1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SelectionDAGBuilder.h" 16 #include "FunctionLoweringInfo.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Constants.h" 22 #include "llvm/CallingConv.h" 23 #include "llvm/DerivedTypes.h" 24 #include "llvm/Function.h" 25 #include "llvm/GlobalVariable.h" 26 #include "llvm/InlineAsm.h" 27 #include "llvm/Instructions.h" 28 #include "llvm/Intrinsics.h" 29 #include "llvm/IntrinsicInst.h" 30 #include "llvm/Module.h" 31 #include "llvm/CodeGen/FastISel.h" 32 #include "llvm/CodeGen/GCStrategy.h" 33 #include "llvm/CodeGen/GCMetadata.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineInstrBuilder.h" 37 #include "llvm/CodeGen/MachineJumpTableInfo.h" 38 #include "llvm/CodeGen/MachineModuleInfo.h" 39 #include "llvm/CodeGen/MachineRegisterInfo.h" 40 #include "llvm/CodeGen/PseudoSourceValue.h" 41 #include "llvm/CodeGen/SelectionDAG.h" 42 #include "llvm/CodeGen/DwarfWriter.h" 43 #include "llvm/Analysis/DebugInfo.h" 44 #include "llvm/Target/TargetRegisterInfo.h" 45 #include "llvm/Target/TargetData.h" 46 #include "llvm/Target/TargetFrameInfo.h" 47 #include "llvm/Target/TargetInstrInfo.h" 48 #include "llvm/Target/TargetIntrinsicInfo.h" 49 #include "llvm/Target/TargetLowering.h" 50 #include "llvm/Target/TargetOptions.h" 51 #include "llvm/Support/Compiler.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include "llvm/Support/MathExtras.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include <algorithm> 58 using namespace llvm; 59 60 /// LimitFloatPrecision - Generate low-precision inline sequences for 61 /// some float libcalls (6, 8 or 12 bits). 62 static unsigned LimitFloatPrecision; 63 64 static cl::opt<unsigned, true> 65 LimitFPPrecision("limit-float-precision", 66 cl::desc("Generate low-precision inline sequences " 67 "for some float libcalls"), 68 cl::location(LimitFloatPrecision), 69 cl::init(0)); 70 71 namespace { 72 /// RegsForValue - This struct represents the registers (physical or virtual) 73 /// that a particular set of values is assigned, and the type information 74 /// about the value. The most common situation is to represent one value at a 75 /// time, but struct or array values are handled element-wise as multiple 76 /// values. The splitting of aggregates is performed recursively, so that we 77 /// never have aggregate-typed registers. The values at this point do not 78 /// necessarily have legal types, so each value may require one or more 79 /// registers of some legal type. 80 /// 81 struct RegsForValue { 82 /// TLI - The TargetLowering object. 83 /// 84 const TargetLowering *TLI; 85 86 /// ValueVTs - The value types of the values, which may not be legal, and 87 /// may need be promoted or synthesized from one or more registers. 88 /// 89 SmallVector<EVT, 4> ValueVTs; 90 91 /// RegVTs - The value types of the registers. This is the same size as 92 /// ValueVTs and it records, for each value, what the type of the assigned 93 /// register or registers are. (Individual values are never synthesized 94 /// from more than one type of register.) 95 /// 96 /// With virtual registers, the contents of RegVTs is redundant with TLI's 97 /// getRegisterType member function, however when with physical registers 98 /// it is necessary to have a separate record of the types. 99 /// 100 SmallVector<EVT, 4> RegVTs; 101 102 /// Regs - This list holds the registers assigned to the values. 103 /// Each legal or promoted value requires one register, and each 104 /// expanded value requires multiple registers. 105 /// 106 SmallVector<unsigned, 4> Regs; 107 108 RegsForValue() : TLI(0) {} 109 110 RegsForValue(const TargetLowering &tli, 111 const SmallVector<unsigned, 4> ®s, 112 EVT regvt, EVT valuevt) 113 : TLI(&tli), ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 114 RegsForValue(const TargetLowering &tli, 115 const SmallVector<unsigned, 4> ®s, 116 const SmallVector<EVT, 4> ®vts, 117 const SmallVector<EVT, 4> &valuevts) 118 : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {} 119 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 120 unsigned Reg, const Type *Ty) : TLI(&tli) { 121 ComputeValueVTs(tli, Ty, ValueVTs); 122 123 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 124 EVT ValueVT = ValueVTs[Value]; 125 unsigned NumRegs = TLI->getNumRegisters(Context, ValueVT); 126 EVT RegisterVT = TLI->getRegisterType(Context, ValueVT); 127 for (unsigned i = 0; i != NumRegs; ++i) 128 Regs.push_back(Reg + i); 129 RegVTs.push_back(RegisterVT); 130 Reg += NumRegs; 131 } 132 } 133 134 /// append - Add the specified values to this one. 135 void append(const RegsForValue &RHS) { 136 TLI = RHS.TLI; 137 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 138 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 139 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 140 } 141 142 143 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 144 /// this value and returns the result as a ValueVTs value. This uses 145 /// Chain/Flag as the input and updates them for the output Chain/Flag. 146 /// If the Flag pointer is NULL, no flag is used. 147 SDValue getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl, unsigned Order, 148 SDValue &Chain, SDValue *Flag) const; 149 150 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 151 /// specified value into the registers specified by this object. This uses 152 /// Chain/Flag as the input and updates them for the output Chain/Flag. 153 /// If the Flag pointer is NULL, no flag is used. 154 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 155 unsigned Order, SDValue &Chain, SDValue *Flag) const; 156 157 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 158 /// operand list. This adds the code marker, matching input operand index 159 /// (if applicable), and includes the number of values added into it. 160 void AddInlineAsmOperands(unsigned Code, 161 bool HasMatching, unsigned MatchingIdx, 162 SelectionDAG &DAG, unsigned Order, 163 std::vector<SDValue> &Ops) const; 164 }; 165 } 166 167 /// getCopyFromParts - Create a value that contains the specified legal parts 168 /// combined into the value they represent. If the parts combine to a type 169 /// larger then ValueVT then AssertOp can be used to specify whether the extra 170 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 171 /// (ISD::AssertSext). 172 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl, unsigned Order, 173 const SDValue *Parts, 174 unsigned NumParts, EVT PartVT, EVT ValueVT, 175 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 176 assert(NumParts > 0 && "No parts to assemble!"); 177 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 178 SDValue Val = Parts[0]; 179 if (DisableScheduling) DAG.AssignOrdering(Val.getNode(), Order); 180 181 if (NumParts > 1) { 182 // Assemble the value from multiple parts. 183 if (!ValueVT.isVector() && ValueVT.isInteger()) { 184 unsigned PartBits = PartVT.getSizeInBits(); 185 unsigned ValueBits = ValueVT.getSizeInBits(); 186 187 // Assemble the power of 2 part. 188 unsigned RoundParts = NumParts & (NumParts - 1) ? 189 1 << Log2_32(NumParts) : NumParts; 190 unsigned RoundBits = PartBits * RoundParts; 191 EVT RoundVT = RoundBits == ValueBits ? 192 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 193 SDValue Lo, Hi; 194 195 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 196 197 if (RoundParts > 2) { 198 Lo = getCopyFromParts(DAG, dl, Order, Parts, RoundParts / 2, 199 PartVT, HalfVT); 200 Hi = getCopyFromParts(DAG, dl, Order, Parts + RoundParts / 2, 201 RoundParts / 2, PartVT, HalfVT); 202 } else { 203 Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]); 204 Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]); 205 } 206 207 if (TLI.isBigEndian()) 208 std::swap(Lo, Hi); 209 210 Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi); 211 212 if (DisableScheduling) { 213 DAG.AssignOrdering(Lo.getNode(), Order); 214 DAG.AssignOrdering(Hi.getNode(), Order); 215 DAG.AssignOrdering(Val.getNode(), Order); 216 } 217 218 if (RoundParts < NumParts) { 219 // Assemble the trailing non-power-of-2 part. 220 unsigned OddParts = NumParts - RoundParts; 221 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 222 Hi = getCopyFromParts(DAG, dl, Order, 223 Parts + RoundParts, OddParts, PartVT, OddVT); 224 225 // Combine the round and odd parts. 226 Lo = Val; 227 if (TLI.isBigEndian()) 228 std::swap(Lo, Hi); 229 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 230 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi); 231 if (DisableScheduling) DAG.AssignOrdering(Hi.getNode(), Order); 232 Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi, 233 DAG.getConstant(Lo.getValueType().getSizeInBits(), 234 TLI.getPointerTy())); 235 if (DisableScheduling) DAG.AssignOrdering(Hi.getNode(), Order); 236 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo); 237 if (DisableScheduling) DAG.AssignOrdering(Lo.getNode(), Order); 238 Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi); 239 if (DisableScheduling) DAG.AssignOrdering(Val.getNode(), Order); 240 } 241 } else if (ValueVT.isVector()) { 242 // Handle a multi-element vector. 243 EVT IntermediateVT, RegisterVT; 244 unsigned NumIntermediates; 245 unsigned NumRegs = 246 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 247 NumIntermediates, RegisterVT); 248 assert(NumRegs == NumParts 249 && "Part count doesn't match vector breakdown!"); 250 NumParts = NumRegs; // Silence a compiler warning. 251 assert(RegisterVT == PartVT 252 && "Part type doesn't match vector breakdown!"); 253 assert(RegisterVT == Parts[0].getValueType() && 254 "Part type doesn't match part!"); 255 256 // Assemble the parts into intermediate operands. 257 SmallVector<SDValue, 8> Ops(NumIntermediates); 258 if (NumIntermediates == NumParts) { 259 // If the register was not expanded, truncate or copy the value, 260 // as appropriate. 261 for (unsigned i = 0; i != NumParts; ++i) 262 Ops[i] = getCopyFromParts(DAG, dl, Order, &Parts[i], 1, 263 PartVT, IntermediateVT); 264 } else if (NumParts > 0) { 265 // If the intermediate type was expanded, build the intermediate 266 // operands from the parts. 267 assert(NumParts % NumIntermediates == 0 && 268 "Must expand into a divisible number of parts!"); 269 unsigned Factor = NumParts / NumIntermediates; 270 for (unsigned i = 0; i != NumIntermediates; ++i) 271 Ops[i] = getCopyFromParts(DAG, dl, Order, &Parts[i * Factor], Factor, 272 PartVT, IntermediateVT); 273 } 274 275 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 276 // intermediate operands. 277 Val = DAG.getNode(IntermediateVT.isVector() ? 278 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl, 279 ValueVT, &Ops[0], NumIntermediates); 280 if (DisableScheduling) DAG.AssignOrdering(Val.getNode(), Order); 281 } else if (PartVT.isFloatingPoint()) { 282 // FP split into multiple FP parts (for ppcf128) 283 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 284 "Unexpected split"); 285 SDValue Lo, Hi; 286 Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]); 287 Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]); 288 if (TLI.isBigEndian()) 289 std::swap(Lo, Hi); 290 Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi); 291 292 if (DisableScheduling) { 293 DAG.AssignOrdering(Hi.getNode(), Order); 294 DAG.AssignOrdering(Lo.getNode(), Order); 295 DAG.AssignOrdering(Val.getNode(), Order); 296 } 297 } else { 298 // FP split into integer parts (soft fp) 299 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 300 !PartVT.isVector() && "Unexpected split"); 301 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 302 Val = getCopyFromParts(DAG, dl, Order, Parts, NumParts, PartVT, IntVT); 303 } 304 } 305 306 // There is now one part, held in Val. Correct it to match ValueVT. 307 PartVT = Val.getValueType(); 308 309 if (PartVT == ValueVT) 310 return Val; 311 312 if (PartVT.isVector()) { 313 assert(ValueVT.isVector() && "Unknown vector conversion!"); 314 SDValue Res = DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val); 315 if (DisableScheduling) 316 DAG.AssignOrdering(Res.getNode(), Order); 317 return Res; 318 } 319 320 if (ValueVT.isVector()) { 321 assert(ValueVT.getVectorElementType() == PartVT && 322 ValueVT.getVectorNumElements() == 1 && 323 "Only trivial scalar-to-vector conversions should get here!"); 324 SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val); 325 if (DisableScheduling) 326 DAG.AssignOrdering(Res.getNode(), Order); 327 return Res; 328 } 329 330 if (PartVT.isInteger() && 331 ValueVT.isInteger()) { 332 if (ValueVT.bitsLT(PartVT)) { 333 // For a truncate, see if we have any information to 334 // indicate whether the truncated bits will always be 335 // zero or sign-extension. 336 if (AssertOp != ISD::DELETED_NODE) 337 Val = DAG.getNode(AssertOp, dl, PartVT, Val, 338 DAG.getValueType(ValueVT)); 339 if (DisableScheduling) DAG.AssignOrdering(Val.getNode(), Order); 340 Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); 341 if (DisableScheduling) DAG.AssignOrdering(Val.getNode(), Order); 342 return Val; 343 } else { 344 Val = DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val); 345 if (DisableScheduling) DAG.AssignOrdering(Val.getNode(), Order); 346 return Val; 347 } 348 } 349 350 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 351 if (ValueVT.bitsLT(Val.getValueType())) { 352 // FP_ROUND's are always exact here. 353 Val = DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val, 354 DAG.getIntPtrConstant(1)); 355 if (DisableScheduling) DAG.AssignOrdering(Val.getNode(), Order); 356 return Val; 357 } 358 359 Val = DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val); 360 if (DisableScheduling) DAG.AssignOrdering(Val.getNode(), Order); 361 return Val; 362 } 363 364 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 365 Val = DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val); 366 if (DisableScheduling) DAG.AssignOrdering(Val.getNode(), Order); 367 return Val; 368 } 369 370 llvm_unreachable("Unknown mismatch!"); 371 return SDValue(); 372 } 373 374 /// getCopyToParts - Create a series of nodes that contain the specified value 375 /// split into legal parts. If the parts contain more bits than Val, then, for 376 /// integers, ExtendKind can be used to specify how to generate the extra bits. 377 static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl, unsigned Order, 378 SDValue Val, SDValue *Parts, unsigned NumParts, 379 EVT PartVT, 380 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 381 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 382 EVT PtrVT = TLI.getPointerTy(); 383 EVT ValueVT = Val.getValueType(); 384 unsigned PartBits = PartVT.getSizeInBits(); 385 unsigned OrigNumParts = NumParts; 386 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 387 388 if (!NumParts) 389 return; 390 391 if (!ValueVT.isVector()) { 392 if (PartVT == ValueVT) { 393 assert(NumParts == 1 && "No-op copy with multiple parts!"); 394 Parts[0] = Val; 395 return; 396 } 397 398 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 399 // If the parts cover more bits than the value has, promote the value. 400 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 401 assert(NumParts == 1 && "Do not know what to promote to!"); 402 Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val); 403 } else if (PartVT.isInteger() && ValueVT.isInteger()) { 404 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 405 Val = DAG.getNode(ExtendKind, dl, ValueVT, Val); 406 } else { 407 llvm_unreachable("Unknown mismatch!"); 408 } 409 } else if (PartBits == ValueVT.getSizeInBits()) { 410 // Different types of the same size. 411 assert(NumParts == 1 && PartVT != ValueVT); 412 Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val); 413 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 414 // If the parts cover less bits than value has, truncate the value. 415 if (PartVT.isInteger() && ValueVT.isInteger()) { 416 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 417 Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); 418 } else { 419 llvm_unreachable("Unknown mismatch!"); 420 } 421 } 422 423 if (DisableScheduling) DAG.AssignOrdering(Val.getNode(), Order); 424 425 // The value may have changed - recompute ValueVT. 426 ValueVT = Val.getValueType(); 427 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 428 "Failed to tile the value with PartVT!"); 429 430 if (NumParts == 1) { 431 assert(PartVT == ValueVT && "Type conversion failed!"); 432 Parts[0] = Val; 433 return; 434 } 435 436 // Expand the value into multiple parts. 437 if (NumParts & (NumParts - 1)) { 438 // The number of parts is not a power of 2. Split off and copy the tail. 439 assert(PartVT.isInteger() && ValueVT.isInteger() && 440 "Do not know what to expand to!"); 441 unsigned RoundParts = 1 << Log2_32(NumParts); 442 unsigned RoundBits = RoundParts * PartBits; 443 unsigned OddParts = NumParts - RoundParts; 444 SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val, 445 DAG.getConstant(RoundBits, 446 TLI.getPointerTy())); 447 getCopyToParts(DAG, dl, Order, OddVal, Parts + RoundParts, 448 OddParts, PartVT); 449 450 if (TLI.isBigEndian()) 451 // The odd parts were reversed by getCopyToParts - unreverse them. 452 std::reverse(Parts + RoundParts, Parts + NumParts); 453 454 NumParts = RoundParts; 455 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 456 Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); 457 458 if (DisableScheduling) { 459 DAG.AssignOrdering(OddVal.getNode(), Order); 460 DAG.AssignOrdering(Val.getNode(), Order); 461 } 462 } 463 464 // The number of parts is a power of 2. Repeatedly bisect the value using 465 // EXTRACT_ELEMENT. 466 Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl, 467 EVT::getIntegerVT(*DAG.getContext(), 468 ValueVT.getSizeInBits()), 469 Val); 470 471 if (DisableScheduling) 472 DAG.AssignOrdering(Parts[0].getNode(), Order); 473 474 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 475 for (unsigned i = 0; i < NumParts; i += StepSize) { 476 unsigned ThisBits = StepSize * PartBits / 2; 477 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 478 SDValue &Part0 = Parts[i]; 479 SDValue &Part1 = Parts[i+StepSize/2]; 480 481 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 482 ThisVT, Part0, 483 DAG.getConstant(1, PtrVT)); 484 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 485 ThisVT, Part0, 486 DAG.getConstant(0, PtrVT)); 487 488 if (DisableScheduling) { 489 DAG.AssignOrdering(Part0.getNode(), Order); 490 DAG.AssignOrdering(Part1.getNode(), Order); 491 } 492 493 if (ThisBits == PartBits && ThisVT != PartVT) { 494 Part0 = DAG.getNode(ISD::BIT_CONVERT, dl, 495 PartVT, Part0); 496 Part1 = DAG.getNode(ISD::BIT_CONVERT, dl, 497 PartVT, Part1); 498 if (DisableScheduling) { 499 DAG.AssignOrdering(Part0.getNode(), Order); 500 DAG.AssignOrdering(Part1.getNode(), Order); 501 } 502 } 503 } 504 } 505 506 if (TLI.isBigEndian()) 507 std::reverse(Parts, Parts + OrigNumParts); 508 509 return; 510 } 511 512 // Vector ValueVT. 513 if (NumParts == 1) { 514 if (PartVT != ValueVT) { 515 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 516 Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val); 517 } else { 518 assert(ValueVT.getVectorElementType() == PartVT && 519 ValueVT.getVectorNumElements() == 1 && 520 "Only trivial vector-to-scalar conversions should get here!"); 521 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 522 PartVT, Val, 523 DAG.getConstant(0, PtrVT)); 524 } 525 } 526 527 if (DisableScheduling) 528 DAG.AssignOrdering(Val.getNode(), Order); 529 530 Parts[0] = Val; 531 return; 532 } 533 534 // Handle a multi-element vector. 535 EVT IntermediateVT, RegisterVT; 536 unsigned NumIntermediates; 537 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 538 IntermediateVT, NumIntermediates, RegisterVT); 539 unsigned NumElements = ValueVT.getVectorNumElements(); 540 541 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 542 NumParts = NumRegs; // Silence a compiler warning. 543 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 544 545 // Split the vector into intermediate operands. 546 SmallVector<SDValue, 8> Ops(NumIntermediates); 547 for (unsigned i = 0; i != NumIntermediates; ++i) { 548 if (IntermediateVT.isVector()) 549 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, 550 IntermediateVT, Val, 551 DAG.getConstant(i * (NumElements / NumIntermediates), 552 PtrVT)); 553 else 554 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 555 IntermediateVT, Val, 556 DAG.getConstant(i, PtrVT)); 557 558 if (DisableScheduling) 559 DAG.AssignOrdering(Ops[i].getNode(), Order); 560 } 561 562 // Split the intermediate operands into legal parts. 563 if (NumParts == NumIntermediates) { 564 // If the register was not expanded, promote or copy the value, 565 // as appropriate. 566 for (unsigned i = 0; i != NumParts; ++i) 567 getCopyToParts(DAG, dl, Order, Ops[i], &Parts[i], 1, PartVT); 568 } else if (NumParts > 0) { 569 // If the intermediate type was expanded, split each the value into 570 // legal parts. 571 assert(NumParts % NumIntermediates == 0 && 572 "Must expand into a divisible number of parts!"); 573 unsigned Factor = NumParts / NumIntermediates; 574 for (unsigned i = 0; i != NumIntermediates; ++i) 575 getCopyToParts(DAG, dl, Order, Ops[i], &Parts[i*Factor], Factor, PartVT); 576 } 577 } 578 579 580 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { 581 AA = &aa; 582 GFI = gfi; 583 TD = DAG.getTarget().getTargetData(); 584 } 585 586 /// clear - Clear out the curret SelectionDAG and the associated 587 /// state and prepare this SelectionDAGBuilder object to be used 588 /// for a new block. This doesn't clear out information about 589 /// additional blocks that are needed to complete switch lowering 590 /// or PHI node updating; that information is cleared out as it is 591 /// consumed. 592 void SelectionDAGBuilder::clear() { 593 NodeMap.clear(); 594 PendingLoads.clear(); 595 PendingExports.clear(); 596 EdgeMapping.clear(); 597 DAG.clear(); 598 CurDebugLoc = DebugLoc::getUnknownLoc(); 599 HasTailCall = false; 600 } 601 602 /// getRoot - Return the current virtual root of the Selection DAG, 603 /// flushing any PendingLoad items. This must be done before emitting 604 /// a store or any other node that may need to be ordered after any 605 /// prior load instructions. 606 /// 607 SDValue SelectionDAGBuilder::getRoot() { 608 if (PendingLoads.empty()) 609 return DAG.getRoot(); 610 611 if (PendingLoads.size() == 1) { 612 SDValue Root = PendingLoads[0]; 613 DAG.setRoot(Root); 614 PendingLoads.clear(); 615 return Root; 616 } 617 618 // Otherwise, we have to make a token factor node. 619 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 620 &PendingLoads[0], PendingLoads.size()); 621 PendingLoads.clear(); 622 DAG.setRoot(Root); 623 return Root; 624 } 625 626 /// getControlRoot - Similar to getRoot, but instead of flushing all the 627 /// PendingLoad items, flush all the PendingExports items. It is necessary 628 /// to do this before emitting a terminator instruction. 629 /// 630 SDValue SelectionDAGBuilder::getControlRoot() { 631 SDValue Root = DAG.getRoot(); 632 633 if (PendingExports.empty()) 634 return Root; 635 636 // Turn all of the CopyToReg chains into one factored node. 637 if (Root.getOpcode() != ISD::EntryToken) { 638 unsigned i = 0, e = PendingExports.size(); 639 for (; i != e; ++i) { 640 assert(PendingExports[i].getNode()->getNumOperands() > 1); 641 if (PendingExports[i].getNode()->getOperand(0) == Root) 642 break; // Don't add the root if we already indirectly depend on it. 643 } 644 645 if (i == e) 646 PendingExports.push_back(Root); 647 } 648 649 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 650 &PendingExports[0], 651 PendingExports.size()); 652 PendingExports.clear(); 653 DAG.setRoot(Root); 654 return Root; 655 } 656 657 void SelectionDAGBuilder::visit(Instruction &I) { 658 visit(I.getOpcode(), I); 659 } 660 661 void SelectionDAGBuilder::visit(unsigned Opcode, User &I) { 662 // We're processing a new instruction. 663 ++SDNodeOrder; 664 665 // Note: this doesn't use InstVisitor, because it has to work with 666 // ConstantExpr's in addition to instructions. 667 switch (Opcode) { 668 default: llvm_unreachable("Unknown instruction type encountered!"); 669 // Build the switch statement using the Instruction.def file. 670 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 671 case Instruction::OPCODE: return visit##OPCODE((CLASS&)I); 672 #include "llvm/Instruction.def" 673 } 674 } 675 676 SDValue SelectionDAGBuilder::getValue(const Value *V) { 677 SDValue &N = NodeMap[V]; 678 if (N.getNode()) return N; 679 680 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) { 681 EVT VT = TLI.getValueType(V->getType(), true); 682 683 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 684 return N = DAG.getConstant(*CI, VT); 685 686 if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) 687 return N = DAG.getGlobalAddress(GV, VT); 688 689 if (isa<ConstantPointerNull>(C)) 690 return N = DAG.getConstant(0, TLI.getPointerTy()); 691 692 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 693 return N = DAG.getConstantFP(*CFP, VT); 694 695 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 696 return N = DAG.getUNDEF(VT); 697 698 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 699 visit(CE->getOpcode(), *CE); 700 SDValue N1 = NodeMap[V]; 701 assert(N1.getNode() && "visit didn't populate the ValueMap!"); 702 return N1; 703 } 704 705 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 706 SmallVector<SDValue, 4> Constants; 707 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 708 OI != OE; ++OI) { 709 SDNode *Val = getValue(*OI).getNode(); 710 // If the operand is an empty aggregate, there are no values. 711 if (!Val) continue; 712 // Add each leaf value from the operand to the Constants list 713 // to form a flattened list of all the values. 714 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 715 Constants.push_back(SDValue(Val, i)); 716 } 717 718 SDValue Res = DAG.getMergeValues(&Constants[0], Constants.size(), 719 getCurDebugLoc()); 720 if (DisableScheduling) 721 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 722 return Res; 723 } 724 725 if (isa<StructType>(C->getType()) || isa<ArrayType>(C->getType())) { 726 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 727 "Unknown struct or array constant!"); 728 729 SmallVector<EVT, 4> ValueVTs; 730 ComputeValueVTs(TLI, C->getType(), ValueVTs); 731 unsigned NumElts = ValueVTs.size(); 732 if (NumElts == 0) 733 return SDValue(); // empty struct 734 SmallVector<SDValue, 4> Constants(NumElts); 735 for (unsigned i = 0; i != NumElts; ++i) { 736 EVT EltVT = ValueVTs[i]; 737 if (isa<UndefValue>(C)) 738 Constants[i] = DAG.getUNDEF(EltVT); 739 else if (EltVT.isFloatingPoint()) 740 Constants[i] = DAG.getConstantFP(0, EltVT); 741 else 742 Constants[i] = DAG.getConstant(0, EltVT); 743 } 744 745 SDValue Res = DAG.getMergeValues(&Constants[0], NumElts, 746 getCurDebugLoc()); 747 if (DisableScheduling) 748 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 749 return Res; 750 } 751 752 if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) 753 return DAG.getBlockAddress(BA, VT); 754 755 const VectorType *VecTy = cast<VectorType>(V->getType()); 756 unsigned NumElements = VecTy->getNumElements(); 757 758 // Now that we know the number and type of the elements, get that number of 759 // elements into the Ops array based on what kind of constant it is. 760 SmallVector<SDValue, 16> Ops; 761 if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) { 762 for (unsigned i = 0; i != NumElements; ++i) 763 Ops.push_back(getValue(CP->getOperand(i))); 764 } else { 765 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 766 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 767 768 SDValue Op; 769 if (EltVT.isFloatingPoint()) 770 Op = DAG.getConstantFP(0, EltVT); 771 else 772 Op = DAG.getConstant(0, EltVT); 773 Ops.assign(NumElements, Op); 774 } 775 776 // Create a BUILD_VECTOR node. 777 SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 778 VT, &Ops[0], Ops.size()); 779 if (DisableScheduling) 780 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 781 782 return NodeMap[V] = Res; 783 } 784 785 // If this is a static alloca, generate it as the frameindex instead of 786 // computation. 787 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 788 DenseMap<const AllocaInst*, int>::iterator SI = 789 FuncInfo.StaticAllocaMap.find(AI); 790 if (SI != FuncInfo.StaticAllocaMap.end()) 791 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 792 } 793 794 unsigned InReg = FuncInfo.ValueMap[V]; 795 assert(InReg && "Value not in map!"); 796 797 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 798 SDValue Chain = DAG.getEntryNode(); 799 return RFV.getCopyFromRegs(DAG, getCurDebugLoc(), 800 SDNodeOrder, Chain, NULL); 801 } 802 803 /// Get the EVTs and ArgFlags collections that represent the return type 804 /// of the given function. This does not require a DAG or a return value, and 805 /// is suitable for use before any DAGs for the function are constructed. 806 static void getReturnInfo(const Type* ReturnType, 807 Attributes attr, SmallVectorImpl<EVT> &OutVTs, 808 SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags, 809 TargetLowering &TLI, 810 SmallVectorImpl<uint64_t> *Offsets = 0) { 811 SmallVector<EVT, 4> ValueVTs; 812 ComputeValueVTs(TLI, ReturnType, ValueVTs, Offsets); 813 unsigned NumValues = ValueVTs.size(); 814 if ( NumValues == 0 ) return; 815 816 for (unsigned j = 0, f = NumValues; j != f; ++j) { 817 EVT VT = ValueVTs[j]; 818 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 819 820 if (attr & Attribute::SExt) 821 ExtendKind = ISD::SIGN_EXTEND; 822 else if (attr & Attribute::ZExt) 823 ExtendKind = ISD::ZERO_EXTEND; 824 825 // FIXME: C calling convention requires the return type to be promoted to 826 // at least 32-bit. But this is not necessary for non-C calling 827 // conventions. The frontend should mark functions whose return values 828 // require promoting with signext or zeroext attributes. 829 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 830 EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); 831 if (VT.bitsLT(MinVT)) 832 VT = MinVT; 833 } 834 835 unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT); 836 EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT); 837 // 'inreg' on function refers to return value 838 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 839 if (attr & Attribute::InReg) 840 Flags.setInReg(); 841 842 // Propagate extension type if any 843 if (attr & Attribute::SExt) 844 Flags.setSExt(); 845 else if (attr & Attribute::ZExt) 846 Flags.setZExt(); 847 848 for (unsigned i = 0; i < NumParts; ++i) { 849 OutVTs.push_back(PartVT); 850 OutFlags.push_back(Flags); 851 } 852 } 853 } 854 855 void SelectionDAGBuilder::visitRet(ReturnInst &I) { 856 SDValue Chain = getControlRoot(); 857 SmallVector<ISD::OutputArg, 8> Outs; 858 FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); 859 860 if (!FLI.CanLowerReturn) { 861 unsigned DemoteReg = FLI.DemoteRegister; 862 const Function *F = I.getParent()->getParent(); 863 864 // Emit a store of the return value through the virtual register. 865 // Leave Outs empty so that LowerReturn won't try to load return 866 // registers the usual way. 867 SmallVector<EVT, 1> PtrValueVTs; 868 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 869 PtrValueVTs); 870 871 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 872 SDValue RetOp = getValue(I.getOperand(0)); 873 874 SmallVector<EVT, 4> ValueVTs; 875 SmallVector<uint64_t, 4> Offsets; 876 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 877 unsigned NumValues = ValueVTs.size(); 878 879 SmallVector<SDValue, 4> Chains(NumValues); 880 EVT PtrVT = PtrValueVTs[0]; 881 for (unsigned i = 0; i != NumValues; ++i) { 882 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr, 883 DAG.getConstant(Offsets[i], PtrVT)); 884 Chains[i] = 885 DAG.getStore(Chain, getCurDebugLoc(), 886 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 887 Add, NULL, Offsets[i], false, 0); 888 889 if (DisableScheduling) { 890 DAG.AssignOrdering(Add.getNode(), SDNodeOrder); 891 DAG.AssignOrdering(Chains[i].getNode(), SDNodeOrder); 892 } 893 } 894 895 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 896 MVT::Other, &Chains[0], NumValues); 897 898 if (DisableScheduling) 899 DAG.AssignOrdering(Chain.getNode(), SDNodeOrder); 900 } else { 901 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 902 SmallVector<EVT, 4> ValueVTs; 903 ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs); 904 unsigned NumValues = ValueVTs.size(); 905 if (NumValues == 0) continue; 906 907 SDValue RetOp = getValue(I.getOperand(i)); 908 for (unsigned j = 0, f = NumValues; j != f; ++j) { 909 EVT VT = ValueVTs[j]; 910 911 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 912 913 const Function *F = I.getParent()->getParent(); 914 if (F->paramHasAttr(0, Attribute::SExt)) 915 ExtendKind = ISD::SIGN_EXTEND; 916 else if (F->paramHasAttr(0, Attribute::ZExt)) 917 ExtendKind = ISD::ZERO_EXTEND; 918 919 // FIXME: C calling convention requires the return type to be promoted 920 // to at least 32-bit. But this is not necessary for non-C calling 921 // conventions. The frontend should mark functions whose return values 922 // require promoting with signext or zeroext attributes. 923 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 924 EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32); 925 if (VT.bitsLT(MinVT)) 926 VT = MinVT; 927 } 928 929 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 930 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 931 SmallVector<SDValue, 4> Parts(NumParts); 932 getCopyToParts(DAG, getCurDebugLoc(), SDNodeOrder, 933 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 934 &Parts[0], NumParts, PartVT, ExtendKind); 935 936 // 'inreg' on function refers to return value 937 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 938 if (F->paramHasAttr(0, Attribute::InReg)) 939 Flags.setInReg(); 940 941 // Propagate extension type if any 942 if (F->paramHasAttr(0, Attribute::SExt)) 943 Flags.setSExt(); 944 else if (F->paramHasAttr(0, Attribute::ZExt)) 945 Flags.setZExt(); 946 947 for (unsigned i = 0; i < NumParts; ++i) 948 Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true)); 949 } 950 } 951 } 952 953 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 954 CallingConv::ID CallConv = 955 DAG.getMachineFunction().getFunction()->getCallingConv(); 956 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 957 Outs, getCurDebugLoc(), DAG); 958 959 // Verify that the target's LowerReturn behaved as expected. 960 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 961 "LowerReturn didn't return a valid chain!"); 962 963 // Update the DAG with the new chain value resulting from return lowering. 964 DAG.setRoot(Chain); 965 966 if (DisableScheduling) 967 DAG.AssignOrdering(Chain.getNode(), SDNodeOrder); 968 } 969 970 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 971 /// created for it, emit nodes to copy the value into the virtual 972 /// registers. 973 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(Value *V) { 974 if (!V->use_empty()) { 975 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 976 if (VMI != FuncInfo.ValueMap.end()) 977 CopyValueToVirtualRegister(V, VMI->second); 978 } 979 } 980 981 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 982 /// the current basic block, add it to ValueMap now so that we'll get a 983 /// CopyTo/FromReg. 984 void SelectionDAGBuilder::ExportFromCurrentBlock(Value *V) { 985 // No need to export constants. 986 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 987 988 // Already exported? 989 if (FuncInfo.isExportedInst(V)) return; 990 991 unsigned Reg = FuncInfo.InitializeRegForValue(V); 992 CopyValueToVirtualRegister(V, Reg); 993 } 994 995 bool SelectionDAGBuilder::isExportableFromCurrentBlock(Value *V, 996 const BasicBlock *FromBB) { 997 // The operands of the setcc have to be in this block. We don't know 998 // how to export them from some other block. 999 if (Instruction *VI = dyn_cast<Instruction>(V)) { 1000 // Can export from current BB. 1001 if (VI->getParent() == FromBB) 1002 return true; 1003 1004 // Is already exported, noop. 1005 return FuncInfo.isExportedInst(V); 1006 } 1007 1008 // If this is an argument, we can export it if the BB is the entry block or 1009 // if it is already exported. 1010 if (isa<Argument>(V)) { 1011 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1012 return true; 1013 1014 // Otherwise, can only export this if it is already exported. 1015 return FuncInfo.isExportedInst(V); 1016 } 1017 1018 // Otherwise, constants can always be exported. 1019 return true; 1020 } 1021 1022 static bool InBlock(const Value *V, const BasicBlock *BB) { 1023 if (const Instruction *I = dyn_cast<Instruction>(V)) 1024 return I->getParent() == BB; 1025 return true; 1026 } 1027 1028 /// getFCmpCondCode - Return the ISD condition code corresponding to 1029 /// the given LLVM IR floating-point condition code. This includes 1030 /// consideration of global floating-point math flags. 1031 /// 1032 static ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred) { 1033 ISD::CondCode FPC, FOC; 1034 switch (Pred) { 1035 case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break; 1036 case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break; 1037 case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break; 1038 case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break; 1039 case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break; 1040 case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break; 1041 case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break; 1042 case FCmpInst::FCMP_ORD: FOC = FPC = ISD::SETO; break; 1043 case FCmpInst::FCMP_UNO: FOC = FPC = ISD::SETUO; break; 1044 case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break; 1045 case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break; 1046 case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break; 1047 case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break; 1048 case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break; 1049 case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break; 1050 case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break; 1051 default: 1052 llvm_unreachable("Invalid FCmp predicate opcode!"); 1053 FOC = FPC = ISD::SETFALSE; 1054 break; 1055 } 1056 if (FiniteOnlyFPMath()) 1057 return FOC; 1058 else 1059 return FPC; 1060 } 1061 1062 /// getICmpCondCode - Return the ISD condition code corresponding to 1063 /// the given LLVM IR integer condition code. 1064 /// 1065 static ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred) { 1066 switch (Pred) { 1067 case ICmpInst::ICMP_EQ: return ISD::SETEQ; 1068 case ICmpInst::ICMP_NE: return ISD::SETNE; 1069 case ICmpInst::ICMP_SLE: return ISD::SETLE; 1070 case ICmpInst::ICMP_ULE: return ISD::SETULE; 1071 case ICmpInst::ICMP_SGE: return ISD::SETGE; 1072 case ICmpInst::ICMP_UGE: return ISD::SETUGE; 1073 case ICmpInst::ICMP_SLT: return ISD::SETLT; 1074 case ICmpInst::ICMP_ULT: return ISD::SETULT; 1075 case ICmpInst::ICMP_SGT: return ISD::SETGT; 1076 case ICmpInst::ICMP_UGT: return ISD::SETUGT; 1077 default: 1078 llvm_unreachable("Invalid ICmp predicate opcode!"); 1079 return ISD::SETNE; 1080 } 1081 } 1082 1083 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1084 /// This function emits a branch and is used at the leaves of an OR or an 1085 /// AND operator tree. 1086 /// 1087 void 1088 SelectionDAGBuilder::EmitBranchForMergedCondition(Value *Cond, 1089 MachineBasicBlock *TBB, 1090 MachineBasicBlock *FBB, 1091 MachineBasicBlock *CurBB) { 1092 const BasicBlock *BB = CurBB->getBasicBlock(); 1093 1094 // If the leaf of the tree is a comparison, merge the condition into 1095 // the caseblock. 1096 if (CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1097 // The operands of the cmp have to be in this block. We don't know 1098 // how to export them from some other block. If this is the first block 1099 // of the sequence, no exporting is needed. 1100 if (CurBB == CurMBB || 1101 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1102 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1103 ISD::CondCode Condition; 1104 if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1105 Condition = getICmpCondCode(IC->getPredicate()); 1106 } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1107 Condition = getFCmpCondCode(FC->getPredicate()); 1108 } else { 1109 Condition = ISD::SETEQ; // silence warning. 1110 llvm_unreachable("Unknown compare instruction"); 1111 } 1112 1113 CaseBlock CB(Condition, BOp->getOperand(0), 1114 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1115 SwitchCases.push_back(CB); 1116 return; 1117 } 1118 } 1119 1120 // Create a CaseBlock record representing this branch. 1121 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1122 NULL, TBB, FBB, CurBB); 1123 SwitchCases.push_back(CB); 1124 } 1125 1126 /// FindMergedConditions - If Cond is an expression like 1127 void SelectionDAGBuilder::FindMergedConditions(Value *Cond, 1128 MachineBasicBlock *TBB, 1129 MachineBasicBlock *FBB, 1130 MachineBasicBlock *CurBB, 1131 unsigned Opc) { 1132 // If this node is not part of the or/and tree, emit it as a branch. 1133 Instruction *BOp = dyn_cast<Instruction>(Cond); 1134 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1135 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1136 BOp->getParent() != CurBB->getBasicBlock() || 1137 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1138 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1139 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB); 1140 return; 1141 } 1142 1143 // Create TmpBB after CurBB. 1144 MachineFunction::iterator BBI = CurBB; 1145 MachineFunction &MF = DAG.getMachineFunction(); 1146 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1147 CurBB->getParent()->insert(++BBI, TmpBB); 1148 1149 if (Opc == Instruction::Or) { 1150 // Codegen X | Y as: 1151 // jmp_if_X TBB 1152 // jmp TmpBB 1153 // TmpBB: 1154 // jmp_if_Y TBB 1155 // jmp FBB 1156 // 1157 1158 // Emit the LHS condition. 1159 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc); 1160 1161 // Emit the RHS condition into TmpBB. 1162 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc); 1163 } else { 1164 assert(Opc == Instruction::And && "Unknown merge op!"); 1165 // Codegen X & Y as: 1166 // jmp_if_X TmpBB 1167 // jmp FBB 1168 // TmpBB: 1169 // jmp_if_Y TBB 1170 // jmp FBB 1171 // 1172 // This requires creation of TmpBB after CurBB. 1173 1174 // Emit the LHS condition. 1175 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc); 1176 1177 // Emit the RHS condition into TmpBB. 1178 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc); 1179 } 1180 } 1181 1182 /// If the set of cases should be emitted as a series of branches, return true. 1183 /// If we should emit this as a bunch of and/or'd together conditions, return 1184 /// false. 1185 bool 1186 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1187 if (Cases.size() != 2) return true; 1188 1189 // If this is two comparisons of the same values or'd or and'd together, they 1190 // will get folded into a single comparison, so don't emit two blocks. 1191 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1192 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1193 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1194 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1195 return false; 1196 } 1197 1198 return true; 1199 } 1200 1201 void SelectionDAGBuilder::visitBr(BranchInst &I) { 1202 // Update machine-CFG edges. 1203 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1204 1205 // Figure out which block is immediately after the current one. 1206 MachineBasicBlock *NextBlock = 0; 1207 MachineFunction::iterator BBI = CurMBB; 1208 if (++BBI != FuncInfo.MF->end()) 1209 NextBlock = BBI; 1210 1211 if (I.isUnconditional()) { 1212 // Update machine-CFG edges. 1213 CurMBB->addSuccessor(Succ0MBB); 1214 1215 // If this is not a fall-through branch, emit the branch. 1216 if (Succ0MBB != NextBlock) { 1217 SDValue V = DAG.getNode(ISD::BR, getCurDebugLoc(), 1218 MVT::Other, getControlRoot(), 1219 DAG.getBasicBlock(Succ0MBB)); 1220 DAG.setRoot(V); 1221 1222 if (DisableScheduling) 1223 DAG.AssignOrdering(V.getNode(), SDNodeOrder); 1224 } 1225 1226 return; 1227 } 1228 1229 // If this condition is one of the special cases we handle, do special stuff 1230 // now. 1231 Value *CondVal = I.getCondition(); 1232 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1233 1234 // If this is a series of conditions that are or'd or and'd together, emit 1235 // this as a sequence of branches instead of setcc's with and/or operations. 1236 // For example, instead of something like: 1237 // cmp A, B 1238 // C = seteq 1239 // cmp D, E 1240 // F = setle 1241 // or C, F 1242 // jnz foo 1243 // Emit: 1244 // cmp A, B 1245 // je foo 1246 // cmp D, E 1247 // jle foo 1248 // 1249 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1250 if (BOp->hasOneUse() && 1251 (BOp->getOpcode() == Instruction::And || 1252 BOp->getOpcode() == Instruction::Or)) { 1253 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode()); 1254 // If the compares in later blocks need to use values not currently 1255 // exported from this block, export them now. This block should always 1256 // be the first entry. 1257 assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!"); 1258 1259 // Allow some cases to be rejected. 1260 if (ShouldEmitAsBranches(SwitchCases)) { 1261 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1262 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1263 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1264 } 1265 1266 // Emit the branch for this block. 1267 visitSwitchCase(SwitchCases[0]); 1268 SwitchCases.erase(SwitchCases.begin()); 1269 return; 1270 } 1271 1272 // Okay, we decided not to do this, remove any inserted MBB's and clear 1273 // SwitchCases. 1274 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1275 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1276 1277 SwitchCases.clear(); 1278 } 1279 } 1280 1281 // Create a CaseBlock record representing this branch. 1282 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1283 NULL, Succ0MBB, Succ1MBB, CurMBB); 1284 1285 // Use visitSwitchCase to actually insert the fast branch sequence for this 1286 // cond branch. 1287 visitSwitchCase(CB); 1288 } 1289 1290 /// visitSwitchCase - Emits the necessary code to represent a single node in 1291 /// the binary search tree resulting from lowering a switch instruction. 1292 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB) { 1293 SDValue Cond; 1294 SDValue CondLHS = getValue(CB.CmpLHS); 1295 DebugLoc dl = getCurDebugLoc(); 1296 1297 // Build the setcc now. 1298 if (CB.CmpMHS == NULL) { 1299 // Fold "(X == true)" to X and "(X == false)" to !X to 1300 // handle common cases produced by branch lowering. 1301 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1302 CB.CC == ISD::SETEQ) 1303 Cond = CondLHS; 1304 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1305 CB.CC == ISD::SETEQ) { 1306 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1307 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1308 } else 1309 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1310 } else { 1311 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1312 1313 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1314 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1315 1316 SDValue CmpOp = getValue(CB.CmpMHS); 1317 EVT VT = CmpOp.getValueType(); 1318 1319 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1320 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1321 ISD::SETLE); 1322 } else { 1323 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1324 VT, CmpOp, DAG.getConstant(Low, VT)); 1325 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1326 DAG.getConstant(High-Low, VT), ISD::SETULE); 1327 } 1328 } 1329 1330 if (DisableScheduling) 1331 DAG.AssignOrdering(Cond.getNode(), SDNodeOrder); 1332 1333 // Update successor info 1334 CurMBB->addSuccessor(CB.TrueBB); 1335 CurMBB->addSuccessor(CB.FalseBB); 1336 1337 // Set NextBlock to be the MBB immediately after the current one, if any. 1338 // This is used to avoid emitting unnecessary branches to the next block. 1339 MachineBasicBlock *NextBlock = 0; 1340 MachineFunction::iterator BBI = CurMBB; 1341 if (++BBI != FuncInfo.MF->end()) 1342 NextBlock = BBI; 1343 1344 // If the lhs block is the next block, invert the condition so that we can 1345 // fall through to the lhs instead of the rhs block. 1346 if (CB.TrueBB == NextBlock) { 1347 std::swap(CB.TrueBB, CB.FalseBB); 1348 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1349 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1350 1351 if (DisableScheduling) 1352 DAG.AssignOrdering(Cond.getNode(), SDNodeOrder); 1353 } 1354 1355 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1356 MVT::Other, getControlRoot(), Cond, 1357 DAG.getBasicBlock(CB.TrueBB)); 1358 1359 if (DisableScheduling) 1360 DAG.AssignOrdering(BrCond.getNode(), SDNodeOrder); 1361 1362 // If the branch was constant folded, fix up the CFG. 1363 if (BrCond.getOpcode() == ISD::BR) { 1364 CurMBB->removeSuccessor(CB.FalseBB); 1365 } else { 1366 // Otherwise, go ahead and insert the false branch. 1367 if (BrCond == getControlRoot()) 1368 CurMBB->removeSuccessor(CB.TrueBB); 1369 1370 if (CB.FalseBB != NextBlock) { 1371 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1372 DAG.getBasicBlock(CB.FalseBB)); 1373 1374 if (DisableScheduling) 1375 DAG.AssignOrdering(BrCond.getNode(), SDNodeOrder); 1376 } 1377 } 1378 1379 DAG.setRoot(BrCond); 1380 } 1381 1382 /// visitJumpTable - Emit JumpTable node in the current MBB 1383 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1384 // Emit the code for the jump table 1385 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1386 EVT PTy = TLI.getPointerTy(); 1387 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1388 JT.Reg, PTy); 1389 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1390 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1391 MVT::Other, Index.getValue(1), 1392 Table, Index); 1393 DAG.setRoot(BrJumpTable); 1394 1395 if (DisableScheduling) { 1396 DAG.AssignOrdering(Index.getNode(), SDNodeOrder); 1397 DAG.AssignOrdering(Table.getNode(), SDNodeOrder); 1398 DAG.AssignOrdering(BrJumpTable.getNode(), SDNodeOrder); 1399 } 1400 } 1401 1402 /// visitJumpTableHeader - This function emits necessary code to produce index 1403 /// in the JumpTable from switch case. 1404 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1405 JumpTableHeader &JTH) { 1406 // Subtract the lowest switch case value from the value being switched on and 1407 // conditional branch to default mbb if the result is greater than the 1408 // difference between smallest and largest cases. 1409 SDValue SwitchOp = getValue(JTH.SValue); 1410 EVT VT = SwitchOp.getValueType(); 1411 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1412 DAG.getConstant(JTH.First, VT)); 1413 1414 // The SDNode we just created, which holds the value being switched on minus 1415 // the the smallest case value, needs to be copied to a virtual register so it 1416 // can be used as an index into the jump table in a subsequent basic block. 1417 // This value may be smaller or larger than the target's pointer type, and 1418 // therefore require extension or truncating. 1419 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1420 1421 unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy()); 1422 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1423 JumpTableReg, SwitchOp); 1424 JT.Reg = JumpTableReg; 1425 1426 // Emit the range check for the jump table, and branch to the default block 1427 // for the switch statement if the value being switched on exceeds the largest 1428 // case in the switch. 1429 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1430 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1431 DAG.getConstant(JTH.Last-JTH.First,VT), 1432 ISD::SETUGT); 1433 1434 if (DisableScheduling) { 1435 DAG.AssignOrdering(Sub.getNode(), SDNodeOrder); 1436 DAG.AssignOrdering(SwitchOp.getNode(), SDNodeOrder); 1437 DAG.AssignOrdering(CopyTo.getNode(), SDNodeOrder); 1438 DAG.AssignOrdering(CMP.getNode(), SDNodeOrder); 1439 } 1440 1441 // Set NextBlock to be the MBB immediately after the current one, if any. 1442 // This is used to avoid emitting unnecessary branches to the next block. 1443 MachineBasicBlock *NextBlock = 0; 1444 MachineFunction::iterator BBI = CurMBB; 1445 1446 if (++BBI != FuncInfo.MF->end()) 1447 NextBlock = BBI; 1448 1449 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1450 MVT::Other, CopyTo, CMP, 1451 DAG.getBasicBlock(JT.Default)); 1452 1453 if (DisableScheduling) 1454 DAG.AssignOrdering(BrCond.getNode(), SDNodeOrder); 1455 1456 if (JT.MBB != NextBlock) { 1457 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1458 DAG.getBasicBlock(JT.MBB)); 1459 1460 if (DisableScheduling) 1461 DAG.AssignOrdering(BrCond.getNode(), SDNodeOrder); 1462 } 1463 1464 DAG.setRoot(BrCond); 1465 } 1466 1467 /// visitBitTestHeader - This function emits necessary code to produce value 1468 /// suitable for "bit tests" 1469 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B) { 1470 // Subtract the minimum value 1471 SDValue SwitchOp = getValue(B.SValue); 1472 EVT VT = SwitchOp.getValueType(); 1473 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1474 DAG.getConstant(B.First, VT)); 1475 1476 // Check range 1477 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1478 TLI.getSetCCResultType(Sub.getValueType()), 1479 Sub, DAG.getConstant(B.Range, VT), 1480 ISD::SETUGT); 1481 1482 SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), 1483 TLI.getPointerTy()); 1484 1485 B.Reg = FuncInfo.MakeReg(TLI.getPointerTy()); 1486 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1487 B.Reg, ShiftOp); 1488 1489 if (DisableScheduling) { 1490 DAG.AssignOrdering(Sub.getNode(), SDNodeOrder); 1491 DAG.AssignOrdering(RangeCmp.getNode(), SDNodeOrder); 1492 DAG.AssignOrdering(ShiftOp.getNode(), SDNodeOrder); 1493 DAG.AssignOrdering(CopyTo.getNode(), SDNodeOrder); 1494 } 1495 1496 // Set NextBlock to be the MBB immediately after the current one, if any. 1497 // This is used to avoid emitting unnecessary branches to the next block. 1498 MachineBasicBlock *NextBlock = 0; 1499 MachineFunction::iterator BBI = CurMBB; 1500 if (++BBI != FuncInfo.MF->end()) 1501 NextBlock = BBI; 1502 1503 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1504 1505 CurMBB->addSuccessor(B.Default); 1506 CurMBB->addSuccessor(MBB); 1507 1508 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1509 MVT::Other, CopyTo, RangeCmp, 1510 DAG.getBasicBlock(B.Default)); 1511 1512 if (DisableScheduling) 1513 DAG.AssignOrdering(BrRange.getNode(), SDNodeOrder); 1514 1515 if (MBB != NextBlock) { 1516 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1517 DAG.getBasicBlock(MBB)); 1518 1519 if (DisableScheduling) 1520 DAG.AssignOrdering(BrRange.getNode(), SDNodeOrder); 1521 } 1522 1523 DAG.setRoot(BrRange); 1524 } 1525 1526 /// visitBitTestCase - this function produces one "bit test" 1527 void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB, 1528 unsigned Reg, 1529 BitTestCase &B) { 1530 // Make desired shift 1531 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg, 1532 TLI.getPointerTy()); 1533 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), 1534 TLI.getPointerTy(), 1535 DAG.getConstant(1, TLI.getPointerTy()), 1536 ShiftOp); 1537 1538 // Emit bit tests and jumps 1539 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1540 TLI.getPointerTy(), SwitchVal, 1541 DAG.getConstant(B.Mask, TLI.getPointerTy())); 1542 SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(), 1543 TLI.getSetCCResultType(AndOp.getValueType()), 1544 AndOp, DAG.getConstant(0, TLI.getPointerTy()), 1545 ISD::SETNE); 1546 1547 if (DisableScheduling) { 1548 DAG.AssignOrdering(ShiftOp.getNode(), SDNodeOrder); 1549 DAG.AssignOrdering(SwitchVal.getNode(), SDNodeOrder); 1550 DAG.AssignOrdering(AndOp.getNode(), SDNodeOrder); 1551 DAG.AssignOrdering(AndCmp.getNode(), SDNodeOrder); 1552 } 1553 1554 CurMBB->addSuccessor(B.TargetBB); 1555 CurMBB->addSuccessor(NextMBB); 1556 1557 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1558 MVT::Other, getControlRoot(), 1559 AndCmp, DAG.getBasicBlock(B.TargetBB)); 1560 1561 if (DisableScheduling) 1562 DAG.AssignOrdering(BrAnd.getNode(), SDNodeOrder); 1563 1564 // Set NextBlock to be the MBB immediately after the current one, if any. 1565 // This is used to avoid emitting unnecessary branches to the next block. 1566 MachineBasicBlock *NextBlock = 0; 1567 MachineFunction::iterator BBI = CurMBB; 1568 if (++BBI != FuncInfo.MF->end()) 1569 NextBlock = BBI; 1570 1571 if (NextMBB != NextBlock) { 1572 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1573 DAG.getBasicBlock(NextMBB)); 1574 1575 if (DisableScheduling) 1576 DAG.AssignOrdering(BrAnd.getNode(), SDNodeOrder); 1577 } 1578 1579 DAG.setRoot(BrAnd); 1580 } 1581 1582 void SelectionDAGBuilder::visitInvoke(InvokeInst &I) { 1583 // Retrieve successors. 1584 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1585 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1586 1587 const Value *Callee(I.getCalledValue()); 1588 if (isa<InlineAsm>(Callee)) 1589 visitInlineAsm(&I); 1590 else 1591 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1592 1593 // If the value of the invoke is used outside of its defining block, make it 1594 // available as a virtual register. 1595 CopyToExportRegsIfNeeded(&I); 1596 1597 // Update successor info 1598 CurMBB->addSuccessor(Return); 1599 CurMBB->addSuccessor(LandingPad); 1600 1601 // Drop into normal successor. 1602 SDValue Branch = DAG.getNode(ISD::BR, getCurDebugLoc(), 1603 MVT::Other, getControlRoot(), 1604 DAG.getBasicBlock(Return)); 1605 DAG.setRoot(Branch); 1606 1607 if (DisableScheduling) 1608 DAG.AssignOrdering(Branch.getNode(), SDNodeOrder); 1609 } 1610 1611 void SelectionDAGBuilder::visitUnwind(UnwindInst &I) { 1612 } 1613 1614 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1615 /// small case ranges). 1616 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1617 CaseRecVector& WorkList, 1618 Value* SV, 1619 MachineBasicBlock* Default) { 1620 Case& BackCase = *(CR.Range.second-1); 1621 1622 // Size is the number of Cases represented by this range. 1623 size_t Size = CR.Range.second - CR.Range.first; 1624 if (Size > 3) 1625 return false; 1626 1627 // Get the MachineFunction which holds the current MBB. This is used when 1628 // inserting any additional MBBs necessary to represent the switch. 1629 MachineFunction *CurMF = FuncInfo.MF; 1630 1631 // Figure out which block is immediately after the current one. 1632 MachineBasicBlock *NextBlock = 0; 1633 MachineFunction::iterator BBI = CR.CaseBB; 1634 1635 if (++BBI != FuncInfo.MF->end()) 1636 NextBlock = BBI; 1637 1638 // TODO: If any two of the cases has the same destination, and if one value 1639 // is the same as the other, but has one bit unset that the other has set, 1640 // use bit manipulation to do two compares at once. For example: 1641 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1642 1643 // Rearrange the case blocks so that the last one falls through if possible. 1644 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1645 // The last case block won't fall through into 'NextBlock' if we emit the 1646 // branches in this order. See if rearranging a case value would help. 1647 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { 1648 if (I->BB == NextBlock) { 1649 std::swap(*I, BackCase); 1650 break; 1651 } 1652 } 1653 } 1654 1655 // Create a CaseBlock record representing a conditional branch to 1656 // the Case's target mbb if the value being switched on SV is equal 1657 // to C. 1658 MachineBasicBlock *CurBlock = CR.CaseBB; 1659 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 1660 MachineBasicBlock *FallThrough; 1661 if (I != E-1) { 1662 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 1663 CurMF->insert(BBI, FallThrough); 1664 1665 // Put SV in a virtual register to make it available from the new blocks. 1666 ExportFromCurrentBlock(SV); 1667 } else { 1668 // If the last case doesn't match, go to the default block. 1669 FallThrough = Default; 1670 } 1671 1672 Value *RHS, *LHS, *MHS; 1673 ISD::CondCode CC; 1674 if (I->High == I->Low) { 1675 // This is just small small case range :) containing exactly 1 case 1676 CC = ISD::SETEQ; 1677 LHS = SV; RHS = I->High; MHS = NULL; 1678 } else { 1679 CC = ISD::SETLE; 1680 LHS = I->Low; MHS = SV; RHS = I->High; 1681 } 1682 CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock); 1683 1684 // If emitting the first comparison, just call visitSwitchCase to emit the 1685 // code into the current block. Otherwise, push the CaseBlock onto the 1686 // vector to be later processed by SDISel, and insert the node's MBB 1687 // before the next MBB. 1688 if (CurBlock == CurMBB) 1689 visitSwitchCase(CB); 1690 else 1691 SwitchCases.push_back(CB); 1692 1693 CurBlock = FallThrough; 1694 } 1695 1696 return true; 1697 } 1698 1699 static inline bool areJTsAllowed(const TargetLowering &TLI) { 1700 return !DisableJumpTables && 1701 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 1702 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 1703 } 1704 1705 static APInt ComputeRange(const APInt &First, const APInt &Last) { 1706 APInt LastExt(Last), FirstExt(First); 1707 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 1708 LastExt.sext(BitWidth); FirstExt.sext(BitWidth); 1709 return (LastExt - FirstExt + 1ULL); 1710 } 1711 1712 /// handleJTSwitchCase - Emit jumptable for current switch case range 1713 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR, 1714 CaseRecVector& WorkList, 1715 Value* SV, 1716 MachineBasicBlock* Default) { 1717 Case& FrontCase = *CR.Range.first; 1718 Case& BackCase = *(CR.Range.second-1); 1719 1720 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1721 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1722 1723 APInt TSize(First.getBitWidth(), 0); 1724 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1725 I!=E; ++I) 1726 TSize += I->size(); 1727 1728 if (!areJTsAllowed(TLI) || TSize.ult(APInt(First.getBitWidth(), 4))) 1729 return false; 1730 1731 APInt Range = ComputeRange(First, Last); 1732 double Density = TSize.roundToDouble() / Range.roundToDouble(); 1733 if (Density < 0.4) 1734 return false; 1735 1736 DEBUG(errs() << "Lowering jump table\n" 1737 << "First entry: " << First << ". Last entry: " << Last << '\n' 1738 << "Range: " << Range 1739 << "Size: " << TSize << ". Density: " << Density << "\n\n"); 1740 1741 // Get the MachineFunction which holds the current MBB. This is used when 1742 // inserting any additional MBBs necessary to represent the switch. 1743 MachineFunction *CurMF = FuncInfo.MF; 1744 1745 // Figure out which block is immediately after the current one. 1746 MachineFunction::iterator BBI = CR.CaseBB; 1747 ++BBI; 1748 1749 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1750 1751 // Create a new basic block to hold the code for loading the address 1752 // of the jump table, and jumping to it. Update successor information; 1753 // we will either branch to the default case for the switch, or the jump 1754 // table. 1755 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1756 CurMF->insert(BBI, JumpTableBB); 1757 CR.CaseBB->addSuccessor(Default); 1758 CR.CaseBB->addSuccessor(JumpTableBB); 1759 1760 // Build a vector of destination BBs, corresponding to each target 1761 // of the jump table. If the value of the jump table slot corresponds to 1762 // a case statement, push the case's BB onto the vector, otherwise, push 1763 // the default BB. 1764 std::vector<MachineBasicBlock*> DestBBs; 1765 APInt TEI = First; 1766 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 1767 const APInt& Low = cast<ConstantInt>(I->Low)->getValue(); 1768 const APInt& High = cast<ConstantInt>(I->High)->getValue(); 1769 1770 if (Low.sle(TEI) && TEI.sle(High)) { 1771 DestBBs.push_back(I->BB); 1772 if (TEI==High) 1773 ++I; 1774 } else { 1775 DestBBs.push_back(Default); 1776 } 1777 } 1778 1779 // Update successor info. Add one edge to each unique successor. 1780 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 1781 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 1782 E = DestBBs.end(); I != E; ++I) { 1783 if (!SuccsHandled[(*I)->getNumber()]) { 1784 SuccsHandled[(*I)->getNumber()] = true; 1785 JumpTableBB->addSuccessor(*I); 1786 } 1787 } 1788 1789 // Create a jump table index for this jump table, or return an existing 1790 // one. 1791 unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs); 1792 1793 // Set the jump table information so that we can codegen it as a second 1794 // MachineBasicBlock 1795 JumpTable JT(-1U, JTI, JumpTableBB, Default); 1796 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == CurMBB)); 1797 if (CR.CaseBB == CurMBB) 1798 visitJumpTableHeader(JT, JTH); 1799 1800 JTCases.push_back(JumpTableBlock(JTH, JT)); 1801 1802 return true; 1803 } 1804 1805 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 1806 /// 2 subtrees. 1807 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 1808 CaseRecVector& WorkList, 1809 Value* SV, 1810 MachineBasicBlock* Default) { 1811 // Get the MachineFunction which holds the current MBB. This is used when 1812 // inserting any additional MBBs necessary to represent the switch. 1813 MachineFunction *CurMF = FuncInfo.MF; 1814 1815 // Figure out which block is immediately after the current one. 1816 MachineFunction::iterator BBI = CR.CaseBB; 1817 ++BBI; 1818 1819 Case& FrontCase = *CR.Range.first; 1820 Case& BackCase = *(CR.Range.second-1); 1821 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1822 1823 // Size is the number of Cases represented by this range. 1824 unsigned Size = CR.Range.second - CR.Range.first; 1825 1826 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1827 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1828 double FMetric = 0; 1829 CaseItr Pivot = CR.Range.first + Size/2; 1830 1831 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 1832 // (heuristically) allow us to emit JumpTable's later. 1833 APInt TSize(First.getBitWidth(), 0); 1834 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1835 I!=E; ++I) 1836 TSize += I->size(); 1837 1838 APInt LSize = FrontCase.size(); 1839 APInt RSize = TSize-LSize; 1840 DEBUG(errs() << "Selecting best pivot: \n" 1841 << "First: " << First << ", Last: " << Last <<'\n' 1842 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 1843 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 1844 J!=E; ++I, ++J) { 1845 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 1846 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 1847 APInt Range = ComputeRange(LEnd, RBegin); 1848 assert((Range - 2ULL).isNonNegative() && 1849 "Invalid case distance"); 1850 double LDensity = (double)LSize.roundToDouble() / 1851 (LEnd - First + 1ULL).roundToDouble(); 1852 double RDensity = (double)RSize.roundToDouble() / 1853 (Last - RBegin + 1ULL).roundToDouble(); 1854 double Metric = Range.logBase2()*(LDensity+RDensity); 1855 // Should always split in some non-trivial place 1856 DEBUG(errs() <<"=>Step\n" 1857 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 1858 << "LDensity: " << LDensity 1859 << ", RDensity: " << RDensity << '\n' 1860 << "Metric: " << Metric << '\n'); 1861 if (FMetric < Metric) { 1862 Pivot = J; 1863 FMetric = Metric; 1864 DEBUG(errs() << "Current metric set to: " << FMetric << '\n'); 1865 } 1866 1867 LSize += J->size(); 1868 RSize -= J->size(); 1869 } 1870 if (areJTsAllowed(TLI)) { 1871 // If our case is dense we *really* should handle it earlier! 1872 assert((FMetric > 0) && "Should handle dense range earlier!"); 1873 } else { 1874 Pivot = CR.Range.first + Size/2; 1875 } 1876 1877 CaseRange LHSR(CR.Range.first, Pivot); 1878 CaseRange RHSR(Pivot, CR.Range.second); 1879 Constant *C = Pivot->Low; 1880 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 1881 1882 // We know that we branch to the LHS if the Value being switched on is 1883 // less than the Pivot value, C. We use this to optimize our binary 1884 // tree a bit, by recognizing that if SV is greater than or equal to the 1885 // LHS's Case Value, and that Case Value is exactly one less than the 1886 // Pivot's Value, then we can branch directly to the LHS's Target, 1887 // rather than creating a leaf node for it. 1888 if ((LHSR.second - LHSR.first) == 1 && 1889 LHSR.first->High == CR.GE && 1890 cast<ConstantInt>(C)->getValue() == 1891 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 1892 TrueBB = LHSR.first->BB; 1893 } else { 1894 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1895 CurMF->insert(BBI, TrueBB); 1896 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 1897 1898 // Put SV in a virtual register to make it available from the new blocks. 1899 ExportFromCurrentBlock(SV); 1900 } 1901 1902 // Similar to the optimization above, if the Value being switched on is 1903 // known to be less than the Constant CR.LT, and the current Case Value 1904 // is CR.LT - 1, then we can branch directly to the target block for 1905 // the current Case Value, rather than emitting a RHS leaf node for it. 1906 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 1907 cast<ConstantInt>(RHSR.first->Low)->getValue() == 1908 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 1909 FalseBB = RHSR.first->BB; 1910 } else { 1911 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1912 CurMF->insert(BBI, FalseBB); 1913 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 1914 1915 // Put SV in a virtual register to make it available from the new blocks. 1916 ExportFromCurrentBlock(SV); 1917 } 1918 1919 // Create a CaseBlock record representing a conditional branch to 1920 // the LHS node if the value being switched on SV is less than C. 1921 // Otherwise, branch to LHS. 1922 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 1923 1924 if (CR.CaseBB == CurMBB) 1925 visitSwitchCase(CB); 1926 else 1927 SwitchCases.push_back(CB); 1928 1929 return true; 1930 } 1931 1932 /// handleBitTestsSwitchCase - if current case range has few destination and 1933 /// range span less, than machine word bitwidth, encode case range into series 1934 /// of masks and emit bit tests with these masks. 1935 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 1936 CaseRecVector& WorkList, 1937 Value* SV, 1938 MachineBasicBlock* Default){ 1939 EVT PTy = TLI.getPointerTy(); 1940 unsigned IntPtrBits = PTy.getSizeInBits(); 1941 1942 Case& FrontCase = *CR.Range.first; 1943 Case& BackCase = *(CR.Range.second-1); 1944 1945 // Get the MachineFunction which holds the current MBB. This is used when 1946 // inserting any additional MBBs necessary to represent the switch. 1947 MachineFunction *CurMF = FuncInfo.MF; 1948 1949 // If target does not have legal shift left, do not emit bit tests at all. 1950 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 1951 return false; 1952 1953 size_t numCmps = 0; 1954 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1955 I!=E; ++I) { 1956 // Single case counts one, case range - two. 1957 numCmps += (I->Low == I->High ? 1 : 2); 1958 } 1959 1960 // Count unique destinations 1961 SmallSet<MachineBasicBlock*, 4> Dests; 1962 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 1963 Dests.insert(I->BB); 1964 if (Dests.size() > 3) 1965 // Don't bother the code below, if there are too much unique destinations 1966 return false; 1967 } 1968 DEBUG(errs() << "Total number of unique destinations: " 1969 << Dests.size() << '\n' 1970 << "Total number of comparisons: " << numCmps << '\n'); 1971 1972 // Compute span of values. 1973 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 1974 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 1975 APInt cmpRange = maxValue - minValue; 1976 1977 DEBUG(errs() << "Compare range: " << cmpRange << '\n' 1978 << "Low bound: " << minValue << '\n' 1979 << "High bound: " << maxValue << '\n'); 1980 1981 if (cmpRange.uge(APInt(cmpRange.getBitWidth(), IntPtrBits)) || 1982 (!(Dests.size() == 1 && numCmps >= 3) && 1983 !(Dests.size() == 2 && numCmps >= 5) && 1984 !(Dests.size() >= 3 && numCmps >= 6))) 1985 return false; 1986 1987 DEBUG(errs() << "Emitting bit tests\n"); 1988 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 1989 1990 // Optimize the case where all the case values fit in a 1991 // word without having to subtract minValue. In this case, 1992 // we can optimize away the subtraction. 1993 if (minValue.isNonNegative() && 1994 maxValue.slt(APInt(maxValue.getBitWidth(), IntPtrBits))) { 1995 cmpRange = maxValue; 1996 } else { 1997 lowBound = minValue; 1998 } 1999 2000 CaseBitsVector CasesBits; 2001 unsigned i, count = 0; 2002 2003 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2004 MachineBasicBlock* Dest = I->BB; 2005 for (i = 0; i < count; ++i) 2006 if (Dest == CasesBits[i].BB) 2007 break; 2008 2009 if (i == count) { 2010 assert((count < 3) && "Too much destinations to test!"); 2011 CasesBits.push_back(CaseBits(0, Dest, 0)); 2012 count++; 2013 } 2014 2015 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2016 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2017 2018 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2019 uint64_t hi = (highValue - lowBound).getZExtValue(); 2020 2021 for (uint64_t j = lo; j <= hi; j++) { 2022 CasesBits[i].Mask |= 1ULL << j; 2023 CasesBits[i].Bits++; 2024 } 2025 2026 } 2027 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2028 2029 BitTestInfo BTC; 2030 2031 // Figure out which block is immediately after the current one. 2032 MachineFunction::iterator BBI = CR.CaseBB; 2033 ++BBI; 2034 2035 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2036 2037 DEBUG(errs() << "Cases:\n"); 2038 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2039 DEBUG(errs() << "Mask: " << CasesBits[i].Mask 2040 << ", Bits: " << CasesBits[i].Bits 2041 << ", BB: " << CasesBits[i].BB << '\n'); 2042 2043 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2044 CurMF->insert(BBI, CaseBB); 2045 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2046 CaseBB, 2047 CasesBits[i].BB)); 2048 2049 // Put SV in a virtual register to make it available from the new blocks. 2050 ExportFromCurrentBlock(SV); 2051 } 2052 2053 BitTestBlock BTB(lowBound, cmpRange, SV, 2054 -1U, (CR.CaseBB == CurMBB), 2055 CR.CaseBB, Default, BTC); 2056 2057 if (CR.CaseBB == CurMBB) 2058 visitBitTestHeader(BTB); 2059 2060 BitTestCases.push_back(BTB); 2061 2062 return true; 2063 } 2064 2065 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2066 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2067 const SwitchInst& SI) { 2068 size_t numCmps = 0; 2069 2070 // Start with "simple" cases 2071 for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { 2072 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)]; 2073 Cases.push_back(Case(SI.getSuccessorValue(i), 2074 SI.getSuccessorValue(i), 2075 SMBB)); 2076 } 2077 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2078 2079 // Merge case into clusters 2080 if (Cases.size() >= 2) 2081 // Must recompute end() each iteration because it may be 2082 // invalidated by erase if we hold on to it 2083 for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) { 2084 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2085 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2086 MachineBasicBlock* nextBB = J->BB; 2087 MachineBasicBlock* currentBB = I->BB; 2088 2089 // If the two neighboring cases go to the same destination, merge them 2090 // into a single case. 2091 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2092 I->High = J->High; 2093 J = Cases.erase(J); 2094 } else { 2095 I = J++; 2096 } 2097 } 2098 2099 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2100 if (I->Low != I->High) 2101 // A range counts double, since it requires two compares. 2102 ++numCmps; 2103 } 2104 2105 return numCmps; 2106 } 2107 2108 void SelectionDAGBuilder::visitSwitch(SwitchInst &SI) { 2109 // Figure out which block is immediately after the current one. 2110 MachineBasicBlock *NextBlock = 0; 2111 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2112 2113 // If there is only the default destination, branch to it if it is not the 2114 // next basic block. Otherwise, just fall through. 2115 if (SI.getNumOperands() == 2) { 2116 // Update machine-CFG edges. 2117 2118 // If this is not a fall-through branch, emit the branch. 2119 CurMBB->addSuccessor(Default); 2120 if (Default != NextBlock) { 2121 SDValue Res = DAG.getNode(ISD::BR, getCurDebugLoc(), 2122 MVT::Other, getControlRoot(), 2123 DAG.getBasicBlock(Default)); 2124 DAG.setRoot(Res); 2125 2126 if (DisableScheduling) 2127 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2128 } 2129 2130 return; 2131 } 2132 2133 // If there are any non-default case statements, create a vector of Cases 2134 // representing each one, and sort the vector so that we can efficiently 2135 // create a binary search tree from them. 2136 CaseVector Cases; 2137 size_t numCmps = Clusterify(Cases, SI); 2138 DEBUG(errs() << "Clusterify finished. Total clusters: " << Cases.size() 2139 << ". Total compares: " << numCmps << '\n'); 2140 numCmps = 0; 2141 2142 // Get the Value to be switched on and default basic blocks, which will be 2143 // inserted into CaseBlock records, representing basic blocks in the binary 2144 // search tree. 2145 Value *SV = SI.getOperand(0); 2146 2147 // Push the initial CaseRec onto the worklist 2148 CaseRecVector WorkList; 2149 WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end()))); 2150 2151 while (!WorkList.empty()) { 2152 // Grab a record representing a case range to process off the worklist 2153 CaseRec CR = WorkList.back(); 2154 WorkList.pop_back(); 2155 2156 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default)) 2157 continue; 2158 2159 // If the range has few cases (two or less) emit a series of specific 2160 // tests. 2161 if (handleSmallSwitchRange(CR, WorkList, SV, Default)) 2162 continue; 2163 2164 // If the switch has more than 5 blocks, and at least 40% dense, and the 2165 // target supports indirect branches, then emit a jump table rather than 2166 // lowering the switch to a binary tree of conditional branches. 2167 if (handleJTSwitchCase(CR, WorkList, SV, Default)) 2168 continue; 2169 2170 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2171 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2172 handleBTSplitSwitchCase(CR, WorkList, SV, Default); 2173 } 2174 } 2175 2176 void SelectionDAGBuilder::visitIndirectBr(IndirectBrInst &I) { 2177 // Update machine-CFG edges. 2178 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2179 CurMBB->addSuccessor(FuncInfo.MBBMap[I.getSuccessor(i)]); 2180 2181 SDValue Res = DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2182 MVT::Other, getControlRoot(), 2183 getValue(I.getAddress())); 2184 DAG.setRoot(Res); 2185 2186 if (DisableScheduling) 2187 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2188 } 2189 2190 void SelectionDAGBuilder::visitFSub(User &I) { 2191 // -0.0 - X --> fneg 2192 const Type *Ty = I.getType(); 2193 if (isa<VectorType>(Ty)) { 2194 if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) { 2195 const VectorType *DestTy = cast<VectorType>(I.getType()); 2196 const Type *ElTy = DestTy->getElementType(); 2197 unsigned VL = DestTy->getNumElements(); 2198 std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy)); 2199 Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size()); 2200 if (CV == CNZ) { 2201 SDValue Op2 = getValue(I.getOperand(1)); 2202 SDValue Res = DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2203 Op2.getValueType(), Op2); 2204 setValue(&I, Res); 2205 2206 if (DisableScheduling) 2207 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2208 2209 return; 2210 } 2211 } 2212 } 2213 2214 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) 2215 if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) { 2216 SDValue Op2 = getValue(I.getOperand(1)); 2217 SDValue Res = DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2218 Op2.getValueType(), Op2); 2219 setValue(&I, Res); 2220 2221 if (DisableScheduling) 2222 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2223 2224 return; 2225 } 2226 2227 visitBinary(I, ISD::FSUB); 2228 } 2229 2230 void SelectionDAGBuilder::visitBinary(User &I, unsigned OpCode) { 2231 SDValue Op1 = getValue(I.getOperand(0)); 2232 SDValue Op2 = getValue(I.getOperand(1)); 2233 SDValue Res = DAG.getNode(OpCode, getCurDebugLoc(), 2234 Op1.getValueType(), Op1, Op2); 2235 setValue(&I, Res); 2236 2237 if (DisableScheduling) 2238 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2239 } 2240 2241 void SelectionDAGBuilder::visitShift(User &I, unsigned Opcode) { 2242 SDValue Op1 = getValue(I.getOperand(0)); 2243 SDValue Op2 = getValue(I.getOperand(1)); 2244 if (!isa<VectorType>(I.getType()) && 2245 Op2.getValueType() != TLI.getShiftAmountTy()) { 2246 // If the operand is smaller than the shift count type, promote it. 2247 EVT PTy = TLI.getPointerTy(); 2248 EVT STy = TLI.getShiftAmountTy(); 2249 if (STy.bitsGT(Op2.getValueType())) 2250 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2251 TLI.getShiftAmountTy(), Op2); 2252 // If the operand is larger than the shift count type but the shift 2253 // count type has enough bits to represent any shift value, truncate 2254 // it now. This is a common case and it exposes the truncate to 2255 // optimization early. 2256 else if (STy.getSizeInBits() >= 2257 Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2258 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2259 TLI.getShiftAmountTy(), Op2); 2260 // Otherwise we'll need to temporarily settle for some other 2261 // convenient type; type legalization will make adjustments as 2262 // needed. 2263 else if (PTy.bitsLT(Op2.getValueType())) 2264 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2265 TLI.getPointerTy(), Op2); 2266 else if (PTy.bitsGT(Op2.getValueType())) 2267 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2268 TLI.getPointerTy(), Op2); 2269 } 2270 2271 SDValue Res = DAG.getNode(Opcode, getCurDebugLoc(), 2272 Op1.getValueType(), Op1, Op2); 2273 setValue(&I, Res); 2274 2275 if (DisableScheduling) { 2276 DAG.AssignOrdering(Op1.getNode(), SDNodeOrder); 2277 DAG.AssignOrdering(Op2.getNode(), SDNodeOrder); 2278 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2279 } 2280 } 2281 2282 void SelectionDAGBuilder::visitICmp(User &I) { 2283 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2284 if (ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2285 predicate = IC->getPredicate(); 2286 else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2287 predicate = ICmpInst::Predicate(IC->getPredicate()); 2288 SDValue Op1 = getValue(I.getOperand(0)); 2289 SDValue Op2 = getValue(I.getOperand(1)); 2290 ISD::CondCode Opcode = getICmpCondCode(predicate); 2291 2292 EVT DestVT = TLI.getValueType(I.getType()); 2293 SDValue Res = DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode); 2294 setValue(&I, Res); 2295 2296 if (DisableScheduling) 2297 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2298 } 2299 2300 void SelectionDAGBuilder::visitFCmp(User &I) { 2301 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2302 if (FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2303 predicate = FC->getPredicate(); 2304 else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2305 predicate = FCmpInst::Predicate(FC->getPredicate()); 2306 SDValue Op1 = getValue(I.getOperand(0)); 2307 SDValue Op2 = getValue(I.getOperand(1)); 2308 ISD::CondCode Condition = getFCmpCondCode(predicate); 2309 EVT DestVT = TLI.getValueType(I.getType()); 2310 SDValue Res = DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition); 2311 setValue(&I, Res); 2312 2313 if (DisableScheduling) 2314 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2315 } 2316 2317 void SelectionDAGBuilder::visitSelect(User &I) { 2318 SmallVector<EVT, 4> ValueVTs; 2319 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2320 unsigned NumValues = ValueVTs.size(); 2321 if (NumValues == 0) return; 2322 2323 SmallVector<SDValue, 4> Values(NumValues); 2324 SDValue Cond = getValue(I.getOperand(0)); 2325 SDValue TrueVal = getValue(I.getOperand(1)); 2326 SDValue FalseVal = getValue(I.getOperand(2)); 2327 2328 for (unsigned i = 0; i != NumValues; ++i) { 2329 Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(), 2330 TrueVal.getNode()->getValueType(i), Cond, 2331 SDValue(TrueVal.getNode(), 2332 TrueVal.getResNo() + i), 2333 SDValue(FalseVal.getNode(), 2334 FalseVal.getResNo() + i)); 2335 2336 if (DisableScheduling) 2337 DAG.AssignOrdering(Values[i].getNode(), SDNodeOrder); 2338 } 2339 2340 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2341 DAG.getVTList(&ValueVTs[0], NumValues), 2342 &Values[0], NumValues); 2343 setValue(&I, Res); 2344 2345 if (DisableScheduling) 2346 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2347 } 2348 2349 void SelectionDAGBuilder::visitTrunc(User &I) { 2350 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2351 SDValue N = getValue(I.getOperand(0)); 2352 EVT DestVT = TLI.getValueType(I.getType()); 2353 SDValue Res = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N); 2354 setValue(&I, Res); 2355 2356 if (DisableScheduling) 2357 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2358 } 2359 2360 void SelectionDAGBuilder::visitZExt(User &I) { 2361 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2362 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2363 SDValue N = getValue(I.getOperand(0)); 2364 EVT DestVT = TLI.getValueType(I.getType()); 2365 SDValue Res = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N); 2366 setValue(&I, Res); 2367 2368 if (DisableScheduling) 2369 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2370 } 2371 2372 void SelectionDAGBuilder::visitSExt(User &I) { 2373 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2374 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2375 SDValue N = getValue(I.getOperand(0)); 2376 EVT DestVT = TLI.getValueType(I.getType()); 2377 SDValue Res = DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N); 2378 setValue(&I, Res); 2379 2380 if (DisableScheduling) 2381 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2382 } 2383 2384 void SelectionDAGBuilder::visitFPTrunc(User &I) { 2385 // FPTrunc is never a no-op cast, no need to check 2386 SDValue N = getValue(I.getOperand(0)); 2387 EVT DestVT = TLI.getValueType(I.getType()); 2388 SDValue Res = DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2389 DestVT, N, DAG.getIntPtrConstant(0)); 2390 setValue(&I, Res); 2391 2392 if (DisableScheduling) 2393 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2394 } 2395 2396 void SelectionDAGBuilder::visitFPExt(User &I){ 2397 // FPTrunc is never a no-op cast, no need to check 2398 SDValue N = getValue(I.getOperand(0)); 2399 EVT DestVT = TLI.getValueType(I.getType()); 2400 SDValue Res = DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N); 2401 setValue(&I, Res); 2402 2403 if (DisableScheduling) 2404 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2405 } 2406 2407 void SelectionDAGBuilder::visitFPToUI(User &I) { 2408 // FPToUI is never a no-op cast, no need to check 2409 SDValue N = getValue(I.getOperand(0)); 2410 EVT DestVT = TLI.getValueType(I.getType()); 2411 SDValue Res = DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N); 2412 setValue(&I, Res); 2413 2414 if (DisableScheduling) 2415 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2416 } 2417 2418 void SelectionDAGBuilder::visitFPToSI(User &I) { 2419 // FPToSI is never a no-op cast, no need to check 2420 SDValue N = getValue(I.getOperand(0)); 2421 EVT DestVT = TLI.getValueType(I.getType()); 2422 SDValue Res = DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N); 2423 setValue(&I, Res); 2424 2425 if (DisableScheduling) 2426 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2427 } 2428 2429 void SelectionDAGBuilder::visitUIToFP(User &I) { 2430 // UIToFP is never a no-op cast, no need to check 2431 SDValue N = getValue(I.getOperand(0)); 2432 EVT DestVT = TLI.getValueType(I.getType()); 2433 SDValue Res = DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N); 2434 setValue(&I, Res); 2435 2436 if (DisableScheduling) 2437 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2438 } 2439 2440 void SelectionDAGBuilder::visitSIToFP(User &I){ 2441 // SIToFP is never a no-op cast, no need to check 2442 SDValue N = getValue(I.getOperand(0)); 2443 EVT DestVT = TLI.getValueType(I.getType()); 2444 SDValue Res = DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N); 2445 setValue(&I, Res); 2446 2447 if (DisableScheduling) 2448 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2449 } 2450 2451 void SelectionDAGBuilder::visitPtrToInt(User &I) { 2452 // What to do depends on the size of the integer and the size of the pointer. 2453 // We can either truncate, zero extend, or no-op, accordingly. 2454 SDValue N = getValue(I.getOperand(0)); 2455 EVT SrcVT = N.getValueType(); 2456 EVT DestVT = TLI.getValueType(I.getType()); 2457 SDValue Res = DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT); 2458 setValue(&I, Res); 2459 2460 if (DisableScheduling) 2461 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2462 } 2463 2464 void SelectionDAGBuilder::visitIntToPtr(User &I) { 2465 // What to do depends on the size of the integer and the size of the pointer. 2466 // We can either truncate, zero extend, or no-op, accordingly. 2467 SDValue N = getValue(I.getOperand(0)); 2468 EVT SrcVT = N.getValueType(); 2469 EVT DestVT = TLI.getValueType(I.getType()); 2470 SDValue Res = DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT); 2471 setValue(&I, Res); 2472 2473 if (DisableScheduling) 2474 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2475 } 2476 2477 void SelectionDAGBuilder::visitBitCast(User &I) { 2478 SDValue N = getValue(I.getOperand(0)); 2479 EVT DestVT = TLI.getValueType(I.getType()); 2480 2481 // BitCast assures us that source and destination are the same size so this is 2482 // either a BIT_CONVERT or a no-op. 2483 if (DestVT != N.getValueType()) { 2484 SDValue Res = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 2485 DestVT, N); // convert types. 2486 setValue(&I, Res); 2487 2488 if (DisableScheduling) 2489 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2490 } else { 2491 setValue(&I, N); // noop cast. 2492 } 2493 } 2494 2495 void SelectionDAGBuilder::visitInsertElement(User &I) { 2496 SDValue InVec = getValue(I.getOperand(0)); 2497 SDValue InVal = getValue(I.getOperand(1)); 2498 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2499 TLI.getPointerTy(), 2500 getValue(I.getOperand(2))); 2501 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2502 TLI.getValueType(I.getType()), 2503 InVec, InVal, InIdx); 2504 setValue(&I, Res); 2505 2506 if (DisableScheduling) { 2507 DAG.AssignOrdering(InIdx.getNode(), SDNodeOrder); 2508 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2509 } 2510 } 2511 2512 void SelectionDAGBuilder::visitExtractElement(User &I) { 2513 SDValue InVec = getValue(I.getOperand(0)); 2514 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2515 TLI.getPointerTy(), 2516 getValue(I.getOperand(1))); 2517 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2518 TLI.getValueType(I.getType()), InVec, InIdx); 2519 setValue(&I, Res); 2520 2521 if (DisableScheduling) { 2522 DAG.AssignOrdering(InIdx.getNode(), SDNodeOrder); 2523 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2524 } 2525 } 2526 2527 2528 // Utility for visitShuffleVector - Returns true if the mask is mask starting 2529 // from SIndx and increasing to the element length (undefs are allowed). 2530 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) { 2531 unsigned MaskNumElts = Mask.size(); 2532 for (unsigned i = 0; i != MaskNumElts; ++i) 2533 if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx))) 2534 return false; 2535 return true; 2536 } 2537 2538 void SelectionDAGBuilder::visitShuffleVector(User &I) { 2539 SmallVector<int, 8> Mask; 2540 SDValue Src1 = getValue(I.getOperand(0)); 2541 SDValue Src2 = getValue(I.getOperand(1)); 2542 2543 // Convert the ConstantVector mask operand into an array of ints, with -1 2544 // representing undef values. 2545 SmallVector<Constant*, 8> MaskElts; 2546 cast<Constant>(I.getOperand(2))->getVectorElements(*DAG.getContext(), 2547 MaskElts); 2548 unsigned MaskNumElts = MaskElts.size(); 2549 for (unsigned i = 0; i != MaskNumElts; ++i) { 2550 if (isa<UndefValue>(MaskElts[i])) 2551 Mask.push_back(-1); 2552 else 2553 Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue()); 2554 } 2555 2556 EVT VT = TLI.getValueType(I.getType()); 2557 EVT SrcVT = Src1.getValueType(); 2558 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2559 2560 if (SrcNumElts == MaskNumElts) { 2561 SDValue Res = DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2562 &Mask[0]); 2563 setValue(&I, Res); 2564 2565 if (DisableScheduling) 2566 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2567 2568 return; 2569 } 2570 2571 // Normalize the shuffle vector since mask and vector length don't match. 2572 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2573 // Mask is longer than the source vectors and is a multiple of the source 2574 // vectors. We can use concatenate vector to make the mask and vectors 2575 // lengths match. 2576 if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { 2577 // The shuffle is concatenating two vectors together. 2578 SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2579 VT, Src1, Src2); 2580 setValue(&I, Res); 2581 2582 if (DisableScheduling) 2583 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2584 2585 return; 2586 } 2587 2588 // Pad both vectors with undefs to make them the same length as the mask. 2589 unsigned NumConcat = MaskNumElts / SrcNumElts; 2590 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2591 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2592 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2593 2594 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2595 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2596 MOps1[0] = Src1; 2597 MOps2[0] = Src2; 2598 2599 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2600 getCurDebugLoc(), VT, 2601 &MOps1[0], NumConcat); 2602 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2603 getCurDebugLoc(), VT, 2604 &MOps2[0], NumConcat); 2605 2606 // Readjust mask for new input vector length. 2607 SmallVector<int, 8> MappedOps; 2608 for (unsigned i = 0; i != MaskNumElts; ++i) { 2609 int Idx = Mask[i]; 2610 if (Idx < (int)SrcNumElts) 2611 MappedOps.push_back(Idx); 2612 else 2613 MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); 2614 } 2615 2616 SDValue Res = DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2617 &MappedOps[0]); 2618 setValue(&I, Res); 2619 2620 if (DisableScheduling) { 2621 DAG.AssignOrdering(Src1.getNode(), SDNodeOrder); 2622 DAG.AssignOrdering(Src2.getNode(), SDNodeOrder); 2623 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2624 } 2625 2626 return; 2627 } 2628 2629 if (SrcNumElts > MaskNumElts) { 2630 // Analyze the access pattern of the vector to see if we can extract 2631 // two subvectors and do the shuffle. The analysis is done by calculating 2632 // the range of elements the mask access on both vectors. 2633 int MinRange[2] = { SrcNumElts+1, SrcNumElts+1}; 2634 int MaxRange[2] = {-1, -1}; 2635 2636 for (unsigned i = 0; i != MaskNumElts; ++i) { 2637 int Idx = Mask[i]; 2638 int Input = 0; 2639 if (Idx < 0) 2640 continue; 2641 2642 if (Idx >= (int)SrcNumElts) { 2643 Input = 1; 2644 Idx -= SrcNumElts; 2645 } 2646 if (Idx > MaxRange[Input]) 2647 MaxRange[Input] = Idx; 2648 if (Idx < MinRange[Input]) 2649 MinRange[Input] = Idx; 2650 } 2651 2652 // Check if the access is smaller than the vector size and can we find 2653 // a reasonable extract index. 2654 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not 2655 // Extract. 2656 int StartIdx[2]; // StartIdx to extract from 2657 for (int Input=0; Input < 2; ++Input) { 2658 if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { 2659 RangeUse[Input] = 0; // Unused 2660 StartIdx[Input] = 0; 2661 } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { 2662 // Fits within range but we should see if we can find a good 2663 // start index that is a multiple of the mask length. 2664 if (MaxRange[Input] < (int)MaskNumElts) { 2665 RangeUse[Input] = 1; // Extract from beginning of the vector 2666 StartIdx[Input] = 0; 2667 } else { 2668 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2669 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2670 StartIdx[Input] + MaskNumElts < SrcNumElts) 2671 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2672 } 2673 } 2674 } 2675 2676 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2677 SDValue Res = DAG.getUNDEF(VT); 2678 setValue(&I, Res); // Vectors are not used. 2679 2680 if (DisableScheduling) 2681 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2682 2683 return; 2684 } 2685 else if (RangeUse[0] < 2 && RangeUse[1] < 2) { 2686 // Extract appropriate subvector and generate a vector shuffle 2687 for (int Input=0; Input < 2; ++Input) { 2688 SDValue &Src = Input == 0 ? Src1 : Src2; 2689 if (RangeUse[Input] == 0) 2690 Src = DAG.getUNDEF(VT); 2691 else 2692 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2693 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2694 2695 if (DisableScheduling) 2696 DAG.AssignOrdering(Src.getNode(), SDNodeOrder); 2697 } 2698 2699 // Calculate new mask. 2700 SmallVector<int, 8> MappedOps; 2701 for (unsigned i = 0; i != MaskNumElts; ++i) { 2702 int Idx = Mask[i]; 2703 if (Idx < 0) 2704 MappedOps.push_back(Idx); 2705 else if (Idx < (int)SrcNumElts) 2706 MappedOps.push_back(Idx - StartIdx[0]); 2707 else 2708 MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); 2709 } 2710 2711 SDValue Res = DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2712 &MappedOps[0]); 2713 setValue(&I, Res); 2714 2715 if (DisableScheduling) 2716 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2717 2718 return; 2719 } 2720 } 2721 2722 // We can't use either concat vectors or extract subvectors so fall back to 2723 // replacing the shuffle with extract and build vector. 2724 // to insert and build vector. 2725 EVT EltVT = VT.getVectorElementType(); 2726 EVT PtrVT = TLI.getPointerTy(); 2727 SmallVector<SDValue,8> Ops; 2728 for (unsigned i = 0; i != MaskNumElts; ++i) { 2729 if (Mask[i] < 0) { 2730 Ops.push_back(DAG.getUNDEF(EltVT)); 2731 } else { 2732 int Idx = Mask[i]; 2733 SDValue Res; 2734 2735 if (Idx < (int)SrcNumElts) 2736 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2737 EltVT, Src1, DAG.getConstant(Idx, PtrVT)); 2738 else 2739 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2740 EltVT, Src2, 2741 DAG.getConstant(Idx - SrcNumElts, PtrVT)); 2742 2743 Ops.push_back(Res); 2744 2745 if (DisableScheduling) 2746 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2747 } 2748 } 2749 2750 SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 2751 VT, &Ops[0], Ops.size()); 2752 setValue(&I, Res); 2753 2754 if (DisableScheduling) 2755 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2756 } 2757 2758 void SelectionDAGBuilder::visitInsertValue(InsertValueInst &I) { 2759 const Value *Op0 = I.getOperand(0); 2760 const Value *Op1 = I.getOperand(1); 2761 const Type *AggTy = I.getType(); 2762 const Type *ValTy = Op1->getType(); 2763 bool IntoUndef = isa<UndefValue>(Op0); 2764 bool FromUndef = isa<UndefValue>(Op1); 2765 2766 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, 2767 I.idx_begin(), I.idx_end()); 2768 2769 SmallVector<EVT, 4> AggValueVTs; 2770 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2771 SmallVector<EVT, 4> ValValueVTs; 2772 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2773 2774 unsigned NumAggValues = AggValueVTs.size(); 2775 unsigned NumValValues = ValValueVTs.size(); 2776 SmallVector<SDValue, 4> Values(NumAggValues); 2777 2778 SDValue Agg = getValue(Op0); 2779 SDValue Val = getValue(Op1); 2780 unsigned i = 0; 2781 // Copy the beginning value(s) from the original aggregate. 2782 for (; i != LinearIndex; ++i) 2783 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2784 SDValue(Agg.getNode(), Agg.getResNo() + i); 2785 // Copy values from the inserted value(s). 2786 for (; i != LinearIndex + NumValValues; ++i) 2787 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2788 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2789 // Copy remaining value(s) from the original aggregate. 2790 for (; i != NumAggValues; ++i) 2791 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2792 SDValue(Agg.getNode(), Agg.getResNo() + i); 2793 2794 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2795 DAG.getVTList(&AggValueVTs[0], NumAggValues), 2796 &Values[0], NumAggValues); 2797 setValue(&I, Res); 2798 2799 if (DisableScheduling) 2800 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2801 } 2802 2803 void SelectionDAGBuilder::visitExtractValue(ExtractValueInst &I) { 2804 const Value *Op0 = I.getOperand(0); 2805 const Type *AggTy = Op0->getType(); 2806 const Type *ValTy = I.getType(); 2807 bool OutOfUndef = isa<UndefValue>(Op0); 2808 2809 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, 2810 I.idx_begin(), I.idx_end()); 2811 2812 SmallVector<EVT, 4> ValValueVTs; 2813 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2814 2815 unsigned NumValValues = ValValueVTs.size(); 2816 SmallVector<SDValue, 4> Values(NumValValues); 2817 2818 SDValue Agg = getValue(Op0); 2819 // Copy out the selected value(s). 2820 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2821 Values[i - LinearIndex] = 2822 OutOfUndef ? 2823 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2824 SDValue(Agg.getNode(), Agg.getResNo() + i); 2825 2826 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2827 DAG.getVTList(&ValValueVTs[0], NumValValues), 2828 &Values[0], NumValValues); 2829 setValue(&I, Res); 2830 2831 if (DisableScheduling) 2832 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2833 } 2834 2835 void SelectionDAGBuilder::visitGetElementPtr(User &I) { 2836 SDValue N = getValue(I.getOperand(0)); 2837 const Type *Ty = I.getOperand(0)->getType(); 2838 2839 for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end(); 2840 OI != E; ++OI) { 2841 Value *Idx = *OI; 2842 if (const StructType *StTy = dyn_cast<StructType>(Ty)) { 2843 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2844 if (Field) { 2845 // N = N + Offset 2846 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 2847 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2848 DAG.getIntPtrConstant(Offset)); 2849 2850 if (DisableScheduling) 2851 DAG.AssignOrdering(N.getNode(), SDNodeOrder); 2852 } 2853 2854 Ty = StTy->getElementType(Field); 2855 } else { 2856 Ty = cast<SequentialType>(Ty)->getElementType(); 2857 2858 // If this is a constant subscript, handle it quickly. 2859 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 2860 if (CI->getZExtValue() == 0) continue; 2861 uint64_t Offs = 2862 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 2863 SDValue OffsVal; 2864 EVT PTy = TLI.getPointerTy(); 2865 unsigned PtrBits = PTy.getSizeInBits(); 2866 if (PtrBits < 64) 2867 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2868 TLI.getPointerTy(), 2869 DAG.getConstant(Offs, MVT::i64)); 2870 else 2871 OffsVal = DAG.getIntPtrConstant(Offs); 2872 2873 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2874 OffsVal); 2875 2876 if (DisableScheduling) { 2877 DAG.AssignOrdering(OffsVal.getNode(), SDNodeOrder); 2878 DAG.AssignOrdering(N.getNode(), SDNodeOrder); 2879 } 2880 2881 continue; 2882 } 2883 2884 // N = N + Idx * ElementSize; 2885 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 2886 TD->getTypeAllocSize(Ty)); 2887 SDValue IdxN = getValue(Idx); 2888 2889 // If the index is smaller or larger than intptr_t, truncate or extend 2890 // it. 2891 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 2892 2893 // If this is a multiply by a power of two, turn it into a shl 2894 // immediately. This is a very common case. 2895 if (ElementSize != 1) { 2896 if (ElementSize.isPowerOf2()) { 2897 unsigned Amt = ElementSize.logBase2(); 2898 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 2899 N.getValueType(), IdxN, 2900 DAG.getConstant(Amt, TLI.getPointerTy())); 2901 } else { 2902 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 2903 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 2904 N.getValueType(), IdxN, Scale); 2905 } 2906 2907 if (DisableScheduling) 2908 DAG.AssignOrdering(IdxN.getNode(), SDNodeOrder); 2909 } 2910 2911 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2912 N.getValueType(), N, IdxN); 2913 2914 if (DisableScheduling) 2915 DAG.AssignOrdering(N.getNode(), SDNodeOrder); 2916 } 2917 } 2918 2919 setValue(&I, N); 2920 } 2921 2922 void SelectionDAGBuilder::visitAlloca(AllocaInst &I) { 2923 // If this is a fixed sized alloca in the entry block of the function, 2924 // allocate it statically on the stack. 2925 if (FuncInfo.StaticAllocaMap.count(&I)) 2926 return; // getValue will auto-populate this. 2927 2928 const Type *Ty = I.getAllocatedType(); 2929 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 2930 unsigned Align = 2931 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 2932 I.getAlignment()); 2933 2934 SDValue AllocSize = getValue(I.getArraySize()); 2935 2936 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), AllocSize.getValueType(), 2937 AllocSize, 2938 DAG.getConstant(TySize, AllocSize.getValueType())); 2939 2940 if (DisableScheduling) 2941 DAG.AssignOrdering(AllocSize.getNode(), SDNodeOrder); 2942 2943 EVT IntPtr = TLI.getPointerTy(); 2944 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 2945 2946 if (DisableScheduling) 2947 DAG.AssignOrdering(AllocSize.getNode(), SDNodeOrder); 2948 2949 // Handle alignment. If the requested alignment is less than or equal to 2950 // the stack alignment, ignore it. If the size is greater than or equal to 2951 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2952 unsigned StackAlign = 2953 TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); 2954 if (Align <= StackAlign) 2955 Align = 0; 2956 2957 // Round the size of the allocation up to the stack alignment size 2958 // by add SA-1 to the size. 2959 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2960 AllocSize.getValueType(), AllocSize, 2961 DAG.getIntPtrConstant(StackAlign-1)); 2962 if (DisableScheduling) 2963 DAG.AssignOrdering(AllocSize.getNode(), SDNodeOrder); 2964 2965 // Mask out the low bits for alignment purposes. 2966 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 2967 AllocSize.getValueType(), AllocSize, 2968 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 2969 if (DisableScheduling) 2970 DAG.AssignOrdering(AllocSize.getNode(), SDNodeOrder); 2971 2972 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 2973 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2974 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 2975 VTs, Ops, 3); 2976 setValue(&I, DSA); 2977 DAG.setRoot(DSA.getValue(1)); 2978 2979 if (DisableScheduling) 2980 DAG.AssignOrdering(DSA.getNode(), SDNodeOrder); 2981 2982 // Inform the Frame Information that we have just allocated a variable-sized 2983 // object. 2984 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(); 2985 } 2986 2987 void SelectionDAGBuilder::visitLoad(LoadInst &I) { 2988 const Value *SV = I.getOperand(0); 2989 SDValue Ptr = getValue(SV); 2990 2991 const Type *Ty = I.getType(); 2992 bool isVolatile = I.isVolatile(); 2993 unsigned Alignment = I.getAlignment(); 2994 2995 SmallVector<EVT, 4> ValueVTs; 2996 SmallVector<uint64_t, 4> Offsets; 2997 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 2998 unsigned NumValues = ValueVTs.size(); 2999 if (NumValues == 0) 3000 return; 3001 3002 SDValue Root; 3003 bool ConstantMemory = false; 3004 if (I.isVolatile()) 3005 // Serialize volatile loads with other side effects. 3006 Root = getRoot(); 3007 else if (AA->pointsToConstantMemory(SV)) { 3008 // Do not serialize (non-volatile) loads of constant memory with anything. 3009 Root = DAG.getEntryNode(); 3010 ConstantMemory = true; 3011 } else { 3012 // Do not serialize non-volatile loads against each other. 3013 Root = DAG.getRoot(); 3014 } 3015 3016 SmallVector<SDValue, 4> Values(NumValues); 3017 SmallVector<SDValue, 4> Chains(NumValues); 3018 EVT PtrVT = Ptr.getValueType(); 3019 for (unsigned i = 0; i != NumValues; ++i) { 3020 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3021 PtrVT, Ptr, 3022 DAG.getConstant(Offsets[i], PtrVT)); 3023 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 3024 A, SV, Offsets[i], isVolatile, Alignment); 3025 3026 Values[i] = L; 3027 Chains[i] = L.getValue(1); 3028 3029 if (DisableScheduling) { 3030 DAG.AssignOrdering(A.getNode(), SDNodeOrder); 3031 DAG.AssignOrdering(L.getNode(), SDNodeOrder); 3032 } 3033 } 3034 3035 if (!ConstantMemory) { 3036 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3037 MVT::Other, &Chains[0], NumValues); 3038 if (isVolatile) 3039 DAG.setRoot(Chain); 3040 else 3041 PendingLoads.push_back(Chain); 3042 3043 if (DisableScheduling) 3044 DAG.AssignOrdering(Chain.getNode(), SDNodeOrder); 3045 } 3046 3047 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3048 DAG.getVTList(&ValueVTs[0], NumValues), 3049 &Values[0], NumValues); 3050 setValue(&I, Res); 3051 3052 if (DisableScheduling) 3053 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 3054 } 3055 3056 void SelectionDAGBuilder::visitStore(StoreInst &I) { 3057 Value *SrcV = I.getOperand(0); 3058 Value *PtrV = I.getOperand(1); 3059 3060 SmallVector<EVT, 4> ValueVTs; 3061 SmallVector<uint64_t, 4> Offsets; 3062 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 3063 unsigned NumValues = ValueVTs.size(); 3064 if (NumValues == 0) 3065 return; 3066 3067 // Get the lowered operands. Note that we do this after 3068 // checking if NumResults is zero, because with zero results 3069 // the operands won't have values in the map. 3070 SDValue Src = getValue(SrcV); 3071 SDValue Ptr = getValue(PtrV); 3072 3073 SDValue Root = getRoot(); 3074 SmallVector<SDValue, 4> Chains(NumValues); 3075 EVT PtrVT = Ptr.getValueType(); 3076 bool isVolatile = I.isVolatile(); 3077 unsigned Alignment = I.getAlignment(); 3078 3079 for (unsigned i = 0; i != NumValues; ++i) { 3080 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 3081 DAG.getConstant(Offsets[i], PtrVT)); 3082 Chains[i] = DAG.getStore(Root, getCurDebugLoc(), 3083 SDValue(Src.getNode(), Src.getResNo() + i), 3084 Add, PtrV, Offsets[i], isVolatile, Alignment); 3085 3086 if (DisableScheduling) { 3087 DAG.AssignOrdering(Add.getNode(), SDNodeOrder); 3088 DAG.AssignOrdering(Chains[i].getNode(), SDNodeOrder); 3089 } 3090 } 3091 3092 SDValue Res = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3093 MVT::Other, &Chains[0], NumValues); 3094 DAG.setRoot(Res); 3095 3096 if (DisableScheduling) 3097 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 3098 } 3099 3100 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3101 /// node. 3102 void SelectionDAGBuilder::visitTargetIntrinsic(CallInst &I, 3103 unsigned Intrinsic) { 3104 bool HasChain = !I.doesNotAccessMemory(); 3105 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3106 3107 // Build the operand list. 3108 SmallVector<SDValue, 8> Ops; 3109 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3110 if (OnlyLoad) { 3111 // We don't need to serialize loads against other loads. 3112 Ops.push_back(DAG.getRoot()); 3113 } else { 3114 Ops.push_back(getRoot()); 3115 } 3116 } 3117 3118 // Info is set by getTgtMemInstrinsic 3119 TargetLowering::IntrinsicInfo Info; 3120 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3121 3122 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3123 if (!IsTgtIntrinsic) 3124 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); 3125 3126 // Add all operands of the call to the operand list. 3127 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { 3128 SDValue Op = getValue(I.getOperand(i)); 3129 assert(TLI.isTypeLegal(Op.getValueType()) && 3130 "Intrinsic uses a non-legal type?"); 3131 Ops.push_back(Op); 3132 } 3133 3134 SmallVector<EVT, 4> ValueVTs; 3135 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3136 #ifndef NDEBUG 3137 for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) { 3138 assert(TLI.isTypeLegal(ValueVTs[Val]) && 3139 "Intrinsic uses a non-legal type?"); 3140 } 3141 #endif // NDEBUG 3142 3143 if (HasChain) 3144 ValueVTs.push_back(MVT::Other); 3145 3146 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3147 3148 // Create the node. 3149 SDValue Result; 3150 if (IsTgtIntrinsic) { 3151 // This is target intrinsic that touches memory 3152 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 3153 VTs, &Ops[0], Ops.size(), 3154 Info.memVT, Info.ptrVal, Info.offset, 3155 Info.align, Info.vol, 3156 Info.readMem, Info.writeMem); 3157 } else if (!HasChain) { 3158 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 3159 VTs, &Ops[0], Ops.size()); 3160 } else if (I.getType() != Type::getVoidTy(*DAG.getContext())) { 3161 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 3162 VTs, &Ops[0], Ops.size()); 3163 } else { 3164 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 3165 VTs, &Ops[0], Ops.size()); 3166 } 3167 3168 if (DisableScheduling) 3169 DAG.AssignOrdering(Result.getNode(), SDNodeOrder); 3170 3171 if (HasChain) { 3172 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3173 if (OnlyLoad) 3174 PendingLoads.push_back(Chain); 3175 else 3176 DAG.setRoot(Chain); 3177 } 3178 3179 if (I.getType() != Type::getVoidTy(*DAG.getContext())) { 3180 if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3181 EVT VT = TLI.getValueType(PTy); 3182 Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result); 3183 3184 if (DisableScheduling) 3185 DAG.AssignOrdering(Result.getNode(), SDNodeOrder); 3186 } 3187 3188 setValue(&I, Result); 3189 } 3190 } 3191 3192 /// GetSignificand - Get the significand and build it into a floating-point 3193 /// number with exponent of 1: 3194 /// 3195 /// Op = (Op & 0x007fffff) | 0x3f800000; 3196 /// 3197 /// where Op is the hexidecimal representation of floating point value. 3198 static SDValue 3199 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl, unsigned Order) { 3200 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3201 DAG.getConstant(0x007fffff, MVT::i32)); 3202 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3203 DAG.getConstant(0x3f800000, MVT::i32)); 3204 SDValue Res = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2); 3205 3206 if (DisableScheduling) { 3207 DAG.AssignOrdering(t1.getNode(), Order); 3208 DAG.AssignOrdering(t2.getNode(), Order); 3209 DAG.AssignOrdering(Res.getNode(), Order); 3210 } 3211 3212 return Res; 3213 } 3214 3215 /// GetExponent - Get the exponent: 3216 /// 3217 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3218 /// 3219 /// where Op is the hexidecimal representation of floating point value. 3220 static SDValue 3221 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3222 DebugLoc dl, unsigned Order) { 3223 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3224 DAG.getConstant(0x7f800000, MVT::i32)); 3225 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3226 DAG.getConstant(23, TLI.getPointerTy())); 3227 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3228 DAG.getConstant(127, MVT::i32)); 3229 SDValue Res = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3230 3231 if (DisableScheduling) { 3232 DAG.AssignOrdering(t0.getNode(), Order); 3233 DAG.AssignOrdering(t1.getNode(), Order); 3234 DAG.AssignOrdering(t2.getNode(), Order); 3235 DAG.AssignOrdering(Res.getNode(), Order); 3236 } 3237 3238 return Res; 3239 } 3240 3241 /// getF32Constant - Get 32-bit floating point constant. 3242 static SDValue 3243 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3244 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 3245 } 3246 3247 /// Inlined utility function to implement binary input atomic intrinsics for 3248 /// visitIntrinsicCall: I is a call instruction 3249 /// Op is the associated NodeType for I 3250 const char * 3251 SelectionDAGBuilder::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) { 3252 SDValue Root = getRoot(); 3253 SDValue L = 3254 DAG.getAtomic(Op, getCurDebugLoc(), 3255 getValue(I.getOperand(2)).getValueType().getSimpleVT(), 3256 Root, 3257 getValue(I.getOperand(1)), 3258 getValue(I.getOperand(2)), 3259 I.getOperand(1)); 3260 setValue(&I, L); 3261 DAG.setRoot(L.getValue(1)); 3262 3263 if (DisableScheduling) 3264 DAG.AssignOrdering(L.getNode(), SDNodeOrder); 3265 3266 return 0; 3267 } 3268 3269 // implVisitAluOverflow - Lower arithmetic overflow instrinsics. 3270 const char * 3271 SelectionDAGBuilder::implVisitAluOverflow(CallInst &I, ISD::NodeType Op) { 3272 SDValue Op1 = getValue(I.getOperand(1)); 3273 SDValue Op2 = getValue(I.getOperand(2)); 3274 3275 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 3276 SDValue Result = DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2); 3277 3278 setValue(&I, Result); 3279 3280 if (DisableScheduling) 3281 DAG.AssignOrdering(Result.getNode(), SDNodeOrder); 3282 3283 return 0; 3284 } 3285 3286 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 3287 /// limited-precision mode. 3288 void 3289 SelectionDAGBuilder::visitExp(CallInst &I) { 3290 SDValue result; 3291 DebugLoc dl = getCurDebugLoc(); 3292 3293 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3294 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3295 SDValue Op = getValue(I.getOperand(1)); 3296 3297 // Put the exponent in the right bit position for later addition to the 3298 // final result: 3299 // 3300 // #define LOG2OFe 1.4426950f 3301 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3302 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3303 getF32Constant(DAG, 0x3fb8aa3b)); 3304 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3305 3306 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3307 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3308 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3309 3310 if (DisableScheduling) { 3311 DAG.AssignOrdering(t0.getNode(), SDNodeOrder); 3312 DAG.AssignOrdering(IntegerPartOfX.getNode(), SDNodeOrder); 3313 DAG.AssignOrdering(t1.getNode(), SDNodeOrder); 3314 DAG.AssignOrdering(X.getNode(), SDNodeOrder); 3315 } 3316 3317 // IntegerPartOfX <<= 23; 3318 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3319 DAG.getConstant(23, TLI.getPointerTy())); 3320 3321 if (DisableScheduling) 3322 DAG.AssignOrdering(IntegerPartOfX.getNode(), SDNodeOrder); 3323 3324 if (LimitFloatPrecision <= 6) { 3325 // For floating-point precision of 6: 3326 // 3327 // TwoToFractionalPartOfX = 3328 // 0.997535578f + 3329 // (0.735607626f + 0.252464424f * x) * x; 3330 // 3331 // error 0.0144103317, which is 6 bits 3332 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3333 getF32Constant(DAG, 0x3e814304)); 3334 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3335 getF32Constant(DAG, 0x3f3c50c8)); 3336 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3337 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3338 getF32Constant(DAG, 0x3f7f5e7e)); 3339 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5); 3340 3341 // Add the exponent into the result in integer domain. 3342 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3343 TwoToFracPartOfX, IntegerPartOfX); 3344 3345 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6); 3346 3347 if (DisableScheduling) { 3348 DAG.AssignOrdering(t2.getNode(), SDNodeOrder); 3349 DAG.AssignOrdering(t3.getNode(), SDNodeOrder); 3350 DAG.AssignOrdering(t4.getNode(), SDNodeOrder); 3351 DAG.AssignOrdering(t5.getNode(), SDNodeOrder); 3352 DAG.AssignOrdering(t6.getNode(), SDNodeOrder); 3353 DAG.AssignOrdering(TwoToFracPartOfX.getNode(), SDNodeOrder); 3354 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 3355 } 3356 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3357 // For floating-point precision of 12: 3358 // 3359 // TwoToFractionalPartOfX = 3360 // 0.999892986f + 3361 // (0.696457318f + 3362 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3363 // 3364 // 0.000107046256 error, which is 13 to 14 bits 3365 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3366 getF32Constant(DAG, 0x3da235e3)); 3367 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3368 getF32Constant(DAG, 0x3e65b8f3)); 3369 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3370 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3371 getF32Constant(DAG, 0x3f324b07)); 3372 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3373 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3374 getF32Constant(DAG, 0x3f7ff8fd)); 3375 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7); 3376 3377 // Add the exponent into the result in integer domain. 3378 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3379 TwoToFracPartOfX, IntegerPartOfX); 3380 3381 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8); 3382 3383 if (DisableScheduling) { 3384 DAG.AssignOrdering(t2.getNode(), SDNodeOrder); 3385 DAG.AssignOrdering(t3.getNode(), SDNodeOrder); 3386 DAG.AssignOrdering(t4.getNode(), SDNodeOrder); 3387 DAG.AssignOrdering(t5.getNode(), SDNodeOrder); 3388 DAG.AssignOrdering(t6.getNode(), SDNodeOrder); 3389 DAG.AssignOrdering(t7.getNode(), SDNodeOrder); 3390 DAG.AssignOrdering(t8.getNode(), SDNodeOrder); 3391 DAG.AssignOrdering(TwoToFracPartOfX.getNode(), SDNodeOrder); 3392 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 3393 } 3394 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3395 // For floating-point precision of 18: 3396 // 3397 // TwoToFractionalPartOfX = 3398 // 0.999999982f + 3399 // (0.693148872f + 3400 // (0.240227044f + 3401 // (0.554906021e-1f + 3402 // (0.961591928e-2f + 3403 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3404 // 3405 // error 2.47208000*10^(-7), which is better than 18 bits 3406 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3407 getF32Constant(DAG, 0x3924b03e)); 3408 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3409 getF32Constant(DAG, 0x3ab24b87)); 3410 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3411 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3412 getF32Constant(DAG, 0x3c1d8c17)); 3413 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3414 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3415 getF32Constant(DAG, 0x3d634a1d)); 3416 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3417 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3418 getF32Constant(DAG, 0x3e75fe14)); 3419 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3420 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3421 getF32Constant(DAG, 0x3f317234)); 3422 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3423 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3424 getF32Constant(DAG, 0x3f800000)); 3425 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl, 3426 MVT::i32, t13); 3427 3428 // Add the exponent into the result in integer domain. 3429 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3430 TwoToFracPartOfX, IntegerPartOfX); 3431 3432 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14); 3433 3434 if (DisableScheduling) { 3435 DAG.AssignOrdering(t2.getNode(), SDNodeOrder); 3436 DAG.AssignOrdering(t3.getNode(), SDNodeOrder); 3437 DAG.AssignOrdering(t4.getNode(), SDNodeOrder); 3438 DAG.AssignOrdering(t5.getNode(), SDNodeOrder); 3439 DAG.AssignOrdering(t6.getNode(), SDNodeOrder); 3440 DAG.AssignOrdering(t7.getNode(), SDNodeOrder); 3441 DAG.AssignOrdering(t8.getNode(), SDNodeOrder); 3442 DAG.AssignOrdering(t9.getNode(), SDNodeOrder); 3443 DAG.AssignOrdering(t10.getNode(), SDNodeOrder); 3444 DAG.AssignOrdering(t11.getNode(), SDNodeOrder); 3445 DAG.AssignOrdering(t12.getNode(), SDNodeOrder); 3446 DAG.AssignOrdering(t13.getNode(), SDNodeOrder); 3447 DAG.AssignOrdering(t14.getNode(), SDNodeOrder); 3448 DAG.AssignOrdering(TwoToFracPartOfX.getNode(), SDNodeOrder); 3449 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 3450 } 3451 } 3452 } else { 3453 // No special expansion. 3454 result = DAG.getNode(ISD::FEXP, dl, 3455 getValue(I.getOperand(1)).getValueType(), 3456 getValue(I.getOperand(1))); 3457 if (DisableScheduling) 3458 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 3459 } 3460 3461 setValue(&I, result); 3462 } 3463 3464 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3465 /// limited-precision mode. 3466 void 3467 SelectionDAGBuilder::visitLog(CallInst &I) { 3468 SDValue result; 3469 DebugLoc dl = getCurDebugLoc(); 3470 3471 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3472 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3473 SDValue Op = getValue(I.getOperand(1)); 3474 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3475 3476 if (DisableScheduling) 3477 DAG.AssignOrdering(Op1.getNode(), SDNodeOrder); 3478 3479 // Scale the exponent by log(2) [0.69314718f]. 3480 SDValue Exp = GetExponent(DAG, Op1, TLI, dl, SDNodeOrder); 3481 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3482 getF32Constant(DAG, 0x3f317218)); 3483 3484 if (DisableScheduling) 3485 DAG.AssignOrdering(LogOfExponent.getNode(), SDNodeOrder); 3486 3487 // Get the significand and build it into a floating-point number with 3488 // exponent of 1. 3489 SDValue X = GetSignificand(DAG, Op1, dl, SDNodeOrder); 3490 3491 if (LimitFloatPrecision <= 6) { 3492 // For floating-point precision of 6: 3493 // 3494 // LogofMantissa = 3495 // -1.1609546f + 3496 // (1.4034025f - 0.23903021f * x) * x; 3497 // 3498 // error 0.0034276066, which is better than 8 bits 3499 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3500 getF32Constant(DAG, 0xbe74c456)); 3501 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3502 getF32Constant(DAG, 0x3fb3a2b1)); 3503 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3504 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3505 getF32Constant(DAG, 0x3f949a29)); 3506 3507 result = DAG.getNode(ISD::FADD, dl, 3508 MVT::f32, LogOfExponent, LogOfMantissa); 3509 3510 if (DisableScheduling) { 3511 DAG.AssignOrdering(t0.getNode(), SDNodeOrder); 3512 DAG.AssignOrdering(t1.getNode(), SDNodeOrder); 3513 DAG.AssignOrdering(t2.getNode(), SDNodeOrder); 3514 DAG.AssignOrdering(LogOfMantissa.getNode(), SDNodeOrder); 3515 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 3516 } 3517 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3518 // For floating-point precision of 12: 3519 // 3520 // LogOfMantissa = 3521 // -1.7417939f + 3522 // (2.8212026f + 3523 // (-1.4699568f + 3524 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3525 // 3526 // error 0.000061011436, which is 14 bits 3527 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3528 getF32Constant(DAG, 0xbd67b6d6)); 3529 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3530 getF32Constant(DAG, 0x3ee4f4b8)); 3531 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3532 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3533 getF32Constant(DAG, 0x3fbc278b)); 3534 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3535 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3536 getF32Constant(DAG, 0x40348e95)); 3537 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3538 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3539 getF32Constant(DAG, 0x3fdef31a)); 3540 3541 result = DAG.getNode(ISD::FADD, dl, 3542 MVT::f32, LogOfExponent, LogOfMantissa); 3543 3544 if (DisableScheduling) { 3545 DAG.AssignOrdering(t0.getNode(), SDNodeOrder); 3546 DAG.AssignOrdering(t1.getNode(), SDNodeOrder); 3547 DAG.AssignOrdering(t2.getNode(), SDNodeOrder); 3548 DAG.AssignOrdering(t3.getNode(), SDNodeOrder); 3549 DAG.AssignOrdering(t4.getNode(), SDNodeOrder); 3550 DAG.AssignOrdering(t5.getNode(), SDNodeOrder); 3551 DAG.AssignOrdering(t6.getNode(), SDNodeOrder); 3552 DAG.AssignOrdering(LogOfMantissa.getNode(), SDNodeOrder); 3553 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 3554 } 3555 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3556 // For floating-point precision of 18: 3557 // 3558 // LogOfMantissa = 3559 // -2.1072184f + 3560 // (4.2372794f + 3561 // (-3.7029485f + 3562 // (2.2781945f + 3563 // (-0.87823314f + 3564 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3565 // 3566 // error 0.0000023660568, which is better than 18 bits 3567 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3568 getF32Constant(DAG, 0xbc91e5ac)); 3569 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3570 getF32Constant(DAG, 0x3e4350aa)); 3571 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3572 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3573 getF32Constant(DAG, 0x3f60d3e3)); 3574 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3575 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3576 getF32Constant(DAG, 0x4011cdf0)); 3577 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3578 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3579 getF32Constant(DAG, 0x406cfd1c)); 3580 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3581 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3582 getF32Constant(DAG, 0x408797cb)); 3583 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3584 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3585 getF32Constant(DAG, 0x4006dcab)); 3586 3587 result = DAG.getNode(ISD::FADD, dl, 3588 MVT::f32, LogOfExponent, LogOfMantissa); 3589 3590 if (DisableScheduling) { 3591 DAG.AssignOrdering(t0.getNode(), SDNodeOrder); 3592 DAG.AssignOrdering(t1.getNode(), SDNodeOrder); 3593 DAG.AssignOrdering(t2.getNode(), SDNodeOrder); 3594 DAG.AssignOrdering(t3.getNode(), SDNodeOrder); 3595 DAG.AssignOrdering(t4.getNode(), SDNodeOrder); 3596 DAG.AssignOrdering(t5.getNode(), SDNodeOrder); 3597 DAG.AssignOrdering(t6.getNode(), SDNodeOrder); 3598 DAG.AssignOrdering(t7.getNode(), SDNodeOrder); 3599 DAG.AssignOrdering(t8.getNode(), SDNodeOrder); 3600 DAG.AssignOrdering(t9.getNode(), SDNodeOrder); 3601 DAG.AssignOrdering(t10.getNode(), SDNodeOrder); 3602 DAG.AssignOrdering(LogOfMantissa.getNode(), SDNodeOrder); 3603 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 3604 } 3605 } 3606 } else { 3607 // No special expansion. 3608 result = DAG.getNode(ISD::FLOG, dl, 3609 getValue(I.getOperand(1)).getValueType(), 3610 getValue(I.getOperand(1))); 3611 3612 if (DisableScheduling) 3613 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 3614 } 3615 3616 setValue(&I, result); 3617 } 3618 3619 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3620 /// limited-precision mode. 3621 void 3622 SelectionDAGBuilder::visitLog2(CallInst &I) { 3623 SDValue result; 3624 DebugLoc dl = getCurDebugLoc(); 3625 3626 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3627 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3628 SDValue Op = getValue(I.getOperand(1)); 3629 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3630 3631 if (DisableScheduling) 3632 DAG.AssignOrdering(Op1.getNode(), SDNodeOrder); 3633 3634 // Get the exponent. 3635 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl, SDNodeOrder); 3636 3637 if (DisableScheduling) 3638 DAG.AssignOrdering(LogOfExponent.getNode(), SDNodeOrder); 3639 3640 // Get the significand and build it into a floating-point number with 3641 // exponent of 1. 3642 SDValue X = GetSignificand(DAG, Op1, dl, SDNodeOrder); 3643 3644 // Different possible minimax approximations of significand in 3645 // floating-point for various degrees of accuracy over [1,2]. 3646 if (LimitFloatPrecision <= 6) { 3647 // For floating-point precision of 6: 3648 // 3649 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3650 // 3651 // error 0.0049451742, which is more than 7 bits 3652 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3653 getF32Constant(DAG, 0xbeb08fe0)); 3654 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3655 getF32Constant(DAG, 0x40019463)); 3656 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3657 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3658 getF32Constant(DAG, 0x3fd6633d)); 3659 3660 result = DAG.getNode(ISD::FADD, dl, 3661 MVT::f32, LogOfExponent, Log2ofMantissa); 3662 3663 if (DisableScheduling) { 3664 DAG.AssignOrdering(t0.getNode(), SDNodeOrder); 3665 DAG.AssignOrdering(t1.getNode(), SDNodeOrder); 3666 DAG.AssignOrdering(t2.getNode(), SDNodeOrder); 3667 DAG.AssignOrdering(Log2ofMantissa.getNode(), SDNodeOrder); 3668 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 3669 } 3670 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3671 // For floating-point precision of 12: 3672 // 3673 // Log2ofMantissa = 3674 // -2.51285454f + 3675 // (4.07009056f + 3676 // (-2.12067489f + 3677 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3678 // 3679 // error 0.0000876136000, which is better than 13 bits 3680 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3681 getF32Constant(DAG, 0xbda7262e)); 3682 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3683 getF32Constant(DAG, 0x3f25280b)); 3684 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3685 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3686 getF32Constant(DAG, 0x4007b923)); 3687 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3688 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3689 getF32Constant(DAG, 0x40823e2f)); 3690 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3691 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3692 getF32Constant(DAG, 0x4020d29c)); 3693 3694 result = DAG.getNode(ISD::FADD, dl, 3695 MVT::f32, LogOfExponent, Log2ofMantissa); 3696 3697 if (DisableScheduling) { 3698 DAG.AssignOrdering(t0.getNode(), SDNodeOrder); 3699 DAG.AssignOrdering(t1.getNode(), SDNodeOrder); 3700 DAG.AssignOrdering(t2.getNode(), SDNodeOrder); 3701 DAG.AssignOrdering(t3.getNode(), SDNodeOrder); 3702 DAG.AssignOrdering(t4.getNode(), SDNodeOrder); 3703 DAG.AssignOrdering(t5.getNode(), SDNodeOrder); 3704 DAG.AssignOrdering(t6.getNode(), SDNodeOrder); 3705 DAG.AssignOrdering(Log2ofMantissa.getNode(), SDNodeOrder); 3706 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 3707 } 3708 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3709 // For floating-point precision of 18: 3710 // 3711 // Log2ofMantissa = 3712 // -3.0400495f + 3713 // (6.1129976f + 3714 // (-5.3420409f + 3715 // (3.2865683f + 3716 // (-1.2669343f + 3717 // (0.27515199f - 3718 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3719 // 3720 // error 0.0000018516, which is better than 18 bits 3721 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3722 getF32Constant(DAG, 0xbcd2769e)); 3723 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3724 getF32Constant(DAG, 0x3e8ce0b9)); 3725 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3726 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3727 getF32Constant(DAG, 0x3fa22ae7)); 3728 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3729 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3730 getF32Constant(DAG, 0x40525723)); 3731 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3732 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3733 getF32Constant(DAG, 0x40aaf200)); 3734 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3735 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3736 getF32Constant(DAG, 0x40c39dad)); 3737 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3738 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3739 getF32Constant(DAG, 0x4042902c)); 3740 3741 result = DAG.getNode(ISD::FADD, dl, 3742 MVT::f32, LogOfExponent, Log2ofMantissa); 3743 3744 if (DisableScheduling) { 3745 DAG.AssignOrdering(t0.getNode(), SDNodeOrder); 3746 DAG.AssignOrdering(t1.getNode(), SDNodeOrder); 3747 DAG.AssignOrdering(t2.getNode(), SDNodeOrder); 3748 DAG.AssignOrdering(t3.getNode(), SDNodeOrder); 3749 DAG.AssignOrdering(t4.getNode(), SDNodeOrder); 3750 DAG.AssignOrdering(t5.getNode(), SDNodeOrder); 3751 DAG.AssignOrdering(t6.getNode(), SDNodeOrder); 3752 DAG.AssignOrdering(t7.getNode(), SDNodeOrder); 3753 DAG.AssignOrdering(t8.getNode(), SDNodeOrder); 3754 DAG.AssignOrdering(t9.getNode(), SDNodeOrder); 3755 DAG.AssignOrdering(t10.getNode(), SDNodeOrder); 3756 DAG.AssignOrdering(Log2ofMantissa.getNode(), SDNodeOrder); 3757 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 3758 } 3759 } 3760 } else { 3761 // No special expansion. 3762 result = DAG.getNode(ISD::FLOG2, dl, 3763 getValue(I.getOperand(1)).getValueType(), 3764 getValue(I.getOperand(1))); 3765 3766 if (DisableScheduling) 3767 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 3768 } 3769 3770 setValue(&I, result); 3771 } 3772 3773 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3774 /// limited-precision mode. 3775 void 3776 SelectionDAGBuilder::visitLog10(CallInst &I) { 3777 SDValue result; 3778 DebugLoc dl = getCurDebugLoc(); 3779 3780 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3781 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3782 SDValue Op = getValue(I.getOperand(1)); 3783 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3784 3785 if (DisableScheduling) 3786 DAG.AssignOrdering(Op1.getNode(), SDNodeOrder); 3787 3788 // Scale the exponent by log10(2) [0.30102999f]. 3789 SDValue Exp = GetExponent(DAG, Op1, TLI, dl, SDNodeOrder); 3790 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3791 getF32Constant(DAG, 0x3e9a209a)); 3792 3793 if (DisableScheduling) 3794 DAG.AssignOrdering(LogOfExponent.getNode(), SDNodeOrder); 3795 3796 // Get the significand and build it into a floating-point number with 3797 // exponent of 1. 3798 SDValue X = GetSignificand(DAG, Op1, dl, SDNodeOrder); 3799 3800 if (LimitFloatPrecision <= 6) { 3801 // For floating-point precision of 6: 3802 // 3803 // Log10ofMantissa = 3804 // -0.50419619f + 3805 // (0.60948995f - 0.10380950f * x) * x; 3806 // 3807 // error 0.0014886165, which is 6 bits 3808 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3809 getF32Constant(DAG, 0xbdd49a13)); 3810 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3811 getF32Constant(DAG, 0x3f1c0789)); 3812 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3813 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3814 getF32Constant(DAG, 0x3f011300)); 3815 3816 result = DAG.getNode(ISD::FADD, dl, 3817 MVT::f32, LogOfExponent, Log10ofMantissa); 3818 3819 if (DisableScheduling) { 3820 DAG.AssignOrdering(t0.getNode(), SDNodeOrder); 3821 DAG.AssignOrdering(t1.getNode(), SDNodeOrder); 3822 DAG.AssignOrdering(t2.getNode(), SDNodeOrder); 3823 DAG.AssignOrdering(Log10ofMantissa.getNode(), SDNodeOrder); 3824 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 3825 } 3826 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3827 // For floating-point precision of 12: 3828 // 3829 // Log10ofMantissa = 3830 // -0.64831180f + 3831 // (0.91751397f + 3832 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3833 // 3834 // error 0.00019228036, which is better than 12 bits 3835 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3836 getF32Constant(DAG, 0x3d431f31)); 3837 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3838 getF32Constant(DAG, 0x3ea21fb2)); 3839 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3840 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3841 getF32Constant(DAG, 0x3f6ae232)); 3842 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3843 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3844 getF32Constant(DAG, 0x3f25f7c3)); 3845 3846 result = DAG.getNode(ISD::FADD, dl, 3847 MVT::f32, LogOfExponent, Log10ofMantissa); 3848 3849 if (DisableScheduling) { 3850 DAG.AssignOrdering(t0.getNode(), SDNodeOrder); 3851 DAG.AssignOrdering(t1.getNode(), SDNodeOrder); 3852 DAG.AssignOrdering(t2.getNode(), SDNodeOrder); 3853 DAG.AssignOrdering(t3.getNode(), SDNodeOrder); 3854 DAG.AssignOrdering(t4.getNode(), SDNodeOrder); 3855 DAG.AssignOrdering(Log10ofMantissa.getNode(), SDNodeOrder); 3856 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 3857 } 3858 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3859 // For floating-point precision of 18: 3860 // 3861 // Log10ofMantissa = 3862 // -0.84299375f + 3863 // (1.5327582f + 3864 // (-1.0688956f + 3865 // (0.49102474f + 3866 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3867 // 3868 // error 0.0000037995730, which is better than 18 bits 3869 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3870 getF32Constant(DAG, 0x3c5d51ce)); 3871 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3872 getF32Constant(DAG, 0x3e00685a)); 3873 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3874 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3875 getF32Constant(DAG, 0x3efb6798)); 3876 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3877 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3878 getF32Constant(DAG, 0x3f88d192)); 3879 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3880 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3881 getF32Constant(DAG, 0x3fc4316c)); 3882 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3883 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3884 getF32Constant(DAG, 0x3f57ce70)); 3885 3886 result = DAG.getNode(ISD::FADD, dl, 3887 MVT::f32, LogOfExponent, Log10ofMantissa); 3888 3889 if (DisableScheduling) { 3890 DAG.AssignOrdering(t0.getNode(), SDNodeOrder); 3891 DAG.AssignOrdering(t1.getNode(), SDNodeOrder); 3892 DAG.AssignOrdering(t2.getNode(), SDNodeOrder); 3893 DAG.AssignOrdering(t3.getNode(), SDNodeOrder); 3894 DAG.AssignOrdering(t4.getNode(), SDNodeOrder); 3895 DAG.AssignOrdering(t5.getNode(), SDNodeOrder); 3896 DAG.AssignOrdering(t6.getNode(), SDNodeOrder); 3897 DAG.AssignOrdering(t7.getNode(), SDNodeOrder); 3898 DAG.AssignOrdering(t8.getNode(), SDNodeOrder); 3899 DAG.AssignOrdering(Log10ofMantissa.getNode(), SDNodeOrder); 3900 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 3901 } 3902 } 3903 } else { 3904 // No special expansion. 3905 result = DAG.getNode(ISD::FLOG10, dl, 3906 getValue(I.getOperand(1)).getValueType(), 3907 getValue(I.getOperand(1))); 3908 3909 if (DisableScheduling) 3910 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 3911 } 3912 3913 setValue(&I, result); 3914 } 3915 3916 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3917 /// limited-precision mode. 3918 void 3919 SelectionDAGBuilder::visitExp2(CallInst &I) { 3920 SDValue result; 3921 DebugLoc dl = getCurDebugLoc(); 3922 3923 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3924 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3925 SDValue Op = getValue(I.getOperand(1)); 3926 3927 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 3928 3929 if (DisableScheduling) 3930 DAG.AssignOrdering(IntegerPartOfX.getNode(), SDNodeOrder); 3931 3932 // FractionalPartOfX = x - (float)IntegerPartOfX; 3933 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3934 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 3935 3936 // IntegerPartOfX <<= 23; 3937 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3938 DAG.getConstant(23, TLI.getPointerTy())); 3939 3940 if (DisableScheduling) { 3941 DAG.AssignOrdering(t1.getNode(), SDNodeOrder); 3942 DAG.AssignOrdering(X.getNode(), SDNodeOrder); 3943 DAG.AssignOrdering(IntegerPartOfX.getNode(), SDNodeOrder); 3944 } 3945 3946 if (LimitFloatPrecision <= 6) { 3947 // For floating-point precision of 6: 3948 // 3949 // TwoToFractionalPartOfX = 3950 // 0.997535578f + 3951 // (0.735607626f + 0.252464424f * x) * x; 3952 // 3953 // error 0.0144103317, which is 6 bits 3954 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3955 getF32Constant(DAG, 0x3e814304)); 3956 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3957 getF32Constant(DAG, 0x3f3c50c8)); 3958 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3959 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3960 getF32Constant(DAG, 0x3f7f5e7e)); 3961 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 3962 SDValue TwoToFractionalPartOfX = 3963 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3964 3965 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3966 MVT::f32, TwoToFractionalPartOfX); 3967 3968 if (DisableScheduling) { 3969 DAG.AssignOrdering(t2.getNode(), SDNodeOrder); 3970 DAG.AssignOrdering(t3.getNode(), SDNodeOrder); 3971 DAG.AssignOrdering(t4.getNode(), SDNodeOrder); 3972 DAG.AssignOrdering(t5.getNode(), SDNodeOrder); 3973 DAG.AssignOrdering(t6.getNode(), SDNodeOrder); 3974 DAG.AssignOrdering(TwoToFractionalPartOfX.getNode(), SDNodeOrder); 3975 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 3976 } 3977 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3978 // For floating-point precision of 12: 3979 // 3980 // TwoToFractionalPartOfX = 3981 // 0.999892986f + 3982 // (0.696457318f + 3983 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3984 // 3985 // error 0.000107046256, which is 13 to 14 bits 3986 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3987 getF32Constant(DAG, 0x3da235e3)); 3988 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3989 getF32Constant(DAG, 0x3e65b8f3)); 3990 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3991 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3992 getF32Constant(DAG, 0x3f324b07)); 3993 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3994 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3995 getF32Constant(DAG, 0x3f7ff8fd)); 3996 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 3997 SDValue TwoToFractionalPartOfX = 3998 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3999 4000 result = DAG.getNode(ISD::BIT_CONVERT, dl, 4001 MVT::f32, TwoToFractionalPartOfX); 4002 4003 if (DisableScheduling) { 4004 DAG.AssignOrdering(t2.getNode(), SDNodeOrder); 4005 DAG.AssignOrdering(t3.getNode(), SDNodeOrder); 4006 DAG.AssignOrdering(t4.getNode(), SDNodeOrder); 4007 DAG.AssignOrdering(t5.getNode(), SDNodeOrder); 4008 DAG.AssignOrdering(t6.getNode(), SDNodeOrder); 4009 DAG.AssignOrdering(t7.getNode(), SDNodeOrder); 4010 DAG.AssignOrdering(t8.getNode(), SDNodeOrder); 4011 DAG.AssignOrdering(TwoToFractionalPartOfX.getNode(), SDNodeOrder); 4012 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 4013 } 4014 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4015 // For floating-point precision of 18: 4016 // 4017 // TwoToFractionalPartOfX = 4018 // 0.999999982f + 4019 // (0.693148872f + 4020 // (0.240227044f + 4021 // (0.554906021e-1f + 4022 // (0.961591928e-2f + 4023 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4024 // error 2.47208000*10^(-7), which is better than 18 bits 4025 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4026 getF32Constant(DAG, 0x3924b03e)); 4027 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4028 getF32Constant(DAG, 0x3ab24b87)); 4029 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4030 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4031 getF32Constant(DAG, 0x3c1d8c17)); 4032 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4033 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4034 getF32Constant(DAG, 0x3d634a1d)); 4035 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4036 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4037 getF32Constant(DAG, 0x3e75fe14)); 4038 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4039 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4040 getF32Constant(DAG, 0x3f317234)); 4041 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4042 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4043 getF32Constant(DAG, 0x3f800000)); 4044 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 4045 SDValue TwoToFractionalPartOfX = 4046 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 4047 4048 result = DAG.getNode(ISD::BIT_CONVERT, dl, 4049 MVT::f32, TwoToFractionalPartOfX); 4050 4051 if (DisableScheduling) { 4052 DAG.AssignOrdering(t2.getNode(), SDNodeOrder); 4053 DAG.AssignOrdering(t3.getNode(), SDNodeOrder); 4054 DAG.AssignOrdering(t4.getNode(), SDNodeOrder); 4055 DAG.AssignOrdering(t5.getNode(), SDNodeOrder); 4056 DAG.AssignOrdering(t6.getNode(), SDNodeOrder); 4057 DAG.AssignOrdering(t7.getNode(), SDNodeOrder); 4058 DAG.AssignOrdering(t8.getNode(), SDNodeOrder); 4059 DAG.AssignOrdering(t9.getNode(), SDNodeOrder); 4060 DAG.AssignOrdering(t10.getNode(), SDNodeOrder); 4061 DAG.AssignOrdering(t11.getNode(), SDNodeOrder); 4062 DAG.AssignOrdering(t12.getNode(), SDNodeOrder); 4063 DAG.AssignOrdering(t13.getNode(), SDNodeOrder); 4064 DAG.AssignOrdering(t14.getNode(), SDNodeOrder); 4065 DAG.AssignOrdering(TwoToFractionalPartOfX.getNode(), SDNodeOrder); 4066 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 4067 } 4068 } 4069 } else { 4070 // No special expansion. 4071 result = DAG.getNode(ISD::FEXP2, dl, 4072 getValue(I.getOperand(1)).getValueType(), 4073 getValue(I.getOperand(1))); 4074 4075 if (DisableScheduling) 4076 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 4077 } 4078 4079 setValue(&I, result); 4080 } 4081 4082 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4083 /// limited-precision mode with x == 10.0f. 4084 void 4085 SelectionDAGBuilder::visitPow(CallInst &I) { 4086 SDValue result; 4087 Value *Val = I.getOperand(1); 4088 DebugLoc dl = getCurDebugLoc(); 4089 bool IsExp10 = false; 4090 4091 if (getValue(Val).getValueType() == MVT::f32 && 4092 getValue(I.getOperand(2)).getValueType() == MVT::f32 && 4093 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4094 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 4095 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 4096 APFloat Ten(10.0f); 4097 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 4098 } 4099 } 4100 } 4101 4102 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4103 SDValue Op = getValue(I.getOperand(2)); 4104 4105 // Put the exponent in the right bit position for later addition to the 4106 // final result: 4107 // 4108 // #define LOG2OF10 3.3219281f 4109 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4110 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4111 getF32Constant(DAG, 0x40549a78)); 4112 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4113 4114 // FractionalPartOfX = x - (float)IntegerPartOfX; 4115 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4116 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4117 4118 if (DisableScheduling) { 4119 DAG.AssignOrdering(t0.getNode(), SDNodeOrder); 4120 DAG.AssignOrdering(t1.getNode(), SDNodeOrder); 4121 DAG.AssignOrdering(IntegerPartOfX.getNode(), SDNodeOrder); 4122 DAG.AssignOrdering(X.getNode(), SDNodeOrder); 4123 } 4124 4125 // IntegerPartOfX <<= 23; 4126 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4127 DAG.getConstant(23, TLI.getPointerTy())); 4128 4129 if (DisableScheduling) 4130 DAG.AssignOrdering(IntegerPartOfX.getNode(), SDNodeOrder); 4131 4132 if (LimitFloatPrecision <= 6) { 4133 // For floating-point precision of 6: 4134 // 4135 // twoToFractionalPartOfX = 4136 // 0.997535578f + 4137 // (0.735607626f + 0.252464424f * x) * x; 4138 // 4139 // error 0.0144103317, which is 6 bits 4140 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4141 getF32Constant(DAG, 0x3e814304)); 4142 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4143 getF32Constant(DAG, 0x3f3c50c8)); 4144 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4145 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4146 getF32Constant(DAG, 0x3f7f5e7e)); 4147 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 4148 SDValue TwoToFractionalPartOfX = 4149 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 4150 4151 result = DAG.getNode(ISD::BIT_CONVERT, dl, 4152 MVT::f32, TwoToFractionalPartOfX); 4153 4154 if (DisableScheduling) { 4155 DAG.AssignOrdering(t2.getNode(), SDNodeOrder); 4156 DAG.AssignOrdering(t3.getNode(), SDNodeOrder); 4157 DAG.AssignOrdering(t4.getNode(), SDNodeOrder); 4158 DAG.AssignOrdering(t5.getNode(), SDNodeOrder); 4159 DAG.AssignOrdering(t6.getNode(), SDNodeOrder); 4160 DAG.AssignOrdering(TwoToFractionalPartOfX.getNode(), SDNodeOrder); 4161 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 4162 } 4163 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4164 // For floating-point precision of 12: 4165 // 4166 // TwoToFractionalPartOfX = 4167 // 0.999892986f + 4168 // (0.696457318f + 4169 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4170 // 4171 // error 0.000107046256, which is 13 to 14 bits 4172 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4173 getF32Constant(DAG, 0x3da235e3)); 4174 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4175 getF32Constant(DAG, 0x3e65b8f3)); 4176 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4177 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4178 getF32Constant(DAG, 0x3f324b07)); 4179 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4180 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4181 getF32Constant(DAG, 0x3f7ff8fd)); 4182 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 4183 SDValue TwoToFractionalPartOfX = 4184 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 4185 4186 result = DAG.getNode(ISD::BIT_CONVERT, dl, 4187 MVT::f32, TwoToFractionalPartOfX); 4188 4189 if (DisableScheduling) { 4190 DAG.AssignOrdering(t2.getNode(), SDNodeOrder); 4191 DAG.AssignOrdering(t3.getNode(), SDNodeOrder); 4192 DAG.AssignOrdering(t4.getNode(), SDNodeOrder); 4193 DAG.AssignOrdering(t5.getNode(), SDNodeOrder); 4194 DAG.AssignOrdering(t6.getNode(), SDNodeOrder); 4195 DAG.AssignOrdering(t7.getNode(), SDNodeOrder); 4196 DAG.AssignOrdering(t8.getNode(), SDNodeOrder); 4197 DAG.AssignOrdering(TwoToFractionalPartOfX.getNode(), SDNodeOrder); 4198 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 4199 } 4200 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4201 // For floating-point precision of 18: 4202 // 4203 // TwoToFractionalPartOfX = 4204 // 0.999999982f + 4205 // (0.693148872f + 4206 // (0.240227044f + 4207 // (0.554906021e-1f + 4208 // (0.961591928e-2f + 4209 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4210 // error 2.47208000*10^(-7), which is better than 18 bits 4211 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4212 getF32Constant(DAG, 0x3924b03e)); 4213 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4214 getF32Constant(DAG, 0x3ab24b87)); 4215 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4216 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4217 getF32Constant(DAG, 0x3c1d8c17)); 4218 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4219 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4220 getF32Constant(DAG, 0x3d634a1d)); 4221 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4222 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4223 getF32Constant(DAG, 0x3e75fe14)); 4224 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4225 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4226 getF32Constant(DAG, 0x3f317234)); 4227 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4228 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4229 getF32Constant(DAG, 0x3f800000)); 4230 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 4231 SDValue TwoToFractionalPartOfX = 4232 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 4233 4234 result = DAG.getNode(ISD::BIT_CONVERT, dl, 4235 MVT::f32, TwoToFractionalPartOfX); 4236 4237 if (DisableScheduling) { 4238 DAG.AssignOrdering(t2.getNode(), SDNodeOrder); 4239 DAG.AssignOrdering(t3.getNode(), SDNodeOrder); 4240 DAG.AssignOrdering(t4.getNode(), SDNodeOrder); 4241 DAG.AssignOrdering(t5.getNode(), SDNodeOrder); 4242 DAG.AssignOrdering(t6.getNode(), SDNodeOrder); 4243 DAG.AssignOrdering(t7.getNode(), SDNodeOrder); 4244 DAG.AssignOrdering(t8.getNode(), SDNodeOrder); 4245 DAG.AssignOrdering(t9.getNode(), SDNodeOrder); 4246 DAG.AssignOrdering(t10.getNode(), SDNodeOrder); 4247 DAG.AssignOrdering(t11.getNode(), SDNodeOrder); 4248 DAG.AssignOrdering(t12.getNode(), SDNodeOrder); 4249 DAG.AssignOrdering(t13.getNode(), SDNodeOrder); 4250 DAG.AssignOrdering(t14.getNode(), SDNodeOrder); 4251 DAG.AssignOrdering(TwoToFractionalPartOfX.getNode(), SDNodeOrder); 4252 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 4253 } 4254 } 4255 } else { 4256 // No special expansion. 4257 result = DAG.getNode(ISD::FPOW, dl, 4258 getValue(I.getOperand(1)).getValueType(), 4259 getValue(I.getOperand(1)), 4260 getValue(I.getOperand(2))); 4261 4262 if (DisableScheduling) 4263 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 4264 } 4265 4266 setValue(&I, result); 4267 } 4268 4269 4270 /// ExpandPowI - Expand a llvm.powi intrinsic. 4271 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 4272 SelectionDAG &DAG) { 4273 // If RHS is a constant, we can expand this out to a multiplication tree, 4274 // otherwise we end up lowering to a call to __powidf2 (for example). When 4275 // optimizing for size, we only want to do this if the expansion would produce 4276 // a small number of multiplies, otherwise we do the full expansion. 4277 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4278 // Get the exponent as a positive value. 4279 unsigned Val = RHSC->getSExtValue(); 4280 if ((int)Val < 0) Val = -Val; 4281 4282 // powi(x, 0) -> 1.0 4283 if (Val == 0) 4284 return DAG.getConstantFP(1.0, LHS.getValueType()); 4285 4286 Function *F = DAG.getMachineFunction().getFunction(); 4287 if (!F->hasFnAttr(Attribute::OptimizeForSize) || 4288 // If optimizing for size, don't insert too many multiplies. This 4289 // inserts up to 5 multiplies. 4290 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4291 // We use the simple binary decomposition method to generate the multiply 4292 // sequence. There are more optimal ways to do this (for example, 4293 // powi(x,15) generates one more multiply than it should), but this has 4294 // the benefit of being both really simple and much better than a libcall. 4295 SDValue Res; // Logically starts equal to 1.0 4296 SDValue CurSquare = LHS; 4297 while (Val) { 4298 if (Val & 1) 4299 if (Res.getNode()) 4300 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4301 else 4302 Res = CurSquare; // 1.0*CurSquare. 4303 4304 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4305 CurSquare, CurSquare); 4306 Val >>= 1; 4307 } 4308 4309 // If the original was negative, invert the result, producing 1/(x*x*x). 4310 if (RHSC->getSExtValue() < 0) 4311 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4312 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4313 return Res; 4314 } 4315 } 4316 4317 // Otherwise, expand to a libcall. 4318 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4319 } 4320 4321 4322 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4323 /// we want to emit this as a call to a named external function, return the name 4324 /// otherwise lower it and return null. 4325 const char * 4326 SelectionDAGBuilder::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) { 4327 DebugLoc dl = getCurDebugLoc(); 4328 SDValue Res; 4329 4330 switch (Intrinsic) { 4331 default: 4332 // By default, turn this into a target intrinsic node. 4333 visitTargetIntrinsic(I, Intrinsic); 4334 return 0; 4335 case Intrinsic::vastart: visitVAStart(I); return 0; 4336 case Intrinsic::vaend: visitVAEnd(I); return 0; 4337 case Intrinsic::vacopy: visitVACopy(I); return 0; 4338 case Intrinsic::returnaddress: 4339 Res = DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 4340 getValue(I.getOperand(1))); 4341 setValue(&I, Res); 4342 if (DisableScheduling) 4343 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 4344 return 0; 4345 case Intrinsic::frameaddress: 4346 Res = DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 4347 getValue(I.getOperand(1))); 4348 setValue(&I, Res); 4349 if (DisableScheduling) 4350 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 4351 return 0; 4352 case Intrinsic::setjmp: 4353 return "_setjmp"+!TLI.usesUnderscoreSetJmp(); 4354 case Intrinsic::longjmp: 4355 return "_longjmp"+!TLI.usesUnderscoreLongJmp(); 4356 case Intrinsic::memcpy: { 4357 SDValue Op1 = getValue(I.getOperand(1)); 4358 SDValue Op2 = getValue(I.getOperand(2)); 4359 SDValue Op3 = getValue(I.getOperand(3)); 4360 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); 4361 Res = DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false, 4362 I.getOperand(1), 0, I.getOperand(2), 0); 4363 DAG.setRoot(Res); 4364 if (DisableScheduling) 4365 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 4366 return 0; 4367 } 4368 case Intrinsic::memset: { 4369 SDValue Op1 = getValue(I.getOperand(1)); 4370 SDValue Op2 = getValue(I.getOperand(2)); 4371 SDValue Op3 = getValue(I.getOperand(3)); 4372 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); 4373 Res = DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, 4374 I.getOperand(1), 0); 4375 DAG.setRoot(Res); 4376 if (DisableScheduling) 4377 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 4378 return 0; 4379 } 4380 case Intrinsic::memmove: { 4381 SDValue Op1 = getValue(I.getOperand(1)); 4382 SDValue Op2 = getValue(I.getOperand(2)); 4383 SDValue Op3 = getValue(I.getOperand(3)); 4384 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); 4385 4386 // If the source and destination are known to not be aliases, we can 4387 // lower memmove as memcpy. 4388 uint64_t Size = -1ULL; 4389 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3)) 4390 Size = C->getZExtValue(); 4391 if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) == 4392 AliasAnalysis::NoAlias) { 4393 Res = DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false, 4394 I.getOperand(1), 0, I.getOperand(2), 0); 4395 DAG.setRoot(Res); 4396 if (DisableScheduling) 4397 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 4398 return 0; 4399 } 4400 4401 Res = DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, 4402 I.getOperand(1), 0, I.getOperand(2), 0); 4403 DAG.setRoot(Res); 4404 if (DisableScheduling) 4405 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 4406 return 0; 4407 } 4408 case Intrinsic::dbg_stoppoint: 4409 case Intrinsic::dbg_region_start: 4410 case Intrinsic::dbg_region_end: 4411 case Intrinsic::dbg_func_start: 4412 // FIXME - Remove this instructions once the dust settles. 4413 return 0; 4414 case Intrinsic::dbg_declare: { 4415 if (OptLevel != CodeGenOpt::None) 4416 // FIXME: Variable debug info is not supported here. 4417 return 0; 4418 DwarfWriter *DW = DAG.getDwarfWriter(); 4419 if (!DW) 4420 return 0; 4421 DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4422 if (!DIDescriptor::ValidDebugInfo(DI.getVariable(), CodeGenOpt::None)) 4423 return 0; 4424 4425 MDNode *Variable = DI.getVariable(); 4426 Value *Address = DI.getAddress(); 4427 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4428 Address = BCI->getOperand(0); 4429 AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4430 // Don't handle byval struct arguments or VLAs, for example. 4431 if (!AI) 4432 return 0; 4433 DenseMap<const AllocaInst*, int>::iterator SI = 4434 FuncInfo.StaticAllocaMap.find(AI); 4435 if (SI == FuncInfo.StaticAllocaMap.end()) 4436 return 0; // VLAs. 4437 int FI = SI->second; 4438 4439 if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) 4440 if (MDNode *Dbg = DI.getMetadata("dbg")) 4441 MMI->setVariableDbgInfo(Variable, FI, Dbg); 4442 return 0; 4443 } 4444 case Intrinsic::eh_exception: { 4445 // Insert the EXCEPTIONADDR instruction. 4446 assert(CurMBB->isLandingPad() &&"Call to eh.exception not in landing pad!"); 4447 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4448 SDValue Ops[1]; 4449 Ops[0] = DAG.getRoot(); 4450 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); 4451 setValue(&I, Op); 4452 DAG.setRoot(Op.getValue(1)); 4453 if (DisableScheduling) 4454 DAG.AssignOrdering(Op.getNode(), SDNodeOrder); 4455 return 0; 4456 } 4457 4458 case Intrinsic::eh_selector: { 4459 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 4460 4461 if (CurMBB->isLandingPad()) 4462 AddCatchInfo(I, MMI, CurMBB); 4463 else { 4464 #ifndef NDEBUG 4465 FuncInfo.CatchInfoLost.insert(&I); 4466 #endif 4467 // FIXME: Mark exception selector register as live in. Hack for PR1508. 4468 unsigned Reg = TLI.getExceptionSelectorRegister(); 4469 if (Reg) CurMBB->addLiveIn(Reg); 4470 } 4471 4472 // Insert the EHSELECTION instruction. 4473 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4474 SDValue Ops[2]; 4475 Ops[0] = getValue(I.getOperand(1)); 4476 Ops[1] = getRoot(); 4477 SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); 4478 4479 DAG.setRoot(Op.getValue(1)); 4480 4481 Res = DAG.getSExtOrTrunc(Op, dl, MVT::i32); 4482 setValue(&I, Res); 4483 if (DisableScheduling) { 4484 DAG.AssignOrdering(Op.getNode(), SDNodeOrder); 4485 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 4486 } 4487 return 0; 4488 } 4489 4490 case Intrinsic::eh_typeid_for: { 4491 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 4492 4493 if (MMI) { 4494 // Find the type id for the given typeinfo. 4495 GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1)); 4496 unsigned TypeID = MMI->getTypeIDFor(GV); 4497 Res = DAG.getConstant(TypeID, MVT::i32); 4498 } else { 4499 // Return something different to eh_selector. 4500 Res = DAG.getConstant(1, MVT::i32); 4501 } 4502 4503 setValue(&I, Res); 4504 if (DisableScheduling) 4505 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 4506 return 0; 4507 } 4508 4509 case Intrinsic::eh_return_i32: 4510 case Intrinsic::eh_return_i64: 4511 if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) { 4512 MMI->setCallsEHReturn(true); 4513 Res = DAG.getNode(ISD::EH_RETURN, dl, 4514 MVT::Other, 4515 getControlRoot(), 4516 getValue(I.getOperand(1)), 4517 getValue(I.getOperand(2))); 4518 DAG.setRoot(Res); 4519 if (DisableScheduling) 4520 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 4521 } else { 4522 setValue(&I, DAG.getConstant(0, TLI.getPointerTy())); 4523 } 4524 4525 return 0; 4526 case Intrinsic::eh_unwind_init: 4527 if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) { 4528 MMI->setCallsUnwindInit(true); 4529 } 4530 return 0; 4531 case Intrinsic::eh_dwarf_cfa: { 4532 EVT VT = getValue(I.getOperand(1)).getValueType(); 4533 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl, 4534 TLI.getPointerTy()); 4535 SDValue Offset = DAG.getNode(ISD::ADD, dl, 4536 TLI.getPointerTy(), 4537 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 4538 TLI.getPointerTy()), 4539 CfaArg); 4540 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 4541 TLI.getPointerTy(), 4542 DAG.getConstant(0, TLI.getPointerTy())); 4543 Res = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 4544 FA, Offset); 4545 setValue(&I, Res); 4546 if (DisableScheduling) { 4547 DAG.AssignOrdering(CfaArg.getNode(), SDNodeOrder); 4548 DAG.AssignOrdering(Offset.getNode(), SDNodeOrder); 4549 DAG.AssignOrdering(FA.getNode(), SDNodeOrder); 4550 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 4551 } 4552 return 0; 4553 } 4554 case Intrinsic::convertff: 4555 case Intrinsic::convertfsi: 4556 case Intrinsic::convertfui: 4557 case Intrinsic::convertsif: 4558 case Intrinsic::convertuif: 4559 case Intrinsic::convertss: 4560 case Intrinsic::convertsu: 4561 case Intrinsic::convertus: 4562 case Intrinsic::convertuu: { 4563 ISD::CvtCode Code = ISD::CVT_INVALID; 4564 switch (Intrinsic) { 4565 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4566 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4567 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4568 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4569 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4570 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4571 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4572 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4573 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4574 } 4575 EVT DestVT = TLI.getValueType(I.getType()); 4576 Value *Op1 = I.getOperand(1); 4577 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 4578 DAG.getValueType(DestVT), 4579 DAG.getValueType(getValue(Op1).getValueType()), 4580 getValue(I.getOperand(2)), 4581 getValue(I.getOperand(3)), 4582 Code); 4583 setValue(&I, Res); 4584 if (DisableScheduling) 4585 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 4586 return 0; 4587 } 4588 case Intrinsic::sqrt: 4589 Res = DAG.getNode(ISD::FSQRT, dl, 4590 getValue(I.getOperand(1)).getValueType(), 4591 getValue(I.getOperand(1))); 4592 setValue(&I, Res); 4593 if (DisableScheduling) 4594 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 4595 return 0; 4596 case Intrinsic::powi: 4597 Res = ExpandPowI(dl, getValue(I.getOperand(1)), getValue(I.getOperand(2)), 4598 DAG); 4599 setValue(&I, Res); 4600 if (DisableScheduling) 4601 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 4602 return 0; 4603 case Intrinsic::sin: 4604 Res = DAG.getNode(ISD::FSIN, dl, 4605 getValue(I.getOperand(1)).getValueType(), 4606 getValue(I.getOperand(1))); 4607 setValue(&I, Res); 4608 if (DisableScheduling) 4609 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 4610 return 0; 4611 case Intrinsic::cos: 4612 Res = DAG.getNode(ISD::FCOS, dl, 4613 getValue(I.getOperand(1)).getValueType(), 4614 getValue(I.getOperand(1))); 4615 setValue(&I, Res); 4616 if (DisableScheduling) 4617 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 4618 return 0; 4619 case Intrinsic::log: 4620 visitLog(I); 4621 return 0; 4622 case Intrinsic::log2: 4623 visitLog2(I); 4624 return 0; 4625 case Intrinsic::log10: 4626 visitLog10(I); 4627 return 0; 4628 case Intrinsic::exp: 4629 visitExp(I); 4630 return 0; 4631 case Intrinsic::exp2: 4632 visitExp2(I); 4633 return 0; 4634 case Intrinsic::pow: 4635 visitPow(I); 4636 return 0; 4637 case Intrinsic::pcmarker: { 4638 SDValue Tmp = getValue(I.getOperand(1)); 4639 Res = DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp); 4640 DAG.setRoot(Res); 4641 if (DisableScheduling) 4642 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 4643 return 0; 4644 } 4645 case Intrinsic::readcyclecounter: { 4646 SDValue Op = getRoot(); 4647 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 4648 DAG.getVTList(MVT::i64, MVT::Other), 4649 &Op, 1); 4650 setValue(&I, Res); 4651 DAG.setRoot(Res.getValue(1)); 4652 if (DisableScheduling) 4653 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 4654 return 0; 4655 } 4656 case Intrinsic::bswap: 4657 Res = DAG.getNode(ISD::BSWAP, dl, 4658 getValue(I.getOperand(1)).getValueType(), 4659 getValue(I.getOperand(1))); 4660 setValue(&I, Res); 4661 if (DisableScheduling) 4662 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 4663 return 0; 4664 case Intrinsic::cttz: { 4665 SDValue Arg = getValue(I.getOperand(1)); 4666 EVT Ty = Arg.getValueType(); 4667 Res = DAG.getNode(ISD::CTTZ, dl, Ty, Arg); 4668 setValue(&I, Res); 4669 if (DisableScheduling) 4670 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 4671 return 0; 4672 } 4673 case Intrinsic::ctlz: { 4674 SDValue Arg = getValue(I.getOperand(1)); 4675 EVT Ty = Arg.getValueType(); 4676 Res = DAG.getNode(ISD::CTLZ, dl, Ty, Arg); 4677 setValue(&I, Res); 4678 if (DisableScheduling) 4679 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 4680 return 0; 4681 } 4682 case Intrinsic::ctpop: { 4683 SDValue Arg = getValue(I.getOperand(1)); 4684 EVT Ty = Arg.getValueType(); 4685 Res = DAG.getNode(ISD::CTPOP, dl, Ty, Arg); 4686 setValue(&I, Res); 4687 if (DisableScheduling) 4688 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 4689 return 0; 4690 } 4691 case Intrinsic::stacksave: { 4692 SDValue Op = getRoot(); 4693 Res = DAG.getNode(ISD::STACKSAVE, dl, 4694 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 4695 setValue(&I, Res); 4696 DAG.setRoot(Res.getValue(1)); 4697 if (DisableScheduling) 4698 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 4699 return 0; 4700 } 4701 case Intrinsic::stackrestore: { 4702 Res = getValue(I.getOperand(1)); 4703 Res = DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res); 4704 DAG.setRoot(Res); 4705 if (DisableScheduling) 4706 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 4707 return 0; 4708 } 4709 case Intrinsic::stackprotector: { 4710 // Emit code into the DAG to store the stack guard onto the stack. 4711 MachineFunction &MF = DAG.getMachineFunction(); 4712 MachineFrameInfo *MFI = MF.getFrameInfo(); 4713 EVT PtrTy = TLI.getPointerTy(); 4714 4715 SDValue Src = getValue(I.getOperand(1)); // The guard's value. 4716 AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2)); 4717 4718 int FI = FuncInfo.StaticAllocaMap[Slot]; 4719 MFI->setStackProtectorIndex(FI); 4720 4721 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4722 4723 // Store the stack protector onto the stack. 4724 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 4725 PseudoSourceValue::getFixedStack(FI), 4726 0, true); 4727 setValue(&I, Res); 4728 DAG.setRoot(Res); 4729 if (DisableScheduling) 4730 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 4731 return 0; 4732 } 4733 case Intrinsic::objectsize: { 4734 // If we don't know by now, we're never going to know. 4735 ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2)); 4736 4737 assert(CI && "Non-constant type in __builtin_object_size?"); 4738 4739 SDValue Arg = getValue(I.getOperand(0)); 4740 EVT Ty = Arg.getValueType(); 4741 4742 if (CI->getZExtValue() == 0) 4743 Res = DAG.getConstant(-1ULL, Ty); 4744 else 4745 Res = DAG.getConstant(0, Ty); 4746 4747 setValue(&I, Res); 4748 if (DisableScheduling) 4749 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 4750 return 0; 4751 } 4752 case Intrinsic::var_annotation: 4753 // Discard annotate attributes 4754 return 0; 4755 4756 case Intrinsic::init_trampoline: { 4757 const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts()); 4758 4759 SDValue Ops[6]; 4760 Ops[0] = getRoot(); 4761 Ops[1] = getValue(I.getOperand(1)); 4762 Ops[2] = getValue(I.getOperand(2)); 4763 Ops[3] = getValue(I.getOperand(3)); 4764 Ops[4] = DAG.getSrcValue(I.getOperand(1)); 4765 Ops[5] = DAG.getSrcValue(F); 4766 4767 Res = DAG.getNode(ISD::TRAMPOLINE, dl, 4768 DAG.getVTList(TLI.getPointerTy(), MVT::Other), 4769 Ops, 6); 4770 4771 setValue(&I, Res); 4772 DAG.setRoot(Res.getValue(1)); 4773 if (DisableScheduling) 4774 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 4775 return 0; 4776 } 4777 case Intrinsic::gcroot: 4778 if (GFI) { 4779 Value *Alloca = I.getOperand(1); 4780 Constant *TypeMap = cast<Constant>(I.getOperand(2)); 4781 4782 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4783 GFI->addStackRoot(FI->getIndex(), TypeMap); 4784 } 4785 return 0; 4786 case Intrinsic::gcread: 4787 case Intrinsic::gcwrite: 4788 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4789 return 0; 4790 case Intrinsic::flt_rounds: 4791 Res = DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32); 4792 setValue(&I, Res); 4793 if (DisableScheduling) 4794 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 4795 return 0; 4796 case Intrinsic::trap: 4797 Res = DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()); 4798 DAG.setRoot(Res); 4799 if (DisableScheduling) 4800 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 4801 return 0; 4802 case Intrinsic::uadd_with_overflow: 4803 return implVisitAluOverflow(I, ISD::UADDO); 4804 case Intrinsic::sadd_with_overflow: 4805 return implVisitAluOverflow(I, ISD::SADDO); 4806 case Intrinsic::usub_with_overflow: 4807 return implVisitAluOverflow(I, ISD::USUBO); 4808 case Intrinsic::ssub_with_overflow: 4809 return implVisitAluOverflow(I, ISD::SSUBO); 4810 case Intrinsic::umul_with_overflow: 4811 return implVisitAluOverflow(I, ISD::UMULO); 4812 case Intrinsic::smul_with_overflow: 4813 return implVisitAluOverflow(I, ISD::SMULO); 4814 4815 case Intrinsic::prefetch: { 4816 SDValue Ops[4]; 4817 Ops[0] = getRoot(); 4818 Ops[1] = getValue(I.getOperand(1)); 4819 Ops[2] = getValue(I.getOperand(2)); 4820 Ops[3] = getValue(I.getOperand(3)); 4821 Res = DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4); 4822 DAG.setRoot(Res); 4823 if (DisableScheduling) 4824 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 4825 return 0; 4826 } 4827 4828 case Intrinsic::memory_barrier: { 4829 SDValue Ops[6]; 4830 Ops[0] = getRoot(); 4831 for (int x = 1; x < 6; ++x) 4832 Ops[x] = getValue(I.getOperand(x)); 4833 4834 Res = DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6); 4835 DAG.setRoot(Res); 4836 if (DisableScheduling) 4837 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 4838 return 0; 4839 } 4840 case Intrinsic::atomic_cmp_swap: { 4841 SDValue Root = getRoot(); 4842 SDValue L = 4843 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(), 4844 getValue(I.getOperand(2)).getValueType().getSimpleVT(), 4845 Root, 4846 getValue(I.getOperand(1)), 4847 getValue(I.getOperand(2)), 4848 getValue(I.getOperand(3)), 4849 I.getOperand(1)); 4850 setValue(&I, L); 4851 DAG.setRoot(L.getValue(1)); 4852 if (DisableScheduling) 4853 DAG.AssignOrdering(L.getNode(), SDNodeOrder); 4854 return 0; 4855 } 4856 case Intrinsic::atomic_load_add: 4857 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD); 4858 case Intrinsic::atomic_load_sub: 4859 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB); 4860 case Intrinsic::atomic_load_or: 4861 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR); 4862 case Intrinsic::atomic_load_xor: 4863 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR); 4864 case Intrinsic::atomic_load_and: 4865 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND); 4866 case Intrinsic::atomic_load_nand: 4867 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND); 4868 case Intrinsic::atomic_load_max: 4869 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX); 4870 case Intrinsic::atomic_load_min: 4871 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN); 4872 case Intrinsic::atomic_load_umin: 4873 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN); 4874 case Intrinsic::atomic_load_umax: 4875 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX); 4876 case Intrinsic::atomic_swap: 4877 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP); 4878 4879 case Intrinsic::invariant_start: 4880 case Intrinsic::lifetime_start: 4881 // Discard region information. 4882 Res = DAG.getUNDEF(TLI.getPointerTy()); 4883 setValue(&I, Res); 4884 if (DisableScheduling) 4885 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 4886 return 0; 4887 case Intrinsic::invariant_end: 4888 case Intrinsic::lifetime_end: 4889 // Discard region information. 4890 return 0; 4891 } 4892 } 4893 4894 /// Test if the given instruction is in a position to be optimized 4895 /// with a tail-call. This roughly means that it's in a block with 4896 /// a return and there's nothing that needs to be scheduled 4897 /// between it and the return. 4898 /// 4899 /// This function only tests target-independent requirements. 4900 /// For target-dependent requirements, a target should override 4901 /// TargetLowering::IsEligibleForTailCallOptimization. 4902 /// 4903 static bool 4904 isInTailCallPosition(const Instruction *I, Attributes CalleeRetAttr, 4905 const TargetLowering &TLI) { 4906 const BasicBlock *ExitBB = I->getParent(); 4907 const TerminatorInst *Term = ExitBB->getTerminator(); 4908 const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); 4909 const Function *F = ExitBB->getParent(); 4910 4911 // The block must end in a return statement or an unreachable. 4912 if (!Ret && !isa<UnreachableInst>(Term)) return false; 4913 4914 // If I will have a chain, make sure no other instruction that will have a 4915 // chain interposes between I and the return. 4916 if (I->mayHaveSideEffects() || I->mayReadFromMemory() || 4917 !I->isSafeToSpeculativelyExecute()) 4918 for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ; 4919 --BBI) { 4920 if (&*BBI == I) 4921 break; 4922 if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || 4923 !BBI->isSafeToSpeculativelyExecute()) 4924 return false; 4925 } 4926 4927 // If the block ends with a void return or unreachable, it doesn't matter 4928 // what the call's return type is. 4929 if (!Ret || Ret->getNumOperands() == 0) return true; 4930 4931 // If the return value is undef, it doesn't matter what the call's 4932 // return type is. 4933 if (isa<UndefValue>(Ret->getOperand(0))) return true; 4934 4935 // Conservatively require the attributes of the call to match those of 4936 // the return. Ignore noalias because it doesn't affect the call sequence. 4937 unsigned CallerRetAttr = F->getAttributes().getRetAttributes(); 4938 if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias) 4939 return false; 4940 4941 // Otherwise, make sure the unmodified return value of I is the return value. 4942 for (const Instruction *U = dyn_cast<Instruction>(Ret->getOperand(0)); ; 4943 U = dyn_cast<Instruction>(U->getOperand(0))) { 4944 if (!U) 4945 return false; 4946 if (!U->hasOneUse()) 4947 return false; 4948 if (U == I) 4949 break; 4950 // Check for a truly no-op truncate. 4951 if (isa<TruncInst>(U) && 4952 TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType())) 4953 continue; 4954 // Check for a truly no-op bitcast. 4955 if (isa<BitCastInst>(U) && 4956 (U->getOperand(0)->getType() == U->getType() || 4957 (isa<PointerType>(U->getOperand(0)->getType()) && 4958 isa<PointerType>(U->getType())))) 4959 continue; 4960 // Otherwise it's not a true no-op. 4961 return false; 4962 } 4963 4964 return true; 4965 } 4966 4967 void SelectionDAGBuilder::LowerCallTo(CallSite CS, SDValue Callee, 4968 bool isTailCall, 4969 MachineBasicBlock *LandingPad) { 4970 const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 4971 const FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 4972 const Type *RetTy = FTy->getReturnType(); 4973 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 4974 unsigned BeginLabel = 0, EndLabel = 0; 4975 4976 TargetLowering::ArgListTy Args; 4977 TargetLowering::ArgListEntry Entry; 4978 Args.reserve(CS.arg_size()); 4979 4980 // Check whether the function can return without sret-demotion. 4981 SmallVector<EVT, 4> OutVTs; 4982 SmallVector<ISD::ArgFlagsTy, 4> OutsFlags; 4983 SmallVector<uint64_t, 4> Offsets; 4984 getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 4985 OutVTs, OutsFlags, TLI, &Offsets); 4986 4987 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 4988 FTy->isVarArg(), OutVTs, OutsFlags, DAG); 4989 4990 SDValue DemoteStackSlot; 4991 4992 if (!CanLowerReturn) { 4993 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 4994 FTy->getReturnType()); 4995 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 4996 FTy->getReturnType()); 4997 MachineFunction &MF = DAG.getMachineFunction(); 4998 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 4999 const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 5000 5001 DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5002 Entry.Node = DemoteStackSlot; 5003 Entry.Ty = StackSlotPtrType; 5004 Entry.isSExt = false; 5005 Entry.isZExt = false; 5006 Entry.isInReg = false; 5007 Entry.isSRet = true; 5008 Entry.isNest = false; 5009 Entry.isByVal = false; 5010 Entry.Alignment = Align; 5011 Args.push_back(Entry); 5012 RetTy = Type::getVoidTy(FTy->getContext()); 5013 } 5014 5015 for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5016 i != e; ++i) { 5017 SDValue ArgNode = getValue(*i); 5018 Entry.Node = ArgNode; Entry.Ty = (*i)->getType(); 5019 5020 unsigned attrInd = i - CS.arg_begin() + 1; 5021 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 5022 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 5023 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 5024 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 5025 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 5026 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 5027 Entry.Alignment = CS.getParamAlignment(attrInd); 5028 Args.push_back(Entry); 5029 } 5030 5031 if (LandingPad && MMI) { 5032 // Insert a label before the invoke call to mark the try range. This can be 5033 // used to detect deletion of the invoke via the MachineModuleInfo. 5034 BeginLabel = MMI->NextLabelID(); 5035 5036 // Both PendingLoads and PendingExports must be flushed here; 5037 // this call might not return. 5038 (void)getRoot(); 5039 DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(), 5040 getControlRoot(), BeginLabel)); 5041 } 5042 5043 // Check if target-independent constraints permit a tail call here. 5044 // Target-dependent constraints are checked within TLI.LowerCallTo. 5045 if (isTailCall && 5046 !isInTailCallPosition(CS.getInstruction(), 5047 CS.getAttributes().getRetAttributes(), 5048 TLI)) 5049 isTailCall = false; 5050 5051 std::pair<SDValue,SDValue> Result = 5052 TLI.LowerCallTo(getRoot(), RetTy, 5053 CS.paramHasAttr(0, Attribute::SExt), 5054 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), 5055 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), 5056 CS.getCallingConv(), 5057 isTailCall, 5058 !CS.getInstruction()->use_empty(), 5059 Callee, Args, DAG, getCurDebugLoc(), SDNodeOrder); 5060 assert((isTailCall || Result.second.getNode()) && 5061 "Non-null chain expected with non-tail call!"); 5062 assert((Result.second.getNode() || !Result.first.getNode()) && 5063 "Null value expected with tail call!"); 5064 if (Result.first.getNode()) { 5065 setValue(CS.getInstruction(), Result.first); 5066 if (DisableScheduling) 5067 DAG.AssignOrdering(Result.first.getNode(), SDNodeOrder); 5068 } else if (!CanLowerReturn && Result.second.getNode()) { 5069 // The instruction result is the result of loading from the 5070 // hidden sret parameter. 5071 SmallVector<EVT, 1> PVTs; 5072 const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 5073 5074 ComputeValueVTs(TLI, PtrRetTy, PVTs); 5075 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 5076 EVT PtrVT = PVTs[0]; 5077 unsigned NumValues = OutVTs.size(); 5078 SmallVector<SDValue, 4> Values(NumValues); 5079 SmallVector<SDValue, 4> Chains(NumValues); 5080 5081 for (unsigned i = 0; i < NumValues; ++i) { 5082 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 5083 DemoteStackSlot, 5084 DAG.getConstant(Offsets[i], PtrVT)); 5085 SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second, 5086 Add, NULL, Offsets[i], false, 1); 5087 Values[i] = L; 5088 Chains[i] = L.getValue(1); 5089 } 5090 5091 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 5092 MVT::Other, &Chains[0], NumValues); 5093 PendingLoads.push_back(Chain); 5094 5095 SDValue MV = DAG.getNode(ISD::MERGE_VALUES, 5096 getCurDebugLoc(), 5097 DAG.getVTList(&OutVTs[0], NumValues), 5098 &Values[0], NumValues); 5099 setValue(CS.getInstruction(), MV); 5100 5101 if (DisableScheduling) { 5102 DAG.AssignOrdering(Chain.getNode(), SDNodeOrder); 5103 DAG.AssignOrdering(MV.getNode(), SDNodeOrder); 5104 } 5105 } 5106 5107 // As a special case, a null chain means that a tail call has been emitted and 5108 // the DAG root is already updated. 5109 if (Result.second.getNode()) { 5110 DAG.setRoot(Result.second); 5111 if (DisableScheduling) 5112 DAG.AssignOrdering(Result.second.getNode(), SDNodeOrder); 5113 } else { 5114 HasTailCall = true; 5115 } 5116 5117 if (LandingPad && MMI) { 5118 // Insert a label at the end of the invoke call to mark the try range. This 5119 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5120 EndLabel = MMI->NextLabelID(); 5121 DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(), 5122 getRoot(), EndLabel)); 5123 5124 // Inform MachineModuleInfo of range. 5125 MMI->addInvoke(LandingPad, BeginLabel, EndLabel); 5126 } 5127 } 5128 5129 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5130 /// value is equal or not-equal to zero. 5131 static bool IsOnlyUsedInZeroEqualityComparison(Value *V) { 5132 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); 5133 UI != E; ++UI) { 5134 if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 5135 if (IC->isEquality()) 5136 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5137 if (C->isNullValue()) 5138 continue; 5139 // Unknown instruction. 5140 return false; 5141 } 5142 return true; 5143 } 5144 5145 static SDValue getMemCmpLoad(Value *PtrVal, MVT LoadVT, const Type *LoadTy, 5146 SelectionDAGBuilder &Builder) { 5147 5148 // Check to see if this load can be trivially constant folded, e.g. if the 5149 // input is from a string literal. 5150 if (Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5151 // Cast pointer to the type we really want to load. 5152 LoadInput = ConstantExpr::getBitCast(LoadInput, 5153 PointerType::getUnqual(LoadTy)); 5154 5155 if (Constant *LoadCst = ConstantFoldLoadFromConstPtr(LoadInput, Builder.TD)) 5156 return Builder.getValue(LoadCst); 5157 } 5158 5159 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5160 // still constant memory, the input chain can be the entry node. 5161 SDValue Root; 5162 bool ConstantMemory = false; 5163 5164 // Do not serialize (non-volatile) loads of constant memory with anything. 5165 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5166 Root = Builder.DAG.getEntryNode(); 5167 ConstantMemory = true; 5168 } else { 5169 // Do not serialize non-volatile loads against each other. 5170 Root = Builder.DAG.getRoot(); 5171 } 5172 5173 SDValue Ptr = Builder.getValue(PtrVal); 5174 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 5175 Ptr, PtrVal /*SrcValue*/, 0/*SVOffset*/, 5176 false /*volatile*/, 1 /* align=1 */); 5177 5178 if (!ConstantMemory) 5179 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5180 return LoadVal; 5181 } 5182 5183 5184 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5185 /// If so, return true and lower it, otherwise return false and it will be 5186 /// lowered like a normal call. 5187 bool SelectionDAGBuilder::visitMemCmpCall(CallInst &I) { 5188 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5189 if (I.getNumOperands() != 4) 5190 return false; 5191 5192 Value *LHS = I.getOperand(1), *RHS = I.getOperand(2); 5193 if (!isa<PointerType>(LHS->getType()) || !isa<PointerType>(RHS->getType()) || 5194 !isa<IntegerType>(I.getOperand(3)->getType()) || 5195 !isa<IntegerType>(I.getType())) 5196 return false; 5197 5198 ConstantInt *Size = dyn_cast<ConstantInt>(I.getOperand(3)); 5199 5200 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5201 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5202 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 5203 bool ActuallyDoIt = true; 5204 MVT LoadVT; 5205 const Type *LoadTy; 5206 switch (Size->getZExtValue()) { 5207 default: 5208 LoadVT = MVT::Other; 5209 LoadTy = 0; 5210 ActuallyDoIt = false; 5211 break; 5212 case 2: 5213 LoadVT = MVT::i16; 5214 LoadTy = Type::getInt16Ty(Size->getContext()); 5215 break; 5216 case 4: 5217 LoadVT = MVT::i32; 5218 LoadTy = Type::getInt32Ty(Size->getContext()); 5219 break; 5220 case 8: 5221 LoadVT = MVT::i64; 5222 LoadTy = Type::getInt64Ty(Size->getContext()); 5223 break; 5224 /* 5225 case 16: 5226 LoadVT = MVT::v4i32; 5227 LoadTy = Type::getInt32Ty(Size->getContext()); 5228 LoadTy = VectorType::get(LoadTy, 4); 5229 break; 5230 */ 5231 } 5232 5233 // This turns into unaligned loads. We only do this if the target natively 5234 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5235 // we'll only produce a small number of byte loads. 5236 5237 // Require that we can find a legal MVT, and only do this if the target 5238 // supports unaligned loads of that type. Expanding into byte loads would 5239 // bloat the code. 5240 if (ActuallyDoIt && Size->getZExtValue() > 4) { 5241 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5242 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5243 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 5244 ActuallyDoIt = false; 5245 } 5246 5247 if (ActuallyDoIt) { 5248 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5249 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5250 5251 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 5252 ISD::SETNE); 5253 EVT CallVT = TLI.getValueType(I.getType(), true); 5254 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 5255 return true; 5256 } 5257 } 5258 5259 5260 return false; 5261 } 5262 5263 5264 void SelectionDAGBuilder::visitCall(CallInst &I) { 5265 const char *RenameFn = 0; 5266 if (Function *F = I.getCalledFunction()) { 5267 if (F->isDeclaration()) { 5268 const TargetIntrinsicInfo *II = TLI.getTargetMachine().getIntrinsicInfo(); 5269 if (II) { 5270 if (unsigned IID = II->getIntrinsicID(F)) { 5271 RenameFn = visitIntrinsicCall(I, IID); 5272 if (!RenameFn) 5273 return; 5274 } 5275 } 5276 if (unsigned IID = F->getIntrinsicID()) { 5277 RenameFn = visitIntrinsicCall(I, IID); 5278 if (!RenameFn) 5279 return; 5280 } 5281 } 5282 5283 // Check for well-known libc/libm calls. If the function is internal, it 5284 // can't be a library call. 5285 if (!F->hasLocalLinkage() && F->hasName()) { 5286 StringRef Name = F->getName(); 5287 if (Name == "copysign" || Name == "copysignf") { 5288 if (I.getNumOperands() == 3 && // Basic sanity checks. 5289 I.getOperand(1)->getType()->isFloatingPoint() && 5290 I.getType() == I.getOperand(1)->getType() && 5291 I.getType() == I.getOperand(2)->getType()) { 5292 SDValue LHS = getValue(I.getOperand(1)); 5293 SDValue RHS = getValue(I.getOperand(2)); 5294 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 5295 LHS.getValueType(), LHS, RHS)); 5296 return; 5297 } 5298 } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") { 5299 if (I.getNumOperands() == 2 && // Basic sanity checks. 5300 I.getOperand(1)->getType()->isFloatingPoint() && 5301 I.getType() == I.getOperand(1)->getType()) { 5302 SDValue Tmp = getValue(I.getOperand(1)); 5303 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), 5304 Tmp.getValueType(), Tmp)); 5305 return; 5306 } 5307 } else if (Name == "sin" || Name == "sinf" || Name == "sinl") { 5308 if (I.getNumOperands() == 2 && // Basic sanity checks. 5309 I.getOperand(1)->getType()->isFloatingPoint() && 5310 I.getType() == I.getOperand(1)->getType() && 5311 I.onlyReadsMemory()) { 5312 SDValue Tmp = getValue(I.getOperand(1)); 5313 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), 5314 Tmp.getValueType(), Tmp)); 5315 return; 5316 } 5317 } else if (Name == "cos" || Name == "cosf" || Name == "cosl") { 5318 if (I.getNumOperands() == 2 && // Basic sanity checks. 5319 I.getOperand(1)->getType()->isFloatingPoint() && 5320 I.getType() == I.getOperand(1)->getType() && 5321 I.onlyReadsMemory()) { 5322 SDValue Tmp = getValue(I.getOperand(1)); 5323 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), 5324 Tmp.getValueType(), Tmp)); 5325 return; 5326 } 5327 } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") { 5328 if (I.getNumOperands() == 2 && // Basic sanity checks. 5329 I.getOperand(1)->getType()->isFloatingPoint() && 5330 I.getType() == I.getOperand(1)->getType() && 5331 I.onlyReadsMemory()) { 5332 SDValue Tmp = getValue(I.getOperand(1)); 5333 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), 5334 Tmp.getValueType(), Tmp)); 5335 return; 5336 } 5337 } else if (Name == "memcmp") { 5338 if (visitMemCmpCall(I)) 5339 return; 5340 } 5341 } 5342 } else if (isa<InlineAsm>(I.getOperand(0))) { 5343 visitInlineAsm(&I); 5344 return; 5345 } 5346 5347 SDValue Callee; 5348 if (!RenameFn) 5349 Callee = getValue(I.getOperand(0)); 5350 else 5351 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 5352 5353 // Check if we can potentially perform a tail call. More detailed checking is 5354 // be done within LowerCallTo, after more information about the call is known. 5355 bool isTailCall = PerformTailCallOpt && I.isTailCall(); 5356 5357 LowerCallTo(&I, Callee, isTailCall); 5358 } 5359 5360 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 5361 /// this value and returns the result as a ValueVT value. This uses 5362 /// Chain/Flag as the input and updates them for the output Chain/Flag. 5363 /// If the Flag pointer is NULL, no flag is used. 5364 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl, 5365 unsigned Order, SDValue &Chain, 5366 SDValue *Flag) const { 5367 // Assemble the legal parts into the final values. 5368 SmallVector<SDValue, 4> Values(ValueVTs.size()); 5369 SmallVector<SDValue, 8> Parts; 5370 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 5371 // Copy the legal parts from the registers. 5372 EVT ValueVT = ValueVTs[Value]; 5373 unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVT); 5374 EVT RegisterVT = RegVTs[Value]; 5375 5376 Parts.resize(NumRegs); 5377 for (unsigned i = 0; i != NumRegs; ++i) { 5378 SDValue P; 5379 if (Flag == 0) { 5380 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 5381 } else { 5382 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 5383 *Flag = P.getValue(2); 5384 } 5385 5386 Chain = P.getValue(1); 5387 5388 if (DisableScheduling) 5389 DAG.AssignOrdering(P.getNode(), Order); 5390 5391 // If the source register was virtual and if we know something about it, 5392 // add an assert node. 5393 if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) && 5394 RegisterVT.isInteger() && !RegisterVT.isVector()) { 5395 unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister; 5396 FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); 5397 if (FLI.LiveOutRegInfo.size() > SlotNo) { 5398 FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo]; 5399 5400 unsigned RegSize = RegisterVT.getSizeInBits(); 5401 unsigned NumSignBits = LOI.NumSignBits; 5402 unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes(); 5403 5404 // FIXME: We capture more information than the dag can represent. For 5405 // now, just use the tightest assertzext/assertsext possible. 5406 bool isSExt = true; 5407 EVT FromVT(MVT::Other); 5408 if (NumSignBits == RegSize) 5409 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 5410 else if (NumZeroBits >= RegSize-1) 5411 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 5412 else if (NumSignBits > RegSize-8) 5413 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 5414 else if (NumZeroBits >= RegSize-8) 5415 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 5416 else if (NumSignBits > RegSize-16) 5417 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 5418 else if (NumZeroBits >= RegSize-16) 5419 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 5420 else if (NumSignBits > RegSize-32) 5421 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 5422 else if (NumZeroBits >= RegSize-32) 5423 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 5424 5425 if (FromVT != MVT::Other) { 5426 P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 5427 RegisterVT, P, DAG.getValueType(FromVT)); 5428 5429 if (DisableScheduling) 5430 DAG.AssignOrdering(P.getNode(), Order); 5431 } 5432 } 5433 } 5434 5435 Parts[i] = P; 5436 } 5437 5438 Values[Value] = getCopyFromParts(DAG, dl, Order, Parts.begin(), 5439 NumRegs, RegisterVT, ValueVT); 5440 if (DisableScheduling) 5441 DAG.AssignOrdering(Values[Value].getNode(), Order); 5442 Part += NumRegs; 5443 Parts.clear(); 5444 } 5445 5446 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 5447 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 5448 &Values[0], ValueVTs.size()); 5449 if (DisableScheduling) 5450 DAG.AssignOrdering(Res.getNode(), Order); 5451 return Res; 5452 } 5453 5454 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 5455 /// specified value into the registers specified by this object. This uses 5456 /// Chain/Flag as the input and updates them for the output Chain/Flag. 5457 /// If the Flag pointer is NULL, no flag is used. 5458 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 5459 unsigned Order, SDValue &Chain, 5460 SDValue *Flag) const { 5461 // Get the list of the values's legal parts. 5462 unsigned NumRegs = Regs.size(); 5463 SmallVector<SDValue, 8> Parts(NumRegs); 5464 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 5465 EVT ValueVT = ValueVTs[Value]; 5466 unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), ValueVT); 5467 EVT RegisterVT = RegVTs[Value]; 5468 5469 getCopyToParts(DAG, dl, Order, 5470 Val.getValue(Val.getResNo() + Value), 5471 &Parts[Part], NumParts, RegisterVT); 5472 Part += NumParts; 5473 } 5474 5475 // Copy the parts into the registers. 5476 SmallVector<SDValue, 8> Chains(NumRegs); 5477 for (unsigned i = 0; i != NumRegs; ++i) { 5478 SDValue Part; 5479 if (Flag == 0) { 5480 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 5481 } else { 5482 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 5483 *Flag = Part.getValue(1); 5484 } 5485 5486 Chains[i] = Part.getValue(0); 5487 5488 if (DisableScheduling) 5489 DAG.AssignOrdering(Part.getNode(), Order); 5490 } 5491 5492 if (NumRegs == 1 || Flag) 5493 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 5494 // flagged to it. That is the CopyToReg nodes and the user are considered 5495 // a single scheduling unit. If we create a TokenFactor and return it as 5496 // chain, then the TokenFactor is both a predecessor (operand) of the 5497 // user as well as a successor (the TF operands are flagged to the user). 5498 // c1, f1 = CopyToReg 5499 // c2, f2 = CopyToReg 5500 // c3 = TokenFactor c1, c2 5501 // ... 5502 // = op c3, ..., f2 5503 Chain = Chains[NumRegs-1]; 5504 else 5505 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 5506 5507 if (DisableScheduling) 5508 DAG.AssignOrdering(Chain.getNode(), Order); 5509 } 5510 5511 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 5512 /// operand list. This adds the code marker and includes the number of 5513 /// values added into it. 5514 void RegsForValue::AddInlineAsmOperands(unsigned Code, 5515 bool HasMatching,unsigned MatchingIdx, 5516 SelectionDAG &DAG, unsigned Order, 5517 std::vector<SDValue> &Ops) const { 5518 assert(Regs.size() < (1 << 13) && "Too many inline asm outputs!"); 5519 unsigned Flag = Code | (Regs.size() << 3); 5520 if (HasMatching) 5521 Flag |= 0x80000000 | (MatchingIdx << 16); 5522 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 5523 Ops.push_back(Res); 5524 5525 if (DisableScheduling) 5526 DAG.AssignOrdering(Res.getNode(), Order); 5527 5528 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 5529 unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 5530 EVT RegisterVT = RegVTs[Value]; 5531 for (unsigned i = 0; i != NumRegs; ++i) { 5532 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 5533 SDValue Res = DAG.getRegister(Regs[Reg++], RegisterVT); 5534 Ops.push_back(Res); 5535 5536 if (DisableScheduling) 5537 DAG.AssignOrdering(Res.getNode(), Order); 5538 } 5539 } 5540 } 5541 5542 /// isAllocatableRegister - If the specified register is safe to allocate, 5543 /// i.e. it isn't a stack pointer or some other special register, return the 5544 /// register class for the register. Otherwise, return null. 5545 static const TargetRegisterClass * 5546 isAllocatableRegister(unsigned Reg, MachineFunction &MF, 5547 const TargetLowering &TLI, 5548 const TargetRegisterInfo *TRI) { 5549 EVT FoundVT = MVT::Other; 5550 const TargetRegisterClass *FoundRC = 0; 5551 for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(), 5552 E = TRI->regclass_end(); RCI != E; ++RCI) { 5553 EVT ThisVT = MVT::Other; 5554 5555 const TargetRegisterClass *RC = *RCI; 5556 // If none of the the value types for this register class are valid, we 5557 // can't use it. For example, 64-bit reg classes on 32-bit targets. 5558 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); 5559 I != E; ++I) { 5560 if (TLI.isTypeLegal(*I)) { 5561 // If we have already found this register in a different register class, 5562 // choose the one with the largest VT specified. For example, on 5563 // PowerPC, we favor f64 register classes over f32. 5564 if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) { 5565 ThisVT = *I; 5566 break; 5567 } 5568 } 5569 } 5570 5571 if (ThisVT == MVT::Other) continue; 5572 5573 // NOTE: This isn't ideal. In particular, this might allocate the 5574 // frame pointer in functions that need it (due to them not being taken 5575 // out of allocation, because a variable sized allocation hasn't been seen 5576 // yet). This is a slight code pessimization, but should still work. 5577 for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF), 5578 E = RC->allocation_order_end(MF); I != E; ++I) 5579 if (*I == Reg) { 5580 // We found a matching register class. Keep looking at others in case 5581 // we find one with larger registers that this physreg is also in. 5582 FoundRC = RC; 5583 FoundVT = ThisVT; 5584 break; 5585 } 5586 } 5587 return FoundRC; 5588 } 5589 5590 5591 namespace llvm { 5592 /// AsmOperandInfo - This contains information for each constraint that we are 5593 /// lowering. 5594 class VISIBILITY_HIDDEN SDISelAsmOperandInfo : 5595 public TargetLowering::AsmOperandInfo { 5596 public: 5597 /// CallOperand - If this is the result output operand or a clobber 5598 /// this is null, otherwise it is the incoming operand to the CallInst. 5599 /// This gets modified as the asm is processed. 5600 SDValue CallOperand; 5601 5602 /// AssignedRegs - If this is a register or register class operand, this 5603 /// contains the set of register corresponding to the operand. 5604 RegsForValue AssignedRegs; 5605 5606 explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info) 5607 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 5608 } 5609 5610 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers 5611 /// busy in OutputRegs/InputRegs. 5612 void MarkAllocatedRegs(bool isOutReg, bool isInReg, 5613 std::set<unsigned> &OutputRegs, 5614 std::set<unsigned> &InputRegs, 5615 const TargetRegisterInfo &TRI) const { 5616 if (isOutReg) { 5617 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5618 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); 5619 } 5620 if (isInReg) { 5621 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5622 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); 5623 } 5624 } 5625 5626 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5627 /// corresponds to. If there is no Value* for this operand, it returns 5628 /// MVT::Other. 5629 EVT getCallOperandValEVT(LLVMContext &Context, 5630 const TargetLowering &TLI, 5631 const TargetData *TD) const { 5632 if (CallOperandVal == 0) return MVT::Other; 5633 5634 if (isa<BasicBlock>(CallOperandVal)) 5635 return TLI.getPointerTy(); 5636 5637 const llvm::Type *OpTy = CallOperandVal->getType(); 5638 5639 // If this is an indirect operand, the operand is a pointer to the 5640 // accessed type. 5641 if (isIndirect) { 5642 const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5643 if (!PtrTy) 5644 llvm_report_error("Indirect operand for inline asm not a pointer!"); 5645 OpTy = PtrTy->getElementType(); 5646 } 5647 5648 // If OpTy is not a single value, it may be a struct/union that we 5649 // can tile with integers. 5650 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5651 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5652 switch (BitSize) { 5653 default: break; 5654 case 1: 5655 case 8: 5656 case 16: 5657 case 32: 5658 case 64: 5659 case 128: 5660 OpTy = IntegerType::get(Context, BitSize); 5661 break; 5662 } 5663 } 5664 5665 return TLI.getValueType(OpTy, true); 5666 } 5667 5668 private: 5669 /// MarkRegAndAliases - Mark the specified register and all aliases in the 5670 /// specified set. 5671 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, 5672 const TargetRegisterInfo &TRI) { 5673 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); 5674 Regs.insert(Reg); 5675 if (const unsigned *Aliases = TRI.getAliasSet(Reg)) 5676 for (; *Aliases; ++Aliases) 5677 Regs.insert(*Aliases); 5678 } 5679 }; 5680 } // end llvm namespace. 5681 5682 5683 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5684 /// specified operand. We prefer to assign virtual registers, to allow the 5685 /// register allocator to handle the assignment process. However, if the asm 5686 /// uses features that we can't model on machineinstrs, we have SDISel do the 5687 /// allocation. This produces generally horrible, but correct, code. 5688 /// 5689 /// OpInfo describes the operand. 5690 /// Input and OutputRegs are the set of already allocated physical registers. 5691 /// 5692 void SelectionDAGBuilder:: 5693 GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, 5694 std::set<unsigned> &OutputRegs, 5695 std::set<unsigned> &InputRegs) { 5696 LLVMContext &Context = FuncInfo.Fn->getContext(); 5697 5698 // Compute whether this value requires an input register, an output register, 5699 // or both. 5700 bool isOutReg = false; 5701 bool isInReg = false; 5702 switch (OpInfo.Type) { 5703 case InlineAsm::isOutput: 5704 isOutReg = true; 5705 5706 // If there is an input constraint that matches this, we need to reserve 5707 // the input register so no other inputs allocate to it. 5708 isInReg = OpInfo.hasMatchingInput(); 5709 break; 5710 case InlineAsm::isInput: 5711 isInReg = true; 5712 isOutReg = false; 5713 break; 5714 case InlineAsm::isClobber: 5715 isOutReg = true; 5716 isInReg = true; 5717 break; 5718 } 5719 5720 5721 MachineFunction &MF = DAG.getMachineFunction(); 5722 SmallVector<unsigned, 4> Regs; 5723 5724 // If this is a constraint for a single physreg, or a constraint for a 5725 // register class, find it. 5726 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5727 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5728 OpInfo.ConstraintVT); 5729 5730 unsigned NumRegs = 1; 5731 if (OpInfo.ConstraintVT != MVT::Other) { 5732 // If this is a FP input in an integer register (or visa versa) insert a bit 5733 // cast of the input value. More generally, handle any case where the input 5734 // value disagrees with the register class we plan to stick this in. 5735 if (OpInfo.Type == InlineAsm::isInput && 5736 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5737 // Try to convert to the first EVT that the reg class contains. If the 5738 // types are identical size, use a bitcast to convert (e.g. two differing 5739 // vector types). 5740 EVT RegVT = *PhysReg.second->vt_begin(); 5741 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5742 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5743 RegVT, OpInfo.CallOperand); 5744 OpInfo.ConstraintVT = RegVT; 5745 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5746 // If the input is a FP value and we want it in FP registers, do a 5747 // bitcast to the corresponding integer type. This turns an f64 value 5748 // into i64, which can be passed with two i32 values on a 32-bit 5749 // machine. 5750 RegVT = EVT::getIntegerVT(Context, 5751 OpInfo.ConstraintVT.getSizeInBits()); 5752 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5753 RegVT, OpInfo.CallOperand); 5754 OpInfo.ConstraintVT = RegVT; 5755 } 5756 5757 if (DisableScheduling) 5758 DAG.AssignOrdering(OpInfo.CallOperand.getNode(), SDNodeOrder); 5759 } 5760 5761 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5762 } 5763 5764 EVT RegVT; 5765 EVT ValueVT = OpInfo.ConstraintVT; 5766 5767 // If this is a constraint for a specific physical register, like {r17}, 5768 // assign it now. 5769 if (unsigned AssignedReg = PhysReg.first) { 5770 const TargetRegisterClass *RC = PhysReg.second; 5771 if (OpInfo.ConstraintVT == MVT::Other) 5772 ValueVT = *RC->vt_begin(); 5773 5774 // Get the actual register value type. This is important, because the user 5775 // may have asked for (e.g.) the AX register in i32 type. We need to 5776 // remember that AX is actually i16 to get the right extension. 5777 RegVT = *RC->vt_begin(); 5778 5779 // This is a explicit reference to a physical register. 5780 Regs.push_back(AssignedReg); 5781 5782 // If this is an expanded reference, add the rest of the regs to Regs. 5783 if (NumRegs != 1) { 5784 TargetRegisterClass::iterator I = RC->begin(); 5785 for (; *I != AssignedReg; ++I) 5786 assert(I != RC->end() && "Didn't find reg!"); 5787 5788 // Already added the first reg. 5789 --NumRegs; ++I; 5790 for (; NumRegs; --NumRegs, ++I) { 5791 assert(I != RC->end() && "Ran out of registers to allocate!"); 5792 Regs.push_back(*I); 5793 } 5794 } 5795 5796 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT); 5797 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5798 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5799 return; 5800 } 5801 5802 // Otherwise, if this was a reference to an LLVM register class, create vregs 5803 // for this reference. 5804 if (const TargetRegisterClass *RC = PhysReg.second) { 5805 RegVT = *RC->vt_begin(); 5806 if (OpInfo.ConstraintVT == MVT::Other) 5807 ValueVT = RegVT; 5808 5809 // Create the appropriate number of virtual registers. 5810 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5811 for (; NumRegs; --NumRegs) 5812 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5813 5814 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT); 5815 return; 5816 } 5817 5818 // This is a reference to a register class that doesn't directly correspond 5819 // to an LLVM register class. Allocate NumRegs consecutive, available, 5820 // registers from the class. 5821 std::vector<unsigned> RegClassRegs 5822 = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode, 5823 OpInfo.ConstraintVT); 5824 5825 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5826 unsigned NumAllocated = 0; 5827 for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) { 5828 unsigned Reg = RegClassRegs[i]; 5829 // See if this register is available. 5830 if ((isOutReg && OutputRegs.count(Reg)) || // Already used. 5831 (isInReg && InputRegs.count(Reg))) { // Already used. 5832 // Make sure we find consecutive registers. 5833 NumAllocated = 0; 5834 continue; 5835 } 5836 5837 // Check to see if this register is allocatable (i.e. don't give out the 5838 // stack pointer). 5839 const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI); 5840 if (!RC) { // Couldn't allocate this register. 5841 // Reset NumAllocated to make sure we return consecutive registers. 5842 NumAllocated = 0; 5843 continue; 5844 } 5845 5846 // Okay, this register is good, we can use it. 5847 ++NumAllocated; 5848 5849 // If we allocated enough consecutive registers, succeed. 5850 if (NumAllocated == NumRegs) { 5851 unsigned RegStart = (i-NumAllocated)+1; 5852 unsigned RegEnd = i+1; 5853 // Mark all of the allocated registers used. 5854 for (unsigned i = RegStart; i != RegEnd; ++i) 5855 Regs.push_back(RegClassRegs[i]); 5856 5857 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(), 5858 OpInfo.ConstraintVT); 5859 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5860 return; 5861 } 5862 } 5863 5864 // Otherwise, we couldn't allocate enough registers for this. 5865 } 5866 5867 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being 5868 /// processed uses a memory 'm' constraint. 5869 static bool 5870 hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos, 5871 const TargetLowering &TLI) { 5872 for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { 5873 InlineAsm::ConstraintInfo &CI = CInfos[i]; 5874 for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { 5875 TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); 5876 if (CType == TargetLowering::C_Memory) 5877 return true; 5878 } 5879 5880 // Indirect operand accesses access memory. 5881 if (CI.isIndirect) 5882 return true; 5883 } 5884 5885 return false; 5886 } 5887 5888 /// visitInlineAsm - Handle a call to an InlineAsm object. 5889 /// 5890 void SelectionDAGBuilder::visitInlineAsm(CallSite CS) { 5891 InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5892 5893 /// ConstraintOperands - Information about all of the constraints. 5894 std::vector<SDISelAsmOperandInfo> ConstraintOperands; 5895 5896 std::set<unsigned> OutputRegs, InputRegs; 5897 5898 // Do a prepass over the constraints, canonicalizing them, and building up the 5899 // ConstraintOperands list. 5900 std::vector<InlineAsm::ConstraintInfo> 5901 ConstraintInfos = IA->ParseConstraints(); 5902 5903 bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI); 5904 5905 SDValue Chain, Flag; 5906 5907 // We won't need to flush pending loads if this asm doesn't touch 5908 // memory and is nonvolatile. 5909 if (hasMemory || IA->hasSideEffects()) 5910 Chain = getRoot(); 5911 else 5912 Chain = DAG.getRoot(); 5913 5914 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5915 unsigned ResNo = 0; // ResNo - The result number of the next output. 5916 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 5917 ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i])); 5918 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5919 5920 EVT OpVT = MVT::Other; 5921 5922 // Compute the value type for each operand. 5923 switch (OpInfo.Type) { 5924 case InlineAsm::isOutput: 5925 // Indirect outputs just consume an argument. 5926 if (OpInfo.isIndirect) { 5927 OpInfo.CallOperandVal = CS.getArgument(ArgNo++); 5928 break; 5929 } 5930 5931 // The return value of the call is this value. As such, there is no 5932 // corresponding argument. 5933 assert(CS.getType() != Type::getVoidTy(*DAG.getContext()) && 5934 "Bad inline asm!"); 5935 if (const StructType *STy = dyn_cast<StructType>(CS.getType())) { 5936 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5937 } else { 5938 assert(ResNo == 0 && "Asm only has one result!"); 5939 OpVT = TLI.getValueType(CS.getType()); 5940 } 5941 ++ResNo; 5942 break; 5943 case InlineAsm::isInput: 5944 OpInfo.CallOperandVal = CS.getArgument(ArgNo++); 5945 break; 5946 case InlineAsm::isClobber: 5947 // Nothing to do. 5948 break; 5949 } 5950 5951 // If this is an input or an indirect output, process the call argument. 5952 // BasicBlocks are labels, currently appearing only in asm's. 5953 if (OpInfo.CallOperandVal) { 5954 // Strip bitcasts, if any. This mostly comes up for functions. 5955 OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts(); 5956 5957 if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5958 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5959 } else { 5960 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5961 } 5962 5963 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5964 } 5965 5966 OpInfo.ConstraintVT = OpVT; 5967 } 5968 5969 // Second pass over the constraints: compute which constraint option to use 5970 // and assign registers to constraints that want a specific physreg. 5971 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 5972 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5973 5974 // If this is an output operand with a matching input operand, look up the 5975 // matching input. If their types mismatch, e.g. one is an integer, the 5976 // other is floating point, or their sizes are different, flag it as an 5977 // error. 5978 if (OpInfo.hasMatchingInput()) { 5979 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5980 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5981 if ((OpInfo.ConstraintVT.isInteger() != 5982 Input.ConstraintVT.isInteger()) || 5983 (OpInfo.ConstraintVT.getSizeInBits() != 5984 Input.ConstraintVT.getSizeInBits())) { 5985 llvm_report_error("Unsupported asm: input constraint" 5986 " with a matching output constraint of incompatible" 5987 " type!"); 5988 } 5989 Input.ConstraintVT = OpInfo.ConstraintVT; 5990 } 5991 } 5992 5993 // Compute the constraint code and ConstraintType to use. 5994 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG); 5995 5996 // If this is a memory input, and if the operand is not indirect, do what we 5997 // need to to provide an address for the memory input. 5998 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5999 !OpInfo.isIndirect) { 6000 assert(OpInfo.Type == InlineAsm::isInput && 6001 "Can only indirectify direct input operands!"); 6002 6003 // Memory operands really want the address of the value. If we don't have 6004 // an indirect input, put it in the constpool if we can, otherwise spill 6005 // it to a stack slot. 6006 6007 // If the operand is a float, integer, or vector constant, spill to a 6008 // constant pool entry to get its address. 6009 Value *OpVal = OpInfo.CallOperandVal; 6010 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6011 isa<ConstantVector>(OpVal)) { 6012 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6013 TLI.getPointerTy()); 6014 } else { 6015 // Otherwise, create a stack slot and emit a store to it before the 6016 // asm. 6017 const Type *Ty = OpVal->getType(); 6018 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 6019 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 6020 MachineFunction &MF = DAG.getMachineFunction(); 6021 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6022 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 6023 Chain = DAG.getStore(Chain, getCurDebugLoc(), 6024 OpInfo.CallOperand, StackSlot, NULL, 0); 6025 OpInfo.CallOperand = StackSlot; 6026 } 6027 6028 // There is no longer a Value* corresponding to this operand. 6029 OpInfo.CallOperandVal = 0; 6030 6031 // It is now an indirect operand. 6032 OpInfo.isIndirect = true; 6033 } 6034 6035 // If this constraint is for a specific register, allocate it before 6036 // anything else. 6037 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6038 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 6039 } 6040 6041 ConstraintInfos.clear(); 6042 6043 // Second pass - Loop over all of the operands, assigning virtual or physregs 6044 // to register class operands. 6045 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6046 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6047 6048 // C_Register operands have already been allocated, Other/Memory don't need 6049 // to be. 6050 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6051 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 6052 } 6053 6054 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6055 std::vector<SDValue> AsmNodeOperands; 6056 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6057 AsmNodeOperands.push_back( 6058 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other)); 6059 6060 6061 // Loop over all of the inputs, copying the operand values into the 6062 // appropriate registers and processing the output regs. 6063 RegsForValue RetValRegs; 6064 6065 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6066 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6067 6068 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6069 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6070 6071 switch (OpInfo.Type) { 6072 case InlineAsm::isOutput: { 6073 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6074 OpInfo.ConstraintType != TargetLowering::C_Register) { 6075 // Memory output, or 'other' output (e.g. 'X' constraint). 6076 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6077 6078 // Add information to the INLINEASM node to know about this output. 6079 unsigned ResOpType = 4/*MEM*/ | (1<<3); 6080 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6081 TLI.getPointerTy())); 6082 AsmNodeOperands.push_back(OpInfo.CallOperand); 6083 break; 6084 } 6085 6086 // Otherwise, this is a register or register class output. 6087 6088 // Copy the output from the appropriate register. Find a register that 6089 // we can use. 6090 if (OpInfo.AssignedRegs.Regs.empty()) { 6091 llvm_report_error("Couldn't allocate output reg for" 6092 " constraint '" + OpInfo.ConstraintCode + "'!"); 6093 } 6094 6095 // If this is an indirect operand, store through the pointer after the 6096 // asm. 6097 if (OpInfo.isIndirect) { 6098 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6099 OpInfo.CallOperandVal)); 6100 } else { 6101 // This is the result value of the call. 6102 assert(CS.getType() != Type::getVoidTy(*DAG.getContext()) && 6103 "Bad inline asm!"); 6104 // Concatenate this output onto the outputs list. 6105 RetValRegs.append(OpInfo.AssignedRegs); 6106 } 6107 6108 // Add information to the INLINEASM node to know that this register is 6109 // set. 6110 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 6111 6 /* EARLYCLOBBER REGDEF */ : 6112 2 /* REGDEF */ , 6113 false, 6114 0, 6115 DAG, SDNodeOrder, 6116 AsmNodeOperands); 6117 break; 6118 } 6119 case InlineAsm::isInput: { 6120 SDValue InOperandVal = OpInfo.CallOperand; 6121 6122 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6123 // If this is required to match an output register we have already set, 6124 // just use its register. 6125 unsigned OperandNo = OpInfo.getMatchedOperand(); 6126 6127 // Scan until we find the definition we already emitted of this operand. 6128 // When we find it, create a RegsForValue operand. 6129 unsigned CurOp = 2; // The first operand. 6130 for (; OperandNo; --OperandNo) { 6131 // Advance to the next operand. 6132 unsigned OpFlag = 6133 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6134 assert(((OpFlag & 7) == 2 /*REGDEF*/ || 6135 (OpFlag & 7) == 6 /*EARLYCLOBBER REGDEF*/ || 6136 (OpFlag & 7) == 4 /*MEM*/) && 6137 "Skipped past definitions?"); 6138 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6139 } 6140 6141 unsigned OpFlag = 6142 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6143 if ((OpFlag & 7) == 2 /*REGDEF*/ 6144 || (OpFlag & 7) == 6 /* EARLYCLOBBER REGDEF */) { 6145 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6146 if (OpInfo.isIndirect) { 6147 llvm_report_error("Don't know how to handle tied indirect " 6148 "register inputs yet!"); 6149 } 6150 RegsForValue MatchedRegs; 6151 MatchedRegs.TLI = &TLI; 6152 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6153 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 6154 MatchedRegs.RegVTs.push_back(RegVT); 6155 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6156 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6157 i != e; ++i) 6158 MatchedRegs.Regs.push_back 6159 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 6160 6161 // Use the produced MatchedRegs object to 6162 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 6163 SDNodeOrder, Chain, &Flag); 6164 MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, 6165 true, OpInfo.getMatchedOperand(), 6166 DAG, SDNodeOrder, AsmNodeOperands); 6167 break; 6168 } else { 6169 assert(((OpFlag & 7) == 4) && "Unknown matching constraint!"); 6170 assert((InlineAsm::getNumOperandRegisters(OpFlag)) == 1 && 6171 "Unexpected number of operands"); 6172 // Add information to the INLINEASM node to know about this input. 6173 // See InlineAsm.h isUseOperandTiedToDef. 6174 OpFlag |= 0x80000000 | (OpInfo.getMatchedOperand() << 16); 6175 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6176 TLI.getPointerTy())); 6177 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6178 break; 6179 } 6180 } 6181 6182 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6183 assert(!OpInfo.isIndirect && 6184 "Don't know how to handle indirect other inputs yet!"); 6185 6186 std::vector<SDValue> Ops; 6187 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0], 6188 hasMemory, Ops, DAG); 6189 if (Ops.empty()) { 6190 llvm_report_error("Invalid operand for inline asm" 6191 " constraint '" + OpInfo.ConstraintCode + "'!"); 6192 } 6193 6194 // Add information to the INLINEASM node to know about this input. 6195 unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3); 6196 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6197 TLI.getPointerTy())); 6198 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6199 break; 6200 } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6201 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6202 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6203 "Memory operands expect pointer values"); 6204 6205 // Add information to the INLINEASM node to know about this input. 6206 unsigned ResOpType = 4/*MEM*/ | (1<<3); 6207 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6208 TLI.getPointerTy())); 6209 AsmNodeOperands.push_back(InOperandVal); 6210 break; 6211 } 6212 6213 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6214 OpInfo.ConstraintType == TargetLowering::C_Register) && 6215 "Unknown constraint type!"); 6216 assert(!OpInfo.isIndirect && 6217 "Don't know how to handle indirect register inputs yet!"); 6218 6219 // Copy the input into the appropriate registers. 6220 if (OpInfo.AssignedRegs.Regs.empty()) { 6221 llvm_report_error("Couldn't allocate input reg for" 6222 " constraint '"+ OpInfo.ConstraintCode +"'!"); 6223 } 6224 6225 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 6226 SDNodeOrder, Chain, &Flag); 6227 6228 OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, false, 0, 6229 DAG, SDNodeOrder, 6230 AsmNodeOperands); 6231 break; 6232 } 6233 case InlineAsm::isClobber: { 6234 // Add the clobbered value to the operand list, so that the register 6235 // allocator is aware that the physreg got clobbered. 6236 if (!OpInfo.AssignedRegs.Regs.empty()) 6237 OpInfo.AssignedRegs.AddInlineAsmOperands(6 /* EARLYCLOBBER REGDEF */, 6238 false, 0, DAG, SDNodeOrder, 6239 AsmNodeOperands); 6240 break; 6241 } 6242 } 6243 } 6244 6245 // Finish up input operands. 6246 AsmNodeOperands[0] = Chain; 6247 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6248 6249 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 6250 DAG.getVTList(MVT::Other, MVT::Flag), 6251 &AsmNodeOperands[0], AsmNodeOperands.size()); 6252 Flag = Chain.getValue(1); 6253 6254 // If this asm returns a register value, copy the result from that register 6255 // and set it as the value of the call. 6256 if (!RetValRegs.Regs.empty()) { 6257 SDValue Val = RetValRegs.getCopyFromRegs(DAG, getCurDebugLoc(), 6258 SDNodeOrder, Chain, &Flag); 6259 6260 // FIXME: Why don't we do this for inline asms with MRVs? 6261 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6262 EVT ResultType = TLI.getValueType(CS.getType()); 6263 6264 // If any of the results of the inline asm is a vector, it may have the 6265 // wrong width/num elts. This can happen for register classes that can 6266 // contain multiple different value types. The preg or vreg allocated may 6267 // not have the same VT as was expected. Convert it to the right type 6268 // with bit_convert. 6269 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6270 Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 6271 ResultType, Val); 6272 6273 } else if (ResultType != Val.getValueType() && 6274 ResultType.isInteger() && Val.getValueType().isInteger()) { 6275 // If a result value was tied to an input value, the computed result may 6276 // have a wider width than the expected result. Extract the relevant 6277 // portion. 6278 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 6279 } 6280 6281 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6282 } 6283 6284 setValue(CS.getInstruction(), Val); 6285 // Don't need to use this as a chain in this case. 6286 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6287 return; 6288 } 6289 6290 std::vector<std::pair<SDValue, Value*> > StoresToEmit; 6291 6292 // Process indirect outputs, first output all of the flagged copies out of 6293 // physregs. 6294 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6295 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6296 Value *Ptr = IndirectStoresToEmit[i].second; 6297 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, getCurDebugLoc(), 6298 SDNodeOrder, Chain, &Flag); 6299 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6300 6301 } 6302 6303 // Emit the non-flagged stores from the physregs. 6304 SmallVector<SDValue, 8> OutChains; 6305 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6306 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 6307 StoresToEmit[i].first, 6308 getValue(StoresToEmit[i].second), 6309 StoresToEmit[i].second, 0); 6310 OutChains.push_back(Val); 6311 } 6312 6313 if (!OutChains.empty()) 6314 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 6315 &OutChains[0], OutChains.size()); 6316 6317 DAG.setRoot(Chain); 6318 } 6319 6320 void SelectionDAGBuilder::visitVAStart(CallInst &I) { 6321 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 6322 MVT::Other, getRoot(), 6323 getValue(I.getOperand(1)), 6324 DAG.getSrcValue(I.getOperand(1)))); 6325 } 6326 6327 void SelectionDAGBuilder::visitVAArg(VAArgInst &I) { 6328 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 6329 getRoot(), getValue(I.getOperand(0)), 6330 DAG.getSrcValue(I.getOperand(0))); 6331 setValue(&I, V); 6332 DAG.setRoot(V.getValue(1)); 6333 } 6334 6335 void SelectionDAGBuilder::visitVAEnd(CallInst &I) { 6336 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 6337 MVT::Other, getRoot(), 6338 getValue(I.getOperand(1)), 6339 DAG.getSrcValue(I.getOperand(1)))); 6340 } 6341 6342 void SelectionDAGBuilder::visitVACopy(CallInst &I) { 6343 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 6344 MVT::Other, getRoot(), 6345 getValue(I.getOperand(1)), 6346 getValue(I.getOperand(2)), 6347 DAG.getSrcValue(I.getOperand(1)), 6348 DAG.getSrcValue(I.getOperand(2)))); 6349 } 6350 6351 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6352 /// implementation, which just calls LowerCall. 6353 /// FIXME: When all targets are 6354 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6355 std::pair<SDValue, SDValue> 6356 TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy, 6357 bool RetSExt, bool RetZExt, bool isVarArg, 6358 bool isInreg, unsigned NumFixedArgs, 6359 CallingConv::ID CallConv, bool isTailCall, 6360 bool isReturnValueUsed, 6361 SDValue Callee, 6362 ArgListTy &Args, SelectionDAG &DAG, DebugLoc dl, 6363 unsigned Order) { 6364 assert((!isTailCall || PerformTailCallOpt) && 6365 "isTailCall set when tail-call optimizations are disabled!"); 6366 6367 // Handle all of the outgoing arguments. 6368 SmallVector<ISD::OutputArg, 32> Outs; 6369 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6370 SmallVector<EVT, 4> ValueVTs; 6371 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6372 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6373 Value != NumValues; ++Value) { 6374 EVT VT = ValueVTs[Value]; 6375 const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); 6376 SDValue Op = SDValue(Args[i].Node.getNode(), 6377 Args[i].Node.getResNo() + Value); 6378 ISD::ArgFlagsTy Flags; 6379 unsigned OriginalAlignment = 6380 getTargetData()->getABITypeAlignment(ArgTy); 6381 6382 if (Args[i].isZExt) 6383 Flags.setZExt(); 6384 if (Args[i].isSExt) 6385 Flags.setSExt(); 6386 if (Args[i].isInReg) 6387 Flags.setInReg(); 6388 if (Args[i].isSRet) 6389 Flags.setSRet(); 6390 if (Args[i].isByVal) { 6391 Flags.setByVal(); 6392 const PointerType *Ty = cast<PointerType>(Args[i].Ty); 6393 const Type *ElementTy = Ty->getElementType(); 6394 unsigned FrameAlign = getByValTypeAlignment(ElementTy); 6395 unsigned FrameSize = getTargetData()->getTypeAllocSize(ElementTy); 6396 // For ByVal, alignment should come from FE. BE will guess if this 6397 // info is not there but there are cases it cannot get right. 6398 if (Args[i].Alignment) 6399 FrameAlign = Args[i].Alignment; 6400 Flags.setByValAlign(FrameAlign); 6401 Flags.setByValSize(FrameSize); 6402 } 6403 if (Args[i].isNest) 6404 Flags.setNest(); 6405 Flags.setOrigAlign(OriginalAlignment); 6406 6407 EVT PartVT = getRegisterType(RetTy->getContext(), VT); 6408 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); 6409 SmallVector<SDValue, 4> Parts(NumParts); 6410 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6411 6412 if (Args[i].isSExt) 6413 ExtendKind = ISD::SIGN_EXTEND; 6414 else if (Args[i].isZExt) 6415 ExtendKind = ISD::ZERO_EXTEND; 6416 6417 getCopyToParts(DAG, dl, Order, Op, &Parts[0], NumParts, 6418 PartVT, ExtendKind); 6419 6420 for (unsigned j = 0; j != NumParts; ++j) { 6421 // if it isn't first piece, alignment must be 1 6422 ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs); 6423 if (NumParts > 1 && j == 0) 6424 MyFlags.Flags.setSplit(); 6425 else if (j != 0) 6426 MyFlags.Flags.setOrigAlign(1); 6427 6428 Outs.push_back(MyFlags); 6429 } 6430 } 6431 } 6432 6433 // Handle the incoming return values from the call. 6434 SmallVector<ISD::InputArg, 32> Ins; 6435 SmallVector<EVT, 4> RetTys; 6436 ComputeValueVTs(*this, RetTy, RetTys); 6437 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6438 EVT VT = RetTys[I]; 6439 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 6440 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 6441 for (unsigned i = 0; i != NumRegs; ++i) { 6442 ISD::InputArg MyFlags; 6443 MyFlags.VT = RegisterVT; 6444 MyFlags.Used = isReturnValueUsed; 6445 if (RetSExt) 6446 MyFlags.Flags.setSExt(); 6447 if (RetZExt) 6448 MyFlags.Flags.setZExt(); 6449 if (isInreg) 6450 MyFlags.Flags.setInReg(); 6451 Ins.push_back(MyFlags); 6452 } 6453 } 6454 6455 // Check if target-dependent constraints permit a tail call here. 6456 // Target-independent constraints should be checked by the caller. 6457 if (isTailCall && 6458 !IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, Ins, DAG)) 6459 isTailCall = false; 6460 6461 SmallVector<SDValue, 4> InVals; 6462 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, 6463 Outs, Ins, dl, DAG, InVals); 6464 6465 // Verify that the target's LowerCall behaved as expected. 6466 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 6467 "LowerCall didn't return a valid chain!"); 6468 assert((!isTailCall || InVals.empty()) && 6469 "LowerCall emitted a return value for a tail call!"); 6470 assert((isTailCall || InVals.size() == Ins.size()) && 6471 "LowerCall didn't emit the correct number of values!"); 6472 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6473 assert(InVals[i].getNode() && 6474 "LowerCall emitted a null value!"); 6475 assert(Ins[i].VT == InVals[i].getValueType() && 6476 "LowerCall emitted a value with the wrong type!"); 6477 }); 6478 6479 if (DisableScheduling) 6480 DAG.AssignOrdering(Chain.getNode(), Order); 6481 6482 // For a tail call, the return value is merely live-out and there aren't 6483 // any nodes in the DAG representing it. Return a special value to 6484 // indicate that a tail call has been emitted and no more Instructions 6485 // should be processed in the current block. 6486 if (isTailCall) { 6487 DAG.setRoot(Chain); 6488 return std::make_pair(SDValue(), SDValue()); 6489 } 6490 6491 // Collect the legal value parts into potentially illegal values 6492 // that correspond to the original function's return values. 6493 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6494 if (RetSExt) 6495 AssertOp = ISD::AssertSext; 6496 else if (RetZExt) 6497 AssertOp = ISD::AssertZext; 6498 SmallVector<SDValue, 4> ReturnValues; 6499 unsigned CurReg = 0; 6500 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6501 EVT VT = RetTys[I]; 6502 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 6503 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 6504 6505 SDValue ReturnValue = 6506 getCopyFromParts(DAG, dl, Order, &InVals[CurReg], NumRegs, 6507 RegisterVT, VT, AssertOp); 6508 ReturnValues.push_back(ReturnValue); 6509 if (DisableScheduling) 6510 DAG.AssignOrdering(ReturnValue.getNode(), Order); 6511 CurReg += NumRegs; 6512 } 6513 6514 // For a function returning void, there is no return value. We can't create 6515 // such a node, so we just return a null return value in that case. In 6516 // that case, nothing will actualy look at the value. 6517 if (ReturnValues.empty()) 6518 return std::make_pair(SDValue(), Chain); 6519 6520 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 6521 DAG.getVTList(&RetTys[0], RetTys.size()), 6522 &ReturnValues[0], ReturnValues.size()); 6523 if (DisableScheduling) 6524 DAG.AssignOrdering(Res.getNode(), Order); 6525 return std::make_pair(Res, Chain); 6526 } 6527 6528 void TargetLowering::LowerOperationWrapper(SDNode *N, 6529 SmallVectorImpl<SDValue> &Results, 6530 SelectionDAG &DAG) { 6531 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6532 if (Res.getNode()) 6533 Results.push_back(Res); 6534 } 6535 6536 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) { 6537 llvm_unreachable("LowerOperation not implemented for this target!"); 6538 return SDValue(); 6539 } 6540 6541 void SelectionDAGBuilder::CopyValueToVirtualRegister(Value *V, unsigned Reg) { 6542 SDValue Op = getValue(V); 6543 assert((Op.getOpcode() != ISD::CopyFromReg || 6544 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6545 "Copy from a reg to the same reg!"); 6546 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6547 6548 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6549 SDValue Chain = DAG.getEntryNode(); 6550 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), SDNodeOrder, Chain, 0); 6551 PendingExports.push_back(Chain); 6552 } 6553 6554 #include "llvm/CodeGen/SelectionDAGISel.h" 6555 6556 void SelectionDAGISel::LowerArguments(BasicBlock *LLVMBB) { 6557 // If this is the entry block, emit arguments. 6558 Function &F = *LLVMBB->getParent(); 6559 SelectionDAG &DAG = SDB->DAG; 6560 SDValue OldRoot = DAG.getRoot(); 6561 DebugLoc dl = SDB->getCurDebugLoc(); 6562 const TargetData *TD = TLI.getTargetData(); 6563 SmallVector<ISD::InputArg, 16> Ins; 6564 6565 // Check whether the function can return without sret-demotion. 6566 SmallVector<EVT, 4> OutVTs; 6567 SmallVector<ISD::ArgFlagsTy, 4> OutsFlags; 6568 getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 6569 OutVTs, OutsFlags, TLI); 6570 FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); 6571 6572 FLI.CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(), F.isVarArg(), 6573 OutVTs, OutsFlags, DAG); 6574 if (!FLI.CanLowerReturn) { 6575 // Put in an sret pointer parameter before all the other parameters. 6576 SmallVector<EVT, 1> ValueVTs; 6577 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6578 6579 // NOTE: Assuming that a pointer will never break down to more than one VT 6580 // or one register. 6581 ISD::ArgFlagsTy Flags; 6582 Flags.setSRet(); 6583 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), ValueVTs[0]); 6584 ISD::InputArg RetArg(Flags, RegisterVT, true); 6585 Ins.push_back(RetArg); 6586 } 6587 6588 // Set up the incoming argument description vector. 6589 unsigned Idx = 1; 6590 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); 6591 I != E; ++I, ++Idx) { 6592 SmallVector<EVT, 4> ValueVTs; 6593 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6594 bool isArgValueUsed = !I->use_empty(); 6595 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6596 Value != NumValues; ++Value) { 6597 EVT VT = ValueVTs[Value]; 6598 const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6599 ISD::ArgFlagsTy Flags; 6600 unsigned OriginalAlignment = 6601 TD->getABITypeAlignment(ArgTy); 6602 6603 if (F.paramHasAttr(Idx, Attribute::ZExt)) 6604 Flags.setZExt(); 6605 if (F.paramHasAttr(Idx, Attribute::SExt)) 6606 Flags.setSExt(); 6607 if (F.paramHasAttr(Idx, Attribute::InReg)) 6608 Flags.setInReg(); 6609 if (F.paramHasAttr(Idx, Attribute::StructRet)) 6610 Flags.setSRet(); 6611 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 6612 Flags.setByVal(); 6613 const PointerType *Ty = cast<PointerType>(I->getType()); 6614 const Type *ElementTy = Ty->getElementType(); 6615 unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy); 6616 unsigned FrameSize = TD->getTypeAllocSize(ElementTy); 6617 // For ByVal, alignment should be passed from FE. BE will guess if 6618 // this info is not there but there are cases it cannot get right. 6619 if (F.getParamAlignment(Idx)) 6620 FrameAlign = F.getParamAlignment(Idx); 6621 Flags.setByValAlign(FrameAlign); 6622 Flags.setByValSize(FrameSize); 6623 } 6624 if (F.paramHasAttr(Idx, Attribute::Nest)) 6625 Flags.setNest(); 6626 Flags.setOrigAlign(OriginalAlignment); 6627 6628 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6629 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6630 for (unsigned i = 0; i != NumRegs; ++i) { 6631 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 6632 if (NumRegs > 1 && i == 0) 6633 MyFlags.Flags.setSplit(); 6634 // if it isn't first piece, alignment must be 1 6635 else if (i > 0) 6636 MyFlags.Flags.setOrigAlign(1); 6637 Ins.push_back(MyFlags); 6638 } 6639 } 6640 } 6641 6642 // Call the target to set up the argument values. 6643 SmallVector<SDValue, 8> InVals; 6644 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6645 F.isVarArg(), Ins, 6646 dl, DAG, InVals); 6647 6648 // Verify that the target's LowerFormalArguments behaved as expected. 6649 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6650 "LowerFormalArguments didn't return a valid chain!"); 6651 assert(InVals.size() == Ins.size() && 6652 "LowerFormalArguments didn't emit the correct number of values!"); 6653 DEBUG({ 6654 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6655 assert(InVals[i].getNode() && 6656 "LowerFormalArguments emitted a null value!"); 6657 assert(Ins[i].VT == InVals[i].getValueType() && 6658 "LowerFormalArguments emitted a value with the wrong type!"); 6659 } 6660 }); 6661 6662 // Update the DAG with the new chain value resulting from argument lowering. 6663 DAG.setRoot(NewRoot); 6664 6665 // Set up the argument values. 6666 unsigned i = 0; 6667 Idx = 1; 6668 if (!FLI.CanLowerReturn) { 6669 // Create a virtual register for the sret pointer, and put in a copy 6670 // from the sret argument into it. 6671 SmallVector<EVT, 1> ValueVTs; 6672 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6673 EVT VT = ValueVTs[0]; 6674 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6675 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6676 SDValue ArgValue = getCopyFromParts(DAG, dl, 0, &InVals[0], 1, 6677 RegVT, VT, AssertOp); 6678 6679 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6680 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6681 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 6682 FLI.DemoteRegister = SRetReg; 6683 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 6684 SRetReg, ArgValue); 6685 DAG.setRoot(NewRoot); 6686 6687 // i indexes lowered arguments. Bump it past the hidden sret argument. 6688 // Idx indexes LLVM arguments. Don't touch it. 6689 ++i; 6690 } 6691 6692 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6693 ++I, ++Idx) { 6694 SmallVector<SDValue, 4> ArgValues; 6695 SmallVector<EVT, 4> ValueVTs; 6696 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6697 unsigned NumValues = ValueVTs.size(); 6698 for (unsigned Value = 0; Value != NumValues; ++Value) { 6699 EVT VT = ValueVTs[Value]; 6700 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6701 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6702 6703 if (!I->use_empty()) { 6704 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6705 if (F.paramHasAttr(Idx, Attribute::SExt)) 6706 AssertOp = ISD::AssertSext; 6707 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 6708 AssertOp = ISD::AssertZext; 6709 6710 ArgValues.push_back(getCopyFromParts(DAG, dl, 0, &InVals[i], 6711 NumParts, PartVT, VT, 6712 AssertOp)); 6713 } 6714 6715 i += NumParts; 6716 } 6717 6718 if (!I->use_empty()) { 6719 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6720 SDB->getCurDebugLoc()); 6721 SDB->setValue(I, Res); 6722 6723 // If this argument is live outside of the entry block, insert a copy from 6724 // whereever we got it to the vreg that other BB's will reference it as. 6725 SDB->CopyToExportRegsIfNeeded(I); 6726 } 6727 } 6728 6729 assert(i == InVals.size() && "Argument register count mismatch!"); 6730 6731 // Finally, if the target has anything special to do, allow it to do so. 6732 // FIXME: this should insert code into the DAG! 6733 EmitFunctionEntryCode(F, SDB->DAG.getMachineFunction()); 6734 } 6735 6736 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6737 /// ensure constants are generated when needed. Remember the virtual registers 6738 /// that need to be added to the Machine PHI nodes as input. We cannot just 6739 /// directly add them, because expansion might result in multiple MBB's for one 6740 /// BB. As such, the start of the BB might correspond to a different MBB than 6741 /// the end. 6742 /// 6743 void 6744 SelectionDAGISel::HandlePHINodesInSuccessorBlocks(BasicBlock *LLVMBB) { 6745 TerminatorInst *TI = LLVMBB->getTerminator(); 6746 6747 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6748 6749 // Check successor nodes' PHI nodes that expect a constant to be available 6750 // from this block. 6751 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6752 BasicBlock *SuccBB = TI->getSuccessor(succ); 6753 if (!isa<PHINode>(SuccBB->begin())) continue; 6754 MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB]; 6755 6756 // If this terminator has multiple identical successors (common for 6757 // switches), only handle each succ once. 6758 if (!SuccsHandled.insert(SuccMBB)) continue; 6759 6760 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6761 PHINode *PN; 6762 6763 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6764 // nodes and Machine PHI nodes, but the incoming operands have not been 6765 // emitted yet. 6766 for (BasicBlock::iterator I = SuccBB->begin(); 6767 (PN = dyn_cast<PHINode>(I)); ++I) { 6768 // Ignore dead phi's. 6769 if (PN->use_empty()) continue; 6770 6771 unsigned Reg; 6772 Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6773 6774 if (Constant *C = dyn_cast<Constant>(PHIOp)) { 6775 unsigned &RegOut = SDB->ConstantsOut[C]; 6776 if (RegOut == 0) { 6777 RegOut = FuncInfo->CreateRegForValue(C); 6778 SDB->CopyValueToVirtualRegister(C, RegOut); 6779 } 6780 Reg = RegOut; 6781 } else { 6782 Reg = FuncInfo->ValueMap[PHIOp]; 6783 if (Reg == 0) { 6784 assert(isa<AllocaInst>(PHIOp) && 6785 FuncInfo->StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6786 "Didn't codegen value into a register!??"); 6787 Reg = FuncInfo->CreateRegForValue(PHIOp); 6788 SDB->CopyValueToVirtualRegister(PHIOp, Reg); 6789 } 6790 } 6791 6792 // Remember that this register needs to added to the machine PHI node as 6793 // the input for this MBB. 6794 SmallVector<EVT, 4> ValueVTs; 6795 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6796 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6797 EVT VT = ValueVTs[vti]; 6798 unsigned NumRegisters = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6799 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6800 SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6801 Reg += NumRegisters; 6802 } 6803 } 6804 } 6805 SDB->ConstantsOut.clear(); 6806 } 6807 6808 /// This is the Fast-ISel version of HandlePHINodesInSuccessorBlocks. It only 6809 /// supports legal types, and it emits MachineInstrs directly instead of 6810 /// creating SelectionDAG nodes. 6811 /// 6812 bool 6813 SelectionDAGISel::HandlePHINodesInSuccessorBlocksFast(BasicBlock *LLVMBB, 6814 FastISel *F) { 6815 TerminatorInst *TI = LLVMBB->getTerminator(); 6816 6817 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6818 unsigned OrigNumPHINodesToUpdate = SDB->PHINodesToUpdate.size(); 6819 6820 // Check successor nodes' PHI nodes that expect a constant to be available 6821 // from this block. 6822 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6823 BasicBlock *SuccBB = TI->getSuccessor(succ); 6824 if (!isa<PHINode>(SuccBB->begin())) continue; 6825 MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB]; 6826 6827 // If this terminator has multiple identical successors (common for 6828 // switches), only handle each succ once. 6829 if (!SuccsHandled.insert(SuccMBB)) continue; 6830 6831 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6832 PHINode *PN; 6833 6834 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6835 // nodes and Machine PHI nodes, but the incoming operands have not been 6836 // emitted yet. 6837 for (BasicBlock::iterator I = SuccBB->begin(); 6838 (PN = dyn_cast<PHINode>(I)); ++I) { 6839 // Ignore dead phi's. 6840 if (PN->use_empty()) continue; 6841 6842 // Only handle legal types. Two interesting things to note here. First, 6843 // by bailing out early, we may leave behind some dead instructions, 6844 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 6845 // own moves. Second, this check is necessary becuase FastISel doesn't 6846 // use CreateRegForValue to create registers, so it always creates 6847 // exactly one register for each non-void instruction. 6848 EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true); 6849 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 6850 // Promote MVT::i1. 6851 if (VT == MVT::i1) 6852 VT = TLI.getTypeToTransformTo(*CurDAG->getContext(), VT); 6853 else { 6854 SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); 6855 return false; 6856 } 6857 } 6858 6859 Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6860 6861 unsigned Reg = F->getRegForValue(PHIOp); 6862 if (Reg == 0) { 6863 SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); 6864 return false; 6865 } 6866 SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg)); 6867 } 6868 } 6869 6870 return true; 6871 } 6872