xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 2a0f2c5ef3330846149598220467d9f3c6e8b99c)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BranchProbabilityInfo.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/Loads.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/CodeGen/Analysis.h"
39 #include "llvm/CodeGen/FunctionLoweringInfo.h"
40 #include "llvm/CodeGen/GCMetadata.h"
41 #include "llvm/CodeGen/ISDOpcodes.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBuilder.h"
47 #include "llvm/CodeGen/MachineJumpTableInfo.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineModuleInfo.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RuntimeLibcalls.h"
53 #include "llvm/CodeGen/SelectionDAG.h"
54 #include "llvm/CodeGen/SelectionDAGNodes.h"
55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/TargetFrameLowering.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/ValueTypes.h"
64 #include "llvm/CodeGen/WinEHFuncInfo.h"
65 #include "llvm/IR/Argument.h"
66 #include "llvm/IR/Attributes.h"
67 #include "llvm/IR/BasicBlock.h"
68 #include "llvm/IR/CFG.h"
69 #include "llvm/IR/CallSite.h"
70 #include "llvm/IR/CallingConv.h"
71 #include "llvm/IR/Constant.h"
72 #include "llvm/IR/ConstantRange.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DataLayout.h"
75 #include "llvm/IR/DebugInfoMetadata.h"
76 #include "llvm/IR/DebugLoc.h"
77 #include "llvm/IR/DerivedTypes.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GetElementPtrTypeIterator.h"
80 #include "llvm/IR/InlineAsm.h"
81 #include "llvm/IR/InstrTypes.h"
82 #include "llvm/IR/Instruction.h"
83 #include "llvm/IR/Instructions.h"
84 #include "llvm/IR/IntrinsicInst.h"
85 #include "llvm/IR/Intrinsics.h"
86 #include "llvm/IR/LLVMContext.h"
87 #include "llvm/IR/Metadata.h"
88 #include "llvm/IR/Module.h"
89 #include "llvm/IR/Operator.h"
90 #include "llvm/IR/PatternMatch.h"
91 #include "llvm/IR/Statepoint.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/MC/MCContext.h"
96 #include "llvm/MC/MCSymbol.h"
97 #include "llvm/Support/AtomicOrdering.h"
98 #include "llvm/Support/BranchProbability.h"
99 #include "llvm/Support/Casting.h"
100 #include "llvm/Support/CodeGen.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Compiler.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MachineValueType.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Target/TargetIntrinsicInfo.h"
109 #include "llvm/Target/TargetMachine.h"
110 #include "llvm/Target/TargetOptions.h"
111 #include "llvm/Transforms/Utils/Local.h"
112 #include <algorithm>
113 #include <cassert>
114 #include <cstddef>
115 #include <cstdint>
116 #include <cstring>
117 #include <iterator>
118 #include <limits>
119 #include <numeric>
120 #include <tuple>
121 #include <utility>
122 #include <vector>
123 
124 using namespace llvm;
125 using namespace PatternMatch;
126 
127 #define DEBUG_TYPE "isel"
128 
129 /// LimitFloatPrecision - Generate low-precision inline sequences for
130 /// some float libcalls (6, 8 or 12 bits).
131 static unsigned LimitFloatPrecision;
132 
133 static cl::opt<unsigned, true>
134     LimitFPPrecision("limit-float-precision",
135                      cl::desc("Generate low-precision inline sequences "
136                               "for some float libcalls"),
137                      cl::location(LimitFloatPrecision), cl::Hidden,
138                      cl::init(0));
139 
140 static cl::opt<unsigned> SwitchPeelThreshold(
141     "switch-peel-threshold", cl::Hidden, cl::init(66),
142     cl::desc("Set the case probability threshold for peeling the case from a "
143              "switch statement. A value greater than 100 will void this "
144              "optimization"));
145 
146 // Limit the width of DAG chains. This is important in general to prevent
147 // DAG-based analysis from blowing up. For example, alias analysis and
148 // load clustering may not complete in reasonable time. It is difficult to
149 // recognize and avoid this situation within each individual analysis, and
150 // future analyses are likely to have the same behavior. Limiting DAG width is
151 // the safe approach and will be especially important with global DAGs.
152 //
153 // MaxParallelChains default is arbitrarily high to avoid affecting
154 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
155 // sequence over this should have been converted to llvm.memcpy by the
156 // frontend. It is easy to induce this behavior with .ll code such as:
157 // %buffer = alloca [4096 x i8]
158 // %data = load [4096 x i8]* %argPtr
159 // store [4096 x i8] %data, [4096 x i8]* %buffer
160 static const unsigned MaxParallelChains = 64;
161 
162 // Return the calling convention if the Value passed requires ABI mangling as it
163 // is a parameter to a function or a return value from a function which is not
164 // an intrinsic.
165 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
166   if (auto *R = dyn_cast<ReturnInst>(V))
167     return R->getParent()->getParent()->getCallingConv();
168 
169   if (auto *CI = dyn_cast<CallInst>(V)) {
170     const bool IsInlineAsm = CI->isInlineAsm();
171     const bool IsIndirectFunctionCall =
172         !IsInlineAsm && !CI->getCalledFunction();
173 
174     // It is possible that the call instruction is an inline asm statement or an
175     // indirect function call in which case the return value of
176     // getCalledFunction() would be nullptr.
177     const bool IsInstrinsicCall =
178         !IsInlineAsm && !IsIndirectFunctionCall &&
179         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
180 
181     if (!IsInlineAsm && !IsInstrinsicCall)
182       return CI->getCallingConv();
183   }
184 
185   return None;
186 }
187 
188 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
189                                       const SDValue *Parts, unsigned NumParts,
190                                       MVT PartVT, EVT ValueVT, const Value *V,
191                                       Optional<CallingConv::ID> CC);
192 
193 /// getCopyFromParts - Create a value that contains the specified legal parts
194 /// combined into the value they represent.  If the parts combine to a type
195 /// larger than ValueVT then AssertOp can be used to specify whether the extra
196 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
197 /// (ISD::AssertSext).
198 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
199                                 const SDValue *Parts, unsigned NumParts,
200                                 MVT PartVT, EVT ValueVT, const Value *V,
201                                 Optional<CallingConv::ID> CC = None,
202                                 Optional<ISD::NodeType> AssertOp = None) {
203   if (ValueVT.isVector())
204     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
205                                   CC);
206 
207   assert(NumParts > 0 && "No parts to assemble!");
208   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
209   SDValue Val = Parts[0];
210 
211   if (NumParts > 1) {
212     // Assemble the value from multiple parts.
213     if (ValueVT.isInteger()) {
214       unsigned PartBits = PartVT.getSizeInBits();
215       unsigned ValueBits = ValueVT.getSizeInBits();
216 
217       // Assemble the power of 2 part.
218       unsigned RoundParts = NumParts & (NumParts - 1) ?
219         1 << Log2_32(NumParts) : NumParts;
220       unsigned RoundBits = PartBits * RoundParts;
221       EVT RoundVT = RoundBits == ValueBits ?
222         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
223       SDValue Lo, Hi;
224 
225       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
226 
227       if (RoundParts > 2) {
228         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
229                               PartVT, HalfVT, V);
230         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
231                               RoundParts / 2, PartVT, HalfVT, V);
232       } else {
233         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
234         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
235       }
236 
237       if (DAG.getDataLayout().isBigEndian())
238         std::swap(Lo, Hi);
239 
240       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
241 
242       if (RoundParts < NumParts) {
243         // Assemble the trailing non-power-of-2 part.
244         unsigned OddParts = NumParts - RoundParts;
245         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
246         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
247                               OddVT, V, CC);
248 
249         // Combine the round and odd parts.
250         Lo = Val;
251         if (DAG.getDataLayout().isBigEndian())
252           std::swap(Lo, Hi);
253         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
254         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
255         Hi =
256             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
257                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
258                                         TLI.getPointerTy(DAG.getDataLayout())));
259         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
260         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
261       }
262     } else if (PartVT.isFloatingPoint()) {
263       // FP split into multiple FP parts (for ppcf128)
264       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
265              "Unexpected split");
266       SDValue Lo, Hi;
267       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
268       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
269       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
270         std::swap(Lo, Hi);
271       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
272     } else {
273       // FP split into integer parts (soft fp)
274       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
275              !PartVT.isVector() && "Unexpected split");
276       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
277       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
278     }
279   }
280 
281   // There is now one part, held in Val.  Correct it to match ValueVT.
282   // PartEVT is the type of the register class that holds the value.
283   // ValueVT is the type of the inline asm operation.
284   EVT PartEVT = Val.getValueType();
285 
286   if (PartEVT == ValueVT)
287     return Val;
288 
289   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
290       ValueVT.bitsLT(PartEVT)) {
291     // For an FP value in an integer part, we need to truncate to the right
292     // width first.
293     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
294     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
295   }
296 
297   // Handle types that have the same size.
298   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
299     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300 
301   // Handle types with different sizes.
302   if (PartEVT.isInteger() && ValueVT.isInteger()) {
303     if (ValueVT.bitsLT(PartEVT)) {
304       // For a truncate, see if we have any information to
305       // indicate whether the truncated bits will always be
306       // zero or sign-extension.
307       if (AssertOp.hasValue())
308         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
309                           DAG.getValueType(ValueVT));
310       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
311     }
312     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
313   }
314 
315   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
316     // FP_ROUND's are always exact here.
317     if (ValueVT.bitsLT(Val.getValueType()))
318       return DAG.getNode(
319           ISD::FP_ROUND, DL, ValueVT, Val,
320           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
321 
322     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
323   }
324 
325   llvm_unreachable("Unknown mismatch!");
326 }
327 
328 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
329                                               const Twine &ErrMsg) {
330   const Instruction *I = dyn_cast_or_null<Instruction>(V);
331   if (!V)
332     return Ctx.emitError(ErrMsg);
333 
334   const char *AsmError = ", possible invalid constraint for vector type";
335   if (const CallInst *CI = dyn_cast<CallInst>(I))
336     if (isa<InlineAsm>(CI->getCalledValue()))
337       return Ctx.emitError(I, ErrMsg + AsmError);
338 
339   return Ctx.emitError(I, ErrMsg);
340 }
341 
342 /// getCopyFromPartsVector - Create a value that contains the specified legal
343 /// parts combined into the value they represent.  If the parts combine to a
344 /// type larger than ValueVT then AssertOp can be used to specify whether the
345 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
346 /// ValueVT (ISD::AssertSext).
347 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
348                                       const SDValue *Parts, unsigned NumParts,
349                                       MVT PartVT, EVT ValueVT, const Value *V,
350                                       Optional<CallingConv::ID> CallConv) {
351   assert(ValueVT.isVector() && "Not a vector value");
352   assert(NumParts > 0 && "No parts to assemble!");
353   const bool IsABIRegCopy = CallConv.hasValue();
354 
355   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
356   SDValue Val = Parts[0];
357 
358   // Handle a multi-element vector.
359   if (NumParts > 1) {
360     EVT IntermediateVT;
361     MVT RegisterVT;
362     unsigned NumIntermediates;
363     unsigned NumRegs;
364 
365     if (IsABIRegCopy) {
366       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
367           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
368           NumIntermediates, RegisterVT);
369     } else {
370       NumRegs =
371           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
372                                      NumIntermediates, RegisterVT);
373     }
374 
375     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
376     NumParts = NumRegs; // Silence a compiler warning.
377     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
378     assert(RegisterVT.getSizeInBits() ==
379            Parts[0].getSimpleValueType().getSizeInBits() &&
380            "Part type sizes don't match!");
381 
382     // Assemble the parts into intermediate operands.
383     SmallVector<SDValue, 8> Ops(NumIntermediates);
384     if (NumIntermediates == NumParts) {
385       // If the register was not expanded, truncate or copy the value,
386       // as appropriate.
387       for (unsigned i = 0; i != NumParts; ++i)
388         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
389                                   PartVT, IntermediateVT, V);
390     } else if (NumParts > 0) {
391       // If the intermediate type was expanded, build the intermediate
392       // operands from the parts.
393       assert(NumParts % NumIntermediates == 0 &&
394              "Must expand into a divisible number of parts!");
395       unsigned Factor = NumParts / NumIntermediates;
396       for (unsigned i = 0; i != NumIntermediates; ++i)
397         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
398                                   PartVT, IntermediateVT, V);
399     }
400 
401     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
402     // intermediate operands.
403     EVT BuiltVectorTy =
404         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
405                          (IntermediateVT.isVector()
406                               ? IntermediateVT.getVectorNumElements() * NumParts
407                               : NumIntermediates));
408     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
409                                                 : ISD::BUILD_VECTOR,
410                       DL, BuiltVectorTy, Ops);
411   }
412 
413   // There is now one part, held in Val.  Correct it to match ValueVT.
414   EVT PartEVT = Val.getValueType();
415 
416   if (PartEVT == ValueVT)
417     return Val;
418 
419   if (PartEVT.isVector()) {
420     // If the element type of the source/dest vectors are the same, but the
421     // parts vector has more elements than the value vector, then we have a
422     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
423     // elements we want.
424     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
425       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
426              "Cannot narrow, it would be a lossy transformation");
427       return DAG.getNode(
428           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
429           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
430     }
431 
432     // Vector/Vector bitcast.
433     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
434       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
435 
436     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
437       "Cannot handle this kind of promotion");
438     // Promoted vector extract
439     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
440 
441   }
442 
443   // Trivial bitcast if the types are the same size and the destination
444   // vector type is legal.
445   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
446       TLI.isTypeLegal(ValueVT))
447     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
448 
449   if (ValueVT.getVectorNumElements() != 1) {
450      // Certain ABIs require that vectors are passed as integers. For vectors
451      // are the same size, this is an obvious bitcast.
452      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
453        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
454      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
455        // Bitcast Val back the original type and extract the corresponding
456        // vector we want.
457        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
458        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
459                                            ValueVT.getVectorElementType(), Elts);
460        Val = DAG.getBitcast(WiderVecType, Val);
461        return DAG.getNode(
462            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
463            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
464      }
465 
466      diagnosePossiblyInvalidConstraint(
467          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
468      return DAG.getUNDEF(ValueVT);
469   }
470 
471   // Handle cases such as i8 -> <1 x i1>
472   EVT ValueSVT = ValueVT.getVectorElementType();
473   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
474     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
475                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
476 
477   return DAG.getBuildVector(ValueVT, DL, Val);
478 }
479 
480 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
481                                  SDValue Val, SDValue *Parts, unsigned NumParts,
482                                  MVT PartVT, const Value *V,
483                                  Optional<CallingConv::ID> CallConv);
484 
485 /// getCopyToParts - Create a series of nodes that contain the specified value
486 /// split into legal parts.  If the parts contain more bits than Val, then, for
487 /// integers, ExtendKind can be used to specify how to generate the extra bits.
488 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
489                            SDValue *Parts, unsigned NumParts, MVT PartVT,
490                            const Value *V,
491                            Optional<CallingConv::ID> CallConv = None,
492                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
493   EVT ValueVT = Val.getValueType();
494 
495   // Handle the vector case separately.
496   if (ValueVT.isVector())
497     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
498                                 CallConv);
499 
500   unsigned PartBits = PartVT.getSizeInBits();
501   unsigned OrigNumParts = NumParts;
502   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
503          "Copying to an illegal type!");
504 
505   if (NumParts == 0)
506     return;
507 
508   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
509   EVT PartEVT = PartVT;
510   if (PartEVT == ValueVT) {
511     assert(NumParts == 1 && "No-op copy with multiple parts!");
512     Parts[0] = Val;
513     return;
514   }
515 
516   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
517     // If the parts cover more bits than the value has, promote the value.
518     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
519       assert(NumParts == 1 && "Do not know what to promote to!");
520       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
521     } else {
522       if (ValueVT.isFloatingPoint()) {
523         // FP values need to be bitcast, then extended if they are being put
524         // into a larger container.
525         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
526         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
527       }
528       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
529              ValueVT.isInteger() &&
530              "Unknown mismatch!");
531       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
532       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
533       if (PartVT == MVT::x86mmx)
534         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
535     }
536   } else if (PartBits == ValueVT.getSizeInBits()) {
537     // Different types of the same size.
538     assert(NumParts == 1 && PartEVT != ValueVT);
539     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
540   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
541     // If the parts cover less bits than value has, truncate the value.
542     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
543            ValueVT.isInteger() &&
544            "Unknown mismatch!");
545     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
546     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
547     if (PartVT == MVT::x86mmx)
548       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
549   }
550 
551   // The value may have changed - recompute ValueVT.
552   ValueVT = Val.getValueType();
553   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
554          "Failed to tile the value with PartVT!");
555 
556   if (NumParts == 1) {
557     if (PartEVT != ValueVT) {
558       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
559                                         "scalar-to-vector conversion failed");
560       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
561     }
562 
563     Parts[0] = Val;
564     return;
565   }
566 
567   // Expand the value into multiple parts.
568   if (NumParts & (NumParts - 1)) {
569     // The number of parts is not a power of 2.  Split off and copy the tail.
570     assert(PartVT.isInteger() && ValueVT.isInteger() &&
571            "Do not know what to expand to!");
572     unsigned RoundParts = 1 << Log2_32(NumParts);
573     unsigned RoundBits = RoundParts * PartBits;
574     unsigned OddParts = NumParts - RoundParts;
575     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
576       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
577 
578     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
579                    CallConv);
580 
581     if (DAG.getDataLayout().isBigEndian())
582       // The odd parts were reversed by getCopyToParts - unreverse them.
583       std::reverse(Parts + RoundParts, Parts + NumParts);
584 
585     NumParts = RoundParts;
586     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
587     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
588   }
589 
590   // The number of parts is a power of 2.  Repeatedly bisect the value using
591   // EXTRACT_ELEMENT.
592   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
593                          EVT::getIntegerVT(*DAG.getContext(),
594                                            ValueVT.getSizeInBits()),
595                          Val);
596 
597   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
598     for (unsigned i = 0; i < NumParts; i += StepSize) {
599       unsigned ThisBits = StepSize * PartBits / 2;
600       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
601       SDValue &Part0 = Parts[i];
602       SDValue &Part1 = Parts[i+StepSize/2];
603 
604       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
605                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
606       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
607                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
608 
609       if (ThisBits == PartBits && ThisVT != PartVT) {
610         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
611         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
612       }
613     }
614   }
615 
616   if (DAG.getDataLayout().isBigEndian())
617     std::reverse(Parts, Parts + OrigNumParts);
618 }
619 
620 static SDValue widenVectorToPartType(SelectionDAG &DAG,
621                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
622   if (!PartVT.isVector())
623     return SDValue();
624 
625   EVT ValueVT = Val.getValueType();
626   unsigned PartNumElts = PartVT.getVectorNumElements();
627   unsigned ValueNumElts = ValueVT.getVectorNumElements();
628   if (PartNumElts > ValueNumElts &&
629       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
630     EVT ElementVT = PartVT.getVectorElementType();
631     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
632     // undef elements.
633     SmallVector<SDValue, 16> Ops;
634     DAG.ExtractVectorElements(Val, Ops);
635     SDValue EltUndef = DAG.getUNDEF(ElementVT);
636     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
637       Ops.push_back(EltUndef);
638 
639     // FIXME: Use CONCAT for 2x -> 4x.
640     return DAG.getBuildVector(PartVT, DL, Ops);
641   }
642 
643   return SDValue();
644 }
645 
646 /// getCopyToPartsVector - Create a series of nodes that contain the specified
647 /// value split into legal parts.
648 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
649                                  SDValue Val, SDValue *Parts, unsigned NumParts,
650                                  MVT PartVT, const Value *V,
651                                  Optional<CallingConv::ID> CallConv) {
652   EVT ValueVT = Val.getValueType();
653   assert(ValueVT.isVector() && "Not a vector");
654   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
655   const bool IsABIRegCopy = CallConv.hasValue();
656 
657   if (NumParts == 1) {
658     EVT PartEVT = PartVT;
659     if (PartEVT == ValueVT) {
660       // Nothing to do.
661     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
662       // Bitconvert vector->vector case.
663       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
664     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
665       Val = Widened;
666     } else if (PartVT.isVector() &&
667                PartEVT.getVectorElementType().bitsGE(
668                  ValueVT.getVectorElementType()) &&
669                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
670 
671       // Promoted vector extract
672       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
673     } else {
674       if (ValueVT.getVectorNumElements() == 1) {
675         Val = DAG.getNode(
676             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
677             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
678       } else {
679         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
680                "lossy conversion of vector to scalar type");
681         EVT IntermediateType =
682             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
683         Val = DAG.getBitcast(IntermediateType, Val);
684         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
685       }
686     }
687 
688     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
689     Parts[0] = Val;
690     return;
691   }
692 
693   // Handle a multi-element vector.
694   EVT IntermediateVT;
695   MVT RegisterVT;
696   unsigned NumIntermediates;
697   unsigned NumRegs;
698   if (IsABIRegCopy) {
699     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
700         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
701         NumIntermediates, RegisterVT);
702   } else {
703     NumRegs =
704         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
705                                    NumIntermediates, RegisterVT);
706   }
707 
708   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
709   NumParts = NumRegs; // Silence a compiler warning.
710   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
711 
712   unsigned IntermediateNumElts = IntermediateVT.isVector() ?
713     IntermediateVT.getVectorNumElements() : 1;
714 
715   // Convert the vector to the appropiate type if necessary.
716   unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
717 
718   EVT BuiltVectorTy = EVT::getVectorVT(
719       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
720   MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
721   if (ValueVT != BuiltVectorTy) {
722     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
723       Val = Widened;
724 
725     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
726   }
727 
728   // Split the vector into intermediate operands.
729   SmallVector<SDValue, 8> Ops(NumIntermediates);
730   for (unsigned i = 0; i != NumIntermediates; ++i) {
731     if (IntermediateVT.isVector()) {
732       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
733                            DAG.getConstant(i * IntermediateNumElts, DL, IdxVT));
734     } else {
735       Ops[i] = DAG.getNode(
736           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
737           DAG.getConstant(i, DL, IdxVT));
738     }
739   }
740 
741   // Split the intermediate operands into legal parts.
742   if (NumParts == NumIntermediates) {
743     // If the register was not expanded, promote or copy the value,
744     // as appropriate.
745     for (unsigned i = 0; i != NumParts; ++i)
746       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
747   } else if (NumParts > 0) {
748     // If the intermediate type was expanded, split each the value into
749     // legal parts.
750     assert(NumIntermediates != 0 && "division by zero");
751     assert(NumParts % NumIntermediates == 0 &&
752            "Must expand into a divisible number of parts!");
753     unsigned Factor = NumParts / NumIntermediates;
754     for (unsigned i = 0; i != NumIntermediates; ++i)
755       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
756                      CallConv);
757   }
758 }
759 
760 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
761                            EVT valuevt, Optional<CallingConv::ID> CC)
762     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
763       RegCount(1, regs.size()), CallConv(CC) {}
764 
765 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
766                            const DataLayout &DL, unsigned Reg, Type *Ty,
767                            Optional<CallingConv::ID> CC) {
768   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
769 
770   CallConv = CC;
771 
772   for (EVT ValueVT : ValueVTs) {
773     unsigned NumRegs =
774         isABIMangled()
775             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
776             : TLI.getNumRegisters(Context, ValueVT);
777     MVT RegisterVT =
778         isABIMangled()
779             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
780             : TLI.getRegisterType(Context, ValueVT);
781     for (unsigned i = 0; i != NumRegs; ++i)
782       Regs.push_back(Reg + i);
783     RegVTs.push_back(RegisterVT);
784     RegCount.push_back(NumRegs);
785     Reg += NumRegs;
786   }
787 }
788 
789 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
790                                       FunctionLoweringInfo &FuncInfo,
791                                       const SDLoc &dl, SDValue &Chain,
792                                       SDValue *Flag, const Value *V) const {
793   // A Value with type {} or [0 x %t] needs no registers.
794   if (ValueVTs.empty())
795     return SDValue();
796 
797   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
798 
799   // Assemble the legal parts into the final values.
800   SmallVector<SDValue, 4> Values(ValueVTs.size());
801   SmallVector<SDValue, 8> Parts;
802   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
803     // Copy the legal parts from the registers.
804     EVT ValueVT = ValueVTs[Value];
805     unsigned NumRegs = RegCount[Value];
806     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
807                                           *DAG.getContext(),
808                                           CallConv.getValue(), RegVTs[Value])
809                                     : RegVTs[Value];
810 
811     Parts.resize(NumRegs);
812     for (unsigned i = 0; i != NumRegs; ++i) {
813       SDValue P;
814       if (!Flag) {
815         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
816       } else {
817         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
818         *Flag = P.getValue(2);
819       }
820 
821       Chain = P.getValue(1);
822       Parts[i] = P;
823 
824       // If the source register was virtual and if we know something about it,
825       // add an assert node.
826       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
827           !RegisterVT.isInteger())
828         continue;
829 
830       const FunctionLoweringInfo::LiveOutInfo *LOI =
831         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
832       if (!LOI)
833         continue;
834 
835       unsigned RegSize = RegisterVT.getScalarSizeInBits();
836       unsigned NumSignBits = LOI->NumSignBits;
837       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
838 
839       if (NumZeroBits == RegSize) {
840         // The current value is a zero.
841         // Explicitly express that as it would be easier for
842         // optimizations to kick in.
843         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
844         continue;
845       }
846 
847       // FIXME: We capture more information than the dag can represent.  For
848       // now, just use the tightest assertzext/assertsext possible.
849       bool isSExt;
850       EVT FromVT(MVT::Other);
851       if (NumZeroBits) {
852         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
853         isSExt = false;
854       } else if (NumSignBits > 1) {
855         FromVT =
856             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
857         isSExt = true;
858       } else {
859         continue;
860       }
861       // Add an assertion node.
862       assert(FromVT != MVT::Other);
863       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
864                              RegisterVT, P, DAG.getValueType(FromVT));
865     }
866 
867     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
868                                      RegisterVT, ValueVT, V, CallConv);
869     Part += NumRegs;
870     Parts.clear();
871   }
872 
873   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
874 }
875 
876 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
877                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
878                                  const Value *V,
879                                  ISD::NodeType PreferredExtendType) const {
880   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
881   ISD::NodeType ExtendKind = PreferredExtendType;
882 
883   // Get the list of the values's legal parts.
884   unsigned NumRegs = Regs.size();
885   SmallVector<SDValue, 8> Parts(NumRegs);
886   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
887     unsigned NumParts = RegCount[Value];
888 
889     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
890                                           *DAG.getContext(),
891                                           CallConv.getValue(), RegVTs[Value])
892                                     : RegVTs[Value];
893 
894     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
895       ExtendKind = ISD::ZERO_EXTEND;
896 
897     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
898                    NumParts, RegisterVT, V, CallConv, ExtendKind);
899     Part += NumParts;
900   }
901 
902   // Copy the parts into the registers.
903   SmallVector<SDValue, 8> Chains(NumRegs);
904   for (unsigned i = 0; i != NumRegs; ++i) {
905     SDValue Part;
906     if (!Flag) {
907       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
908     } else {
909       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
910       *Flag = Part.getValue(1);
911     }
912 
913     Chains[i] = Part.getValue(0);
914   }
915 
916   if (NumRegs == 1 || Flag)
917     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
918     // flagged to it. That is the CopyToReg nodes and the user are considered
919     // a single scheduling unit. If we create a TokenFactor and return it as
920     // chain, then the TokenFactor is both a predecessor (operand) of the
921     // user as well as a successor (the TF operands are flagged to the user).
922     // c1, f1 = CopyToReg
923     // c2, f2 = CopyToReg
924     // c3     = TokenFactor c1, c2
925     // ...
926     //        = op c3, ..., f2
927     Chain = Chains[NumRegs-1];
928   else
929     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
930 }
931 
932 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
933                                         unsigned MatchingIdx, const SDLoc &dl,
934                                         SelectionDAG &DAG,
935                                         std::vector<SDValue> &Ops) const {
936   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
937 
938   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
939   if (HasMatching)
940     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
941   else if (!Regs.empty() &&
942            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
943     // Put the register class of the virtual registers in the flag word.  That
944     // way, later passes can recompute register class constraints for inline
945     // assembly as well as normal instructions.
946     // Don't do this for tied operands that can use the regclass information
947     // from the def.
948     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
949     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
950     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
951   }
952 
953   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
954   Ops.push_back(Res);
955 
956   if (Code == InlineAsm::Kind_Clobber) {
957     // Clobbers should always have a 1:1 mapping with registers, and may
958     // reference registers that have illegal (e.g. vector) types. Hence, we
959     // shouldn't try to apply any sort of splitting logic to them.
960     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
961            "No 1:1 mapping from clobbers to regs?");
962     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
963     (void)SP;
964     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
965       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
966       assert(
967           (Regs[I] != SP ||
968            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
969           "If we clobbered the stack pointer, MFI should know about it.");
970     }
971     return;
972   }
973 
974   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
975     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
976     MVT RegisterVT = RegVTs[Value];
977     for (unsigned i = 0; i != NumRegs; ++i) {
978       assert(Reg < Regs.size() && "Mismatch in # registers expected");
979       unsigned TheReg = Regs[Reg++];
980       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
981     }
982   }
983 }
984 
985 SmallVector<std::pair<unsigned, unsigned>, 4>
986 RegsForValue::getRegsAndSizes() const {
987   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
988   unsigned I = 0;
989   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
990     unsigned RegCount = std::get<0>(CountAndVT);
991     MVT RegisterVT = std::get<1>(CountAndVT);
992     unsigned RegisterSize = RegisterVT.getSizeInBits();
993     for (unsigned E = I + RegCount; I != E; ++I)
994       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
995   }
996   return OutVec;
997 }
998 
999 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1000                                const TargetLibraryInfo *li) {
1001   AA = aa;
1002   GFI = gfi;
1003   LibInfo = li;
1004   DL = &DAG.getDataLayout();
1005   Context = DAG.getContext();
1006   LPadToCallSiteMap.clear();
1007 }
1008 
1009 void SelectionDAGBuilder::clear() {
1010   NodeMap.clear();
1011   UnusedArgNodeMap.clear();
1012   PendingLoads.clear();
1013   PendingExports.clear();
1014   CurInst = nullptr;
1015   HasTailCall = false;
1016   SDNodeOrder = LowestSDNodeOrder;
1017   StatepointLowering.clear();
1018 }
1019 
1020 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1021   DanglingDebugInfoMap.clear();
1022 }
1023 
1024 SDValue SelectionDAGBuilder::getRoot() {
1025   if (PendingLoads.empty())
1026     return DAG.getRoot();
1027 
1028   if (PendingLoads.size() == 1) {
1029     SDValue Root = PendingLoads[0];
1030     DAG.setRoot(Root);
1031     PendingLoads.clear();
1032     return Root;
1033   }
1034 
1035   // Otherwise, we have to make a token factor node.
1036   SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads);
1037   PendingLoads.clear();
1038   DAG.setRoot(Root);
1039   return Root;
1040 }
1041 
1042 SDValue SelectionDAGBuilder::getControlRoot() {
1043   SDValue Root = DAG.getRoot();
1044 
1045   if (PendingExports.empty())
1046     return Root;
1047 
1048   // Turn all of the CopyToReg chains into one factored node.
1049   if (Root.getOpcode() != ISD::EntryToken) {
1050     unsigned i = 0, e = PendingExports.size();
1051     for (; i != e; ++i) {
1052       assert(PendingExports[i].getNode()->getNumOperands() > 1);
1053       if (PendingExports[i].getNode()->getOperand(0) == Root)
1054         break;  // Don't add the root if we already indirectly depend on it.
1055     }
1056 
1057     if (i == e)
1058       PendingExports.push_back(Root);
1059   }
1060 
1061   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1062                      PendingExports);
1063   PendingExports.clear();
1064   DAG.setRoot(Root);
1065   return Root;
1066 }
1067 
1068 void SelectionDAGBuilder::visit(const Instruction &I) {
1069   // Set up outgoing PHI node register values before emitting the terminator.
1070   if (I.isTerminator()) {
1071     HandlePHINodesInSuccessorBlocks(I.getParent());
1072   }
1073 
1074   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1075   if (!isa<DbgInfoIntrinsic>(I))
1076     ++SDNodeOrder;
1077 
1078   CurInst = &I;
1079 
1080   visit(I.getOpcode(), I);
1081 
1082   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1083     // Propagate the fast-math-flags of this IR instruction to the DAG node that
1084     // maps to this instruction.
1085     // TODO: We could handle all flags (nsw, etc) here.
1086     // TODO: If an IR instruction maps to >1 node, only the final node will have
1087     //       flags set.
1088     if (SDNode *Node = getNodeForIRValue(&I)) {
1089       SDNodeFlags IncomingFlags;
1090       IncomingFlags.copyFMF(*FPMO);
1091       if (!Node->getFlags().isDefined())
1092         Node->setFlags(IncomingFlags);
1093       else
1094         Node->intersectFlagsWith(IncomingFlags);
1095     }
1096   }
1097 
1098   if (!I.isTerminator() && !HasTailCall &&
1099       !isStatepoint(&I)) // statepoints handle their exports internally
1100     CopyToExportRegsIfNeeded(&I);
1101 
1102   CurInst = nullptr;
1103 }
1104 
1105 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1106   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1107 }
1108 
1109 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1110   // Note: this doesn't use InstVisitor, because it has to work with
1111   // ConstantExpr's in addition to instructions.
1112   switch (Opcode) {
1113   default: llvm_unreachable("Unknown instruction type encountered!");
1114     // Build the switch statement using the Instruction.def file.
1115 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1116     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1117 #include "llvm/IR/Instruction.def"
1118   }
1119 }
1120 
1121 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1122                                                 const DIExpression *Expr) {
1123   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1124     const DbgValueInst *DI = DDI.getDI();
1125     DIVariable *DanglingVariable = DI->getVariable();
1126     DIExpression *DanglingExpr = DI->getExpression();
1127     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1128       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1129       return true;
1130     }
1131     return false;
1132   };
1133 
1134   for (auto &DDIMI : DanglingDebugInfoMap) {
1135     DanglingDebugInfoVector &DDIV = DDIMI.second;
1136 
1137     // If debug info is to be dropped, run it through final checks to see
1138     // whether it can be salvaged.
1139     for (auto &DDI : DDIV)
1140       if (isMatchingDbgValue(DDI))
1141         salvageUnresolvedDbgValue(DDI);
1142 
1143     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1144   }
1145 }
1146 
1147 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1148 // generate the debug data structures now that we've seen its definition.
1149 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1150                                                    SDValue Val) {
1151   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1152   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1153     return;
1154 
1155   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1156   for (auto &DDI : DDIV) {
1157     const DbgValueInst *DI = DDI.getDI();
1158     assert(DI && "Ill-formed DanglingDebugInfo");
1159     DebugLoc dl = DDI.getdl();
1160     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1161     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1162     DILocalVariable *Variable = DI->getVariable();
1163     DIExpression *Expr = DI->getExpression();
1164     assert(Variable->isValidLocationForIntrinsic(dl) &&
1165            "Expected inlined-at fields to agree");
1166     SDDbgValue *SDV;
1167     if (Val.getNode()) {
1168       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1169       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1170       // we couldn't resolve it directly when examining the DbgValue intrinsic
1171       // in the first place we should not be more successful here). Unless we
1172       // have some test case that prove this to be correct we should avoid
1173       // calling EmitFuncArgumentDbgValue here.
1174       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1175         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1176                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1177         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1178         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1179         // inserted after the definition of Val when emitting the instructions
1180         // after ISel. An alternative could be to teach
1181         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1182         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1183                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1184                    << ValSDNodeOrder << "\n");
1185         SDV = getDbgValue(Val, Variable, Expr, dl,
1186                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1187         DAG.AddDbgValue(SDV, Val.getNode(), false);
1188       } else
1189         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1190                           << "in EmitFuncArgumentDbgValue\n");
1191     } else {
1192       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1193       auto Undef =
1194           UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1195       auto SDV =
1196           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1197       DAG.AddDbgValue(SDV, nullptr, false);
1198     }
1199   }
1200   DDIV.clear();
1201 }
1202 
1203 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1204   Value *V = DDI.getDI()->getValue();
1205   DILocalVariable *Var = DDI.getDI()->getVariable();
1206   DIExpression *Expr = DDI.getDI()->getExpression();
1207   DebugLoc DL = DDI.getdl();
1208   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1209   unsigned SDOrder = DDI.getSDNodeOrder();
1210 
1211   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1212   // that DW_OP_stack_value is desired.
1213   assert(isa<DbgValueInst>(DDI.getDI()));
1214   bool StackValue = true;
1215 
1216   // Can this Value can be encoded without any further work?
1217   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1218     return;
1219 
1220   // Attempt to salvage back through as many instructions as possible. Bail if
1221   // a non-instruction is seen, such as a constant expression or global
1222   // variable. FIXME: Further work could recover those too.
1223   while (isa<Instruction>(V)) {
1224     Instruction &VAsInst = *cast<Instruction>(V);
1225     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1226 
1227     // If we cannot salvage any further, and haven't yet found a suitable debug
1228     // expression, bail out.
1229     if (!NewExpr)
1230       break;
1231 
1232     // New value and expr now represent this debuginfo.
1233     V = VAsInst.getOperand(0);
1234     Expr = NewExpr;
1235 
1236     // Some kind of simplification occurred: check whether the operand of the
1237     // salvaged debug expression can be encoded in this DAG.
1238     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1239       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1240                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1241       return;
1242     }
1243   }
1244 
1245   // This was the final opportunity to salvage this debug information, and it
1246   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1247   // any earlier variable location.
1248   auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1249   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1250   DAG.AddDbgValue(SDV, nullptr, false);
1251 
1252   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1253                     << "\n");
1254   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1255                     << "\n");
1256 }
1257 
1258 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1259                                            DIExpression *Expr, DebugLoc dl,
1260                                            DebugLoc InstDL, unsigned Order) {
1261   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1262   SDDbgValue *SDV;
1263   if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1264       isa<ConstantPointerNull>(V)) {
1265     SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1266     DAG.AddDbgValue(SDV, nullptr, false);
1267     return true;
1268   }
1269 
1270   // If the Value is a frame index, we can create a FrameIndex debug value
1271   // without relying on the DAG at all.
1272   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1273     auto SI = FuncInfo.StaticAllocaMap.find(AI);
1274     if (SI != FuncInfo.StaticAllocaMap.end()) {
1275       auto SDV =
1276           DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1277                                     /*IsIndirect*/ false, dl, SDNodeOrder);
1278       // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1279       // is still available even if the SDNode gets optimized out.
1280       DAG.AddDbgValue(SDV, nullptr, false);
1281       return true;
1282     }
1283   }
1284 
1285   // Do not use getValue() in here; we don't want to generate code at
1286   // this point if it hasn't been done yet.
1287   SDValue N = NodeMap[V];
1288   if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1289     N = UnusedArgNodeMap[V];
1290   if (N.getNode()) {
1291     if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1292       return true;
1293     SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1294     DAG.AddDbgValue(SDV, N.getNode(), false);
1295     return true;
1296   }
1297 
1298   // Special rules apply for the first dbg.values of parameter variables in a
1299   // function. Identify them by the fact they reference Argument Values, that
1300   // they're parameters, and they are parameters of the current function. We
1301   // need to let them dangle until they get an SDNode.
1302   bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1303                        !InstDL.getInlinedAt();
1304   if (!IsParamOfFunc) {
1305     // The value is not used in this block yet (or it would have an SDNode).
1306     // We still want the value to appear for the user if possible -- if it has
1307     // an associated VReg, we can refer to that instead.
1308     auto VMI = FuncInfo.ValueMap.find(V);
1309     if (VMI != FuncInfo.ValueMap.end()) {
1310       unsigned Reg = VMI->second;
1311       // If this is a PHI node, it may be split up into several MI PHI nodes
1312       // (in FunctionLoweringInfo::set).
1313       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1314                        V->getType(), None);
1315       if (RFV.occupiesMultipleRegs()) {
1316         unsigned Offset = 0;
1317         unsigned BitsToDescribe = 0;
1318         if (auto VarSize = Var->getSizeInBits())
1319           BitsToDescribe = *VarSize;
1320         if (auto Fragment = Expr->getFragmentInfo())
1321           BitsToDescribe = Fragment->SizeInBits;
1322         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1323           unsigned RegisterSize = RegAndSize.second;
1324           // Bail out if all bits are described already.
1325           if (Offset >= BitsToDescribe)
1326             break;
1327           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1328               ? BitsToDescribe - Offset
1329               : RegisterSize;
1330           auto FragmentExpr = DIExpression::createFragmentExpression(
1331               Expr, Offset, FragmentSize);
1332           if (!FragmentExpr)
1333               continue;
1334           SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1335                                     false, dl, SDNodeOrder);
1336           DAG.AddDbgValue(SDV, nullptr, false);
1337           Offset += RegisterSize;
1338         }
1339       } else {
1340         SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1341         DAG.AddDbgValue(SDV, nullptr, false);
1342       }
1343       return true;
1344     }
1345   }
1346 
1347   return false;
1348 }
1349 
1350 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1351   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1352   for (auto &Pair : DanglingDebugInfoMap)
1353     for (auto &DDI : Pair.getSecond())
1354       salvageUnresolvedDbgValue(DDI);
1355   clearDanglingDebugInfo();
1356 }
1357 
1358 /// getCopyFromRegs - If there was virtual register allocated for the value V
1359 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1360 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1361   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1362   SDValue Result;
1363 
1364   if (It != FuncInfo.ValueMap.end()) {
1365     unsigned InReg = It->second;
1366 
1367     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1368                      DAG.getDataLayout(), InReg, Ty,
1369                      None); // This is not an ABI copy.
1370     SDValue Chain = DAG.getEntryNode();
1371     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1372                                  V);
1373     resolveDanglingDebugInfo(V, Result);
1374   }
1375 
1376   return Result;
1377 }
1378 
1379 /// getValue - Return an SDValue for the given Value.
1380 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1381   // If we already have an SDValue for this value, use it. It's important
1382   // to do this first, so that we don't create a CopyFromReg if we already
1383   // have a regular SDValue.
1384   SDValue &N = NodeMap[V];
1385   if (N.getNode()) return N;
1386 
1387   // If there's a virtual register allocated and initialized for this
1388   // value, use it.
1389   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1390     return copyFromReg;
1391 
1392   // Otherwise create a new SDValue and remember it.
1393   SDValue Val = getValueImpl(V);
1394   NodeMap[V] = Val;
1395   resolveDanglingDebugInfo(V, Val);
1396   return Val;
1397 }
1398 
1399 // Return true if SDValue exists for the given Value
1400 bool SelectionDAGBuilder::findValue(const Value *V) const {
1401   return (NodeMap.find(V) != NodeMap.end()) ||
1402     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1403 }
1404 
1405 /// getNonRegisterValue - Return an SDValue for the given Value, but
1406 /// don't look in FuncInfo.ValueMap for a virtual register.
1407 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1408   // If we already have an SDValue for this value, use it.
1409   SDValue &N = NodeMap[V];
1410   if (N.getNode()) {
1411     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1412       // Remove the debug location from the node as the node is about to be used
1413       // in a location which may differ from the original debug location.  This
1414       // is relevant to Constant and ConstantFP nodes because they can appear
1415       // as constant expressions inside PHI nodes.
1416       N->setDebugLoc(DebugLoc());
1417     }
1418     return N;
1419   }
1420 
1421   // Otherwise create a new SDValue and remember it.
1422   SDValue Val = getValueImpl(V);
1423   NodeMap[V] = Val;
1424   resolveDanglingDebugInfo(V, Val);
1425   return Val;
1426 }
1427 
1428 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1429 /// Create an SDValue for the given value.
1430 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1431   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1432 
1433   if (const Constant *C = dyn_cast<Constant>(V)) {
1434     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1435 
1436     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1437       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1438 
1439     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1440       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1441 
1442     if (isa<ConstantPointerNull>(C)) {
1443       unsigned AS = V->getType()->getPointerAddressSpace();
1444       return DAG.getConstant(0, getCurSDLoc(),
1445                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1446     }
1447 
1448     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1449       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1450 
1451     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1452       return DAG.getUNDEF(VT);
1453 
1454     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1455       visit(CE->getOpcode(), *CE);
1456       SDValue N1 = NodeMap[V];
1457       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1458       return N1;
1459     }
1460 
1461     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1462       SmallVector<SDValue, 4> Constants;
1463       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1464            OI != OE; ++OI) {
1465         SDNode *Val = getValue(*OI).getNode();
1466         // If the operand is an empty aggregate, there are no values.
1467         if (!Val) continue;
1468         // Add each leaf value from the operand to the Constants list
1469         // to form a flattened list of all the values.
1470         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1471           Constants.push_back(SDValue(Val, i));
1472       }
1473 
1474       return DAG.getMergeValues(Constants, getCurSDLoc());
1475     }
1476 
1477     if (const ConstantDataSequential *CDS =
1478           dyn_cast<ConstantDataSequential>(C)) {
1479       SmallVector<SDValue, 4> Ops;
1480       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1481         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1482         // Add each leaf value from the operand to the Constants list
1483         // to form a flattened list of all the values.
1484         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1485           Ops.push_back(SDValue(Val, i));
1486       }
1487 
1488       if (isa<ArrayType>(CDS->getType()))
1489         return DAG.getMergeValues(Ops, getCurSDLoc());
1490       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1491     }
1492 
1493     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1494       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1495              "Unknown struct or array constant!");
1496 
1497       SmallVector<EVT, 4> ValueVTs;
1498       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1499       unsigned NumElts = ValueVTs.size();
1500       if (NumElts == 0)
1501         return SDValue(); // empty struct
1502       SmallVector<SDValue, 4> Constants(NumElts);
1503       for (unsigned i = 0; i != NumElts; ++i) {
1504         EVT EltVT = ValueVTs[i];
1505         if (isa<UndefValue>(C))
1506           Constants[i] = DAG.getUNDEF(EltVT);
1507         else if (EltVT.isFloatingPoint())
1508           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1509         else
1510           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1511       }
1512 
1513       return DAG.getMergeValues(Constants, getCurSDLoc());
1514     }
1515 
1516     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1517       return DAG.getBlockAddress(BA, VT);
1518 
1519     VectorType *VecTy = cast<VectorType>(V->getType());
1520     unsigned NumElements = VecTy->getNumElements();
1521 
1522     // Now that we know the number and type of the elements, get that number of
1523     // elements into the Ops array based on what kind of constant it is.
1524     SmallVector<SDValue, 16> Ops;
1525     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1526       for (unsigned i = 0; i != NumElements; ++i)
1527         Ops.push_back(getValue(CV->getOperand(i)));
1528     } else {
1529       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1530       EVT EltVT =
1531           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1532 
1533       SDValue Op;
1534       if (EltVT.isFloatingPoint())
1535         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1536       else
1537         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1538       Ops.assign(NumElements, Op);
1539     }
1540 
1541     // Create a BUILD_VECTOR node.
1542     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1543   }
1544 
1545   // If this is a static alloca, generate it as the frameindex instead of
1546   // computation.
1547   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1548     DenseMap<const AllocaInst*, int>::iterator SI =
1549       FuncInfo.StaticAllocaMap.find(AI);
1550     if (SI != FuncInfo.StaticAllocaMap.end())
1551       return DAG.getFrameIndex(SI->second,
1552                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1553   }
1554 
1555   // If this is an instruction which fast-isel has deferred, select it now.
1556   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1557     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1558 
1559     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1560                      Inst->getType(), getABIRegCopyCC(V));
1561     SDValue Chain = DAG.getEntryNode();
1562     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1563   }
1564 
1565   llvm_unreachable("Can't get register for value!");
1566 }
1567 
1568 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1569   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1570   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1571   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1572   bool IsSEH = isAsynchronousEHPersonality(Pers);
1573   bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX;
1574   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1575   if (!IsSEH)
1576     CatchPadMBB->setIsEHScopeEntry();
1577   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1578   if (IsMSVCCXX || IsCoreCLR)
1579     CatchPadMBB->setIsEHFuncletEntry();
1580   // Wasm does not need catchpads anymore
1581   if (!IsWasmCXX)
1582     DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other,
1583                             getControlRoot()));
1584 }
1585 
1586 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1587   // Update machine-CFG edge.
1588   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1589   FuncInfo.MBB->addSuccessor(TargetMBB);
1590 
1591   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1592   bool IsSEH = isAsynchronousEHPersonality(Pers);
1593   if (IsSEH) {
1594     // If this is not a fall-through branch or optimizations are switched off,
1595     // emit the branch.
1596     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1597         TM.getOptLevel() == CodeGenOpt::None)
1598       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1599                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1600     return;
1601   }
1602 
1603   // Figure out the funclet membership for the catchret's successor.
1604   // This will be used by the FuncletLayout pass to determine how to order the
1605   // BB's.
1606   // A 'catchret' returns to the outer scope's color.
1607   Value *ParentPad = I.getCatchSwitchParentPad();
1608   const BasicBlock *SuccessorColor;
1609   if (isa<ConstantTokenNone>(ParentPad))
1610     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1611   else
1612     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1613   assert(SuccessorColor && "No parent funclet for catchret!");
1614   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1615   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1616 
1617   // Create the terminator node.
1618   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1619                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1620                             DAG.getBasicBlock(SuccessorColorMBB));
1621   DAG.setRoot(Ret);
1622 }
1623 
1624 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1625   // Don't emit any special code for the cleanuppad instruction. It just marks
1626   // the start of an EH scope/funclet.
1627   FuncInfo.MBB->setIsEHScopeEntry();
1628   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1629   if (Pers != EHPersonality::Wasm_CXX) {
1630     FuncInfo.MBB->setIsEHFuncletEntry();
1631     FuncInfo.MBB->setIsCleanupFuncletEntry();
1632   }
1633 }
1634 
1635 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1636 // the control flow always stops at the single catch pad, as it does for a
1637 // cleanup pad. In case the exception caught is not of the types the catch pad
1638 // catches, it will be rethrown by a rethrow.
1639 static void findWasmUnwindDestinations(
1640     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1641     BranchProbability Prob,
1642     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1643         &UnwindDests) {
1644   while (EHPadBB) {
1645     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1646     if (isa<CleanupPadInst>(Pad)) {
1647       // Stop on cleanup pads.
1648       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1649       UnwindDests.back().first->setIsEHScopeEntry();
1650       break;
1651     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1652       // Add the catchpad handlers to the possible destinations. We don't
1653       // continue to the unwind destination of the catchswitch for wasm.
1654       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1655         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1656         UnwindDests.back().first->setIsEHScopeEntry();
1657       }
1658       break;
1659     } else {
1660       continue;
1661     }
1662   }
1663 }
1664 
1665 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1666 /// many places it could ultimately go. In the IR, we have a single unwind
1667 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1668 /// This function skips over imaginary basic blocks that hold catchswitch
1669 /// instructions, and finds all the "real" machine
1670 /// basic block destinations. As those destinations may not be successors of
1671 /// EHPadBB, here we also calculate the edge probability to those destinations.
1672 /// The passed-in Prob is the edge probability to EHPadBB.
1673 static void findUnwindDestinations(
1674     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1675     BranchProbability Prob,
1676     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1677         &UnwindDests) {
1678   EHPersonality Personality =
1679     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1680   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1681   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1682   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1683   bool IsSEH = isAsynchronousEHPersonality(Personality);
1684 
1685   if (IsWasmCXX) {
1686     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1687     assert(UnwindDests.size() <= 1 &&
1688            "There should be at most one unwind destination for wasm");
1689     return;
1690   }
1691 
1692   while (EHPadBB) {
1693     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1694     BasicBlock *NewEHPadBB = nullptr;
1695     if (isa<LandingPadInst>(Pad)) {
1696       // Stop on landingpads. They are not funclets.
1697       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1698       break;
1699     } else if (isa<CleanupPadInst>(Pad)) {
1700       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1701       // personalities.
1702       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1703       UnwindDests.back().first->setIsEHScopeEntry();
1704       UnwindDests.back().first->setIsEHFuncletEntry();
1705       break;
1706     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1707       // Add the catchpad handlers to the possible destinations.
1708       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1709         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1710         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1711         if (IsMSVCCXX || IsCoreCLR)
1712           UnwindDests.back().first->setIsEHFuncletEntry();
1713         if (!IsSEH)
1714           UnwindDests.back().first->setIsEHScopeEntry();
1715       }
1716       NewEHPadBB = CatchSwitch->getUnwindDest();
1717     } else {
1718       continue;
1719     }
1720 
1721     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1722     if (BPI && NewEHPadBB)
1723       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1724     EHPadBB = NewEHPadBB;
1725   }
1726 }
1727 
1728 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1729   // Update successor info.
1730   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1731   auto UnwindDest = I.getUnwindDest();
1732   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1733   BranchProbability UnwindDestProb =
1734       (BPI && UnwindDest)
1735           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1736           : BranchProbability::getZero();
1737   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1738   for (auto &UnwindDest : UnwindDests) {
1739     UnwindDest.first->setIsEHPad();
1740     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1741   }
1742   FuncInfo.MBB->normalizeSuccProbs();
1743 
1744   // Create the terminator node.
1745   SDValue Ret =
1746       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1747   DAG.setRoot(Ret);
1748 }
1749 
1750 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1751   report_fatal_error("visitCatchSwitch not yet implemented!");
1752 }
1753 
1754 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1755   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1756   auto &DL = DAG.getDataLayout();
1757   SDValue Chain = getControlRoot();
1758   SmallVector<ISD::OutputArg, 8> Outs;
1759   SmallVector<SDValue, 8> OutVals;
1760 
1761   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1762   // lower
1763   //
1764   //   %val = call <ty> @llvm.experimental.deoptimize()
1765   //   ret <ty> %val
1766   //
1767   // differently.
1768   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1769     LowerDeoptimizingReturn();
1770     return;
1771   }
1772 
1773   if (!FuncInfo.CanLowerReturn) {
1774     unsigned DemoteReg = FuncInfo.DemoteRegister;
1775     const Function *F = I.getParent()->getParent();
1776 
1777     // Emit a store of the return value through the virtual register.
1778     // Leave Outs empty so that LowerReturn won't try to load return
1779     // registers the usual way.
1780     SmallVector<EVT, 1> PtrValueVTs;
1781     ComputeValueVTs(TLI, DL,
1782                     F->getReturnType()->getPointerTo(
1783                         DAG.getDataLayout().getAllocaAddrSpace()),
1784                     PtrValueVTs);
1785 
1786     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1787                                         DemoteReg, PtrValueVTs[0]);
1788     SDValue RetOp = getValue(I.getOperand(0));
1789 
1790     SmallVector<EVT, 4> ValueVTs;
1791     SmallVector<uint64_t, 4> Offsets;
1792     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1793     unsigned NumValues = ValueVTs.size();
1794 
1795     SmallVector<SDValue, 4> Chains(NumValues);
1796     for (unsigned i = 0; i != NumValues; ++i) {
1797       // An aggregate return value cannot wrap around the address space, so
1798       // offsets to its parts don't wrap either.
1799       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1800       Chains[i] = DAG.getStore(
1801           Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1802           // FIXME: better loc info would be nice.
1803           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1804     }
1805 
1806     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1807                         MVT::Other, Chains);
1808   } else if (I.getNumOperands() != 0) {
1809     SmallVector<EVT, 4> ValueVTs;
1810     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1811     unsigned NumValues = ValueVTs.size();
1812     if (NumValues) {
1813       SDValue RetOp = getValue(I.getOperand(0));
1814 
1815       const Function *F = I.getParent()->getParent();
1816 
1817       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1818       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1819                                           Attribute::SExt))
1820         ExtendKind = ISD::SIGN_EXTEND;
1821       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1822                                                Attribute::ZExt))
1823         ExtendKind = ISD::ZERO_EXTEND;
1824 
1825       LLVMContext &Context = F->getContext();
1826       bool RetInReg = F->getAttributes().hasAttribute(
1827           AttributeList::ReturnIndex, Attribute::InReg);
1828 
1829       for (unsigned j = 0; j != NumValues; ++j) {
1830         EVT VT = ValueVTs[j];
1831 
1832         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1833           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1834 
1835         CallingConv::ID CC = F->getCallingConv();
1836 
1837         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1838         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1839         SmallVector<SDValue, 4> Parts(NumParts);
1840         getCopyToParts(DAG, getCurSDLoc(),
1841                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1842                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1843 
1844         // 'inreg' on function refers to return value
1845         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1846         if (RetInReg)
1847           Flags.setInReg();
1848 
1849         // Propagate extension type if any
1850         if (ExtendKind == ISD::SIGN_EXTEND)
1851           Flags.setSExt();
1852         else if (ExtendKind == ISD::ZERO_EXTEND)
1853           Flags.setZExt();
1854 
1855         for (unsigned i = 0; i < NumParts; ++i) {
1856           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1857                                         VT, /*isfixed=*/true, 0, 0));
1858           OutVals.push_back(Parts[i]);
1859         }
1860       }
1861     }
1862   }
1863 
1864   // Push in swifterror virtual register as the last element of Outs. This makes
1865   // sure swifterror virtual register will be returned in the swifterror
1866   // physical register.
1867   const Function *F = I.getParent()->getParent();
1868   if (TLI.supportSwiftError() &&
1869       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1870     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1871     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1872     Flags.setSwiftError();
1873     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1874                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1875                                   true /*isfixed*/, 1 /*origidx*/,
1876                                   0 /*partOffs*/));
1877     // Create SDNode for the swifterror virtual register.
1878     OutVals.push_back(
1879         DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt(
1880                             &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first,
1881                         EVT(TLI.getPointerTy(DL))));
1882   }
1883 
1884   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1885   CallingConv::ID CallConv =
1886     DAG.getMachineFunction().getFunction().getCallingConv();
1887   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1888       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1889 
1890   // Verify that the target's LowerReturn behaved as expected.
1891   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1892          "LowerReturn didn't return a valid chain!");
1893 
1894   // Update the DAG with the new chain value resulting from return lowering.
1895   DAG.setRoot(Chain);
1896 }
1897 
1898 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1899 /// created for it, emit nodes to copy the value into the virtual
1900 /// registers.
1901 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1902   // Skip empty types
1903   if (V->getType()->isEmptyTy())
1904     return;
1905 
1906   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1907   if (VMI != FuncInfo.ValueMap.end()) {
1908     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1909     CopyValueToVirtualRegister(V, VMI->second);
1910   }
1911 }
1912 
1913 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1914 /// the current basic block, add it to ValueMap now so that we'll get a
1915 /// CopyTo/FromReg.
1916 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1917   // No need to export constants.
1918   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1919 
1920   // Already exported?
1921   if (FuncInfo.isExportedInst(V)) return;
1922 
1923   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1924   CopyValueToVirtualRegister(V, Reg);
1925 }
1926 
1927 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1928                                                      const BasicBlock *FromBB) {
1929   // The operands of the setcc have to be in this block.  We don't know
1930   // how to export them from some other block.
1931   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1932     // Can export from current BB.
1933     if (VI->getParent() == FromBB)
1934       return true;
1935 
1936     // Is already exported, noop.
1937     return FuncInfo.isExportedInst(V);
1938   }
1939 
1940   // If this is an argument, we can export it if the BB is the entry block or
1941   // if it is already exported.
1942   if (isa<Argument>(V)) {
1943     if (FromBB == &FromBB->getParent()->getEntryBlock())
1944       return true;
1945 
1946     // Otherwise, can only export this if it is already exported.
1947     return FuncInfo.isExportedInst(V);
1948   }
1949 
1950   // Otherwise, constants can always be exported.
1951   return true;
1952 }
1953 
1954 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1955 BranchProbability
1956 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1957                                         const MachineBasicBlock *Dst) const {
1958   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1959   const BasicBlock *SrcBB = Src->getBasicBlock();
1960   const BasicBlock *DstBB = Dst->getBasicBlock();
1961   if (!BPI) {
1962     // If BPI is not available, set the default probability as 1 / N, where N is
1963     // the number of successors.
1964     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1965     return BranchProbability(1, SuccSize);
1966   }
1967   return BPI->getEdgeProbability(SrcBB, DstBB);
1968 }
1969 
1970 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1971                                                MachineBasicBlock *Dst,
1972                                                BranchProbability Prob) {
1973   if (!FuncInfo.BPI)
1974     Src->addSuccessorWithoutProb(Dst);
1975   else {
1976     if (Prob.isUnknown())
1977       Prob = getEdgeProbability(Src, Dst);
1978     Src->addSuccessor(Dst, Prob);
1979   }
1980 }
1981 
1982 static bool InBlock(const Value *V, const BasicBlock *BB) {
1983   if (const Instruction *I = dyn_cast<Instruction>(V))
1984     return I->getParent() == BB;
1985   return true;
1986 }
1987 
1988 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1989 /// This function emits a branch and is used at the leaves of an OR or an
1990 /// AND operator tree.
1991 void
1992 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1993                                                   MachineBasicBlock *TBB,
1994                                                   MachineBasicBlock *FBB,
1995                                                   MachineBasicBlock *CurBB,
1996                                                   MachineBasicBlock *SwitchBB,
1997                                                   BranchProbability TProb,
1998                                                   BranchProbability FProb,
1999                                                   bool InvertCond) {
2000   const BasicBlock *BB = CurBB->getBasicBlock();
2001 
2002   // If the leaf of the tree is a comparison, merge the condition into
2003   // the caseblock.
2004   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2005     // The operands of the cmp have to be in this block.  We don't know
2006     // how to export them from some other block.  If this is the first block
2007     // of the sequence, no exporting is needed.
2008     if (CurBB == SwitchBB ||
2009         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2010          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2011       ISD::CondCode Condition;
2012       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2013         ICmpInst::Predicate Pred =
2014             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2015         Condition = getICmpCondCode(Pred);
2016       } else {
2017         const FCmpInst *FC = cast<FCmpInst>(Cond);
2018         FCmpInst::Predicate Pred =
2019             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2020         Condition = getFCmpCondCode(Pred);
2021         if (TM.Options.NoNaNsFPMath)
2022           Condition = getFCmpCodeWithoutNaN(Condition);
2023       }
2024 
2025       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2026                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2027       SwitchCases.push_back(CB);
2028       return;
2029     }
2030   }
2031 
2032   // Create a CaseBlock record representing this branch.
2033   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2034   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2035                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2036   SwitchCases.push_back(CB);
2037 }
2038 
2039 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2040                                                MachineBasicBlock *TBB,
2041                                                MachineBasicBlock *FBB,
2042                                                MachineBasicBlock *CurBB,
2043                                                MachineBasicBlock *SwitchBB,
2044                                                Instruction::BinaryOps Opc,
2045                                                BranchProbability TProb,
2046                                                BranchProbability FProb,
2047                                                bool InvertCond) {
2048   // Skip over not part of the tree and remember to invert op and operands at
2049   // next level.
2050   Value *NotCond;
2051   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2052       InBlock(NotCond, CurBB->getBasicBlock())) {
2053     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2054                          !InvertCond);
2055     return;
2056   }
2057 
2058   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2059   // Compute the effective opcode for Cond, taking into account whether it needs
2060   // to be inverted, e.g.
2061   //   and (not (or A, B)), C
2062   // gets lowered as
2063   //   and (and (not A, not B), C)
2064   unsigned BOpc = 0;
2065   if (BOp) {
2066     BOpc = BOp->getOpcode();
2067     if (InvertCond) {
2068       if (BOpc == Instruction::And)
2069         BOpc = Instruction::Or;
2070       else if (BOpc == Instruction::Or)
2071         BOpc = Instruction::And;
2072     }
2073   }
2074 
2075   // If this node is not part of the or/and tree, emit it as a branch.
2076   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2077       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2078       BOp->getParent() != CurBB->getBasicBlock() ||
2079       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2080       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2081     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2082                                  TProb, FProb, InvertCond);
2083     return;
2084   }
2085 
2086   //  Create TmpBB after CurBB.
2087   MachineFunction::iterator BBI(CurBB);
2088   MachineFunction &MF = DAG.getMachineFunction();
2089   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2090   CurBB->getParent()->insert(++BBI, TmpBB);
2091 
2092   if (Opc == Instruction::Or) {
2093     // Codegen X | Y as:
2094     // BB1:
2095     //   jmp_if_X TBB
2096     //   jmp TmpBB
2097     // TmpBB:
2098     //   jmp_if_Y TBB
2099     //   jmp FBB
2100     //
2101 
2102     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2103     // The requirement is that
2104     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2105     //     = TrueProb for original BB.
2106     // Assuming the original probabilities are A and B, one choice is to set
2107     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2108     // A/(1+B) and 2B/(1+B). This choice assumes that
2109     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2110     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2111     // TmpBB, but the math is more complicated.
2112 
2113     auto NewTrueProb = TProb / 2;
2114     auto NewFalseProb = TProb / 2 + FProb;
2115     // Emit the LHS condition.
2116     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2117                          NewTrueProb, NewFalseProb, InvertCond);
2118 
2119     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2120     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2121     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2122     // Emit the RHS condition into TmpBB.
2123     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2124                          Probs[0], Probs[1], InvertCond);
2125   } else {
2126     assert(Opc == Instruction::And && "Unknown merge op!");
2127     // Codegen X & Y as:
2128     // BB1:
2129     //   jmp_if_X TmpBB
2130     //   jmp FBB
2131     // TmpBB:
2132     //   jmp_if_Y TBB
2133     //   jmp FBB
2134     //
2135     //  This requires creation of TmpBB after CurBB.
2136 
2137     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2138     // The requirement is that
2139     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2140     //     = FalseProb for original BB.
2141     // Assuming the original probabilities are A and B, one choice is to set
2142     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2143     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2144     // TrueProb for BB1 * FalseProb for TmpBB.
2145 
2146     auto NewTrueProb = TProb + FProb / 2;
2147     auto NewFalseProb = FProb / 2;
2148     // Emit the LHS condition.
2149     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2150                          NewTrueProb, NewFalseProb, InvertCond);
2151 
2152     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2153     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2154     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2155     // Emit the RHS condition into TmpBB.
2156     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2157                          Probs[0], Probs[1], InvertCond);
2158   }
2159 }
2160 
2161 /// If the set of cases should be emitted as a series of branches, return true.
2162 /// If we should emit this as a bunch of and/or'd together conditions, return
2163 /// false.
2164 bool
2165 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2166   if (Cases.size() != 2) return true;
2167 
2168   // If this is two comparisons of the same values or'd or and'd together, they
2169   // will get folded into a single comparison, so don't emit two blocks.
2170   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2171        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2172       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2173        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2174     return false;
2175   }
2176 
2177   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2178   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2179   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2180       Cases[0].CC == Cases[1].CC &&
2181       isa<Constant>(Cases[0].CmpRHS) &&
2182       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2183     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2184       return false;
2185     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2186       return false;
2187   }
2188 
2189   return true;
2190 }
2191 
2192 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2193   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2194 
2195   // Update machine-CFG edges.
2196   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2197 
2198   if (I.isUnconditional()) {
2199     // Update machine-CFG edges.
2200     BrMBB->addSuccessor(Succ0MBB);
2201 
2202     // If this is not a fall-through branch or optimizations are switched off,
2203     // emit the branch.
2204     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2205       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2206                               MVT::Other, getControlRoot(),
2207                               DAG.getBasicBlock(Succ0MBB)));
2208 
2209     return;
2210   }
2211 
2212   // If this condition is one of the special cases we handle, do special stuff
2213   // now.
2214   const Value *CondVal = I.getCondition();
2215   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2216 
2217   // If this is a series of conditions that are or'd or and'd together, emit
2218   // this as a sequence of branches instead of setcc's with and/or operations.
2219   // As long as jumps are not expensive, this should improve performance.
2220   // For example, instead of something like:
2221   //     cmp A, B
2222   //     C = seteq
2223   //     cmp D, E
2224   //     F = setle
2225   //     or C, F
2226   //     jnz foo
2227   // Emit:
2228   //     cmp A, B
2229   //     je foo
2230   //     cmp D, E
2231   //     jle foo
2232   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2233     Instruction::BinaryOps Opcode = BOp->getOpcode();
2234     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2235         !I.getMetadata(LLVMContext::MD_unpredictable) &&
2236         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2237       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2238                            Opcode,
2239                            getEdgeProbability(BrMBB, Succ0MBB),
2240                            getEdgeProbability(BrMBB, Succ1MBB),
2241                            /*InvertCond=*/false);
2242       // If the compares in later blocks need to use values not currently
2243       // exported from this block, export them now.  This block should always
2244       // be the first entry.
2245       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2246 
2247       // Allow some cases to be rejected.
2248       if (ShouldEmitAsBranches(SwitchCases)) {
2249         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
2250           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
2251           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
2252         }
2253 
2254         // Emit the branch for this block.
2255         visitSwitchCase(SwitchCases[0], BrMBB);
2256         SwitchCases.erase(SwitchCases.begin());
2257         return;
2258       }
2259 
2260       // Okay, we decided not to do this, remove any inserted MBB's and clear
2261       // SwitchCases.
2262       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
2263         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
2264 
2265       SwitchCases.clear();
2266     }
2267   }
2268 
2269   // Create a CaseBlock record representing this branch.
2270   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2271                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2272 
2273   // Use visitSwitchCase to actually insert the fast branch sequence for this
2274   // cond branch.
2275   visitSwitchCase(CB, BrMBB);
2276 }
2277 
2278 /// visitSwitchCase - Emits the necessary code to represent a single node in
2279 /// the binary search tree resulting from lowering a switch instruction.
2280 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2281                                           MachineBasicBlock *SwitchBB) {
2282   SDValue Cond;
2283   SDValue CondLHS = getValue(CB.CmpLHS);
2284   SDLoc dl = CB.DL;
2285 
2286   // Build the setcc now.
2287   if (!CB.CmpMHS) {
2288     // Fold "(X == true)" to X and "(X == false)" to !X to
2289     // handle common cases produced by branch lowering.
2290     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2291         CB.CC == ISD::SETEQ)
2292       Cond = CondLHS;
2293     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2294              CB.CC == ISD::SETEQ) {
2295       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2296       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2297     } else
2298       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
2299   } else {
2300     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2301 
2302     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2303     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2304 
2305     SDValue CmpOp = getValue(CB.CmpMHS);
2306     EVT VT = CmpOp.getValueType();
2307 
2308     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2309       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2310                           ISD::SETLE);
2311     } else {
2312       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2313                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2314       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2315                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2316     }
2317   }
2318 
2319   // Update successor info
2320   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2321   // TrueBB and FalseBB are always different unless the incoming IR is
2322   // degenerate. This only happens when running llc on weird IR.
2323   if (CB.TrueBB != CB.FalseBB)
2324     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2325   SwitchBB->normalizeSuccProbs();
2326 
2327   // If the lhs block is the next block, invert the condition so that we can
2328   // fall through to the lhs instead of the rhs block.
2329   if (CB.TrueBB == NextBlock(SwitchBB)) {
2330     std::swap(CB.TrueBB, CB.FalseBB);
2331     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2332     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2333   }
2334 
2335   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2336                                MVT::Other, getControlRoot(), Cond,
2337                                DAG.getBasicBlock(CB.TrueBB));
2338 
2339   // Insert the false branch. Do this even if it's a fall through branch,
2340   // this makes it easier to do DAG optimizations which require inverting
2341   // the branch condition.
2342   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2343                        DAG.getBasicBlock(CB.FalseBB));
2344 
2345   DAG.setRoot(BrCond);
2346 }
2347 
2348 /// visitJumpTable - Emit JumpTable node in the current MBB
2349 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
2350   // Emit the code for the jump table
2351   assert(JT.Reg != -1U && "Should lower JT Header first!");
2352   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2353   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2354                                      JT.Reg, PTy);
2355   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2356   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2357                                     MVT::Other, Index.getValue(1),
2358                                     Table, Index);
2359   DAG.setRoot(BrJumpTable);
2360 }
2361 
2362 /// visitJumpTableHeader - This function emits necessary code to produce index
2363 /// in the JumpTable from switch case.
2364 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
2365                                                JumpTableHeader &JTH,
2366                                                MachineBasicBlock *SwitchBB) {
2367   SDLoc dl = getCurSDLoc();
2368 
2369   // Subtract the lowest switch case value from the value being switched on and
2370   // conditional branch to default mbb if the result is greater than the
2371   // difference between smallest and largest cases.
2372   SDValue SwitchOp = getValue(JTH.SValue);
2373   EVT VT = SwitchOp.getValueType();
2374   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2375                             DAG.getConstant(JTH.First, dl, VT));
2376 
2377   // The SDNode we just created, which holds the value being switched on minus
2378   // the smallest case value, needs to be copied to a virtual register so it
2379   // can be used as an index into the jump table in a subsequent basic block.
2380   // This value may be smaller or larger than the target's pointer type, and
2381   // therefore require extension or truncating.
2382   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2383   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2384 
2385   unsigned JumpTableReg =
2386       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2387   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2388                                     JumpTableReg, SwitchOp);
2389   JT.Reg = JumpTableReg;
2390 
2391   if (!JTH.OmitRangeCheck) {
2392     // Emit the range check for the jump table, and branch to the default block
2393     // for the switch statement if the value being switched on exceeds the
2394     // largest case in the switch.
2395     SDValue CMP = DAG.getSetCC(
2396         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2397                                    Sub.getValueType()),
2398         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2399 
2400     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2401                                  MVT::Other, CopyTo, CMP,
2402                                  DAG.getBasicBlock(JT.Default));
2403 
2404     // Avoid emitting unnecessary branches to the next block.
2405     if (JT.MBB != NextBlock(SwitchBB))
2406       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2407                            DAG.getBasicBlock(JT.MBB));
2408 
2409     DAG.setRoot(BrCond);
2410   } else {
2411     SDValue BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2412                                  DAG.getBasicBlock(JT.MBB));
2413     DAG.setRoot(BrCond);
2414     SwitchBB->removeSuccessor(JT.Default, true);
2415   }
2416 }
2417 
2418 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2419 /// variable if there exists one.
2420 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2421                                  SDValue &Chain) {
2422   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2423   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2424   MachineFunction &MF = DAG.getMachineFunction();
2425   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2426   MachineSDNode *Node =
2427       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2428   if (Global) {
2429     MachinePointerInfo MPInfo(Global);
2430     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2431                  MachineMemOperand::MODereferenceable;
2432     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2433         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy));
2434     DAG.setNodeMemRefs(Node, {MemRef});
2435   }
2436   return SDValue(Node, 0);
2437 }
2438 
2439 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2440 /// tail spliced into a stack protector check success bb.
2441 ///
2442 /// For a high level explanation of how this fits into the stack protector
2443 /// generation see the comment on the declaration of class
2444 /// StackProtectorDescriptor.
2445 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2446                                                   MachineBasicBlock *ParentBB) {
2447 
2448   // First create the loads to the guard/stack slot for the comparison.
2449   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2450   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2451 
2452   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2453   int FI = MFI.getStackProtectorIndex();
2454 
2455   SDValue Guard;
2456   SDLoc dl = getCurSDLoc();
2457   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2458   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2459   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2460 
2461   // Generate code to load the content of the guard slot.
2462   SDValue GuardVal = DAG.getLoad(
2463       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2464       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2465       MachineMemOperand::MOVolatile);
2466 
2467   if (TLI.useStackGuardXorFP())
2468     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2469 
2470   // Retrieve guard check function, nullptr if instrumentation is inlined.
2471   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2472     // The target provides a guard check function to validate the guard value.
2473     // Generate a call to that function with the content of the guard slot as
2474     // argument.
2475     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2476     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2477 
2478     TargetLowering::ArgListTy Args;
2479     TargetLowering::ArgListEntry Entry;
2480     Entry.Node = GuardVal;
2481     Entry.Ty = FnTy->getParamType(0);
2482     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2483       Entry.IsInReg = true;
2484     Args.push_back(Entry);
2485 
2486     TargetLowering::CallLoweringInfo CLI(DAG);
2487     CLI.setDebugLoc(getCurSDLoc())
2488         .setChain(DAG.getEntryNode())
2489         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2490                    getValue(GuardCheckFn), std::move(Args));
2491 
2492     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2493     DAG.setRoot(Result.second);
2494     return;
2495   }
2496 
2497   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2498   // Otherwise, emit a volatile load to retrieve the stack guard value.
2499   SDValue Chain = DAG.getEntryNode();
2500   if (TLI.useLoadStackGuardNode()) {
2501     Guard = getLoadStackGuard(DAG, dl, Chain);
2502   } else {
2503     const Value *IRGuard = TLI.getSDagStackGuard(M);
2504     SDValue GuardPtr = getValue(IRGuard);
2505 
2506     Guard =
2507         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2508                     Align, MachineMemOperand::MOVolatile);
2509   }
2510 
2511   // Perform the comparison via a subtract/getsetcc.
2512   EVT VT = Guard.getValueType();
2513   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2514 
2515   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2516                                                         *DAG.getContext(),
2517                                                         Sub.getValueType()),
2518                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2519 
2520   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2521   // branch to failure MBB.
2522   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2523                                MVT::Other, GuardVal.getOperand(0),
2524                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2525   // Otherwise branch to success MBB.
2526   SDValue Br = DAG.getNode(ISD::BR, dl,
2527                            MVT::Other, BrCond,
2528                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2529 
2530   DAG.setRoot(Br);
2531 }
2532 
2533 /// Codegen the failure basic block for a stack protector check.
2534 ///
2535 /// A failure stack protector machine basic block consists simply of a call to
2536 /// __stack_chk_fail().
2537 ///
2538 /// For a high level explanation of how this fits into the stack protector
2539 /// generation see the comment on the declaration of class
2540 /// StackProtectorDescriptor.
2541 void
2542 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2543   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2544   SDValue Chain =
2545       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2546                       None, false, getCurSDLoc(), false, false).second;
2547   DAG.setRoot(Chain);
2548 }
2549 
2550 /// visitBitTestHeader - This function emits necessary code to produce value
2551 /// suitable for "bit tests"
2552 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2553                                              MachineBasicBlock *SwitchBB) {
2554   SDLoc dl = getCurSDLoc();
2555 
2556   // Subtract the minimum value
2557   SDValue SwitchOp = getValue(B.SValue);
2558   EVT VT = SwitchOp.getValueType();
2559   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2560                             DAG.getConstant(B.First, dl, VT));
2561 
2562   // Check range
2563   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2564   SDValue RangeCmp = DAG.getSetCC(
2565       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2566                                  Sub.getValueType()),
2567       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2568 
2569   // Determine the type of the test operands.
2570   bool UsePtrType = false;
2571   if (!TLI.isTypeLegal(VT))
2572     UsePtrType = true;
2573   else {
2574     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2575       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2576         // Switch table case range are encoded into series of masks.
2577         // Just use pointer type, it's guaranteed to fit.
2578         UsePtrType = true;
2579         break;
2580       }
2581   }
2582   if (UsePtrType) {
2583     VT = TLI.getPointerTy(DAG.getDataLayout());
2584     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2585   }
2586 
2587   B.RegVT = VT.getSimpleVT();
2588   B.Reg = FuncInfo.CreateReg(B.RegVT);
2589   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2590 
2591   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2592 
2593   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2594   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2595   SwitchBB->normalizeSuccProbs();
2596 
2597   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2598                                 MVT::Other, CopyTo, RangeCmp,
2599                                 DAG.getBasicBlock(B.Default));
2600 
2601   // Avoid emitting unnecessary branches to the next block.
2602   if (MBB != NextBlock(SwitchBB))
2603     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2604                           DAG.getBasicBlock(MBB));
2605 
2606   DAG.setRoot(BrRange);
2607 }
2608 
2609 /// visitBitTestCase - this function produces one "bit test"
2610 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2611                                            MachineBasicBlock* NextMBB,
2612                                            BranchProbability BranchProbToNext,
2613                                            unsigned Reg,
2614                                            BitTestCase &B,
2615                                            MachineBasicBlock *SwitchBB) {
2616   SDLoc dl = getCurSDLoc();
2617   MVT VT = BB.RegVT;
2618   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2619   SDValue Cmp;
2620   unsigned PopCount = countPopulation(B.Mask);
2621   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2622   if (PopCount == 1) {
2623     // Testing for a single bit; just compare the shift count with what it
2624     // would need to be to shift a 1 bit in that position.
2625     Cmp = DAG.getSetCC(
2626         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2627         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2628         ISD::SETEQ);
2629   } else if (PopCount == BB.Range) {
2630     // There is only one zero bit in the range, test for it directly.
2631     Cmp = DAG.getSetCC(
2632         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2633         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2634         ISD::SETNE);
2635   } else {
2636     // Make desired shift
2637     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2638                                     DAG.getConstant(1, dl, VT), ShiftOp);
2639 
2640     // Emit bit tests and jumps
2641     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2642                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2643     Cmp = DAG.getSetCC(
2644         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2645         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2646   }
2647 
2648   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2649   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2650   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2651   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2652   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2653   // one as they are relative probabilities (and thus work more like weights),
2654   // and hence we need to normalize them to let the sum of them become one.
2655   SwitchBB->normalizeSuccProbs();
2656 
2657   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2658                               MVT::Other, getControlRoot(),
2659                               Cmp, DAG.getBasicBlock(B.TargetBB));
2660 
2661   // Avoid emitting unnecessary branches to the next block.
2662   if (NextMBB != NextBlock(SwitchBB))
2663     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2664                         DAG.getBasicBlock(NextMBB));
2665 
2666   DAG.setRoot(BrAnd);
2667 }
2668 
2669 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2670   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2671 
2672   // Retrieve successors. Look through artificial IR level blocks like
2673   // catchswitch for successors.
2674   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2675   const BasicBlock *EHPadBB = I.getSuccessor(1);
2676 
2677   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2678   // have to do anything here to lower funclet bundles.
2679   assert(!I.hasOperandBundlesOtherThan(
2680              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2681          "Cannot lower invokes with arbitrary operand bundles yet!");
2682 
2683   const Value *Callee(I.getCalledValue());
2684   const Function *Fn = dyn_cast<Function>(Callee);
2685   if (isa<InlineAsm>(Callee))
2686     visitInlineAsm(&I);
2687   else if (Fn && Fn->isIntrinsic()) {
2688     switch (Fn->getIntrinsicID()) {
2689     default:
2690       llvm_unreachable("Cannot invoke this intrinsic");
2691     case Intrinsic::donothing:
2692       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2693       break;
2694     case Intrinsic::experimental_patchpoint_void:
2695     case Intrinsic::experimental_patchpoint_i64:
2696       visitPatchpoint(&I, EHPadBB);
2697       break;
2698     case Intrinsic::experimental_gc_statepoint:
2699       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2700       break;
2701     }
2702   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2703     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2704     // Eventually we will support lowering the @llvm.experimental.deoptimize
2705     // intrinsic, and right now there are no plans to support other intrinsics
2706     // with deopt state.
2707     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2708   } else {
2709     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2710   }
2711 
2712   // If the value of the invoke is used outside of its defining block, make it
2713   // available as a virtual register.
2714   // We already took care of the exported value for the statepoint instruction
2715   // during call to the LowerStatepoint.
2716   if (!isStatepoint(I)) {
2717     CopyToExportRegsIfNeeded(&I);
2718   }
2719 
2720   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2721   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2722   BranchProbability EHPadBBProb =
2723       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2724           : BranchProbability::getZero();
2725   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2726 
2727   // Update successor info.
2728   addSuccessorWithProb(InvokeMBB, Return);
2729   for (auto &UnwindDest : UnwindDests) {
2730     UnwindDest.first->setIsEHPad();
2731     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2732   }
2733   InvokeMBB->normalizeSuccProbs();
2734 
2735   // Drop into normal successor.
2736   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2737                           DAG.getBasicBlock(Return)));
2738 }
2739 
2740 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2741   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2742 
2743   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2744   // have to do anything here to lower funclet bundles.
2745   assert(!I.hasOperandBundlesOtherThan(
2746              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2747          "Cannot lower callbrs with arbitrary operand bundles yet!");
2748 
2749   assert(isa<InlineAsm>(I.getCalledValue()) &&
2750          "Only know how to handle inlineasm callbr");
2751   visitInlineAsm(&I);
2752 
2753   // Retrieve successors.
2754   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2755 
2756   // Update successor info.
2757   addSuccessorWithProb(CallBrMBB, Return);
2758   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2759     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2760     addSuccessorWithProb(CallBrMBB, Target);
2761   }
2762   CallBrMBB->normalizeSuccProbs();
2763 
2764   // Drop into default successor.
2765   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2766                           MVT::Other, getControlRoot(),
2767                           DAG.getBasicBlock(Return)));
2768 }
2769 
2770 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2771   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2772 }
2773 
2774 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2775   assert(FuncInfo.MBB->isEHPad() &&
2776          "Call to landingpad not in landing pad!");
2777 
2778   // If there aren't registers to copy the values into (e.g., during SjLj
2779   // exceptions), then don't bother to create these DAG nodes.
2780   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2781   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2782   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2783       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2784     return;
2785 
2786   // If landingpad's return type is token type, we don't create DAG nodes
2787   // for its exception pointer and selector value. The extraction of exception
2788   // pointer or selector value from token type landingpads is not currently
2789   // supported.
2790   if (LP.getType()->isTokenTy())
2791     return;
2792 
2793   SmallVector<EVT, 2> ValueVTs;
2794   SDLoc dl = getCurSDLoc();
2795   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2796   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2797 
2798   // Get the two live-in registers as SDValues. The physregs have already been
2799   // copied into virtual registers.
2800   SDValue Ops[2];
2801   if (FuncInfo.ExceptionPointerVirtReg) {
2802     Ops[0] = DAG.getZExtOrTrunc(
2803         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2804                            FuncInfo.ExceptionPointerVirtReg,
2805                            TLI.getPointerTy(DAG.getDataLayout())),
2806         dl, ValueVTs[0]);
2807   } else {
2808     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2809   }
2810   Ops[1] = DAG.getZExtOrTrunc(
2811       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2812                          FuncInfo.ExceptionSelectorVirtReg,
2813                          TLI.getPointerTy(DAG.getDataLayout())),
2814       dl, ValueVTs[1]);
2815 
2816   // Merge into one.
2817   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2818                             DAG.getVTList(ValueVTs), Ops);
2819   setValue(&LP, Res);
2820 }
2821 
2822 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2823 #ifndef NDEBUG
2824   for (const CaseCluster &CC : Clusters)
2825     assert(CC.Low == CC.High && "Input clusters must be single-case");
2826 #endif
2827 
2828   llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) {
2829     return a.Low->getValue().slt(b.Low->getValue());
2830   });
2831 
2832   // Merge adjacent clusters with the same destination.
2833   const unsigned N = Clusters.size();
2834   unsigned DstIndex = 0;
2835   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2836     CaseCluster &CC = Clusters[SrcIndex];
2837     const ConstantInt *CaseVal = CC.Low;
2838     MachineBasicBlock *Succ = CC.MBB;
2839 
2840     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2841         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2842       // If this case has the same successor and is a neighbour, merge it into
2843       // the previous cluster.
2844       Clusters[DstIndex - 1].High = CaseVal;
2845       Clusters[DstIndex - 1].Prob += CC.Prob;
2846     } else {
2847       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2848                    sizeof(Clusters[SrcIndex]));
2849     }
2850   }
2851   Clusters.resize(DstIndex);
2852 }
2853 
2854 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2855                                            MachineBasicBlock *Last) {
2856   // Update JTCases.
2857   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2858     if (JTCases[i].first.HeaderBB == First)
2859       JTCases[i].first.HeaderBB = Last;
2860 
2861   // Update BitTestCases.
2862   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2863     if (BitTestCases[i].Parent == First)
2864       BitTestCases[i].Parent = Last;
2865 }
2866 
2867 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2868   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2869 
2870   // Update machine-CFG edges with unique successors.
2871   SmallSet<BasicBlock*, 32> Done;
2872   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2873     BasicBlock *BB = I.getSuccessor(i);
2874     bool Inserted = Done.insert(BB).second;
2875     if (!Inserted)
2876         continue;
2877 
2878     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2879     addSuccessorWithProb(IndirectBrMBB, Succ);
2880   }
2881   IndirectBrMBB->normalizeSuccProbs();
2882 
2883   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2884                           MVT::Other, getControlRoot(),
2885                           getValue(I.getAddress())));
2886 }
2887 
2888 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2889   if (!DAG.getTarget().Options.TrapUnreachable)
2890     return;
2891 
2892   // We may be able to ignore unreachable behind a noreturn call.
2893   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2894     const BasicBlock &BB = *I.getParent();
2895     if (&I != &BB.front()) {
2896       BasicBlock::const_iterator PredI =
2897         std::prev(BasicBlock::const_iterator(&I));
2898       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2899         if (Call->doesNotReturn())
2900           return;
2901       }
2902     }
2903   }
2904 
2905   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2906 }
2907 
2908 void SelectionDAGBuilder::visitFSub(const User &I) {
2909   // -0.0 - X --> fneg
2910   Type *Ty = I.getType();
2911   if (isa<Constant>(I.getOperand(0)) &&
2912       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2913     SDValue Op2 = getValue(I.getOperand(1));
2914     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2915                              Op2.getValueType(), Op2));
2916     return;
2917   }
2918 
2919   visitBinary(I, ISD::FSUB);
2920 }
2921 
2922 /// Checks if the given instruction performs a vector reduction, in which case
2923 /// we have the freedom to alter the elements in the result as long as the
2924 /// reduction of them stays unchanged.
2925 static bool isVectorReductionOp(const User *I) {
2926   const Instruction *Inst = dyn_cast<Instruction>(I);
2927   if (!Inst || !Inst->getType()->isVectorTy())
2928     return false;
2929 
2930   auto OpCode = Inst->getOpcode();
2931   switch (OpCode) {
2932   case Instruction::Add:
2933   case Instruction::Mul:
2934   case Instruction::And:
2935   case Instruction::Or:
2936   case Instruction::Xor:
2937     break;
2938   case Instruction::FAdd:
2939   case Instruction::FMul:
2940     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2941       if (FPOp->getFastMathFlags().isFast())
2942         break;
2943     LLVM_FALLTHROUGH;
2944   default:
2945     return false;
2946   }
2947 
2948   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2949   // Ensure the reduction size is a power of 2.
2950   if (!isPowerOf2_32(ElemNum))
2951     return false;
2952 
2953   unsigned ElemNumToReduce = ElemNum;
2954 
2955   // Do DFS search on the def-use chain from the given instruction. We only
2956   // allow four kinds of operations during the search until we reach the
2957   // instruction that extracts the first element from the vector:
2958   //
2959   //   1. The reduction operation of the same opcode as the given instruction.
2960   //
2961   //   2. PHI node.
2962   //
2963   //   3. ShuffleVector instruction together with a reduction operation that
2964   //      does a partial reduction.
2965   //
2966   //   4. ExtractElement that extracts the first element from the vector, and we
2967   //      stop searching the def-use chain here.
2968   //
2969   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2970   // from 1-3 to the stack to continue the DFS. The given instruction is not
2971   // a reduction operation if we meet any other instructions other than those
2972   // listed above.
2973 
2974   SmallVector<const User *, 16> UsersToVisit{Inst};
2975   SmallPtrSet<const User *, 16> Visited;
2976   bool ReduxExtracted = false;
2977 
2978   while (!UsersToVisit.empty()) {
2979     auto User = UsersToVisit.back();
2980     UsersToVisit.pop_back();
2981     if (!Visited.insert(User).second)
2982       continue;
2983 
2984     for (const auto &U : User->users()) {
2985       auto Inst = dyn_cast<Instruction>(U);
2986       if (!Inst)
2987         return false;
2988 
2989       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2990         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2991           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
2992             return false;
2993         UsersToVisit.push_back(U);
2994       } else if (const ShuffleVectorInst *ShufInst =
2995                      dyn_cast<ShuffleVectorInst>(U)) {
2996         // Detect the following pattern: A ShuffleVector instruction together
2997         // with a reduction that do partial reduction on the first and second
2998         // ElemNumToReduce / 2 elements, and store the result in
2999         // ElemNumToReduce / 2 elements in another vector.
3000 
3001         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
3002         if (ResultElements < ElemNum)
3003           return false;
3004 
3005         if (ElemNumToReduce == 1)
3006           return false;
3007         if (!isa<UndefValue>(U->getOperand(1)))
3008           return false;
3009         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
3010           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
3011             return false;
3012         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
3013           if (ShufInst->getMaskValue(i) != -1)
3014             return false;
3015 
3016         // There is only one user of this ShuffleVector instruction, which
3017         // must be a reduction operation.
3018         if (!U->hasOneUse())
3019           return false;
3020 
3021         auto U2 = dyn_cast<Instruction>(*U->user_begin());
3022         if (!U2 || U2->getOpcode() != OpCode)
3023           return false;
3024 
3025         // Check operands of the reduction operation.
3026         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
3027             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
3028           UsersToVisit.push_back(U2);
3029           ElemNumToReduce /= 2;
3030         } else
3031           return false;
3032       } else if (isa<ExtractElementInst>(U)) {
3033         // At this moment we should have reduced all elements in the vector.
3034         if (ElemNumToReduce != 1)
3035           return false;
3036 
3037         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
3038         if (!Val || !Val->isZero())
3039           return false;
3040 
3041         ReduxExtracted = true;
3042       } else
3043         return false;
3044     }
3045   }
3046   return ReduxExtracted;
3047 }
3048 
3049 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3050   SDNodeFlags Flags;
3051 
3052   SDValue Op = getValue(I.getOperand(0));
3053   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3054                                     Op, Flags);
3055   setValue(&I, UnNodeValue);
3056 }
3057 
3058 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3059   SDNodeFlags Flags;
3060   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3061     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3062     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3063   }
3064   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
3065     Flags.setExact(ExactOp->isExact());
3066   }
3067   if (isVectorReductionOp(&I)) {
3068     Flags.setVectorReduction(true);
3069     LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
3070   }
3071 
3072   SDValue Op1 = getValue(I.getOperand(0));
3073   SDValue Op2 = getValue(I.getOperand(1));
3074   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3075                                      Op1, Op2, Flags);
3076   setValue(&I, BinNodeValue);
3077 }
3078 
3079 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3080   SDValue Op1 = getValue(I.getOperand(0));
3081   SDValue Op2 = getValue(I.getOperand(1));
3082 
3083   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3084       Op1.getValueType(), DAG.getDataLayout());
3085 
3086   // Coerce the shift amount to the right type if we can.
3087   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3088     unsigned ShiftSize = ShiftTy.getSizeInBits();
3089     unsigned Op2Size = Op2.getValueSizeInBits();
3090     SDLoc DL = getCurSDLoc();
3091 
3092     // If the operand is smaller than the shift count type, promote it.
3093     if (ShiftSize > Op2Size)
3094       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3095 
3096     // If the operand is larger than the shift count type but the shift
3097     // count type has enough bits to represent any shift value, truncate
3098     // it now. This is a common case and it exposes the truncate to
3099     // optimization early.
3100     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3101       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3102     // Otherwise we'll need to temporarily settle for some other convenient
3103     // type.  Type legalization will make adjustments once the shiftee is split.
3104     else
3105       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3106   }
3107 
3108   bool nuw = false;
3109   bool nsw = false;
3110   bool exact = false;
3111 
3112   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3113 
3114     if (const OverflowingBinaryOperator *OFBinOp =
3115             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3116       nuw = OFBinOp->hasNoUnsignedWrap();
3117       nsw = OFBinOp->hasNoSignedWrap();
3118     }
3119     if (const PossiblyExactOperator *ExactOp =
3120             dyn_cast<const PossiblyExactOperator>(&I))
3121       exact = ExactOp->isExact();
3122   }
3123   SDNodeFlags Flags;
3124   Flags.setExact(exact);
3125   Flags.setNoSignedWrap(nsw);
3126   Flags.setNoUnsignedWrap(nuw);
3127   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3128                             Flags);
3129   setValue(&I, Res);
3130 }
3131 
3132 void SelectionDAGBuilder::visitSDiv(const User &I) {
3133   SDValue Op1 = getValue(I.getOperand(0));
3134   SDValue Op2 = getValue(I.getOperand(1));
3135 
3136   SDNodeFlags Flags;
3137   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3138                  cast<PossiblyExactOperator>(&I)->isExact());
3139   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3140                            Op2, Flags));
3141 }
3142 
3143 void SelectionDAGBuilder::visitICmp(const User &I) {
3144   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3145   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3146     predicate = IC->getPredicate();
3147   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3148     predicate = ICmpInst::Predicate(IC->getPredicate());
3149   SDValue Op1 = getValue(I.getOperand(0));
3150   SDValue Op2 = getValue(I.getOperand(1));
3151   ISD::CondCode Opcode = getICmpCondCode(predicate);
3152 
3153   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3154                                                         I.getType());
3155   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3156 }
3157 
3158 void SelectionDAGBuilder::visitFCmp(const User &I) {
3159   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3160   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3161     predicate = FC->getPredicate();
3162   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3163     predicate = FCmpInst::Predicate(FC->getPredicate());
3164   SDValue Op1 = getValue(I.getOperand(0));
3165   SDValue Op2 = getValue(I.getOperand(1));
3166 
3167   ISD::CondCode Condition = getFCmpCondCode(predicate);
3168   auto *FPMO = dyn_cast<FPMathOperator>(&I);
3169   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
3170     Condition = getFCmpCodeWithoutNaN(Condition);
3171 
3172   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3173                                                         I.getType());
3174   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3175 }
3176 
3177 // Check if the condition of the select has one use or two users that are both
3178 // selects with the same condition.
3179 static bool hasOnlySelectUsers(const Value *Cond) {
3180   return llvm::all_of(Cond->users(), [](const Value *V) {
3181     return isa<SelectInst>(V);
3182   });
3183 }
3184 
3185 void SelectionDAGBuilder::visitSelect(const User &I) {
3186   SmallVector<EVT, 4> ValueVTs;
3187   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3188                   ValueVTs);
3189   unsigned NumValues = ValueVTs.size();
3190   if (NumValues == 0) return;
3191 
3192   SmallVector<SDValue, 4> Values(NumValues);
3193   SDValue Cond     = getValue(I.getOperand(0));
3194   SDValue LHSVal   = getValue(I.getOperand(1));
3195   SDValue RHSVal   = getValue(I.getOperand(2));
3196   auto BaseOps = {Cond};
3197   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
3198     ISD::VSELECT : ISD::SELECT;
3199 
3200   // Min/max matching is only viable if all output VTs are the same.
3201   if (is_splat(ValueVTs)) {
3202     EVT VT = ValueVTs[0];
3203     LLVMContext &Ctx = *DAG.getContext();
3204     auto &TLI = DAG.getTargetLoweringInfo();
3205 
3206     // We care about the legality of the operation after it has been type
3207     // legalized.
3208     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
3209            VT != TLI.getTypeToTransformTo(Ctx, VT))
3210       VT = TLI.getTypeToTransformTo(Ctx, VT);
3211 
3212     // If the vselect is legal, assume we want to leave this as a vector setcc +
3213     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3214     // min/max is legal on the scalar type.
3215     bool UseScalarMinMax = VT.isVector() &&
3216       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3217 
3218     Value *LHS, *RHS;
3219     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3220     ISD::NodeType Opc = ISD::DELETED_NODE;
3221     switch (SPR.Flavor) {
3222     case SPF_UMAX:    Opc = ISD::UMAX; break;
3223     case SPF_UMIN:    Opc = ISD::UMIN; break;
3224     case SPF_SMAX:    Opc = ISD::SMAX; break;
3225     case SPF_SMIN:    Opc = ISD::SMIN; break;
3226     case SPF_FMINNUM:
3227       switch (SPR.NaNBehavior) {
3228       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3229       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3230       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3231       case SPNB_RETURNS_ANY: {
3232         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3233           Opc = ISD::FMINNUM;
3234         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3235           Opc = ISD::FMINIMUM;
3236         else if (UseScalarMinMax)
3237           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3238             ISD::FMINNUM : ISD::FMINIMUM;
3239         break;
3240       }
3241       }
3242       break;
3243     case SPF_FMAXNUM:
3244       switch (SPR.NaNBehavior) {
3245       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3246       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3247       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3248       case SPNB_RETURNS_ANY:
3249 
3250         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3251           Opc = ISD::FMAXNUM;
3252         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3253           Opc = ISD::FMAXIMUM;
3254         else if (UseScalarMinMax)
3255           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3256             ISD::FMAXNUM : ISD::FMAXIMUM;
3257         break;
3258       }
3259       break;
3260     default: break;
3261     }
3262 
3263     if (Opc != ISD::DELETED_NODE &&
3264         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3265          (UseScalarMinMax &&
3266           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3267         // If the underlying comparison instruction is used by any other
3268         // instruction, the consumed instructions won't be destroyed, so it is
3269         // not profitable to convert to a min/max.
3270         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3271       OpCode = Opc;
3272       LHSVal = getValue(LHS);
3273       RHSVal = getValue(RHS);
3274       BaseOps = {};
3275     }
3276   }
3277 
3278   for (unsigned i = 0; i != NumValues; ++i) {
3279     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3280     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3281     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3282     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
3283                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
3284                             Ops);
3285   }
3286 
3287   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3288                            DAG.getVTList(ValueVTs), Values));
3289 }
3290 
3291 void SelectionDAGBuilder::visitTrunc(const User &I) {
3292   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3293   SDValue N = getValue(I.getOperand(0));
3294   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3295                                                         I.getType());
3296   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3297 }
3298 
3299 void SelectionDAGBuilder::visitZExt(const User &I) {
3300   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3301   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3302   SDValue N = getValue(I.getOperand(0));
3303   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3304                                                         I.getType());
3305   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3306 }
3307 
3308 void SelectionDAGBuilder::visitSExt(const User &I) {
3309   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3310   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3311   SDValue N = getValue(I.getOperand(0));
3312   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3313                                                         I.getType());
3314   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3315 }
3316 
3317 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3318   // FPTrunc is never a no-op cast, no need to check
3319   SDValue N = getValue(I.getOperand(0));
3320   SDLoc dl = getCurSDLoc();
3321   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3322   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3323   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3324                            DAG.getTargetConstant(
3325                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3326 }
3327 
3328 void SelectionDAGBuilder::visitFPExt(const User &I) {
3329   // FPExt is never a no-op cast, no need to check
3330   SDValue N = getValue(I.getOperand(0));
3331   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3332                                                         I.getType());
3333   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3334 }
3335 
3336 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3337   // FPToUI is never a no-op cast, no need to check
3338   SDValue N = getValue(I.getOperand(0));
3339   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3340                                                         I.getType());
3341   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3342 }
3343 
3344 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3345   // FPToSI is never a no-op cast, no need to check
3346   SDValue N = getValue(I.getOperand(0));
3347   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3348                                                         I.getType());
3349   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3350 }
3351 
3352 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3353   // UIToFP is never a no-op cast, no need to check
3354   SDValue N = getValue(I.getOperand(0));
3355   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3356                                                         I.getType());
3357   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3358 }
3359 
3360 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3361   // SIToFP is never a no-op cast, no need to check
3362   SDValue N = getValue(I.getOperand(0));
3363   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3364                                                         I.getType());
3365   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3366 }
3367 
3368 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3369   // What to do depends on the size of the integer and the size of the pointer.
3370   // We can either truncate, zero extend, or no-op, accordingly.
3371   SDValue N = getValue(I.getOperand(0));
3372   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3373                                                         I.getType());
3374   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3375 }
3376 
3377 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3378   // What to do depends on the size of the integer and the size of the pointer.
3379   // We can either truncate, zero extend, or no-op, accordingly.
3380   SDValue N = getValue(I.getOperand(0));
3381   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3382                                                         I.getType());
3383   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3384 }
3385 
3386 void SelectionDAGBuilder::visitBitCast(const User &I) {
3387   SDValue N = getValue(I.getOperand(0));
3388   SDLoc dl = getCurSDLoc();
3389   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3390                                                         I.getType());
3391 
3392   // BitCast assures us that source and destination are the same size so this is
3393   // either a BITCAST or a no-op.
3394   if (DestVT != N.getValueType())
3395     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3396                              DestVT, N)); // convert types.
3397   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3398   // might fold any kind of constant expression to an integer constant and that
3399   // is not what we are looking for. Only recognize a bitcast of a genuine
3400   // constant integer as an opaque constant.
3401   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3402     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3403                                  /*isOpaque*/true));
3404   else
3405     setValue(&I, N);            // noop cast.
3406 }
3407 
3408 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3409   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3410   const Value *SV = I.getOperand(0);
3411   SDValue N = getValue(SV);
3412   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3413 
3414   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3415   unsigned DestAS = I.getType()->getPointerAddressSpace();
3416 
3417   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3418     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3419 
3420   setValue(&I, N);
3421 }
3422 
3423 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3424   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3425   SDValue InVec = getValue(I.getOperand(0));
3426   SDValue InVal = getValue(I.getOperand(1));
3427   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3428                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3429   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3430                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3431                            InVec, InVal, InIdx));
3432 }
3433 
3434 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3435   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3436   SDValue InVec = getValue(I.getOperand(0));
3437   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3438                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3439   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3440                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3441                            InVec, InIdx));
3442 }
3443 
3444 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3445   SDValue Src1 = getValue(I.getOperand(0));
3446   SDValue Src2 = getValue(I.getOperand(1));
3447   SDLoc DL = getCurSDLoc();
3448 
3449   SmallVector<int, 8> Mask;
3450   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3451   unsigned MaskNumElts = Mask.size();
3452 
3453   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3454   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3455   EVT SrcVT = Src1.getValueType();
3456   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3457 
3458   if (SrcNumElts == MaskNumElts) {
3459     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3460     return;
3461   }
3462 
3463   // Normalize the shuffle vector since mask and vector length don't match.
3464   if (SrcNumElts < MaskNumElts) {
3465     // Mask is longer than the source vectors. We can use concatenate vector to
3466     // make the mask and vectors lengths match.
3467 
3468     if (MaskNumElts % SrcNumElts == 0) {
3469       // Mask length is a multiple of the source vector length.
3470       // Check if the shuffle is some kind of concatenation of the input
3471       // vectors.
3472       unsigned NumConcat = MaskNumElts / SrcNumElts;
3473       bool IsConcat = true;
3474       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3475       for (unsigned i = 0; i != MaskNumElts; ++i) {
3476         int Idx = Mask[i];
3477         if (Idx < 0)
3478           continue;
3479         // Ensure the indices in each SrcVT sized piece are sequential and that
3480         // the same source is used for the whole piece.
3481         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3482             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3483              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3484           IsConcat = false;
3485           break;
3486         }
3487         // Remember which source this index came from.
3488         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3489       }
3490 
3491       // The shuffle is concatenating multiple vectors together. Just emit
3492       // a CONCAT_VECTORS operation.
3493       if (IsConcat) {
3494         SmallVector<SDValue, 8> ConcatOps;
3495         for (auto Src : ConcatSrcs) {
3496           if (Src < 0)
3497             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3498           else if (Src == 0)
3499             ConcatOps.push_back(Src1);
3500           else
3501             ConcatOps.push_back(Src2);
3502         }
3503         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3504         return;
3505       }
3506     }
3507 
3508     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3509     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3510     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3511                                     PaddedMaskNumElts);
3512 
3513     // Pad both vectors with undefs to make them the same length as the mask.
3514     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3515 
3516     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3517     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3518     MOps1[0] = Src1;
3519     MOps2[0] = Src2;
3520 
3521     Src1 = Src1.isUndef()
3522                ? DAG.getUNDEF(PaddedVT)
3523                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3524     Src2 = Src2.isUndef()
3525                ? DAG.getUNDEF(PaddedVT)
3526                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3527 
3528     // Readjust mask for new input vector length.
3529     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3530     for (unsigned i = 0; i != MaskNumElts; ++i) {
3531       int Idx = Mask[i];
3532       if (Idx >= (int)SrcNumElts)
3533         Idx -= SrcNumElts - PaddedMaskNumElts;
3534       MappedOps[i] = Idx;
3535     }
3536 
3537     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3538 
3539     // If the concatenated vector was padded, extract a subvector with the
3540     // correct number of elements.
3541     if (MaskNumElts != PaddedMaskNumElts)
3542       Result = DAG.getNode(
3543           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3544           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3545 
3546     setValue(&I, Result);
3547     return;
3548   }
3549 
3550   if (SrcNumElts > MaskNumElts) {
3551     // Analyze the access pattern of the vector to see if we can extract
3552     // two subvectors and do the shuffle.
3553     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3554     bool CanExtract = true;
3555     for (int Idx : Mask) {
3556       unsigned Input = 0;
3557       if (Idx < 0)
3558         continue;
3559 
3560       if (Idx >= (int)SrcNumElts) {
3561         Input = 1;
3562         Idx -= SrcNumElts;
3563       }
3564 
3565       // If all the indices come from the same MaskNumElts sized portion of
3566       // the sources we can use extract. Also make sure the extract wouldn't
3567       // extract past the end of the source.
3568       int NewStartIdx = alignDown(Idx, MaskNumElts);
3569       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3570           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3571         CanExtract = false;
3572       // Make sure we always update StartIdx as we use it to track if all
3573       // elements are undef.
3574       StartIdx[Input] = NewStartIdx;
3575     }
3576 
3577     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3578       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3579       return;
3580     }
3581     if (CanExtract) {
3582       // Extract appropriate subvector and generate a vector shuffle
3583       for (unsigned Input = 0; Input < 2; ++Input) {
3584         SDValue &Src = Input == 0 ? Src1 : Src2;
3585         if (StartIdx[Input] < 0)
3586           Src = DAG.getUNDEF(VT);
3587         else {
3588           Src = DAG.getNode(
3589               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3590               DAG.getConstant(StartIdx[Input], DL,
3591                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3592         }
3593       }
3594 
3595       // Calculate new mask.
3596       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3597       for (int &Idx : MappedOps) {
3598         if (Idx >= (int)SrcNumElts)
3599           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3600         else if (Idx >= 0)
3601           Idx -= StartIdx[0];
3602       }
3603 
3604       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3605       return;
3606     }
3607   }
3608 
3609   // We can't use either concat vectors or extract subvectors so fall back to
3610   // replacing the shuffle with extract and build vector.
3611   // to insert and build vector.
3612   EVT EltVT = VT.getVectorElementType();
3613   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3614   SmallVector<SDValue,8> Ops;
3615   for (int Idx : Mask) {
3616     SDValue Res;
3617 
3618     if (Idx < 0) {
3619       Res = DAG.getUNDEF(EltVT);
3620     } else {
3621       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3622       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3623 
3624       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3625                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3626     }
3627 
3628     Ops.push_back(Res);
3629   }
3630 
3631   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3632 }
3633 
3634 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3635   ArrayRef<unsigned> Indices;
3636   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3637     Indices = IV->getIndices();
3638   else
3639     Indices = cast<ConstantExpr>(&I)->getIndices();
3640 
3641   const Value *Op0 = I.getOperand(0);
3642   const Value *Op1 = I.getOperand(1);
3643   Type *AggTy = I.getType();
3644   Type *ValTy = Op1->getType();
3645   bool IntoUndef = isa<UndefValue>(Op0);
3646   bool FromUndef = isa<UndefValue>(Op1);
3647 
3648   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3649 
3650   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3651   SmallVector<EVT, 4> AggValueVTs;
3652   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3653   SmallVector<EVT, 4> ValValueVTs;
3654   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3655 
3656   unsigned NumAggValues = AggValueVTs.size();
3657   unsigned NumValValues = ValValueVTs.size();
3658   SmallVector<SDValue, 4> Values(NumAggValues);
3659 
3660   // Ignore an insertvalue that produces an empty object
3661   if (!NumAggValues) {
3662     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3663     return;
3664   }
3665 
3666   SDValue Agg = getValue(Op0);
3667   unsigned i = 0;
3668   // Copy the beginning value(s) from the original aggregate.
3669   for (; i != LinearIndex; ++i)
3670     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3671                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3672   // Copy values from the inserted value(s).
3673   if (NumValValues) {
3674     SDValue Val = getValue(Op1);
3675     for (; i != LinearIndex + NumValValues; ++i)
3676       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3677                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3678   }
3679   // Copy remaining value(s) from the original aggregate.
3680   for (; i != NumAggValues; ++i)
3681     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3682                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3683 
3684   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3685                            DAG.getVTList(AggValueVTs), Values));
3686 }
3687 
3688 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3689   ArrayRef<unsigned> Indices;
3690   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3691     Indices = EV->getIndices();
3692   else
3693     Indices = cast<ConstantExpr>(&I)->getIndices();
3694 
3695   const Value *Op0 = I.getOperand(0);
3696   Type *AggTy = Op0->getType();
3697   Type *ValTy = I.getType();
3698   bool OutOfUndef = isa<UndefValue>(Op0);
3699 
3700   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3701 
3702   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3703   SmallVector<EVT, 4> ValValueVTs;
3704   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3705 
3706   unsigned NumValValues = ValValueVTs.size();
3707 
3708   // Ignore a extractvalue that produces an empty object
3709   if (!NumValValues) {
3710     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3711     return;
3712   }
3713 
3714   SmallVector<SDValue, 4> Values(NumValValues);
3715 
3716   SDValue Agg = getValue(Op0);
3717   // Copy out the selected value(s).
3718   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3719     Values[i - LinearIndex] =
3720       OutOfUndef ?
3721         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3722         SDValue(Agg.getNode(), Agg.getResNo() + i);
3723 
3724   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3725                            DAG.getVTList(ValValueVTs), Values));
3726 }
3727 
3728 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3729   Value *Op0 = I.getOperand(0);
3730   // Note that the pointer operand may be a vector of pointers. Take the scalar
3731   // element which holds a pointer.
3732   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3733   SDValue N = getValue(Op0);
3734   SDLoc dl = getCurSDLoc();
3735 
3736   // Normalize Vector GEP - all scalar operands should be converted to the
3737   // splat vector.
3738   unsigned VectorWidth = I.getType()->isVectorTy() ?
3739     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3740 
3741   if (VectorWidth && !N.getValueType().isVector()) {
3742     LLVMContext &Context = *DAG.getContext();
3743     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3744     N = DAG.getSplatBuildVector(VT, dl, N);
3745   }
3746 
3747   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3748        GTI != E; ++GTI) {
3749     const Value *Idx = GTI.getOperand();
3750     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3751       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3752       if (Field) {
3753         // N = N + Offset
3754         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3755 
3756         // In an inbounds GEP with an offset that is nonnegative even when
3757         // interpreted as signed, assume there is no unsigned overflow.
3758         SDNodeFlags Flags;
3759         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3760           Flags.setNoUnsignedWrap(true);
3761 
3762         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3763                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3764       }
3765     } else {
3766       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3767       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3768       APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3769 
3770       // If this is a scalar constant or a splat vector of constants,
3771       // handle it quickly.
3772       const auto *CI = dyn_cast<ConstantInt>(Idx);
3773       if (!CI && isa<ConstantDataVector>(Idx) &&
3774           cast<ConstantDataVector>(Idx)->getSplatValue())
3775         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3776 
3777       if (CI) {
3778         if (CI->isZero())
3779           continue;
3780         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3781         LLVMContext &Context = *DAG.getContext();
3782         SDValue OffsVal = VectorWidth ?
3783           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3784           DAG.getConstant(Offs, dl, IdxTy);
3785 
3786         // In an inbouds GEP with an offset that is nonnegative even when
3787         // interpreted as signed, assume there is no unsigned overflow.
3788         SDNodeFlags Flags;
3789         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3790           Flags.setNoUnsignedWrap(true);
3791 
3792         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3793         continue;
3794       }
3795 
3796       // N = N + Idx * ElementSize;
3797       SDValue IdxN = getValue(Idx);
3798 
3799       if (!IdxN.getValueType().isVector() && VectorWidth) {
3800         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3801         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3802       }
3803 
3804       // If the index is smaller or larger than intptr_t, truncate or extend
3805       // it.
3806       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3807 
3808       // If this is a multiply by a power of two, turn it into a shl
3809       // immediately.  This is a very common case.
3810       if (ElementSize != 1) {
3811         if (ElementSize.isPowerOf2()) {
3812           unsigned Amt = ElementSize.logBase2();
3813           IdxN = DAG.getNode(ISD::SHL, dl,
3814                              N.getValueType(), IdxN,
3815                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3816         } else {
3817           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3818           IdxN = DAG.getNode(ISD::MUL, dl,
3819                              N.getValueType(), IdxN, Scale);
3820         }
3821       }
3822 
3823       N = DAG.getNode(ISD::ADD, dl,
3824                       N.getValueType(), N, IdxN);
3825     }
3826   }
3827 
3828   setValue(&I, N);
3829 }
3830 
3831 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3832   // If this is a fixed sized alloca in the entry block of the function,
3833   // allocate it statically on the stack.
3834   if (FuncInfo.StaticAllocaMap.count(&I))
3835     return;   // getValue will auto-populate this.
3836 
3837   SDLoc dl = getCurSDLoc();
3838   Type *Ty = I.getAllocatedType();
3839   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3840   auto &DL = DAG.getDataLayout();
3841   uint64_t TySize = DL.getTypeAllocSize(Ty);
3842   unsigned Align =
3843       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3844 
3845   SDValue AllocSize = getValue(I.getArraySize());
3846 
3847   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3848   if (AllocSize.getValueType() != IntPtr)
3849     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3850 
3851   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3852                           AllocSize,
3853                           DAG.getConstant(TySize, dl, IntPtr));
3854 
3855   // Handle alignment.  If the requested alignment is less than or equal to
3856   // the stack alignment, ignore it.  If the size is greater than or equal to
3857   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3858   unsigned StackAlign =
3859       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3860   if (Align <= StackAlign)
3861     Align = 0;
3862 
3863   // Round the size of the allocation up to the stack alignment size
3864   // by add SA-1 to the size. This doesn't overflow because we're computing
3865   // an address inside an alloca.
3866   SDNodeFlags Flags;
3867   Flags.setNoUnsignedWrap(true);
3868   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3869                           DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3870 
3871   // Mask out the low bits for alignment purposes.
3872   AllocSize =
3873       DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3874                   DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
3875 
3876   SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
3877   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3878   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3879   setValue(&I, DSA);
3880   DAG.setRoot(DSA.getValue(1));
3881 
3882   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3883 }
3884 
3885 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3886   if (I.isAtomic())
3887     return visitAtomicLoad(I);
3888 
3889   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3890   const Value *SV = I.getOperand(0);
3891   if (TLI.supportSwiftError()) {
3892     // Swifterror values can come from either a function parameter with
3893     // swifterror attribute or an alloca with swifterror attribute.
3894     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3895       if (Arg->hasSwiftErrorAttr())
3896         return visitLoadFromSwiftError(I);
3897     }
3898 
3899     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3900       if (Alloca->isSwiftError())
3901         return visitLoadFromSwiftError(I);
3902     }
3903   }
3904 
3905   SDValue Ptr = getValue(SV);
3906 
3907   Type *Ty = I.getType();
3908 
3909   bool isVolatile = I.isVolatile();
3910   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3911   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3912   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3913   unsigned Alignment = I.getAlignment();
3914 
3915   AAMDNodes AAInfo;
3916   I.getAAMetadata(AAInfo);
3917   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3918 
3919   SmallVector<EVT, 4> ValueVTs;
3920   SmallVector<uint64_t, 4> Offsets;
3921   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3922   unsigned NumValues = ValueVTs.size();
3923   if (NumValues == 0)
3924     return;
3925 
3926   SDValue Root;
3927   bool ConstantMemory = false;
3928   if (isVolatile || NumValues > MaxParallelChains)
3929     // Serialize volatile loads with other side effects.
3930     Root = getRoot();
3931   else if (AA &&
3932            AA->pointsToConstantMemory(MemoryLocation(
3933                SV,
3934                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
3935                AAInfo))) {
3936     // Do not serialize (non-volatile) loads of constant memory with anything.
3937     Root = DAG.getEntryNode();
3938     ConstantMemory = true;
3939   } else {
3940     // Do not serialize non-volatile loads against each other.
3941     Root = DAG.getRoot();
3942   }
3943 
3944   SDLoc dl = getCurSDLoc();
3945 
3946   if (isVolatile)
3947     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3948 
3949   // An aggregate load cannot wrap around the address space, so offsets to its
3950   // parts don't wrap either.
3951   SDNodeFlags Flags;
3952   Flags.setNoUnsignedWrap(true);
3953 
3954   SmallVector<SDValue, 4> Values(NumValues);
3955   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3956   EVT PtrVT = Ptr.getValueType();
3957   unsigned ChainI = 0;
3958   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3959     // Serializing loads here may result in excessive register pressure, and
3960     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3961     // could recover a bit by hoisting nodes upward in the chain by recognizing
3962     // they are side-effect free or do not alias. The optimizer should really
3963     // avoid this case by converting large object/array copies to llvm.memcpy
3964     // (MaxParallelChains should always remain as failsafe).
3965     if (ChainI == MaxParallelChains) {
3966       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3967       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3968                                   makeArrayRef(Chains.data(), ChainI));
3969       Root = Chain;
3970       ChainI = 0;
3971     }
3972     SDValue A = DAG.getNode(ISD::ADD, dl,
3973                             PtrVT, Ptr,
3974                             DAG.getConstant(Offsets[i], dl, PtrVT),
3975                             Flags);
3976     auto MMOFlags = MachineMemOperand::MONone;
3977     if (isVolatile)
3978       MMOFlags |= MachineMemOperand::MOVolatile;
3979     if (isNonTemporal)
3980       MMOFlags |= MachineMemOperand::MONonTemporal;
3981     if (isInvariant)
3982       MMOFlags |= MachineMemOperand::MOInvariant;
3983     if (isDereferenceable)
3984       MMOFlags |= MachineMemOperand::MODereferenceable;
3985     MMOFlags |= TLI.getMMOFlags(I);
3986 
3987     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
3988                             MachinePointerInfo(SV, Offsets[i]), Alignment,
3989                             MMOFlags, AAInfo, Ranges);
3990 
3991     Values[i] = L;
3992     Chains[ChainI] = L.getValue(1);
3993   }
3994 
3995   if (!ConstantMemory) {
3996     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3997                                 makeArrayRef(Chains.data(), ChainI));
3998     if (isVolatile)
3999       DAG.setRoot(Chain);
4000     else
4001       PendingLoads.push_back(Chain);
4002   }
4003 
4004   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4005                            DAG.getVTList(ValueVTs), Values));
4006 }
4007 
4008 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4009   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4010          "call visitStoreToSwiftError when backend supports swifterror");
4011 
4012   SmallVector<EVT, 4> ValueVTs;
4013   SmallVector<uint64_t, 4> Offsets;
4014   const Value *SrcV = I.getOperand(0);
4015   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4016                   SrcV->getType(), ValueVTs, &Offsets);
4017   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4018          "expect a single EVT for swifterror");
4019 
4020   SDValue Src = getValue(SrcV);
4021   // Create a virtual register, then update the virtual register.
4022   unsigned VReg; bool CreatedVReg;
4023   std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I);
4024   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4025   // Chain can be getRoot or getControlRoot.
4026   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4027                                       SDValue(Src.getNode(), Src.getResNo()));
4028   DAG.setRoot(CopyNode);
4029   if (CreatedVReg)
4030     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
4031 }
4032 
4033 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4034   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4035          "call visitLoadFromSwiftError when backend supports swifterror");
4036 
4037   assert(!I.isVolatile() &&
4038          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
4039          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
4040          "Support volatile, non temporal, invariant for load_from_swift_error");
4041 
4042   const Value *SV = I.getOperand(0);
4043   Type *Ty = I.getType();
4044   AAMDNodes AAInfo;
4045   I.getAAMetadata(AAInfo);
4046   assert(
4047       (!AA ||
4048        !AA->pointsToConstantMemory(MemoryLocation(
4049            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4050            AAInfo))) &&
4051       "load_from_swift_error should not be constant memory");
4052 
4053   SmallVector<EVT, 4> ValueVTs;
4054   SmallVector<uint64_t, 4> Offsets;
4055   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4056                   ValueVTs, &Offsets);
4057   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4058          "expect a single EVT for swifterror");
4059 
4060   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4061   SDValue L = DAG.getCopyFromReg(
4062       getRoot(), getCurSDLoc(),
4063       FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first,
4064       ValueVTs[0]);
4065 
4066   setValue(&I, L);
4067 }
4068 
4069 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4070   if (I.isAtomic())
4071     return visitAtomicStore(I);
4072 
4073   const Value *SrcV = I.getOperand(0);
4074   const Value *PtrV = I.getOperand(1);
4075 
4076   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4077   if (TLI.supportSwiftError()) {
4078     // Swifterror values can come from either a function parameter with
4079     // swifterror attribute or an alloca with swifterror attribute.
4080     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4081       if (Arg->hasSwiftErrorAttr())
4082         return visitStoreToSwiftError(I);
4083     }
4084 
4085     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4086       if (Alloca->isSwiftError())
4087         return visitStoreToSwiftError(I);
4088     }
4089   }
4090 
4091   SmallVector<EVT, 4> ValueVTs;
4092   SmallVector<uint64_t, 4> Offsets;
4093   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4094                   SrcV->getType(), ValueVTs, &Offsets);
4095   unsigned NumValues = ValueVTs.size();
4096   if (NumValues == 0)
4097     return;
4098 
4099   // Get the lowered operands. Note that we do this after
4100   // checking if NumResults is zero, because with zero results
4101   // the operands won't have values in the map.
4102   SDValue Src = getValue(SrcV);
4103   SDValue Ptr = getValue(PtrV);
4104 
4105   SDValue Root = getRoot();
4106   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4107   SDLoc dl = getCurSDLoc();
4108   EVT PtrVT = Ptr.getValueType();
4109   unsigned Alignment = I.getAlignment();
4110   AAMDNodes AAInfo;
4111   I.getAAMetadata(AAInfo);
4112 
4113   auto MMOFlags = MachineMemOperand::MONone;
4114   if (I.isVolatile())
4115     MMOFlags |= MachineMemOperand::MOVolatile;
4116   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
4117     MMOFlags |= MachineMemOperand::MONonTemporal;
4118   MMOFlags |= TLI.getMMOFlags(I);
4119 
4120   // An aggregate load cannot wrap around the address space, so offsets to its
4121   // parts don't wrap either.
4122   SDNodeFlags Flags;
4123   Flags.setNoUnsignedWrap(true);
4124 
4125   unsigned ChainI = 0;
4126   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4127     // See visitLoad comments.
4128     if (ChainI == MaxParallelChains) {
4129       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4130                                   makeArrayRef(Chains.data(), ChainI));
4131       Root = Chain;
4132       ChainI = 0;
4133     }
4134     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
4135                               DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
4136     SDValue St = DAG.getStore(
4137         Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
4138         MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
4139     Chains[ChainI] = St;
4140   }
4141 
4142   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4143                                   makeArrayRef(Chains.data(), ChainI));
4144   DAG.setRoot(StoreNode);
4145 }
4146 
4147 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4148                                            bool IsCompressing) {
4149   SDLoc sdl = getCurSDLoc();
4150 
4151   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4152                            unsigned& Alignment) {
4153     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4154     Src0 = I.getArgOperand(0);
4155     Ptr = I.getArgOperand(1);
4156     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
4157     Mask = I.getArgOperand(3);
4158   };
4159   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4160                            unsigned& Alignment) {
4161     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4162     Src0 = I.getArgOperand(0);
4163     Ptr = I.getArgOperand(1);
4164     Mask = I.getArgOperand(2);
4165     Alignment = 0;
4166   };
4167 
4168   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4169   unsigned Alignment;
4170   if (IsCompressing)
4171     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4172   else
4173     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4174 
4175   SDValue Ptr = getValue(PtrOperand);
4176   SDValue Src0 = getValue(Src0Operand);
4177   SDValue Mask = getValue(MaskOperand);
4178 
4179   EVT VT = Src0.getValueType();
4180   if (!Alignment)
4181     Alignment = DAG.getEVTAlignment(VT);
4182 
4183   AAMDNodes AAInfo;
4184   I.getAAMetadata(AAInfo);
4185 
4186   MachineMemOperand *MMO =
4187     DAG.getMachineFunction().
4188     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4189                           MachineMemOperand::MOStore,  VT.getStoreSize(),
4190                           Alignment, AAInfo);
4191   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
4192                                          MMO, false /* Truncating */,
4193                                          IsCompressing);
4194   DAG.setRoot(StoreNode);
4195   setValue(&I, StoreNode);
4196 }
4197 
4198 // Get a uniform base for the Gather/Scatter intrinsic.
4199 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4200 // We try to represent it as a base pointer + vector of indices.
4201 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4202 // The first operand of the GEP may be a single pointer or a vector of pointers
4203 // Example:
4204 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4205 //  or
4206 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4207 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4208 //
4209 // When the first GEP operand is a single pointer - it is the uniform base we
4210 // are looking for. If first operand of the GEP is a splat vector - we
4211 // extract the splat value and use it as a uniform base.
4212 // In all other cases the function returns 'false'.
4213 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
4214                            SDValue &Scale, SelectionDAGBuilder* SDB) {
4215   SelectionDAG& DAG = SDB->DAG;
4216   LLVMContext &Context = *DAG.getContext();
4217 
4218   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4219   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4220   if (!GEP)
4221     return false;
4222 
4223   const Value *GEPPtr = GEP->getPointerOperand();
4224   if (!GEPPtr->getType()->isVectorTy())
4225     Ptr = GEPPtr;
4226   else if (!(Ptr = getSplatValue(GEPPtr)))
4227     return false;
4228 
4229   unsigned FinalIndex = GEP->getNumOperands() - 1;
4230   Value *IndexVal = GEP->getOperand(FinalIndex);
4231 
4232   // Ensure all the other indices are 0.
4233   for (unsigned i = 1; i < FinalIndex; ++i) {
4234     auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i));
4235     if (!C || !C->isZero())
4236       return false;
4237   }
4238 
4239   // The operands of the GEP may be defined in another basic block.
4240   // In this case we'll not find nodes for the operands.
4241   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
4242     return false;
4243 
4244   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4245   const DataLayout &DL = DAG.getDataLayout();
4246   Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()),
4247                                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4248   Base = SDB->getValue(Ptr);
4249   Index = SDB->getValue(IndexVal);
4250 
4251   if (!Index.getValueType().isVector()) {
4252     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
4253     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
4254     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
4255   }
4256   return true;
4257 }
4258 
4259 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4260   SDLoc sdl = getCurSDLoc();
4261 
4262   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
4263   const Value *Ptr = I.getArgOperand(1);
4264   SDValue Src0 = getValue(I.getArgOperand(0));
4265   SDValue Mask = getValue(I.getArgOperand(3));
4266   EVT VT = Src0.getValueType();
4267   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
4268   if (!Alignment)
4269     Alignment = DAG.getEVTAlignment(VT);
4270   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4271 
4272   AAMDNodes AAInfo;
4273   I.getAAMetadata(AAInfo);
4274 
4275   SDValue Base;
4276   SDValue Index;
4277   SDValue Scale;
4278   const Value *BasePtr = Ptr;
4279   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4280 
4281   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
4282   MachineMemOperand *MMO = DAG.getMachineFunction().
4283     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
4284                          MachineMemOperand::MOStore,  VT.getStoreSize(),
4285                          Alignment, AAInfo);
4286   if (!UniformBase) {
4287     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4288     Index = getValue(Ptr);
4289     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4290   }
4291   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
4292   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4293                                          Ops, MMO);
4294   DAG.setRoot(Scatter);
4295   setValue(&I, Scatter);
4296 }
4297 
4298 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4299   SDLoc sdl = getCurSDLoc();
4300 
4301   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4302                            unsigned& Alignment) {
4303     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4304     Ptr = I.getArgOperand(0);
4305     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4306     Mask = I.getArgOperand(2);
4307     Src0 = I.getArgOperand(3);
4308   };
4309   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4310                            unsigned& Alignment) {
4311     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4312     Ptr = I.getArgOperand(0);
4313     Alignment = 0;
4314     Mask = I.getArgOperand(1);
4315     Src0 = I.getArgOperand(2);
4316   };
4317 
4318   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4319   unsigned Alignment;
4320   if (IsExpanding)
4321     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4322   else
4323     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4324 
4325   SDValue Ptr = getValue(PtrOperand);
4326   SDValue Src0 = getValue(Src0Operand);
4327   SDValue Mask = getValue(MaskOperand);
4328 
4329   EVT VT = Src0.getValueType();
4330   if (!Alignment)
4331     Alignment = DAG.getEVTAlignment(VT);
4332 
4333   AAMDNodes AAInfo;
4334   I.getAAMetadata(AAInfo);
4335   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4336 
4337   // Do not serialize masked loads of constant memory with anything.
4338   bool AddToChain =
4339       !AA || !AA->pointsToConstantMemory(MemoryLocation(
4340                  PtrOperand,
4341                  LocationSize::precise(
4342                      DAG.getDataLayout().getTypeStoreSize(I.getType())),
4343                  AAInfo));
4344   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4345 
4346   MachineMemOperand *MMO =
4347     DAG.getMachineFunction().
4348     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4349                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
4350                           Alignment, AAInfo, Ranges);
4351 
4352   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
4353                                    ISD::NON_EXTLOAD, IsExpanding);
4354   if (AddToChain)
4355     PendingLoads.push_back(Load.getValue(1));
4356   setValue(&I, Load);
4357 }
4358 
4359 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4360   SDLoc sdl = getCurSDLoc();
4361 
4362   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4363   const Value *Ptr = I.getArgOperand(0);
4364   SDValue Src0 = getValue(I.getArgOperand(3));
4365   SDValue Mask = getValue(I.getArgOperand(2));
4366 
4367   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4368   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4369   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4370   if (!Alignment)
4371     Alignment = DAG.getEVTAlignment(VT);
4372 
4373   AAMDNodes AAInfo;
4374   I.getAAMetadata(AAInfo);
4375   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4376 
4377   SDValue Root = DAG.getRoot();
4378   SDValue Base;
4379   SDValue Index;
4380   SDValue Scale;
4381   const Value *BasePtr = Ptr;
4382   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4383   bool ConstantMemory = false;
4384   if (UniformBase && AA &&
4385       AA->pointsToConstantMemory(
4386           MemoryLocation(BasePtr,
4387                          LocationSize::precise(
4388                              DAG.getDataLayout().getTypeStoreSize(I.getType())),
4389                          AAInfo))) {
4390     // Do not serialize (non-volatile) loads of constant memory with anything.
4391     Root = DAG.getEntryNode();
4392     ConstantMemory = true;
4393   }
4394 
4395   MachineMemOperand *MMO =
4396     DAG.getMachineFunction().
4397     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4398                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
4399                          Alignment, AAInfo, Ranges);
4400 
4401   if (!UniformBase) {
4402     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4403     Index = getValue(Ptr);
4404     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4405   }
4406   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4407   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4408                                        Ops, MMO);
4409 
4410   SDValue OutChain = Gather.getValue(1);
4411   if (!ConstantMemory)
4412     PendingLoads.push_back(OutChain);
4413   setValue(&I, Gather);
4414 }
4415 
4416 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4417   SDLoc dl = getCurSDLoc();
4418   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4419   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4420   SyncScope::ID SSID = I.getSyncScopeID();
4421 
4422   SDValue InChain = getRoot();
4423 
4424   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4425   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4426 
4427   auto Alignment = DAG.getEVTAlignment(MemVT);
4428 
4429   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4430   if (I.isVolatile())
4431     Flags |= MachineMemOperand::MOVolatile;
4432   Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4433 
4434   MachineFunction &MF = DAG.getMachineFunction();
4435   MachineMemOperand *MMO =
4436     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4437                             Flags, MemVT.getStoreSize(), Alignment,
4438                             AAMDNodes(), nullptr, SSID, SuccessOrdering,
4439                             FailureOrdering);
4440 
4441   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4442                                    dl, MemVT, VTs, InChain,
4443                                    getValue(I.getPointerOperand()),
4444                                    getValue(I.getCompareOperand()),
4445                                    getValue(I.getNewValOperand()), MMO);
4446 
4447   SDValue OutChain = L.getValue(2);
4448 
4449   setValue(&I, L);
4450   DAG.setRoot(OutChain);
4451 }
4452 
4453 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4454   SDLoc dl = getCurSDLoc();
4455   ISD::NodeType NT;
4456   switch (I.getOperation()) {
4457   default: llvm_unreachable("Unknown atomicrmw operation");
4458   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4459   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4460   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4461   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4462   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4463   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4464   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4465   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4466   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4467   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4468   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4469   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4470   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4471   }
4472   AtomicOrdering Ordering = I.getOrdering();
4473   SyncScope::ID SSID = I.getSyncScopeID();
4474 
4475   SDValue InChain = getRoot();
4476 
4477   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4478   auto Alignment = DAG.getEVTAlignment(MemVT);
4479 
4480   auto Flags = MachineMemOperand::MOLoad |  MachineMemOperand::MOStore;
4481   if (I.isVolatile())
4482     Flags |= MachineMemOperand::MOVolatile;
4483   Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4484 
4485   MachineFunction &MF = DAG.getMachineFunction();
4486   MachineMemOperand *MMO =
4487     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4488                             MemVT.getStoreSize(), Alignment, AAMDNodes(),
4489                             nullptr, SSID, Ordering);
4490 
4491   SDValue L =
4492     DAG.getAtomic(NT, dl, MemVT, InChain,
4493                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4494                   MMO);
4495 
4496   SDValue OutChain = L.getValue(1);
4497 
4498   setValue(&I, L);
4499   DAG.setRoot(OutChain);
4500 }
4501 
4502 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4503   SDLoc dl = getCurSDLoc();
4504   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4505   SDValue Ops[3];
4506   Ops[0] = getRoot();
4507   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4508                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4509   Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4510                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4511   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4512 }
4513 
4514 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4515   SDLoc dl = getCurSDLoc();
4516   AtomicOrdering Order = I.getOrdering();
4517   SyncScope::ID SSID = I.getSyncScopeID();
4518 
4519   SDValue InChain = getRoot();
4520 
4521   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4522   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4523 
4524   if (!TLI.supportsUnalignedAtomics() &&
4525       I.getAlignment() < VT.getStoreSize())
4526     report_fatal_error("Cannot generate unaligned atomic load");
4527 
4528   auto Flags = MachineMemOperand::MOLoad;
4529   if (I.isVolatile())
4530     Flags |= MachineMemOperand::MOVolatile;
4531   Flags |= TLI.getMMOFlags(I);
4532 
4533   MachineMemOperand *MMO =
4534       DAG.getMachineFunction().
4535       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4536                            Flags, VT.getStoreSize(),
4537                            I.getAlignment() ? I.getAlignment() :
4538                                               DAG.getEVTAlignment(VT),
4539                            AAMDNodes(), nullptr, SSID, Order);
4540 
4541   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4542   SDValue L =
4543       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4544                     getValue(I.getPointerOperand()), MMO);
4545 
4546   SDValue OutChain = L.getValue(1);
4547 
4548   setValue(&I, L);
4549   DAG.setRoot(OutChain);
4550 }
4551 
4552 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4553   SDLoc dl = getCurSDLoc();
4554 
4555   AtomicOrdering Ordering = I.getOrdering();
4556   SyncScope::ID SSID = I.getSyncScopeID();
4557 
4558   SDValue InChain = getRoot();
4559 
4560   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4561   EVT VT =
4562       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4563 
4564   if (I.getAlignment() < VT.getStoreSize())
4565     report_fatal_error("Cannot generate unaligned atomic store");
4566 
4567   auto Flags = MachineMemOperand::MOStore;
4568   if (I.isVolatile())
4569     Flags |= MachineMemOperand::MOVolatile;
4570   Flags |= TLI.getMMOFlags(I);
4571 
4572   MachineFunction &MF = DAG.getMachineFunction();
4573   MachineMemOperand *MMO =
4574     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4575                             VT.getStoreSize(), I.getAlignment(), AAMDNodes(),
4576                             nullptr, SSID, Ordering);
4577   SDValue OutChain =
4578     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, InChain,
4579               getValue(I.getPointerOperand()), getValue(I.getValueOperand()),
4580               MMO);
4581 
4582 
4583   DAG.setRoot(OutChain);
4584 }
4585 
4586 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4587 /// node.
4588 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4589                                                unsigned Intrinsic) {
4590   // Ignore the callsite's attributes. A specific call site may be marked with
4591   // readnone, but the lowering code will expect the chain based on the
4592   // definition.
4593   const Function *F = I.getCalledFunction();
4594   bool HasChain = !F->doesNotAccessMemory();
4595   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4596 
4597   // Build the operand list.
4598   SmallVector<SDValue, 8> Ops;
4599   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4600     if (OnlyLoad) {
4601       // We don't need to serialize loads against other loads.
4602       Ops.push_back(DAG.getRoot());
4603     } else {
4604       Ops.push_back(getRoot());
4605     }
4606   }
4607 
4608   // Info is set by getTgtMemInstrinsic
4609   TargetLowering::IntrinsicInfo Info;
4610   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4611   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4612                                                DAG.getMachineFunction(),
4613                                                Intrinsic);
4614 
4615   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4616   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4617       Info.opc == ISD::INTRINSIC_W_CHAIN)
4618     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4619                                         TLI.getPointerTy(DAG.getDataLayout())));
4620 
4621   // Add all operands of the call to the operand list.
4622   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4623     SDValue Op = getValue(I.getArgOperand(i));
4624     Ops.push_back(Op);
4625   }
4626 
4627   SmallVector<EVT, 4> ValueVTs;
4628   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4629 
4630   if (HasChain)
4631     ValueVTs.push_back(MVT::Other);
4632 
4633   SDVTList VTs = DAG.getVTList(ValueVTs);
4634 
4635   // Create the node.
4636   SDValue Result;
4637   if (IsTgtIntrinsic) {
4638     // This is target intrinsic that touches memory
4639     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs,
4640       Ops, Info.memVT,
4641       MachinePointerInfo(Info.ptrVal, Info.offset), Info.align,
4642       Info.flags, Info.size);
4643   } else if (!HasChain) {
4644     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4645   } else if (!I.getType()->isVoidTy()) {
4646     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4647   } else {
4648     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4649   }
4650 
4651   if (HasChain) {
4652     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4653     if (OnlyLoad)
4654       PendingLoads.push_back(Chain);
4655     else
4656       DAG.setRoot(Chain);
4657   }
4658 
4659   if (!I.getType()->isVoidTy()) {
4660     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4661       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4662       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4663     } else
4664       Result = lowerRangeToAssertZExt(DAG, I, Result);
4665 
4666     setValue(&I, Result);
4667   }
4668 }
4669 
4670 /// GetSignificand - Get the significand and build it into a floating-point
4671 /// number with exponent of 1:
4672 ///
4673 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4674 ///
4675 /// where Op is the hexadecimal representation of floating point value.
4676 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4677   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4678                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4679   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4680                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4681   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4682 }
4683 
4684 /// GetExponent - Get the exponent:
4685 ///
4686 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4687 ///
4688 /// where Op is the hexadecimal representation of floating point value.
4689 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4690                            const TargetLowering &TLI, const SDLoc &dl) {
4691   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4692                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4693   SDValue t1 = DAG.getNode(
4694       ISD::SRL, dl, MVT::i32, t0,
4695       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4696   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4697                            DAG.getConstant(127, dl, MVT::i32));
4698   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4699 }
4700 
4701 /// getF32Constant - Get 32-bit floating point constant.
4702 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4703                               const SDLoc &dl) {
4704   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4705                            MVT::f32);
4706 }
4707 
4708 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4709                                        SelectionDAG &DAG) {
4710   // TODO: What fast-math-flags should be set on the floating-point nodes?
4711 
4712   //   IntegerPartOfX = ((int32_t)(t0);
4713   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4714 
4715   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4716   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4717   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4718 
4719   //   IntegerPartOfX <<= 23;
4720   IntegerPartOfX = DAG.getNode(
4721       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4722       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4723                                   DAG.getDataLayout())));
4724 
4725   SDValue TwoToFractionalPartOfX;
4726   if (LimitFloatPrecision <= 6) {
4727     // For floating-point precision of 6:
4728     //
4729     //   TwoToFractionalPartOfX =
4730     //     0.997535578f +
4731     //       (0.735607626f + 0.252464424f * x) * x;
4732     //
4733     // error 0.0144103317, which is 6 bits
4734     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4735                              getF32Constant(DAG, 0x3e814304, dl));
4736     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4737                              getF32Constant(DAG, 0x3f3c50c8, dl));
4738     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4739     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4740                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4741   } else if (LimitFloatPrecision <= 12) {
4742     // For floating-point precision of 12:
4743     //
4744     //   TwoToFractionalPartOfX =
4745     //     0.999892986f +
4746     //       (0.696457318f +
4747     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4748     //
4749     // error 0.000107046256, which is 13 to 14 bits
4750     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4751                              getF32Constant(DAG, 0x3da235e3, dl));
4752     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4753                              getF32Constant(DAG, 0x3e65b8f3, dl));
4754     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4755     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4756                              getF32Constant(DAG, 0x3f324b07, dl));
4757     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4758     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4759                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4760   } else { // LimitFloatPrecision <= 18
4761     // For floating-point precision of 18:
4762     //
4763     //   TwoToFractionalPartOfX =
4764     //     0.999999982f +
4765     //       (0.693148872f +
4766     //         (0.240227044f +
4767     //           (0.554906021e-1f +
4768     //             (0.961591928e-2f +
4769     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4770     // error 2.47208000*10^(-7), which is better than 18 bits
4771     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4772                              getF32Constant(DAG, 0x3924b03e, dl));
4773     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4774                              getF32Constant(DAG, 0x3ab24b87, dl));
4775     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4776     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4777                              getF32Constant(DAG, 0x3c1d8c17, dl));
4778     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4779     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4780                              getF32Constant(DAG, 0x3d634a1d, dl));
4781     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4782     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4783                              getF32Constant(DAG, 0x3e75fe14, dl));
4784     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4785     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4786                               getF32Constant(DAG, 0x3f317234, dl));
4787     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4788     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4789                                          getF32Constant(DAG, 0x3f800000, dl));
4790   }
4791 
4792   // Add the exponent into the result in integer domain.
4793   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4794   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4795                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4796 }
4797 
4798 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4799 /// limited-precision mode.
4800 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4801                          const TargetLowering &TLI) {
4802   if (Op.getValueType() == MVT::f32 &&
4803       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4804 
4805     // Put the exponent in the right bit position for later addition to the
4806     // final result:
4807     //
4808     //   #define LOG2OFe 1.4426950f
4809     //   t0 = Op * LOG2OFe
4810 
4811     // TODO: What fast-math-flags should be set here?
4812     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4813                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4814     return getLimitedPrecisionExp2(t0, dl, DAG);
4815   }
4816 
4817   // No special expansion.
4818   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4819 }
4820 
4821 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4822 /// limited-precision mode.
4823 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4824                          const TargetLowering &TLI) {
4825   // TODO: What fast-math-flags should be set on the floating-point nodes?
4826 
4827   if (Op.getValueType() == MVT::f32 &&
4828       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4829     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4830 
4831     // Scale the exponent by log(2) [0.69314718f].
4832     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4833     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4834                                         getF32Constant(DAG, 0x3f317218, dl));
4835 
4836     // Get the significand and build it into a floating-point number with
4837     // exponent of 1.
4838     SDValue X = GetSignificand(DAG, Op1, dl);
4839 
4840     SDValue LogOfMantissa;
4841     if (LimitFloatPrecision <= 6) {
4842       // For floating-point precision of 6:
4843       //
4844       //   LogofMantissa =
4845       //     -1.1609546f +
4846       //       (1.4034025f - 0.23903021f * x) * x;
4847       //
4848       // error 0.0034276066, which is better than 8 bits
4849       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4850                                getF32Constant(DAG, 0xbe74c456, dl));
4851       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4852                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4853       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4854       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4855                                   getF32Constant(DAG, 0x3f949a29, dl));
4856     } else if (LimitFloatPrecision <= 12) {
4857       // For floating-point precision of 12:
4858       //
4859       //   LogOfMantissa =
4860       //     -1.7417939f +
4861       //       (2.8212026f +
4862       //         (-1.4699568f +
4863       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4864       //
4865       // error 0.000061011436, which is 14 bits
4866       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4867                                getF32Constant(DAG, 0xbd67b6d6, dl));
4868       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4869                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4870       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4871       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4872                                getF32Constant(DAG, 0x3fbc278b, dl));
4873       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4874       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4875                                getF32Constant(DAG, 0x40348e95, dl));
4876       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4877       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4878                                   getF32Constant(DAG, 0x3fdef31a, dl));
4879     } else { // LimitFloatPrecision <= 18
4880       // For floating-point precision of 18:
4881       //
4882       //   LogOfMantissa =
4883       //     -2.1072184f +
4884       //       (4.2372794f +
4885       //         (-3.7029485f +
4886       //           (2.2781945f +
4887       //             (-0.87823314f +
4888       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4889       //
4890       // error 0.0000023660568, which is better than 18 bits
4891       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4892                                getF32Constant(DAG, 0xbc91e5ac, dl));
4893       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4894                                getF32Constant(DAG, 0x3e4350aa, dl));
4895       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4896       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4897                                getF32Constant(DAG, 0x3f60d3e3, dl));
4898       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4899       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4900                                getF32Constant(DAG, 0x4011cdf0, dl));
4901       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4902       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4903                                getF32Constant(DAG, 0x406cfd1c, dl));
4904       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4905       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4906                                getF32Constant(DAG, 0x408797cb, dl));
4907       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4908       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4909                                   getF32Constant(DAG, 0x4006dcab, dl));
4910     }
4911 
4912     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4913   }
4914 
4915   // No special expansion.
4916   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4917 }
4918 
4919 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4920 /// limited-precision mode.
4921 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4922                           const TargetLowering &TLI) {
4923   // TODO: What fast-math-flags should be set on the floating-point nodes?
4924 
4925   if (Op.getValueType() == MVT::f32 &&
4926       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4927     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4928 
4929     // Get the exponent.
4930     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4931 
4932     // Get the significand and build it into a floating-point number with
4933     // exponent of 1.
4934     SDValue X = GetSignificand(DAG, Op1, dl);
4935 
4936     // Different possible minimax approximations of significand in
4937     // floating-point for various degrees of accuracy over [1,2].
4938     SDValue Log2ofMantissa;
4939     if (LimitFloatPrecision <= 6) {
4940       // For floating-point precision of 6:
4941       //
4942       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4943       //
4944       // error 0.0049451742, which is more than 7 bits
4945       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4946                                getF32Constant(DAG, 0xbeb08fe0, dl));
4947       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4948                                getF32Constant(DAG, 0x40019463, dl));
4949       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4950       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4951                                    getF32Constant(DAG, 0x3fd6633d, dl));
4952     } else if (LimitFloatPrecision <= 12) {
4953       // For floating-point precision of 12:
4954       //
4955       //   Log2ofMantissa =
4956       //     -2.51285454f +
4957       //       (4.07009056f +
4958       //         (-2.12067489f +
4959       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4960       //
4961       // error 0.0000876136000, which is better than 13 bits
4962       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4963                                getF32Constant(DAG, 0xbda7262e, dl));
4964       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4965                                getF32Constant(DAG, 0x3f25280b, dl));
4966       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4967       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4968                                getF32Constant(DAG, 0x4007b923, dl));
4969       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4970       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4971                                getF32Constant(DAG, 0x40823e2f, dl));
4972       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4973       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4974                                    getF32Constant(DAG, 0x4020d29c, dl));
4975     } else { // LimitFloatPrecision <= 18
4976       // For floating-point precision of 18:
4977       //
4978       //   Log2ofMantissa =
4979       //     -3.0400495f +
4980       //       (6.1129976f +
4981       //         (-5.3420409f +
4982       //           (3.2865683f +
4983       //             (-1.2669343f +
4984       //               (0.27515199f -
4985       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4986       //
4987       // error 0.0000018516, which is better than 18 bits
4988       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4989                                getF32Constant(DAG, 0xbcd2769e, dl));
4990       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4991                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4992       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4993       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4994                                getF32Constant(DAG, 0x3fa22ae7, dl));
4995       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4996       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4997                                getF32Constant(DAG, 0x40525723, dl));
4998       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4999       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5000                                getF32Constant(DAG, 0x40aaf200, dl));
5001       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5002       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5003                                getF32Constant(DAG, 0x40c39dad, dl));
5004       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5005       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5006                                    getF32Constant(DAG, 0x4042902c, dl));
5007     }
5008 
5009     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5010   }
5011 
5012   // No special expansion.
5013   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
5014 }
5015 
5016 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5017 /// limited-precision mode.
5018 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5019                            const TargetLowering &TLI) {
5020   // TODO: What fast-math-flags should be set on the floating-point nodes?
5021 
5022   if (Op.getValueType() == MVT::f32 &&
5023       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5024     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5025 
5026     // Scale the exponent by log10(2) [0.30102999f].
5027     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5028     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5029                                         getF32Constant(DAG, 0x3e9a209a, dl));
5030 
5031     // Get the significand and build it into a floating-point number with
5032     // exponent of 1.
5033     SDValue X = GetSignificand(DAG, Op1, dl);
5034 
5035     SDValue Log10ofMantissa;
5036     if (LimitFloatPrecision <= 6) {
5037       // For floating-point precision of 6:
5038       //
5039       //   Log10ofMantissa =
5040       //     -0.50419619f +
5041       //       (0.60948995f - 0.10380950f * x) * x;
5042       //
5043       // error 0.0014886165, which is 6 bits
5044       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5045                                getF32Constant(DAG, 0xbdd49a13, dl));
5046       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5047                                getF32Constant(DAG, 0x3f1c0789, dl));
5048       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5049       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5050                                     getF32Constant(DAG, 0x3f011300, dl));
5051     } else if (LimitFloatPrecision <= 12) {
5052       // For floating-point precision of 12:
5053       //
5054       //   Log10ofMantissa =
5055       //     -0.64831180f +
5056       //       (0.91751397f +
5057       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5058       //
5059       // error 0.00019228036, which is better than 12 bits
5060       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5061                                getF32Constant(DAG, 0x3d431f31, dl));
5062       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5063                                getF32Constant(DAG, 0x3ea21fb2, dl));
5064       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5065       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5066                                getF32Constant(DAG, 0x3f6ae232, dl));
5067       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5068       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5069                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5070     } else { // LimitFloatPrecision <= 18
5071       // For floating-point precision of 18:
5072       //
5073       //   Log10ofMantissa =
5074       //     -0.84299375f +
5075       //       (1.5327582f +
5076       //         (-1.0688956f +
5077       //           (0.49102474f +
5078       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5079       //
5080       // error 0.0000037995730, which is better than 18 bits
5081       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5082                                getF32Constant(DAG, 0x3c5d51ce, dl));
5083       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5084                                getF32Constant(DAG, 0x3e00685a, dl));
5085       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5086       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5087                                getF32Constant(DAG, 0x3efb6798, dl));
5088       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5089       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5090                                getF32Constant(DAG, 0x3f88d192, dl));
5091       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5092       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5093                                getF32Constant(DAG, 0x3fc4316c, dl));
5094       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5095       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5096                                     getF32Constant(DAG, 0x3f57ce70, dl));
5097     }
5098 
5099     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5100   }
5101 
5102   // No special expansion.
5103   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
5104 }
5105 
5106 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5107 /// limited-precision mode.
5108 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5109                           const TargetLowering &TLI) {
5110   if (Op.getValueType() == MVT::f32 &&
5111       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5112     return getLimitedPrecisionExp2(Op, dl, DAG);
5113 
5114   // No special expansion.
5115   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
5116 }
5117 
5118 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5119 /// limited-precision mode with x == 10.0f.
5120 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5121                          SelectionDAG &DAG, const TargetLowering &TLI) {
5122   bool IsExp10 = false;
5123   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5124       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5125     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5126       APFloat Ten(10.0f);
5127       IsExp10 = LHSC->isExactlyValue(Ten);
5128     }
5129   }
5130 
5131   // TODO: What fast-math-flags should be set on the FMUL node?
5132   if (IsExp10) {
5133     // Put the exponent in the right bit position for later addition to the
5134     // final result:
5135     //
5136     //   #define LOG2OF10 3.3219281f
5137     //   t0 = Op * LOG2OF10;
5138     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5139                              getF32Constant(DAG, 0x40549a78, dl));
5140     return getLimitedPrecisionExp2(t0, dl, DAG);
5141   }
5142 
5143   // No special expansion.
5144   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
5145 }
5146 
5147 /// ExpandPowI - Expand a llvm.powi intrinsic.
5148 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5149                           SelectionDAG &DAG) {
5150   // If RHS is a constant, we can expand this out to a multiplication tree,
5151   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5152   // optimizing for size, we only want to do this if the expansion would produce
5153   // a small number of multiplies, otherwise we do the full expansion.
5154   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5155     // Get the exponent as a positive value.
5156     unsigned Val = RHSC->getSExtValue();
5157     if ((int)Val < 0) Val = -Val;
5158 
5159     // powi(x, 0) -> 1.0
5160     if (Val == 0)
5161       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5162 
5163     const Function &F = DAG.getMachineFunction().getFunction();
5164     if (!F.optForSize() ||
5165         // If optimizing for size, don't insert too many multiplies.
5166         // This inserts up to 5 multiplies.
5167         countPopulation(Val) + Log2_32(Val) < 7) {
5168       // We use the simple binary decomposition method to generate the multiply
5169       // sequence.  There are more optimal ways to do this (for example,
5170       // powi(x,15) generates one more multiply than it should), but this has
5171       // the benefit of being both really simple and much better than a libcall.
5172       SDValue Res;  // Logically starts equal to 1.0
5173       SDValue CurSquare = LHS;
5174       // TODO: Intrinsics should have fast-math-flags that propagate to these
5175       // nodes.
5176       while (Val) {
5177         if (Val & 1) {
5178           if (Res.getNode())
5179             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5180           else
5181             Res = CurSquare;  // 1.0*CurSquare.
5182         }
5183 
5184         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5185                                 CurSquare, CurSquare);
5186         Val >>= 1;
5187       }
5188 
5189       // If the original was negative, invert the result, producing 1/(x*x*x).
5190       if (RHSC->getSExtValue() < 0)
5191         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5192                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5193       return Res;
5194     }
5195   }
5196 
5197   // Otherwise, expand to a libcall.
5198   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5199 }
5200 
5201 // getUnderlyingArgReg - Find underlying register used for a truncated or
5202 // bitcasted argument.
5203 static unsigned getUnderlyingArgReg(const SDValue &N) {
5204   switch (N.getOpcode()) {
5205   case ISD::CopyFromReg:
5206     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
5207   case ISD::BITCAST:
5208   case ISD::AssertZext:
5209   case ISD::AssertSext:
5210   case ISD::TRUNCATE:
5211     return getUnderlyingArgReg(N.getOperand(0));
5212   default:
5213     return 0;
5214   }
5215 }
5216 
5217 /// If the DbgValueInst is a dbg_value of a function argument, create the
5218 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5219 /// instruction selection, they will be inserted to the entry BB.
5220 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5221     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5222     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5223   const Argument *Arg = dyn_cast<Argument>(V);
5224   if (!Arg)
5225     return false;
5226 
5227   if (!IsDbgDeclare) {
5228     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5229     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5230     // the entry block.
5231     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5232     if (!IsInEntryBlock)
5233       return false;
5234 
5235     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5236     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5237     // variable that also is a param.
5238     //
5239     // Although, if we are at the top of the entry block already, we can still
5240     // emit using ArgDbgValue. This might catch some situations when the
5241     // dbg.value refers to an argument that isn't used in the entry block, so
5242     // any CopyToReg node would be optimized out and the only way to express
5243     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5244     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5245     // we should only emit as ArgDbgValue if the Variable is an argument to the
5246     // current function, and the dbg.value intrinsic is found in the entry
5247     // block.
5248     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5249         !DL->getInlinedAt();
5250     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5251     if (!IsInPrologue && !VariableIsFunctionInputArg)
5252       return false;
5253 
5254     // Here we assume that a function argument on IR level only can be used to
5255     // describe one input parameter on source level. If we for example have
5256     // source code like this
5257     //
5258     //    struct A { long x, y; };
5259     //    void foo(struct A a, long b) {
5260     //      ...
5261     //      b = a.x;
5262     //      ...
5263     //    }
5264     //
5265     // and IR like this
5266     //
5267     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5268     //  entry:
5269     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5270     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5271     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5272     //    ...
5273     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5274     //    ...
5275     //
5276     // then the last dbg.value is describing a parameter "b" using a value that
5277     // is an argument. But since we already has used %a1 to describe a parameter
5278     // we should not handle that last dbg.value here (that would result in an
5279     // incorrect hoisting of the DBG_VALUE to the function entry).
5280     // Notice that we allow one dbg.value per IR level argument, to accomodate
5281     // for the situation with fragments above.
5282     if (VariableIsFunctionInputArg) {
5283       unsigned ArgNo = Arg->getArgNo();
5284       if (ArgNo >= FuncInfo.DescribedArgs.size())
5285         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5286       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5287         return false;
5288       FuncInfo.DescribedArgs.set(ArgNo);
5289     }
5290   }
5291 
5292   MachineFunction &MF = DAG.getMachineFunction();
5293   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5294 
5295   bool IsIndirect = false;
5296   Optional<MachineOperand> Op;
5297   // Some arguments' frame index is recorded during argument lowering.
5298   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5299   if (FI != std::numeric_limits<int>::max())
5300     Op = MachineOperand::CreateFI(FI);
5301 
5302   if (!Op && N.getNode()) {
5303     unsigned Reg = getUnderlyingArgReg(N);
5304     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
5305       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5306       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
5307       if (PR)
5308         Reg = PR;
5309     }
5310     if (Reg) {
5311       Op = MachineOperand::CreateReg(Reg, false);
5312       IsIndirect = IsDbgDeclare;
5313     }
5314   }
5315 
5316   if (!Op && N.getNode())
5317     // Check if frame index is available.
5318     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
5319       if (FrameIndexSDNode *FINode =
5320           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5321         Op = MachineOperand::CreateFI(FINode->getIndex());
5322 
5323   if (!Op) {
5324     // Check if ValueMap has reg number.
5325     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
5326     if (VMI != FuncInfo.ValueMap.end()) {
5327       const auto &TLI = DAG.getTargetLoweringInfo();
5328       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5329                        V->getType(), getABIRegCopyCC(V));
5330       if (RFV.occupiesMultipleRegs()) {
5331         unsigned Offset = 0;
5332         for (auto RegAndSize : RFV.getRegsAndSizes()) {
5333           Op = MachineOperand::CreateReg(RegAndSize.first, false);
5334           auto FragmentExpr = DIExpression::createFragmentExpression(
5335               Expr, Offset, RegAndSize.second);
5336           if (!FragmentExpr)
5337             continue;
5338           FuncInfo.ArgDbgValues.push_back(
5339               BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5340                       Op->getReg(), Variable, *FragmentExpr));
5341           Offset += RegAndSize.second;
5342         }
5343         return true;
5344       }
5345       Op = MachineOperand::CreateReg(VMI->second, false);
5346       IsIndirect = IsDbgDeclare;
5347     }
5348   }
5349 
5350   if (!Op)
5351     return false;
5352 
5353   assert(Variable->isValidLocationForIntrinsic(DL) &&
5354          "Expected inlined-at fields to agree");
5355   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5356   FuncInfo.ArgDbgValues.push_back(
5357       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5358               *Op, Variable, Expr));
5359 
5360   return true;
5361 }
5362 
5363 /// Return the appropriate SDDbgValue based on N.
5364 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5365                                              DILocalVariable *Variable,
5366                                              DIExpression *Expr,
5367                                              const DebugLoc &dl,
5368                                              unsigned DbgSDNodeOrder) {
5369   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5370     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5371     // stack slot locations.
5372     //
5373     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5374     // debug values here after optimization:
5375     //
5376     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5377     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5378     //
5379     // Both describe the direct values of their associated variables.
5380     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5381                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5382   }
5383   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5384                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5385 }
5386 
5387 // VisualStudio defines setjmp as _setjmp
5388 #if defined(_MSC_VER) && defined(setjmp) && \
5389                          !defined(setjmp_undefined_for_msvc)
5390 #  pragma push_macro("setjmp")
5391 #  undef setjmp
5392 #  define setjmp_undefined_for_msvc
5393 #endif
5394 
5395 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5396   switch (Intrinsic) {
5397   case Intrinsic::smul_fix:
5398     return ISD::SMULFIX;
5399   case Intrinsic::umul_fix:
5400     return ISD::UMULFIX;
5401   default:
5402     llvm_unreachable("Unhandled fixed point intrinsic");
5403   }
5404 }
5405 
5406 /// Lower the call to the specified intrinsic function. If we want to emit this
5407 /// as a call to a named external function, return the name. Otherwise, lower it
5408 /// and return null.
5409 const char *
5410 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
5411   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5412   SDLoc sdl = getCurSDLoc();
5413   DebugLoc dl = getCurDebugLoc();
5414   SDValue Res;
5415 
5416   switch (Intrinsic) {
5417   default:
5418     // By default, turn this into a target intrinsic node.
5419     visitTargetIntrinsic(I, Intrinsic);
5420     return nullptr;
5421   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
5422   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
5423   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
5424   case Intrinsic::returnaddress:
5425     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5426                              TLI.getPointerTy(DAG.getDataLayout()),
5427                              getValue(I.getArgOperand(0))));
5428     return nullptr;
5429   case Intrinsic::addressofreturnaddress:
5430     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5431                              TLI.getPointerTy(DAG.getDataLayout())));
5432     return nullptr;
5433   case Intrinsic::sponentry:
5434     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5435                              TLI.getPointerTy(DAG.getDataLayout())));
5436     return nullptr;
5437   case Intrinsic::frameaddress:
5438     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5439                              TLI.getPointerTy(DAG.getDataLayout()),
5440                              getValue(I.getArgOperand(0))));
5441     return nullptr;
5442   case Intrinsic::read_register: {
5443     Value *Reg = I.getArgOperand(0);
5444     SDValue Chain = getRoot();
5445     SDValue RegName =
5446         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5447     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5448     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5449       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5450     setValue(&I, Res);
5451     DAG.setRoot(Res.getValue(1));
5452     return nullptr;
5453   }
5454   case Intrinsic::write_register: {
5455     Value *Reg = I.getArgOperand(0);
5456     Value *RegValue = I.getArgOperand(1);
5457     SDValue Chain = getRoot();
5458     SDValue RegName =
5459         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5460     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5461                             RegName, getValue(RegValue)));
5462     return nullptr;
5463   }
5464   case Intrinsic::setjmp:
5465     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
5466   case Intrinsic::longjmp:
5467     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
5468   case Intrinsic::memcpy: {
5469     const auto &MCI = cast<MemCpyInst>(I);
5470     SDValue Op1 = getValue(I.getArgOperand(0));
5471     SDValue Op2 = getValue(I.getArgOperand(1));
5472     SDValue Op3 = getValue(I.getArgOperand(2));
5473     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5474     unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5475     unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5476     unsigned Align = MinAlign(DstAlign, SrcAlign);
5477     bool isVol = MCI.isVolatile();
5478     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5479     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5480     // node.
5481     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5482                                false, isTC,
5483                                MachinePointerInfo(I.getArgOperand(0)),
5484                                MachinePointerInfo(I.getArgOperand(1)));
5485     updateDAGForMaybeTailCall(MC);
5486     return nullptr;
5487   }
5488   case Intrinsic::memset: {
5489     const auto &MSI = cast<MemSetInst>(I);
5490     SDValue Op1 = getValue(I.getArgOperand(0));
5491     SDValue Op2 = getValue(I.getArgOperand(1));
5492     SDValue Op3 = getValue(I.getArgOperand(2));
5493     // @llvm.memset defines 0 and 1 to both mean no alignment.
5494     unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5495     bool isVol = MSI.isVolatile();
5496     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5497     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5498                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5499     updateDAGForMaybeTailCall(MS);
5500     return nullptr;
5501   }
5502   case Intrinsic::memmove: {
5503     const auto &MMI = cast<MemMoveInst>(I);
5504     SDValue Op1 = getValue(I.getArgOperand(0));
5505     SDValue Op2 = getValue(I.getArgOperand(1));
5506     SDValue Op3 = getValue(I.getArgOperand(2));
5507     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5508     unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5509     unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5510     unsigned Align = MinAlign(DstAlign, SrcAlign);
5511     bool isVol = MMI.isVolatile();
5512     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5513     // FIXME: Support passing different dest/src alignments to the memmove DAG
5514     // node.
5515     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5516                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5517                                 MachinePointerInfo(I.getArgOperand(1)));
5518     updateDAGForMaybeTailCall(MM);
5519     return nullptr;
5520   }
5521   case Intrinsic::memcpy_element_unordered_atomic: {
5522     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5523     SDValue Dst = getValue(MI.getRawDest());
5524     SDValue Src = getValue(MI.getRawSource());
5525     SDValue Length = getValue(MI.getLength());
5526 
5527     unsigned DstAlign = MI.getDestAlignment();
5528     unsigned SrcAlign = MI.getSourceAlignment();
5529     Type *LengthTy = MI.getLength()->getType();
5530     unsigned ElemSz = MI.getElementSizeInBytes();
5531     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5532     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5533                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5534                                      MachinePointerInfo(MI.getRawDest()),
5535                                      MachinePointerInfo(MI.getRawSource()));
5536     updateDAGForMaybeTailCall(MC);
5537     return nullptr;
5538   }
5539   case Intrinsic::memmove_element_unordered_atomic: {
5540     auto &MI = cast<AtomicMemMoveInst>(I);
5541     SDValue Dst = getValue(MI.getRawDest());
5542     SDValue Src = getValue(MI.getRawSource());
5543     SDValue Length = getValue(MI.getLength());
5544 
5545     unsigned DstAlign = MI.getDestAlignment();
5546     unsigned SrcAlign = MI.getSourceAlignment();
5547     Type *LengthTy = MI.getLength()->getType();
5548     unsigned ElemSz = MI.getElementSizeInBytes();
5549     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5550     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5551                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5552                                       MachinePointerInfo(MI.getRawDest()),
5553                                       MachinePointerInfo(MI.getRawSource()));
5554     updateDAGForMaybeTailCall(MC);
5555     return nullptr;
5556   }
5557   case Intrinsic::memset_element_unordered_atomic: {
5558     auto &MI = cast<AtomicMemSetInst>(I);
5559     SDValue Dst = getValue(MI.getRawDest());
5560     SDValue Val = getValue(MI.getValue());
5561     SDValue Length = getValue(MI.getLength());
5562 
5563     unsigned DstAlign = MI.getDestAlignment();
5564     Type *LengthTy = MI.getLength()->getType();
5565     unsigned ElemSz = MI.getElementSizeInBytes();
5566     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5567     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5568                                      LengthTy, ElemSz, isTC,
5569                                      MachinePointerInfo(MI.getRawDest()));
5570     updateDAGForMaybeTailCall(MC);
5571     return nullptr;
5572   }
5573   case Intrinsic::dbg_addr:
5574   case Intrinsic::dbg_declare: {
5575     const auto &DI = cast<DbgVariableIntrinsic>(I);
5576     DILocalVariable *Variable = DI.getVariable();
5577     DIExpression *Expression = DI.getExpression();
5578     dropDanglingDebugInfo(Variable, Expression);
5579     assert(Variable && "Missing variable");
5580 
5581     // Check if address has undef value.
5582     const Value *Address = DI.getVariableLocation();
5583     if (!Address || isa<UndefValue>(Address) ||
5584         (Address->use_empty() && !isa<Argument>(Address))) {
5585       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5586       return nullptr;
5587     }
5588 
5589     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5590 
5591     // Check if this variable can be described by a frame index, typically
5592     // either as a static alloca or a byval parameter.
5593     int FI = std::numeric_limits<int>::max();
5594     if (const auto *AI =
5595             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5596       if (AI->isStaticAlloca()) {
5597         auto I = FuncInfo.StaticAllocaMap.find(AI);
5598         if (I != FuncInfo.StaticAllocaMap.end())
5599           FI = I->second;
5600       }
5601     } else if (const auto *Arg = dyn_cast<Argument>(
5602                    Address->stripInBoundsConstantOffsets())) {
5603       FI = FuncInfo.getArgumentFrameIndex(Arg);
5604     }
5605 
5606     // llvm.dbg.addr is control dependent and always generates indirect
5607     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5608     // the MachineFunction variable table.
5609     if (FI != std::numeric_limits<int>::max()) {
5610       if (Intrinsic == Intrinsic::dbg_addr) {
5611         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5612             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5613         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5614       }
5615       return nullptr;
5616     }
5617 
5618     SDValue &N = NodeMap[Address];
5619     if (!N.getNode() && isa<Argument>(Address))
5620       // Check unused arguments map.
5621       N = UnusedArgNodeMap[Address];
5622     SDDbgValue *SDV;
5623     if (N.getNode()) {
5624       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5625         Address = BCI->getOperand(0);
5626       // Parameters are handled specially.
5627       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5628       if (isParameter && FINode) {
5629         // Byval parameter. We have a frame index at this point.
5630         SDV =
5631             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5632                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5633       } else if (isa<Argument>(Address)) {
5634         // Address is an argument, so try to emit its dbg value using
5635         // virtual register info from the FuncInfo.ValueMap.
5636         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5637         return nullptr;
5638       } else {
5639         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5640                               true, dl, SDNodeOrder);
5641       }
5642       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5643     } else {
5644       // If Address is an argument then try to emit its dbg value using
5645       // virtual register info from the FuncInfo.ValueMap.
5646       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5647                                     N)) {
5648         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5649       }
5650     }
5651     return nullptr;
5652   }
5653   case Intrinsic::dbg_label: {
5654     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5655     DILabel *Label = DI.getLabel();
5656     assert(Label && "Missing label");
5657 
5658     SDDbgLabel *SDV;
5659     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5660     DAG.AddDbgLabel(SDV);
5661     return nullptr;
5662   }
5663   case Intrinsic::dbg_value: {
5664     const DbgValueInst &DI = cast<DbgValueInst>(I);
5665     assert(DI.getVariable() && "Missing variable");
5666 
5667     DILocalVariable *Variable = DI.getVariable();
5668     DIExpression *Expression = DI.getExpression();
5669     dropDanglingDebugInfo(Variable, Expression);
5670     const Value *V = DI.getValue();
5671     if (!V)
5672       return nullptr;
5673 
5674     if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
5675         SDNodeOrder))
5676       return nullptr;
5677 
5678     // TODO: Dangling debug info will eventually either be resolved or produce
5679     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5680     // between the original dbg.value location and its resolved DBG_VALUE, which
5681     // we should ideally fill with an extra Undef DBG_VALUE.
5682 
5683     DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5684     return nullptr;
5685   }
5686 
5687   case Intrinsic::eh_typeid_for: {
5688     // Find the type id for the given typeinfo.
5689     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5690     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5691     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5692     setValue(&I, Res);
5693     return nullptr;
5694   }
5695 
5696   case Intrinsic::eh_return_i32:
5697   case Intrinsic::eh_return_i64:
5698     DAG.getMachineFunction().setCallsEHReturn(true);
5699     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5700                             MVT::Other,
5701                             getControlRoot(),
5702                             getValue(I.getArgOperand(0)),
5703                             getValue(I.getArgOperand(1))));
5704     return nullptr;
5705   case Intrinsic::eh_unwind_init:
5706     DAG.getMachineFunction().setCallsUnwindInit(true);
5707     return nullptr;
5708   case Intrinsic::eh_dwarf_cfa:
5709     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5710                              TLI.getPointerTy(DAG.getDataLayout()),
5711                              getValue(I.getArgOperand(0))));
5712     return nullptr;
5713   case Intrinsic::eh_sjlj_callsite: {
5714     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5715     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5716     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5717     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5718 
5719     MMI.setCurrentCallSite(CI->getZExtValue());
5720     return nullptr;
5721   }
5722   case Intrinsic::eh_sjlj_functioncontext: {
5723     // Get and store the index of the function context.
5724     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5725     AllocaInst *FnCtx =
5726       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5727     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5728     MFI.setFunctionContextIndex(FI);
5729     return nullptr;
5730   }
5731   case Intrinsic::eh_sjlj_setjmp: {
5732     SDValue Ops[2];
5733     Ops[0] = getRoot();
5734     Ops[1] = getValue(I.getArgOperand(0));
5735     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5736                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5737     setValue(&I, Op.getValue(0));
5738     DAG.setRoot(Op.getValue(1));
5739     return nullptr;
5740   }
5741   case Intrinsic::eh_sjlj_longjmp:
5742     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5743                             getRoot(), getValue(I.getArgOperand(0))));
5744     return nullptr;
5745   case Intrinsic::eh_sjlj_setup_dispatch:
5746     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5747                             getRoot()));
5748     return nullptr;
5749   case Intrinsic::masked_gather:
5750     visitMaskedGather(I);
5751     return nullptr;
5752   case Intrinsic::masked_load:
5753     visitMaskedLoad(I);
5754     return nullptr;
5755   case Intrinsic::masked_scatter:
5756     visitMaskedScatter(I);
5757     return nullptr;
5758   case Intrinsic::masked_store:
5759     visitMaskedStore(I);
5760     return nullptr;
5761   case Intrinsic::masked_expandload:
5762     visitMaskedLoad(I, true /* IsExpanding */);
5763     return nullptr;
5764   case Intrinsic::masked_compressstore:
5765     visitMaskedStore(I, true /* IsCompressing */);
5766     return nullptr;
5767   case Intrinsic::x86_mmx_pslli_w:
5768   case Intrinsic::x86_mmx_pslli_d:
5769   case Intrinsic::x86_mmx_pslli_q:
5770   case Intrinsic::x86_mmx_psrli_w:
5771   case Intrinsic::x86_mmx_psrli_d:
5772   case Intrinsic::x86_mmx_psrli_q:
5773   case Intrinsic::x86_mmx_psrai_w:
5774   case Intrinsic::x86_mmx_psrai_d: {
5775     SDValue ShAmt = getValue(I.getArgOperand(1));
5776     if (isa<ConstantSDNode>(ShAmt)) {
5777       visitTargetIntrinsic(I, Intrinsic);
5778       return nullptr;
5779     }
5780     unsigned NewIntrinsic = 0;
5781     EVT ShAmtVT = MVT::v2i32;
5782     switch (Intrinsic) {
5783     case Intrinsic::x86_mmx_pslli_w:
5784       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5785       break;
5786     case Intrinsic::x86_mmx_pslli_d:
5787       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5788       break;
5789     case Intrinsic::x86_mmx_pslli_q:
5790       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5791       break;
5792     case Intrinsic::x86_mmx_psrli_w:
5793       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5794       break;
5795     case Intrinsic::x86_mmx_psrli_d:
5796       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5797       break;
5798     case Intrinsic::x86_mmx_psrli_q:
5799       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5800       break;
5801     case Intrinsic::x86_mmx_psrai_w:
5802       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5803       break;
5804     case Intrinsic::x86_mmx_psrai_d:
5805       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5806       break;
5807     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5808     }
5809 
5810     // The vector shift intrinsics with scalars uses 32b shift amounts but
5811     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5812     // to be zero.
5813     // We must do this early because v2i32 is not a legal type.
5814     SDValue ShOps[2];
5815     ShOps[0] = ShAmt;
5816     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5817     ShAmt =  DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5818     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5819     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5820     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5821                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5822                        getValue(I.getArgOperand(0)), ShAmt);
5823     setValue(&I, Res);
5824     return nullptr;
5825   }
5826   case Intrinsic::powi:
5827     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5828                             getValue(I.getArgOperand(1)), DAG));
5829     return nullptr;
5830   case Intrinsic::log:
5831     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5832     return nullptr;
5833   case Intrinsic::log2:
5834     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5835     return nullptr;
5836   case Intrinsic::log10:
5837     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5838     return nullptr;
5839   case Intrinsic::exp:
5840     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5841     return nullptr;
5842   case Intrinsic::exp2:
5843     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5844     return nullptr;
5845   case Intrinsic::pow:
5846     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5847                            getValue(I.getArgOperand(1)), DAG, TLI));
5848     return nullptr;
5849   case Intrinsic::sqrt:
5850   case Intrinsic::fabs:
5851   case Intrinsic::sin:
5852   case Intrinsic::cos:
5853   case Intrinsic::floor:
5854   case Intrinsic::ceil:
5855   case Intrinsic::trunc:
5856   case Intrinsic::rint:
5857   case Intrinsic::nearbyint:
5858   case Intrinsic::round:
5859   case Intrinsic::canonicalize: {
5860     unsigned Opcode;
5861     switch (Intrinsic) {
5862     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5863     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5864     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5865     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5866     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5867     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5868     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5869     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5870     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5871     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5872     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5873     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5874     }
5875 
5876     setValue(&I, DAG.getNode(Opcode, sdl,
5877                              getValue(I.getArgOperand(0)).getValueType(),
5878                              getValue(I.getArgOperand(0))));
5879     return nullptr;
5880   }
5881   case Intrinsic::minnum: {
5882     auto VT = getValue(I.getArgOperand(0)).getValueType();
5883     unsigned Opc =
5884         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)
5885             ? ISD::FMINIMUM
5886             : ISD::FMINNUM;
5887     setValue(&I, DAG.getNode(Opc, sdl, VT,
5888                              getValue(I.getArgOperand(0)),
5889                              getValue(I.getArgOperand(1))));
5890     return nullptr;
5891   }
5892   case Intrinsic::maxnum: {
5893     auto VT = getValue(I.getArgOperand(0)).getValueType();
5894     unsigned Opc =
5895         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)
5896             ? ISD::FMAXIMUM
5897             : ISD::FMAXNUM;
5898     setValue(&I, DAG.getNode(Opc, sdl, VT,
5899                              getValue(I.getArgOperand(0)),
5900                              getValue(I.getArgOperand(1))));
5901     return nullptr;
5902   }
5903   case Intrinsic::minimum:
5904     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
5905                              getValue(I.getArgOperand(0)).getValueType(),
5906                              getValue(I.getArgOperand(0)),
5907                              getValue(I.getArgOperand(1))));
5908     return nullptr;
5909   case Intrinsic::maximum:
5910     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
5911                              getValue(I.getArgOperand(0)).getValueType(),
5912                              getValue(I.getArgOperand(0)),
5913                              getValue(I.getArgOperand(1))));
5914     return nullptr;
5915   case Intrinsic::copysign:
5916     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5917                              getValue(I.getArgOperand(0)).getValueType(),
5918                              getValue(I.getArgOperand(0)),
5919                              getValue(I.getArgOperand(1))));
5920     return nullptr;
5921   case Intrinsic::fma:
5922     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5923                              getValue(I.getArgOperand(0)).getValueType(),
5924                              getValue(I.getArgOperand(0)),
5925                              getValue(I.getArgOperand(1)),
5926                              getValue(I.getArgOperand(2))));
5927     return nullptr;
5928   case Intrinsic::experimental_constrained_fadd:
5929   case Intrinsic::experimental_constrained_fsub:
5930   case Intrinsic::experimental_constrained_fmul:
5931   case Intrinsic::experimental_constrained_fdiv:
5932   case Intrinsic::experimental_constrained_frem:
5933   case Intrinsic::experimental_constrained_fma:
5934   case Intrinsic::experimental_constrained_sqrt:
5935   case Intrinsic::experimental_constrained_pow:
5936   case Intrinsic::experimental_constrained_powi:
5937   case Intrinsic::experimental_constrained_sin:
5938   case Intrinsic::experimental_constrained_cos:
5939   case Intrinsic::experimental_constrained_exp:
5940   case Intrinsic::experimental_constrained_exp2:
5941   case Intrinsic::experimental_constrained_log:
5942   case Intrinsic::experimental_constrained_log10:
5943   case Intrinsic::experimental_constrained_log2:
5944   case Intrinsic::experimental_constrained_rint:
5945   case Intrinsic::experimental_constrained_nearbyint:
5946   case Intrinsic::experimental_constrained_maxnum:
5947   case Intrinsic::experimental_constrained_minnum:
5948   case Intrinsic::experimental_constrained_ceil:
5949   case Intrinsic::experimental_constrained_floor:
5950   case Intrinsic::experimental_constrained_round:
5951   case Intrinsic::experimental_constrained_trunc:
5952     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
5953     return nullptr;
5954   case Intrinsic::fmuladd: {
5955     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5956     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5957         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5958       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5959                                getValue(I.getArgOperand(0)).getValueType(),
5960                                getValue(I.getArgOperand(0)),
5961                                getValue(I.getArgOperand(1)),
5962                                getValue(I.getArgOperand(2))));
5963     } else {
5964       // TODO: Intrinsic calls should have fast-math-flags.
5965       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5966                                 getValue(I.getArgOperand(0)).getValueType(),
5967                                 getValue(I.getArgOperand(0)),
5968                                 getValue(I.getArgOperand(1)));
5969       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5970                                 getValue(I.getArgOperand(0)).getValueType(),
5971                                 Mul,
5972                                 getValue(I.getArgOperand(2)));
5973       setValue(&I, Add);
5974     }
5975     return nullptr;
5976   }
5977   case Intrinsic::convert_to_fp16:
5978     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5979                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5980                                          getValue(I.getArgOperand(0)),
5981                                          DAG.getTargetConstant(0, sdl,
5982                                                                MVT::i32))));
5983     return nullptr;
5984   case Intrinsic::convert_from_fp16:
5985     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5986                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5987                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5988                                          getValue(I.getArgOperand(0)))));
5989     return nullptr;
5990   case Intrinsic::pcmarker: {
5991     SDValue Tmp = getValue(I.getArgOperand(0));
5992     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5993     return nullptr;
5994   }
5995   case Intrinsic::readcyclecounter: {
5996     SDValue Op = getRoot();
5997     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5998                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5999     setValue(&I, Res);
6000     DAG.setRoot(Res.getValue(1));
6001     return nullptr;
6002   }
6003   case Intrinsic::bitreverse:
6004     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6005                              getValue(I.getArgOperand(0)).getValueType(),
6006                              getValue(I.getArgOperand(0))));
6007     return nullptr;
6008   case Intrinsic::bswap:
6009     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6010                              getValue(I.getArgOperand(0)).getValueType(),
6011                              getValue(I.getArgOperand(0))));
6012     return nullptr;
6013   case Intrinsic::cttz: {
6014     SDValue Arg = getValue(I.getArgOperand(0));
6015     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6016     EVT Ty = Arg.getValueType();
6017     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6018                              sdl, Ty, Arg));
6019     return nullptr;
6020   }
6021   case Intrinsic::ctlz: {
6022     SDValue Arg = getValue(I.getArgOperand(0));
6023     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6024     EVT Ty = Arg.getValueType();
6025     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6026                              sdl, Ty, Arg));
6027     return nullptr;
6028   }
6029   case Intrinsic::ctpop: {
6030     SDValue Arg = getValue(I.getArgOperand(0));
6031     EVT Ty = Arg.getValueType();
6032     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6033     return nullptr;
6034   }
6035   case Intrinsic::fshl:
6036   case Intrinsic::fshr: {
6037     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6038     SDValue X = getValue(I.getArgOperand(0));
6039     SDValue Y = getValue(I.getArgOperand(1));
6040     SDValue Z = getValue(I.getArgOperand(2));
6041     EVT VT = X.getValueType();
6042     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
6043     SDValue Zero = DAG.getConstant(0, sdl, VT);
6044     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
6045 
6046     auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6047     if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
6048       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6049       return nullptr;
6050     }
6051 
6052     // When X == Y, this is rotate. If the data type has a power-of-2 size, we
6053     // avoid the select that is necessary in the general case to filter out
6054     // the 0-shift possibility that leads to UB.
6055     if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
6056       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6057       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6058         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6059         return nullptr;
6060       }
6061 
6062       // Some targets only rotate one way. Try the opposite direction.
6063       RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
6064       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6065         // Negate the shift amount because it is safe to ignore the high bits.
6066         SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6067         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
6068         return nullptr;
6069       }
6070 
6071       // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
6072       // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
6073       SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6074       SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
6075       SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
6076       SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
6077       setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
6078       return nullptr;
6079     }
6080 
6081     // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6082     // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6083     SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
6084     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
6085     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6086     SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
6087 
6088     // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6089     // and that is undefined. We must compare and select to avoid UB.
6090     EVT CCVT = MVT::i1;
6091     if (VT.isVector())
6092       CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
6093 
6094     // For fshl, 0-shift returns the 1st arg (X).
6095     // For fshr, 0-shift returns the 2nd arg (Y).
6096     SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
6097     setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
6098     return nullptr;
6099   }
6100   case Intrinsic::sadd_sat: {
6101     SDValue Op1 = getValue(I.getArgOperand(0));
6102     SDValue Op2 = getValue(I.getArgOperand(1));
6103     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6104     return nullptr;
6105   }
6106   case Intrinsic::uadd_sat: {
6107     SDValue Op1 = getValue(I.getArgOperand(0));
6108     SDValue Op2 = getValue(I.getArgOperand(1));
6109     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6110     return nullptr;
6111   }
6112   case Intrinsic::ssub_sat: {
6113     SDValue Op1 = getValue(I.getArgOperand(0));
6114     SDValue Op2 = getValue(I.getArgOperand(1));
6115     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6116     return nullptr;
6117   }
6118   case Intrinsic::usub_sat: {
6119     SDValue Op1 = getValue(I.getArgOperand(0));
6120     SDValue Op2 = getValue(I.getArgOperand(1));
6121     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6122     return nullptr;
6123   }
6124   case Intrinsic::smul_fix:
6125   case Intrinsic::umul_fix: {
6126     SDValue Op1 = getValue(I.getArgOperand(0));
6127     SDValue Op2 = getValue(I.getArgOperand(1));
6128     SDValue Op3 = getValue(I.getArgOperand(2));
6129     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6130                              Op1.getValueType(), Op1, Op2, Op3));
6131     return nullptr;
6132   }
6133   case Intrinsic::stacksave: {
6134     SDValue Op = getRoot();
6135     Res = DAG.getNode(
6136         ISD::STACKSAVE, sdl,
6137         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
6138     setValue(&I, Res);
6139     DAG.setRoot(Res.getValue(1));
6140     return nullptr;
6141   }
6142   case Intrinsic::stackrestore:
6143     Res = getValue(I.getArgOperand(0));
6144     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6145     return nullptr;
6146   case Intrinsic::get_dynamic_area_offset: {
6147     SDValue Op = getRoot();
6148     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6149     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6150     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6151     // target.
6152     if (PtrTy != ResTy)
6153       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6154                          " intrinsic!");
6155     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6156                       Op);
6157     DAG.setRoot(Op);
6158     setValue(&I, Res);
6159     return nullptr;
6160   }
6161   case Intrinsic::stackguard: {
6162     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6163     MachineFunction &MF = DAG.getMachineFunction();
6164     const Module &M = *MF.getFunction().getParent();
6165     SDValue Chain = getRoot();
6166     if (TLI.useLoadStackGuardNode()) {
6167       Res = getLoadStackGuard(DAG, sdl, Chain);
6168     } else {
6169       const Value *Global = TLI.getSDagStackGuard(M);
6170       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
6171       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6172                         MachinePointerInfo(Global, 0), Align,
6173                         MachineMemOperand::MOVolatile);
6174     }
6175     if (TLI.useStackGuardXorFP())
6176       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6177     DAG.setRoot(Chain);
6178     setValue(&I, Res);
6179     return nullptr;
6180   }
6181   case Intrinsic::stackprotector: {
6182     // Emit code into the DAG to store the stack guard onto the stack.
6183     MachineFunction &MF = DAG.getMachineFunction();
6184     MachineFrameInfo &MFI = MF.getFrameInfo();
6185     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6186     SDValue Src, Chain = getRoot();
6187 
6188     if (TLI.useLoadStackGuardNode())
6189       Src = getLoadStackGuard(DAG, sdl, Chain);
6190     else
6191       Src = getValue(I.getArgOperand(0));   // The guard's value.
6192 
6193     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6194 
6195     int FI = FuncInfo.StaticAllocaMap[Slot];
6196     MFI.setStackProtectorIndex(FI);
6197 
6198     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6199 
6200     // Store the stack protector onto the stack.
6201     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
6202                                                  DAG.getMachineFunction(), FI),
6203                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
6204     setValue(&I, Res);
6205     DAG.setRoot(Res);
6206     return nullptr;
6207   }
6208   case Intrinsic::objectsize: {
6209     // If we don't know by now, we're never going to know.
6210     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
6211 
6212     assert(CI && "Non-constant type in __builtin_object_size?");
6213 
6214     SDValue Arg = getValue(I.getCalledValue());
6215     EVT Ty = Arg.getValueType();
6216 
6217     if (CI->isZero())
6218       Res = DAG.getConstant(-1ULL, sdl, Ty);
6219     else
6220       Res = DAG.getConstant(0, sdl, Ty);
6221 
6222     setValue(&I, Res);
6223     return nullptr;
6224   }
6225 
6226   case Intrinsic::is_constant:
6227     // If this wasn't constant-folded away by now, then it's not a
6228     // constant.
6229     setValue(&I, DAG.getConstant(0, sdl, MVT::i1));
6230     return nullptr;
6231 
6232   case Intrinsic::annotation:
6233   case Intrinsic::ptr_annotation:
6234   case Intrinsic::launder_invariant_group:
6235   case Intrinsic::strip_invariant_group:
6236     // Drop the intrinsic, but forward the value
6237     setValue(&I, getValue(I.getOperand(0)));
6238     return nullptr;
6239   case Intrinsic::assume:
6240   case Intrinsic::var_annotation:
6241   case Intrinsic::sideeffect:
6242     // Discard annotate attributes, assumptions, and artificial side-effects.
6243     return nullptr;
6244 
6245   case Intrinsic::codeview_annotation: {
6246     // Emit a label associated with this metadata.
6247     MachineFunction &MF = DAG.getMachineFunction();
6248     MCSymbol *Label =
6249         MF.getMMI().getContext().createTempSymbol("annotation", true);
6250     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6251     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6252     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6253     DAG.setRoot(Res);
6254     return nullptr;
6255   }
6256 
6257   case Intrinsic::init_trampoline: {
6258     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6259 
6260     SDValue Ops[6];
6261     Ops[0] = getRoot();
6262     Ops[1] = getValue(I.getArgOperand(0));
6263     Ops[2] = getValue(I.getArgOperand(1));
6264     Ops[3] = getValue(I.getArgOperand(2));
6265     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6266     Ops[5] = DAG.getSrcValue(F);
6267 
6268     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6269 
6270     DAG.setRoot(Res);
6271     return nullptr;
6272   }
6273   case Intrinsic::adjust_trampoline:
6274     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6275                              TLI.getPointerTy(DAG.getDataLayout()),
6276                              getValue(I.getArgOperand(0))));
6277     return nullptr;
6278   case Intrinsic::gcroot: {
6279     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6280            "only valid in functions with gc specified, enforced by Verifier");
6281     assert(GFI && "implied by previous");
6282     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6283     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6284 
6285     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6286     GFI->addStackRoot(FI->getIndex(), TypeMap);
6287     return nullptr;
6288   }
6289   case Intrinsic::gcread:
6290   case Intrinsic::gcwrite:
6291     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6292   case Intrinsic::flt_rounds:
6293     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
6294     return nullptr;
6295 
6296   case Intrinsic::expect:
6297     // Just replace __builtin_expect(exp, c) with EXP.
6298     setValue(&I, getValue(I.getArgOperand(0)));
6299     return nullptr;
6300 
6301   case Intrinsic::debugtrap:
6302   case Intrinsic::trap: {
6303     StringRef TrapFuncName =
6304         I.getAttributes()
6305             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6306             .getValueAsString();
6307     if (TrapFuncName.empty()) {
6308       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6309         ISD::TRAP : ISD::DEBUGTRAP;
6310       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6311       return nullptr;
6312     }
6313     TargetLowering::ArgListTy Args;
6314 
6315     TargetLowering::CallLoweringInfo CLI(DAG);
6316     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6317         CallingConv::C, I.getType(),
6318         DAG.getExternalSymbol(TrapFuncName.data(),
6319                               TLI.getPointerTy(DAG.getDataLayout())),
6320         std::move(Args));
6321 
6322     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6323     DAG.setRoot(Result.second);
6324     return nullptr;
6325   }
6326 
6327   case Intrinsic::uadd_with_overflow:
6328   case Intrinsic::sadd_with_overflow:
6329   case Intrinsic::usub_with_overflow:
6330   case Intrinsic::ssub_with_overflow:
6331   case Intrinsic::umul_with_overflow:
6332   case Intrinsic::smul_with_overflow: {
6333     ISD::NodeType Op;
6334     switch (Intrinsic) {
6335     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6336     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6337     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6338     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6339     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6340     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6341     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6342     }
6343     SDValue Op1 = getValue(I.getArgOperand(0));
6344     SDValue Op2 = getValue(I.getArgOperand(1));
6345 
6346     EVT ResultVT = Op1.getValueType();
6347     EVT OverflowVT = MVT::i1;
6348     if (ResultVT.isVector())
6349       OverflowVT = EVT::getVectorVT(
6350           *Context, OverflowVT, ResultVT.getVectorNumElements());
6351 
6352     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6353     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6354     return nullptr;
6355   }
6356   case Intrinsic::prefetch: {
6357     SDValue Ops[5];
6358     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6359     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6360     Ops[0] = DAG.getRoot();
6361     Ops[1] = getValue(I.getArgOperand(0));
6362     Ops[2] = getValue(I.getArgOperand(1));
6363     Ops[3] = getValue(I.getArgOperand(2));
6364     Ops[4] = getValue(I.getArgOperand(3));
6365     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
6366                                              DAG.getVTList(MVT::Other), Ops,
6367                                              EVT::getIntegerVT(*Context, 8),
6368                                              MachinePointerInfo(I.getArgOperand(0)),
6369                                              0, /* align */
6370                                              Flags);
6371 
6372     // Chain the prefetch in parallell with any pending loads, to stay out of
6373     // the way of later optimizations.
6374     PendingLoads.push_back(Result);
6375     Result = getRoot();
6376     DAG.setRoot(Result);
6377     return nullptr;
6378   }
6379   case Intrinsic::lifetime_start:
6380   case Intrinsic::lifetime_end: {
6381     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6382     // Stack coloring is not enabled in O0, discard region information.
6383     if (TM.getOptLevel() == CodeGenOpt::None)
6384       return nullptr;
6385 
6386     const int64_t ObjectSize =
6387         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6388     Value *const ObjectPtr = I.getArgOperand(1);
6389     SmallVector<Value *, 4> Allocas;
6390     GetUnderlyingObjects(ObjectPtr, Allocas, *DL);
6391 
6392     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
6393            E = Allocas.end(); Object != E; ++Object) {
6394       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6395 
6396       // Could not find an Alloca.
6397       if (!LifetimeObject)
6398         continue;
6399 
6400       // First check that the Alloca is static, otherwise it won't have a
6401       // valid frame index.
6402       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6403       if (SI == FuncInfo.StaticAllocaMap.end())
6404         return nullptr;
6405 
6406       const int FrameIndex = SI->second;
6407       int64_t Offset;
6408       if (GetPointerBaseWithConstantOffset(
6409               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6410         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6411       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6412                                 Offset);
6413       DAG.setRoot(Res);
6414     }
6415     return nullptr;
6416   }
6417   case Intrinsic::invariant_start:
6418     // Discard region information.
6419     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6420     return nullptr;
6421   case Intrinsic::invariant_end:
6422     // Discard region information.
6423     return nullptr;
6424   case Intrinsic::clear_cache:
6425     return TLI.getClearCacheBuiltinName();
6426   case Intrinsic::donothing:
6427     // ignore
6428     return nullptr;
6429   case Intrinsic::experimental_stackmap:
6430     visitStackmap(I);
6431     return nullptr;
6432   case Intrinsic::experimental_patchpoint_void:
6433   case Intrinsic::experimental_patchpoint_i64:
6434     visitPatchpoint(&I);
6435     return nullptr;
6436   case Intrinsic::experimental_gc_statepoint:
6437     LowerStatepoint(ImmutableStatepoint(&I));
6438     return nullptr;
6439   case Intrinsic::experimental_gc_result:
6440     visitGCResult(cast<GCResultInst>(I));
6441     return nullptr;
6442   case Intrinsic::experimental_gc_relocate:
6443     visitGCRelocate(cast<GCRelocateInst>(I));
6444     return nullptr;
6445   case Intrinsic::instrprof_increment:
6446     llvm_unreachable("instrprof failed to lower an increment");
6447   case Intrinsic::instrprof_value_profile:
6448     llvm_unreachable("instrprof failed to lower a value profiling call");
6449   case Intrinsic::localescape: {
6450     MachineFunction &MF = DAG.getMachineFunction();
6451     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6452 
6453     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6454     // is the same on all targets.
6455     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6456       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6457       if (isa<ConstantPointerNull>(Arg))
6458         continue; // Skip null pointers. They represent a hole in index space.
6459       AllocaInst *Slot = cast<AllocaInst>(Arg);
6460       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6461              "can only escape static allocas");
6462       int FI = FuncInfo.StaticAllocaMap[Slot];
6463       MCSymbol *FrameAllocSym =
6464           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6465               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6466       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6467               TII->get(TargetOpcode::LOCAL_ESCAPE))
6468           .addSym(FrameAllocSym)
6469           .addFrameIndex(FI);
6470     }
6471 
6472     return nullptr;
6473   }
6474 
6475   case Intrinsic::localrecover: {
6476     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6477     MachineFunction &MF = DAG.getMachineFunction();
6478     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6479 
6480     // Get the symbol that defines the frame offset.
6481     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6482     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6483     unsigned IdxVal =
6484         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6485     MCSymbol *FrameAllocSym =
6486         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6487             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6488 
6489     // Create a MCSymbol for the label to avoid any target lowering
6490     // that would make this PC relative.
6491     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6492     SDValue OffsetVal =
6493         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6494 
6495     // Add the offset to the FP.
6496     Value *FP = I.getArgOperand(1);
6497     SDValue FPVal = getValue(FP);
6498     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
6499     setValue(&I, Add);
6500 
6501     return nullptr;
6502   }
6503 
6504   case Intrinsic::eh_exceptionpointer:
6505   case Intrinsic::eh_exceptioncode: {
6506     // Get the exception pointer vreg, copy from it, and resize it to fit.
6507     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6508     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6509     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6510     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6511     SDValue N =
6512         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6513     if (Intrinsic == Intrinsic::eh_exceptioncode)
6514       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6515     setValue(&I, N);
6516     return nullptr;
6517   }
6518   case Intrinsic::xray_customevent: {
6519     // Here we want to make sure that the intrinsic behaves as if it has a
6520     // specific calling convention, and only for x86_64.
6521     // FIXME: Support other platforms later.
6522     const auto &Triple = DAG.getTarget().getTargetTriple();
6523     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6524       return nullptr;
6525 
6526     SDLoc DL = getCurSDLoc();
6527     SmallVector<SDValue, 8> Ops;
6528 
6529     // We want to say that we always want the arguments in registers.
6530     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6531     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6532     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6533     SDValue Chain = getRoot();
6534     Ops.push_back(LogEntryVal);
6535     Ops.push_back(StrSizeVal);
6536     Ops.push_back(Chain);
6537 
6538     // We need to enforce the calling convention for the callsite, so that
6539     // argument ordering is enforced correctly, and that register allocation can
6540     // see that some registers may be assumed clobbered and have to preserve
6541     // them across calls to the intrinsic.
6542     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6543                                            DL, NodeTys, Ops);
6544     SDValue patchableNode = SDValue(MN, 0);
6545     DAG.setRoot(patchableNode);
6546     setValue(&I, patchableNode);
6547     return nullptr;
6548   }
6549   case Intrinsic::xray_typedevent: {
6550     // Here we want to make sure that the intrinsic behaves as if it has a
6551     // specific calling convention, and only for x86_64.
6552     // FIXME: Support other platforms later.
6553     const auto &Triple = DAG.getTarget().getTargetTriple();
6554     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6555       return nullptr;
6556 
6557     SDLoc DL = getCurSDLoc();
6558     SmallVector<SDValue, 8> Ops;
6559 
6560     // We want to say that we always want the arguments in registers.
6561     // It's unclear to me how manipulating the selection DAG here forces callers
6562     // to provide arguments in registers instead of on the stack.
6563     SDValue LogTypeId = getValue(I.getArgOperand(0));
6564     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6565     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6566     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6567     SDValue Chain = getRoot();
6568     Ops.push_back(LogTypeId);
6569     Ops.push_back(LogEntryVal);
6570     Ops.push_back(StrSizeVal);
6571     Ops.push_back(Chain);
6572 
6573     // We need to enforce the calling convention for the callsite, so that
6574     // argument ordering is enforced correctly, and that register allocation can
6575     // see that some registers may be assumed clobbered and have to preserve
6576     // them across calls to the intrinsic.
6577     MachineSDNode *MN = DAG.getMachineNode(
6578         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6579     SDValue patchableNode = SDValue(MN, 0);
6580     DAG.setRoot(patchableNode);
6581     setValue(&I, patchableNode);
6582     return nullptr;
6583   }
6584   case Intrinsic::experimental_deoptimize:
6585     LowerDeoptimizeCall(&I);
6586     return nullptr;
6587 
6588   case Intrinsic::experimental_vector_reduce_fadd:
6589   case Intrinsic::experimental_vector_reduce_fmul:
6590   case Intrinsic::experimental_vector_reduce_add:
6591   case Intrinsic::experimental_vector_reduce_mul:
6592   case Intrinsic::experimental_vector_reduce_and:
6593   case Intrinsic::experimental_vector_reduce_or:
6594   case Intrinsic::experimental_vector_reduce_xor:
6595   case Intrinsic::experimental_vector_reduce_smax:
6596   case Intrinsic::experimental_vector_reduce_smin:
6597   case Intrinsic::experimental_vector_reduce_umax:
6598   case Intrinsic::experimental_vector_reduce_umin:
6599   case Intrinsic::experimental_vector_reduce_fmax:
6600   case Intrinsic::experimental_vector_reduce_fmin:
6601     visitVectorReduce(I, Intrinsic);
6602     return nullptr;
6603 
6604   case Intrinsic::icall_branch_funnel: {
6605     SmallVector<SDValue, 16> Ops;
6606     Ops.push_back(DAG.getRoot());
6607     Ops.push_back(getValue(I.getArgOperand(0)));
6608 
6609     int64_t Offset;
6610     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6611         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6612     if (!Base)
6613       report_fatal_error(
6614           "llvm.icall.branch.funnel operand must be a GlobalValue");
6615     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6616 
6617     struct BranchFunnelTarget {
6618       int64_t Offset;
6619       SDValue Target;
6620     };
6621     SmallVector<BranchFunnelTarget, 8> Targets;
6622 
6623     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6624       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6625           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6626       if (ElemBase != Base)
6627         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6628                            "to the same GlobalValue");
6629 
6630       SDValue Val = getValue(I.getArgOperand(Op + 1));
6631       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6632       if (!GA)
6633         report_fatal_error(
6634             "llvm.icall.branch.funnel operand must be a GlobalValue");
6635       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6636                                      GA->getGlobal(), getCurSDLoc(),
6637                                      Val.getValueType(), GA->getOffset())});
6638     }
6639     llvm::sort(Targets,
6640                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6641                  return T1.Offset < T2.Offset;
6642                });
6643 
6644     for (auto &T : Targets) {
6645       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6646       Ops.push_back(T.Target);
6647     }
6648 
6649     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6650                                  getCurSDLoc(), MVT::Other, Ops),
6651               0);
6652     DAG.setRoot(N);
6653     setValue(&I, N);
6654     HasTailCall = true;
6655     return nullptr;
6656   }
6657 
6658   case Intrinsic::wasm_landingpad_index:
6659     // Information this intrinsic contained has been transferred to
6660     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6661     // delete it now.
6662     return nullptr;
6663   }
6664 }
6665 
6666 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6667     const ConstrainedFPIntrinsic &FPI) {
6668   SDLoc sdl = getCurSDLoc();
6669   unsigned Opcode;
6670   switch (FPI.getIntrinsicID()) {
6671   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6672   case Intrinsic::experimental_constrained_fadd:
6673     Opcode = ISD::STRICT_FADD;
6674     break;
6675   case Intrinsic::experimental_constrained_fsub:
6676     Opcode = ISD::STRICT_FSUB;
6677     break;
6678   case Intrinsic::experimental_constrained_fmul:
6679     Opcode = ISD::STRICT_FMUL;
6680     break;
6681   case Intrinsic::experimental_constrained_fdiv:
6682     Opcode = ISD::STRICT_FDIV;
6683     break;
6684   case Intrinsic::experimental_constrained_frem:
6685     Opcode = ISD::STRICT_FREM;
6686     break;
6687   case Intrinsic::experimental_constrained_fma:
6688     Opcode = ISD::STRICT_FMA;
6689     break;
6690   case Intrinsic::experimental_constrained_sqrt:
6691     Opcode = ISD::STRICT_FSQRT;
6692     break;
6693   case Intrinsic::experimental_constrained_pow:
6694     Opcode = ISD::STRICT_FPOW;
6695     break;
6696   case Intrinsic::experimental_constrained_powi:
6697     Opcode = ISD::STRICT_FPOWI;
6698     break;
6699   case Intrinsic::experimental_constrained_sin:
6700     Opcode = ISD::STRICT_FSIN;
6701     break;
6702   case Intrinsic::experimental_constrained_cos:
6703     Opcode = ISD::STRICT_FCOS;
6704     break;
6705   case Intrinsic::experimental_constrained_exp:
6706     Opcode = ISD::STRICT_FEXP;
6707     break;
6708   case Intrinsic::experimental_constrained_exp2:
6709     Opcode = ISD::STRICT_FEXP2;
6710     break;
6711   case Intrinsic::experimental_constrained_log:
6712     Opcode = ISD::STRICT_FLOG;
6713     break;
6714   case Intrinsic::experimental_constrained_log10:
6715     Opcode = ISD::STRICT_FLOG10;
6716     break;
6717   case Intrinsic::experimental_constrained_log2:
6718     Opcode = ISD::STRICT_FLOG2;
6719     break;
6720   case Intrinsic::experimental_constrained_rint:
6721     Opcode = ISD::STRICT_FRINT;
6722     break;
6723   case Intrinsic::experimental_constrained_nearbyint:
6724     Opcode = ISD::STRICT_FNEARBYINT;
6725     break;
6726   case Intrinsic::experimental_constrained_maxnum:
6727     Opcode = ISD::STRICT_FMAXNUM;
6728     break;
6729   case Intrinsic::experimental_constrained_minnum:
6730     Opcode = ISD::STRICT_FMINNUM;
6731     break;
6732   case Intrinsic::experimental_constrained_ceil:
6733     Opcode = ISD::STRICT_FCEIL;
6734     break;
6735   case Intrinsic::experimental_constrained_floor:
6736     Opcode = ISD::STRICT_FFLOOR;
6737     break;
6738   case Intrinsic::experimental_constrained_round:
6739     Opcode = ISD::STRICT_FROUND;
6740     break;
6741   case Intrinsic::experimental_constrained_trunc:
6742     Opcode = ISD::STRICT_FTRUNC;
6743     break;
6744   }
6745   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6746   SDValue Chain = getRoot();
6747   SmallVector<EVT, 4> ValueVTs;
6748   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6749   ValueVTs.push_back(MVT::Other); // Out chain
6750 
6751   SDVTList VTs = DAG.getVTList(ValueVTs);
6752   SDValue Result;
6753   if (FPI.isUnaryOp())
6754     Result = DAG.getNode(Opcode, sdl, VTs,
6755                          { Chain, getValue(FPI.getArgOperand(0)) });
6756   else if (FPI.isTernaryOp())
6757     Result = DAG.getNode(Opcode, sdl, VTs,
6758                          { Chain, getValue(FPI.getArgOperand(0)),
6759                                   getValue(FPI.getArgOperand(1)),
6760                                   getValue(FPI.getArgOperand(2)) });
6761   else
6762     Result = DAG.getNode(Opcode, sdl, VTs,
6763                          { Chain, getValue(FPI.getArgOperand(0)),
6764                            getValue(FPI.getArgOperand(1))  });
6765 
6766   assert(Result.getNode()->getNumValues() == 2);
6767   SDValue OutChain = Result.getValue(1);
6768   DAG.setRoot(OutChain);
6769   SDValue FPResult = Result.getValue(0);
6770   setValue(&FPI, FPResult);
6771 }
6772 
6773 std::pair<SDValue, SDValue>
6774 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6775                                     const BasicBlock *EHPadBB) {
6776   MachineFunction &MF = DAG.getMachineFunction();
6777   MachineModuleInfo &MMI = MF.getMMI();
6778   MCSymbol *BeginLabel = nullptr;
6779 
6780   if (EHPadBB) {
6781     // Insert a label before the invoke call to mark the try range.  This can be
6782     // used to detect deletion of the invoke via the MachineModuleInfo.
6783     BeginLabel = MMI.getContext().createTempSymbol();
6784 
6785     // For SjLj, keep track of which landing pads go with which invokes
6786     // so as to maintain the ordering of pads in the LSDA.
6787     unsigned CallSiteIndex = MMI.getCurrentCallSite();
6788     if (CallSiteIndex) {
6789       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
6790       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
6791 
6792       // Now that the call site is handled, stop tracking it.
6793       MMI.setCurrentCallSite(0);
6794     }
6795 
6796     // Both PendingLoads and PendingExports must be flushed here;
6797     // this call might not return.
6798     (void)getRoot();
6799     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
6800 
6801     CLI.setChain(getRoot());
6802   }
6803   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6804   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6805 
6806   assert((CLI.IsTailCall || Result.second.getNode()) &&
6807          "Non-null chain expected with non-tail call!");
6808   assert((Result.second.getNode() || !Result.first.getNode()) &&
6809          "Null value expected with tail call!");
6810 
6811   if (!Result.second.getNode()) {
6812     // As a special case, a null chain means that a tail call has been emitted
6813     // and the DAG root is already updated.
6814     HasTailCall = true;
6815 
6816     // Since there's no actual continuation from this block, nothing can be
6817     // relying on us setting vregs for them.
6818     PendingExports.clear();
6819   } else {
6820     DAG.setRoot(Result.second);
6821   }
6822 
6823   if (EHPadBB) {
6824     // Insert a label at the end of the invoke call to mark the try range.  This
6825     // can be used to detect deletion of the invoke via the MachineModuleInfo.
6826     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
6827     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
6828 
6829     // Inform MachineModuleInfo of range.
6830     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
6831     // There is a platform (e.g. wasm) that uses funclet style IR but does not
6832     // actually use outlined funclets and their LSDA info style.
6833     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
6834       assert(CLI.CS);
6835       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
6836       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
6837                                 BeginLabel, EndLabel);
6838     } else if (!isScopedEHPersonality(Pers)) {
6839       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
6840     }
6841   }
6842 
6843   return Result;
6844 }
6845 
6846 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
6847                                       bool isTailCall,
6848                                       const BasicBlock *EHPadBB) {
6849   auto &DL = DAG.getDataLayout();
6850   FunctionType *FTy = CS.getFunctionType();
6851   Type *RetTy = CS.getType();
6852 
6853   TargetLowering::ArgListTy Args;
6854   Args.reserve(CS.arg_size());
6855 
6856   const Value *SwiftErrorVal = nullptr;
6857   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6858 
6859   // We can't tail call inside a function with a swifterror argument. Lowering
6860   // does not support this yet. It would have to move into the swifterror
6861   // register before the call.
6862   auto *Caller = CS.getInstruction()->getParent()->getParent();
6863   if (TLI.supportSwiftError() &&
6864       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
6865     isTailCall = false;
6866 
6867   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
6868        i != e; ++i) {
6869     TargetLowering::ArgListEntry Entry;
6870     const Value *V = *i;
6871 
6872     // Skip empty types
6873     if (V->getType()->isEmptyTy())
6874       continue;
6875 
6876     SDValue ArgNode = getValue(V);
6877     Entry.Node = ArgNode; Entry.Ty = V->getType();
6878 
6879     Entry.setAttributes(&CS, i - CS.arg_begin());
6880 
6881     // Use swifterror virtual register as input to the call.
6882     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
6883       SwiftErrorVal = V;
6884       // We find the virtual register for the actual swifterror argument.
6885       // Instead of using the Value, we use the virtual register instead.
6886       Entry.Node = DAG.getRegister(FuncInfo
6887                                        .getOrCreateSwiftErrorVRegUseAt(
6888                                            CS.getInstruction(), FuncInfo.MBB, V)
6889                                        .first,
6890                                    EVT(TLI.getPointerTy(DL)));
6891     }
6892 
6893     Args.push_back(Entry);
6894 
6895     // If we have an explicit sret argument that is an Instruction, (i.e., it
6896     // might point to function-local memory), we can't meaningfully tail-call.
6897     if (Entry.IsSRet && isa<Instruction>(V))
6898       isTailCall = false;
6899   }
6900 
6901   // Check if target-independent constraints permit a tail call here.
6902   // Target-dependent constraints are checked within TLI->LowerCallTo.
6903   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
6904     isTailCall = false;
6905 
6906   // Disable tail calls if there is an swifterror argument. Targets have not
6907   // been updated to support tail calls.
6908   if (TLI.supportSwiftError() && SwiftErrorVal)
6909     isTailCall = false;
6910 
6911   TargetLowering::CallLoweringInfo CLI(DAG);
6912   CLI.setDebugLoc(getCurSDLoc())
6913       .setChain(getRoot())
6914       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
6915       .setTailCall(isTailCall)
6916       .setConvergent(CS.isConvergent());
6917   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
6918 
6919   if (Result.first.getNode()) {
6920     const Instruction *Inst = CS.getInstruction();
6921     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
6922     setValue(Inst, Result.first);
6923   }
6924 
6925   // The last element of CLI.InVals has the SDValue for swifterror return.
6926   // Here we copy it to a virtual register and update SwiftErrorMap for
6927   // book-keeping.
6928   if (SwiftErrorVal && TLI.supportSwiftError()) {
6929     // Get the last element of InVals.
6930     SDValue Src = CLI.InVals.back();
6931     unsigned VReg; bool CreatedVReg;
6932     std::tie(VReg, CreatedVReg) =
6933         FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction());
6934     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
6935     // We update the virtual register for the actual swifterror argument.
6936     if (CreatedVReg)
6937       FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
6938     DAG.setRoot(CopyNode);
6939   }
6940 }
6941 
6942 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
6943                              SelectionDAGBuilder &Builder) {
6944   // Check to see if this load can be trivially constant folded, e.g. if the
6945   // input is from a string literal.
6946   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
6947     // Cast pointer to the type we really want to load.
6948     Type *LoadTy =
6949         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
6950     if (LoadVT.isVector())
6951       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
6952 
6953     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
6954                                          PointerType::getUnqual(LoadTy));
6955 
6956     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
6957             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
6958       return Builder.getValue(LoadCst);
6959   }
6960 
6961   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
6962   // still constant memory, the input chain can be the entry node.
6963   SDValue Root;
6964   bool ConstantMemory = false;
6965 
6966   // Do not serialize (non-volatile) loads of constant memory with anything.
6967   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
6968     Root = Builder.DAG.getEntryNode();
6969     ConstantMemory = true;
6970   } else {
6971     // Do not serialize non-volatile loads against each other.
6972     Root = Builder.DAG.getRoot();
6973   }
6974 
6975   SDValue Ptr = Builder.getValue(PtrVal);
6976   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
6977                                         Ptr, MachinePointerInfo(PtrVal),
6978                                         /* Alignment = */ 1);
6979 
6980   if (!ConstantMemory)
6981     Builder.PendingLoads.push_back(LoadVal.getValue(1));
6982   return LoadVal;
6983 }
6984 
6985 /// Record the value for an instruction that produces an integer result,
6986 /// converting the type where necessary.
6987 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
6988                                                   SDValue Value,
6989                                                   bool IsSigned) {
6990   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6991                                                     I.getType(), true);
6992   if (IsSigned)
6993     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
6994   else
6995     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
6996   setValue(&I, Value);
6997 }
6998 
6999 /// See if we can lower a memcmp call into an optimized form. If so, return
7000 /// true and lower it. Otherwise return false, and it will be lowered like a
7001 /// normal call.
7002 /// The caller already checked that \p I calls the appropriate LibFunc with a
7003 /// correct prototype.
7004 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
7005   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7006   const Value *Size = I.getArgOperand(2);
7007   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7008   if (CSize && CSize->getZExtValue() == 0) {
7009     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7010                                                           I.getType(), true);
7011     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7012     return true;
7013   }
7014 
7015   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7016   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7017       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7018       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7019   if (Res.first.getNode()) {
7020     processIntegerCallValue(I, Res.first, true);
7021     PendingLoads.push_back(Res.second);
7022     return true;
7023   }
7024 
7025   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7026   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7027   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7028     return false;
7029 
7030   // If the target has a fast compare for the given size, it will return a
7031   // preferred load type for that size. Require that the load VT is legal and
7032   // that the target supports unaligned loads of that type. Otherwise, return
7033   // INVALID.
7034   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7035     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7036     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7037     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7038       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7039       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7040       // TODO: Check alignment of src and dest ptrs.
7041       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7042       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7043       if (!TLI.isTypeLegal(LVT) ||
7044           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7045           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7046         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7047     }
7048 
7049     return LVT;
7050   };
7051 
7052   // This turns into unaligned loads. We only do this if the target natively
7053   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7054   // we'll only produce a small number of byte loads.
7055   MVT LoadVT;
7056   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7057   switch (NumBitsToCompare) {
7058   default:
7059     return false;
7060   case 16:
7061     LoadVT = MVT::i16;
7062     break;
7063   case 32:
7064     LoadVT = MVT::i32;
7065     break;
7066   case 64:
7067   case 128:
7068   case 256:
7069     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7070     break;
7071   }
7072 
7073   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7074     return false;
7075 
7076   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7077   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7078 
7079   // Bitcast to a wide integer type if the loads are vectors.
7080   if (LoadVT.isVector()) {
7081     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7082     LoadL = DAG.getBitcast(CmpVT, LoadL);
7083     LoadR = DAG.getBitcast(CmpVT, LoadR);
7084   }
7085 
7086   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7087   processIntegerCallValue(I, Cmp, false);
7088   return true;
7089 }
7090 
7091 /// See if we can lower a memchr call into an optimized form. If so, return
7092 /// true and lower it. Otherwise return false, and it will be lowered like a
7093 /// normal call.
7094 /// The caller already checked that \p I calls the appropriate LibFunc with a
7095 /// correct prototype.
7096 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7097   const Value *Src = I.getArgOperand(0);
7098   const Value *Char = I.getArgOperand(1);
7099   const Value *Length = I.getArgOperand(2);
7100 
7101   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7102   std::pair<SDValue, SDValue> Res =
7103     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7104                                 getValue(Src), getValue(Char), getValue(Length),
7105                                 MachinePointerInfo(Src));
7106   if (Res.first.getNode()) {
7107     setValue(&I, Res.first);
7108     PendingLoads.push_back(Res.second);
7109     return true;
7110   }
7111 
7112   return false;
7113 }
7114 
7115 /// See if we can lower a mempcpy call into an optimized form. If so, return
7116 /// true and lower it. Otherwise return false, and it will be lowered like a
7117 /// normal call.
7118 /// The caller already checked that \p I calls the appropriate LibFunc with a
7119 /// correct prototype.
7120 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7121   SDValue Dst = getValue(I.getArgOperand(0));
7122   SDValue Src = getValue(I.getArgOperand(1));
7123   SDValue Size = getValue(I.getArgOperand(2));
7124 
7125   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
7126   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
7127   unsigned Align = std::min(DstAlign, SrcAlign);
7128   if (Align == 0) // Alignment of one or both could not be inferred.
7129     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
7130 
7131   bool isVol = false;
7132   SDLoc sdl = getCurSDLoc();
7133 
7134   // In the mempcpy context we need to pass in a false value for isTailCall
7135   // because the return pointer needs to be adjusted by the size of
7136   // the copied memory.
7137   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
7138                              false, /*isTailCall=*/false,
7139                              MachinePointerInfo(I.getArgOperand(0)),
7140                              MachinePointerInfo(I.getArgOperand(1)));
7141   assert(MC.getNode() != nullptr &&
7142          "** memcpy should not be lowered as TailCall in mempcpy context **");
7143   DAG.setRoot(MC);
7144 
7145   // Check if Size needs to be truncated or extended.
7146   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7147 
7148   // Adjust return pointer to point just past the last dst byte.
7149   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7150                                     Dst, Size);
7151   setValue(&I, DstPlusSize);
7152   return true;
7153 }
7154 
7155 /// See if we can lower a strcpy call into an optimized form.  If so, return
7156 /// true and lower it, otherwise return false and it will be lowered like a
7157 /// normal call.
7158 /// The caller already checked that \p I calls the appropriate LibFunc with a
7159 /// correct prototype.
7160 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7161   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7162 
7163   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7164   std::pair<SDValue, SDValue> Res =
7165     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7166                                 getValue(Arg0), getValue(Arg1),
7167                                 MachinePointerInfo(Arg0),
7168                                 MachinePointerInfo(Arg1), isStpcpy);
7169   if (Res.first.getNode()) {
7170     setValue(&I, Res.first);
7171     DAG.setRoot(Res.second);
7172     return true;
7173   }
7174 
7175   return false;
7176 }
7177 
7178 /// See if we can lower a strcmp call into an optimized form.  If so, return
7179 /// true and lower it, otherwise return false and it will be lowered like a
7180 /// normal call.
7181 /// The caller already checked that \p I calls the appropriate LibFunc with a
7182 /// correct prototype.
7183 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7184   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7185 
7186   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7187   std::pair<SDValue, SDValue> Res =
7188     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7189                                 getValue(Arg0), getValue(Arg1),
7190                                 MachinePointerInfo(Arg0),
7191                                 MachinePointerInfo(Arg1));
7192   if (Res.first.getNode()) {
7193     processIntegerCallValue(I, Res.first, true);
7194     PendingLoads.push_back(Res.second);
7195     return true;
7196   }
7197 
7198   return false;
7199 }
7200 
7201 /// See if we can lower a strlen call into an optimized form.  If so, return
7202 /// true and lower it, otherwise return false and it will be lowered like a
7203 /// normal call.
7204 /// The caller already checked that \p I calls the appropriate LibFunc with a
7205 /// correct prototype.
7206 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7207   const Value *Arg0 = I.getArgOperand(0);
7208 
7209   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7210   std::pair<SDValue, SDValue> Res =
7211     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7212                                 getValue(Arg0), MachinePointerInfo(Arg0));
7213   if (Res.first.getNode()) {
7214     processIntegerCallValue(I, Res.first, false);
7215     PendingLoads.push_back(Res.second);
7216     return true;
7217   }
7218 
7219   return false;
7220 }
7221 
7222 /// See if we can lower a strnlen call into an optimized form.  If so, return
7223 /// true and lower it, otherwise return false and it will be lowered like a
7224 /// normal call.
7225 /// The caller already checked that \p I calls the appropriate LibFunc with a
7226 /// correct prototype.
7227 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7228   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7229 
7230   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7231   std::pair<SDValue, SDValue> Res =
7232     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7233                                  getValue(Arg0), getValue(Arg1),
7234                                  MachinePointerInfo(Arg0));
7235   if (Res.first.getNode()) {
7236     processIntegerCallValue(I, Res.first, false);
7237     PendingLoads.push_back(Res.second);
7238     return true;
7239   }
7240 
7241   return false;
7242 }
7243 
7244 /// See if we can lower a unary floating-point operation into an SDNode with
7245 /// the specified Opcode.  If so, return true and lower it, otherwise return
7246 /// false and it will be lowered like a normal call.
7247 /// The caller already checked that \p I calls the appropriate LibFunc with a
7248 /// correct prototype.
7249 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7250                                               unsigned Opcode) {
7251   // We already checked this call's prototype; verify it doesn't modify errno.
7252   if (!I.onlyReadsMemory())
7253     return false;
7254 
7255   SDValue Tmp = getValue(I.getArgOperand(0));
7256   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
7257   return true;
7258 }
7259 
7260 /// See if we can lower a binary floating-point operation into an SDNode with
7261 /// the specified Opcode. If so, return true and lower it. Otherwise return
7262 /// false, and it will be lowered like a normal call.
7263 /// The caller already checked that \p I calls the appropriate LibFunc with a
7264 /// correct prototype.
7265 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7266                                                unsigned Opcode) {
7267   // We already checked this call's prototype; verify it doesn't modify errno.
7268   if (!I.onlyReadsMemory())
7269     return false;
7270 
7271   SDValue Tmp0 = getValue(I.getArgOperand(0));
7272   SDValue Tmp1 = getValue(I.getArgOperand(1));
7273   EVT VT = Tmp0.getValueType();
7274   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
7275   return true;
7276 }
7277 
7278 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7279   // Handle inline assembly differently.
7280   if (isa<InlineAsm>(I.getCalledValue())) {
7281     visitInlineAsm(&I);
7282     return;
7283   }
7284 
7285   const char *RenameFn = nullptr;
7286   if (Function *F = I.getCalledFunction()) {
7287     if (F->isDeclaration()) {
7288       // Is this an LLVM intrinsic or a target-specific intrinsic?
7289       unsigned IID = F->getIntrinsicID();
7290       if (!IID)
7291         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7292           IID = II->getIntrinsicID(F);
7293 
7294       if (IID) {
7295         RenameFn = visitIntrinsicCall(I, IID);
7296         if (!RenameFn)
7297           return;
7298       }
7299     }
7300 
7301     // Check for well-known libc/libm calls.  If the function is internal, it
7302     // can't be a library call.  Don't do the check if marked as nobuiltin for
7303     // some reason or the call site requires strict floating point semantics.
7304     LibFunc Func;
7305     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7306         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7307         LibInfo->hasOptimizedCodeGen(Func)) {
7308       switch (Func) {
7309       default: break;
7310       case LibFunc_copysign:
7311       case LibFunc_copysignf:
7312       case LibFunc_copysignl:
7313         // We already checked this call's prototype; verify it doesn't modify
7314         // errno.
7315         if (I.onlyReadsMemory()) {
7316           SDValue LHS = getValue(I.getArgOperand(0));
7317           SDValue RHS = getValue(I.getArgOperand(1));
7318           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7319                                    LHS.getValueType(), LHS, RHS));
7320           return;
7321         }
7322         break;
7323       case LibFunc_fabs:
7324       case LibFunc_fabsf:
7325       case LibFunc_fabsl:
7326         if (visitUnaryFloatCall(I, ISD::FABS))
7327           return;
7328         break;
7329       case LibFunc_fmin:
7330       case LibFunc_fminf:
7331       case LibFunc_fminl:
7332         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7333           return;
7334         break;
7335       case LibFunc_fmax:
7336       case LibFunc_fmaxf:
7337       case LibFunc_fmaxl:
7338         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7339           return;
7340         break;
7341       case LibFunc_sin:
7342       case LibFunc_sinf:
7343       case LibFunc_sinl:
7344         if (visitUnaryFloatCall(I, ISD::FSIN))
7345           return;
7346         break;
7347       case LibFunc_cos:
7348       case LibFunc_cosf:
7349       case LibFunc_cosl:
7350         if (visitUnaryFloatCall(I, ISD::FCOS))
7351           return;
7352         break;
7353       case LibFunc_sqrt:
7354       case LibFunc_sqrtf:
7355       case LibFunc_sqrtl:
7356       case LibFunc_sqrt_finite:
7357       case LibFunc_sqrtf_finite:
7358       case LibFunc_sqrtl_finite:
7359         if (visitUnaryFloatCall(I, ISD::FSQRT))
7360           return;
7361         break;
7362       case LibFunc_floor:
7363       case LibFunc_floorf:
7364       case LibFunc_floorl:
7365         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7366           return;
7367         break;
7368       case LibFunc_nearbyint:
7369       case LibFunc_nearbyintf:
7370       case LibFunc_nearbyintl:
7371         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7372           return;
7373         break;
7374       case LibFunc_ceil:
7375       case LibFunc_ceilf:
7376       case LibFunc_ceill:
7377         if (visitUnaryFloatCall(I, ISD::FCEIL))
7378           return;
7379         break;
7380       case LibFunc_rint:
7381       case LibFunc_rintf:
7382       case LibFunc_rintl:
7383         if (visitUnaryFloatCall(I, ISD::FRINT))
7384           return;
7385         break;
7386       case LibFunc_round:
7387       case LibFunc_roundf:
7388       case LibFunc_roundl:
7389         if (visitUnaryFloatCall(I, ISD::FROUND))
7390           return;
7391         break;
7392       case LibFunc_trunc:
7393       case LibFunc_truncf:
7394       case LibFunc_truncl:
7395         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7396           return;
7397         break;
7398       case LibFunc_log2:
7399       case LibFunc_log2f:
7400       case LibFunc_log2l:
7401         if (visitUnaryFloatCall(I, ISD::FLOG2))
7402           return;
7403         break;
7404       case LibFunc_exp2:
7405       case LibFunc_exp2f:
7406       case LibFunc_exp2l:
7407         if (visitUnaryFloatCall(I, ISD::FEXP2))
7408           return;
7409         break;
7410       case LibFunc_memcmp:
7411         if (visitMemCmpCall(I))
7412           return;
7413         break;
7414       case LibFunc_mempcpy:
7415         if (visitMemPCpyCall(I))
7416           return;
7417         break;
7418       case LibFunc_memchr:
7419         if (visitMemChrCall(I))
7420           return;
7421         break;
7422       case LibFunc_strcpy:
7423         if (visitStrCpyCall(I, false))
7424           return;
7425         break;
7426       case LibFunc_stpcpy:
7427         if (visitStrCpyCall(I, true))
7428           return;
7429         break;
7430       case LibFunc_strcmp:
7431         if (visitStrCmpCall(I))
7432           return;
7433         break;
7434       case LibFunc_strlen:
7435         if (visitStrLenCall(I))
7436           return;
7437         break;
7438       case LibFunc_strnlen:
7439         if (visitStrNLenCall(I))
7440           return;
7441         break;
7442       }
7443     }
7444   }
7445 
7446   SDValue Callee;
7447   if (!RenameFn)
7448     Callee = getValue(I.getCalledValue());
7449   else
7450     Callee = DAG.getExternalSymbol(
7451         RenameFn,
7452         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
7453 
7454   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7455   // have to do anything here to lower funclet bundles.
7456   assert(!I.hasOperandBundlesOtherThan(
7457              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
7458          "Cannot lower calls with arbitrary operand bundles!");
7459 
7460   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7461     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7462   else
7463     // Check if we can potentially perform a tail call. More detailed checking
7464     // is be done within LowerCallTo, after more information about the call is
7465     // known.
7466     LowerCallTo(&I, Callee, I.isTailCall());
7467 }
7468 
7469 namespace {
7470 
7471 /// AsmOperandInfo - This contains information for each constraint that we are
7472 /// lowering.
7473 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7474 public:
7475   /// CallOperand - If this is the result output operand or a clobber
7476   /// this is null, otherwise it is the incoming operand to the CallInst.
7477   /// This gets modified as the asm is processed.
7478   SDValue CallOperand;
7479 
7480   /// AssignedRegs - If this is a register or register class operand, this
7481   /// contains the set of register corresponding to the operand.
7482   RegsForValue AssignedRegs;
7483 
7484   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7485     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7486   }
7487 
7488   /// Whether or not this operand accesses memory
7489   bool hasMemory(const TargetLowering &TLI) const {
7490     // Indirect operand accesses access memory.
7491     if (isIndirect)
7492       return true;
7493 
7494     for (const auto &Code : Codes)
7495       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7496         return true;
7497 
7498     return false;
7499   }
7500 
7501   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7502   /// corresponds to.  If there is no Value* for this operand, it returns
7503   /// MVT::Other.
7504   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7505                            const DataLayout &DL) const {
7506     if (!CallOperandVal) return MVT::Other;
7507 
7508     if (isa<BasicBlock>(CallOperandVal))
7509       return TLI.getPointerTy(DL);
7510 
7511     llvm::Type *OpTy = CallOperandVal->getType();
7512 
7513     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7514     // If this is an indirect operand, the operand is a pointer to the
7515     // accessed type.
7516     if (isIndirect) {
7517       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7518       if (!PtrTy)
7519         report_fatal_error("Indirect operand for inline asm not a pointer!");
7520       OpTy = PtrTy->getElementType();
7521     }
7522 
7523     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7524     if (StructType *STy = dyn_cast<StructType>(OpTy))
7525       if (STy->getNumElements() == 1)
7526         OpTy = STy->getElementType(0);
7527 
7528     // If OpTy is not a single value, it may be a struct/union that we
7529     // can tile with integers.
7530     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7531       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7532       switch (BitSize) {
7533       default: break;
7534       case 1:
7535       case 8:
7536       case 16:
7537       case 32:
7538       case 64:
7539       case 128:
7540         OpTy = IntegerType::get(Context, BitSize);
7541         break;
7542       }
7543     }
7544 
7545     return TLI.getValueType(DL, OpTy, true);
7546   }
7547 };
7548 
7549 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7550 
7551 } // end anonymous namespace
7552 
7553 /// Make sure that the output operand \p OpInfo and its corresponding input
7554 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7555 /// out).
7556 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7557                                SDISelAsmOperandInfo &MatchingOpInfo,
7558                                SelectionDAG &DAG) {
7559   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7560     return;
7561 
7562   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7563   const auto &TLI = DAG.getTargetLoweringInfo();
7564 
7565   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7566       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7567                                        OpInfo.ConstraintVT);
7568   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7569       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7570                                        MatchingOpInfo.ConstraintVT);
7571   if ((OpInfo.ConstraintVT.isInteger() !=
7572        MatchingOpInfo.ConstraintVT.isInteger()) ||
7573       (MatchRC.second != InputRC.second)) {
7574     // FIXME: error out in a more elegant fashion
7575     report_fatal_error("Unsupported asm: input constraint"
7576                        " with a matching output constraint of"
7577                        " incompatible type!");
7578   }
7579   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7580 }
7581 
7582 /// Get a direct memory input to behave well as an indirect operand.
7583 /// This may introduce stores, hence the need for a \p Chain.
7584 /// \return The (possibly updated) chain.
7585 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7586                                         SDISelAsmOperandInfo &OpInfo,
7587                                         SelectionDAG &DAG) {
7588   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7589 
7590   // If we don't have an indirect input, put it in the constpool if we can,
7591   // otherwise spill it to a stack slot.
7592   // TODO: This isn't quite right. We need to handle these according to
7593   // the addressing mode that the constraint wants. Also, this may take
7594   // an additional register for the computation and we don't want that
7595   // either.
7596 
7597   // If the operand is a float, integer, or vector constant, spill to a
7598   // constant pool entry to get its address.
7599   const Value *OpVal = OpInfo.CallOperandVal;
7600   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7601       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7602     OpInfo.CallOperand = DAG.getConstantPool(
7603         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7604     return Chain;
7605   }
7606 
7607   // Otherwise, create a stack slot and emit a store to it before the asm.
7608   Type *Ty = OpVal->getType();
7609   auto &DL = DAG.getDataLayout();
7610   uint64_t TySize = DL.getTypeAllocSize(Ty);
7611   unsigned Align = DL.getPrefTypeAlignment(Ty);
7612   MachineFunction &MF = DAG.getMachineFunction();
7613   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7614   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7615   Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7616                        MachinePointerInfo::getFixedStack(MF, SSFI));
7617   OpInfo.CallOperand = StackSlot;
7618 
7619   return Chain;
7620 }
7621 
7622 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7623 /// specified operand.  We prefer to assign virtual registers, to allow the
7624 /// register allocator to handle the assignment process.  However, if the asm
7625 /// uses features that we can't model on machineinstrs, we have SDISel do the
7626 /// allocation.  This produces generally horrible, but correct, code.
7627 ///
7628 ///   OpInfo describes the operand
7629 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7630 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7631                                  SDISelAsmOperandInfo &OpInfo,
7632                                  SDISelAsmOperandInfo &RefOpInfo) {
7633   LLVMContext &Context = *DAG.getContext();
7634   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7635 
7636   MachineFunction &MF = DAG.getMachineFunction();
7637   SmallVector<unsigned, 4> Regs;
7638   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7639 
7640   // No work to do for memory operations.
7641   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7642     return;
7643 
7644   // If this is a constraint for a single physreg, or a constraint for a
7645   // register class, find it.
7646   unsigned AssignedReg;
7647   const TargetRegisterClass *RC;
7648   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7649       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7650   // RC is unset only on failure. Return immediately.
7651   if (!RC)
7652     return;
7653 
7654   // Get the actual register value type.  This is important, because the user
7655   // may have asked for (e.g.) the AX register in i32 type.  We need to
7656   // remember that AX is actually i16 to get the right extension.
7657   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7658 
7659   if (OpInfo.ConstraintVT != MVT::Other) {
7660     // If this is an FP operand in an integer register (or visa versa), or more
7661     // generally if the operand value disagrees with the register class we plan
7662     // to stick it in, fix the operand type.
7663     //
7664     // If this is an input value, the bitcast to the new type is done now.
7665     // Bitcast for output value is done at the end of visitInlineAsm().
7666     if ((OpInfo.Type == InlineAsm::isOutput ||
7667          OpInfo.Type == InlineAsm::isInput) &&
7668         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7669       // Try to convert to the first EVT that the reg class contains.  If the
7670       // types are identical size, use a bitcast to convert (e.g. two differing
7671       // vector types).  Note: output bitcast is done at the end of
7672       // visitInlineAsm().
7673       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7674         // Exclude indirect inputs while they are unsupported because the code
7675         // to perform the load is missing and thus OpInfo.CallOperand still
7676         // refers to the input address rather than the pointed-to value.
7677         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7678           OpInfo.CallOperand =
7679               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7680         OpInfo.ConstraintVT = RegVT;
7681         // If the operand is an FP value and we want it in integer registers,
7682         // use the corresponding integer type. This turns an f64 value into
7683         // i64, which can be passed with two i32 values on a 32-bit machine.
7684       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7685         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7686         if (OpInfo.Type == InlineAsm::isInput)
7687           OpInfo.CallOperand =
7688               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
7689         OpInfo.ConstraintVT = VT;
7690       }
7691     }
7692   }
7693 
7694   // No need to allocate a matching input constraint since the constraint it's
7695   // matching to has already been allocated.
7696   if (OpInfo.isMatchingInputConstraint())
7697     return;
7698 
7699   EVT ValueVT = OpInfo.ConstraintVT;
7700   if (OpInfo.ConstraintVT == MVT::Other)
7701     ValueVT = RegVT;
7702 
7703   // Initialize NumRegs.
7704   unsigned NumRegs = 1;
7705   if (OpInfo.ConstraintVT != MVT::Other)
7706     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7707 
7708   // If this is a constraint for a specific physical register, like {r17},
7709   // assign it now.
7710 
7711   // If this associated to a specific register, initialize iterator to correct
7712   // place. If virtual, make sure we have enough registers
7713 
7714   // Initialize iterator if necessary
7715   TargetRegisterClass::iterator I = RC->begin();
7716   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7717 
7718   // Do not check for single registers.
7719   if (AssignedReg) {
7720       for (; *I != AssignedReg; ++I)
7721         assert(I != RC->end() && "AssignedReg should be member of RC");
7722   }
7723 
7724   for (; NumRegs; --NumRegs, ++I) {
7725     assert(I != RC->end() && "Ran out of registers to allocate!");
7726     auto R = (AssignedReg) ? *I : RegInfo.createVirtualRegister(RC);
7727     Regs.push_back(R);
7728   }
7729 
7730   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7731 }
7732 
7733 static unsigned
7734 findMatchingInlineAsmOperand(unsigned OperandNo,
7735                              const std::vector<SDValue> &AsmNodeOperands) {
7736   // Scan until we find the definition we already emitted of this operand.
7737   unsigned CurOp = InlineAsm::Op_FirstOperand;
7738   for (; OperandNo; --OperandNo) {
7739     // Advance to the next operand.
7740     unsigned OpFlag =
7741         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7742     assert((InlineAsm::isRegDefKind(OpFlag) ||
7743             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7744             InlineAsm::isMemKind(OpFlag)) &&
7745            "Skipped past definitions?");
7746     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7747   }
7748   return CurOp;
7749 }
7750 
7751 namespace {
7752 
7753 class ExtraFlags {
7754   unsigned Flags = 0;
7755 
7756 public:
7757   explicit ExtraFlags(ImmutableCallSite CS) {
7758     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7759     if (IA->hasSideEffects())
7760       Flags |= InlineAsm::Extra_HasSideEffects;
7761     if (IA->isAlignStack())
7762       Flags |= InlineAsm::Extra_IsAlignStack;
7763     if (CS.isConvergent())
7764       Flags |= InlineAsm::Extra_IsConvergent;
7765     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7766   }
7767 
7768   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7769     // Ideally, we would only check against memory constraints.  However, the
7770     // meaning of an Other constraint can be target-specific and we can't easily
7771     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
7772     // for Other constraints as well.
7773     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7774         OpInfo.ConstraintType == TargetLowering::C_Other) {
7775       if (OpInfo.Type == InlineAsm::isInput)
7776         Flags |= InlineAsm::Extra_MayLoad;
7777       else if (OpInfo.Type == InlineAsm::isOutput)
7778         Flags |= InlineAsm::Extra_MayStore;
7779       else if (OpInfo.Type == InlineAsm::isClobber)
7780         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
7781     }
7782   }
7783 
7784   unsigned get() const { return Flags; }
7785 };
7786 
7787 } // end anonymous namespace
7788 
7789 /// visitInlineAsm - Handle a call to an InlineAsm object.
7790 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
7791   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7792 
7793   /// ConstraintOperands - Information about all of the constraints.
7794   SDISelAsmOperandInfoVector ConstraintOperands;
7795 
7796   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7797   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
7798       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
7799 
7800   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
7801   // AsmDialect, MayLoad, MayStore).
7802   bool HasSideEffect = IA->hasSideEffects();
7803   ExtraFlags ExtraInfo(CS);
7804 
7805   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
7806   unsigned ResNo = 0;   // ResNo - The result number of the next output.
7807   for (auto &T : TargetConstraints) {
7808     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
7809     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
7810 
7811     // Compute the value type for each operand.
7812     if (OpInfo.Type == InlineAsm::isInput ||
7813         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
7814       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
7815 
7816       // Process the call argument. BasicBlocks are labels, currently appearing
7817       // only in asm's.
7818       const Instruction *I = CS.getInstruction();
7819       if (isa<CallBrInst>(I) &&
7820           (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() -
7821                           cast<CallBrInst>(I)->getNumIndirectDests())) {
7822         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
7823         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
7824         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
7825       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
7826         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
7827       } else {
7828         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
7829       }
7830 
7831       OpInfo.ConstraintVT =
7832           OpInfo
7833               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
7834               .getSimpleVT();
7835     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
7836       // The return value of the call is this value.  As such, there is no
7837       // corresponding argument.
7838       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7839       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
7840         OpInfo.ConstraintVT = TLI.getSimpleValueType(
7841             DAG.getDataLayout(), STy->getElementType(ResNo));
7842       } else {
7843         assert(ResNo == 0 && "Asm only has one result!");
7844         OpInfo.ConstraintVT =
7845             TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
7846       }
7847       ++ResNo;
7848     } else {
7849       OpInfo.ConstraintVT = MVT::Other;
7850     }
7851 
7852     if (!HasSideEffect)
7853       HasSideEffect = OpInfo.hasMemory(TLI);
7854 
7855     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
7856     // FIXME: Could we compute this on OpInfo rather than T?
7857 
7858     // Compute the constraint code and ConstraintType to use.
7859     TLI.ComputeConstraintToUse(T, SDValue());
7860 
7861     ExtraInfo.update(T);
7862   }
7863 
7864   // We won't need to flush pending loads if this asm doesn't touch
7865   // memory and is nonvolatile.
7866   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
7867 
7868   // Second pass over the constraints: compute which constraint option to use.
7869   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
7870     // If this is an output operand with a matching input operand, look up the
7871     // matching input. If their types mismatch, e.g. one is an integer, the
7872     // other is floating point, or their sizes are different, flag it as an
7873     // error.
7874     if (OpInfo.hasMatchingInput()) {
7875       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
7876       patchMatchingInput(OpInfo, Input, DAG);
7877     }
7878 
7879     // Compute the constraint code and ConstraintType to use.
7880     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
7881 
7882     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7883         OpInfo.Type == InlineAsm::isClobber)
7884       continue;
7885 
7886     // If this is a memory input, and if the operand is not indirect, do what we
7887     // need to provide an address for the memory input.
7888     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7889         !OpInfo.isIndirect) {
7890       assert((OpInfo.isMultipleAlternative ||
7891               (OpInfo.Type == InlineAsm::isInput)) &&
7892              "Can only indirectify direct input operands!");
7893 
7894       // Memory operands really want the address of the value.
7895       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
7896 
7897       // There is no longer a Value* corresponding to this operand.
7898       OpInfo.CallOperandVal = nullptr;
7899 
7900       // It is now an indirect operand.
7901       OpInfo.isIndirect = true;
7902     }
7903 
7904   }
7905 
7906   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
7907   std::vector<SDValue> AsmNodeOperands;
7908   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
7909   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
7910       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
7911 
7912   // If we have a !srcloc metadata node associated with it, we want to attach
7913   // this to the ultimately generated inline asm machineinstr.  To do this, we
7914   // pass in the third operand as this (potentially null) inline asm MDNode.
7915   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
7916   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
7917 
7918   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7919   // bits as operand 3.
7920   AsmNodeOperands.push_back(DAG.getTargetConstant(
7921       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7922 
7923   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
7924   // this, assign virtual and physical registers for inputs and otput.
7925   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
7926     // Assign Registers.
7927     SDISelAsmOperandInfo &RefOpInfo =
7928         OpInfo.isMatchingInputConstraint()
7929             ? ConstraintOperands[OpInfo.getMatchedOperand()]
7930             : OpInfo;
7931     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
7932 
7933     switch (OpInfo.Type) {
7934     case InlineAsm::isOutput:
7935       if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7936           (OpInfo.ConstraintType == TargetLowering::C_Other &&
7937            OpInfo.isIndirect)) {
7938         unsigned ConstraintID =
7939             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7940         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7941                "Failed to convert memory constraint code to constraint id.");
7942 
7943         // Add information to the INLINEASM node to know about this output.
7944         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7945         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
7946         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
7947                                                         MVT::i32));
7948         AsmNodeOperands.push_back(OpInfo.CallOperand);
7949         break;
7950       } else if ((OpInfo.ConstraintType == TargetLowering::C_Other &&
7951                   !OpInfo.isIndirect) ||
7952                  OpInfo.ConstraintType == TargetLowering::C_Register ||
7953                  OpInfo.ConstraintType == TargetLowering::C_RegisterClass) {
7954         // Otherwise, this outputs to a register (directly for C_Register /
7955         // C_RegisterClass, and a target-defined fashion for C_Other). Find a
7956         // register that we can use.
7957         if (OpInfo.AssignedRegs.Regs.empty()) {
7958           emitInlineAsmError(
7959               CS, "couldn't allocate output register for constraint '" +
7960                       Twine(OpInfo.ConstraintCode) + "'");
7961           return;
7962         }
7963 
7964         // Add information to the INLINEASM node to know that this register is
7965         // set.
7966         OpInfo.AssignedRegs.AddInlineAsmOperands(
7967             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
7968                                   : InlineAsm::Kind_RegDef,
7969             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
7970       }
7971       break;
7972 
7973     case InlineAsm::isInput: {
7974       SDValue InOperandVal = OpInfo.CallOperand;
7975 
7976       if (OpInfo.isMatchingInputConstraint()) {
7977         // If this is required to match an output register we have already set,
7978         // just use its register.
7979         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
7980                                                   AsmNodeOperands);
7981         unsigned OpFlag =
7982           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7983         if (InlineAsm::isRegDefKind(OpFlag) ||
7984             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
7985           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
7986           if (OpInfo.isIndirect) {
7987             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
7988             emitInlineAsmError(CS, "inline asm not supported yet:"
7989                                    " don't know how to handle tied "
7990                                    "indirect register inputs");
7991             return;
7992           }
7993 
7994           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
7995           SmallVector<unsigned, 4> Regs;
7996 
7997           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
7998             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
7999             MachineRegisterInfo &RegInfo =
8000                 DAG.getMachineFunction().getRegInfo();
8001             for (unsigned i = 0; i != NumRegs; ++i)
8002               Regs.push_back(RegInfo.createVirtualRegister(RC));
8003           } else {
8004             emitInlineAsmError(CS, "inline asm error: This value type register "
8005                                    "class is not natively supported!");
8006             return;
8007           }
8008 
8009           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8010 
8011           SDLoc dl = getCurSDLoc();
8012           // Use the produced MatchedRegs object to
8013           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8014                                     CS.getInstruction());
8015           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8016                                            true, OpInfo.getMatchedOperand(), dl,
8017                                            DAG, AsmNodeOperands);
8018           break;
8019         }
8020 
8021         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8022         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8023                "Unexpected number of operands");
8024         // Add information to the INLINEASM node to know about this input.
8025         // See InlineAsm.h isUseOperandTiedToDef.
8026         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8027         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8028                                                     OpInfo.getMatchedOperand());
8029         AsmNodeOperands.push_back(DAG.getTargetConstant(
8030             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8031         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8032         break;
8033       }
8034 
8035       // Treat indirect 'X' constraint as memory.
8036       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8037           OpInfo.isIndirect)
8038         OpInfo.ConstraintType = TargetLowering::C_Memory;
8039 
8040       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
8041         std::vector<SDValue> Ops;
8042         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8043                                           Ops, DAG);
8044         if (Ops.empty()) {
8045           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
8046                                      Twine(OpInfo.ConstraintCode) + "'");
8047           return;
8048         }
8049 
8050         // Add information to the INLINEASM node to know about this input.
8051         unsigned ResOpType =
8052           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8053         AsmNodeOperands.push_back(DAG.getTargetConstant(
8054             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8055         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8056         break;
8057       }
8058 
8059       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8060         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8061         assert(InOperandVal.getValueType() ==
8062                    TLI.getPointerTy(DAG.getDataLayout()) &&
8063                "Memory operands expect pointer values");
8064 
8065         unsigned ConstraintID =
8066             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8067         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8068                "Failed to convert memory constraint code to constraint id.");
8069 
8070         // Add information to the INLINEASM node to know about this input.
8071         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8072         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8073         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8074                                                         getCurSDLoc(),
8075                                                         MVT::i32));
8076         AsmNodeOperands.push_back(InOperandVal);
8077         break;
8078       }
8079 
8080       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8081               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8082              "Unknown constraint type!");
8083 
8084       // TODO: Support this.
8085       if (OpInfo.isIndirect) {
8086         emitInlineAsmError(
8087             CS, "Don't know how to handle indirect register inputs yet "
8088                 "for constraint '" +
8089                     Twine(OpInfo.ConstraintCode) + "'");
8090         return;
8091       }
8092 
8093       // Copy the input into the appropriate registers.
8094       if (OpInfo.AssignedRegs.Regs.empty()) {
8095         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
8096                                    Twine(OpInfo.ConstraintCode) + "'");
8097         return;
8098       }
8099 
8100       SDLoc dl = getCurSDLoc();
8101 
8102       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
8103                                         Chain, &Flag, CS.getInstruction());
8104 
8105       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8106                                                dl, DAG, AsmNodeOperands);
8107       break;
8108     }
8109     case InlineAsm::isClobber:
8110       // Add the clobbered value to the operand list, so that the register
8111       // allocator is aware that the physreg got clobbered.
8112       if (!OpInfo.AssignedRegs.Regs.empty())
8113         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8114                                                  false, 0, getCurSDLoc(), DAG,
8115                                                  AsmNodeOperands);
8116       break;
8117     }
8118   }
8119 
8120   // Finish up input operands.  Set the input chain and add the flag last.
8121   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8122   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8123 
8124   unsigned ISDOpc = isa<CallBrInst>(CS.getInstruction()) ? ISD::INLINEASM_BR : ISD::INLINEASM;
8125   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8126                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8127   Flag = Chain.getValue(1);
8128 
8129   // Do additional work to generate outputs.
8130 
8131   SmallVector<EVT, 1> ResultVTs;
8132   SmallVector<SDValue, 1> ResultValues;
8133   SmallVector<SDValue, 8> OutChains;
8134 
8135   llvm::Type *CSResultType = CS.getType();
8136   ArrayRef<Type *> ResultTypes;
8137   if (StructType *StructResult = dyn_cast<StructType>(CSResultType))
8138     ResultTypes = StructResult->elements();
8139   else if (!CSResultType->isVoidTy())
8140     ResultTypes = makeArrayRef(CSResultType);
8141 
8142   auto CurResultType = ResultTypes.begin();
8143   auto handleRegAssign = [&](SDValue V) {
8144     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8145     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8146     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8147     ++CurResultType;
8148     // If the type of the inline asm call site return value is different but has
8149     // same size as the type of the asm output bitcast it.  One example of this
8150     // is for vectors with different width / number of elements.  This can
8151     // happen for register classes that can contain multiple different value
8152     // types.  The preg or vreg allocated may not have the same VT as was
8153     // expected.
8154     //
8155     // This can also happen for a return value that disagrees with the register
8156     // class it is put in, eg. a double in a general-purpose register on a
8157     // 32-bit machine.
8158     if (ResultVT != V.getValueType() &&
8159         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8160       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8161     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8162              V.getValueType().isInteger()) {
8163       // If a result value was tied to an input value, the computed result
8164       // may have a wider width than the expected result.  Extract the
8165       // relevant portion.
8166       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8167     }
8168     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8169     ResultVTs.push_back(ResultVT);
8170     ResultValues.push_back(V);
8171   };
8172 
8173   // Deal with output operands.
8174   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8175     if (OpInfo.Type == InlineAsm::isOutput) {
8176       SDValue Val;
8177       // Skip trivial output operands.
8178       if (OpInfo.AssignedRegs.Regs.empty())
8179         continue;
8180 
8181       switch (OpInfo.ConstraintType) {
8182       case TargetLowering::C_Register:
8183       case TargetLowering::C_RegisterClass:
8184         Val = OpInfo.AssignedRegs.getCopyFromRegs(
8185             DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction());
8186         break;
8187       case TargetLowering::C_Other:
8188         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8189                                               OpInfo, DAG);
8190         break;
8191       case TargetLowering::C_Memory:
8192         break; // Already handled.
8193       case TargetLowering::C_Unknown:
8194         assert(false && "Unexpected unknown constraint");
8195       }
8196 
8197       // Indirect output manifest as stores. Record output chains.
8198       if (OpInfo.isIndirect) {
8199         const Value *Ptr = OpInfo.CallOperandVal;
8200         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8201         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8202                                      MachinePointerInfo(Ptr));
8203         OutChains.push_back(Store);
8204       } else {
8205         // generate CopyFromRegs to associated registers.
8206         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8207         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8208           for (const SDValue &V : Val->op_values())
8209             handleRegAssign(V);
8210         } else
8211           handleRegAssign(Val);
8212       }
8213     }
8214   }
8215 
8216   // Set results.
8217   if (!ResultValues.empty()) {
8218     assert(CurResultType == ResultTypes.end() &&
8219            "Mismatch in number of ResultTypes");
8220     assert(ResultValues.size() == ResultTypes.size() &&
8221            "Mismatch in number of output operands in asm result");
8222 
8223     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8224                             DAG.getVTList(ResultVTs), ResultValues);
8225     setValue(CS.getInstruction(), V);
8226   }
8227 
8228   // Collect store chains.
8229   if (!OutChains.empty())
8230     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8231 
8232   // Only Update Root if inline assembly has a memory effect.
8233   if (ResultValues.empty() || HasSideEffect || !OutChains.empty())
8234     DAG.setRoot(Chain);
8235 }
8236 
8237 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
8238                                              const Twine &Message) {
8239   LLVMContext &Ctx = *DAG.getContext();
8240   Ctx.emitError(CS.getInstruction(), Message);
8241 
8242   // Make sure we leave the DAG in a valid state
8243   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8244   SmallVector<EVT, 1> ValueVTs;
8245   ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8246 
8247   if (ValueVTs.empty())
8248     return;
8249 
8250   SmallVector<SDValue, 1> Ops;
8251   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8252     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8253 
8254   setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
8255 }
8256 
8257 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8258   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8259                           MVT::Other, getRoot(),
8260                           getValue(I.getArgOperand(0)),
8261                           DAG.getSrcValue(I.getArgOperand(0))));
8262 }
8263 
8264 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8265   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8266   const DataLayout &DL = DAG.getDataLayout();
8267   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
8268                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
8269                            DAG.getSrcValue(I.getOperand(0)),
8270                            DL.getABITypeAlignment(I.getType()));
8271   setValue(&I, V);
8272   DAG.setRoot(V.getValue(1));
8273 }
8274 
8275 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8276   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8277                           MVT::Other, getRoot(),
8278                           getValue(I.getArgOperand(0)),
8279                           DAG.getSrcValue(I.getArgOperand(0))));
8280 }
8281 
8282 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8283   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8284                           MVT::Other, getRoot(),
8285                           getValue(I.getArgOperand(0)),
8286                           getValue(I.getArgOperand(1)),
8287                           DAG.getSrcValue(I.getArgOperand(0)),
8288                           DAG.getSrcValue(I.getArgOperand(1))));
8289 }
8290 
8291 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8292                                                     const Instruction &I,
8293                                                     SDValue Op) {
8294   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8295   if (!Range)
8296     return Op;
8297 
8298   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8299   if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet())
8300     return Op;
8301 
8302   APInt Lo = CR.getUnsignedMin();
8303   if (!Lo.isMinValue())
8304     return Op;
8305 
8306   APInt Hi = CR.getUnsignedMax();
8307   unsigned Bits = std::max(Hi.getActiveBits(),
8308                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8309 
8310   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8311 
8312   SDLoc SL = getCurSDLoc();
8313 
8314   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8315                              DAG.getValueType(SmallVT));
8316   unsigned NumVals = Op.getNode()->getNumValues();
8317   if (NumVals == 1)
8318     return ZExt;
8319 
8320   SmallVector<SDValue, 4> Ops;
8321 
8322   Ops.push_back(ZExt);
8323   for (unsigned I = 1; I != NumVals; ++I)
8324     Ops.push_back(Op.getValue(I));
8325 
8326   return DAG.getMergeValues(Ops, SL);
8327 }
8328 
8329 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8330 /// the call being lowered.
8331 ///
8332 /// This is a helper for lowering intrinsics that follow a target calling
8333 /// convention or require stack pointer adjustment. Only a subset of the
8334 /// intrinsic's operands need to participate in the calling convention.
8335 void SelectionDAGBuilder::populateCallLoweringInfo(
8336     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8337     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8338     bool IsPatchPoint) {
8339   TargetLowering::ArgListTy Args;
8340   Args.reserve(NumArgs);
8341 
8342   // Populate the argument list.
8343   // Attributes for args start at offset 1, after the return attribute.
8344   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8345        ArgI != ArgE; ++ArgI) {
8346     const Value *V = Call->getOperand(ArgI);
8347 
8348     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8349 
8350     TargetLowering::ArgListEntry Entry;
8351     Entry.Node = getValue(V);
8352     Entry.Ty = V->getType();
8353     Entry.setAttributes(Call, ArgI);
8354     Args.push_back(Entry);
8355   }
8356 
8357   CLI.setDebugLoc(getCurSDLoc())
8358       .setChain(getRoot())
8359       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8360       .setDiscardResult(Call->use_empty())
8361       .setIsPatchPoint(IsPatchPoint);
8362 }
8363 
8364 /// Add a stack map intrinsic call's live variable operands to a stackmap
8365 /// or patchpoint target node's operand list.
8366 ///
8367 /// Constants are converted to TargetConstants purely as an optimization to
8368 /// avoid constant materialization and register allocation.
8369 ///
8370 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8371 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
8372 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8373 /// address materialization and register allocation, but may also be required
8374 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8375 /// alloca in the entry block, then the runtime may assume that the alloca's
8376 /// StackMap location can be read immediately after compilation and that the
8377 /// location is valid at any point during execution (this is similar to the
8378 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8379 /// only available in a register, then the runtime would need to trap when
8380 /// execution reaches the StackMap in order to read the alloca's location.
8381 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
8382                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8383                                 SelectionDAGBuilder &Builder) {
8384   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
8385     SDValue OpVal = Builder.getValue(CS.getArgument(i));
8386     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8387       Ops.push_back(
8388         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8389       Ops.push_back(
8390         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8391     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8392       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8393       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8394           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8395     } else
8396       Ops.push_back(OpVal);
8397   }
8398 }
8399 
8400 /// Lower llvm.experimental.stackmap directly to its target opcode.
8401 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8402   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8403   //                                  [live variables...])
8404 
8405   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8406 
8407   SDValue Chain, InFlag, Callee, NullPtr;
8408   SmallVector<SDValue, 32> Ops;
8409 
8410   SDLoc DL = getCurSDLoc();
8411   Callee = getValue(CI.getCalledValue());
8412   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8413 
8414   // The stackmap intrinsic only records the live variables (the arguemnts
8415   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8416   // intrinsic, this won't be lowered to a function call. This means we don't
8417   // have to worry about calling conventions and target specific lowering code.
8418   // Instead we perform the call lowering right here.
8419   //
8420   // chain, flag = CALLSEQ_START(chain, 0, 0)
8421   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8422   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8423   //
8424   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8425   InFlag = Chain.getValue(1);
8426 
8427   // Add the <id> and <numBytes> constants.
8428   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8429   Ops.push_back(DAG.getTargetConstant(
8430                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8431   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8432   Ops.push_back(DAG.getTargetConstant(
8433                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8434                   MVT::i32));
8435 
8436   // Push live variables for the stack map.
8437   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
8438 
8439   // We are not pushing any register mask info here on the operands list,
8440   // because the stackmap doesn't clobber anything.
8441 
8442   // Push the chain and the glue flag.
8443   Ops.push_back(Chain);
8444   Ops.push_back(InFlag);
8445 
8446   // Create the STACKMAP node.
8447   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8448   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8449   Chain = SDValue(SM, 0);
8450   InFlag = Chain.getValue(1);
8451 
8452   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8453 
8454   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8455 
8456   // Set the root to the target-lowered call chain.
8457   DAG.setRoot(Chain);
8458 
8459   // Inform the Frame Information that we have a stackmap in this function.
8460   FuncInfo.MF->getFrameInfo().setHasStackMap();
8461 }
8462 
8463 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8464 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
8465                                           const BasicBlock *EHPadBB) {
8466   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8467   //                                                 i32 <numBytes>,
8468   //                                                 i8* <target>,
8469   //                                                 i32 <numArgs>,
8470   //                                                 [Args...],
8471   //                                                 [live variables...])
8472 
8473   CallingConv::ID CC = CS.getCallingConv();
8474   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8475   bool HasDef = !CS->getType()->isVoidTy();
8476   SDLoc dl = getCurSDLoc();
8477   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8478 
8479   // Handle immediate and symbolic callees.
8480   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8481     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8482                                    /*isTarget=*/true);
8483   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8484     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8485                                          SDLoc(SymbolicCallee),
8486                                          SymbolicCallee->getValueType(0));
8487 
8488   // Get the real number of arguments participating in the call <numArgs>
8489   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8490   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8491 
8492   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8493   // Intrinsics include all meta-operands up to but not including CC.
8494   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8495   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8496          "Not enough arguments provided to the patchpoint intrinsic");
8497 
8498   // For AnyRegCC the arguments are lowered later on manually.
8499   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8500   Type *ReturnTy =
8501     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8502 
8503   TargetLowering::CallLoweringInfo CLI(DAG);
8504   populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()),
8505                            NumMetaOpers, NumCallArgs, Callee, ReturnTy, true);
8506   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8507 
8508   SDNode *CallEnd = Result.second.getNode();
8509   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8510     CallEnd = CallEnd->getOperand(0).getNode();
8511 
8512   /// Get a call instruction from the call sequence chain.
8513   /// Tail calls are not allowed.
8514   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8515          "Expected a callseq node.");
8516   SDNode *Call = CallEnd->getOperand(0).getNode();
8517   bool HasGlue = Call->getGluedNode();
8518 
8519   // Replace the target specific call node with the patchable intrinsic.
8520   SmallVector<SDValue, 8> Ops;
8521 
8522   // Add the <id> and <numBytes> constants.
8523   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8524   Ops.push_back(DAG.getTargetConstant(
8525                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8526   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8527   Ops.push_back(DAG.getTargetConstant(
8528                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8529                   MVT::i32));
8530 
8531   // Add the callee.
8532   Ops.push_back(Callee);
8533 
8534   // Adjust <numArgs> to account for any arguments that have been passed on the
8535   // stack instead.
8536   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8537   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8538   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8539   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8540 
8541   // Add the calling convention
8542   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8543 
8544   // Add the arguments we omitted previously. The register allocator should
8545   // place these in any free register.
8546   if (IsAnyRegCC)
8547     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8548       Ops.push_back(getValue(CS.getArgument(i)));
8549 
8550   // Push the arguments from the call instruction up to the register mask.
8551   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8552   Ops.append(Call->op_begin() + 2, e);
8553 
8554   // Push live variables for the stack map.
8555   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8556 
8557   // Push the register mask info.
8558   if (HasGlue)
8559     Ops.push_back(*(Call->op_end()-2));
8560   else
8561     Ops.push_back(*(Call->op_end()-1));
8562 
8563   // Push the chain (this is originally the first operand of the call, but
8564   // becomes now the last or second to last operand).
8565   Ops.push_back(*(Call->op_begin()));
8566 
8567   // Push the glue flag (last operand).
8568   if (HasGlue)
8569     Ops.push_back(*(Call->op_end()-1));
8570 
8571   SDVTList NodeTys;
8572   if (IsAnyRegCC && HasDef) {
8573     // Create the return types based on the intrinsic definition
8574     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8575     SmallVector<EVT, 3> ValueVTs;
8576     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8577     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8578 
8579     // There is always a chain and a glue type at the end
8580     ValueVTs.push_back(MVT::Other);
8581     ValueVTs.push_back(MVT::Glue);
8582     NodeTys = DAG.getVTList(ValueVTs);
8583   } else
8584     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8585 
8586   // Replace the target specific call node with a PATCHPOINT node.
8587   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8588                                          dl, NodeTys, Ops);
8589 
8590   // Update the NodeMap.
8591   if (HasDef) {
8592     if (IsAnyRegCC)
8593       setValue(CS.getInstruction(), SDValue(MN, 0));
8594     else
8595       setValue(CS.getInstruction(), Result.first);
8596   }
8597 
8598   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8599   // call sequence. Furthermore the location of the chain and glue can change
8600   // when the AnyReg calling convention is used and the intrinsic returns a
8601   // value.
8602   if (IsAnyRegCC && HasDef) {
8603     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8604     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8605     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8606   } else
8607     DAG.ReplaceAllUsesWith(Call, MN);
8608   DAG.DeleteNode(Call);
8609 
8610   // Inform the Frame Information that we have a patchpoint in this function.
8611   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8612 }
8613 
8614 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8615                                             unsigned Intrinsic) {
8616   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8617   SDValue Op1 = getValue(I.getArgOperand(0));
8618   SDValue Op2;
8619   if (I.getNumArgOperands() > 1)
8620     Op2 = getValue(I.getArgOperand(1));
8621   SDLoc dl = getCurSDLoc();
8622   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8623   SDValue Res;
8624   FastMathFlags FMF;
8625   if (isa<FPMathOperator>(I))
8626     FMF = I.getFastMathFlags();
8627 
8628   switch (Intrinsic) {
8629   case Intrinsic::experimental_vector_reduce_fadd:
8630     if (FMF.isFast())
8631       Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2);
8632     else
8633       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8634     break;
8635   case Intrinsic::experimental_vector_reduce_fmul:
8636     if (FMF.isFast())
8637       Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2);
8638     else
8639       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8640     break;
8641   case Intrinsic::experimental_vector_reduce_add:
8642     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8643     break;
8644   case Intrinsic::experimental_vector_reduce_mul:
8645     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8646     break;
8647   case Intrinsic::experimental_vector_reduce_and:
8648     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8649     break;
8650   case Intrinsic::experimental_vector_reduce_or:
8651     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8652     break;
8653   case Intrinsic::experimental_vector_reduce_xor:
8654     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8655     break;
8656   case Intrinsic::experimental_vector_reduce_smax:
8657     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8658     break;
8659   case Intrinsic::experimental_vector_reduce_smin:
8660     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8661     break;
8662   case Intrinsic::experimental_vector_reduce_umax:
8663     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8664     break;
8665   case Intrinsic::experimental_vector_reduce_umin:
8666     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8667     break;
8668   case Intrinsic::experimental_vector_reduce_fmax:
8669     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8670     break;
8671   case Intrinsic::experimental_vector_reduce_fmin:
8672     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8673     break;
8674   default:
8675     llvm_unreachable("Unhandled vector reduce intrinsic");
8676   }
8677   setValue(&I, Res);
8678 }
8679 
8680 /// Returns an AttributeList representing the attributes applied to the return
8681 /// value of the given call.
8682 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8683   SmallVector<Attribute::AttrKind, 2> Attrs;
8684   if (CLI.RetSExt)
8685     Attrs.push_back(Attribute::SExt);
8686   if (CLI.RetZExt)
8687     Attrs.push_back(Attribute::ZExt);
8688   if (CLI.IsInReg)
8689     Attrs.push_back(Attribute::InReg);
8690 
8691   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8692                             Attrs);
8693 }
8694 
8695 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8696 /// implementation, which just calls LowerCall.
8697 /// FIXME: When all targets are
8698 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8699 std::pair<SDValue, SDValue>
8700 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8701   // Handle the incoming return values from the call.
8702   CLI.Ins.clear();
8703   Type *OrigRetTy = CLI.RetTy;
8704   SmallVector<EVT, 4> RetTys;
8705   SmallVector<uint64_t, 4> Offsets;
8706   auto &DL = CLI.DAG.getDataLayout();
8707   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8708 
8709   if (CLI.IsPostTypeLegalization) {
8710     // If we are lowering a libcall after legalization, split the return type.
8711     SmallVector<EVT, 4> OldRetTys = std::move(RetTys);
8712     SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets);
8713     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8714       EVT RetVT = OldRetTys[i];
8715       uint64_t Offset = OldOffsets[i];
8716       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8717       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8718       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8719       RetTys.append(NumRegs, RegisterVT);
8720       for (unsigned j = 0; j != NumRegs; ++j)
8721         Offsets.push_back(Offset + j * RegisterVTByteSZ);
8722     }
8723   }
8724 
8725   SmallVector<ISD::OutputArg, 4> Outs;
8726   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8727 
8728   bool CanLowerReturn =
8729       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8730                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8731 
8732   SDValue DemoteStackSlot;
8733   int DemoteStackIdx = -100;
8734   if (!CanLowerReturn) {
8735     // FIXME: equivalent assert?
8736     // assert(!CS.hasInAllocaArgument() &&
8737     //        "sret demotion is incompatible with inalloca");
8738     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8739     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
8740     MachineFunction &MF = CLI.DAG.getMachineFunction();
8741     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
8742     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
8743                                               DL.getAllocaAddrSpace());
8744 
8745     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
8746     ArgListEntry Entry;
8747     Entry.Node = DemoteStackSlot;
8748     Entry.Ty = StackSlotPtrType;
8749     Entry.IsSExt = false;
8750     Entry.IsZExt = false;
8751     Entry.IsInReg = false;
8752     Entry.IsSRet = true;
8753     Entry.IsNest = false;
8754     Entry.IsByVal = false;
8755     Entry.IsReturned = false;
8756     Entry.IsSwiftSelf = false;
8757     Entry.IsSwiftError = false;
8758     Entry.Alignment = Align;
8759     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
8760     CLI.NumFixedArgs += 1;
8761     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
8762 
8763     // sret demotion isn't compatible with tail-calls, since the sret argument
8764     // points into the callers stack frame.
8765     CLI.IsTailCall = false;
8766   } else {
8767     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8768       EVT VT = RetTys[I];
8769       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8770                                                      CLI.CallConv, VT);
8771       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8772                                                        CLI.CallConv, VT);
8773       for (unsigned i = 0; i != NumRegs; ++i) {
8774         ISD::InputArg MyFlags;
8775         MyFlags.VT = RegisterVT;
8776         MyFlags.ArgVT = VT;
8777         MyFlags.Used = CLI.IsReturnValueUsed;
8778         if (CLI.RetSExt)
8779           MyFlags.Flags.setSExt();
8780         if (CLI.RetZExt)
8781           MyFlags.Flags.setZExt();
8782         if (CLI.IsInReg)
8783           MyFlags.Flags.setInReg();
8784         CLI.Ins.push_back(MyFlags);
8785       }
8786     }
8787   }
8788 
8789   // We push in swifterror return as the last element of CLI.Ins.
8790   ArgListTy &Args = CLI.getArgs();
8791   if (supportSwiftError()) {
8792     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8793       if (Args[i].IsSwiftError) {
8794         ISD::InputArg MyFlags;
8795         MyFlags.VT = getPointerTy(DL);
8796         MyFlags.ArgVT = EVT(getPointerTy(DL));
8797         MyFlags.Flags.setSwiftError();
8798         CLI.Ins.push_back(MyFlags);
8799       }
8800     }
8801   }
8802 
8803   // Handle all of the outgoing arguments.
8804   CLI.Outs.clear();
8805   CLI.OutVals.clear();
8806   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8807     SmallVector<EVT, 4> ValueVTs;
8808     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
8809     // FIXME: Split arguments if CLI.IsPostTypeLegalization
8810     Type *FinalType = Args[i].Ty;
8811     if (Args[i].IsByVal)
8812       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
8813     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
8814         FinalType, CLI.CallConv, CLI.IsVarArg);
8815     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
8816          ++Value) {
8817       EVT VT = ValueVTs[Value];
8818       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
8819       SDValue Op = SDValue(Args[i].Node.getNode(),
8820                            Args[i].Node.getResNo() + Value);
8821       ISD::ArgFlagsTy Flags;
8822 
8823       // Certain targets (such as MIPS), may have a different ABI alignment
8824       // for a type depending on the context. Give the target a chance to
8825       // specify the alignment it wants.
8826       unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL);
8827 
8828       if (Args[i].IsZExt)
8829         Flags.setZExt();
8830       if (Args[i].IsSExt)
8831         Flags.setSExt();
8832       if (Args[i].IsInReg) {
8833         // If we are using vectorcall calling convention, a structure that is
8834         // passed InReg - is surely an HVA
8835         if (CLI.CallConv == CallingConv::X86_VectorCall &&
8836             isa<StructType>(FinalType)) {
8837           // The first value of a structure is marked
8838           if (0 == Value)
8839             Flags.setHvaStart();
8840           Flags.setHva();
8841         }
8842         // Set InReg Flag
8843         Flags.setInReg();
8844       }
8845       if (Args[i].IsSRet)
8846         Flags.setSRet();
8847       if (Args[i].IsSwiftSelf)
8848         Flags.setSwiftSelf();
8849       if (Args[i].IsSwiftError)
8850         Flags.setSwiftError();
8851       if (Args[i].IsByVal)
8852         Flags.setByVal();
8853       if (Args[i].IsInAlloca) {
8854         Flags.setInAlloca();
8855         // Set the byval flag for CCAssignFn callbacks that don't know about
8856         // inalloca.  This way we can know how many bytes we should've allocated
8857         // and how many bytes a callee cleanup function will pop.  If we port
8858         // inalloca to more targets, we'll have to add custom inalloca handling
8859         // in the various CC lowering callbacks.
8860         Flags.setByVal();
8861       }
8862       if (Args[i].IsByVal || Args[i].IsInAlloca) {
8863         PointerType *Ty = cast<PointerType>(Args[i].Ty);
8864         Type *ElementTy = Ty->getElementType();
8865         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8866         // For ByVal, alignment should come from FE.  BE will guess if this
8867         // info is not there but there are cases it cannot get right.
8868         unsigned FrameAlign;
8869         if (Args[i].Alignment)
8870           FrameAlign = Args[i].Alignment;
8871         else
8872           FrameAlign = getByValTypeAlignment(ElementTy, DL);
8873         Flags.setByValAlign(FrameAlign);
8874       }
8875       if (Args[i].IsNest)
8876         Flags.setNest();
8877       if (NeedsRegBlock)
8878         Flags.setInConsecutiveRegs();
8879       Flags.setOrigAlign(OriginalAlignment);
8880 
8881       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8882                                                  CLI.CallConv, VT);
8883       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8884                                                         CLI.CallConv, VT);
8885       SmallVector<SDValue, 4> Parts(NumParts);
8886       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
8887 
8888       if (Args[i].IsSExt)
8889         ExtendKind = ISD::SIGN_EXTEND;
8890       else if (Args[i].IsZExt)
8891         ExtendKind = ISD::ZERO_EXTEND;
8892 
8893       // Conservatively only handle 'returned' on non-vectors that can be lowered,
8894       // for now.
8895       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
8896           CanLowerReturn) {
8897         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
8898                "unexpected use of 'returned'");
8899         // Before passing 'returned' to the target lowering code, ensure that
8900         // either the register MVT and the actual EVT are the same size or that
8901         // the return value and argument are extended in the same way; in these
8902         // cases it's safe to pass the argument register value unchanged as the
8903         // return register value (although it's at the target's option whether
8904         // to do so)
8905         // TODO: allow code generation to take advantage of partially preserved
8906         // registers rather than clobbering the entire register when the
8907         // parameter extension method is not compatible with the return
8908         // extension method
8909         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
8910             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
8911              CLI.RetZExt == Args[i].IsZExt))
8912           Flags.setReturned();
8913       }
8914 
8915       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
8916                      CLI.CS.getInstruction(), CLI.CallConv, ExtendKind);
8917 
8918       for (unsigned j = 0; j != NumParts; ++j) {
8919         // if it isn't first piece, alignment must be 1
8920         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
8921                                i < CLI.NumFixedArgs,
8922                                i, j*Parts[j].getValueType().getStoreSize());
8923         if (NumParts > 1 && j == 0)
8924           MyFlags.Flags.setSplit();
8925         else if (j != 0) {
8926           MyFlags.Flags.setOrigAlign(1);
8927           if (j == NumParts - 1)
8928             MyFlags.Flags.setSplitEnd();
8929         }
8930 
8931         CLI.Outs.push_back(MyFlags);
8932         CLI.OutVals.push_back(Parts[j]);
8933       }
8934 
8935       if (NeedsRegBlock && Value == NumValues - 1)
8936         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
8937     }
8938   }
8939 
8940   SmallVector<SDValue, 4> InVals;
8941   CLI.Chain = LowerCall(CLI, InVals);
8942 
8943   // Update CLI.InVals to use outside of this function.
8944   CLI.InVals = InVals;
8945 
8946   // Verify that the target's LowerCall behaved as expected.
8947   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
8948          "LowerCall didn't return a valid chain!");
8949   assert((!CLI.IsTailCall || InVals.empty()) &&
8950          "LowerCall emitted a return value for a tail call!");
8951   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
8952          "LowerCall didn't emit the correct number of values!");
8953 
8954   // For a tail call, the return value is merely live-out and there aren't
8955   // any nodes in the DAG representing it. Return a special value to
8956   // indicate that a tail call has been emitted and no more Instructions
8957   // should be processed in the current block.
8958   if (CLI.IsTailCall) {
8959     CLI.DAG.setRoot(CLI.Chain);
8960     return std::make_pair(SDValue(), SDValue());
8961   }
8962 
8963 #ifndef NDEBUG
8964   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
8965     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
8966     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
8967            "LowerCall emitted a value with the wrong type!");
8968   }
8969 #endif
8970 
8971   SmallVector<SDValue, 4> ReturnValues;
8972   if (!CanLowerReturn) {
8973     // The instruction result is the result of loading from the
8974     // hidden sret parameter.
8975     SmallVector<EVT, 1> PVTs;
8976     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
8977 
8978     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
8979     assert(PVTs.size() == 1 && "Pointers should fit in one register");
8980     EVT PtrVT = PVTs[0];
8981 
8982     unsigned NumValues = RetTys.size();
8983     ReturnValues.resize(NumValues);
8984     SmallVector<SDValue, 4> Chains(NumValues);
8985 
8986     // An aggregate return value cannot wrap around the address space, so
8987     // offsets to its parts don't wrap either.
8988     SDNodeFlags Flags;
8989     Flags.setNoUnsignedWrap(true);
8990 
8991     for (unsigned i = 0; i < NumValues; ++i) {
8992       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
8993                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
8994                                                         PtrVT), Flags);
8995       SDValue L = CLI.DAG.getLoad(
8996           RetTys[i], CLI.DL, CLI.Chain, Add,
8997           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
8998                                             DemoteStackIdx, Offsets[i]),
8999           /* Alignment = */ 1);
9000       ReturnValues[i] = L;
9001       Chains[i] = L.getValue(1);
9002     }
9003 
9004     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9005   } else {
9006     // Collect the legal value parts into potentially illegal values
9007     // that correspond to the original function's return values.
9008     Optional<ISD::NodeType> AssertOp;
9009     if (CLI.RetSExt)
9010       AssertOp = ISD::AssertSext;
9011     else if (CLI.RetZExt)
9012       AssertOp = ISD::AssertZext;
9013     unsigned CurReg = 0;
9014     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9015       EVT VT = RetTys[I];
9016       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9017                                                      CLI.CallConv, VT);
9018       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9019                                                        CLI.CallConv, VT);
9020 
9021       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9022                                               NumRegs, RegisterVT, VT, nullptr,
9023                                               CLI.CallConv, AssertOp));
9024       CurReg += NumRegs;
9025     }
9026 
9027     // For a function returning void, there is no return value. We can't create
9028     // such a node, so we just return a null return value in that case. In
9029     // that case, nothing will actually look at the value.
9030     if (ReturnValues.empty())
9031       return std::make_pair(SDValue(), CLI.Chain);
9032   }
9033 
9034   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9035                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9036   return std::make_pair(Res, CLI.Chain);
9037 }
9038 
9039 void TargetLowering::LowerOperationWrapper(SDNode *N,
9040                                            SmallVectorImpl<SDValue> &Results,
9041                                            SelectionDAG &DAG) const {
9042   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
9043     Results.push_back(Res);
9044 }
9045 
9046 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9047   llvm_unreachable("LowerOperation not implemented for this target!");
9048 }
9049 
9050 void
9051 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9052   SDValue Op = getNonRegisterValue(V);
9053   assert((Op.getOpcode() != ISD::CopyFromReg ||
9054           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9055          "Copy from a reg to the same reg!");
9056   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
9057 
9058   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9059   // If this is an InlineAsm we have to match the registers required, not the
9060   // notional registers required by the type.
9061 
9062   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9063                    None); // This is not an ABI copy.
9064   SDValue Chain = DAG.getEntryNode();
9065 
9066   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9067                               FuncInfo.PreferredExtendType.end())
9068                                  ? ISD::ANY_EXTEND
9069                                  : FuncInfo.PreferredExtendType[V];
9070   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9071   PendingExports.push_back(Chain);
9072 }
9073 
9074 #include "llvm/CodeGen/SelectionDAGISel.h"
9075 
9076 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9077 /// entry block, return true.  This includes arguments used by switches, since
9078 /// the switch may expand into multiple basic blocks.
9079 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9080   // With FastISel active, we may be splitting blocks, so force creation
9081   // of virtual registers for all non-dead arguments.
9082   if (FastISel)
9083     return A->use_empty();
9084 
9085   const BasicBlock &Entry = A->getParent()->front();
9086   for (const User *U : A->users())
9087     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9088       return false;  // Use not in entry block.
9089 
9090   return true;
9091 }
9092 
9093 using ArgCopyElisionMapTy =
9094     DenseMap<const Argument *,
9095              std::pair<const AllocaInst *, const StoreInst *>>;
9096 
9097 /// Scan the entry block of the function in FuncInfo for arguments that look
9098 /// like copies into a local alloca. Record any copied arguments in
9099 /// ArgCopyElisionCandidates.
9100 static void
9101 findArgumentCopyElisionCandidates(const DataLayout &DL,
9102                                   FunctionLoweringInfo *FuncInfo,
9103                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9104   // Record the state of every static alloca used in the entry block. Argument
9105   // allocas are all used in the entry block, so we need approximately as many
9106   // entries as we have arguments.
9107   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9108   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9109   unsigned NumArgs = FuncInfo->Fn->arg_size();
9110   StaticAllocas.reserve(NumArgs * 2);
9111 
9112   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9113     if (!V)
9114       return nullptr;
9115     V = V->stripPointerCasts();
9116     const auto *AI = dyn_cast<AllocaInst>(V);
9117     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9118       return nullptr;
9119     auto Iter = StaticAllocas.insert({AI, Unknown});
9120     return &Iter.first->second;
9121   };
9122 
9123   // Look for stores of arguments to static allocas. Look through bitcasts and
9124   // GEPs to handle type coercions, as long as the alloca is fully initialized
9125   // by the store. Any non-store use of an alloca escapes it and any subsequent
9126   // unanalyzed store might write it.
9127   // FIXME: Handle structs initialized with multiple stores.
9128   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9129     // Look for stores, and handle non-store uses conservatively.
9130     const auto *SI = dyn_cast<StoreInst>(&I);
9131     if (!SI) {
9132       // We will look through cast uses, so ignore them completely.
9133       if (I.isCast())
9134         continue;
9135       // Ignore debug info intrinsics, they don't escape or store to allocas.
9136       if (isa<DbgInfoIntrinsic>(I))
9137         continue;
9138       // This is an unknown instruction. Assume it escapes or writes to all
9139       // static alloca operands.
9140       for (const Use &U : I.operands()) {
9141         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9142           *Info = StaticAllocaInfo::Clobbered;
9143       }
9144       continue;
9145     }
9146 
9147     // If the stored value is a static alloca, mark it as escaped.
9148     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9149       *Info = StaticAllocaInfo::Clobbered;
9150 
9151     // Check if the destination is a static alloca.
9152     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9153     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9154     if (!Info)
9155       continue;
9156     const AllocaInst *AI = cast<AllocaInst>(Dst);
9157 
9158     // Skip allocas that have been initialized or clobbered.
9159     if (*Info != StaticAllocaInfo::Unknown)
9160       continue;
9161 
9162     // Check if the stored value is an argument, and that this store fully
9163     // initializes the alloca. Don't elide copies from the same argument twice.
9164     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9165     const auto *Arg = dyn_cast<Argument>(Val);
9166     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
9167         Arg->getType()->isEmptyTy() ||
9168         DL.getTypeStoreSize(Arg->getType()) !=
9169             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9170         ArgCopyElisionCandidates.count(Arg)) {
9171       *Info = StaticAllocaInfo::Clobbered;
9172       continue;
9173     }
9174 
9175     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9176                       << '\n');
9177 
9178     // Mark this alloca and store for argument copy elision.
9179     *Info = StaticAllocaInfo::Elidable;
9180     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9181 
9182     // Stop scanning if we've seen all arguments. This will happen early in -O0
9183     // builds, which is useful, because -O0 builds have large entry blocks and
9184     // many allocas.
9185     if (ArgCopyElisionCandidates.size() == NumArgs)
9186       break;
9187   }
9188 }
9189 
9190 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9191 /// ArgVal is a load from a suitable fixed stack object.
9192 static void tryToElideArgumentCopy(
9193     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
9194     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9195     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9196     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9197     SDValue ArgVal, bool &ArgHasUses) {
9198   // Check if this is a load from a fixed stack object.
9199   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9200   if (!LNode)
9201     return;
9202   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9203   if (!FINode)
9204     return;
9205 
9206   // Check that the fixed stack object is the right size and alignment.
9207   // Look at the alignment that the user wrote on the alloca instead of looking
9208   // at the stack object.
9209   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9210   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9211   const AllocaInst *AI = ArgCopyIter->second.first;
9212   int FixedIndex = FINode->getIndex();
9213   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
9214   int OldIndex = AllocaIndex;
9215   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
9216   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9217     LLVM_DEBUG(
9218         dbgs() << "  argument copy elision failed due to bad fixed stack "
9219                   "object size\n");
9220     return;
9221   }
9222   unsigned RequiredAlignment = AI->getAlignment();
9223   if (!RequiredAlignment) {
9224     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
9225         AI->getAllocatedType());
9226   }
9227   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
9228     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9229                          "greater than stack argument alignment ("
9230                       << RequiredAlignment << " vs "
9231                       << MFI.getObjectAlignment(FixedIndex) << ")\n");
9232     return;
9233   }
9234 
9235   // Perform the elision. Delete the old stack object and replace its only use
9236   // in the variable info map. Mark the stack object as mutable.
9237   LLVM_DEBUG({
9238     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9239            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9240            << '\n';
9241   });
9242   MFI.RemoveStackObject(OldIndex);
9243   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9244   AllocaIndex = FixedIndex;
9245   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9246   Chains.push_back(ArgVal.getValue(1));
9247 
9248   // Avoid emitting code for the store implementing the copy.
9249   const StoreInst *SI = ArgCopyIter->second.second;
9250   ElidedArgCopyInstrs.insert(SI);
9251 
9252   // Check for uses of the argument again so that we can avoid exporting ArgVal
9253   // if it is't used by anything other than the store.
9254   for (const Value *U : Arg.users()) {
9255     if (U != SI) {
9256       ArgHasUses = true;
9257       break;
9258     }
9259   }
9260 }
9261 
9262 void SelectionDAGISel::LowerArguments(const Function &F) {
9263   SelectionDAG &DAG = SDB->DAG;
9264   SDLoc dl = SDB->getCurSDLoc();
9265   const DataLayout &DL = DAG.getDataLayout();
9266   SmallVector<ISD::InputArg, 16> Ins;
9267 
9268   if (!FuncInfo->CanLowerReturn) {
9269     // Put in an sret pointer parameter before all the other parameters.
9270     SmallVector<EVT, 1> ValueVTs;
9271     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9272                     F.getReturnType()->getPointerTo(
9273                         DAG.getDataLayout().getAllocaAddrSpace()),
9274                     ValueVTs);
9275 
9276     // NOTE: Assuming that a pointer will never break down to more than one VT
9277     // or one register.
9278     ISD::ArgFlagsTy Flags;
9279     Flags.setSRet();
9280     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9281     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9282                          ISD::InputArg::NoArgIndex, 0);
9283     Ins.push_back(RetArg);
9284   }
9285 
9286   // Look for stores of arguments to static allocas. Mark such arguments with a
9287   // flag to ask the target to give us the memory location of that argument if
9288   // available.
9289   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9290   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
9291 
9292   // Set up the incoming argument description vector.
9293   for (const Argument &Arg : F.args()) {
9294     unsigned ArgNo = Arg.getArgNo();
9295     SmallVector<EVT, 4> ValueVTs;
9296     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9297     bool isArgValueUsed = !Arg.use_empty();
9298     unsigned PartBase = 0;
9299     Type *FinalType = Arg.getType();
9300     if (Arg.hasAttribute(Attribute::ByVal))
9301       FinalType = cast<PointerType>(FinalType)->getElementType();
9302     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9303         FinalType, F.getCallingConv(), F.isVarArg());
9304     for (unsigned Value = 0, NumValues = ValueVTs.size();
9305          Value != NumValues; ++Value) {
9306       EVT VT = ValueVTs[Value];
9307       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9308       ISD::ArgFlagsTy Flags;
9309 
9310       // Certain targets (such as MIPS), may have a different ABI alignment
9311       // for a type depending on the context. Give the target a chance to
9312       // specify the alignment it wants.
9313       unsigned OriginalAlignment =
9314           TLI->getABIAlignmentForCallingConv(ArgTy, DL);
9315 
9316       if (Arg.hasAttribute(Attribute::ZExt))
9317         Flags.setZExt();
9318       if (Arg.hasAttribute(Attribute::SExt))
9319         Flags.setSExt();
9320       if (Arg.hasAttribute(Attribute::InReg)) {
9321         // If we are using vectorcall calling convention, a structure that is
9322         // passed InReg - is surely an HVA
9323         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9324             isa<StructType>(Arg.getType())) {
9325           // The first value of a structure is marked
9326           if (0 == Value)
9327             Flags.setHvaStart();
9328           Flags.setHva();
9329         }
9330         // Set InReg Flag
9331         Flags.setInReg();
9332       }
9333       if (Arg.hasAttribute(Attribute::StructRet))
9334         Flags.setSRet();
9335       if (Arg.hasAttribute(Attribute::SwiftSelf))
9336         Flags.setSwiftSelf();
9337       if (Arg.hasAttribute(Attribute::SwiftError))
9338         Flags.setSwiftError();
9339       if (Arg.hasAttribute(Attribute::ByVal))
9340         Flags.setByVal();
9341       if (Arg.hasAttribute(Attribute::InAlloca)) {
9342         Flags.setInAlloca();
9343         // Set the byval flag for CCAssignFn callbacks that don't know about
9344         // inalloca.  This way we can know how many bytes we should've allocated
9345         // and how many bytes a callee cleanup function will pop.  If we port
9346         // inalloca to more targets, we'll have to add custom inalloca handling
9347         // in the various CC lowering callbacks.
9348         Flags.setByVal();
9349       }
9350       if (F.getCallingConv() == CallingConv::X86_INTR) {
9351         // IA Interrupt passes frame (1st parameter) by value in the stack.
9352         if (ArgNo == 0)
9353           Flags.setByVal();
9354       }
9355       if (Flags.isByVal() || Flags.isInAlloca()) {
9356         PointerType *Ty = cast<PointerType>(Arg.getType());
9357         Type *ElementTy = Ty->getElementType();
9358         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
9359         // For ByVal, alignment should be passed from FE.  BE will guess if
9360         // this info is not there but there are cases it cannot get right.
9361         unsigned FrameAlign;
9362         if (Arg.getParamAlignment())
9363           FrameAlign = Arg.getParamAlignment();
9364         else
9365           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9366         Flags.setByValAlign(FrameAlign);
9367       }
9368       if (Arg.hasAttribute(Attribute::Nest))
9369         Flags.setNest();
9370       if (NeedsRegBlock)
9371         Flags.setInConsecutiveRegs();
9372       Flags.setOrigAlign(OriginalAlignment);
9373       if (ArgCopyElisionCandidates.count(&Arg))
9374         Flags.setCopyElisionCandidate();
9375 
9376       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9377           *CurDAG->getContext(), F.getCallingConv(), VT);
9378       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9379           *CurDAG->getContext(), F.getCallingConv(), VT);
9380       for (unsigned i = 0; i != NumRegs; ++i) {
9381         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9382                               ArgNo, PartBase+i*RegisterVT.getStoreSize());
9383         if (NumRegs > 1 && i == 0)
9384           MyFlags.Flags.setSplit();
9385         // if it isn't first piece, alignment must be 1
9386         else if (i > 0) {
9387           MyFlags.Flags.setOrigAlign(1);
9388           if (i == NumRegs - 1)
9389             MyFlags.Flags.setSplitEnd();
9390         }
9391         Ins.push_back(MyFlags);
9392       }
9393       if (NeedsRegBlock && Value == NumValues - 1)
9394         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9395       PartBase += VT.getStoreSize();
9396     }
9397   }
9398 
9399   // Call the target to set up the argument values.
9400   SmallVector<SDValue, 8> InVals;
9401   SDValue NewRoot = TLI->LowerFormalArguments(
9402       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9403 
9404   // Verify that the target's LowerFormalArguments behaved as expected.
9405   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9406          "LowerFormalArguments didn't return a valid chain!");
9407   assert(InVals.size() == Ins.size() &&
9408          "LowerFormalArguments didn't emit the correct number of values!");
9409   LLVM_DEBUG({
9410     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9411       assert(InVals[i].getNode() &&
9412              "LowerFormalArguments emitted a null value!");
9413       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9414              "LowerFormalArguments emitted a value with the wrong type!");
9415     }
9416   });
9417 
9418   // Update the DAG with the new chain value resulting from argument lowering.
9419   DAG.setRoot(NewRoot);
9420 
9421   // Set up the argument values.
9422   unsigned i = 0;
9423   if (!FuncInfo->CanLowerReturn) {
9424     // Create a virtual register for the sret pointer, and put in a copy
9425     // from the sret argument into it.
9426     SmallVector<EVT, 1> ValueVTs;
9427     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9428                     F.getReturnType()->getPointerTo(
9429                         DAG.getDataLayout().getAllocaAddrSpace()),
9430                     ValueVTs);
9431     MVT VT = ValueVTs[0].getSimpleVT();
9432     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9433     Optional<ISD::NodeType> AssertOp = None;
9434     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9435                                         nullptr, F.getCallingConv(), AssertOp);
9436 
9437     MachineFunction& MF = SDB->DAG.getMachineFunction();
9438     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9439     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9440     FuncInfo->DemoteRegister = SRetReg;
9441     NewRoot =
9442         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9443     DAG.setRoot(NewRoot);
9444 
9445     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9446     ++i;
9447   }
9448 
9449   SmallVector<SDValue, 4> Chains;
9450   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9451   for (const Argument &Arg : F.args()) {
9452     SmallVector<SDValue, 4> ArgValues;
9453     SmallVector<EVT, 4> ValueVTs;
9454     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9455     unsigned NumValues = ValueVTs.size();
9456     if (NumValues == 0)
9457       continue;
9458 
9459     bool ArgHasUses = !Arg.use_empty();
9460 
9461     // Elide the copying store if the target loaded this argument from a
9462     // suitable fixed stack object.
9463     if (Ins[i].Flags.isCopyElisionCandidate()) {
9464       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9465                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9466                              InVals[i], ArgHasUses);
9467     }
9468 
9469     // If this argument is unused then remember its value. It is used to generate
9470     // debugging information.
9471     bool isSwiftErrorArg =
9472         TLI->supportSwiftError() &&
9473         Arg.hasAttribute(Attribute::SwiftError);
9474     if (!ArgHasUses && !isSwiftErrorArg) {
9475       SDB->setUnusedArgValue(&Arg, InVals[i]);
9476 
9477       // Also remember any frame index for use in FastISel.
9478       if (FrameIndexSDNode *FI =
9479           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9480         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9481     }
9482 
9483     for (unsigned Val = 0; Val != NumValues; ++Val) {
9484       EVT VT = ValueVTs[Val];
9485       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9486                                                       F.getCallingConv(), VT);
9487       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9488           *CurDAG->getContext(), F.getCallingConv(), VT);
9489 
9490       // Even an apparant 'unused' swifterror argument needs to be returned. So
9491       // we do generate a copy for it that can be used on return from the
9492       // function.
9493       if (ArgHasUses || isSwiftErrorArg) {
9494         Optional<ISD::NodeType> AssertOp;
9495         if (Arg.hasAttribute(Attribute::SExt))
9496           AssertOp = ISD::AssertSext;
9497         else if (Arg.hasAttribute(Attribute::ZExt))
9498           AssertOp = ISD::AssertZext;
9499 
9500         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9501                                              PartVT, VT, nullptr,
9502                                              F.getCallingConv(), AssertOp));
9503       }
9504 
9505       i += NumParts;
9506     }
9507 
9508     // We don't need to do anything else for unused arguments.
9509     if (ArgValues.empty())
9510       continue;
9511 
9512     // Note down frame index.
9513     if (FrameIndexSDNode *FI =
9514         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9515       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9516 
9517     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9518                                      SDB->getCurSDLoc());
9519 
9520     SDB->setValue(&Arg, Res);
9521     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9522       // We want to associate the argument with the frame index, among
9523       // involved operands, that correspond to the lowest address. The
9524       // getCopyFromParts function, called earlier, is swapping the order of
9525       // the operands to BUILD_PAIR depending on endianness. The result of
9526       // that swapping is that the least significant bits of the argument will
9527       // be in the first operand of the BUILD_PAIR node, and the most
9528       // significant bits will be in the second operand.
9529       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9530       if (LoadSDNode *LNode =
9531           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9532         if (FrameIndexSDNode *FI =
9533             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9534           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9535     }
9536 
9537     // Update the SwiftErrorVRegDefMap.
9538     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9539       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9540       if (TargetRegisterInfo::isVirtualRegister(Reg))
9541         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
9542                                            FuncInfo->SwiftErrorArg, Reg);
9543     }
9544 
9545     // If this argument is live outside of the entry block, insert a copy from
9546     // wherever we got it to the vreg that other BB's will reference it as.
9547     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
9548       // If we can, though, try to skip creating an unnecessary vreg.
9549       // FIXME: This isn't very clean... it would be nice to make this more
9550       // general.  It's also subtly incompatible with the hacks FastISel
9551       // uses with vregs.
9552       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9553       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
9554         FuncInfo->ValueMap[&Arg] = Reg;
9555         continue;
9556       }
9557     }
9558     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9559       FuncInfo->InitializeRegForValue(&Arg);
9560       SDB->CopyToExportRegsIfNeeded(&Arg);
9561     }
9562   }
9563 
9564   if (!Chains.empty()) {
9565     Chains.push_back(NewRoot);
9566     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9567   }
9568 
9569   DAG.setRoot(NewRoot);
9570 
9571   assert(i == InVals.size() && "Argument register count mismatch!");
9572 
9573   // If any argument copy elisions occurred and we have debug info, update the
9574   // stale frame indices used in the dbg.declare variable info table.
9575   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9576   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9577     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9578       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9579       if (I != ArgCopyElisionFrameIndexMap.end())
9580         VI.Slot = I->second;
9581     }
9582   }
9583 
9584   // Finally, if the target has anything special to do, allow it to do so.
9585   EmitFunctionEntryCode();
9586 }
9587 
9588 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9589 /// ensure constants are generated when needed.  Remember the virtual registers
9590 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9591 /// directly add them, because expansion might result in multiple MBB's for one
9592 /// BB.  As such, the start of the BB might correspond to a different MBB than
9593 /// the end.
9594 void
9595 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9596   const Instruction *TI = LLVMBB->getTerminator();
9597 
9598   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9599 
9600   // Check PHI nodes in successors that expect a value to be available from this
9601   // block.
9602   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9603     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9604     if (!isa<PHINode>(SuccBB->begin())) continue;
9605     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9606 
9607     // If this terminator has multiple identical successors (common for
9608     // switches), only handle each succ once.
9609     if (!SuccsHandled.insert(SuccMBB).second)
9610       continue;
9611 
9612     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9613 
9614     // At this point we know that there is a 1-1 correspondence between LLVM PHI
9615     // nodes and Machine PHI nodes, but the incoming operands have not been
9616     // emitted yet.
9617     for (const PHINode &PN : SuccBB->phis()) {
9618       // Ignore dead phi's.
9619       if (PN.use_empty())
9620         continue;
9621 
9622       // Skip empty types
9623       if (PN.getType()->isEmptyTy())
9624         continue;
9625 
9626       unsigned Reg;
9627       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9628 
9629       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9630         unsigned &RegOut = ConstantsOut[C];
9631         if (RegOut == 0) {
9632           RegOut = FuncInfo.CreateRegs(C->getType());
9633           CopyValueToVirtualRegister(C, RegOut);
9634         }
9635         Reg = RegOut;
9636       } else {
9637         DenseMap<const Value *, unsigned>::iterator I =
9638           FuncInfo.ValueMap.find(PHIOp);
9639         if (I != FuncInfo.ValueMap.end())
9640           Reg = I->second;
9641         else {
9642           assert(isa<AllocaInst>(PHIOp) &&
9643                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9644                  "Didn't codegen value into a register!??");
9645           Reg = FuncInfo.CreateRegs(PHIOp->getType());
9646           CopyValueToVirtualRegister(PHIOp, Reg);
9647         }
9648       }
9649 
9650       // Remember that this register needs to added to the machine PHI node as
9651       // the input for this MBB.
9652       SmallVector<EVT, 4> ValueVTs;
9653       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9654       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9655       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9656         EVT VT = ValueVTs[vti];
9657         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9658         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9659           FuncInfo.PHINodesToUpdate.push_back(
9660               std::make_pair(&*MBBI++, Reg + i));
9661         Reg += NumRegisters;
9662       }
9663     }
9664   }
9665 
9666   ConstantsOut.clear();
9667 }
9668 
9669 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9670 /// is 0.
9671 MachineBasicBlock *
9672 SelectionDAGBuilder::StackProtectorDescriptor::
9673 AddSuccessorMBB(const BasicBlock *BB,
9674                 MachineBasicBlock *ParentMBB,
9675                 bool IsLikely,
9676                 MachineBasicBlock *SuccMBB) {
9677   // If SuccBB has not been created yet, create it.
9678   if (!SuccMBB) {
9679     MachineFunction *MF = ParentMBB->getParent();
9680     MachineFunction::iterator BBI(ParentMBB);
9681     SuccMBB = MF->CreateMachineBasicBlock(BB);
9682     MF->insert(++BBI, SuccMBB);
9683   }
9684   // Add it as a successor of ParentMBB.
9685   ParentMBB->addSuccessor(
9686       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9687   return SuccMBB;
9688 }
9689 
9690 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9691   MachineFunction::iterator I(MBB);
9692   if (++I == FuncInfo.MF->end())
9693     return nullptr;
9694   return &*I;
9695 }
9696 
9697 /// During lowering new call nodes can be created (such as memset, etc.).
9698 /// Those will become new roots of the current DAG, but complications arise
9699 /// when they are tail calls. In such cases, the call lowering will update
9700 /// the root, but the builder still needs to know that a tail call has been
9701 /// lowered in order to avoid generating an additional return.
9702 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
9703   // If the node is null, we do have a tail call.
9704   if (MaybeTC.getNode() != nullptr)
9705     DAG.setRoot(MaybeTC);
9706   else
9707     HasTailCall = true;
9708 }
9709 
9710 uint64_t
9711 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters,
9712                                        unsigned First, unsigned Last) const {
9713   assert(Last >= First);
9714   const APInt &LowCase = Clusters[First].Low->getValue();
9715   const APInt &HighCase = Clusters[Last].High->getValue();
9716   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
9717 
9718   // FIXME: A range of consecutive cases has 100% density, but only requires one
9719   // comparison to lower. We should discriminate against such consecutive ranges
9720   // in jump tables.
9721 
9722   return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
9723 }
9724 
9725 uint64_t SelectionDAGBuilder::getJumpTableNumCases(
9726     const SmallVectorImpl<unsigned> &TotalCases, unsigned First,
9727     unsigned Last) const {
9728   assert(Last >= First);
9729   assert(TotalCases[Last] >= TotalCases[First]);
9730   uint64_t NumCases =
9731       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
9732   return NumCases;
9733 }
9734 
9735 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
9736                                          unsigned First, unsigned Last,
9737                                          const SwitchInst *SI,
9738                                          MachineBasicBlock *DefaultMBB,
9739                                          CaseCluster &JTCluster) {
9740   assert(First <= Last);
9741 
9742   auto Prob = BranchProbability::getZero();
9743   unsigned NumCmps = 0;
9744   std::vector<MachineBasicBlock*> Table;
9745   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
9746 
9747   // Initialize probabilities in JTProbs.
9748   for (unsigned I = First; I <= Last; ++I)
9749     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
9750 
9751   for (unsigned I = First; I <= Last; ++I) {
9752     assert(Clusters[I].Kind == CC_Range);
9753     Prob += Clusters[I].Prob;
9754     const APInt &Low = Clusters[I].Low->getValue();
9755     const APInt &High = Clusters[I].High->getValue();
9756     NumCmps += (Low == High) ? 1 : 2;
9757     if (I != First) {
9758       // Fill the gap between this and the previous cluster.
9759       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
9760       assert(PreviousHigh.slt(Low));
9761       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
9762       for (uint64_t J = 0; J < Gap; J++)
9763         Table.push_back(DefaultMBB);
9764     }
9765     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
9766     for (uint64_t J = 0; J < ClusterSize; ++J)
9767       Table.push_back(Clusters[I].MBB);
9768     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
9769   }
9770 
9771   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9772   unsigned NumDests = JTProbs.size();
9773   if (TLI.isSuitableForBitTests(
9774           NumDests, NumCmps, Clusters[First].Low->getValue(),
9775           Clusters[Last].High->getValue(), DAG.getDataLayout())) {
9776     // Clusters[First..Last] should be lowered as bit tests instead.
9777     return false;
9778   }
9779 
9780   // Create the MBB that will load from and jump through the table.
9781   // Note: We create it here, but it's not inserted into the function yet.
9782   MachineFunction *CurMF = FuncInfo.MF;
9783   MachineBasicBlock *JumpTableMBB =
9784       CurMF->CreateMachineBasicBlock(SI->getParent());
9785 
9786   // Add successors. Note: use table order for determinism.
9787   SmallPtrSet<MachineBasicBlock *, 8> Done;
9788   for (MachineBasicBlock *Succ : Table) {
9789     if (Done.count(Succ))
9790       continue;
9791     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
9792     Done.insert(Succ);
9793   }
9794   JumpTableMBB->normalizeSuccProbs();
9795 
9796   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
9797                      ->createJumpTableIndex(Table);
9798 
9799   // Set up the jump table info.
9800   bool UnreachableDefault =
9801       isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
9802   bool OmitRangeCheck = UnreachableDefault;
9803   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
9804   JumpTableHeader JTH(Clusters[First].Low->getValue(),
9805                       Clusters[Last].High->getValue(), SI->getCondition(),
9806                       nullptr, false, OmitRangeCheck);
9807   JTCases.emplace_back(std::move(JTH), std::move(JT));
9808 
9809   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
9810                                      JTCases.size() - 1, Prob);
9811   return true;
9812 }
9813 
9814 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
9815                                          const SwitchInst *SI,
9816                                          MachineBasicBlock *DefaultMBB) {
9817 #ifndef NDEBUG
9818   // Clusters must be non-empty, sorted, and only contain Range clusters.
9819   assert(!Clusters.empty());
9820   for (CaseCluster &C : Clusters)
9821     assert(C.Kind == CC_Range);
9822   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
9823     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
9824 #endif
9825 
9826   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9827   if (!TLI.areJTsAllowed(SI->getParent()->getParent()))
9828     return;
9829 
9830   const int64_t N = Clusters.size();
9831   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
9832   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
9833 
9834   if (N < 2 || N < MinJumpTableEntries)
9835     return;
9836 
9837   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
9838   SmallVector<unsigned, 8> TotalCases(N);
9839   for (unsigned i = 0; i < N; ++i) {
9840     const APInt &Hi = Clusters[i].High->getValue();
9841     const APInt &Lo = Clusters[i].Low->getValue();
9842     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
9843     if (i != 0)
9844       TotalCases[i] += TotalCases[i - 1];
9845   }
9846 
9847   // Cheap case: the whole range may be suitable for jump table.
9848   uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
9849   uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
9850   assert(NumCases < UINT64_MAX / 100);
9851   assert(Range >= NumCases);
9852   if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9853     CaseCluster JTCluster;
9854     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
9855       Clusters[0] = JTCluster;
9856       Clusters.resize(1);
9857       return;
9858     }
9859   }
9860 
9861   // The algorithm below is not suitable for -O0.
9862   if (TM.getOptLevel() == CodeGenOpt::None)
9863     return;
9864 
9865   // Split Clusters into minimum number of dense partitions. The algorithm uses
9866   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
9867   // for the Case Statement'" (1994), but builds the MinPartitions array in
9868   // reverse order to make it easier to reconstruct the partitions in ascending
9869   // order. In the choice between two optimal partitionings, it picks the one
9870   // which yields more jump tables.
9871 
9872   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9873   SmallVector<unsigned, 8> MinPartitions(N);
9874   // LastElement[i] is the last element of the partition starting at i.
9875   SmallVector<unsigned, 8> LastElement(N);
9876   // PartitionsScore[i] is used to break ties when choosing between two
9877   // partitionings resulting in the same number of partitions.
9878   SmallVector<unsigned, 8> PartitionsScore(N);
9879   // For PartitionsScore, a small number of comparisons is considered as good as
9880   // a jump table and a single comparison is considered better than a jump
9881   // table.
9882   enum PartitionScores : unsigned {
9883     NoTable = 0,
9884     Table = 1,
9885     FewCases = 1,
9886     SingleCase = 2
9887   };
9888 
9889   // Base case: There is only one way to partition Clusters[N-1].
9890   MinPartitions[N - 1] = 1;
9891   LastElement[N - 1] = N - 1;
9892   PartitionsScore[N - 1] = PartitionScores::SingleCase;
9893 
9894   // Note: loop indexes are signed to avoid underflow.
9895   for (int64_t i = N - 2; i >= 0; i--) {
9896     // Find optimal partitioning of Clusters[i..N-1].
9897     // Baseline: Put Clusters[i] into a partition on its own.
9898     MinPartitions[i] = MinPartitions[i + 1] + 1;
9899     LastElement[i] = i;
9900     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
9901 
9902     // Search for a solution that results in fewer partitions.
9903     for (int64_t j = N - 1; j > i; j--) {
9904       // Try building a partition from Clusters[i..j].
9905       uint64_t Range = getJumpTableRange(Clusters, i, j);
9906       uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j);
9907       assert(NumCases < UINT64_MAX / 100);
9908       assert(Range >= NumCases);
9909       if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9910         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9911         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
9912         int64_t NumEntries = j - i + 1;
9913 
9914         if (NumEntries == 1)
9915           Score += PartitionScores::SingleCase;
9916         else if (NumEntries <= SmallNumberOfEntries)
9917           Score += PartitionScores::FewCases;
9918         else if (NumEntries >= MinJumpTableEntries)
9919           Score += PartitionScores::Table;
9920 
9921         // If this leads to fewer partitions, or to the same number of
9922         // partitions with better score, it is a better partitioning.
9923         if (NumPartitions < MinPartitions[i] ||
9924             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
9925           MinPartitions[i] = NumPartitions;
9926           LastElement[i] = j;
9927           PartitionsScore[i] = Score;
9928         }
9929       }
9930     }
9931   }
9932 
9933   // Iterate over the partitions, replacing some with jump tables in-place.
9934   unsigned DstIndex = 0;
9935   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9936     Last = LastElement[First];
9937     assert(Last >= First);
9938     assert(DstIndex <= First);
9939     unsigned NumClusters = Last - First + 1;
9940 
9941     CaseCluster JTCluster;
9942     if (NumClusters >= MinJumpTableEntries &&
9943         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
9944       Clusters[DstIndex++] = JTCluster;
9945     } else {
9946       for (unsigned I = First; I <= Last; ++I)
9947         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
9948     }
9949   }
9950   Clusters.resize(DstIndex);
9951 }
9952 
9953 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
9954                                         unsigned First, unsigned Last,
9955                                         const SwitchInst *SI,
9956                                         CaseCluster &BTCluster) {
9957   assert(First <= Last);
9958   if (First == Last)
9959     return false;
9960 
9961   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9962   unsigned NumCmps = 0;
9963   for (int64_t I = First; I <= Last; ++I) {
9964     assert(Clusters[I].Kind == CC_Range);
9965     Dests.set(Clusters[I].MBB->getNumber());
9966     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
9967   }
9968   unsigned NumDests = Dests.count();
9969 
9970   APInt Low = Clusters[First].Low->getValue();
9971   APInt High = Clusters[Last].High->getValue();
9972   assert(Low.slt(High));
9973 
9974   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9975   const DataLayout &DL = DAG.getDataLayout();
9976   if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL))
9977     return false;
9978 
9979   APInt LowBound;
9980   APInt CmpRange;
9981 
9982   const int BitWidth = TLI.getPointerTy(DL).getSizeInBits();
9983   assert(TLI.rangeFitsInWord(Low, High, DL) &&
9984          "Case range must fit in bit mask!");
9985 
9986   // Check if the clusters cover a contiguous range such that no value in the
9987   // range will jump to the default statement.
9988   bool ContiguousRange = true;
9989   for (int64_t I = First + 1; I <= Last; ++I) {
9990     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
9991       ContiguousRange = false;
9992       break;
9993     }
9994   }
9995 
9996   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
9997     // Optimize the case where all the case values fit in a word without having
9998     // to subtract minValue. In this case, we can optimize away the subtraction.
9999     LowBound = APInt::getNullValue(Low.getBitWidth());
10000     CmpRange = High;
10001     ContiguousRange = false;
10002   } else {
10003     LowBound = Low;
10004     CmpRange = High - Low;
10005   }
10006 
10007   CaseBitsVector CBV;
10008   auto TotalProb = BranchProbability::getZero();
10009   for (unsigned i = First; i <= Last; ++i) {
10010     // Find the CaseBits for this destination.
10011     unsigned j;
10012     for (j = 0; j < CBV.size(); ++j)
10013       if (CBV[j].BB == Clusters[i].MBB)
10014         break;
10015     if (j == CBV.size())
10016       CBV.push_back(
10017           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
10018     CaseBits *CB = &CBV[j];
10019 
10020     // Update Mask, Bits and ExtraProb.
10021     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
10022     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
10023     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
10024     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
10025     CB->Bits += Hi - Lo + 1;
10026     CB->ExtraProb += Clusters[i].Prob;
10027     TotalProb += Clusters[i].Prob;
10028   }
10029 
10030   BitTestInfo BTI;
10031   llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) {
10032     // Sort by probability first, number of bits second, bit mask third.
10033     if (a.ExtraProb != b.ExtraProb)
10034       return a.ExtraProb > b.ExtraProb;
10035     if (a.Bits != b.Bits)
10036       return a.Bits > b.Bits;
10037     return a.Mask < b.Mask;
10038   });
10039 
10040   for (auto &CB : CBV) {
10041     MachineBasicBlock *BitTestBB =
10042         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
10043     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
10044   }
10045   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
10046                             SI->getCondition(), -1U, MVT::Other, false,
10047                             ContiguousRange, nullptr, nullptr, std::move(BTI),
10048                             TotalProb);
10049 
10050   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
10051                                     BitTestCases.size() - 1, TotalProb);
10052   return true;
10053 }
10054 
10055 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
10056                                               const SwitchInst *SI) {
10057 // Partition Clusters into as few subsets as possible, where each subset has a
10058 // range that fits in a machine word and has <= 3 unique destinations.
10059 
10060 #ifndef NDEBUG
10061   // Clusters must be sorted and contain Range or JumpTable clusters.
10062   assert(!Clusters.empty());
10063   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
10064   for (const CaseCluster &C : Clusters)
10065     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
10066   for (unsigned i = 1; i < Clusters.size(); ++i)
10067     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
10068 #endif
10069 
10070   // The algorithm below is not suitable for -O0.
10071   if (TM.getOptLevel() == CodeGenOpt::None)
10072     return;
10073 
10074   // If target does not have legal shift left, do not emit bit tests at all.
10075   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10076   const DataLayout &DL = DAG.getDataLayout();
10077 
10078   EVT PTy = TLI.getPointerTy(DL);
10079   if (!TLI.isOperationLegal(ISD::SHL, PTy))
10080     return;
10081 
10082   int BitWidth = PTy.getSizeInBits();
10083   const int64_t N = Clusters.size();
10084 
10085   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
10086   SmallVector<unsigned, 8> MinPartitions(N);
10087   // LastElement[i] is the last element of the partition starting at i.
10088   SmallVector<unsigned, 8> LastElement(N);
10089 
10090   // FIXME: This might not be the best algorithm for finding bit test clusters.
10091 
10092   // Base case: There is only one way to partition Clusters[N-1].
10093   MinPartitions[N - 1] = 1;
10094   LastElement[N - 1] = N - 1;
10095 
10096   // Note: loop indexes are signed to avoid underflow.
10097   for (int64_t i = N - 2; i >= 0; --i) {
10098     // Find optimal partitioning of Clusters[i..N-1].
10099     // Baseline: Put Clusters[i] into a partition on its own.
10100     MinPartitions[i] = MinPartitions[i + 1] + 1;
10101     LastElement[i] = i;
10102 
10103     // Search for a solution that results in fewer partitions.
10104     // Note: the search is limited by BitWidth, reducing time complexity.
10105     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
10106       // Try building a partition from Clusters[i..j].
10107 
10108       // Check the range.
10109       if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(),
10110                                Clusters[j].High->getValue(), DL))
10111         continue;
10112 
10113       // Check nbr of destinations and cluster types.
10114       // FIXME: This works, but doesn't seem very efficient.
10115       bool RangesOnly = true;
10116       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
10117       for (int64_t k = i; k <= j; k++) {
10118         if (Clusters[k].Kind != CC_Range) {
10119           RangesOnly = false;
10120           break;
10121         }
10122         Dests.set(Clusters[k].MBB->getNumber());
10123       }
10124       if (!RangesOnly || Dests.count() > 3)
10125         break;
10126 
10127       // Check if it's a better partition.
10128       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
10129       if (NumPartitions < MinPartitions[i]) {
10130         // Found a better partition.
10131         MinPartitions[i] = NumPartitions;
10132         LastElement[i] = j;
10133       }
10134     }
10135   }
10136 
10137   // Iterate over the partitions, replacing with bit-test clusters in-place.
10138   unsigned DstIndex = 0;
10139   for (unsigned First = 0, Last; First < N; First = Last + 1) {
10140     Last = LastElement[First];
10141     assert(First <= Last);
10142     assert(DstIndex <= First);
10143 
10144     CaseCluster BitTestCluster;
10145     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
10146       Clusters[DstIndex++] = BitTestCluster;
10147     } else {
10148       size_t NumClusters = Last - First + 1;
10149       std::memmove(&Clusters[DstIndex], &Clusters[First],
10150                    sizeof(Clusters[0]) * NumClusters);
10151       DstIndex += NumClusters;
10152     }
10153   }
10154   Clusters.resize(DstIndex);
10155 }
10156 
10157 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10158                                         MachineBasicBlock *SwitchMBB,
10159                                         MachineBasicBlock *DefaultMBB) {
10160   MachineFunction *CurMF = FuncInfo.MF;
10161   MachineBasicBlock *NextMBB = nullptr;
10162   MachineFunction::iterator BBI(W.MBB);
10163   if (++BBI != FuncInfo.MF->end())
10164     NextMBB = &*BBI;
10165 
10166   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10167 
10168   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10169 
10170   if (Size == 2 && W.MBB == SwitchMBB) {
10171     // If any two of the cases has the same destination, and if one value
10172     // is the same as the other, but has one bit unset that the other has set,
10173     // use bit manipulation to do two compares at once.  For example:
10174     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10175     // TODO: This could be extended to merge any 2 cases in switches with 3
10176     // cases.
10177     // TODO: Handle cases where W.CaseBB != SwitchBB.
10178     CaseCluster &Small = *W.FirstCluster;
10179     CaseCluster &Big = *W.LastCluster;
10180 
10181     if (Small.Low == Small.High && Big.Low == Big.High &&
10182         Small.MBB == Big.MBB) {
10183       const APInt &SmallValue = Small.Low->getValue();
10184       const APInt &BigValue = Big.Low->getValue();
10185 
10186       // Check that there is only one bit different.
10187       APInt CommonBit = BigValue ^ SmallValue;
10188       if (CommonBit.isPowerOf2()) {
10189         SDValue CondLHS = getValue(Cond);
10190         EVT VT = CondLHS.getValueType();
10191         SDLoc DL = getCurSDLoc();
10192 
10193         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10194                                  DAG.getConstant(CommonBit, DL, VT));
10195         SDValue Cond = DAG.getSetCC(
10196             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10197             ISD::SETEQ);
10198 
10199         // Update successor info.
10200         // Both Small and Big will jump to Small.BB, so we sum up the
10201         // probabilities.
10202         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10203         if (BPI)
10204           addSuccessorWithProb(
10205               SwitchMBB, DefaultMBB,
10206               // The default destination is the first successor in IR.
10207               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10208         else
10209           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10210 
10211         // Insert the true branch.
10212         SDValue BrCond =
10213             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10214                         DAG.getBasicBlock(Small.MBB));
10215         // Insert the false branch.
10216         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10217                              DAG.getBasicBlock(DefaultMBB));
10218 
10219         DAG.setRoot(BrCond);
10220         return;
10221       }
10222     }
10223   }
10224 
10225   if (TM.getOptLevel() != CodeGenOpt::None) {
10226     // Here, we order cases by probability so the most likely case will be
10227     // checked first. However, two clusters can have the same probability in
10228     // which case their relative ordering is non-deterministic. So we use Low
10229     // as a tie-breaker as clusters are guaranteed to never overlap.
10230     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10231                [](const CaseCluster &a, const CaseCluster &b) {
10232       return a.Prob != b.Prob ?
10233              a.Prob > b.Prob :
10234              a.Low->getValue().slt(b.Low->getValue());
10235     });
10236 
10237     // Rearrange the case blocks so that the last one falls through if possible
10238     // without changing the order of probabilities.
10239     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10240       --I;
10241       if (I->Prob > W.LastCluster->Prob)
10242         break;
10243       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10244         std::swap(*I, *W.LastCluster);
10245         break;
10246       }
10247     }
10248   }
10249 
10250   // Compute total probability.
10251   BranchProbability DefaultProb = W.DefaultProb;
10252   BranchProbability UnhandledProbs = DefaultProb;
10253   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10254     UnhandledProbs += I->Prob;
10255 
10256   MachineBasicBlock *CurMBB = W.MBB;
10257   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10258     MachineBasicBlock *Fallthrough;
10259     if (I == W.LastCluster) {
10260       // For the last cluster, fall through to the default destination.
10261       Fallthrough = DefaultMBB;
10262     } else {
10263       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10264       CurMF->insert(BBI, Fallthrough);
10265       // Put Cond in a virtual register to make it available from the new blocks.
10266       ExportFromCurrentBlock(Cond);
10267     }
10268     UnhandledProbs -= I->Prob;
10269 
10270     switch (I->Kind) {
10271       case CC_JumpTable: {
10272         // FIXME: Optimize away range check based on pivot comparisons.
10273         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
10274         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
10275 
10276         // The jump block hasn't been inserted yet; insert it here.
10277         MachineBasicBlock *JumpMBB = JT->MBB;
10278         CurMF->insert(BBI, JumpMBB);
10279 
10280         auto JumpProb = I->Prob;
10281         auto FallthroughProb = UnhandledProbs;
10282 
10283         // If the default statement is a target of the jump table, we evenly
10284         // distribute the default probability to successors of CurMBB. Also
10285         // update the probability on the edge from JumpMBB to Fallthrough.
10286         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10287                                               SE = JumpMBB->succ_end();
10288              SI != SE; ++SI) {
10289           if (*SI == DefaultMBB) {
10290             JumpProb += DefaultProb / 2;
10291             FallthroughProb -= DefaultProb / 2;
10292             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10293             JumpMBB->normalizeSuccProbs();
10294             break;
10295           }
10296         }
10297 
10298         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10299         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10300         CurMBB->normalizeSuccProbs();
10301 
10302         // The jump table header will be inserted in our current block, do the
10303         // range check, and fall through to our fallthrough block.
10304         JTH->HeaderBB = CurMBB;
10305         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10306 
10307         // If we're in the right place, emit the jump table header right now.
10308         if (CurMBB == SwitchMBB) {
10309           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10310           JTH->Emitted = true;
10311         }
10312         break;
10313       }
10314       case CC_BitTests: {
10315         // FIXME: Optimize away range check based on pivot comparisons.
10316         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
10317 
10318         // The bit test blocks haven't been inserted yet; insert them here.
10319         for (BitTestCase &BTC : BTB->Cases)
10320           CurMF->insert(BBI, BTC.ThisBB);
10321 
10322         // Fill in fields of the BitTestBlock.
10323         BTB->Parent = CurMBB;
10324         BTB->Default = Fallthrough;
10325 
10326         BTB->DefaultProb = UnhandledProbs;
10327         // If the cases in bit test don't form a contiguous range, we evenly
10328         // distribute the probability on the edge to Fallthrough to two
10329         // successors of CurMBB.
10330         if (!BTB->ContiguousRange) {
10331           BTB->Prob += DefaultProb / 2;
10332           BTB->DefaultProb -= DefaultProb / 2;
10333         }
10334 
10335         // If we're in the right place, emit the bit test header right now.
10336         if (CurMBB == SwitchMBB) {
10337           visitBitTestHeader(*BTB, SwitchMBB);
10338           BTB->Emitted = true;
10339         }
10340         break;
10341       }
10342       case CC_Range: {
10343         const Value *RHS, *LHS, *MHS;
10344         ISD::CondCode CC;
10345         if (I->Low == I->High) {
10346           // Check Cond == I->Low.
10347           CC = ISD::SETEQ;
10348           LHS = Cond;
10349           RHS=I->Low;
10350           MHS = nullptr;
10351         } else {
10352           // Check I->Low <= Cond <= I->High.
10353           CC = ISD::SETLE;
10354           LHS = I->Low;
10355           MHS = Cond;
10356           RHS = I->High;
10357         }
10358 
10359         // The false probability is the sum of all unhandled cases.
10360         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10361                      getCurSDLoc(), I->Prob, UnhandledProbs);
10362 
10363         if (CurMBB == SwitchMBB)
10364           visitSwitchCase(CB, SwitchMBB);
10365         else
10366           SwitchCases.push_back(CB);
10367 
10368         break;
10369       }
10370     }
10371     CurMBB = Fallthrough;
10372   }
10373 }
10374 
10375 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10376                                               CaseClusterIt First,
10377                                               CaseClusterIt Last) {
10378   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10379     if (X.Prob != CC.Prob)
10380       return X.Prob > CC.Prob;
10381 
10382     // Ties are broken by comparing the case value.
10383     return X.Low->getValue().slt(CC.Low->getValue());
10384   });
10385 }
10386 
10387 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10388                                         const SwitchWorkListItem &W,
10389                                         Value *Cond,
10390                                         MachineBasicBlock *SwitchMBB) {
10391   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10392          "Clusters not sorted?");
10393 
10394   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10395 
10396   // Balance the tree based on branch probabilities to create a near-optimal (in
10397   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10398   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10399   CaseClusterIt LastLeft = W.FirstCluster;
10400   CaseClusterIt FirstRight = W.LastCluster;
10401   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10402   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10403 
10404   // Move LastLeft and FirstRight towards each other from opposite directions to
10405   // find a partitioning of the clusters which balances the probability on both
10406   // sides. If LeftProb and RightProb are equal, alternate which side is
10407   // taken to ensure 0-probability nodes are distributed evenly.
10408   unsigned I = 0;
10409   while (LastLeft + 1 < FirstRight) {
10410     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10411       LeftProb += (++LastLeft)->Prob;
10412     else
10413       RightProb += (--FirstRight)->Prob;
10414     I++;
10415   }
10416 
10417   while (true) {
10418     // Our binary search tree differs from a typical BST in that ours can have up
10419     // to three values in each leaf. The pivot selection above doesn't take that
10420     // into account, which means the tree might require more nodes and be less
10421     // efficient. We compensate for this here.
10422 
10423     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10424     unsigned NumRight = W.LastCluster - FirstRight + 1;
10425 
10426     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10427       // If one side has less than 3 clusters, and the other has more than 3,
10428       // consider taking a cluster from the other side.
10429 
10430       if (NumLeft < NumRight) {
10431         // Consider moving the first cluster on the right to the left side.
10432         CaseCluster &CC = *FirstRight;
10433         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10434         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10435         if (LeftSideRank <= RightSideRank) {
10436           // Moving the cluster to the left does not demote it.
10437           ++LastLeft;
10438           ++FirstRight;
10439           continue;
10440         }
10441       } else {
10442         assert(NumRight < NumLeft);
10443         // Consider moving the last element on the left to the right side.
10444         CaseCluster &CC = *LastLeft;
10445         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10446         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10447         if (RightSideRank <= LeftSideRank) {
10448           // Moving the cluster to the right does not demot it.
10449           --LastLeft;
10450           --FirstRight;
10451           continue;
10452         }
10453       }
10454     }
10455     break;
10456   }
10457 
10458   assert(LastLeft + 1 == FirstRight);
10459   assert(LastLeft >= W.FirstCluster);
10460   assert(FirstRight <= W.LastCluster);
10461 
10462   // Use the first element on the right as pivot since we will make less-than
10463   // comparisons against it.
10464   CaseClusterIt PivotCluster = FirstRight;
10465   assert(PivotCluster > W.FirstCluster);
10466   assert(PivotCluster <= W.LastCluster);
10467 
10468   CaseClusterIt FirstLeft = W.FirstCluster;
10469   CaseClusterIt LastRight = W.LastCluster;
10470 
10471   const ConstantInt *Pivot = PivotCluster->Low;
10472 
10473   // New blocks will be inserted immediately after the current one.
10474   MachineFunction::iterator BBI(W.MBB);
10475   ++BBI;
10476 
10477   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10478   // we can branch to its destination directly if it's squeezed exactly in
10479   // between the known lower bound and Pivot - 1.
10480   MachineBasicBlock *LeftMBB;
10481   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10482       FirstLeft->Low == W.GE &&
10483       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10484     LeftMBB = FirstLeft->MBB;
10485   } else {
10486     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10487     FuncInfo.MF->insert(BBI, LeftMBB);
10488     WorkList.push_back(
10489         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10490     // Put Cond in a virtual register to make it available from the new blocks.
10491     ExportFromCurrentBlock(Cond);
10492   }
10493 
10494   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10495   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10496   // directly if RHS.High equals the current upper bound.
10497   MachineBasicBlock *RightMBB;
10498   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10499       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10500     RightMBB = FirstRight->MBB;
10501   } else {
10502     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10503     FuncInfo.MF->insert(BBI, RightMBB);
10504     WorkList.push_back(
10505         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10506     // Put Cond in a virtual register to make it available from the new blocks.
10507     ExportFromCurrentBlock(Cond);
10508   }
10509 
10510   // Create the CaseBlock record that will be used to lower the branch.
10511   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10512                getCurSDLoc(), LeftProb, RightProb);
10513 
10514   if (W.MBB == SwitchMBB)
10515     visitSwitchCase(CB, SwitchMBB);
10516   else
10517     SwitchCases.push_back(CB);
10518 }
10519 
10520 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10521 // from the swith statement.
10522 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10523                                             BranchProbability PeeledCaseProb) {
10524   if (PeeledCaseProb == BranchProbability::getOne())
10525     return BranchProbability::getZero();
10526   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10527 
10528   uint32_t Numerator = CaseProb.getNumerator();
10529   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10530   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10531 }
10532 
10533 // Try to peel the top probability case if it exceeds the threshold.
10534 // Return current MachineBasicBlock for the switch statement if the peeling
10535 // does not occur.
10536 // If the peeling is performed, return the newly created MachineBasicBlock
10537 // for the peeled switch statement. Also update Clusters to remove the peeled
10538 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10539 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10540     const SwitchInst &SI, CaseClusterVector &Clusters,
10541     BranchProbability &PeeledCaseProb) {
10542   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10543   // Don't perform if there is only one cluster or optimizing for size.
10544   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10545       TM.getOptLevel() == CodeGenOpt::None ||
10546       SwitchMBB->getParent()->getFunction().optForMinSize())
10547     return SwitchMBB;
10548 
10549   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10550   unsigned PeeledCaseIndex = 0;
10551   bool SwitchPeeled = false;
10552   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10553     CaseCluster &CC = Clusters[Index];
10554     if (CC.Prob < TopCaseProb)
10555       continue;
10556     TopCaseProb = CC.Prob;
10557     PeeledCaseIndex = Index;
10558     SwitchPeeled = true;
10559   }
10560   if (!SwitchPeeled)
10561     return SwitchMBB;
10562 
10563   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10564                     << TopCaseProb << "\n");
10565 
10566   // Record the MBB for the peeled switch statement.
10567   MachineFunction::iterator BBI(SwitchMBB);
10568   ++BBI;
10569   MachineBasicBlock *PeeledSwitchMBB =
10570       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10571   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10572 
10573   ExportFromCurrentBlock(SI.getCondition());
10574   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10575   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10576                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10577   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10578 
10579   Clusters.erase(PeeledCaseIt);
10580   for (CaseCluster &CC : Clusters) {
10581     LLVM_DEBUG(
10582         dbgs() << "Scale the probablity for one cluster, before scaling: "
10583                << CC.Prob << "\n");
10584     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10585     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10586   }
10587   PeeledCaseProb = TopCaseProb;
10588   return PeeledSwitchMBB;
10589 }
10590 
10591 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10592   // Extract cases from the switch.
10593   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10594   CaseClusterVector Clusters;
10595   Clusters.reserve(SI.getNumCases());
10596   for (auto I : SI.cases()) {
10597     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10598     const ConstantInt *CaseVal = I.getCaseValue();
10599     BranchProbability Prob =
10600         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10601             : BranchProbability(1, SI.getNumCases() + 1);
10602     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10603   }
10604 
10605   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10606 
10607   // Cluster adjacent cases with the same destination. We do this at all
10608   // optimization levels because it's cheap to do and will make codegen faster
10609   // if there are many clusters.
10610   sortAndRangeify(Clusters);
10611 
10612   // The branch probablity of the peeled case.
10613   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10614   MachineBasicBlock *PeeledSwitchMBB =
10615       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10616 
10617   // If there is only the default destination, jump there directly.
10618   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10619   if (Clusters.empty()) {
10620     assert(PeeledSwitchMBB == SwitchMBB);
10621     SwitchMBB->addSuccessor(DefaultMBB);
10622     if (DefaultMBB != NextBlock(SwitchMBB)) {
10623       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10624                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10625     }
10626     return;
10627   }
10628 
10629   findJumpTables(Clusters, &SI, DefaultMBB);
10630   findBitTestClusters(Clusters, &SI);
10631 
10632   LLVM_DEBUG({
10633     dbgs() << "Case clusters: ";
10634     for (const CaseCluster &C : Clusters) {
10635       if (C.Kind == CC_JumpTable)
10636         dbgs() << "JT:";
10637       if (C.Kind == CC_BitTests)
10638         dbgs() << "BT:";
10639 
10640       C.Low->getValue().print(dbgs(), true);
10641       if (C.Low != C.High) {
10642         dbgs() << '-';
10643         C.High->getValue().print(dbgs(), true);
10644       }
10645       dbgs() << ' ';
10646     }
10647     dbgs() << '\n';
10648   });
10649 
10650   assert(!Clusters.empty());
10651   SwitchWorkList WorkList;
10652   CaseClusterIt First = Clusters.begin();
10653   CaseClusterIt Last = Clusters.end() - 1;
10654   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10655   // Scale the branchprobability for DefaultMBB if the peel occurs and
10656   // DefaultMBB is not replaced.
10657   if (PeeledCaseProb != BranchProbability::getZero() &&
10658       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10659     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10660   WorkList.push_back(
10661       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10662 
10663   while (!WorkList.empty()) {
10664     SwitchWorkListItem W = WorkList.back();
10665     WorkList.pop_back();
10666     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10667 
10668     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10669         !DefaultMBB->getParent()->getFunction().optForMinSize()) {
10670       // For optimized builds, lower large range as a balanced binary tree.
10671       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10672       continue;
10673     }
10674 
10675     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10676   }
10677 }
10678