextBlock(SwitchMBB)) { 8457 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8458 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8459 } 8460 return; 8461 } 8462 8463 findJumpTables(Clusters, &SI, DefaultMBB); 8464 findBitTestClusters(Clusters, &SI); 8465 8466 DEBUG({ 8467 dbgs() << "Case clusters: "; 8468 for (const CaseCluster &C : Clusters) { 8469 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8470 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8471 8472 C.Low->getValue().print(dbgs(), true); 8473 if (C.Low != C.High) { 8474 dbgs() << '-'; 8475 C.High->getValue().print(dbgs(), true); 8476 } 8477 dbgs() << ' '; 8478 } 8479 dbgs() << '\n'; 8480 }); 8481 8482 assert(!Clusters.empty()); 8483 SwitchWorkList WorkList; 8484 CaseClusterIt First = Clusters.begin(); 8485 CaseClusterIt Last = Clusters.end() - 1; 8486 uint32_t DefaultWeight = getEdgeWeight(SwitchMBB, DefaultMBB); 8487 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultWeight}); 8488 8489 while (!WorkList.empty()) { 8490 SwitchWorkListItem W = WorkList.back(); 8491 WorkList.pop_back(); 8492 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8493 8494 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8495 // For optimized builds, lower large range as a balanced binary tree. 8496 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8497 continue; 8498 } 8499 8500 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8501 } 8502 } 8503