1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/Analysis/VectorUtils.h" 32 #include "llvm/CodeGen/Analysis.h" 33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 34 #include "llvm/CodeGen/CodeGenCommonISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/ISDOpcodes.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 43 #include "llvm/CodeGen/MachineMemOperand.h" 44 #include "llvm/CodeGen/MachineModuleInfo.h" 45 #include "llvm/CodeGen/MachineOperand.h" 46 #include "llvm/CodeGen/MachineRegisterInfo.h" 47 #include "llvm/CodeGen/RuntimeLibcallUtil.h" 48 #include "llvm/CodeGen/SelectionDAG.h" 49 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 50 #include "llvm/CodeGen/StackMaps.h" 51 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 52 #include "llvm/CodeGen/TargetFrameLowering.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetOpcodes.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/TargetSubtargetInfo.h" 57 #include "llvm/CodeGen/WinEHFuncInfo.h" 58 #include "llvm/IR/Argument.h" 59 #include "llvm/IR/Attributes.h" 60 #include "llvm/IR/BasicBlock.h" 61 #include "llvm/IR/CFG.h" 62 #include "llvm/IR/CallingConv.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/ConstantRange.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DebugInfo.h" 68 #include "llvm/IR/DebugInfoMetadata.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/DiagnosticInfo.h" 71 #include "llvm/IR/EHPersonalities.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/GetElementPtrTypeIterator.h" 74 #include "llvm/IR/InlineAsm.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/IntrinsicsAArch64.h" 80 #include "llvm/IR/IntrinsicsAMDGPU.h" 81 #include "llvm/IR/IntrinsicsWebAssembly.h" 82 #include "llvm/IR/LLVMContext.h" 83 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Module.h" 86 #include "llvm/IR/Operator.h" 87 #include "llvm/IR/PatternMatch.h" 88 #include "llvm/IR/Statepoint.h" 89 #include "llvm/IR/Type.h" 90 #include "llvm/IR/User.h" 91 #include "llvm/IR/Value.h" 92 #include "llvm/MC/MCContext.h" 93 #include "llvm/Support/AtomicOrdering.h" 94 #include "llvm/Support/Casting.h" 95 #include "llvm/Support/CommandLine.h" 96 #include "llvm/Support/Compiler.h" 97 #include "llvm/Support/Debug.h" 98 #include "llvm/Support/InstructionCost.h" 99 #include "llvm/Support/MathExtras.h" 100 #include "llvm/Support/raw_ostream.h" 101 #include "llvm/Target/TargetIntrinsicInfo.h" 102 #include "llvm/Target/TargetMachine.h" 103 #include "llvm/Target/TargetOptions.h" 104 #include "llvm/TargetParser/Triple.h" 105 #include "llvm/Transforms/Utils/Local.h" 106 #include <cstddef> 107 #include <deque> 108 #include <iterator> 109 #include <limits> 110 #include <optional> 111 #include <tuple> 112 113 using namespace llvm; 114 using namespace PatternMatch; 115 using namespace SwitchCG; 116 117 #define DEBUG_TYPE "isel" 118 119 /// LimitFloatPrecision - Generate low-precision inline sequences for 120 /// some float libcalls (6, 8 or 12 bits). 121 static unsigned LimitFloatPrecision; 122 123 static cl::opt<bool> 124 InsertAssertAlign("insert-assert-align", cl::init(true), 125 cl::desc("Insert the experimental `assertalign` node."), 126 cl::ReallyHidden); 127 128 static cl::opt<unsigned, true> 129 LimitFPPrecision("limit-float-precision", 130 cl::desc("Generate low-precision inline sequences " 131 "for some float libcalls"), 132 cl::location(LimitFloatPrecision), cl::Hidden, 133 cl::init(0)); 134 135 static cl::opt<unsigned> SwitchPeelThreshold( 136 "switch-peel-threshold", cl::Hidden, cl::init(66), 137 cl::desc("Set the case probability threshold for peeling the case from a " 138 "switch statement. A value greater than 100 will void this " 139 "optimization")); 140 141 // Limit the width of DAG chains. This is important in general to prevent 142 // DAG-based analysis from blowing up. For example, alias analysis and 143 // load clustering may not complete in reasonable time. It is difficult to 144 // recognize and avoid this situation within each individual analysis, and 145 // future analyses are likely to have the same behavior. Limiting DAG width is 146 // the safe approach and will be especially important with global DAGs. 147 // 148 // MaxParallelChains default is arbitrarily high to avoid affecting 149 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 150 // sequence over this should have been converted to llvm.memcpy by the 151 // frontend. It is easy to induce this behavior with .ll code such as: 152 // %buffer = alloca [4096 x i8] 153 // %data = load [4096 x i8]* %argPtr 154 // store [4096 x i8] %data, [4096 x i8]* %buffer 155 static const unsigned MaxParallelChains = 64; 156 157 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 158 const SDValue *Parts, unsigned NumParts, 159 MVT PartVT, EVT ValueVT, const Value *V, 160 SDValue InChain, 161 std::optional<CallingConv::ID> CC); 162 163 /// getCopyFromParts - Create a value that contains the specified legal parts 164 /// combined into the value they represent. If the parts combine to a type 165 /// larger than ValueVT then AssertOp can be used to specify whether the extra 166 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 167 /// (ISD::AssertSext). 168 static SDValue 169 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, 170 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, 171 SDValue InChain, 172 std::optional<CallingConv::ID> CC = std::nullopt, 173 std::optional<ISD::NodeType> AssertOp = std::nullopt) { 174 // Let the target assemble the parts if it wants to 175 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 176 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 177 PartVT, ValueVT, CC)) 178 return Val; 179 180 if (ValueVT.isVector()) 181 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 182 InChain, CC); 183 184 assert(NumParts > 0 && "No parts to assemble!"); 185 SDValue Val = Parts[0]; 186 187 if (NumParts > 1) { 188 // Assemble the value from multiple parts. 189 if (ValueVT.isInteger()) { 190 unsigned PartBits = PartVT.getSizeInBits(); 191 unsigned ValueBits = ValueVT.getSizeInBits(); 192 193 // Assemble the power of 2 part. 194 unsigned RoundParts = llvm::bit_floor(NumParts); 195 unsigned RoundBits = PartBits * RoundParts; 196 EVT RoundVT = RoundBits == ValueBits ? 197 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 198 SDValue Lo, Hi; 199 200 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 201 202 if (RoundParts > 2) { 203 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V, 204 InChain); 205 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2, 206 PartVT, HalfVT, V, InChain); 207 } else { 208 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 209 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 210 } 211 212 if (DAG.getDataLayout().isBigEndian()) 213 std::swap(Lo, Hi); 214 215 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 216 217 if (RoundParts < NumParts) { 218 // Assemble the trailing non-power-of-2 part. 219 unsigned OddParts = NumParts - RoundParts; 220 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 221 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 222 OddVT, V, InChain, CC); 223 224 // Combine the round and odd parts. 225 Lo = Val; 226 if (DAG.getDataLayout().isBigEndian()) 227 std::swap(Lo, Hi); 228 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 229 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 230 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 231 DAG.getConstant(Lo.getValueSizeInBits(), DL, 232 TLI.getShiftAmountTy( 233 TotalVT, DAG.getDataLayout()))); 234 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 235 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 236 } 237 } else if (PartVT.isFloatingPoint()) { 238 // FP split into multiple FP parts (for ppcf128) 239 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 240 "Unexpected split"); 241 SDValue Lo, Hi; 242 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 243 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 244 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 245 std::swap(Lo, Hi); 246 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 247 } else { 248 // FP split into integer parts (soft fp) 249 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 250 !PartVT.isVector() && "Unexpected split"); 251 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 252 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, 253 InChain, CC); 254 } 255 } 256 257 // There is now one part, held in Val. Correct it to match ValueVT. 258 // PartEVT is the type of the register class that holds the value. 259 // ValueVT is the type of the inline asm operation. 260 EVT PartEVT = Val.getValueType(); 261 262 if (PartEVT == ValueVT) 263 return Val; 264 265 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 266 ValueVT.bitsLT(PartEVT)) { 267 // For an FP value in an integer part, we need to truncate to the right 268 // width first. 269 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 270 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 271 } 272 273 // Handle types that have the same size. 274 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 275 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 276 277 // Handle types with different sizes. 278 if (PartEVT.isInteger() && ValueVT.isInteger()) { 279 if (ValueVT.bitsLT(PartEVT)) { 280 // For a truncate, see if we have any information to 281 // indicate whether the truncated bits will always be 282 // zero or sign-extension. 283 if (AssertOp) 284 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 285 DAG.getValueType(ValueVT)); 286 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 287 } 288 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 289 } 290 291 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 292 // FP_ROUND's are always exact here. 293 if (ValueVT.bitsLT(Val.getValueType())) { 294 295 SDValue NoChange = 296 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 297 298 if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr( 299 llvm::Attribute::StrictFP)) { 300 return DAG.getNode(ISD::STRICT_FP_ROUND, DL, 301 DAG.getVTList(ValueVT, MVT::Other), InChain, Val, 302 NoChange); 303 } 304 305 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange); 306 } 307 308 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 309 } 310 311 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 312 // then truncating. 313 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 314 ValueVT.bitsLT(PartEVT)) { 315 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 316 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 317 } 318 319 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 320 } 321 322 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 323 const Twine &ErrMsg) { 324 const Instruction *I = dyn_cast_or_null<Instruction>(V); 325 if (!V) 326 return Ctx.emitError(ErrMsg); 327 328 const char *AsmError = ", possible invalid constraint for vector type"; 329 if (const CallInst *CI = dyn_cast<CallInst>(I)) 330 if (CI->isInlineAsm()) 331 return Ctx.emitError(I, ErrMsg + AsmError); 332 333 return Ctx.emitError(I, ErrMsg); 334 } 335 336 /// getCopyFromPartsVector - Create a value that contains the specified legal 337 /// parts combined into the value they represent. If the parts combine to a 338 /// type larger than ValueVT then AssertOp can be used to specify whether the 339 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 340 /// ValueVT (ISD::AssertSext). 341 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 342 const SDValue *Parts, unsigned NumParts, 343 MVT PartVT, EVT ValueVT, const Value *V, 344 SDValue InChain, 345 std::optional<CallingConv::ID> CallConv) { 346 assert(ValueVT.isVector() && "Not a vector value"); 347 assert(NumParts > 0 && "No parts to assemble!"); 348 const bool IsABIRegCopy = CallConv.has_value(); 349 350 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 351 SDValue Val = Parts[0]; 352 353 // Handle a multi-element vector. 354 if (NumParts > 1) { 355 EVT IntermediateVT; 356 MVT RegisterVT; 357 unsigned NumIntermediates; 358 unsigned NumRegs; 359 360 if (IsABIRegCopy) { 361 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 362 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 363 NumIntermediates, RegisterVT); 364 } else { 365 NumRegs = 366 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 367 NumIntermediates, RegisterVT); 368 } 369 370 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 371 NumParts = NumRegs; // Silence a compiler warning. 372 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 373 assert(RegisterVT.getSizeInBits() == 374 Parts[0].getSimpleValueType().getSizeInBits() && 375 "Part type sizes don't match!"); 376 377 // Assemble the parts into intermediate operands. 378 SmallVector<SDValue, 8> Ops(NumIntermediates); 379 if (NumIntermediates == NumParts) { 380 // If the register was not expanded, truncate or copy the value, 381 // as appropriate. 382 for (unsigned i = 0; i != NumParts; ++i) 383 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT, 384 V, InChain, CallConv); 385 } else if (NumParts > 0) { 386 // If the intermediate type was expanded, build the intermediate 387 // operands from the parts. 388 assert(NumParts % NumIntermediates == 0 && 389 "Must expand into a divisible number of parts!"); 390 unsigned Factor = NumParts / NumIntermediates; 391 for (unsigned i = 0; i != NumIntermediates; ++i) 392 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT, 393 IntermediateVT, V, InChain, CallConv); 394 } 395 396 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 397 // intermediate operands. 398 EVT BuiltVectorTy = 399 IntermediateVT.isVector() 400 ? EVT::getVectorVT( 401 *DAG.getContext(), IntermediateVT.getScalarType(), 402 IntermediateVT.getVectorElementCount() * NumParts) 403 : EVT::getVectorVT(*DAG.getContext(), 404 IntermediateVT.getScalarType(), 405 NumIntermediates); 406 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 407 : ISD::BUILD_VECTOR, 408 DL, BuiltVectorTy, Ops); 409 } 410 411 // There is now one part, held in Val. Correct it to match ValueVT. 412 EVT PartEVT = Val.getValueType(); 413 414 if (PartEVT == ValueVT) 415 return Val; 416 417 if (PartEVT.isVector()) { 418 // Vector/Vector bitcast. 419 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 420 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 421 422 // If the parts vector has more elements than the value vector, then we 423 // have a vector widening case (e.g. <2 x float> -> <4 x float>). 424 // Extract the elements we want. 425 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 426 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 427 ValueVT.getVectorElementCount().getKnownMinValue()) && 428 (PartEVT.getVectorElementCount().isScalable() == 429 ValueVT.getVectorElementCount().isScalable()) && 430 "Cannot narrow, it would be a lossy transformation"); 431 PartEVT = 432 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 433 ValueVT.getVectorElementCount()); 434 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 435 DAG.getVectorIdxConstant(0, DL)); 436 if (PartEVT == ValueVT) 437 return Val; 438 if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) 439 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 440 441 // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>). 442 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 443 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 444 } 445 446 // Promoted vector extract 447 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 448 } 449 450 // Trivial bitcast if the types are the same size and the destination 451 // vector type is legal. 452 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 453 TLI.isTypeLegal(ValueVT)) 454 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 455 456 if (ValueVT.getVectorNumElements() != 1) { 457 // Certain ABIs require that vectors are passed as integers. For vectors 458 // are the same size, this is an obvious bitcast. 459 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 460 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 461 } else if (ValueVT.bitsLT(PartEVT)) { 462 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 463 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 464 // Drop the extra bits. 465 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 466 return DAG.getBitcast(ValueVT, Val); 467 } 468 469 diagnosePossiblyInvalidConstraint( 470 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 471 return DAG.getUNDEF(ValueVT); 472 } 473 474 // Handle cases such as i8 -> <1 x i1> 475 EVT ValueSVT = ValueVT.getVectorElementType(); 476 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 477 unsigned ValueSize = ValueSVT.getSizeInBits(); 478 if (ValueSize == PartEVT.getSizeInBits()) { 479 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 480 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 481 // It's possible a scalar floating point type gets softened to integer and 482 // then promoted to a larger integer. If PartEVT is the larger integer 483 // we need to truncate it and then bitcast to the FP type. 484 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 485 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 486 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 487 Val = DAG.getBitcast(ValueSVT, Val); 488 } else { 489 Val = ValueVT.isFloatingPoint() 490 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 491 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 492 } 493 } 494 495 return DAG.getBuildVector(ValueVT, DL, Val); 496 } 497 498 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 499 SDValue Val, SDValue *Parts, unsigned NumParts, 500 MVT PartVT, const Value *V, 501 std::optional<CallingConv::ID> CallConv); 502 503 /// getCopyToParts - Create a series of nodes that contain the specified value 504 /// split into legal parts. If the parts contain more bits than Val, then, for 505 /// integers, ExtendKind can be used to specify how to generate the extra bits. 506 static void 507 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 508 unsigned NumParts, MVT PartVT, const Value *V, 509 std::optional<CallingConv::ID> CallConv = std::nullopt, 510 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 511 // Let the target split the parts if it wants to 512 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 513 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 514 CallConv)) 515 return; 516 EVT ValueVT = Val.getValueType(); 517 518 // Handle the vector case separately. 519 if (ValueVT.isVector()) 520 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 521 CallConv); 522 523 unsigned OrigNumParts = NumParts; 524 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 525 "Copying to an illegal type!"); 526 527 if (NumParts == 0) 528 return; 529 530 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 531 EVT PartEVT = PartVT; 532 if (PartEVT == ValueVT) { 533 assert(NumParts == 1 && "No-op copy with multiple parts!"); 534 Parts[0] = Val; 535 return; 536 } 537 538 unsigned PartBits = PartVT.getSizeInBits(); 539 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 540 // If the parts cover more bits than the value has, promote the value. 541 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 542 assert(NumParts == 1 && "Do not know what to promote to!"); 543 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 544 } else { 545 if (ValueVT.isFloatingPoint()) { 546 // FP values need to be bitcast, then extended if they are being put 547 // into a larger container. 548 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 549 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 550 } 551 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 552 ValueVT.isInteger() && 553 "Unknown mismatch!"); 554 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 555 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 556 if (PartVT == MVT::x86mmx) 557 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 558 } 559 } else if (PartBits == ValueVT.getSizeInBits()) { 560 // Different types of the same size. 561 assert(NumParts == 1 && PartEVT != ValueVT); 562 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 563 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 564 // If the parts cover less bits than value has, truncate the value. 565 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 566 ValueVT.isInteger() && 567 "Unknown mismatch!"); 568 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 569 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 570 if (PartVT == MVT::x86mmx) 571 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 572 } 573 574 // The value may have changed - recompute ValueVT. 575 ValueVT = Val.getValueType(); 576 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 577 "Failed to tile the value with PartVT!"); 578 579 if (NumParts == 1) { 580 if (PartEVT != ValueVT) { 581 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 582 "scalar-to-vector conversion failed"); 583 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 584 } 585 586 Parts[0] = Val; 587 return; 588 } 589 590 // Expand the value into multiple parts. 591 if (NumParts & (NumParts - 1)) { 592 // The number of parts is not a power of 2. Split off and copy the tail. 593 assert(PartVT.isInteger() && ValueVT.isInteger() && 594 "Do not know what to expand to!"); 595 unsigned RoundParts = llvm::bit_floor(NumParts); 596 unsigned RoundBits = RoundParts * PartBits; 597 unsigned OddParts = NumParts - RoundParts; 598 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 599 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 600 601 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 602 CallConv); 603 604 if (DAG.getDataLayout().isBigEndian()) 605 // The odd parts were reversed by getCopyToParts - unreverse them. 606 std::reverse(Parts + RoundParts, Parts + NumParts); 607 608 NumParts = RoundParts; 609 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 610 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 611 } 612 613 // The number of parts is a power of 2. Repeatedly bisect the value using 614 // EXTRACT_ELEMENT. 615 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 616 EVT::getIntegerVT(*DAG.getContext(), 617 ValueVT.getSizeInBits()), 618 Val); 619 620 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 621 for (unsigned i = 0; i < NumParts; i += StepSize) { 622 unsigned ThisBits = StepSize * PartBits / 2; 623 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 624 SDValue &Part0 = Parts[i]; 625 SDValue &Part1 = Parts[i+StepSize/2]; 626 627 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 628 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 629 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 630 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 631 632 if (ThisBits == PartBits && ThisVT != PartVT) { 633 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 634 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 635 } 636 } 637 } 638 639 if (DAG.getDataLayout().isBigEndian()) 640 std::reverse(Parts, Parts + OrigNumParts); 641 } 642 643 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 644 const SDLoc &DL, EVT PartVT) { 645 if (!PartVT.isVector()) 646 return SDValue(); 647 648 EVT ValueVT = Val.getValueType(); 649 EVT PartEVT = PartVT.getVectorElementType(); 650 EVT ValueEVT = ValueVT.getVectorElementType(); 651 ElementCount PartNumElts = PartVT.getVectorElementCount(); 652 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 653 654 // We only support widening vectors with equivalent element types and 655 // fixed/scalable properties. If a target needs to widen a fixed-length type 656 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 657 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 658 PartNumElts.isScalable() != ValueNumElts.isScalable()) 659 return SDValue(); 660 661 // Have a try for bf16 because some targets share its ABI with fp16. 662 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) { 663 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 664 "Cannot widen to illegal type"); 665 Val = DAG.getNode(ISD::BITCAST, DL, 666 ValueVT.changeVectorElementType(MVT::f16), Val); 667 } else if (PartEVT != ValueEVT) { 668 return SDValue(); 669 } 670 671 // Widening a scalable vector to another scalable vector is done by inserting 672 // the vector into a larger undef one. 673 if (PartNumElts.isScalable()) 674 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 675 Val, DAG.getVectorIdxConstant(0, DL)); 676 677 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 678 // undef elements. 679 SmallVector<SDValue, 16> Ops; 680 DAG.ExtractVectorElements(Val, Ops); 681 SDValue EltUndef = DAG.getUNDEF(PartEVT); 682 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 683 684 // FIXME: Use CONCAT for 2x -> 4x. 685 return DAG.getBuildVector(PartVT, DL, Ops); 686 } 687 688 /// getCopyToPartsVector - Create a series of nodes that contain the specified 689 /// value split into legal parts. 690 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 691 SDValue Val, SDValue *Parts, unsigned NumParts, 692 MVT PartVT, const Value *V, 693 std::optional<CallingConv::ID> CallConv) { 694 EVT ValueVT = Val.getValueType(); 695 assert(ValueVT.isVector() && "Not a vector"); 696 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 697 const bool IsABIRegCopy = CallConv.has_value(); 698 699 if (NumParts == 1) { 700 EVT PartEVT = PartVT; 701 if (PartEVT == ValueVT) { 702 // Nothing to do. 703 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 704 // Bitconvert vector->vector case. 705 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 706 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 707 Val = Widened; 708 } else if (PartVT.isVector() && 709 PartEVT.getVectorElementType().bitsGE( 710 ValueVT.getVectorElementType()) && 711 PartEVT.getVectorElementCount() == 712 ValueVT.getVectorElementCount()) { 713 714 // Promoted vector extract 715 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 716 } else if (PartEVT.isVector() && 717 PartEVT.getVectorElementType() != 718 ValueVT.getVectorElementType() && 719 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 720 TargetLowering::TypeWidenVector) { 721 // Combination of widening and promotion. 722 EVT WidenVT = 723 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 724 PartVT.getVectorElementCount()); 725 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 726 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 727 } else { 728 // Don't extract an integer from a float vector. This can happen if the 729 // FP type gets softened to integer and then promoted. The promotion 730 // prevents it from being picked up by the earlier bitcast case. 731 if (ValueVT.getVectorElementCount().isScalar() && 732 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 733 // If we reach this condition and PartVT is FP, this means that 734 // ValueVT is also FP and both have a different size, otherwise we 735 // would have bitcasted them. Producing an EXTRACT_VECTOR_ELT here 736 // would be invalid since that would mean the smaller FP type has to 737 // be extended to the larger one. 738 if (PartVT.isFloatingPoint()) { 739 Val = DAG.getBitcast(ValueVT.getScalarType(), Val); 740 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 741 } else 742 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 743 DAG.getVectorIdxConstant(0, DL)); 744 } else { 745 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 746 assert(PartVT.getFixedSizeInBits() > ValueSize && 747 "lossy conversion of vector to scalar type"); 748 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 749 Val = DAG.getBitcast(IntermediateType, Val); 750 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 751 } 752 } 753 754 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 755 Parts[0] = Val; 756 return; 757 } 758 759 // Handle a multi-element vector. 760 EVT IntermediateVT; 761 MVT RegisterVT; 762 unsigned NumIntermediates; 763 unsigned NumRegs; 764 if (IsABIRegCopy) { 765 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 766 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates, 767 RegisterVT); 768 } else { 769 NumRegs = 770 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 771 NumIntermediates, RegisterVT); 772 } 773 774 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 775 NumParts = NumRegs; // Silence a compiler warning. 776 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 777 778 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 779 "Mixing scalable and fixed vectors when copying in parts"); 780 781 std::optional<ElementCount> DestEltCnt; 782 783 if (IntermediateVT.isVector()) 784 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 785 else 786 DestEltCnt = ElementCount::getFixed(NumIntermediates); 787 788 EVT BuiltVectorTy = EVT::getVectorVT( 789 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 790 791 if (ValueVT == BuiltVectorTy) { 792 // Nothing to do. 793 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 794 // Bitconvert vector->vector case. 795 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 796 } else { 797 if (BuiltVectorTy.getVectorElementType().bitsGT( 798 ValueVT.getVectorElementType())) { 799 // Integer promotion. 800 ValueVT = EVT::getVectorVT(*DAG.getContext(), 801 BuiltVectorTy.getVectorElementType(), 802 ValueVT.getVectorElementCount()); 803 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 804 } 805 806 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 807 Val = Widened; 808 } 809 } 810 811 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 812 813 // Split the vector into intermediate operands. 814 SmallVector<SDValue, 8> Ops(NumIntermediates); 815 for (unsigned i = 0; i != NumIntermediates; ++i) { 816 if (IntermediateVT.isVector()) { 817 // This does something sensible for scalable vectors - see the 818 // definition of EXTRACT_SUBVECTOR for further details. 819 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 820 Ops[i] = 821 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 822 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 823 } else { 824 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 825 DAG.getVectorIdxConstant(i, DL)); 826 } 827 } 828 829 // Split the intermediate operands into legal parts. 830 if (NumParts == NumIntermediates) { 831 // If the register was not expanded, promote or copy the value, 832 // as appropriate. 833 for (unsigned i = 0; i != NumParts; ++i) 834 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 835 } else if (NumParts > 0) { 836 // If the intermediate type was expanded, split each the value into 837 // legal parts. 838 assert(NumIntermediates != 0 && "division by zero"); 839 assert(NumParts % NumIntermediates == 0 && 840 "Must expand into a divisible number of parts!"); 841 unsigned Factor = NumParts / NumIntermediates; 842 for (unsigned i = 0; i != NumIntermediates; ++i) 843 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 844 CallConv); 845 } 846 } 847 848 RegsForValue::RegsForValue(const SmallVector<Register, 4> ®s, MVT regvt, 849 EVT valuevt, std::optional<CallingConv::ID> CC) 850 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 851 RegCount(1, regs.size()), CallConv(CC) {} 852 853 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 854 const DataLayout &DL, Register Reg, Type *Ty, 855 std::optional<CallingConv::ID> CC) { 856 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 857 858 CallConv = CC; 859 860 for (EVT ValueVT : ValueVTs) { 861 unsigned NumRegs = 862 isABIMangled() 863 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT) 864 : TLI.getNumRegisters(Context, ValueVT); 865 MVT RegisterVT = 866 isABIMangled() 867 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT) 868 : TLI.getRegisterType(Context, ValueVT); 869 for (unsigned i = 0; i != NumRegs; ++i) 870 Regs.push_back(Reg + i); 871 RegVTs.push_back(RegisterVT); 872 RegCount.push_back(NumRegs); 873 Reg = Reg.id() + NumRegs; 874 } 875 } 876 877 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 878 FunctionLoweringInfo &FuncInfo, 879 const SDLoc &dl, SDValue &Chain, 880 SDValue *Glue, const Value *V) const { 881 // A Value with type {} or [0 x %t] needs no registers. 882 if (ValueVTs.empty()) 883 return SDValue(); 884 885 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 886 887 // Assemble the legal parts into the final values. 888 SmallVector<SDValue, 4> Values(ValueVTs.size()); 889 SmallVector<SDValue, 8> Parts; 890 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 891 // Copy the legal parts from the registers. 892 EVT ValueVT = ValueVTs[Value]; 893 unsigned NumRegs = RegCount[Value]; 894 MVT RegisterVT = isABIMangled() 895 ? TLI.getRegisterTypeForCallingConv( 896 *DAG.getContext(), *CallConv, RegVTs[Value]) 897 : RegVTs[Value]; 898 899 Parts.resize(NumRegs); 900 for (unsigned i = 0; i != NumRegs; ++i) { 901 SDValue P; 902 if (!Glue) { 903 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 904 } else { 905 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue); 906 *Glue = P.getValue(2); 907 } 908 909 Chain = P.getValue(1); 910 Parts[i] = P; 911 912 // If the source register was virtual and if we know something about it, 913 // add an assert node. 914 if (!Register::isVirtualRegister(Regs[Part + i]) || 915 !RegisterVT.isInteger()) 916 continue; 917 918 const FunctionLoweringInfo::LiveOutInfo *LOI = 919 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 920 if (!LOI) 921 continue; 922 923 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 924 unsigned NumSignBits = LOI->NumSignBits; 925 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 926 927 if (NumZeroBits == RegSize) { 928 // The current value is a zero. 929 // Explicitly express that as it would be easier for 930 // optimizations to kick in. 931 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 932 continue; 933 } 934 935 // FIXME: We capture more information than the dag can represent. For 936 // now, just use the tightest assertzext/assertsext possible. 937 bool isSExt; 938 EVT FromVT(MVT::Other); 939 if (NumZeroBits) { 940 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 941 isSExt = false; 942 } else if (NumSignBits > 1) { 943 FromVT = 944 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 945 isSExt = true; 946 } else { 947 continue; 948 } 949 // Add an assertion node. 950 assert(FromVT != MVT::Other); 951 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 952 RegisterVT, P, DAG.getValueType(FromVT)); 953 } 954 955 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 956 RegisterVT, ValueVT, V, Chain, CallConv); 957 Part += NumRegs; 958 Parts.clear(); 959 } 960 961 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 962 } 963 964 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 965 const SDLoc &dl, SDValue &Chain, SDValue *Glue, 966 const Value *V, 967 ISD::NodeType PreferredExtendType) const { 968 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 969 ISD::NodeType ExtendKind = PreferredExtendType; 970 971 // Get the list of the values's legal parts. 972 unsigned NumRegs = Regs.size(); 973 SmallVector<SDValue, 8> Parts(NumRegs); 974 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 975 unsigned NumParts = RegCount[Value]; 976 977 MVT RegisterVT = isABIMangled() 978 ? TLI.getRegisterTypeForCallingConv( 979 *DAG.getContext(), *CallConv, RegVTs[Value]) 980 : RegVTs[Value]; 981 982 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 983 ExtendKind = ISD::ZERO_EXTEND; 984 985 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 986 NumParts, RegisterVT, V, CallConv, ExtendKind); 987 Part += NumParts; 988 } 989 990 // Copy the parts into the registers. 991 SmallVector<SDValue, 8> Chains(NumRegs); 992 for (unsigned i = 0; i != NumRegs; ++i) { 993 SDValue Part; 994 if (!Glue) { 995 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 996 } else { 997 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue); 998 *Glue = Part.getValue(1); 999 } 1000 1001 Chains[i] = Part.getValue(0); 1002 } 1003 1004 if (NumRegs == 1 || Glue) 1005 // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is 1006 // flagged to it. That is the CopyToReg nodes and the user are considered 1007 // a single scheduling unit. If we create a TokenFactor and return it as 1008 // chain, then the TokenFactor is both a predecessor (operand) of the 1009 // user as well as a successor (the TF operands are flagged to the user). 1010 // c1, f1 = CopyToReg 1011 // c2, f2 = CopyToReg 1012 // c3 = TokenFactor c1, c2 1013 // ... 1014 // = op c3, ..., f2 1015 Chain = Chains[NumRegs-1]; 1016 else 1017 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 1018 } 1019 1020 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching, 1021 unsigned MatchingIdx, const SDLoc &dl, 1022 SelectionDAG &DAG, 1023 std::vector<SDValue> &Ops) const { 1024 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1025 1026 InlineAsm::Flag Flag(Code, Regs.size()); 1027 if (HasMatching) 1028 Flag.setMatchingOp(MatchingIdx); 1029 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 1030 // Put the register class of the virtual registers in the flag word. That 1031 // way, later passes can recompute register class constraints for inline 1032 // assembly as well as normal instructions. 1033 // Don't do this for tied operands that can use the regclass information 1034 // from the def. 1035 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1036 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 1037 Flag.setRegClass(RC->getID()); 1038 } 1039 1040 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 1041 Ops.push_back(Res); 1042 1043 if (Code == InlineAsm::Kind::Clobber) { 1044 // Clobbers should always have a 1:1 mapping with registers, and may 1045 // reference registers that have illegal (e.g. vector) types. Hence, we 1046 // shouldn't try to apply any sort of splitting logic to them. 1047 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1048 "No 1:1 mapping from clobbers to regs?"); 1049 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1050 (void)SP; 1051 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1052 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1053 assert( 1054 (Regs[I] != SP || 1055 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1056 "If we clobbered the stack pointer, MFI should know about it."); 1057 } 1058 return; 1059 } 1060 1061 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1062 MVT RegisterVT = RegVTs[Value]; 1063 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1064 RegisterVT); 1065 for (unsigned i = 0; i != NumRegs; ++i) { 1066 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1067 unsigned TheReg = Regs[Reg++]; 1068 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1069 } 1070 } 1071 } 1072 1073 SmallVector<std::pair<Register, TypeSize>, 4> 1074 RegsForValue::getRegsAndSizes() const { 1075 SmallVector<std::pair<Register, TypeSize>, 4> OutVec; 1076 unsigned I = 0; 1077 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1078 unsigned RegCount = std::get<0>(CountAndVT); 1079 MVT RegisterVT = std::get<1>(CountAndVT); 1080 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1081 for (unsigned E = I + RegCount; I != E; ++I) 1082 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1083 } 1084 return OutVec; 1085 } 1086 1087 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1088 AssumptionCache *ac, 1089 const TargetLibraryInfo *li) { 1090 AA = aa; 1091 AC = ac; 1092 GFI = gfi; 1093 LibInfo = li; 1094 Context = DAG.getContext(); 1095 LPadToCallSiteMap.clear(); 1096 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1097 AssignmentTrackingEnabled = isAssignmentTrackingEnabled( 1098 *DAG.getMachineFunction().getFunction().getParent()); 1099 } 1100 1101 void SelectionDAGBuilder::clear() { 1102 NodeMap.clear(); 1103 UnusedArgNodeMap.clear(); 1104 PendingLoads.clear(); 1105 PendingExports.clear(); 1106 PendingConstrainedFP.clear(); 1107 PendingConstrainedFPStrict.clear(); 1108 CurInst = nullptr; 1109 HasTailCall = false; 1110 SDNodeOrder = LowestSDNodeOrder; 1111 StatepointLowering.clear(); 1112 } 1113 1114 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1115 DanglingDebugInfoMap.clear(); 1116 } 1117 1118 // Update DAG root to include dependencies on Pending chains. 1119 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1120 SDValue Root = DAG.getRoot(); 1121 1122 if (Pending.empty()) 1123 return Root; 1124 1125 // Add current root to PendingChains, unless we already indirectly 1126 // depend on it. 1127 if (Root.getOpcode() != ISD::EntryToken) { 1128 unsigned i = 0, e = Pending.size(); 1129 for (; i != e; ++i) { 1130 assert(Pending[i].getNode()->getNumOperands() > 1); 1131 if (Pending[i].getNode()->getOperand(0) == Root) 1132 break; // Don't add the root if we already indirectly depend on it. 1133 } 1134 1135 if (i == e) 1136 Pending.push_back(Root); 1137 } 1138 1139 if (Pending.size() == 1) 1140 Root = Pending[0]; 1141 else 1142 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1143 1144 DAG.setRoot(Root); 1145 Pending.clear(); 1146 return Root; 1147 } 1148 1149 SDValue SelectionDAGBuilder::getMemoryRoot() { 1150 return updateRoot(PendingLoads); 1151 } 1152 1153 SDValue SelectionDAGBuilder::getRoot() { 1154 // Chain up all pending constrained intrinsics together with all 1155 // pending loads, by simply appending them to PendingLoads and 1156 // then calling getMemoryRoot(). 1157 PendingLoads.reserve(PendingLoads.size() + 1158 PendingConstrainedFP.size() + 1159 PendingConstrainedFPStrict.size()); 1160 PendingLoads.append(PendingConstrainedFP.begin(), 1161 PendingConstrainedFP.end()); 1162 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1163 PendingConstrainedFPStrict.end()); 1164 PendingConstrainedFP.clear(); 1165 PendingConstrainedFPStrict.clear(); 1166 return getMemoryRoot(); 1167 } 1168 1169 SDValue SelectionDAGBuilder::getControlRoot() { 1170 // We need to emit pending fpexcept.strict constrained intrinsics, 1171 // so append them to the PendingExports list. 1172 PendingExports.append(PendingConstrainedFPStrict.begin(), 1173 PendingConstrainedFPStrict.end()); 1174 PendingConstrainedFPStrict.clear(); 1175 return updateRoot(PendingExports); 1176 } 1177 1178 void SelectionDAGBuilder::handleDebugDeclare(Value *Address, 1179 DILocalVariable *Variable, 1180 DIExpression *Expression, 1181 DebugLoc DL) { 1182 assert(Variable && "Missing variable"); 1183 1184 // Check if address has undef value. 1185 if (!Address || isa<UndefValue>(Address) || 1186 (Address->use_empty() && !isa<Argument>(Address))) { 1187 LLVM_DEBUG( 1188 dbgs() 1189 << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n"); 1190 return; 1191 } 1192 1193 bool IsParameter = Variable->isParameter() || isa<Argument>(Address); 1194 1195 SDValue &N = NodeMap[Address]; 1196 if (!N.getNode() && isa<Argument>(Address)) 1197 // Check unused arguments map. 1198 N = UnusedArgNodeMap[Address]; 1199 SDDbgValue *SDV; 1200 if (N.getNode()) { 1201 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 1202 Address = BCI->getOperand(0); 1203 // Parameters are handled specially. 1204 auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 1205 if (IsParameter && FINode) { 1206 // Byval parameter. We have a frame index at this point. 1207 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 1208 /*IsIndirect*/ true, DL, SDNodeOrder); 1209 } else if (isa<Argument>(Address)) { 1210 // Address is an argument, so try to emit its dbg value using 1211 // virtual register info from the FuncInfo.ValueMap. 1212 EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1213 FuncArgumentDbgValueKind::Declare, N); 1214 return; 1215 } else { 1216 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 1217 true, DL, SDNodeOrder); 1218 } 1219 DAG.AddDbgValue(SDV, IsParameter); 1220 } else { 1221 // If Address is an argument then try to emit its dbg value using 1222 // virtual register info from the FuncInfo.ValueMap. 1223 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1224 FuncArgumentDbgValueKind::Declare, N)) { 1225 LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info" 1226 << " (could not emit func-arg dbg_value)\n"); 1227 } 1228 } 1229 return; 1230 } 1231 1232 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) { 1233 // Add SDDbgValue nodes for any var locs here. Do so before updating 1234 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1235 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) { 1236 // Add SDDbgValue nodes for any var locs here. Do so before updating 1237 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1238 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I); 1239 It != End; ++It) { 1240 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID); 1241 dropDanglingDebugInfo(Var, It->Expr); 1242 if (It->Values.isKillLocation(It->Expr)) { 1243 handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder); 1244 continue; 1245 } 1246 SmallVector<Value *> Values(It->Values.location_ops()); 1247 if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder, 1248 It->Values.hasArgList())) { 1249 SmallVector<Value *, 4> Vals(It->Values.location_ops()); 1250 addDanglingDebugInfo(Vals, 1251 FnVarLocs->getDILocalVariable(It->VariableID), 1252 It->Expr, Vals.size() > 1, It->DL, SDNodeOrder); 1253 } 1254 } 1255 } 1256 1257 // We must skip DbgVariableRecords if they've already been processed above as 1258 // we have just emitted the debug values resulting from assignment tracking 1259 // analysis, making any existing DbgVariableRecords redundant (and probably 1260 // less correct). We still need to process DbgLabelRecords. This does sink 1261 // DbgLabelRecords to the bottom of the group of debug records. That sholdn't 1262 // be important as it does so deterministcally and ordering between 1263 // DbgLabelRecords and DbgVariableRecords is immaterial (other than for MIR/IR 1264 // printing). 1265 bool SkipDbgVariableRecords = DAG.getFunctionVarLocs(); 1266 // Is there is any debug-info attached to this instruction, in the form of 1267 // DbgRecord non-instruction debug-info records. 1268 for (DbgRecord &DR : I.getDbgRecordRange()) { 1269 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 1270 assert(DLR->getLabel() && "Missing label"); 1271 SDDbgLabel *SDV = 1272 DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder); 1273 DAG.AddDbgLabel(SDV); 1274 continue; 1275 } 1276 1277 if (SkipDbgVariableRecords) 1278 continue; 1279 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 1280 DILocalVariable *Variable = DVR.getVariable(); 1281 DIExpression *Expression = DVR.getExpression(); 1282 dropDanglingDebugInfo(Variable, Expression); 1283 1284 if (DVR.getType() == DbgVariableRecord::LocationType::Declare) { 1285 if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR)) 1286 continue; 1287 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DVR 1288 << "\n"); 1289 handleDebugDeclare(DVR.getVariableLocationOp(0), Variable, Expression, 1290 DVR.getDebugLoc()); 1291 continue; 1292 } 1293 1294 // A DbgVariableRecord with no locations is a kill location. 1295 SmallVector<Value *, 4> Values(DVR.location_ops()); 1296 if (Values.empty()) { 1297 handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(), 1298 SDNodeOrder); 1299 continue; 1300 } 1301 1302 // A DbgVariableRecord with an undef or absent location is also a kill 1303 // location. 1304 if (llvm::any_of(Values, 1305 [](Value *V) { return !V || isa<UndefValue>(V); })) { 1306 handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(), 1307 SDNodeOrder); 1308 continue; 1309 } 1310 1311 bool IsVariadic = DVR.hasArgList(); 1312 if (!handleDebugValue(Values, Variable, Expression, DVR.getDebugLoc(), 1313 SDNodeOrder, IsVariadic)) { 1314 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 1315 DVR.getDebugLoc(), SDNodeOrder); 1316 } 1317 } 1318 } 1319 1320 void SelectionDAGBuilder::visit(const Instruction &I) { 1321 visitDbgInfo(I); 1322 1323 // Set up outgoing PHI node register values before emitting the terminator. 1324 if (I.isTerminator()) { 1325 HandlePHINodesInSuccessorBlocks(I.getParent()); 1326 } 1327 1328 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1329 if (!isa<DbgInfoIntrinsic>(I)) 1330 ++SDNodeOrder; 1331 1332 CurInst = &I; 1333 1334 // Set inserted listener only if required. 1335 bool NodeInserted = false; 1336 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1337 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1338 MDNode *MMRA = I.getMetadata(LLVMContext::MD_mmra); 1339 if (PCSectionsMD || MMRA) { 1340 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1341 DAG, [&](SDNode *) { NodeInserted = true; }); 1342 } 1343 1344 visit(I.getOpcode(), I); 1345 1346 if (!I.isTerminator() && !HasTailCall && 1347 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1348 CopyToExportRegsIfNeeded(&I); 1349 1350 // Handle metadata. 1351 if (PCSectionsMD || MMRA) { 1352 auto It = NodeMap.find(&I); 1353 if (It != NodeMap.end()) { 1354 if (PCSectionsMD) 1355 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1356 if (MMRA) 1357 DAG.addMMRAMetadata(It->second.getNode(), MMRA); 1358 } else if (NodeInserted) { 1359 // This should not happen; if it does, don't let it go unnoticed so we can 1360 // fix it. Relevant visit*() function is probably missing a setValue(). 1361 errs() << "warning: loosing !pcsections and/or !mmra metadata [" 1362 << I.getModule()->getName() << "]\n"; 1363 LLVM_DEBUG(I.dump()); 1364 assert(false); 1365 } 1366 } 1367 1368 CurInst = nullptr; 1369 } 1370 1371 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1372 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1373 } 1374 1375 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1376 // Note: this doesn't use InstVisitor, because it has to work with 1377 // ConstantExpr's in addition to instructions. 1378 switch (Opcode) { 1379 default: llvm_unreachable("Unknown instruction type encountered!"); 1380 // Build the switch statement using the Instruction.def file. 1381 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1382 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1383 #include "llvm/IR/Instruction.def" 1384 } 1385 } 1386 1387 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, 1388 DILocalVariable *Variable, 1389 DebugLoc DL, unsigned Order, 1390 SmallVectorImpl<Value *> &Values, 1391 DIExpression *Expression) { 1392 // For variadic dbg_values we will now insert an undef. 1393 // FIXME: We can potentially recover these! 1394 SmallVector<SDDbgOperand, 2> Locs; 1395 for (const Value *V : Values) { 1396 auto *Undef = UndefValue::get(V->getType()); 1397 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1398 } 1399 SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {}, 1400 /*IsIndirect=*/false, DL, Order, 1401 /*IsVariadic=*/true); 1402 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1403 return true; 1404 } 1405 1406 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values, 1407 DILocalVariable *Var, 1408 DIExpression *Expr, 1409 bool IsVariadic, DebugLoc DL, 1410 unsigned Order) { 1411 if (IsVariadic) { 1412 handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr); 1413 return; 1414 } 1415 // TODO: Dangling debug info will eventually either be resolved or produce 1416 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1417 // between the original dbg.value location and its resolved DBG_VALUE, 1418 // which we should ideally fill with an extra Undef DBG_VALUE. 1419 assert(Values.size() == 1); 1420 DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order); 1421 } 1422 1423 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1424 const DIExpression *Expr) { 1425 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1426 DIVariable *DanglingVariable = DDI.getVariable(); 1427 DIExpression *DanglingExpr = DDI.getExpression(); 1428 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1429 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " 1430 << printDDI(nullptr, DDI) << "\n"); 1431 return true; 1432 } 1433 return false; 1434 }; 1435 1436 for (auto &DDIMI : DanglingDebugInfoMap) { 1437 DanglingDebugInfoVector &DDIV = DDIMI.second; 1438 1439 // If debug info is to be dropped, run it through final checks to see 1440 // whether it can be salvaged. 1441 for (auto &DDI : DDIV) 1442 if (isMatchingDbgValue(DDI)) 1443 salvageUnresolvedDbgValue(DDIMI.first, DDI); 1444 1445 erase_if(DDIV, isMatchingDbgValue); 1446 } 1447 } 1448 1449 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1450 // generate the debug data structures now that we've seen its definition. 1451 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1452 SDValue Val) { 1453 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1454 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1455 return; 1456 1457 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1458 for (auto &DDI : DDIV) { 1459 DebugLoc DL = DDI.getDebugLoc(); 1460 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1461 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1462 DILocalVariable *Variable = DDI.getVariable(); 1463 DIExpression *Expr = DDI.getExpression(); 1464 assert(Variable->isValidLocationForIntrinsic(DL) && 1465 "Expected inlined-at fields to agree"); 1466 SDDbgValue *SDV; 1467 if (Val.getNode()) { 1468 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1469 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1470 // we couldn't resolve it directly when examining the DbgValue intrinsic 1471 // in the first place we should not be more successful here). Unless we 1472 // have some test case that prove this to be correct we should avoid 1473 // calling EmitFuncArgumentDbgValue here. 1474 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL, 1475 FuncArgumentDbgValueKind::Value, Val)) { 1476 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " 1477 << printDDI(V, DDI) << "\n"); 1478 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1479 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1480 // inserted after the definition of Val when emitting the instructions 1481 // after ISel. An alternative could be to teach 1482 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1483 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1484 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1485 << ValSDNodeOrder << "\n"); 1486 SDV = getDbgValue(Val, Variable, Expr, DL, 1487 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1488 DAG.AddDbgValue(SDV, false); 1489 } else 1490 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " 1491 << printDDI(V, DDI) 1492 << " in EmitFuncArgumentDbgValue\n"); 1493 } else { 1494 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI) 1495 << "\n"); 1496 auto Undef = UndefValue::get(V->getType()); 1497 auto SDV = 1498 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder); 1499 DAG.AddDbgValue(SDV, false); 1500 } 1501 } 1502 DDIV.clear(); 1503 } 1504 1505 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V, 1506 DanglingDebugInfo &DDI) { 1507 // TODO: For the variadic implementation, instead of only checking the fail 1508 // state of `handleDebugValue`, we need know specifically which values were 1509 // invalid, so that we attempt to salvage only those values when processing 1510 // a DIArgList. 1511 const Value *OrigV = V; 1512 DILocalVariable *Var = DDI.getVariable(); 1513 DIExpression *Expr = DDI.getExpression(); 1514 DebugLoc DL = DDI.getDebugLoc(); 1515 unsigned SDOrder = DDI.getSDNodeOrder(); 1516 1517 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1518 // that DW_OP_stack_value is desired. 1519 bool StackValue = true; 1520 1521 // Can this Value can be encoded without any further work? 1522 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) 1523 return; 1524 1525 // Attempt to salvage back through as many instructions as possible. Bail if 1526 // a non-instruction is seen, such as a constant expression or global 1527 // variable. FIXME: Further work could recover those too. 1528 while (isa<Instruction>(V)) { 1529 const Instruction &VAsInst = *cast<const Instruction>(V); 1530 // Temporary "0", awaiting real implementation. 1531 SmallVector<uint64_t, 16> Ops; 1532 SmallVector<Value *, 4> AdditionalValues; 1533 V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst), 1534 Expr->getNumLocationOperands(), Ops, 1535 AdditionalValues); 1536 // If we cannot salvage any further, and haven't yet found a suitable debug 1537 // expression, bail out. 1538 if (!V) 1539 break; 1540 1541 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1542 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1543 // here for variadic dbg_values, remove that condition. 1544 if (!AdditionalValues.empty()) 1545 break; 1546 1547 // New value and expr now represent this debuginfo. 1548 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1549 1550 // Some kind of simplification occurred: check whether the operand of the 1551 // salvaged debug expression can be encoded in this DAG. 1552 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { 1553 LLVM_DEBUG( 1554 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" 1555 << *OrigV << "\nBy stripping back to:\n " << *V << "\n"); 1556 return; 1557 } 1558 } 1559 1560 // This was the final opportunity to salvage this debug information, and it 1561 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1562 // any earlier variable location. 1563 assert(OrigV && "V shouldn't be null"); 1564 auto *Undef = UndefValue::get(OrigV->getType()); 1565 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1566 DAG.AddDbgValue(SDV, false); 1567 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " 1568 << printDDI(OrigV, DDI) << "\n"); 1569 } 1570 1571 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var, 1572 DIExpression *Expr, 1573 DebugLoc DbgLoc, 1574 unsigned Order) { 1575 Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context)); 1576 DIExpression *NewExpr = 1577 const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr)); 1578 handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order, 1579 /*IsVariadic*/ false); 1580 } 1581 1582 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1583 DILocalVariable *Var, 1584 DIExpression *Expr, DebugLoc DbgLoc, 1585 unsigned Order, bool IsVariadic) { 1586 if (Values.empty()) 1587 return true; 1588 1589 // Filter EntryValue locations out early. 1590 if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc)) 1591 return true; 1592 1593 SmallVector<SDDbgOperand> LocationOps; 1594 SmallVector<SDNode *> Dependencies; 1595 for (const Value *V : Values) { 1596 // Constant value. 1597 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1598 isa<ConstantPointerNull>(V)) { 1599 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1600 continue; 1601 } 1602 1603 // Look through IntToPtr constants. 1604 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1605 if (CE->getOpcode() == Instruction::IntToPtr) { 1606 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1607 continue; 1608 } 1609 1610 // If the Value is a frame index, we can create a FrameIndex debug value 1611 // without relying on the DAG at all. 1612 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1613 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1614 if (SI != FuncInfo.StaticAllocaMap.end()) { 1615 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1616 continue; 1617 } 1618 } 1619 1620 // Do not use getValue() in here; we don't want to generate code at 1621 // this point if it hasn't been done yet. 1622 SDValue N = NodeMap[V]; 1623 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1624 N = UnusedArgNodeMap[V]; 1625 1626 if (N.getNode()) { 1627 // Only emit func arg dbg value for non-variadic dbg.values for now. 1628 if (!IsVariadic && 1629 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, 1630 FuncArgumentDbgValueKind::Value, N)) 1631 return true; 1632 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1633 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1634 // describe stack slot locations. 1635 // 1636 // Consider "int x = 0; int *px = &x;". There are two kinds of 1637 // interesting debug values here after optimization: 1638 // 1639 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1640 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1641 // 1642 // Both describe the direct values of their associated variables. 1643 Dependencies.push_back(N.getNode()); 1644 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1645 continue; 1646 } 1647 LocationOps.emplace_back( 1648 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1649 continue; 1650 } 1651 1652 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1653 // Special rules apply for the first dbg.values of parameter variables in a 1654 // function. Identify them by the fact they reference Argument Values, that 1655 // they're parameters, and they are parameters of the current function. We 1656 // need to let them dangle until they get an SDNode. 1657 bool IsParamOfFunc = 1658 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); 1659 if (IsParamOfFunc) 1660 return false; 1661 1662 // The value is not used in this block yet (or it would have an SDNode). 1663 // We still want the value to appear for the user if possible -- if it has 1664 // an associated VReg, we can refer to that instead. 1665 auto VMI = FuncInfo.ValueMap.find(V); 1666 if (VMI != FuncInfo.ValueMap.end()) { 1667 unsigned Reg = VMI->second; 1668 // If this is a PHI node, it may be split up into several MI PHI nodes 1669 // (in FunctionLoweringInfo::set). 1670 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1671 V->getType(), std::nullopt); 1672 if (RFV.occupiesMultipleRegs()) { 1673 // FIXME: We could potentially support variadic dbg_values here. 1674 if (IsVariadic) 1675 return false; 1676 unsigned Offset = 0; 1677 unsigned BitsToDescribe = 0; 1678 if (auto VarSize = Var->getSizeInBits()) 1679 BitsToDescribe = *VarSize; 1680 if (auto Fragment = Expr->getFragmentInfo()) 1681 BitsToDescribe = Fragment->SizeInBits; 1682 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1683 // Bail out if all bits are described already. 1684 if (Offset >= BitsToDescribe) 1685 break; 1686 // TODO: handle scalable vectors. 1687 unsigned RegisterSize = RegAndSize.second; 1688 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1689 ? BitsToDescribe - Offset 1690 : RegisterSize; 1691 auto FragmentExpr = DIExpression::createFragmentExpression( 1692 Expr, Offset, FragmentSize); 1693 if (!FragmentExpr) 1694 continue; 1695 SDDbgValue *SDV = DAG.getVRegDbgValue( 1696 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, Order); 1697 DAG.AddDbgValue(SDV, false); 1698 Offset += RegisterSize; 1699 } 1700 return true; 1701 } 1702 // We can use simple vreg locations for variadic dbg_values as well. 1703 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1704 continue; 1705 } 1706 // We failed to create a SDDbgOperand for V. 1707 return false; 1708 } 1709 1710 // We have created a SDDbgOperand for each Value in Values. 1711 assert(!LocationOps.empty()); 1712 SDDbgValue *SDV = 1713 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1714 /*IsIndirect=*/false, DbgLoc, Order, IsVariadic); 1715 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1716 return true; 1717 } 1718 1719 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1720 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1721 for (auto &Pair : DanglingDebugInfoMap) 1722 for (auto &DDI : Pair.second) 1723 salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI); 1724 clearDanglingDebugInfo(); 1725 } 1726 1727 /// getCopyFromRegs - If there was virtual register allocated for the value V 1728 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1729 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1730 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1731 SDValue Result; 1732 1733 if (It != FuncInfo.ValueMap.end()) { 1734 Register InReg = It->second; 1735 1736 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1737 DAG.getDataLayout(), InReg, Ty, 1738 std::nullopt); // This is not an ABI copy. 1739 SDValue Chain = DAG.getEntryNode(); 1740 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1741 V); 1742 resolveDanglingDebugInfo(V, Result); 1743 } 1744 1745 return Result; 1746 } 1747 1748 /// getValue - Return an SDValue for the given Value. 1749 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1750 // If we already have an SDValue for this value, use it. It's important 1751 // to do this first, so that we don't create a CopyFromReg if we already 1752 // have a regular SDValue. 1753 SDValue &N = NodeMap[V]; 1754 if (N.getNode()) return N; 1755 1756 // If there's a virtual register allocated and initialized for this 1757 // value, use it. 1758 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1759 return copyFromReg; 1760 1761 // Otherwise create a new SDValue and remember it. 1762 SDValue Val = getValueImpl(V); 1763 NodeMap[V] = Val; 1764 resolveDanglingDebugInfo(V, Val); 1765 return Val; 1766 } 1767 1768 /// getNonRegisterValue - Return an SDValue for the given Value, but 1769 /// don't look in FuncInfo.ValueMap for a virtual register. 1770 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1771 // If we already have an SDValue for this value, use it. 1772 SDValue &N = NodeMap[V]; 1773 if (N.getNode()) { 1774 if (isIntOrFPConstant(N)) { 1775 // Remove the debug location from the node as the node is about to be used 1776 // in a location which may differ from the original debug location. This 1777 // is relevant to Constant and ConstantFP nodes because they can appear 1778 // as constant expressions inside PHI nodes. 1779 N->setDebugLoc(DebugLoc()); 1780 } 1781 return N; 1782 } 1783 1784 // Otherwise create a new SDValue and remember it. 1785 SDValue Val = getValueImpl(V); 1786 NodeMap[V] = Val; 1787 resolveDanglingDebugInfo(V, Val); 1788 return Val; 1789 } 1790 1791 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1792 /// Create an SDValue for the given value. 1793 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1794 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1795 1796 if (const Constant *C = dyn_cast<Constant>(V)) { 1797 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1798 1799 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1800 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1801 1802 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1803 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1804 1805 if (const ConstantPtrAuth *CPA = dyn_cast<ConstantPtrAuth>(C)) { 1806 return DAG.getNode(ISD::PtrAuthGlobalAddress, getCurSDLoc(), VT, 1807 getValue(CPA->getPointer()), getValue(CPA->getKey()), 1808 getValue(CPA->getAddrDiscriminator()), 1809 getValue(CPA->getDiscriminator())); 1810 } 1811 1812 if (isa<ConstantPointerNull>(C)) { 1813 unsigned AS = V->getType()->getPointerAddressSpace(); 1814 return DAG.getConstant(0, getCurSDLoc(), 1815 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1816 } 1817 1818 if (match(C, m_VScale())) 1819 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1820 1821 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1822 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1823 1824 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1825 return DAG.getUNDEF(VT); 1826 1827 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1828 visit(CE->getOpcode(), *CE); 1829 SDValue N1 = NodeMap[V]; 1830 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1831 return N1; 1832 } 1833 1834 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1835 SmallVector<SDValue, 4> Constants; 1836 for (const Use &U : C->operands()) { 1837 SDNode *Val = getValue(U).getNode(); 1838 // If the operand is an empty aggregate, there are no values. 1839 if (!Val) continue; 1840 // Add each leaf value from the operand to the Constants list 1841 // to form a flattened list of all the values. 1842 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1843 Constants.push_back(SDValue(Val, i)); 1844 } 1845 1846 return DAG.getMergeValues(Constants, getCurSDLoc()); 1847 } 1848 1849 if (const ConstantDataSequential *CDS = 1850 dyn_cast<ConstantDataSequential>(C)) { 1851 SmallVector<SDValue, 4> Ops; 1852 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1853 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1854 // Add each leaf value from the operand to the Constants list 1855 // to form a flattened list of all the values. 1856 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1857 Ops.push_back(SDValue(Val, i)); 1858 } 1859 1860 if (isa<ArrayType>(CDS->getType())) 1861 return DAG.getMergeValues(Ops, getCurSDLoc()); 1862 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1863 } 1864 1865 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1866 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1867 "Unknown struct or array constant!"); 1868 1869 SmallVector<EVT, 4> ValueVTs; 1870 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1871 unsigned NumElts = ValueVTs.size(); 1872 if (NumElts == 0) 1873 return SDValue(); // empty struct 1874 SmallVector<SDValue, 4> Constants(NumElts); 1875 for (unsigned i = 0; i != NumElts; ++i) { 1876 EVT EltVT = ValueVTs[i]; 1877 if (isa<UndefValue>(C)) 1878 Constants[i] = DAG.getUNDEF(EltVT); 1879 else if (EltVT.isFloatingPoint()) 1880 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1881 else 1882 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1883 } 1884 1885 return DAG.getMergeValues(Constants, getCurSDLoc()); 1886 } 1887 1888 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1889 return DAG.getBlockAddress(BA, VT); 1890 1891 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1892 return getValue(Equiv->getGlobalValue()); 1893 1894 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1895 return getValue(NC->getGlobalValue()); 1896 1897 if (VT == MVT::aarch64svcount) { 1898 assert(C->isNullValue() && "Can only zero this target type!"); 1899 return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, 1900 DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1)); 1901 } 1902 1903 VectorType *VecTy = cast<VectorType>(V->getType()); 1904 1905 // Now that we know the number and type of the elements, get that number of 1906 // elements into the Ops array based on what kind of constant it is. 1907 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1908 SmallVector<SDValue, 16> Ops; 1909 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1910 for (unsigned i = 0; i != NumElements; ++i) 1911 Ops.push_back(getValue(CV->getOperand(i))); 1912 1913 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1914 } 1915 1916 if (isa<ConstantAggregateZero>(C)) { 1917 EVT EltVT = 1918 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1919 1920 SDValue Op; 1921 if (EltVT.isFloatingPoint()) 1922 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1923 else 1924 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1925 1926 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); 1927 } 1928 1929 llvm_unreachable("Unknown vector constant"); 1930 } 1931 1932 // If this is a static alloca, generate it as the frameindex instead of 1933 // computation. 1934 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1935 DenseMap<const AllocaInst*, int>::iterator SI = 1936 FuncInfo.StaticAllocaMap.find(AI); 1937 if (SI != FuncInfo.StaticAllocaMap.end()) 1938 return DAG.getFrameIndex( 1939 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType())); 1940 } 1941 1942 // If this is an instruction which fast-isel has deferred, select it now. 1943 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1944 Register InReg = FuncInfo.InitializeRegForValue(Inst); 1945 1946 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1947 Inst->getType(), std::nullopt); 1948 SDValue Chain = DAG.getEntryNode(); 1949 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1950 } 1951 1952 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1953 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1954 1955 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1956 return DAG.getBasicBlock(FuncInfo.getMBB(BB)); 1957 1958 llvm_unreachable("Can't get register for value!"); 1959 } 1960 1961 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1962 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1963 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1964 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1965 bool IsSEH = isAsynchronousEHPersonality(Pers); 1966 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1967 if (!IsSEH) 1968 CatchPadMBB->setIsEHScopeEntry(); 1969 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1970 if (IsMSVCCXX || IsCoreCLR) 1971 CatchPadMBB->setIsEHFuncletEntry(); 1972 } 1973 1974 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1975 // Update machine-CFG edge. 1976 MachineBasicBlock *TargetMBB = FuncInfo.getMBB(I.getSuccessor()); 1977 FuncInfo.MBB->addSuccessor(TargetMBB); 1978 TargetMBB->setIsEHCatchretTarget(true); 1979 DAG.getMachineFunction().setHasEHCatchret(true); 1980 1981 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1982 bool IsSEH = isAsynchronousEHPersonality(Pers); 1983 if (IsSEH) { 1984 // If this is not a fall-through branch or optimizations are switched off, 1985 // emit the branch. 1986 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1987 TM.getOptLevel() == CodeGenOptLevel::None) 1988 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1989 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1990 return; 1991 } 1992 1993 // Figure out the funclet membership for the catchret's successor. 1994 // This will be used by the FuncletLayout pass to determine how to order the 1995 // BB's. 1996 // A 'catchret' returns to the outer scope's color. 1997 Value *ParentPad = I.getCatchSwitchParentPad(); 1998 const BasicBlock *SuccessorColor; 1999 if (isa<ConstantTokenNone>(ParentPad)) 2000 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 2001 else 2002 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 2003 assert(SuccessorColor && "No parent funclet for catchret!"); 2004 MachineBasicBlock *SuccessorColorMBB = FuncInfo.getMBB(SuccessorColor); 2005 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 2006 2007 // Create the terminator node. 2008 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 2009 getControlRoot(), DAG.getBasicBlock(TargetMBB), 2010 DAG.getBasicBlock(SuccessorColorMBB)); 2011 DAG.setRoot(Ret); 2012 } 2013 2014 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 2015 // Don't emit any special code for the cleanuppad instruction. It just marks 2016 // the start of an EH scope/funclet. 2017 FuncInfo.MBB->setIsEHScopeEntry(); 2018 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 2019 if (Pers != EHPersonality::Wasm_CXX) { 2020 FuncInfo.MBB->setIsEHFuncletEntry(); 2021 FuncInfo.MBB->setIsCleanupFuncletEntry(); 2022 } 2023 } 2024 2025 // In wasm EH, even though a catchpad may not catch an exception if a tag does 2026 // not match, it is OK to add only the first unwind destination catchpad to the 2027 // successors, because there will be at least one invoke instruction within the 2028 // catch scope that points to the next unwind destination, if one exists, so 2029 // CFGSort cannot mess up with BB sorting order. 2030 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 2031 // call within them, and catchpads only consisting of 'catch (...)' have a 2032 // '__cxa_end_catch' call within them, both of which generate invokes in case 2033 // the next unwind destination exists, i.e., the next unwind destination is not 2034 // the caller.) 2035 // 2036 // Having at most one EH pad successor is also simpler and helps later 2037 // transformations. 2038 // 2039 // For example, 2040 // current: 2041 // invoke void @foo to ... unwind label %catch.dispatch 2042 // catch.dispatch: 2043 // %0 = catchswitch within ... [label %catch.start] unwind label %next 2044 // catch.start: 2045 // ... 2046 // ... in this BB or some other child BB dominated by this BB there will be an 2047 // invoke that points to 'next' BB as an unwind destination 2048 // 2049 // next: ; We don't need to add this to 'current' BB's successor 2050 // ... 2051 static void findWasmUnwindDestinations( 2052 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2053 BranchProbability Prob, 2054 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2055 &UnwindDests) { 2056 while (EHPadBB) { 2057 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2058 if (isa<CleanupPadInst>(Pad)) { 2059 // Stop on cleanup pads. 2060 UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob); 2061 UnwindDests.back().first->setIsEHScopeEntry(); 2062 break; 2063 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2064 // Add the catchpad handlers to the possible destinations. We don't 2065 // continue to the unwind destination of the catchswitch for wasm. 2066 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2067 UnwindDests.emplace_back(FuncInfo.getMBB(CatchPadBB), Prob); 2068 UnwindDests.back().first->setIsEHScopeEntry(); 2069 } 2070 break; 2071 } else { 2072 continue; 2073 } 2074 } 2075 } 2076 2077 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 2078 /// many places it could ultimately go. In the IR, we have a single unwind 2079 /// destination, but in the machine CFG, we enumerate all the possible blocks. 2080 /// This function skips over imaginary basic blocks that hold catchswitch 2081 /// instructions, and finds all the "real" machine 2082 /// basic block destinations. As those destinations may not be successors of 2083 /// EHPadBB, here we also calculate the edge probability to those destinations. 2084 /// The passed-in Prob is the edge probability to EHPadBB. 2085 static void findUnwindDestinations( 2086 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2087 BranchProbability Prob, 2088 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2089 &UnwindDests) { 2090 EHPersonality Personality = 2091 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 2092 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 2093 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 2094 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 2095 bool IsSEH = isAsynchronousEHPersonality(Personality); 2096 2097 if (IsWasmCXX) { 2098 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 2099 assert(UnwindDests.size() <= 1 && 2100 "There should be at most one unwind destination for wasm"); 2101 return; 2102 } 2103 2104 while (EHPadBB) { 2105 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2106 BasicBlock *NewEHPadBB = nullptr; 2107 if (isa<LandingPadInst>(Pad)) { 2108 // Stop on landingpads. They are not funclets. 2109 UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob); 2110 break; 2111 } else if (isa<CleanupPadInst>(Pad)) { 2112 // Stop on cleanup pads. Cleanups are always funclet entries for all known 2113 // personalities. 2114 UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob); 2115 UnwindDests.back().first->setIsEHScopeEntry(); 2116 UnwindDests.back().first->setIsEHFuncletEntry(); 2117 break; 2118 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2119 // Add the catchpad handlers to the possible destinations. 2120 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2121 UnwindDests.emplace_back(FuncInfo.getMBB(CatchPadBB), Prob); 2122 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 2123 if (IsMSVCCXX || IsCoreCLR) 2124 UnwindDests.back().first->setIsEHFuncletEntry(); 2125 if (!IsSEH) 2126 UnwindDests.back().first->setIsEHScopeEntry(); 2127 } 2128 NewEHPadBB = CatchSwitch->getUnwindDest(); 2129 } else { 2130 continue; 2131 } 2132 2133 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2134 if (BPI && NewEHPadBB) 2135 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 2136 EHPadBB = NewEHPadBB; 2137 } 2138 } 2139 2140 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 2141 // Update successor info. 2142 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2143 auto UnwindDest = I.getUnwindDest(); 2144 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2145 BranchProbability UnwindDestProb = 2146 (BPI && UnwindDest) 2147 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 2148 : BranchProbability::getZero(); 2149 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 2150 for (auto &UnwindDest : UnwindDests) { 2151 UnwindDest.first->setIsEHPad(); 2152 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 2153 } 2154 FuncInfo.MBB->normalizeSuccProbs(); 2155 2156 // Create the terminator node. 2157 SDValue Ret = 2158 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 2159 DAG.setRoot(Ret); 2160 } 2161 2162 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 2163 report_fatal_error("visitCatchSwitch not yet implemented!"); 2164 } 2165 2166 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 2167 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2168 auto &DL = DAG.getDataLayout(); 2169 SDValue Chain = getControlRoot(); 2170 SmallVector<ISD::OutputArg, 8> Outs; 2171 SmallVector<SDValue, 8> OutVals; 2172 2173 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 2174 // lower 2175 // 2176 // %val = call <ty> @llvm.experimental.deoptimize() 2177 // ret <ty> %val 2178 // 2179 // differently. 2180 if (I.getParent()->getTerminatingDeoptimizeCall()) { 2181 LowerDeoptimizingReturn(); 2182 return; 2183 } 2184 2185 if (!FuncInfo.CanLowerReturn) { 2186 Register DemoteReg = FuncInfo.DemoteRegister; 2187 const Function *F = I.getParent()->getParent(); 2188 2189 // Emit a store of the return value through the virtual register. 2190 // Leave Outs empty so that LowerReturn won't try to load return 2191 // registers the usual way. 2192 SmallVector<EVT, 1> PtrValueVTs; 2193 ComputeValueVTs(TLI, DL, 2194 PointerType::get(F->getContext(), 2195 DAG.getDataLayout().getAllocaAddrSpace()), 2196 PtrValueVTs); 2197 2198 SDValue RetPtr = 2199 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 2200 SDValue RetOp = getValue(I.getOperand(0)); 2201 2202 SmallVector<EVT, 4> ValueVTs, MemVTs; 2203 SmallVector<uint64_t, 4> Offsets; 2204 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 2205 &Offsets, 0); 2206 unsigned NumValues = ValueVTs.size(); 2207 2208 SmallVector<SDValue, 4> Chains(NumValues); 2209 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 2210 for (unsigned i = 0; i != NumValues; ++i) { 2211 // An aggregate return value cannot wrap around the address space, so 2212 // offsets to its parts don't wrap either. 2213 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 2214 TypeSize::getFixed(Offsets[i])); 2215 2216 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 2217 if (MemVTs[i] != ValueVTs[i]) 2218 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 2219 Chains[i] = DAG.getStore( 2220 Chain, getCurSDLoc(), Val, 2221 // FIXME: better loc info would be nice. 2222 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 2223 commonAlignment(BaseAlign, Offsets[i])); 2224 } 2225 2226 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 2227 MVT::Other, Chains); 2228 } else if (I.getNumOperands() != 0) { 2229 SmallVector<EVT, 4> ValueVTs; 2230 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 2231 unsigned NumValues = ValueVTs.size(); 2232 if (NumValues) { 2233 SDValue RetOp = getValue(I.getOperand(0)); 2234 2235 const Function *F = I.getParent()->getParent(); 2236 2237 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2238 I.getOperand(0)->getType(), F->getCallingConv(), 2239 /*IsVarArg*/ false, DL); 2240 2241 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2242 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2243 ExtendKind = ISD::SIGN_EXTEND; 2244 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2245 ExtendKind = ISD::ZERO_EXTEND; 2246 2247 LLVMContext &Context = F->getContext(); 2248 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2249 2250 for (unsigned j = 0; j != NumValues; ++j) { 2251 EVT VT = ValueVTs[j]; 2252 2253 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2254 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2255 2256 CallingConv::ID CC = F->getCallingConv(); 2257 2258 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2259 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2260 SmallVector<SDValue, 4> Parts(NumParts); 2261 getCopyToParts(DAG, getCurSDLoc(), 2262 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2263 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2264 2265 // 'inreg' on function refers to return value 2266 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2267 if (RetInReg) 2268 Flags.setInReg(); 2269 2270 if (I.getOperand(0)->getType()->isPointerTy()) { 2271 Flags.setPointer(); 2272 Flags.setPointerAddrSpace( 2273 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2274 } 2275 2276 if (NeedsRegBlock) { 2277 Flags.setInConsecutiveRegs(); 2278 if (j == NumValues - 1) 2279 Flags.setInConsecutiveRegsLast(); 2280 } 2281 2282 // Propagate extension type if any 2283 if (ExtendKind == ISD::SIGN_EXTEND) 2284 Flags.setSExt(); 2285 else if (ExtendKind == ISD::ZERO_EXTEND) 2286 Flags.setZExt(); 2287 2288 for (unsigned i = 0; i < NumParts; ++i) { 2289 Outs.push_back(ISD::OutputArg(Flags, 2290 Parts[i].getValueType().getSimpleVT(), 2291 VT, /*isfixed=*/true, 0, 0)); 2292 OutVals.push_back(Parts[i]); 2293 } 2294 } 2295 } 2296 } 2297 2298 // Push in swifterror virtual register as the last element of Outs. This makes 2299 // sure swifterror virtual register will be returned in the swifterror 2300 // physical register. 2301 const Function *F = I.getParent()->getParent(); 2302 if (TLI.supportSwiftError() && 2303 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2304 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2305 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2306 Flags.setSwiftError(); 2307 Outs.push_back(ISD::OutputArg( 2308 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2309 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2310 // Create SDNode for the swifterror virtual register. 2311 OutVals.push_back( 2312 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2313 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2314 EVT(TLI.getPointerTy(DL)))); 2315 } 2316 2317 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2318 CallingConv::ID CallConv = 2319 DAG.getMachineFunction().getFunction().getCallingConv(); 2320 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2321 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2322 2323 // Verify that the target's LowerReturn behaved as expected. 2324 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2325 "LowerReturn didn't return a valid chain!"); 2326 2327 // Update the DAG with the new chain value resulting from return lowering. 2328 DAG.setRoot(Chain); 2329 } 2330 2331 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2332 /// created for it, emit nodes to copy the value into the virtual 2333 /// registers. 2334 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2335 // Skip empty types 2336 if (V->getType()->isEmptyTy()) 2337 return; 2338 2339 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2340 if (VMI != FuncInfo.ValueMap.end()) { 2341 assert((!V->use_empty() || isa<CallBrInst>(V)) && 2342 "Unused value assigned virtual registers!"); 2343 CopyValueToVirtualRegister(V, VMI->second); 2344 } 2345 } 2346 2347 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2348 /// the current basic block, add it to ValueMap now so that we'll get a 2349 /// CopyTo/FromReg. 2350 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2351 // No need to export constants. 2352 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2353 2354 // Already exported? 2355 if (FuncInfo.isExportedInst(V)) return; 2356 2357 Register Reg = FuncInfo.InitializeRegForValue(V); 2358 CopyValueToVirtualRegister(V, Reg); 2359 } 2360 2361 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2362 const BasicBlock *FromBB) { 2363 // The operands of the setcc have to be in this block. We don't know 2364 // how to export them from some other block. 2365 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2366 // Can export from current BB. 2367 if (VI->getParent() == FromBB) 2368 return true; 2369 2370 // Is already exported, noop. 2371 return FuncInfo.isExportedInst(V); 2372 } 2373 2374 // If this is an argument, we can export it if the BB is the entry block or 2375 // if it is already exported. 2376 if (isa<Argument>(V)) { 2377 if (FromBB->isEntryBlock()) 2378 return true; 2379 2380 // Otherwise, can only export this if it is already exported. 2381 return FuncInfo.isExportedInst(V); 2382 } 2383 2384 // Otherwise, constants can always be exported. 2385 return true; 2386 } 2387 2388 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2389 BranchProbability 2390 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2391 const MachineBasicBlock *Dst) const { 2392 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2393 const BasicBlock *SrcBB = Src->getBasicBlock(); 2394 const BasicBlock *DstBB = Dst->getBasicBlock(); 2395 if (!BPI) { 2396 // If BPI is not available, set the default probability as 1 / N, where N is 2397 // the number of successors. 2398 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2399 return BranchProbability(1, SuccSize); 2400 } 2401 return BPI->getEdgeProbability(SrcBB, DstBB); 2402 } 2403 2404 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2405 MachineBasicBlock *Dst, 2406 BranchProbability Prob) { 2407 if (!FuncInfo.BPI) 2408 Src->addSuccessorWithoutProb(Dst); 2409 else { 2410 if (Prob.isUnknown()) 2411 Prob = getEdgeProbability(Src, Dst); 2412 Src->addSuccessor(Dst, Prob); 2413 } 2414 } 2415 2416 static bool InBlock(const Value *V, const BasicBlock *BB) { 2417 if (const Instruction *I = dyn_cast<Instruction>(V)) 2418 return I->getParent() == BB; 2419 return true; 2420 } 2421 2422 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2423 /// This function emits a branch and is used at the leaves of an OR or an 2424 /// AND operator tree. 2425 void 2426 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2427 MachineBasicBlock *TBB, 2428 MachineBasicBlock *FBB, 2429 MachineBasicBlock *CurBB, 2430 MachineBasicBlock *SwitchBB, 2431 BranchProbability TProb, 2432 BranchProbability FProb, 2433 bool InvertCond) { 2434 const BasicBlock *BB = CurBB->getBasicBlock(); 2435 2436 // If the leaf of the tree is a comparison, merge the condition into 2437 // the caseblock. 2438 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2439 // The operands of the cmp have to be in this block. We don't know 2440 // how to export them from some other block. If this is the first block 2441 // of the sequence, no exporting is needed. 2442 if (CurBB == SwitchBB || 2443 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2444 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2445 ISD::CondCode Condition; 2446 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2447 ICmpInst::Predicate Pred = 2448 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2449 Condition = getICmpCondCode(Pred); 2450 } else { 2451 const FCmpInst *FC = cast<FCmpInst>(Cond); 2452 FCmpInst::Predicate Pred = 2453 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2454 Condition = getFCmpCondCode(Pred); 2455 if (TM.Options.NoNaNsFPMath) 2456 Condition = getFCmpCodeWithoutNaN(Condition); 2457 } 2458 2459 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2460 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2461 SL->SwitchCases.push_back(CB); 2462 return; 2463 } 2464 } 2465 2466 // Create a CaseBlock record representing this branch. 2467 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2468 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2469 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2470 SL->SwitchCases.push_back(CB); 2471 } 2472 2473 // Collect dependencies on V recursively. This is used for the cost analysis in 2474 // `shouldKeepJumpConditionsTogether`. 2475 static bool collectInstructionDeps( 2476 SmallMapVector<const Instruction *, bool, 8> *Deps, const Value *V, 2477 SmallMapVector<const Instruction *, bool, 8> *Necessary = nullptr, 2478 unsigned Depth = 0) { 2479 // Return false if we have an incomplete count. 2480 if (Depth >= SelectionDAG::MaxRecursionDepth) 2481 return false; 2482 2483 auto *I = dyn_cast<Instruction>(V); 2484 if (I == nullptr) 2485 return true; 2486 2487 if (Necessary != nullptr) { 2488 // This instruction is necessary for the other side of the condition so 2489 // don't count it. 2490 if (Necessary->contains(I)) 2491 return true; 2492 } 2493 2494 // Already added this dep. 2495 if (!Deps->try_emplace(I, false).second) 2496 return true; 2497 2498 for (unsigned OpIdx = 0, E = I->getNumOperands(); OpIdx < E; ++OpIdx) 2499 if (!collectInstructionDeps(Deps, I->getOperand(OpIdx), Necessary, 2500 Depth + 1)) 2501 return false; 2502 return true; 2503 } 2504 2505 bool SelectionDAGBuilder::shouldKeepJumpConditionsTogether( 2506 const FunctionLoweringInfo &FuncInfo, const BranchInst &I, 2507 Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs, 2508 TargetLoweringBase::CondMergingParams Params) const { 2509 if (I.getNumSuccessors() != 2) 2510 return false; 2511 2512 if (!I.isConditional()) 2513 return false; 2514 2515 if (Params.BaseCost < 0) 2516 return false; 2517 2518 // Baseline cost. 2519 InstructionCost CostThresh = Params.BaseCost; 2520 2521 BranchProbabilityInfo *BPI = nullptr; 2522 if (Params.LikelyBias || Params.UnlikelyBias) 2523 BPI = FuncInfo.BPI; 2524 if (BPI != nullptr) { 2525 // See if we are either likely to get an early out or compute both lhs/rhs 2526 // of the condition. 2527 BasicBlock *IfFalse = I.getSuccessor(0); 2528 BasicBlock *IfTrue = I.getSuccessor(1); 2529 2530 std::optional<bool> Likely; 2531 if (BPI->isEdgeHot(I.getParent(), IfTrue)) 2532 Likely = true; 2533 else if (BPI->isEdgeHot(I.getParent(), IfFalse)) 2534 Likely = false; 2535 2536 if (Likely) { 2537 if (Opc == (*Likely ? Instruction::And : Instruction::Or)) 2538 // Its likely we will have to compute both lhs and rhs of condition 2539 CostThresh += Params.LikelyBias; 2540 else { 2541 if (Params.UnlikelyBias < 0) 2542 return false; 2543 // Its likely we will get an early out. 2544 CostThresh -= Params.UnlikelyBias; 2545 } 2546 } 2547 } 2548 2549 if (CostThresh <= 0) 2550 return false; 2551 2552 // Collect "all" instructions that lhs condition is dependent on. 2553 // Use map for stable iteration (to avoid non-determanism of iteration of 2554 // SmallPtrSet). The `bool` value is just a dummy. 2555 SmallMapVector<const Instruction *, bool, 8> LhsDeps, RhsDeps; 2556 collectInstructionDeps(&LhsDeps, Lhs); 2557 // Collect "all" instructions that rhs condition is dependent on AND are 2558 // dependencies of lhs. This gives us an estimate on which instructions we 2559 // stand to save by splitting the condition. 2560 if (!collectInstructionDeps(&RhsDeps, Rhs, &LhsDeps)) 2561 return false; 2562 // Add the compare instruction itself unless its a dependency on the LHS. 2563 if (const auto *RhsI = dyn_cast<Instruction>(Rhs)) 2564 if (!LhsDeps.contains(RhsI)) 2565 RhsDeps.try_emplace(RhsI, false); 2566 2567 const auto &TLI = DAG.getTargetLoweringInfo(); 2568 const auto &TTI = 2569 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 2570 2571 InstructionCost CostOfIncluding = 0; 2572 // See if this instruction will need to computed independently of whether RHS 2573 // is. 2574 Value *BrCond = I.getCondition(); 2575 auto ShouldCountInsn = [&RhsDeps, &BrCond](const Instruction *Ins) { 2576 for (const auto *U : Ins->users()) { 2577 // If user is independent of RHS calculation we don't need to count it. 2578 if (auto *UIns = dyn_cast<Instruction>(U)) 2579 if (UIns != BrCond && !RhsDeps.contains(UIns)) 2580 return false; 2581 } 2582 return true; 2583 }; 2584 2585 // Prune instructions from RHS Deps that are dependencies of unrelated 2586 // instructions. The value (SelectionDAG::MaxRecursionDepth) is fairly 2587 // arbitrary and just meant to cap the how much time we spend in the pruning 2588 // loop. Its highly unlikely to come into affect. 2589 const unsigned MaxPruneIters = SelectionDAG::MaxRecursionDepth; 2590 // Stop after a certain point. No incorrectness from including too many 2591 // instructions. 2592 for (unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) { 2593 const Instruction *ToDrop = nullptr; 2594 for (const auto &InsPair : RhsDeps) { 2595 if (!ShouldCountInsn(InsPair.first)) { 2596 ToDrop = InsPair.first; 2597 break; 2598 } 2599 } 2600 if (ToDrop == nullptr) 2601 break; 2602 RhsDeps.erase(ToDrop); 2603 } 2604 2605 for (const auto &InsPair : RhsDeps) { 2606 // Finally accumulate latency that we can only attribute to computing the 2607 // RHS condition. Use latency because we are essentially trying to calculate 2608 // the cost of the dependency chain. 2609 // Possible TODO: We could try to estimate ILP and make this more precise. 2610 CostOfIncluding += 2611 TTI.getInstructionCost(InsPair.first, TargetTransformInfo::TCK_Latency); 2612 2613 if (CostOfIncluding > CostThresh) 2614 return false; 2615 } 2616 return true; 2617 } 2618 2619 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2620 MachineBasicBlock *TBB, 2621 MachineBasicBlock *FBB, 2622 MachineBasicBlock *CurBB, 2623 MachineBasicBlock *SwitchBB, 2624 Instruction::BinaryOps Opc, 2625 BranchProbability TProb, 2626 BranchProbability FProb, 2627 bool InvertCond) { 2628 // Skip over not part of the tree and remember to invert op and operands at 2629 // next level. 2630 Value *NotCond; 2631 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2632 InBlock(NotCond, CurBB->getBasicBlock())) { 2633 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2634 !InvertCond); 2635 return; 2636 } 2637 2638 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2639 const Value *BOpOp0, *BOpOp1; 2640 // Compute the effective opcode for Cond, taking into account whether it needs 2641 // to be inverted, e.g. 2642 // and (not (or A, B)), C 2643 // gets lowered as 2644 // and (and (not A, not B), C) 2645 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2646 if (BOp) { 2647 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2648 ? Instruction::And 2649 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2650 ? Instruction::Or 2651 : (Instruction::BinaryOps)0); 2652 if (InvertCond) { 2653 if (BOpc == Instruction::And) 2654 BOpc = Instruction::Or; 2655 else if (BOpc == Instruction::Or) 2656 BOpc = Instruction::And; 2657 } 2658 } 2659 2660 // If this node is not part of the or/and tree, emit it as a branch. 2661 // Note that all nodes in the tree should have same opcode. 2662 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2663 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2664 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2665 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2666 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2667 TProb, FProb, InvertCond); 2668 return; 2669 } 2670 2671 // Create TmpBB after CurBB. 2672 MachineFunction::iterator BBI(CurBB); 2673 MachineFunction &MF = DAG.getMachineFunction(); 2674 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2675 CurBB->getParent()->insert(++BBI, TmpBB); 2676 2677 if (Opc == Instruction::Or) { 2678 // Codegen X | Y as: 2679 // BB1: 2680 // jmp_if_X TBB 2681 // jmp TmpBB 2682 // TmpBB: 2683 // jmp_if_Y TBB 2684 // jmp FBB 2685 // 2686 2687 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2688 // The requirement is that 2689 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2690 // = TrueProb for original BB. 2691 // Assuming the original probabilities are A and B, one choice is to set 2692 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2693 // A/(1+B) and 2B/(1+B). This choice assumes that 2694 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2695 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2696 // TmpBB, but the math is more complicated. 2697 2698 auto NewTrueProb = TProb / 2; 2699 auto NewFalseProb = TProb / 2 + FProb; 2700 // Emit the LHS condition. 2701 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2702 NewFalseProb, InvertCond); 2703 2704 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2705 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2706 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2707 // Emit the RHS condition into TmpBB. 2708 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2709 Probs[1], InvertCond); 2710 } else { 2711 assert(Opc == Instruction::And && "Unknown merge op!"); 2712 // Codegen X & Y as: 2713 // BB1: 2714 // jmp_if_X TmpBB 2715 // jmp FBB 2716 // TmpBB: 2717 // jmp_if_Y TBB 2718 // jmp FBB 2719 // 2720 // This requires creation of TmpBB after CurBB. 2721 2722 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2723 // The requirement is that 2724 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2725 // = FalseProb for original BB. 2726 // Assuming the original probabilities are A and B, one choice is to set 2727 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2728 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2729 // TrueProb for BB1 * FalseProb for TmpBB. 2730 2731 auto NewTrueProb = TProb + FProb / 2; 2732 auto NewFalseProb = FProb / 2; 2733 // Emit the LHS condition. 2734 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2735 NewFalseProb, InvertCond); 2736 2737 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2738 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2739 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2740 // Emit the RHS condition into TmpBB. 2741 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2742 Probs[1], InvertCond); 2743 } 2744 } 2745 2746 /// If the set of cases should be emitted as a series of branches, return true. 2747 /// If we should emit this as a bunch of and/or'd together conditions, return 2748 /// false. 2749 bool 2750 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2751 if (Cases.size() != 2) return true; 2752 2753 // If this is two comparisons of the same values or'd or and'd together, they 2754 // will get folded into a single comparison, so don't emit two blocks. 2755 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2756 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2757 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2758 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2759 return false; 2760 } 2761 2762 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2763 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2764 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2765 Cases[0].CC == Cases[1].CC && 2766 isa<Constant>(Cases[0].CmpRHS) && 2767 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2768 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2769 return false; 2770 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2771 return false; 2772 } 2773 2774 return true; 2775 } 2776 2777 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2778 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2779 2780 // Update machine-CFG edges. 2781 MachineBasicBlock *Succ0MBB = FuncInfo.getMBB(I.getSuccessor(0)); 2782 2783 if (I.isUnconditional()) { 2784 // Update machine-CFG edges. 2785 BrMBB->addSuccessor(Succ0MBB); 2786 2787 // If this is not a fall-through branch or optimizations are switched off, 2788 // emit the branch. 2789 if (Succ0MBB != NextBlock(BrMBB) || 2790 TM.getOptLevel() == CodeGenOptLevel::None) { 2791 auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2792 getControlRoot(), DAG.getBasicBlock(Succ0MBB)); 2793 setValue(&I, Br); 2794 DAG.setRoot(Br); 2795 } 2796 2797 return; 2798 } 2799 2800 // If this condition is one of the special cases we handle, do special stuff 2801 // now. 2802 const Value *CondVal = I.getCondition(); 2803 MachineBasicBlock *Succ1MBB = FuncInfo.getMBB(I.getSuccessor(1)); 2804 2805 // If this is a series of conditions that are or'd or and'd together, emit 2806 // this as a sequence of branches instead of setcc's with and/or operations. 2807 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2808 // unpredictable branches, and vector extracts because those jumps are likely 2809 // expensive for any target), this should improve performance. 2810 // For example, instead of something like: 2811 // cmp A, B 2812 // C = seteq 2813 // cmp D, E 2814 // F = setle 2815 // or C, F 2816 // jnz foo 2817 // Emit: 2818 // cmp A, B 2819 // je foo 2820 // cmp D, E 2821 // jle foo 2822 bool IsUnpredictable = I.hasMetadata(LLVMContext::MD_unpredictable); 2823 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2824 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2825 BOp->hasOneUse() && !IsUnpredictable) { 2826 Value *Vec; 2827 const Value *BOp0, *BOp1; 2828 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2829 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2830 Opcode = Instruction::And; 2831 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2832 Opcode = Instruction::Or; 2833 2834 if (Opcode && 2835 !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2836 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value()))) && 2837 !shouldKeepJumpConditionsTogether( 2838 FuncInfo, I, Opcode, BOp0, BOp1, 2839 DAG.getTargetLoweringInfo().getJumpConditionMergingParams( 2840 Opcode, BOp0, BOp1))) { 2841 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2842 getEdgeProbability(BrMBB, Succ0MBB), 2843 getEdgeProbability(BrMBB, Succ1MBB), 2844 /*InvertCond=*/false); 2845 // If the compares in later blocks need to use values not currently 2846 // exported from this block, export them now. This block should always 2847 // be the first entry. 2848 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2849 2850 // Allow some cases to be rejected. 2851 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2852 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2853 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2854 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2855 } 2856 2857 // Emit the branch for this block. 2858 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2859 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2860 return; 2861 } 2862 2863 // Okay, we decided not to do this, remove any inserted MBB's and clear 2864 // SwitchCases. 2865 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2866 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2867 2868 SL->SwitchCases.clear(); 2869 } 2870 } 2871 2872 // Create a CaseBlock record representing this branch. 2873 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2874 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc(), 2875 BranchProbability::getUnknown(), BranchProbability::getUnknown(), 2876 IsUnpredictable); 2877 2878 // Use visitSwitchCase to actually insert the fast branch sequence for this 2879 // cond branch. 2880 visitSwitchCase(CB, BrMBB); 2881 } 2882 2883 /// visitSwitchCase - Emits the necessary code to represent a single node in 2884 /// the binary search tree resulting from lowering a switch instruction. 2885 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2886 MachineBasicBlock *SwitchBB) { 2887 SDValue Cond; 2888 SDValue CondLHS = getValue(CB.CmpLHS); 2889 SDLoc dl = CB.DL; 2890 2891 if (CB.CC == ISD::SETTRUE) { 2892 // Branch or fall through to TrueBB. 2893 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2894 SwitchBB->normalizeSuccProbs(); 2895 if (CB.TrueBB != NextBlock(SwitchBB)) { 2896 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2897 DAG.getBasicBlock(CB.TrueBB))); 2898 } 2899 return; 2900 } 2901 2902 auto &TLI = DAG.getTargetLoweringInfo(); 2903 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2904 2905 // Build the setcc now. 2906 if (!CB.CmpMHS) { 2907 // Fold "(X == true)" to X and "(X == false)" to !X to 2908 // handle common cases produced by branch lowering. 2909 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2910 CB.CC == ISD::SETEQ) 2911 Cond = CondLHS; 2912 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2913 CB.CC == ISD::SETEQ) { 2914 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2915 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2916 } else { 2917 SDValue CondRHS = getValue(CB.CmpRHS); 2918 2919 // If a pointer's DAG type is larger than its memory type then the DAG 2920 // values are zero-extended. This breaks signed comparisons so truncate 2921 // back to the underlying type before doing the compare. 2922 if (CondLHS.getValueType() != MemVT) { 2923 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2924 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2925 } 2926 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2927 } 2928 } else { 2929 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2930 2931 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2932 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2933 2934 SDValue CmpOp = getValue(CB.CmpMHS); 2935 EVT VT = CmpOp.getValueType(); 2936 2937 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2938 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2939 ISD::SETLE); 2940 } else { 2941 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2942 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2943 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2944 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2945 } 2946 } 2947 2948 // Update successor info 2949 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2950 // TrueBB and FalseBB are always different unless the incoming IR is 2951 // degenerate. This only happens when running llc on weird IR. 2952 if (CB.TrueBB != CB.FalseBB) 2953 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2954 SwitchBB->normalizeSuccProbs(); 2955 2956 // If the lhs block is the next block, invert the condition so that we can 2957 // fall through to the lhs instead of the rhs block. 2958 if (CB.TrueBB == NextBlock(SwitchBB)) { 2959 std::swap(CB.TrueBB, CB.FalseBB); 2960 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2961 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2962 } 2963 2964 SDNodeFlags Flags; 2965 Flags.setUnpredictable(CB.IsUnpredictable); 2966 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, MVT::Other, getControlRoot(), 2967 Cond, DAG.getBasicBlock(CB.TrueBB), Flags); 2968 2969 setValue(CurInst, BrCond); 2970 2971 // Insert the false branch. Do this even if it's a fall through branch, 2972 // this makes it easier to do DAG optimizations which require inverting 2973 // the branch condition. 2974 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2975 DAG.getBasicBlock(CB.FalseBB)); 2976 2977 DAG.setRoot(BrCond); 2978 } 2979 2980 /// visitJumpTable - Emit JumpTable node in the current MBB 2981 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2982 // Emit the code for the jump table 2983 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2984 assert(JT.Reg && "Should lower JT Header first!"); 2985 EVT PTy = DAG.getTargetLoweringInfo().getJumpTableRegTy(DAG.getDataLayout()); 2986 SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy); 2987 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2988 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other, 2989 Index.getValue(1), Table, Index); 2990 DAG.setRoot(BrJumpTable); 2991 } 2992 2993 /// visitJumpTableHeader - This function emits necessary code to produce index 2994 /// in the JumpTable from switch case. 2995 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2996 JumpTableHeader &JTH, 2997 MachineBasicBlock *SwitchBB) { 2998 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2999 const SDLoc &dl = *JT.SL; 3000 3001 // Subtract the lowest switch case value from the value being switched on. 3002 SDValue SwitchOp = getValue(JTH.SValue); 3003 EVT VT = SwitchOp.getValueType(); 3004 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 3005 DAG.getConstant(JTH.First, dl, VT)); 3006 3007 // The SDNode we just created, which holds the value being switched on minus 3008 // the smallest case value, needs to be copied to a virtual register so it 3009 // can be used as an index into the jump table in a subsequent basic block. 3010 // This value may be smaller or larger than the target's pointer type, and 3011 // therefore require extension or truncating. 3012 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3013 SwitchOp = 3014 DAG.getZExtOrTrunc(Sub, dl, TLI.getJumpTableRegTy(DAG.getDataLayout())); 3015 3016 Register JumpTableReg = 3017 FuncInfo.CreateReg(TLI.getJumpTableRegTy(DAG.getDataLayout())); 3018 SDValue CopyTo = 3019 DAG.getCopyToReg(getControlRoot(), dl, JumpTableReg, SwitchOp); 3020 JT.Reg = JumpTableReg; 3021 3022 if (!JTH.FallthroughUnreachable) { 3023 // Emit the range check for the jump table, and branch to the default block 3024 // for the switch statement if the value being switched on exceeds the 3025 // largest case in the switch. 3026 SDValue CMP = DAG.getSetCC( 3027 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 3028 Sub.getValueType()), 3029 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 3030 3031 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 3032 MVT::Other, CopyTo, CMP, 3033 DAG.getBasicBlock(JT.Default)); 3034 3035 // Avoid emitting unnecessary branches to the next block. 3036 if (JT.MBB != NextBlock(SwitchBB)) 3037 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 3038 DAG.getBasicBlock(JT.MBB)); 3039 3040 DAG.setRoot(BrCond); 3041 } else { 3042 // Avoid emitting unnecessary branches to the next block. 3043 if (JT.MBB != NextBlock(SwitchBB)) 3044 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 3045 DAG.getBasicBlock(JT.MBB))); 3046 else 3047 DAG.setRoot(CopyTo); 3048 } 3049 } 3050 3051 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 3052 /// variable if there exists one. 3053 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 3054 SDValue &Chain) { 3055 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3056 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 3057 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 3058 MachineFunction &MF = DAG.getMachineFunction(); 3059 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 3060 MachineSDNode *Node = 3061 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 3062 if (Global) { 3063 MachinePointerInfo MPInfo(Global); 3064 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 3065 MachineMemOperand::MODereferenceable; 3066 MachineMemOperand *MemRef = MF.getMachineMemOperand( 3067 MPInfo, Flags, LocationSize::precise(PtrTy.getSizeInBits() / 8), 3068 DAG.getEVTAlign(PtrTy)); 3069 DAG.setNodeMemRefs(Node, {MemRef}); 3070 } 3071 if (PtrTy != PtrMemTy) 3072 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 3073 return SDValue(Node, 0); 3074 } 3075 3076 /// Codegen a new tail for a stack protector check ParentMBB which has had its 3077 /// tail spliced into a stack protector check success bb. 3078 /// 3079 /// For a high level explanation of how this fits into the stack protector 3080 /// generation see the comment on the declaration of class 3081 /// StackProtectorDescriptor. 3082 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 3083 MachineBasicBlock *ParentBB) { 3084 3085 // First create the loads to the guard/stack slot for the comparison. 3086 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3087 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 3088 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 3089 3090 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 3091 int FI = MFI.getStackProtectorIndex(); 3092 3093 SDValue Guard; 3094 SDLoc dl = getCurSDLoc(); 3095 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 3096 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 3097 Align Align = 3098 DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0)); 3099 3100 // Generate code to load the content of the guard slot. 3101 SDValue GuardVal = DAG.getLoad( 3102 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 3103 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 3104 MachineMemOperand::MOVolatile); 3105 3106 if (TLI.useStackGuardXorFP()) 3107 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 3108 3109 // Retrieve guard check function, nullptr if instrumentation is inlined. 3110 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 3111 // The target provides a guard check function to validate the guard value. 3112 // Generate a call to that function with the content of the guard slot as 3113 // argument. 3114 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 3115 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 3116 3117 TargetLowering::ArgListTy Args; 3118 TargetLowering::ArgListEntry Entry; 3119 Entry.Node = GuardVal; 3120 Entry.Ty = FnTy->getParamType(0); 3121 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 3122 Entry.IsInReg = true; 3123 Args.push_back(Entry); 3124 3125 TargetLowering::CallLoweringInfo CLI(DAG); 3126 CLI.setDebugLoc(getCurSDLoc()) 3127 .setChain(DAG.getEntryNode()) 3128 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 3129 getValue(GuardCheckFn), std::move(Args)); 3130 3131 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 3132 DAG.setRoot(Result.second); 3133 return; 3134 } 3135 3136 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 3137 // Otherwise, emit a volatile load to retrieve the stack guard value. 3138 SDValue Chain = DAG.getEntryNode(); 3139 if (TLI.useLoadStackGuardNode()) { 3140 Guard = getLoadStackGuard(DAG, dl, Chain); 3141 } else { 3142 const Value *IRGuard = TLI.getSDagStackGuard(M); 3143 SDValue GuardPtr = getValue(IRGuard); 3144 3145 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 3146 MachinePointerInfo(IRGuard, 0), Align, 3147 MachineMemOperand::MOVolatile); 3148 } 3149 3150 // Perform the comparison via a getsetcc. 3151 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 3152 *DAG.getContext(), 3153 Guard.getValueType()), 3154 Guard, GuardVal, ISD::SETNE); 3155 3156 // If the guard/stackslot do not equal, branch to failure MBB. 3157 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 3158 MVT::Other, GuardVal.getOperand(0), 3159 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 3160 // Otherwise branch to success MBB. 3161 SDValue Br = DAG.getNode(ISD::BR, dl, 3162 MVT::Other, BrCond, 3163 DAG.getBasicBlock(SPD.getSuccessMBB())); 3164 3165 DAG.setRoot(Br); 3166 } 3167 3168 /// Codegen the failure basic block for a stack protector check. 3169 /// 3170 /// A failure stack protector machine basic block consists simply of a call to 3171 /// __stack_chk_fail(). 3172 /// 3173 /// For a high level explanation of how this fits into the stack protector 3174 /// generation see the comment on the declaration of class 3175 /// StackProtectorDescriptor. 3176 void 3177 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 3178 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3179 TargetLowering::MakeLibCallOptions CallOptions; 3180 CallOptions.setDiscardResult(true); 3181 SDValue Chain = 3182 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 3183 std::nullopt, CallOptions, getCurSDLoc()) 3184 .second; 3185 // On PS4/PS5, the "return address" must still be within the calling 3186 // function, even if it's at the very end, so emit an explicit TRAP here. 3187 // Passing 'true' for doesNotReturn above won't generate the trap for us. 3188 if (TM.getTargetTriple().isPS()) 3189 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 3190 // WebAssembly needs an unreachable instruction after a non-returning call, 3191 // because the function return type can be different from __stack_chk_fail's 3192 // return type (void). 3193 if (TM.getTargetTriple().isWasm()) 3194 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 3195 3196 DAG.setRoot(Chain); 3197 } 3198 3199 /// visitBitTestHeader - This function emits necessary code to produce value 3200 /// suitable for "bit tests" 3201 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 3202 MachineBasicBlock *SwitchBB) { 3203 SDLoc dl = getCurSDLoc(); 3204 3205 // Subtract the minimum value. 3206 SDValue SwitchOp = getValue(B.SValue); 3207 EVT VT = SwitchOp.getValueType(); 3208 SDValue RangeSub = 3209 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 3210 3211 // Determine the type of the test operands. 3212 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3213 bool UsePtrType = false; 3214 if (!TLI.isTypeLegal(VT)) { 3215 UsePtrType = true; 3216 } else { 3217 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 3218 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 3219 // Switch table case range are encoded into series of masks. 3220 // Just use pointer type, it's guaranteed to fit. 3221 UsePtrType = true; 3222 break; 3223 } 3224 } 3225 SDValue Sub = RangeSub; 3226 if (UsePtrType) { 3227 VT = TLI.getPointerTy(DAG.getDataLayout()); 3228 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 3229 } 3230 3231 B.RegVT = VT.getSimpleVT(); 3232 B.Reg = FuncInfo.CreateReg(B.RegVT); 3233 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 3234 3235 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 3236 3237 if (!B.FallthroughUnreachable) 3238 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 3239 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 3240 SwitchBB->normalizeSuccProbs(); 3241 3242 SDValue Root = CopyTo; 3243 if (!B.FallthroughUnreachable) { 3244 // Conditional branch to the default block. 3245 SDValue RangeCmp = DAG.getSetCC(dl, 3246 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 3247 RangeSub.getValueType()), 3248 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 3249 ISD::SETUGT); 3250 3251 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 3252 DAG.getBasicBlock(B.Default)); 3253 } 3254 3255 // Avoid emitting unnecessary branches to the next block. 3256 if (MBB != NextBlock(SwitchBB)) 3257 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 3258 3259 DAG.setRoot(Root); 3260 } 3261 3262 /// visitBitTestCase - this function produces one "bit test" 3263 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 3264 MachineBasicBlock *NextMBB, 3265 BranchProbability BranchProbToNext, 3266 Register Reg, BitTestCase &B, 3267 MachineBasicBlock *SwitchBB) { 3268 SDLoc dl = getCurSDLoc(); 3269 MVT VT = BB.RegVT; 3270 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 3271 SDValue Cmp; 3272 unsigned PopCount = llvm::popcount(B.Mask); 3273 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3274 if (PopCount == 1) { 3275 // Testing for a single bit; just compare the shift count with what it 3276 // would need to be to shift a 1 bit in that position. 3277 Cmp = DAG.getSetCC( 3278 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3279 ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT), 3280 ISD::SETEQ); 3281 } else if (PopCount == BB.Range) { 3282 // There is only one zero bit in the range, test for it directly. 3283 Cmp = DAG.getSetCC( 3284 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3285 ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE); 3286 } else { 3287 // Make desired shift 3288 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 3289 DAG.getConstant(1, dl, VT), ShiftOp); 3290 3291 // Emit bit tests and jumps 3292 SDValue AndOp = DAG.getNode(ISD::AND, dl, 3293 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 3294 Cmp = DAG.getSetCC( 3295 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3296 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 3297 } 3298 3299 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 3300 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 3301 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 3302 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 3303 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 3304 // one as they are relative probabilities (and thus work more like weights), 3305 // and hence we need to normalize them to let the sum of them become one. 3306 SwitchBB->normalizeSuccProbs(); 3307 3308 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 3309 MVT::Other, getControlRoot(), 3310 Cmp, DAG.getBasicBlock(B.TargetBB)); 3311 3312 // Avoid emitting unnecessary branches to the next block. 3313 if (NextMBB != NextBlock(SwitchBB)) 3314 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 3315 DAG.getBasicBlock(NextMBB)); 3316 3317 DAG.setRoot(BrAnd); 3318 } 3319 3320 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 3321 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 3322 3323 // Retrieve successors. Look through artificial IR level blocks like 3324 // catchswitch for successors. 3325 MachineBasicBlock *Return = FuncInfo.getMBB(I.getSuccessor(0)); 3326 const BasicBlock *EHPadBB = I.getSuccessor(1); 3327 MachineBasicBlock *EHPadMBB = FuncInfo.getMBB(EHPadBB); 3328 3329 // Deopt and ptrauth bundles are lowered in helper functions, and we don't 3330 // have to do anything here to lower funclet bundles. 3331 assert(!I.hasOperandBundlesOtherThan( 3332 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 3333 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 3334 LLVMContext::OB_cfguardtarget, LLVMContext::OB_ptrauth, 3335 LLVMContext::OB_clang_arc_attachedcall}) && 3336 "Cannot lower invokes with arbitrary operand bundles yet!"); 3337 3338 const Value *Callee(I.getCalledOperand()); 3339 const Function *Fn = dyn_cast<Function>(Callee); 3340 if (isa<InlineAsm>(Callee)) 3341 visitInlineAsm(I, EHPadBB); 3342 else if (Fn && Fn->isIntrinsic()) { 3343 switch (Fn->getIntrinsicID()) { 3344 default: 3345 llvm_unreachable("Cannot invoke this intrinsic"); 3346 case Intrinsic::donothing: 3347 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 3348 case Intrinsic::seh_try_begin: 3349 case Intrinsic::seh_scope_begin: 3350 case Intrinsic::seh_try_end: 3351 case Intrinsic::seh_scope_end: 3352 if (EHPadMBB) 3353 // a block referenced by EH table 3354 // so dtor-funclet not removed by opts 3355 EHPadMBB->setMachineBlockAddressTaken(); 3356 break; 3357 case Intrinsic::experimental_patchpoint_void: 3358 case Intrinsic::experimental_patchpoint: 3359 visitPatchpoint(I, EHPadBB); 3360 break; 3361 case Intrinsic::experimental_gc_statepoint: 3362 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 3363 break; 3364 case Intrinsic::wasm_rethrow: { 3365 // This is usually done in visitTargetIntrinsic, but this intrinsic is 3366 // special because it can be invoked, so we manually lower it to a DAG 3367 // node here. 3368 SmallVector<SDValue, 8> Ops; 3369 Ops.push_back(getControlRoot()); // inchain for the terminator node 3370 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3371 Ops.push_back( 3372 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 3373 TLI.getPointerTy(DAG.getDataLayout()))); 3374 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 3375 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 3376 break; 3377 } 3378 } 3379 } else if (I.hasDeoptState()) { 3380 // Currently we do not lower any intrinsic calls with deopt operand bundles. 3381 // Eventually we will support lowering the @llvm.experimental.deoptimize 3382 // intrinsic, and right now there are no plans to support other intrinsics 3383 // with deopt state. 3384 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 3385 } else if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) { 3386 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), EHPadBB); 3387 } else { 3388 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 3389 } 3390 3391 // If the value of the invoke is used outside of its defining block, make it 3392 // available as a virtual register. 3393 // We already took care of the exported value for the statepoint instruction 3394 // during call to the LowerStatepoint. 3395 if (!isa<GCStatepointInst>(I)) { 3396 CopyToExportRegsIfNeeded(&I); 3397 } 3398 3399 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 3400 BranchProbabilityInfo *BPI = FuncInfo.BPI; 3401 BranchProbability EHPadBBProb = 3402 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 3403 : BranchProbability::getZero(); 3404 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3405 3406 // Update successor info. 3407 addSuccessorWithProb(InvokeMBB, Return); 3408 for (auto &UnwindDest : UnwindDests) { 3409 UnwindDest.first->setIsEHPad(); 3410 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3411 } 3412 InvokeMBB->normalizeSuccProbs(); 3413 3414 // Drop into normal successor. 3415 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3416 DAG.getBasicBlock(Return))); 3417 } 3418 3419 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3420 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3421 3422 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3423 // have to do anything here to lower funclet bundles. 3424 assert(!I.hasOperandBundlesOtherThan( 3425 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3426 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3427 3428 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3429 visitInlineAsm(I); 3430 CopyToExportRegsIfNeeded(&I); 3431 3432 // Retrieve successors. 3433 SmallPtrSet<BasicBlock *, 8> Dests; 3434 Dests.insert(I.getDefaultDest()); 3435 MachineBasicBlock *Return = FuncInfo.getMBB(I.getDefaultDest()); 3436 3437 // Update successor info. 3438 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3439 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3440 BasicBlock *Dest = I.getIndirectDest(i); 3441 MachineBasicBlock *Target = FuncInfo.getMBB(Dest); 3442 Target->setIsInlineAsmBrIndirectTarget(); 3443 Target->setMachineBlockAddressTaken(); 3444 Target->setLabelMustBeEmitted(); 3445 // Don't add duplicate machine successors. 3446 if (Dests.insert(Dest).second) 3447 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3448 } 3449 CallBrMBB->normalizeSuccProbs(); 3450 3451 // Drop into default successor. 3452 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3453 MVT::Other, getControlRoot(), 3454 DAG.getBasicBlock(Return))); 3455 } 3456 3457 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3458 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3459 } 3460 3461 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3462 assert(FuncInfo.MBB->isEHPad() && 3463 "Call to landingpad not in landing pad!"); 3464 3465 // If there aren't registers to copy the values into (e.g., during SjLj 3466 // exceptions), then don't bother to create these DAG nodes. 3467 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3468 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3469 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3470 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3471 return; 3472 3473 // If landingpad's return type is token type, we don't create DAG nodes 3474 // for its exception pointer and selector value. The extraction of exception 3475 // pointer or selector value from token type landingpads is not currently 3476 // supported. 3477 if (LP.getType()->isTokenTy()) 3478 return; 3479 3480 SmallVector<EVT, 2> ValueVTs; 3481 SDLoc dl = getCurSDLoc(); 3482 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3483 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3484 3485 // Get the two live-in registers as SDValues. The physregs have already been 3486 // copied into virtual registers. 3487 SDValue Ops[2]; 3488 if (FuncInfo.ExceptionPointerVirtReg) { 3489 Ops[0] = DAG.getZExtOrTrunc( 3490 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3491 FuncInfo.ExceptionPointerVirtReg, 3492 TLI.getPointerTy(DAG.getDataLayout())), 3493 dl, ValueVTs[0]); 3494 } else { 3495 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3496 } 3497 Ops[1] = DAG.getZExtOrTrunc( 3498 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3499 FuncInfo.ExceptionSelectorVirtReg, 3500 TLI.getPointerTy(DAG.getDataLayout())), 3501 dl, ValueVTs[1]); 3502 3503 // Merge into one. 3504 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3505 DAG.getVTList(ValueVTs), Ops); 3506 setValue(&LP, Res); 3507 } 3508 3509 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3510 MachineBasicBlock *Last) { 3511 // Update JTCases. 3512 for (JumpTableBlock &JTB : SL->JTCases) 3513 if (JTB.first.HeaderBB == First) 3514 JTB.first.HeaderBB = Last; 3515 3516 // Update BitTestCases. 3517 for (BitTestBlock &BTB : SL->BitTestCases) 3518 if (BTB.Parent == First) 3519 BTB.Parent = Last; 3520 } 3521 3522 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3523 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3524 3525 // Update machine-CFG edges with unique successors. 3526 SmallSet<BasicBlock*, 32> Done; 3527 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3528 BasicBlock *BB = I.getSuccessor(i); 3529 bool Inserted = Done.insert(BB).second; 3530 if (!Inserted) 3531 continue; 3532 3533 MachineBasicBlock *Succ = FuncInfo.getMBB(BB); 3534 addSuccessorWithProb(IndirectBrMBB, Succ); 3535 } 3536 IndirectBrMBB->normalizeSuccProbs(); 3537 3538 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3539 MVT::Other, getControlRoot(), 3540 getValue(I.getAddress()))); 3541 } 3542 3543 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3544 if (!DAG.getTarget().Options.TrapUnreachable) 3545 return; 3546 3547 // We may be able to ignore unreachable behind a noreturn call. 3548 if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode()); 3549 Call && Call->doesNotReturn()) { 3550 if (DAG.getTarget().Options.NoTrapAfterNoreturn) 3551 return; 3552 // Do not emit an additional trap instruction. 3553 if (Call->isNonContinuableTrap()) 3554 return; 3555 } 3556 3557 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3558 } 3559 3560 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3561 SDNodeFlags Flags; 3562 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3563 Flags.copyFMF(*FPOp); 3564 3565 SDValue Op = getValue(I.getOperand(0)); 3566 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3567 Op, Flags); 3568 setValue(&I, UnNodeValue); 3569 } 3570 3571 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3572 SDNodeFlags Flags; 3573 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3574 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3575 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3576 } 3577 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3578 Flags.setExact(ExactOp->isExact()); 3579 if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I)) 3580 Flags.setDisjoint(DisjointOp->isDisjoint()); 3581 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3582 Flags.copyFMF(*FPOp); 3583 3584 SDValue Op1 = getValue(I.getOperand(0)); 3585 SDValue Op2 = getValue(I.getOperand(1)); 3586 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3587 Op1, Op2, Flags); 3588 setValue(&I, BinNodeValue); 3589 } 3590 3591 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3592 SDValue Op1 = getValue(I.getOperand(0)); 3593 SDValue Op2 = getValue(I.getOperand(1)); 3594 3595 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3596 Op1.getValueType(), DAG.getDataLayout()); 3597 3598 // Coerce the shift amount to the right type if we can. This exposes the 3599 // truncate or zext to optimization early. 3600 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3601 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3602 "Unexpected shift type"); 3603 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3604 } 3605 3606 bool nuw = false; 3607 bool nsw = false; 3608 bool exact = false; 3609 3610 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3611 3612 if (const OverflowingBinaryOperator *OFBinOp = 3613 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3614 nuw = OFBinOp->hasNoUnsignedWrap(); 3615 nsw = OFBinOp->hasNoSignedWrap(); 3616 } 3617 if (const PossiblyExactOperator *ExactOp = 3618 dyn_cast<const PossiblyExactOperator>(&I)) 3619 exact = ExactOp->isExact(); 3620 } 3621 SDNodeFlags Flags; 3622 Flags.setExact(exact); 3623 Flags.setNoSignedWrap(nsw); 3624 Flags.setNoUnsignedWrap(nuw); 3625 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3626 Flags); 3627 setValue(&I, Res); 3628 } 3629 3630 void SelectionDAGBuilder::visitSDiv(const User &I) { 3631 SDValue Op1 = getValue(I.getOperand(0)); 3632 SDValue Op2 = getValue(I.getOperand(1)); 3633 3634 SDNodeFlags Flags; 3635 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3636 cast<PossiblyExactOperator>(&I)->isExact()); 3637 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3638 Op2, Flags)); 3639 } 3640 3641 void SelectionDAGBuilder::visitICmp(const ICmpInst &I) { 3642 ICmpInst::Predicate predicate = I.getPredicate(); 3643 SDValue Op1 = getValue(I.getOperand(0)); 3644 SDValue Op2 = getValue(I.getOperand(1)); 3645 ISD::CondCode Opcode = getICmpCondCode(predicate); 3646 3647 auto &TLI = DAG.getTargetLoweringInfo(); 3648 EVT MemVT = 3649 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3650 3651 // If a pointer's DAG type is larger than its memory type then the DAG values 3652 // are zero-extended. This breaks signed comparisons so truncate back to the 3653 // underlying type before doing the compare. 3654 if (Op1.getValueType() != MemVT) { 3655 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3656 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3657 } 3658 3659 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3660 I.getType()); 3661 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3662 } 3663 3664 void SelectionDAGBuilder::visitFCmp(const FCmpInst &I) { 3665 FCmpInst::Predicate predicate = I.getPredicate(); 3666 SDValue Op1 = getValue(I.getOperand(0)); 3667 SDValue Op2 = getValue(I.getOperand(1)); 3668 3669 ISD::CondCode Condition = getFCmpCondCode(predicate); 3670 auto *FPMO = cast<FPMathOperator>(&I); 3671 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3672 Condition = getFCmpCodeWithoutNaN(Condition); 3673 3674 SDNodeFlags Flags; 3675 Flags.copyFMF(*FPMO); 3676 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3677 3678 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3679 I.getType()); 3680 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3681 } 3682 3683 // Check if the condition of the select has one use or two users that are both 3684 // selects with the same condition. 3685 static bool hasOnlySelectUsers(const Value *Cond) { 3686 return llvm::all_of(Cond->users(), [](const Value *V) { 3687 return isa<SelectInst>(V); 3688 }); 3689 } 3690 3691 void SelectionDAGBuilder::visitSelect(const User &I) { 3692 SmallVector<EVT, 4> ValueVTs; 3693 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3694 ValueVTs); 3695 unsigned NumValues = ValueVTs.size(); 3696 if (NumValues == 0) return; 3697 3698 SmallVector<SDValue, 4> Values(NumValues); 3699 SDValue Cond = getValue(I.getOperand(0)); 3700 SDValue LHSVal = getValue(I.getOperand(1)); 3701 SDValue RHSVal = getValue(I.getOperand(2)); 3702 SmallVector<SDValue, 1> BaseOps(1, Cond); 3703 ISD::NodeType OpCode = 3704 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3705 3706 bool IsUnaryAbs = false; 3707 bool Negate = false; 3708 3709 SDNodeFlags Flags; 3710 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3711 Flags.copyFMF(*FPOp); 3712 3713 Flags.setUnpredictable( 3714 cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable)); 3715 3716 // Min/max matching is only viable if all output VTs are the same. 3717 if (all_equal(ValueVTs)) { 3718 EVT VT = ValueVTs[0]; 3719 LLVMContext &Ctx = *DAG.getContext(); 3720 auto &TLI = DAG.getTargetLoweringInfo(); 3721 3722 // We care about the legality of the operation after it has been type 3723 // legalized. 3724 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3725 VT = TLI.getTypeToTransformTo(Ctx, VT); 3726 3727 // If the vselect is legal, assume we want to leave this as a vector setcc + 3728 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3729 // min/max is legal on the scalar type. 3730 bool UseScalarMinMax = VT.isVector() && 3731 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3732 3733 // ValueTracking's select pattern matching does not account for -0.0, 3734 // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that 3735 // -0.0 is less than +0.0. 3736 const Value *LHS, *RHS; 3737 auto SPR = matchSelectPattern(&I, LHS, RHS); 3738 ISD::NodeType Opc = ISD::DELETED_NODE; 3739 switch (SPR.Flavor) { 3740 case SPF_UMAX: Opc = ISD::UMAX; break; 3741 case SPF_UMIN: Opc = ISD::UMIN; break; 3742 case SPF_SMAX: Opc = ISD::SMAX; break; 3743 case SPF_SMIN: Opc = ISD::SMIN; break; 3744 case SPF_FMINNUM: 3745 switch (SPR.NaNBehavior) { 3746 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3747 case SPNB_RETURNS_NAN: break; 3748 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3749 case SPNB_RETURNS_ANY: 3750 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) || 3751 (UseScalarMinMax && 3752 TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()))) 3753 Opc = ISD::FMINNUM; 3754 break; 3755 } 3756 break; 3757 case SPF_FMAXNUM: 3758 switch (SPR.NaNBehavior) { 3759 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3760 case SPNB_RETURNS_NAN: break; 3761 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3762 case SPNB_RETURNS_ANY: 3763 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) || 3764 (UseScalarMinMax && 3765 TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()))) 3766 Opc = ISD::FMAXNUM; 3767 break; 3768 } 3769 break; 3770 case SPF_NABS: 3771 Negate = true; 3772 [[fallthrough]]; 3773 case SPF_ABS: 3774 IsUnaryAbs = true; 3775 Opc = ISD::ABS; 3776 break; 3777 default: break; 3778 } 3779 3780 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3781 (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) || 3782 (UseScalarMinMax && 3783 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3784 // If the underlying comparison instruction is used by any other 3785 // instruction, the consumed instructions won't be destroyed, so it is 3786 // not profitable to convert to a min/max. 3787 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3788 OpCode = Opc; 3789 LHSVal = getValue(LHS); 3790 RHSVal = getValue(RHS); 3791 BaseOps.clear(); 3792 } 3793 3794 if (IsUnaryAbs) { 3795 OpCode = Opc; 3796 LHSVal = getValue(LHS); 3797 BaseOps.clear(); 3798 } 3799 } 3800 3801 if (IsUnaryAbs) { 3802 for (unsigned i = 0; i != NumValues; ++i) { 3803 SDLoc dl = getCurSDLoc(); 3804 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3805 Values[i] = 3806 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3807 if (Negate) 3808 Values[i] = DAG.getNegative(Values[i], dl, VT); 3809 } 3810 } else { 3811 for (unsigned i = 0; i != NumValues; ++i) { 3812 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3813 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3814 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3815 Values[i] = DAG.getNode( 3816 OpCode, getCurSDLoc(), 3817 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3818 } 3819 } 3820 3821 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3822 DAG.getVTList(ValueVTs), Values)); 3823 } 3824 3825 void SelectionDAGBuilder::visitTrunc(const User &I) { 3826 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3827 SDValue N = getValue(I.getOperand(0)); 3828 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3829 I.getType()); 3830 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3831 } 3832 3833 void SelectionDAGBuilder::visitZExt(const User &I) { 3834 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3835 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3836 SDValue N = getValue(I.getOperand(0)); 3837 auto &TLI = DAG.getTargetLoweringInfo(); 3838 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3839 3840 SDNodeFlags Flags; 3841 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3842 Flags.setNonNeg(PNI->hasNonNeg()); 3843 3844 // Eagerly use nonneg information to canonicalize towards sign_extend if 3845 // that is the target's preference. 3846 // TODO: Let the target do this later. 3847 if (Flags.hasNonNeg() && 3848 TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) { 3849 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3850 return; 3851 } 3852 3853 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags)); 3854 } 3855 3856 void SelectionDAGBuilder::visitSExt(const User &I) { 3857 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3858 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3859 SDValue N = getValue(I.getOperand(0)); 3860 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3861 I.getType()); 3862 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3863 } 3864 3865 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3866 // FPTrunc is never a no-op cast, no need to check 3867 SDValue N = getValue(I.getOperand(0)); 3868 SDLoc dl = getCurSDLoc(); 3869 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3870 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3871 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3872 DAG.getTargetConstant( 3873 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3874 } 3875 3876 void SelectionDAGBuilder::visitFPExt(const User &I) { 3877 // FPExt is never a no-op cast, no need to check 3878 SDValue N = getValue(I.getOperand(0)); 3879 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3880 I.getType()); 3881 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3882 } 3883 3884 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3885 // FPToUI is never a no-op cast, no need to check 3886 SDValue N = getValue(I.getOperand(0)); 3887 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3888 I.getType()); 3889 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3890 } 3891 3892 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3893 // FPToSI is never a no-op cast, no need to check 3894 SDValue N = getValue(I.getOperand(0)); 3895 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3896 I.getType()); 3897 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3898 } 3899 3900 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3901 // UIToFP is never a no-op cast, no need to check 3902 SDValue N = getValue(I.getOperand(0)); 3903 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3904 I.getType()); 3905 SDNodeFlags Flags; 3906 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3907 Flags.setNonNeg(PNI->hasNonNeg()); 3908 3909 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N, Flags)); 3910 } 3911 3912 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3913 // SIToFP is never a no-op cast, no need to check 3914 SDValue N = getValue(I.getOperand(0)); 3915 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3916 I.getType()); 3917 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3918 } 3919 3920 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3921 // What to do depends on the size of the integer and the size of the pointer. 3922 // We can either truncate, zero extend, or no-op, accordingly. 3923 SDValue N = getValue(I.getOperand(0)); 3924 auto &TLI = DAG.getTargetLoweringInfo(); 3925 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3926 I.getType()); 3927 EVT PtrMemVT = 3928 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3929 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3930 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3931 setValue(&I, N); 3932 } 3933 3934 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3935 // What to do depends on the size of the integer and the size of the pointer. 3936 // We can either truncate, zero extend, or no-op, accordingly. 3937 SDValue N = getValue(I.getOperand(0)); 3938 auto &TLI = DAG.getTargetLoweringInfo(); 3939 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3940 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3941 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3942 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3943 setValue(&I, N); 3944 } 3945 3946 void SelectionDAGBuilder::visitBitCast(const User &I) { 3947 SDValue N = getValue(I.getOperand(0)); 3948 SDLoc dl = getCurSDLoc(); 3949 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3950 I.getType()); 3951 3952 // BitCast assures us that source and destination are the same size so this is 3953 // either a BITCAST or a no-op. 3954 if (DestVT != N.getValueType()) 3955 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3956 DestVT, N)); // convert types. 3957 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3958 // might fold any kind of constant expression to an integer constant and that 3959 // is not what we are looking for. Only recognize a bitcast of a genuine 3960 // constant integer as an opaque constant. 3961 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3962 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3963 /*isOpaque*/true)); 3964 else 3965 setValue(&I, N); // noop cast. 3966 } 3967 3968 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3969 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3970 const Value *SV = I.getOperand(0); 3971 SDValue N = getValue(SV); 3972 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3973 3974 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3975 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3976 3977 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3978 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3979 3980 setValue(&I, N); 3981 } 3982 3983 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3984 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3985 SDValue InVec = getValue(I.getOperand(0)); 3986 SDValue InVal = getValue(I.getOperand(1)); 3987 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3988 TLI.getVectorIdxTy(DAG.getDataLayout())); 3989 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3990 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3991 InVec, InVal, InIdx)); 3992 } 3993 3994 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3995 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3996 SDValue InVec = getValue(I.getOperand(0)); 3997 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3998 TLI.getVectorIdxTy(DAG.getDataLayout())); 3999 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 4000 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4001 InVec, InIdx)); 4002 } 4003 4004 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 4005 SDValue Src1 = getValue(I.getOperand(0)); 4006 SDValue Src2 = getValue(I.getOperand(1)); 4007 ArrayRef<int> Mask; 4008 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 4009 Mask = SVI->getShuffleMask(); 4010 else 4011 Mask = cast<ConstantExpr>(I).getShuffleMask(); 4012 SDLoc DL = getCurSDLoc(); 4013 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4014 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4015 EVT SrcVT = Src1.getValueType(); 4016 4017 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 4018 VT.isScalableVector()) { 4019 // Canonical splat form of first element of first input vector. 4020 SDValue FirstElt = 4021 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 4022 DAG.getVectorIdxConstant(0, DL)); 4023 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 4024 return; 4025 } 4026 4027 // For now, we only handle splats for scalable vectors. 4028 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 4029 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 4030 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 4031 4032 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 4033 unsigned MaskNumElts = Mask.size(); 4034 4035 if (SrcNumElts == MaskNumElts) { 4036 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 4037 return; 4038 } 4039 4040 // Normalize the shuffle vector since mask and vector length don't match. 4041 if (SrcNumElts < MaskNumElts) { 4042 // Mask is longer than the source vectors. We can use concatenate vector to 4043 // make the mask and vectors lengths match. 4044 4045 if (MaskNumElts % SrcNumElts == 0) { 4046 // Mask length is a multiple of the source vector length. 4047 // Check if the shuffle is some kind of concatenation of the input 4048 // vectors. 4049 unsigned NumConcat = MaskNumElts / SrcNumElts; 4050 bool IsConcat = true; 4051 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 4052 for (unsigned i = 0; i != MaskNumElts; ++i) { 4053 int Idx = Mask[i]; 4054 if (Idx < 0) 4055 continue; 4056 // Ensure the indices in each SrcVT sized piece are sequential and that 4057 // the same source is used for the whole piece. 4058 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 4059 (ConcatSrcs[i / SrcNumElts] >= 0 && 4060 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 4061 IsConcat = false; 4062 break; 4063 } 4064 // Remember which source this index came from. 4065 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 4066 } 4067 4068 // The shuffle is concatenating multiple vectors together. Just emit 4069 // a CONCAT_VECTORS operation. 4070 if (IsConcat) { 4071 SmallVector<SDValue, 8> ConcatOps; 4072 for (auto Src : ConcatSrcs) { 4073 if (Src < 0) 4074 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 4075 else if (Src == 0) 4076 ConcatOps.push_back(Src1); 4077 else 4078 ConcatOps.push_back(Src2); 4079 } 4080 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 4081 return; 4082 } 4083 } 4084 4085 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 4086 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 4087 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 4088 PaddedMaskNumElts); 4089 4090 // Pad both vectors with undefs to make them the same length as the mask. 4091 SDValue UndefVal = DAG.getUNDEF(SrcVT); 4092 4093 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 4094 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 4095 MOps1[0] = Src1; 4096 MOps2[0] = Src2; 4097 4098 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 4099 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 4100 4101 // Readjust mask for new input vector length. 4102 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 4103 for (unsigned i = 0; i != MaskNumElts; ++i) { 4104 int Idx = Mask[i]; 4105 if (Idx >= (int)SrcNumElts) 4106 Idx -= SrcNumElts - PaddedMaskNumElts; 4107 MappedOps[i] = Idx; 4108 } 4109 4110 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 4111 4112 // If the concatenated vector was padded, extract a subvector with the 4113 // correct number of elements. 4114 if (MaskNumElts != PaddedMaskNumElts) 4115 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 4116 DAG.getVectorIdxConstant(0, DL)); 4117 4118 setValue(&I, Result); 4119 return; 4120 } 4121 4122 if (SrcNumElts > MaskNumElts) { 4123 // Analyze the access pattern of the vector to see if we can extract 4124 // two subvectors and do the shuffle. 4125 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 4126 bool CanExtract = true; 4127 for (int Idx : Mask) { 4128 unsigned Input = 0; 4129 if (Idx < 0) 4130 continue; 4131 4132 if (Idx >= (int)SrcNumElts) { 4133 Input = 1; 4134 Idx -= SrcNumElts; 4135 } 4136 4137 // If all the indices come from the same MaskNumElts sized portion of 4138 // the sources we can use extract. Also make sure the extract wouldn't 4139 // extract past the end of the source. 4140 int NewStartIdx = alignDown(Idx, MaskNumElts); 4141 if (NewStartIdx + MaskNumElts > SrcNumElts || 4142 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 4143 CanExtract = false; 4144 // Make sure we always update StartIdx as we use it to track if all 4145 // elements are undef. 4146 StartIdx[Input] = NewStartIdx; 4147 } 4148 4149 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 4150 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 4151 return; 4152 } 4153 if (CanExtract) { 4154 // Extract appropriate subvector and generate a vector shuffle 4155 for (unsigned Input = 0; Input < 2; ++Input) { 4156 SDValue &Src = Input == 0 ? Src1 : Src2; 4157 if (StartIdx[Input] < 0) 4158 Src = DAG.getUNDEF(VT); 4159 else { 4160 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 4161 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 4162 } 4163 } 4164 4165 // Calculate new mask. 4166 SmallVector<int, 8> MappedOps(Mask); 4167 for (int &Idx : MappedOps) { 4168 if (Idx >= (int)SrcNumElts) 4169 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 4170 else if (Idx >= 0) 4171 Idx -= StartIdx[0]; 4172 } 4173 4174 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 4175 return; 4176 } 4177 } 4178 4179 // We can't use either concat vectors or extract subvectors so fall back to 4180 // replacing the shuffle with extract and build vector. 4181 // to insert and build vector. 4182 EVT EltVT = VT.getVectorElementType(); 4183 SmallVector<SDValue,8> Ops; 4184 for (int Idx : Mask) { 4185 SDValue Res; 4186 4187 if (Idx < 0) { 4188 Res = DAG.getUNDEF(EltVT); 4189 } else { 4190 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 4191 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 4192 4193 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 4194 DAG.getVectorIdxConstant(Idx, DL)); 4195 } 4196 4197 Ops.push_back(Res); 4198 } 4199 4200 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 4201 } 4202 4203 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 4204 ArrayRef<unsigned> Indices = I.getIndices(); 4205 const Value *Op0 = I.getOperand(0); 4206 const Value *Op1 = I.getOperand(1); 4207 Type *AggTy = I.getType(); 4208 Type *ValTy = Op1->getType(); 4209 bool IntoUndef = isa<UndefValue>(Op0); 4210 bool FromUndef = isa<UndefValue>(Op1); 4211 4212 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4213 4214 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4215 SmallVector<EVT, 4> AggValueVTs; 4216 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 4217 SmallVector<EVT, 4> ValValueVTs; 4218 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4219 4220 unsigned NumAggValues = AggValueVTs.size(); 4221 unsigned NumValValues = ValValueVTs.size(); 4222 SmallVector<SDValue, 4> Values(NumAggValues); 4223 4224 // Ignore an insertvalue that produces an empty object 4225 if (!NumAggValues) { 4226 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4227 return; 4228 } 4229 4230 SDValue Agg = getValue(Op0); 4231 unsigned i = 0; 4232 // Copy the beginning value(s) from the original aggregate. 4233 for (; i != LinearIndex; ++i) 4234 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4235 SDValue(Agg.getNode(), Agg.getResNo() + i); 4236 // Copy values from the inserted value(s). 4237 if (NumValValues) { 4238 SDValue Val = getValue(Op1); 4239 for (; i != LinearIndex + NumValValues; ++i) 4240 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4241 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 4242 } 4243 // Copy remaining value(s) from the original aggregate. 4244 for (; i != NumAggValues; ++i) 4245 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4246 SDValue(Agg.getNode(), Agg.getResNo() + i); 4247 4248 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4249 DAG.getVTList(AggValueVTs), Values)); 4250 } 4251 4252 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 4253 ArrayRef<unsigned> Indices = I.getIndices(); 4254 const Value *Op0 = I.getOperand(0); 4255 Type *AggTy = Op0->getType(); 4256 Type *ValTy = I.getType(); 4257 bool OutOfUndef = isa<UndefValue>(Op0); 4258 4259 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4260 4261 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4262 SmallVector<EVT, 4> ValValueVTs; 4263 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4264 4265 unsigned NumValValues = ValValueVTs.size(); 4266 4267 // Ignore a extractvalue that produces an empty object 4268 if (!NumValValues) { 4269 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4270 return; 4271 } 4272 4273 SmallVector<SDValue, 4> Values(NumValValues); 4274 4275 SDValue Agg = getValue(Op0); 4276 // Copy out the selected value(s). 4277 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 4278 Values[i - LinearIndex] = 4279 OutOfUndef ? 4280 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 4281 SDValue(Agg.getNode(), Agg.getResNo() + i); 4282 4283 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4284 DAG.getVTList(ValValueVTs), Values)); 4285 } 4286 4287 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 4288 Value *Op0 = I.getOperand(0); 4289 // Note that the pointer operand may be a vector of pointers. Take the scalar 4290 // element which holds a pointer. 4291 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 4292 SDValue N = getValue(Op0); 4293 SDLoc dl = getCurSDLoc(); 4294 auto &TLI = DAG.getTargetLoweringInfo(); 4295 GEPNoWrapFlags NW = cast<GEPOperator>(I).getNoWrapFlags(); 4296 4297 // Normalize Vector GEP - all scalar operands should be converted to the 4298 // splat vector. 4299 bool IsVectorGEP = I.getType()->isVectorTy(); 4300 ElementCount VectorElementCount = 4301 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 4302 : ElementCount::getFixed(0); 4303 4304 if (IsVectorGEP && !N.getValueType().isVector()) { 4305 LLVMContext &Context = *DAG.getContext(); 4306 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 4307 N = DAG.getSplat(VT, dl, N); 4308 } 4309 4310 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 4311 GTI != E; ++GTI) { 4312 const Value *Idx = GTI.getOperand(); 4313 if (StructType *StTy = GTI.getStructTypeOrNull()) { 4314 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 4315 if (Field) { 4316 // N = N + Offset 4317 uint64_t Offset = 4318 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 4319 4320 // In an inbounds GEP with an offset that is nonnegative even when 4321 // interpreted as signed, assume there is no unsigned overflow. 4322 SDNodeFlags Flags; 4323 if (NW.hasNoUnsignedWrap() || 4324 (int64_t(Offset) >= 0 && NW.hasNoUnsignedSignedWrap())) 4325 Flags.setNoUnsignedWrap(true); 4326 4327 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 4328 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 4329 } 4330 } else { 4331 // IdxSize is the width of the arithmetic according to IR semantics. 4332 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 4333 // (and fix up the result later). 4334 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 4335 MVT IdxTy = MVT::getIntegerVT(IdxSize); 4336 TypeSize ElementSize = 4337 GTI.getSequentialElementStride(DAG.getDataLayout()); 4338 // We intentionally mask away the high bits here; ElementSize may not 4339 // fit in IdxTy. 4340 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue()); 4341 bool ElementScalable = ElementSize.isScalable(); 4342 4343 // If this is a scalar constant or a splat vector of constants, 4344 // handle it quickly. 4345 const auto *C = dyn_cast<Constant>(Idx); 4346 if (C && isa<VectorType>(C->getType())) 4347 C = C->getSplatValue(); 4348 4349 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 4350 if (CI && CI->isZero()) 4351 continue; 4352 if (CI && !ElementScalable) { 4353 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 4354 LLVMContext &Context = *DAG.getContext(); 4355 SDValue OffsVal; 4356 if (IsVectorGEP) 4357 OffsVal = DAG.getConstant( 4358 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 4359 else 4360 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 4361 4362 // In an inbounds GEP with an offset that is nonnegative even when 4363 // interpreted as signed, assume there is no unsigned overflow. 4364 SDNodeFlags Flags; 4365 if (NW.hasNoUnsignedWrap() || 4366 (Offs.isNonNegative() && NW.hasNoUnsignedSignedWrap())) 4367 Flags.setNoUnsignedWrap(true); 4368 4369 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 4370 4371 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 4372 continue; 4373 } 4374 4375 // N = N + Idx * ElementMul; 4376 SDValue IdxN = getValue(Idx); 4377 4378 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 4379 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 4380 VectorElementCount); 4381 IdxN = DAG.getSplat(VT, dl, IdxN); 4382 } 4383 4384 // If the index is smaller or larger than intptr_t, truncate or extend 4385 // it. 4386 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 4387 4388 if (ElementScalable) { 4389 EVT VScaleTy = N.getValueType().getScalarType(); 4390 SDValue VScale = DAG.getNode( 4391 ISD::VSCALE, dl, VScaleTy, 4392 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 4393 if (IsVectorGEP) 4394 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 4395 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 4396 } else { 4397 // If this is a multiply by a power of two, turn it into a shl 4398 // immediately. This is a very common case. 4399 if (ElementMul != 1) { 4400 if (ElementMul.isPowerOf2()) { 4401 unsigned Amt = ElementMul.logBase2(); 4402 IdxN = DAG.getNode(ISD::SHL, dl, 4403 N.getValueType(), IdxN, 4404 DAG.getConstant(Amt, dl, IdxN.getValueType())); 4405 } else { 4406 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 4407 IdxN.getValueType()); 4408 IdxN = DAG.getNode(ISD::MUL, dl, 4409 N.getValueType(), IdxN, Scale); 4410 } 4411 } 4412 } 4413 4414 N = DAG.getNode(ISD::ADD, dl, 4415 N.getValueType(), N, IdxN); 4416 } 4417 } 4418 4419 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4420 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4421 if (IsVectorGEP) { 4422 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4423 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4424 } 4425 4426 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4427 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4428 4429 setValue(&I, N); 4430 } 4431 4432 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4433 // If this is a fixed sized alloca in the entry block of the function, 4434 // allocate it statically on the stack. 4435 if (FuncInfo.StaticAllocaMap.count(&I)) 4436 return; // getValue will auto-populate this. 4437 4438 SDLoc dl = getCurSDLoc(); 4439 Type *Ty = I.getAllocatedType(); 4440 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4441 auto &DL = DAG.getDataLayout(); 4442 TypeSize TySize = DL.getTypeAllocSize(Ty); 4443 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4444 4445 SDValue AllocSize = getValue(I.getArraySize()); 4446 4447 EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace()); 4448 if (AllocSize.getValueType() != IntPtr) 4449 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4450 4451 if (TySize.isScalable()) 4452 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4453 DAG.getVScale(dl, IntPtr, 4454 APInt(IntPtr.getScalarSizeInBits(), 4455 TySize.getKnownMinValue()))); 4456 else { 4457 SDValue TySizeValue = 4458 DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64)); 4459 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4460 DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr)); 4461 } 4462 4463 // Handle alignment. If the requested alignment is less than or equal to 4464 // the stack alignment, ignore it. If the size is greater than or equal to 4465 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4466 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4467 if (*Alignment <= StackAlign) 4468 Alignment = std::nullopt; 4469 4470 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4471 // Round the size of the allocation up to the stack alignment size 4472 // by add SA-1 to the size. This doesn't overflow because we're computing 4473 // an address inside an alloca. 4474 SDNodeFlags Flags; 4475 Flags.setNoUnsignedWrap(true); 4476 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4477 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4478 4479 // Mask out the low bits for alignment purposes. 4480 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4481 DAG.getSignedConstant(~StackAlignMask, dl, IntPtr)); 4482 4483 SDValue Ops[] = { 4484 getRoot(), AllocSize, 4485 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4486 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4487 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4488 setValue(&I, DSA); 4489 DAG.setRoot(DSA.getValue(1)); 4490 4491 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4492 } 4493 4494 static const MDNode *getRangeMetadata(const Instruction &I) { 4495 // If !noundef is not present, then !range violation results in a poison 4496 // value rather than immediate undefined behavior. In theory, transferring 4497 // these annotations to SDAG is fine, but in practice there are key SDAG 4498 // transforms that are known not to be poison-safe, such as folding logical 4499 // and/or to bitwise and/or. For now, only transfer !range if !noundef is 4500 // also present. 4501 if (!I.hasMetadata(LLVMContext::MD_noundef)) 4502 return nullptr; 4503 return I.getMetadata(LLVMContext::MD_range); 4504 } 4505 4506 static std::optional<ConstantRange> getRange(const Instruction &I) { 4507 if (const auto *CB = dyn_cast<CallBase>(&I)) { 4508 // see comment in getRangeMetadata about this check 4509 if (CB->hasRetAttr(Attribute::NoUndef)) 4510 return CB->getRange(); 4511 } 4512 if (const MDNode *Range = getRangeMetadata(I)) 4513 return getConstantRangeFromMetadata(*Range); 4514 return std::nullopt; 4515 } 4516 4517 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4518 if (I.isAtomic()) 4519 return visitAtomicLoad(I); 4520 4521 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4522 const Value *SV = I.getOperand(0); 4523 if (TLI.supportSwiftError()) { 4524 // Swifterror values can come from either a function parameter with 4525 // swifterror attribute or an alloca with swifterror attribute. 4526 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4527 if (Arg->hasSwiftErrorAttr()) 4528 return visitLoadFromSwiftError(I); 4529 } 4530 4531 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4532 if (Alloca->isSwiftError()) 4533 return visitLoadFromSwiftError(I); 4534 } 4535 } 4536 4537 SDValue Ptr = getValue(SV); 4538 4539 Type *Ty = I.getType(); 4540 SmallVector<EVT, 4> ValueVTs, MemVTs; 4541 SmallVector<TypeSize, 4> Offsets; 4542 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4543 unsigned NumValues = ValueVTs.size(); 4544 if (NumValues == 0) 4545 return; 4546 4547 Align Alignment = I.getAlign(); 4548 AAMDNodes AAInfo = I.getAAMetadata(); 4549 const MDNode *Ranges = getRangeMetadata(I); 4550 bool isVolatile = I.isVolatile(); 4551 MachineMemOperand::Flags MMOFlags = 4552 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4553 4554 SDValue Root; 4555 bool ConstantMemory = false; 4556 if (isVolatile) 4557 // Serialize volatile loads with other side effects. 4558 Root = getRoot(); 4559 else if (NumValues > MaxParallelChains) 4560 Root = getMemoryRoot(); 4561 else if (AA && 4562 AA->pointsToConstantMemory(MemoryLocation( 4563 SV, 4564 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4565 AAInfo))) { 4566 // Do not serialize (non-volatile) loads of constant memory with anything. 4567 Root = DAG.getEntryNode(); 4568 ConstantMemory = true; 4569 MMOFlags |= MachineMemOperand::MOInvariant; 4570 } else { 4571 // Do not serialize non-volatile loads against each other. 4572 Root = DAG.getRoot(); 4573 } 4574 4575 SDLoc dl = getCurSDLoc(); 4576 4577 if (isVolatile) 4578 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4579 4580 SmallVector<SDValue, 4> Values(NumValues); 4581 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4582 4583 unsigned ChainI = 0; 4584 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4585 // Serializing loads here may result in excessive register pressure, and 4586 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4587 // could recover a bit by hoisting nodes upward in the chain by recognizing 4588 // they are side-effect free or do not alias. The optimizer should really 4589 // avoid this case by converting large object/array copies to llvm.memcpy 4590 // (MaxParallelChains should always remain as failsafe). 4591 if (ChainI == MaxParallelChains) { 4592 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4593 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4594 ArrayRef(Chains.data(), ChainI)); 4595 Root = Chain; 4596 ChainI = 0; 4597 } 4598 4599 // TODO: MachinePointerInfo only supports a fixed length offset. 4600 MachinePointerInfo PtrInfo = 4601 !Offsets[i].isScalable() || Offsets[i].isZero() 4602 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue()) 4603 : MachinePointerInfo(); 4604 4605 SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4606 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment, 4607 MMOFlags, AAInfo, Ranges); 4608 Chains[ChainI] = L.getValue(1); 4609 4610 if (MemVTs[i] != ValueVTs[i]) 4611 L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]); 4612 4613 Values[i] = L; 4614 } 4615 4616 if (!ConstantMemory) { 4617 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4618 ArrayRef(Chains.data(), ChainI)); 4619 if (isVolatile) 4620 DAG.setRoot(Chain); 4621 else 4622 PendingLoads.push_back(Chain); 4623 } 4624 4625 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4626 DAG.getVTList(ValueVTs), Values)); 4627 } 4628 4629 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4630 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4631 "call visitStoreToSwiftError when backend supports swifterror"); 4632 4633 SmallVector<EVT, 4> ValueVTs; 4634 SmallVector<uint64_t, 4> Offsets; 4635 const Value *SrcV = I.getOperand(0); 4636 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4637 SrcV->getType(), ValueVTs, &Offsets, 0); 4638 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4639 "expect a single EVT for swifterror"); 4640 4641 SDValue Src = getValue(SrcV); 4642 // Create a virtual register, then update the virtual register. 4643 Register VReg = 4644 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4645 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4646 // Chain can be getRoot or getControlRoot. 4647 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4648 SDValue(Src.getNode(), Src.getResNo())); 4649 DAG.setRoot(CopyNode); 4650 } 4651 4652 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4653 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4654 "call visitLoadFromSwiftError when backend supports swifterror"); 4655 4656 assert(!I.isVolatile() && 4657 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4658 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4659 "Support volatile, non temporal, invariant for load_from_swift_error"); 4660 4661 const Value *SV = I.getOperand(0); 4662 Type *Ty = I.getType(); 4663 assert( 4664 (!AA || 4665 !AA->pointsToConstantMemory(MemoryLocation( 4666 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4667 I.getAAMetadata()))) && 4668 "load_from_swift_error should not be constant memory"); 4669 4670 SmallVector<EVT, 4> ValueVTs; 4671 SmallVector<uint64_t, 4> Offsets; 4672 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4673 ValueVTs, &Offsets, 0); 4674 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4675 "expect a single EVT for swifterror"); 4676 4677 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4678 SDValue L = DAG.getCopyFromReg( 4679 getRoot(), getCurSDLoc(), 4680 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4681 4682 setValue(&I, L); 4683 } 4684 4685 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4686 if (I.isAtomic()) 4687 return visitAtomicStore(I); 4688 4689 const Value *SrcV = I.getOperand(0); 4690 const Value *PtrV = I.getOperand(1); 4691 4692 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4693 if (TLI.supportSwiftError()) { 4694 // Swifterror values can come from either a function parameter with 4695 // swifterror attribute or an alloca with swifterror attribute. 4696 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4697 if (Arg->hasSwiftErrorAttr()) 4698 return visitStoreToSwiftError(I); 4699 } 4700 4701 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4702 if (Alloca->isSwiftError()) 4703 return visitStoreToSwiftError(I); 4704 } 4705 } 4706 4707 SmallVector<EVT, 4> ValueVTs, MemVTs; 4708 SmallVector<TypeSize, 4> Offsets; 4709 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4710 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4711 unsigned NumValues = ValueVTs.size(); 4712 if (NumValues == 0) 4713 return; 4714 4715 // Get the lowered operands. Note that we do this after 4716 // checking if NumResults is zero, because with zero results 4717 // the operands won't have values in the map. 4718 SDValue Src = getValue(SrcV); 4719 SDValue Ptr = getValue(PtrV); 4720 4721 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4722 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4723 SDLoc dl = getCurSDLoc(); 4724 Align Alignment = I.getAlign(); 4725 AAMDNodes AAInfo = I.getAAMetadata(); 4726 4727 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4728 4729 unsigned ChainI = 0; 4730 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4731 // See visitLoad comments. 4732 if (ChainI == MaxParallelChains) { 4733 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4734 ArrayRef(Chains.data(), ChainI)); 4735 Root = Chain; 4736 ChainI = 0; 4737 } 4738 4739 // TODO: MachinePointerInfo only supports a fixed length offset. 4740 MachinePointerInfo PtrInfo = 4741 !Offsets[i].isScalable() || Offsets[i].isZero() 4742 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue()) 4743 : MachinePointerInfo(); 4744 4745 SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4746 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4747 if (MemVTs[i] != ValueVTs[i]) 4748 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4749 SDValue St = 4750 DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo); 4751 Chains[ChainI] = St; 4752 } 4753 4754 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4755 ArrayRef(Chains.data(), ChainI)); 4756 setValue(&I, StoreNode); 4757 DAG.setRoot(StoreNode); 4758 } 4759 4760 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4761 bool IsCompressing) { 4762 SDLoc sdl = getCurSDLoc(); 4763 4764 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4765 Align &Alignment) { 4766 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4767 Src0 = I.getArgOperand(0); 4768 Ptr = I.getArgOperand(1); 4769 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getAlignValue(); 4770 Mask = I.getArgOperand(3); 4771 }; 4772 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4773 Align &Alignment) { 4774 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4775 Src0 = I.getArgOperand(0); 4776 Ptr = I.getArgOperand(1); 4777 Mask = I.getArgOperand(2); 4778 Alignment = I.getParamAlign(1).valueOrOne(); 4779 }; 4780 4781 Value *PtrOperand, *MaskOperand, *Src0Operand; 4782 Align Alignment; 4783 if (IsCompressing) 4784 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4785 else 4786 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4787 4788 SDValue Ptr = getValue(PtrOperand); 4789 SDValue Src0 = getValue(Src0Operand); 4790 SDValue Mask = getValue(MaskOperand); 4791 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4792 4793 EVT VT = Src0.getValueType(); 4794 4795 auto MMOFlags = MachineMemOperand::MOStore; 4796 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 4797 MMOFlags |= MachineMemOperand::MONonTemporal; 4798 4799 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4800 MachinePointerInfo(PtrOperand), MMOFlags, 4801 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata()); 4802 4803 const auto &TLI = DAG.getTargetLoweringInfo(); 4804 const auto &TTI = 4805 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 4806 SDValue StoreNode = 4807 !IsCompressing && 4808 TTI.hasConditionalLoadStoreForType(I.getArgOperand(0)->getType()) 4809 ? TLI.visitMaskedStore(DAG, sdl, getMemoryRoot(), MMO, Ptr, Src0, 4810 Mask) 4811 : DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, 4812 VT, MMO, ISD::UNINDEXED, /*Truncating=*/false, 4813 IsCompressing); 4814 DAG.setRoot(StoreNode); 4815 setValue(&I, StoreNode); 4816 } 4817 4818 // Get a uniform base for the Gather/Scatter intrinsic. 4819 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4820 // We try to represent it as a base pointer + vector of indices. 4821 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4822 // The first operand of the GEP may be a single pointer or a vector of pointers 4823 // Example: 4824 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4825 // or 4826 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4827 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4828 // 4829 // When the first GEP operand is a single pointer - it is the uniform base we 4830 // are looking for. If first operand of the GEP is a splat vector - we 4831 // extract the splat value and use it as a uniform base. 4832 // In all other cases the function returns 'false'. 4833 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4834 ISD::MemIndexType &IndexType, SDValue &Scale, 4835 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4836 uint64_t ElemSize) { 4837 SelectionDAG& DAG = SDB->DAG; 4838 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4839 const DataLayout &DL = DAG.getDataLayout(); 4840 4841 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4842 4843 // Handle splat constant pointer. 4844 if (auto *C = dyn_cast<Constant>(Ptr)) { 4845 C = C->getSplatValue(); 4846 if (!C) 4847 return false; 4848 4849 Base = SDB->getValue(C); 4850 4851 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4852 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4853 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4854 IndexType = ISD::SIGNED_SCALED; 4855 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4856 return true; 4857 } 4858 4859 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4860 if (!GEP || GEP->getParent() != CurBB) 4861 return false; 4862 4863 if (GEP->getNumOperands() != 2) 4864 return false; 4865 4866 const Value *BasePtr = GEP->getPointerOperand(); 4867 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4868 4869 // Make sure the base is scalar and the index is a vector. 4870 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4871 return false; 4872 4873 TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4874 if (ScaleVal.isScalable()) 4875 return false; 4876 4877 // Target may not support the required addressing mode. 4878 if (ScaleVal != 1 && 4879 !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize)) 4880 return false; 4881 4882 Base = SDB->getValue(BasePtr); 4883 Index = SDB->getValue(IndexVal); 4884 IndexType = ISD::SIGNED_SCALED; 4885 4886 Scale = 4887 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4888 return true; 4889 } 4890 4891 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4892 SDLoc sdl = getCurSDLoc(); 4893 4894 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4895 const Value *Ptr = I.getArgOperand(1); 4896 SDValue Src0 = getValue(I.getArgOperand(0)); 4897 SDValue Mask = getValue(I.getArgOperand(3)); 4898 EVT VT = Src0.getValueType(); 4899 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4900 ->getMaybeAlignValue() 4901 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4902 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4903 4904 SDValue Base; 4905 SDValue Index; 4906 ISD::MemIndexType IndexType; 4907 SDValue Scale; 4908 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4909 I.getParent(), VT.getScalarStoreSize()); 4910 4911 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4912 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4913 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4914 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata()); 4915 if (!UniformBase) { 4916 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4917 Index = getValue(Ptr); 4918 IndexType = ISD::SIGNED_SCALED; 4919 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4920 } 4921 4922 EVT IdxVT = Index.getValueType(); 4923 EVT EltTy = IdxVT.getVectorElementType(); 4924 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4925 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4926 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4927 } 4928 4929 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4930 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4931 Ops, MMO, IndexType, false); 4932 DAG.setRoot(Scatter); 4933 setValue(&I, Scatter); 4934 } 4935 4936 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4937 SDLoc sdl = getCurSDLoc(); 4938 4939 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4940 Align &Alignment) { 4941 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4942 Ptr = I.getArgOperand(0); 4943 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getAlignValue(); 4944 Mask = I.getArgOperand(2); 4945 Src0 = I.getArgOperand(3); 4946 }; 4947 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4948 Align &Alignment) { 4949 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4950 Ptr = I.getArgOperand(0); 4951 Alignment = I.getParamAlign(0).valueOrOne(); 4952 Mask = I.getArgOperand(1); 4953 Src0 = I.getArgOperand(2); 4954 }; 4955 4956 Value *PtrOperand, *MaskOperand, *Src0Operand; 4957 Align Alignment; 4958 if (IsExpanding) 4959 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4960 else 4961 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4962 4963 SDValue Ptr = getValue(PtrOperand); 4964 SDValue Src0 = getValue(Src0Operand); 4965 SDValue Mask = getValue(MaskOperand); 4966 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4967 4968 EVT VT = Src0.getValueType(); 4969 AAMDNodes AAInfo = I.getAAMetadata(); 4970 const MDNode *Ranges = getRangeMetadata(I); 4971 4972 // Do not serialize masked loads of constant memory with anything. 4973 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4974 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4975 4976 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4977 4978 auto MMOFlags = MachineMemOperand::MOLoad; 4979 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 4980 MMOFlags |= MachineMemOperand::MONonTemporal; 4981 4982 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4983 MachinePointerInfo(PtrOperand), MMOFlags, 4984 LocationSize::beforeOrAfterPointer(), Alignment, AAInfo, Ranges); 4985 4986 const auto &TLI = DAG.getTargetLoweringInfo(); 4987 const auto &TTI = 4988 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 4989 // The Load/Res may point to different values and both of them are output 4990 // variables. 4991 SDValue Load; 4992 SDValue Res; 4993 if (!IsExpanding && 4994 TTI.hasConditionalLoadStoreForType(Src0Operand->getType())) 4995 Res = TLI.visitMaskedLoad(DAG, sdl, InChain, MMO, Load, Ptr, Src0, Mask); 4996 else 4997 Res = Load = 4998 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4999 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 5000 if (AddToChain) 5001 PendingLoads.push_back(Load.getValue(1)); 5002 setValue(&I, Res); 5003 } 5004 5005 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 5006 SDLoc sdl = getCurSDLoc(); 5007 5008 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 5009 const Value *Ptr = I.getArgOperand(0); 5010 SDValue Src0 = getValue(I.getArgOperand(3)); 5011 SDValue Mask = getValue(I.getArgOperand(2)); 5012 5013 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5014 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5015 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 5016 ->getMaybeAlignValue() 5017 .value_or(DAG.getEVTAlign(VT.getScalarType())); 5018 5019 const MDNode *Ranges = getRangeMetadata(I); 5020 5021 SDValue Root = DAG.getRoot(); 5022 SDValue Base; 5023 SDValue Index; 5024 ISD::MemIndexType IndexType; 5025 SDValue Scale; 5026 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 5027 I.getParent(), VT.getScalarStoreSize()); 5028 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 5029 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 5030 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 5031 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata(), 5032 Ranges); 5033 5034 if (!UniformBase) { 5035 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 5036 Index = getValue(Ptr); 5037 IndexType = ISD::SIGNED_SCALED; 5038 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 5039 } 5040 5041 EVT IdxVT = Index.getValueType(); 5042 EVT EltTy = IdxVT.getVectorElementType(); 5043 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 5044 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 5045 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 5046 } 5047 5048 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 5049 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 5050 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 5051 5052 PendingLoads.push_back(Gather.getValue(1)); 5053 setValue(&I, Gather); 5054 } 5055 5056 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 5057 SDLoc dl = getCurSDLoc(); 5058 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 5059 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 5060 SyncScope::ID SSID = I.getSyncScopeID(); 5061 5062 SDValue InChain = getRoot(); 5063 5064 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 5065 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 5066 5067 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5068 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 5069 5070 MachineFunction &MF = DAG.getMachineFunction(); 5071 MachineMemOperand *MMO = MF.getMachineMemOperand( 5072 MachinePointerInfo(I.getPointerOperand()), Flags, 5073 LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT), 5074 AAMDNodes(), nullptr, SSID, SuccessOrdering, FailureOrdering); 5075 5076 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 5077 dl, MemVT, VTs, InChain, 5078 getValue(I.getPointerOperand()), 5079 getValue(I.getCompareOperand()), 5080 getValue(I.getNewValOperand()), MMO); 5081 5082 SDValue OutChain = L.getValue(2); 5083 5084 setValue(&I, L); 5085 DAG.setRoot(OutChain); 5086 } 5087 5088 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 5089 SDLoc dl = getCurSDLoc(); 5090 ISD::NodeType NT; 5091 switch (I.getOperation()) { 5092 default: llvm_unreachable("Unknown atomicrmw operation"); 5093 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 5094 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 5095 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 5096 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 5097 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 5098 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 5099 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 5100 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 5101 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 5102 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 5103 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 5104 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 5105 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 5106 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 5107 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 5108 case AtomicRMWInst::UIncWrap: 5109 NT = ISD::ATOMIC_LOAD_UINC_WRAP; 5110 break; 5111 case AtomicRMWInst::UDecWrap: 5112 NT = ISD::ATOMIC_LOAD_UDEC_WRAP; 5113 break; 5114 case AtomicRMWInst::USubCond: 5115 NT = ISD::ATOMIC_LOAD_USUB_COND; 5116 break; 5117 case AtomicRMWInst::USubSat: 5118 NT = ISD::ATOMIC_LOAD_USUB_SAT; 5119 break; 5120 } 5121 AtomicOrdering Ordering = I.getOrdering(); 5122 SyncScope::ID SSID = I.getSyncScopeID(); 5123 5124 SDValue InChain = getRoot(); 5125 5126 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 5127 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5128 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 5129 5130 MachineFunction &MF = DAG.getMachineFunction(); 5131 MachineMemOperand *MMO = MF.getMachineMemOperand( 5132 MachinePointerInfo(I.getPointerOperand()), Flags, 5133 LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT), 5134 AAMDNodes(), nullptr, SSID, Ordering); 5135 5136 SDValue L = 5137 DAG.getAtomic(NT, dl, MemVT, InChain, 5138 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 5139 MMO); 5140 5141 SDValue OutChain = L.getValue(1); 5142 5143 setValue(&I, L); 5144 DAG.setRoot(OutChain); 5145 } 5146 5147 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 5148 SDLoc dl = getCurSDLoc(); 5149 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5150 SDValue Ops[3]; 5151 Ops[0] = getRoot(); 5152 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 5153 TLI.getFenceOperandTy(DAG.getDataLayout())); 5154 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 5155 TLI.getFenceOperandTy(DAG.getDataLayout())); 5156 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 5157 setValue(&I, N); 5158 DAG.setRoot(N); 5159 } 5160 5161 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 5162 SDLoc dl = getCurSDLoc(); 5163 AtomicOrdering Order = I.getOrdering(); 5164 SyncScope::ID SSID = I.getSyncScopeID(); 5165 5166 SDValue InChain = getRoot(); 5167 5168 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5169 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5170 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 5171 5172 if (!TLI.supportsUnalignedAtomics() && 5173 I.getAlign().value() < MemVT.getSizeInBits() / 8) 5174 report_fatal_error("Cannot generate unaligned atomic load"); 5175 5176 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 5177 5178 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 5179 MachinePointerInfo(I.getPointerOperand()), Flags, 5180 LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(), 5181 nullptr, SSID, Order); 5182 5183 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 5184 5185 SDValue Ptr = getValue(I.getPointerOperand()); 5186 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 5187 Ptr, MMO); 5188 5189 SDValue OutChain = L.getValue(1); 5190 if (MemVT != VT) 5191 L = DAG.getPtrExtOrTrunc(L, dl, VT); 5192 5193 setValue(&I, L); 5194 DAG.setRoot(OutChain); 5195 } 5196 5197 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 5198 SDLoc dl = getCurSDLoc(); 5199 5200 AtomicOrdering Ordering = I.getOrdering(); 5201 SyncScope::ID SSID = I.getSyncScopeID(); 5202 5203 SDValue InChain = getRoot(); 5204 5205 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5206 EVT MemVT = 5207 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 5208 5209 if (!TLI.supportsUnalignedAtomics() && 5210 I.getAlign().value() < MemVT.getSizeInBits() / 8) 5211 report_fatal_error("Cannot generate unaligned atomic store"); 5212 5213 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 5214 5215 MachineFunction &MF = DAG.getMachineFunction(); 5216 MachineMemOperand *MMO = MF.getMachineMemOperand( 5217 MachinePointerInfo(I.getPointerOperand()), Flags, 5218 LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(), 5219 nullptr, SSID, Ordering); 5220 5221 SDValue Val = getValue(I.getValueOperand()); 5222 if (Val.getValueType() != MemVT) 5223 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 5224 SDValue Ptr = getValue(I.getPointerOperand()); 5225 5226 SDValue OutChain = 5227 DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO); 5228 5229 setValue(&I, OutChain); 5230 DAG.setRoot(OutChain); 5231 } 5232 5233 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 5234 /// node. 5235 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 5236 unsigned Intrinsic) { 5237 // Ignore the callsite's attributes. A specific call site may be marked with 5238 // readnone, but the lowering code will expect the chain based on the 5239 // definition. 5240 const Function *F = I.getCalledFunction(); 5241 bool HasChain = !F->doesNotAccessMemory(); 5242 bool OnlyLoad = 5243 HasChain && F->onlyReadsMemory() && F->willReturn() && F->doesNotThrow(); 5244 5245 // Build the operand list. 5246 SmallVector<SDValue, 8> Ops; 5247 if (HasChain) { // If this intrinsic has side-effects, chainify it. 5248 if (OnlyLoad) { 5249 // We don't need to serialize loads against other loads. 5250 Ops.push_back(DAG.getRoot()); 5251 } else { 5252 Ops.push_back(getRoot()); 5253 } 5254 } 5255 5256 // Info is set by getTgtMemIntrinsic 5257 TargetLowering::IntrinsicInfo Info; 5258 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5259 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 5260 DAG.getMachineFunction(), 5261 Intrinsic); 5262 5263 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 5264 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 5265 Info.opc == ISD::INTRINSIC_W_CHAIN) 5266 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 5267 TLI.getPointerTy(DAG.getDataLayout()))); 5268 5269 // Add all operands of the call to the operand list. 5270 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 5271 const Value *Arg = I.getArgOperand(i); 5272 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 5273 Ops.push_back(getValue(Arg)); 5274 continue; 5275 } 5276 5277 // Use TargetConstant instead of a regular constant for immarg. 5278 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 5279 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 5280 assert(CI->getBitWidth() <= 64 && 5281 "large intrinsic immediates not handled"); 5282 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 5283 } else { 5284 Ops.push_back( 5285 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 5286 } 5287 } 5288 5289 SmallVector<EVT, 4> ValueVTs; 5290 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 5291 5292 if (HasChain) 5293 ValueVTs.push_back(MVT::Other); 5294 5295 SDVTList VTs = DAG.getVTList(ValueVTs); 5296 5297 // Propagate fast-math-flags from IR to node(s). 5298 SDNodeFlags Flags; 5299 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 5300 Flags.copyFMF(*FPMO); 5301 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 5302 5303 // Create the node. 5304 SDValue Result; 5305 5306 if (auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl)) { 5307 auto *Token = Bundle->Inputs[0].get(); 5308 SDValue ConvControlToken = getValue(Token); 5309 assert(Ops.back().getValueType() != MVT::Glue && 5310 "Did not expected another glue node here."); 5311 ConvControlToken = 5312 DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken); 5313 Ops.push_back(ConvControlToken); 5314 } 5315 5316 // In some cases, custom collection of operands from CallInst I may be needed. 5317 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 5318 if (IsTgtIntrinsic) { 5319 // This is target intrinsic that touches memory 5320 // 5321 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 5322 // didn't yield anything useful. 5323 MachinePointerInfo MPI; 5324 if (Info.ptrVal) 5325 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 5326 else if (Info.fallbackAddressSpace) 5327 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 5328 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, 5329 Info.memVT, MPI, Info.align, Info.flags, 5330 Info.size, I.getAAMetadata()); 5331 } else if (!HasChain) { 5332 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 5333 } else if (!I.getType()->isVoidTy()) { 5334 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 5335 } else { 5336 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 5337 } 5338 5339 if (HasChain) { 5340 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 5341 if (OnlyLoad) 5342 PendingLoads.push_back(Chain); 5343 else 5344 DAG.setRoot(Chain); 5345 } 5346 5347 if (!I.getType()->isVoidTy()) { 5348 if (!isa<VectorType>(I.getType())) 5349 Result = lowerRangeToAssertZExt(DAG, I, Result); 5350 5351 MaybeAlign Alignment = I.getRetAlign(); 5352 5353 // Insert `assertalign` node if there's an alignment. 5354 if (InsertAssertAlign && Alignment) { 5355 Result = 5356 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 5357 } 5358 } 5359 5360 setValue(&I, Result); 5361 } 5362 5363 /// GetSignificand - Get the significand and build it into a floating-point 5364 /// number with exponent of 1: 5365 /// 5366 /// Op = (Op & 0x007fffff) | 0x3f800000; 5367 /// 5368 /// where Op is the hexadecimal representation of floating point value. 5369 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 5370 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5371 DAG.getConstant(0x007fffff, dl, MVT::i32)); 5372 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 5373 DAG.getConstant(0x3f800000, dl, MVT::i32)); 5374 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 5375 } 5376 5377 /// GetExponent - Get the exponent: 5378 /// 5379 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 5380 /// 5381 /// where Op is the hexadecimal representation of floating point value. 5382 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 5383 const TargetLowering &TLI, const SDLoc &dl) { 5384 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5385 DAG.getConstant(0x7f800000, dl, MVT::i32)); 5386 SDValue t1 = DAG.getNode( 5387 ISD::SRL, dl, MVT::i32, t0, 5388 DAG.getConstant(23, dl, 5389 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 5390 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 5391 DAG.getConstant(127, dl, MVT::i32)); 5392 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 5393 } 5394 5395 /// getF32Constant - Get 32-bit floating point constant. 5396 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 5397 const SDLoc &dl) { 5398 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 5399 MVT::f32); 5400 } 5401 5402 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 5403 SelectionDAG &DAG) { 5404 // TODO: What fast-math-flags should be set on the floating-point nodes? 5405 5406 // IntegerPartOfX = ((int32_t)(t0); 5407 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 5408 5409 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 5410 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 5411 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 5412 5413 // IntegerPartOfX <<= 23; 5414 IntegerPartOfX = 5415 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 5416 DAG.getConstant(23, dl, 5417 DAG.getTargetLoweringInfo().getShiftAmountTy( 5418 MVT::i32, DAG.getDataLayout()))); 5419 5420 SDValue TwoToFractionalPartOfX; 5421 if (LimitFloatPrecision <= 6) { 5422 // For floating-point precision of 6: 5423 // 5424 // TwoToFractionalPartOfX = 5425 // 0.997535578f + 5426 // (0.735607626f + 0.252464424f * x) * x; 5427 // 5428 // error 0.0144103317, which is 6 bits 5429 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5430 getF32Constant(DAG, 0x3e814304, dl)); 5431 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5432 getF32Constant(DAG, 0x3f3c50c8, dl)); 5433 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5434 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5435 getF32Constant(DAG, 0x3f7f5e7e, dl)); 5436 } else if (LimitFloatPrecision <= 12) { 5437 // For floating-point precision of 12: 5438 // 5439 // TwoToFractionalPartOfX = 5440 // 0.999892986f + 5441 // (0.696457318f + 5442 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 5443 // 5444 // error 0.000107046256, which is 13 to 14 bits 5445 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5446 getF32Constant(DAG, 0x3da235e3, dl)); 5447 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5448 getF32Constant(DAG, 0x3e65b8f3, dl)); 5449 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5450 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5451 getF32Constant(DAG, 0x3f324b07, dl)); 5452 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5453 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5454 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5455 } else { // LimitFloatPrecision <= 18 5456 // For floating-point precision of 18: 5457 // 5458 // TwoToFractionalPartOfX = 5459 // 0.999999982f + 5460 // (0.693148872f + 5461 // (0.240227044f + 5462 // (0.554906021e-1f + 5463 // (0.961591928e-2f + 5464 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5465 // error 2.47208000*10^(-7), which is better than 18 bits 5466 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5467 getF32Constant(DAG, 0x3924b03e, dl)); 5468 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5469 getF32Constant(DAG, 0x3ab24b87, dl)); 5470 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5471 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5472 getF32Constant(DAG, 0x3c1d8c17, dl)); 5473 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5474 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5475 getF32Constant(DAG, 0x3d634a1d, dl)); 5476 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5477 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5478 getF32Constant(DAG, 0x3e75fe14, dl)); 5479 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5480 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5481 getF32Constant(DAG, 0x3f317234, dl)); 5482 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5483 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5484 getF32Constant(DAG, 0x3f800000, dl)); 5485 } 5486 5487 // Add the exponent into the result in integer domain. 5488 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5489 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5490 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5491 } 5492 5493 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5494 /// limited-precision mode. 5495 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5496 const TargetLowering &TLI, SDNodeFlags Flags) { 5497 if (Op.getValueType() == MVT::f32 && 5498 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5499 5500 // Put the exponent in the right bit position for later addition to the 5501 // final result: 5502 // 5503 // t0 = Op * log2(e) 5504 5505 // TODO: What fast-math-flags should be set here? 5506 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5507 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5508 return getLimitedPrecisionExp2(t0, dl, DAG); 5509 } 5510 5511 // No special expansion. 5512 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5513 } 5514 5515 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5516 /// limited-precision mode. 5517 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5518 const TargetLowering &TLI, SDNodeFlags Flags) { 5519 // TODO: What fast-math-flags should be set on the floating-point nodes? 5520 5521 if (Op.getValueType() == MVT::f32 && 5522 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5523 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5524 5525 // Scale the exponent by log(2). 5526 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5527 SDValue LogOfExponent = 5528 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5529 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5530 5531 // Get the significand and build it into a floating-point number with 5532 // exponent of 1. 5533 SDValue X = GetSignificand(DAG, Op1, dl); 5534 5535 SDValue LogOfMantissa; 5536 if (LimitFloatPrecision <= 6) { 5537 // For floating-point precision of 6: 5538 // 5539 // LogofMantissa = 5540 // -1.1609546f + 5541 // (1.4034025f - 0.23903021f * x) * x; 5542 // 5543 // error 0.0034276066, which is better than 8 bits 5544 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5545 getF32Constant(DAG, 0xbe74c456, dl)); 5546 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5547 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5548 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5549 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5550 getF32Constant(DAG, 0x3f949a29, dl)); 5551 } else if (LimitFloatPrecision <= 12) { 5552 // For floating-point precision of 12: 5553 // 5554 // LogOfMantissa = 5555 // -1.7417939f + 5556 // (2.8212026f + 5557 // (-1.4699568f + 5558 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5559 // 5560 // error 0.000061011436, which is 14 bits 5561 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5562 getF32Constant(DAG, 0xbd67b6d6, dl)); 5563 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5564 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5565 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5566 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5567 getF32Constant(DAG, 0x3fbc278b, dl)); 5568 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5569 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5570 getF32Constant(DAG, 0x40348e95, dl)); 5571 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5572 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5573 getF32Constant(DAG, 0x3fdef31a, dl)); 5574 } else { // LimitFloatPrecision <= 18 5575 // For floating-point precision of 18: 5576 // 5577 // LogOfMantissa = 5578 // -2.1072184f + 5579 // (4.2372794f + 5580 // (-3.7029485f + 5581 // (2.2781945f + 5582 // (-0.87823314f + 5583 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5584 // 5585 // error 0.0000023660568, which is better than 18 bits 5586 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5587 getF32Constant(DAG, 0xbc91e5ac, dl)); 5588 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5589 getF32Constant(DAG, 0x3e4350aa, dl)); 5590 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5591 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5592 getF32Constant(DAG, 0x3f60d3e3, dl)); 5593 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5594 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5595 getF32Constant(DAG, 0x4011cdf0, dl)); 5596 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5597 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5598 getF32Constant(DAG, 0x406cfd1c, dl)); 5599 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5600 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5601 getF32Constant(DAG, 0x408797cb, dl)); 5602 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5603 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5604 getF32Constant(DAG, 0x4006dcab, dl)); 5605 } 5606 5607 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5608 } 5609 5610 // No special expansion. 5611 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5612 } 5613 5614 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5615 /// limited-precision mode. 5616 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5617 const TargetLowering &TLI, SDNodeFlags Flags) { 5618 // TODO: What fast-math-flags should be set on the floating-point nodes? 5619 5620 if (Op.getValueType() == MVT::f32 && 5621 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5622 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5623 5624 // Get the exponent. 5625 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5626 5627 // Get the significand and build it into a floating-point number with 5628 // exponent of 1. 5629 SDValue X = GetSignificand(DAG, Op1, dl); 5630 5631 // Different possible minimax approximations of significand in 5632 // floating-point for various degrees of accuracy over [1,2]. 5633 SDValue Log2ofMantissa; 5634 if (LimitFloatPrecision <= 6) { 5635 // For floating-point precision of 6: 5636 // 5637 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5638 // 5639 // error 0.0049451742, which is more than 7 bits 5640 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5641 getF32Constant(DAG, 0xbeb08fe0, dl)); 5642 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5643 getF32Constant(DAG, 0x40019463, dl)); 5644 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5645 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5646 getF32Constant(DAG, 0x3fd6633d, dl)); 5647 } else if (LimitFloatPrecision <= 12) { 5648 // For floating-point precision of 12: 5649 // 5650 // Log2ofMantissa = 5651 // -2.51285454f + 5652 // (4.07009056f + 5653 // (-2.12067489f + 5654 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5655 // 5656 // error 0.0000876136000, which is better than 13 bits 5657 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5658 getF32Constant(DAG, 0xbda7262e, dl)); 5659 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5660 getF32Constant(DAG, 0x3f25280b, dl)); 5661 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5662 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5663 getF32Constant(DAG, 0x4007b923, dl)); 5664 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5665 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5666 getF32Constant(DAG, 0x40823e2f, dl)); 5667 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5668 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5669 getF32Constant(DAG, 0x4020d29c, dl)); 5670 } else { // LimitFloatPrecision <= 18 5671 // For floating-point precision of 18: 5672 // 5673 // Log2ofMantissa = 5674 // -3.0400495f + 5675 // (6.1129976f + 5676 // (-5.3420409f + 5677 // (3.2865683f + 5678 // (-1.2669343f + 5679 // (0.27515199f - 5680 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5681 // 5682 // error 0.0000018516, which is better than 18 bits 5683 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5684 getF32Constant(DAG, 0xbcd2769e, dl)); 5685 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5686 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5687 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5688 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5689 getF32Constant(DAG, 0x3fa22ae7, dl)); 5690 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5691 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5692 getF32Constant(DAG, 0x40525723, dl)); 5693 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5694 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5695 getF32Constant(DAG, 0x40aaf200, dl)); 5696 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5697 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5698 getF32Constant(DAG, 0x40c39dad, dl)); 5699 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5700 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5701 getF32Constant(DAG, 0x4042902c, dl)); 5702 } 5703 5704 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5705 } 5706 5707 // No special expansion. 5708 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5709 } 5710 5711 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5712 /// limited-precision mode. 5713 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5714 const TargetLowering &TLI, SDNodeFlags Flags) { 5715 // TODO: What fast-math-flags should be set on the floating-point nodes? 5716 5717 if (Op.getValueType() == MVT::f32 && 5718 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5719 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5720 5721 // Scale the exponent by log10(2) [0.30102999f]. 5722 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5723 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5724 getF32Constant(DAG, 0x3e9a209a, dl)); 5725 5726 // Get the significand and build it into a floating-point number with 5727 // exponent of 1. 5728 SDValue X = GetSignificand(DAG, Op1, dl); 5729 5730 SDValue Log10ofMantissa; 5731 if (LimitFloatPrecision <= 6) { 5732 // For floating-point precision of 6: 5733 // 5734 // Log10ofMantissa = 5735 // -0.50419619f + 5736 // (0.60948995f - 0.10380950f * x) * x; 5737 // 5738 // error 0.0014886165, which is 6 bits 5739 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5740 getF32Constant(DAG, 0xbdd49a13, dl)); 5741 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5742 getF32Constant(DAG, 0x3f1c0789, dl)); 5743 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5744 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5745 getF32Constant(DAG, 0x3f011300, dl)); 5746 } else if (LimitFloatPrecision <= 12) { 5747 // For floating-point precision of 12: 5748 // 5749 // Log10ofMantissa = 5750 // -0.64831180f + 5751 // (0.91751397f + 5752 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5753 // 5754 // error 0.00019228036, which is better than 12 bits 5755 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5756 getF32Constant(DAG, 0x3d431f31, dl)); 5757 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5758 getF32Constant(DAG, 0x3ea21fb2, dl)); 5759 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5760 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5761 getF32Constant(DAG, 0x3f6ae232, dl)); 5762 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5763 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5764 getF32Constant(DAG, 0x3f25f7c3, dl)); 5765 } else { // LimitFloatPrecision <= 18 5766 // For floating-point precision of 18: 5767 // 5768 // Log10ofMantissa = 5769 // -0.84299375f + 5770 // (1.5327582f + 5771 // (-1.0688956f + 5772 // (0.49102474f + 5773 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5774 // 5775 // error 0.0000037995730, which is better than 18 bits 5776 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5777 getF32Constant(DAG, 0x3c5d51ce, dl)); 5778 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5779 getF32Constant(DAG, 0x3e00685a, dl)); 5780 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5781 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5782 getF32Constant(DAG, 0x3efb6798, dl)); 5783 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5784 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5785 getF32Constant(DAG, 0x3f88d192, dl)); 5786 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5787 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5788 getF32Constant(DAG, 0x3fc4316c, dl)); 5789 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5790 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5791 getF32Constant(DAG, 0x3f57ce70, dl)); 5792 } 5793 5794 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5795 } 5796 5797 // No special expansion. 5798 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5799 } 5800 5801 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5802 /// limited-precision mode. 5803 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5804 const TargetLowering &TLI, SDNodeFlags Flags) { 5805 if (Op.getValueType() == MVT::f32 && 5806 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5807 return getLimitedPrecisionExp2(Op, dl, DAG); 5808 5809 // No special expansion. 5810 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5811 } 5812 5813 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5814 /// limited-precision mode with x == 10.0f. 5815 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5816 SelectionDAG &DAG, const TargetLowering &TLI, 5817 SDNodeFlags Flags) { 5818 bool IsExp10 = false; 5819 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5820 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5821 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5822 APFloat Ten(10.0f); 5823 IsExp10 = LHSC->isExactlyValue(Ten); 5824 } 5825 } 5826 5827 // TODO: What fast-math-flags should be set on the FMUL node? 5828 if (IsExp10) { 5829 // Put the exponent in the right bit position for later addition to the 5830 // final result: 5831 // 5832 // #define LOG2OF10 3.3219281f 5833 // t0 = Op * LOG2OF10; 5834 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5835 getF32Constant(DAG, 0x40549a78, dl)); 5836 return getLimitedPrecisionExp2(t0, dl, DAG); 5837 } 5838 5839 // No special expansion. 5840 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5841 } 5842 5843 /// ExpandPowI - Expand a llvm.powi intrinsic. 5844 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5845 SelectionDAG &DAG) { 5846 // If RHS is a constant, we can expand this out to a multiplication tree if 5847 // it's beneficial on the target, otherwise we end up lowering to a call to 5848 // __powidf2 (for example). 5849 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5850 unsigned Val = RHSC->getSExtValue(); 5851 5852 // powi(x, 0) -> 1.0 5853 if (Val == 0) 5854 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5855 5856 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5857 Val, DAG.shouldOptForSize())) { 5858 // Get the exponent as a positive value. 5859 if ((int)Val < 0) 5860 Val = -Val; 5861 // We use the simple binary decomposition method to generate the multiply 5862 // sequence. There are more optimal ways to do this (for example, 5863 // powi(x,15) generates one more multiply than it should), but this has 5864 // the benefit of being both really simple and much better than a libcall. 5865 SDValue Res; // Logically starts equal to 1.0 5866 SDValue CurSquare = LHS; 5867 // TODO: Intrinsics should have fast-math-flags that propagate to these 5868 // nodes. 5869 while (Val) { 5870 if (Val & 1) { 5871 if (Res.getNode()) 5872 Res = 5873 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5874 else 5875 Res = CurSquare; // 1.0*CurSquare. 5876 } 5877 5878 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5879 CurSquare, CurSquare); 5880 Val >>= 1; 5881 } 5882 5883 // If the original was negative, invert the result, producing 1/(x*x*x). 5884 if (RHSC->getSExtValue() < 0) 5885 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5886 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5887 return Res; 5888 } 5889 } 5890 5891 // Otherwise, expand to a libcall. 5892 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5893 } 5894 5895 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5896 SDValue LHS, SDValue RHS, SDValue Scale, 5897 SelectionDAG &DAG, const TargetLowering &TLI) { 5898 EVT VT = LHS.getValueType(); 5899 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5900 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5901 LLVMContext &Ctx = *DAG.getContext(); 5902 5903 // If the type is legal but the operation isn't, this node might survive all 5904 // the way to operation legalization. If we end up there and we do not have 5905 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5906 // node. 5907 5908 // Coax the legalizer into expanding the node during type legalization instead 5909 // by bumping the size by one bit. This will force it to Promote, enabling the 5910 // early expansion and avoiding the need to expand later. 5911 5912 // We don't have to do this if Scale is 0; that can always be expanded, unless 5913 // it's a saturating signed operation. Those can experience true integer 5914 // division overflow, a case which we must avoid. 5915 5916 // FIXME: We wouldn't have to do this (or any of the early 5917 // expansion/promotion) if it was possible to expand a libcall of an 5918 // illegal type during operation legalization. But it's not, so things 5919 // get a bit hacky. 5920 unsigned ScaleInt = Scale->getAsZExtVal(); 5921 if ((ScaleInt > 0 || (Saturating && Signed)) && 5922 (TLI.isTypeLegal(VT) || 5923 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5924 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5925 Opcode, VT, ScaleInt); 5926 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5927 EVT PromVT; 5928 if (VT.isScalarInteger()) 5929 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5930 else if (VT.isVector()) { 5931 PromVT = VT.getVectorElementType(); 5932 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5933 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5934 } else 5935 llvm_unreachable("Wrong VT for DIVFIX?"); 5936 LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT); 5937 RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT); 5938 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5939 // For saturating operations, we need to shift up the LHS to get the 5940 // proper saturation width, and then shift down again afterwards. 5941 if (Saturating) 5942 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5943 DAG.getConstant(1, DL, ShiftTy)); 5944 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5945 if (Saturating) 5946 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5947 DAG.getConstant(1, DL, ShiftTy)); 5948 return DAG.getZExtOrTrunc(Res, DL, VT); 5949 } 5950 } 5951 5952 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5953 } 5954 5955 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5956 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5957 static void 5958 getUnderlyingArgRegs(SmallVectorImpl<std::pair<Register, TypeSize>> &Regs, 5959 const SDValue &N) { 5960 switch (N.getOpcode()) { 5961 case ISD::CopyFromReg: { 5962 SDValue Op = N.getOperand(1); 5963 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5964 Op.getValueType().getSizeInBits()); 5965 return; 5966 } 5967 case ISD::BITCAST: 5968 case ISD::AssertZext: 5969 case ISD::AssertSext: 5970 case ISD::TRUNCATE: 5971 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5972 return; 5973 case ISD::BUILD_PAIR: 5974 case ISD::BUILD_VECTOR: 5975 case ISD::CONCAT_VECTORS: 5976 for (SDValue Op : N->op_values()) 5977 getUnderlyingArgRegs(Regs, Op); 5978 return; 5979 default: 5980 return; 5981 } 5982 } 5983 5984 /// If the DbgValueInst is a dbg_value of a function argument, create the 5985 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5986 /// instruction selection, they will be inserted to the entry BB. 5987 /// We don't currently support this for variadic dbg_values, as they shouldn't 5988 /// appear for function arguments or in the prologue. 5989 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5990 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5991 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5992 const Argument *Arg = dyn_cast<Argument>(V); 5993 if (!Arg) 5994 return false; 5995 5996 MachineFunction &MF = DAG.getMachineFunction(); 5997 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5998 5999 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 6000 // we've been asked to pursue. 6001 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 6002 bool Indirect) { 6003 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 6004 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 6005 // pointing at the VReg, which will be patched up later. 6006 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 6007 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( 6008 /* Reg */ Reg, /* isDef */ false, /* isImp */ false, 6009 /* isKill */ false, /* isDead */ false, 6010 /* isUndef */ false, /* isEarlyClobber */ false, 6011 /* SubReg */ 0, /* isDebug */ true)}); 6012 6013 auto *NewDIExpr = FragExpr; 6014 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 6015 // the DIExpression. 6016 if (Indirect) 6017 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 6018 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); 6019 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops); 6020 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr); 6021 } else { 6022 // Create a completely standard DBG_VALUE. 6023 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 6024 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 6025 } 6026 }; 6027 6028 if (Kind == FuncArgumentDbgValueKind::Value) { 6029 // ArgDbgValues are hoisted to the beginning of the entry block. So we 6030 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 6031 // the entry block. 6032 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 6033 if (!IsInEntryBlock) 6034 return false; 6035 6036 // ArgDbgValues are hoisted to the beginning of the entry block. So we 6037 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 6038 // variable that also is a param. 6039 // 6040 // Although, if we are at the top of the entry block already, we can still 6041 // emit using ArgDbgValue. This might catch some situations when the 6042 // dbg.value refers to an argument that isn't used in the entry block, so 6043 // any CopyToReg node would be optimized out and the only way to express 6044 // this DBG_VALUE is by using the physical reg (or FI) as done in this 6045 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 6046 // we should only emit as ArgDbgValue if the Variable is an argument to the 6047 // current function, and the dbg.value intrinsic is found in the entry 6048 // block. 6049 bool VariableIsFunctionInputArg = Variable->isParameter() && 6050 !DL->getInlinedAt(); 6051 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 6052 if (!IsInPrologue && !VariableIsFunctionInputArg) 6053 return false; 6054 6055 // Here we assume that a function argument on IR level only can be used to 6056 // describe one input parameter on source level. If we for example have 6057 // source code like this 6058 // 6059 // struct A { long x, y; }; 6060 // void foo(struct A a, long b) { 6061 // ... 6062 // b = a.x; 6063 // ... 6064 // } 6065 // 6066 // and IR like this 6067 // 6068 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 6069 // entry: 6070 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 6071 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 6072 // call void @llvm.dbg.value(metadata i32 %b, "b", 6073 // ... 6074 // call void @llvm.dbg.value(metadata i32 %a1, "b" 6075 // ... 6076 // 6077 // then the last dbg.value is describing a parameter "b" using a value that 6078 // is an argument. But since we already has used %a1 to describe a parameter 6079 // we should not handle that last dbg.value here (that would result in an 6080 // incorrect hoisting of the DBG_VALUE to the function entry). 6081 // Notice that we allow one dbg.value per IR level argument, to accommodate 6082 // for the situation with fragments above. 6083 // If there is no node for the value being handled, we return true to skip 6084 // the normal generation of debug info, as it would kill existing debug 6085 // info for the parameter in case of duplicates. 6086 if (VariableIsFunctionInputArg) { 6087 unsigned ArgNo = Arg->getArgNo(); 6088 if (ArgNo >= FuncInfo.DescribedArgs.size()) 6089 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 6090 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 6091 return !NodeMap[V].getNode(); 6092 FuncInfo.DescribedArgs.set(ArgNo); 6093 } 6094 } 6095 6096 bool IsIndirect = false; 6097 std::optional<MachineOperand> Op; 6098 // Some arguments' frame index is recorded during argument lowering. 6099 int FI = FuncInfo.getArgumentFrameIndex(Arg); 6100 if (FI != std::numeric_limits<int>::max()) 6101 Op = MachineOperand::CreateFI(FI); 6102 6103 SmallVector<std::pair<Register, TypeSize>, 8> ArgRegsAndSizes; 6104 if (!Op && N.getNode()) { 6105 getUnderlyingArgRegs(ArgRegsAndSizes, N); 6106 Register Reg; 6107 if (ArgRegsAndSizes.size() == 1) 6108 Reg = ArgRegsAndSizes.front().first; 6109 6110 if (Reg && Reg.isVirtual()) { 6111 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6112 Register PR = RegInfo.getLiveInPhysReg(Reg); 6113 if (PR) 6114 Reg = PR; 6115 } 6116 if (Reg) { 6117 Op = MachineOperand::CreateReg(Reg, false); 6118 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 6119 } 6120 } 6121 6122 if (!Op && N.getNode()) { 6123 // Check if frame index is available. 6124 SDValue LCandidate = peekThroughBitcasts(N); 6125 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 6126 if (FrameIndexSDNode *FINode = 6127 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 6128 Op = MachineOperand::CreateFI(FINode->getIndex()); 6129 } 6130 6131 if (!Op) { 6132 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 6133 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<Register, TypeSize>> 6134 SplitRegs) { 6135 unsigned Offset = 0; 6136 for (const auto &RegAndSize : SplitRegs) { 6137 // If the expression is already a fragment, the current register 6138 // offset+size might extend beyond the fragment. In this case, only 6139 // the register bits that are inside the fragment are relevant. 6140 int RegFragmentSizeInBits = RegAndSize.second; 6141 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 6142 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 6143 // The register is entirely outside the expression fragment, 6144 // so is irrelevant for debug info. 6145 if (Offset >= ExprFragmentSizeInBits) 6146 break; 6147 // The register is partially outside the expression fragment, only 6148 // the low bits within the fragment are relevant for debug info. 6149 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 6150 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 6151 } 6152 } 6153 6154 auto FragmentExpr = DIExpression::createFragmentExpression( 6155 Expr, Offset, RegFragmentSizeInBits); 6156 Offset += RegAndSize.second; 6157 // If a valid fragment expression cannot be created, the variable's 6158 // correct value cannot be determined and so it is set as Undef. 6159 if (!FragmentExpr) { 6160 SDDbgValue *SDV = DAG.getConstantDbgValue( 6161 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 6162 DAG.AddDbgValue(SDV, false); 6163 continue; 6164 } 6165 MachineInstr *NewMI = 6166 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 6167 Kind != FuncArgumentDbgValueKind::Value); 6168 FuncInfo.ArgDbgValues.push_back(NewMI); 6169 } 6170 }; 6171 6172 // Check if ValueMap has reg number. 6173 DenseMap<const Value *, Register>::const_iterator 6174 VMI = FuncInfo.ValueMap.find(V); 6175 if (VMI != FuncInfo.ValueMap.end()) { 6176 const auto &TLI = DAG.getTargetLoweringInfo(); 6177 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 6178 V->getType(), std::nullopt); 6179 if (RFV.occupiesMultipleRegs()) { 6180 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 6181 return true; 6182 } 6183 6184 Op = MachineOperand::CreateReg(VMI->second, false); 6185 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 6186 } else if (ArgRegsAndSizes.size() > 1) { 6187 // This was split due to the calling convention, and no virtual register 6188 // mapping exists for the value. 6189 splitMultiRegDbgValue(ArgRegsAndSizes); 6190 return true; 6191 } 6192 } 6193 6194 if (!Op) 6195 return false; 6196 6197 assert(Variable->isValidLocationForIntrinsic(DL) && 6198 "Expected inlined-at fields to agree"); 6199 MachineInstr *NewMI = nullptr; 6200 6201 if (Op->isReg()) 6202 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 6203 else 6204 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 6205 Variable, Expr); 6206 6207 // Otherwise, use ArgDbgValues. 6208 FuncInfo.ArgDbgValues.push_back(NewMI); 6209 return true; 6210 } 6211 6212 /// Return the appropriate SDDbgValue based on N. 6213 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 6214 DILocalVariable *Variable, 6215 DIExpression *Expr, 6216 const DebugLoc &dl, 6217 unsigned DbgSDNodeOrder) { 6218 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 6219 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 6220 // stack slot locations. 6221 // 6222 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 6223 // debug values here after optimization: 6224 // 6225 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 6226 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 6227 // 6228 // Both describe the direct values of their associated variables. 6229 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 6230 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 6231 } 6232 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 6233 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 6234 } 6235 6236 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 6237 switch (Intrinsic) { 6238 case Intrinsic::smul_fix: 6239 return ISD::SMULFIX; 6240 case Intrinsic::umul_fix: 6241 return ISD::UMULFIX; 6242 case Intrinsic::smul_fix_sat: 6243 return ISD::SMULFIXSAT; 6244 case Intrinsic::umul_fix_sat: 6245 return ISD::UMULFIXSAT; 6246 case Intrinsic::sdiv_fix: 6247 return ISD::SDIVFIX; 6248 case Intrinsic::udiv_fix: 6249 return ISD::UDIVFIX; 6250 case Intrinsic::sdiv_fix_sat: 6251 return ISD::SDIVFIXSAT; 6252 case Intrinsic::udiv_fix_sat: 6253 return ISD::UDIVFIXSAT; 6254 default: 6255 llvm_unreachable("Unhandled fixed point intrinsic"); 6256 } 6257 } 6258 6259 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 6260 const char *FunctionName) { 6261 assert(FunctionName && "FunctionName must not be nullptr"); 6262 SDValue Callee = DAG.getExternalSymbol( 6263 FunctionName, 6264 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6265 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 6266 } 6267 6268 /// Given a @llvm.call.preallocated.setup, return the corresponding 6269 /// preallocated call. 6270 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 6271 assert(cast<CallBase>(PreallocatedSetup) 6272 ->getCalledFunction() 6273 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 6274 "expected call_preallocated_setup Value"); 6275 for (const auto *U : PreallocatedSetup->users()) { 6276 auto *UseCall = cast<CallBase>(U); 6277 const Function *Fn = UseCall->getCalledFunction(); 6278 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 6279 return UseCall; 6280 } 6281 } 6282 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 6283 } 6284 6285 /// If DI is a debug value with an EntryValue expression, lower it using the 6286 /// corresponding physical register of the associated Argument value 6287 /// (guaranteed to exist by the verifier). 6288 bool SelectionDAGBuilder::visitEntryValueDbgValue( 6289 ArrayRef<const Value *> Values, DILocalVariable *Variable, 6290 DIExpression *Expr, DebugLoc DbgLoc) { 6291 if (!Expr->isEntryValue() || !hasSingleElement(Values)) 6292 return false; 6293 6294 // These properties are guaranteed by the verifier. 6295 const Argument *Arg = cast<Argument>(Values[0]); 6296 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync)); 6297 6298 auto ArgIt = FuncInfo.ValueMap.find(Arg); 6299 if (ArgIt == FuncInfo.ValueMap.end()) { 6300 LLVM_DEBUG( 6301 dbgs() << "Dropping dbg.value: expression is entry_value but " 6302 "couldn't find an associated register for the Argument\n"); 6303 return true; 6304 } 6305 Register ArgVReg = ArgIt->getSecond(); 6306 6307 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) 6308 if (ArgVReg == VirtReg || ArgVReg == PhysReg) { 6309 SDDbgValue *SDV = DAG.getVRegDbgValue( 6310 Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder); 6311 DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/); 6312 return true; 6313 } 6314 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but " 6315 "couldn't find a physical register\n"); 6316 return true; 6317 } 6318 6319 /// Lower the call to the specified intrinsic function. 6320 void SelectionDAGBuilder::visitConvergenceControl(const CallInst &I, 6321 unsigned Intrinsic) { 6322 SDLoc sdl = getCurSDLoc(); 6323 switch (Intrinsic) { 6324 case Intrinsic::experimental_convergence_anchor: 6325 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped)); 6326 break; 6327 case Intrinsic::experimental_convergence_entry: 6328 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped)); 6329 break; 6330 case Intrinsic::experimental_convergence_loop: { 6331 auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl); 6332 auto *Token = Bundle->Inputs[0].get(); 6333 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped, 6334 getValue(Token))); 6335 break; 6336 } 6337 } 6338 } 6339 6340 void SelectionDAGBuilder::visitVectorHistogram(const CallInst &I, 6341 unsigned IntrinsicID) { 6342 // For now, we're only lowering an 'add' histogram. 6343 // We can add others later, e.g. saturating adds, min/max. 6344 assert(IntrinsicID == Intrinsic::experimental_vector_histogram_add && 6345 "Tried to lower unsupported histogram type"); 6346 SDLoc sdl = getCurSDLoc(); 6347 Value *Ptr = I.getOperand(0); 6348 SDValue Inc = getValue(I.getOperand(1)); 6349 SDValue Mask = getValue(I.getOperand(2)); 6350 6351 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6352 DataLayout TargetDL = DAG.getDataLayout(); 6353 EVT VT = Inc.getValueType(); 6354 Align Alignment = DAG.getEVTAlign(VT); 6355 6356 const MDNode *Ranges = getRangeMetadata(I); 6357 6358 SDValue Root = DAG.getRoot(); 6359 SDValue Base; 6360 SDValue Index; 6361 ISD::MemIndexType IndexType; 6362 SDValue Scale; 6363 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 6364 I.getParent(), VT.getScalarStoreSize()); 6365 6366 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 6367 6368 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6369 MachinePointerInfo(AS), 6370 MachineMemOperand::MOLoad | MachineMemOperand::MOStore, 6371 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 6372 6373 if (!UniformBase) { 6374 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 6375 Index = getValue(Ptr); 6376 IndexType = ISD::SIGNED_SCALED; 6377 Scale = 6378 DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 6379 } 6380 6381 EVT IdxVT = Index.getValueType(); 6382 EVT EltTy = IdxVT.getVectorElementType(); 6383 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 6384 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 6385 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 6386 } 6387 6388 SDValue ID = DAG.getTargetConstant(IntrinsicID, sdl, MVT::i32); 6389 6390 SDValue Ops[] = {Root, Inc, Mask, Base, Index, Scale, ID}; 6391 SDValue Histogram = DAG.getMaskedHistogram(DAG.getVTList(MVT::Other), VT, sdl, 6392 Ops, MMO, IndexType); 6393 6394 setValue(&I, Histogram); 6395 DAG.setRoot(Histogram); 6396 } 6397 6398 /// Lower the call to the specified intrinsic function. 6399 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 6400 unsigned Intrinsic) { 6401 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6402 SDLoc sdl = getCurSDLoc(); 6403 DebugLoc dl = getCurDebugLoc(); 6404 SDValue Res; 6405 6406 SDNodeFlags Flags; 6407 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 6408 Flags.copyFMF(*FPOp); 6409 6410 switch (Intrinsic) { 6411 default: 6412 // By default, turn this into a target intrinsic node. 6413 visitTargetIntrinsic(I, Intrinsic); 6414 return; 6415 case Intrinsic::vscale: { 6416 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6417 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 6418 return; 6419 } 6420 case Intrinsic::vastart: visitVAStart(I); return; 6421 case Intrinsic::vaend: visitVAEnd(I); return; 6422 case Intrinsic::vacopy: visitVACopy(I); return; 6423 case Intrinsic::returnaddress: 6424 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 6425 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6426 getValue(I.getArgOperand(0)))); 6427 return; 6428 case Intrinsic::addressofreturnaddress: 6429 setValue(&I, 6430 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 6431 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6432 return; 6433 case Intrinsic::sponentry: 6434 setValue(&I, 6435 DAG.getNode(ISD::SPONENTRY, sdl, 6436 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6437 return; 6438 case Intrinsic::frameaddress: 6439 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 6440 TLI.getFrameIndexTy(DAG.getDataLayout()), 6441 getValue(I.getArgOperand(0)))); 6442 return; 6443 case Intrinsic::read_volatile_register: 6444 case Intrinsic::read_register: { 6445 Value *Reg = I.getArgOperand(0); 6446 SDValue Chain = getRoot(); 6447 SDValue RegName = 6448 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6449 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6450 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 6451 DAG.getVTList(VT, MVT::Other), Chain, RegName); 6452 setValue(&I, Res); 6453 DAG.setRoot(Res.getValue(1)); 6454 return; 6455 } 6456 case Intrinsic::write_register: { 6457 Value *Reg = I.getArgOperand(0); 6458 Value *RegValue = I.getArgOperand(1); 6459 SDValue Chain = getRoot(); 6460 SDValue RegName = 6461 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6462 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 6463 RegName, getValue(RegValue))); 6464 return; 6465 } 6466 case Intrinsic::memcpy: { 6467 const auto &MCI = cast<MemCpyInst>(I); 6468 SDValue Op1 = getValue(I.getArgOperand(0)); 6469 SDValue Op2 = getValue(I.getArgOperand(1)); 6470 SDValue Op3 = getValue(I.getArgOperand(2)); 6471 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 6472 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6473 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6474 Align Alignment = std::min(DstAlign, SrcAlign); 6475 bool isVol = MCI.isVolatile(); 6476 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6477 // node. 6478 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6479 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6480 /* AlwaysInline */ false, &I, std::nullopt, 6481 MachinePointerInfo(I.getArgOperand(0)), 6482 MachinePointerInfo(I.getArgOperand(1)), 6483 I.getAAMetadata(), AA); 6484 updateDAGForMaybeTailCall(MC); 6485 return; 6486 } 6487 case Intrinsic::memcpy_inline: { 6488 const auto &MCI = cast<MemCpyInlineInst>(I); 6489 SDValue Dst = getValue(I.getArgOperand(0)); 6490 SDValue Src = getValue(I.getArgOperand(1)); 6491 SDValue Size = getValue(I.getArgOperand(2)); 6492 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 6493 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 6494 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6495 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6496 Align Alignment = std::min(DstAlign, SrcAlign); 6497 bool isVol = MCI.isVolatile(); 6498 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6499 // node. 6500 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 6501 /* AlwaysInline */ true, &I, std::nullopt, 6502 MachinePointerInfo(I.getArgOperand(0)), 6503 MachinePointerInfo(I.getArgOperand(1)), 6504 I.getAAMetadata(), AA); 6505 updateDAGForMaybeTailCall(MC); 6506 return; 6507 } 6508 case Intrinsic::memset: { 6509 const auto &MSI = cast<MemSetInst>(I); 6510 SDValue Op1 = getValue(I.getArgOperand(0)); 6511 SDValue Op2 = getValue(I.getArgOperand(1)); 6512 SDValue Op3 = getValue(I.getArgOperand(2)); 6513 // @llvm.memset defines 0 and 1 to both mean no alignment. 6514 Align Alignment = MSI.getDestAlign().valueOrOne(); 6515 bool isVol = MSI.isVolatile(); 6516 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6517 SDValue MS = DAG.getMemset( 6518 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 6519 &I, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 6520 updateDAGForMaybeTailCall(MS); 6521 return; 6522 } 6523 case Intrinsic::memset_inline: { 6524 const auto &MSII = cast<MemSetInlineInst>(I); 6525 SDValue Dst = getValue(I.getArgOperand(0)); 6526 SDValue Value = getValue(I.getArgOperand(1)); 6527 SDValue Size = getValue(I.getArgOperand(2)); 6528 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 6529 // @llvm.memset defines 0 and 1 to both mean no alignment. 6530 Align DstAlign = MSII.getDestAlign().valueOrOne(); 6531 bool isVol = MSII.isVolatile(); 6532 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6533 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 6534 /* AlwaysInline */ true, &I, 6535 MachinePointerInfo(I.getArgOperand(0)), 6536 I.getAAMetadata()); 6537 updateDAGForMaybeTailCall(MC); 6538 return; 6539 } 6540 case Intrinsic::memmove: { 6541 const auto &MMI = cast<MemMoveInst>(I); 6542 SDValue Op1 = getValue(I.getArgOperand(0)); 6543 SDValue Op2 = getValue(I.getArgOperand(1)); 6544 SDValue Op3 = getValue(I.getArgOperand(2)); 6545 // @llvm.memmove defines 0 and 1 to both mean no alignment. 6546 Align DstAlign = MMI.getDestAlign().valueOrOne(); 6547 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 6548 Align Alignment = std::min(DstAlign, SrcAlign); 6549 bool isVol = MMI.isVolatile(); 6550 // FIXME: Support passing different dest/src alignments to the memmove DAG 6551 // node. 6552 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6553 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, &I, 6554 /* OverrideTailCall */ std::nullopt, 6555 MachinePointerInfo(I.getArgOperand(0)), 6556 MachinePointerInfo(I.getArgOperand(1)), 6557 I.getAAMetadata(), AA); 6558 updateDAGForMaybeTailCall(MM); 6559 return; 6560 } 6561 case Intrinsic::memcpy_element_unordered_atomic: { 6562 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 6563 SDValue Dst = getValue(MI.getRawDest()); 6564 SDValue Src = getValue(MI.getRawSource()); 6565 SDValue Length = getValue(MI.getLength()); 6566 6567 Type *LengthTy = MI.getLength()->getType(); 6568 unsigned ElemSz = MI.getElementSizeInBytes(); 6569 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6570 SDValue MC = 6571 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6572 isTC, MachinePointerInfo(MI.getRawDest()), 6573 MachinePointerInfo(MI.getRawSource())); 6574 updateDAGForMaybeTailCall(MC); 6575 return; 6576 } 6577 case Intrinsic::memmove_element_unordered_atomic: { 6578 auto &MI = cast<AtomicMemMoveInst>(I); 6579 SDValue Dst = getValue(MI.getRawDest()); 6580 SDValue Src = getValue(MI.getRawSource()); 6581 SDValue Length = getValue(MI.getLength()); 6582 6583 Type *LengthTy = MI.getLength()->getType(); 6584 unsigned ElemSz = MI.getElementSizeInBytes(); 6585 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6586 SDValue MC = 6587 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6588 isTC, MachinePointerInfo(MI.getRawDest()), 6589 MachinePointerInfo(MI.getRawSource())); 6590 updateDAGForMaybeTailCall(MC); 6591 return; 6592 } 6593 case Intrinsic::memset_element_unordered_atomic: { 6594 auto &MI = cast<AtomicMemSetInst>(I); 6595 SDValue Dst = getValue(MI.getRawDest()); 6596 SDValue Val = getValue(MI.getValue()); 6597 SDValue Length = getValue(MI.getLength()); 6598 6599 Type *LengthTy = MI.getLength()->getType(); 6600 unsigned ElemSz = MI.getElementSizeInBytes(); 6601 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6602 SDValue MC = 6603 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6604 isTC, MachinePointerInfo(MI.getRawDest())); 6605 updateDAGForMaybeTailCall(MC); 6606 return; 6607 } 6608 case Intrinsic::call_preallocated_setup: { 6609 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6610 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6611 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6612 getRoot(), SrcValue); 6613 setValue(&I, Res); 6614 DAG.setRoot(Res); 6615 return; 6616 } 6617 case Intrinsic::call_preallocated_arg: { 6618 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6619 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6620 SDValue Ops[3]; 6621 Ops[0] = getRoot(); 6622 Ops[1] = SrcValue; 6623 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6624 MVT::i32); // arg index 6625 SDValue Res = DAG.getNode( 6626 ISD::PREALLOCATED_ARG, sdl, 6627 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6628 setValue(&I, Res); 6629 DAG.setRoot(Res.getValue(1)); 6630 return; 6631 } 6632 case Intrinsic::dbg_declare: { 6633 const auto &DI = cast<DbgDeclareInst>(I); 6634 // Debug intrinsics are handled separately in assignment tracking mode. 6635 // Some intrinsics are handled right after Argument lowering. 6636 if (AssignmentTrackingEnabled || 6637 FuncInfo.PreprocessedDbgDeclares.count(&DI)) 6638 return; 6639 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n"); 6640 DILocalVariable *Variable = DI.getVariable(); 6641 DIExpression *Expression = DI.getExpression(); 6642 dropDanglingDebugInfo(Variable, Expression); 6643 // Assume dbg.declare can not currently use DIArgList, i.e. 6644 // it is non-variadic. 6645 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6646 handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression, 6647 DI.getDebugLoc()); 6648 return; 6649 } 6650 case Intrinsic::dbg_label: { 6651 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6652 DILabel *Label = DI.getLabel(); 6653 assert(Label && "Missing label"); 6654 6655 SDDbgLabel *SDV; 6656 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6657 DAG.AddDbgLabel(SDV); 6658 return; 6659 } 6660 case Intrinsic::dbg_assign: { 6661 // Debug intrinsics are handled separately in assignment tracking mode. 6662 if (AssignmentTrackingEnabled) 6663 return; 6664 // If assignment tracking hasn't been enabled then fall through and treat 6665 // the dbg.assign as a dbg.value. 6666 [[fallthrough]]; 6667 } 6668 case Intrinsic::dbg_value: { 6669 // Debug intrinsics are handled separately in assignment tracking mode. 6670 if (AssignmentTrackingEnabled) 6671 return; 6672 const DbgValueInst &DI = cast<DbgValueInst>(I); 6673 assert(DI.getVariable() && "Missing variable"); 6674 6675 DILocalVariable *Variable = DI.getVariable(); 6676 DIExpression *Expression = DI.getExpression(); 6677 dropDanglingDebugInfo(Variable, Expression); 6678 6679 if (DI.isKillLocation()) { 6680 handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder); 6681 return; 6682 } 6683 6684 SmallVector<Value *, 4> Values(DI.getValues()); 6685 if (Values.empty()) 6686 return; 6687 6688 bool IsVariadic = DI.hasArgList(); 6689 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(), 6690 SDNodeOrder, IsVariadic)) 6691 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 6692 DI.getDebugLoc(), SDNodeOrder); 6693 return; 6694 } 6695 6696 case Intrinsic::eh_typeid_for: { 6697 // Find the type id for the given typeinfo. 6698 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6699 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6700 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6701 setValue(&I, Res); 6702 return; 6703 } 6704 6705 case Intrinsic::eh_return_i32: 6706 case Intrinsic::eh_return_i64: 6707 DAG.getMachineFunction().setCallsEHReturn(true); 6708 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6709 MVT::Other, 6710 getControlRoot(), 6711 getValue(I.getArgOperand(0)), 6712 getValue(I.getArgOperand(1)))); 6713 return; 6714 case Intrinsic::eh_unwind_init: 6715 DAG.getMachineFunction().setCallsUnwindInit(true); 6716 return; 6717 case Intrinsic::eh_dwarf_cfa: 6718 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6719 TLI.getPointerTy(DAG.getDataLayout()), 6720 getValue(I.getArgOperand(0)))); 6721 return; 6722 case Intrinsic::eh_sjlj_callsite: { 6723 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6724 assert(FuncInfo.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6725 6726 FuncInfo.setCurrentCallSite(CI->getZExtValue()); 6727 return; 6728 } 6729 case Intrinsic::eh_sjlj_functioncontext: { 6730 // Get and store the index of the function context. 6731 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6732 AllocaInst *FnCtx = 6733 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6734 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6735 MFI.setFunctionContextIndex(FI); 6736 return; 6737 } 6738 case Intrinsic::eh_sjlj_setjmp: { 6739 SDValue Ops[2]; 6740 Ops[0] = getRoot(); 6741 Ops[1] = getValue(I.getArgOperand(0)); 6742 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6743 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6744 setValue(&I, Op.getValue(0)); 6745 DAG.setRoot(Op.getValue(1)); 6746 return; 6747 } 6748 case Intrinsic::eh_sjlj_longjmp: 6749 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6750 getRoot(), getValue(I.getArgOperand(0)))); 6751 return; 6752 case Intrinsic::eh_sjlj_setup_dispatch: 6753 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6754 getRoot())); 6755 return; 6756 case Intrinsic::masked_gather: 6757 visitMaskedGather(I); 6758 return; 6759 case Intrinsic::masked_load: 6760 visitMaskedLoad(I); 6761 return; 6762 case Intrinsic::masked_scatter: 6763 visitMaskedScatter(I); 6764 return; 6765 case Intrinsic::masked_store: 6766 visitMaskedStore(I); 6767 return; 6768 case Intrinsic::masked_expandload: 6769 visitMaskedLoad(I, true /* IsExpanding */); 6770 return; 6771 case Intrinsic::masked_compressstore: 6772 visitMaskedStore(I, true /* IsCompressing */); 6773 return; 6774 case Intrinsic::powi: 6775 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6776 getValue(I.getArgOperand(1)), DAG)); 6777 return; 6778 case Intrinsic::log: 6779 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6780 return; 6781 case Intrinsic::log2: 6782 setValue(&I, 6783 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6784 return; 6785 case Intrinsic::log10: 6786 setValue(&I, 6787 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6788 return; 6789 case Intrinsic::exp: 6790 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6791 return; 6792 case Intrinsic::exp2: 6793 setValue(&I, 6794 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6795 return; 6796 case Intrinsic::pow: 6797 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6798 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6799 return; 6800 case Intrinsic::sqrt: 6801 case Intrinsic::fabs: 6802 case Intrinsic::sin: 6803 case Intrinsic::cos: 6804 case Intrinsic::tan: 6805 case Intrinsic::asin: 6806 case Intrinsic::acos: 6807 case Intrinsic::atan: 6808 case Intrinsic::sinh: 6809 case Intrinsic::cosh: 6810 case Intrinsic::tanh: 6811 case Intrinsic::exp10: 6812 case Intrinsic::floor: 6813 case Intrinsic::ceil: 6814 case Intrinsic::trunc: 6815 case Intrinsic::rint: 6816 case Intrinsic::nearbyint: 6817 case Intrinsic::round: 6818 case Intrinsic::roundeven: 6819 case Intrinsic::canonicalize: { 6820 unsigned Opcode; 6821 // clang-format off 6822 switch (Intrinsic) { 6823 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6824 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6825 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6826 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6827 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6828 case Intrinsic::tan: Opcode = ISD::FTAN; break; 6829 case Intrinsic::asin: Opcode = ISD::FASIN; break; 6830 case Intrinsic::acos: Opcode = ISD::FACOS; break; 6831 case Intrinsic::atan: Opcode = ISD::FATAN; break; 6832 case Intrinsic::sinh: Opcode = ISD::FSINH; break; 6833 case Intrinsic::cosh: Opcode = ISD::FCOSH; break; 6834 case Intrinsic::tanh: Opcode = ISD::FTANH; break; 6835 case Intrinsic::exp10: Opcode = ISD::FEXP10; break; 6836 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6837 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6838 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6839 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6840 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6841 case Intrinsic::round: Opcode = ISD::FROUND; break; 6842 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6843 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6844 } 6845 // clang-format on 6846 6847 setValue(&I, DAG.getNode(Opcode, sdl, 6848 getValue(I.getArgOperand(0)).getValueType(), 6849 getValue(I.getArgOperand(0)), Flags)); 6850 return; 6851 } 6852 case Intrinsic::lround: 6853 case Intrinsic::llround: 6854 case Intrinsic::lrint: 6855 case Intrinsic::llrint: { 6856 unsigned Opcode; 6857 // clang-format off 6858 switch (Intrinsic) { 6859 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6860 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6861 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6862 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6863 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6864 } 6865 // clang-format on 6866 6867 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6868 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6869 getValue(I.getArgOperand(0)))); 6870 return; 6871 } 6872 case Intrinsic::minnum: 6873 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6874 getValue(I.getArgOperand(0)).getValueType(), 6875 getValue(I.getArgOperand(0)), 6876 getValue(I.getArgOperand(1)), Flags)); 6877 return; 6878 case Intrinsic::maxnum: 6879 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6880 getValue(I.getArgOperand(0)).getValueType(), 6881 getValue(I.getArgOperand(0)), 6882 getValue(I.getArgOperand(1)), Flags)); 6883 return; 6884 case Intrinsic::minimum: 6885 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6886 getValue(I.getArgOperand(0)).getValueType(), 6887 getValue(I.getArgOperand(0)), 6888 getValue(I.getArgOperand(1)), Flags)); 6889 return; 6890 case Intrinsic::maximum: 6891 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6892 getValue(I.getArgOperand(0)).getValueType(), 6893 getValue(I.getArgOperand(0)), 6894 getValue(I.getArgOperand(1)), Flags)); 6895 return; 6896 case Intrinsic::minimumnum: 6897 setValue(&I, DAG.getNode(ISD::FMINIMUMNUM, sdl, 6898 getValue(I.getArgOperand(0)).getValueType(), 6899 getValue(I.getArgOperand(0)), 6900 getValue(I.getArgOperand(1)), Flags)); 6901 return; 6902 case Intrinsic::maximumnum: 6903 setValue(&I, DAG.getNode(ISD::FMAXIMUMNUM, sdl, 6904 getValue(I.getArgOperand(0)).getValueType(), 6905 getValue(I.getArgOperand(0)), 6906 getValue(I.getArgOperand(1)), Flags)); 6907 return; 6908 case Intrinsic::copysign: 6909 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6910 getValue(I.getArgOperand(0)).getValueType(), 6911 getValue(I.getArgOperand(0)), 6912 getValue(I.getArgOperand(1)), Flags)); 6913 return; 6914 case Intrinsic::ldexp: 6915 setValue(&I, DAG.getNode(ISD::FLDEXP, sdl, 6916 getValue(I.getArgOperand(0)).getValueType(), 6917 getValue(I.getArgOperand(0)), 6918 getValue(I.getArgOperand(1)), Flags)); 6919 return; 6920 case Intrinsic::frexp: { 6921 SmallVector<EVT, 2> ValueVTs; 6922 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 6923 SDVTList VTs = DAG.getVTList(ValueVTs); 6924 setValue(&I, 6925 DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0)))); 6926 return; 6927 } 6928 case Intrinsic::arithmetic_fence: { 6929 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6930 getValue(I.getArgOperand(0)).getValueType(), 6931 getValue(I.getArgOperand(0)), Flags)); 6932 return; 6933 } 6934 case Intrinsic::fma: 6935 setValue(&I, DAG.getNode( 6936 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6937 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6938 getValue(I.getArgOperand(2)), Flags)); 6939 return; 6940 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6941 case Intrinsic::INTRINSIC: 6942 #include "llvm/IR/ConstrainedOps.def" 6943 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6944 return; 6945 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6946 #include "llvm/IR/VPIntrinsics.def" 6947 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6948 return; 6949 case Intrinsic::fptrunc_round: { 6950 // Get the last argument, the metadata and convert it to an integer in the 6951 // call 6952 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6953 std::optional<RoundingMode> RoundMode = 6954 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6955 6956 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6957 6958 // Propagate fast-math-flags from IR to node(s). 6959 SDNodeFlags Flags; 6960 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6961 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6962 6963 SDValue Result; 6964 Result = DAG.getNode( 6965 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6966 DAG.getTargetConstant((int)*RoundMode, sdl, MVT::i32)); 6967 setValue(&I, Result); 6968 6969 return; 6970 } 6971 case Intrinsic::fmuladd: { 6972 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6973 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6974 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6975 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6976 getValue(I.getArgOperand(0)).getValueType(), 6977 getValue(I.getArgOperand(0)), 6978 getValue(I.getArgOperand(1)), 6979 getValue(I.getArgOperand(2)), Flags)); 6980 } else { 6981 // TODO: Intrinsic calls should have fast-math-flags. 6982 SDValue Mul = DAG.getNode( 6983 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6984 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6985 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6986 getValue(I.getArgOperand(0)).getValueType(), 6987 Mul, getValue(I.getArgOperand(2)), Flags); 6988 setValue(&I, Add); 6989 } 6990 return; 6991 } 6992 case Intrinsic::convert_to_fp16: 6993 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6994 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6995 getValue(I.getArgOperand(0)), 6996 DAG.getTargetConstant(0, sdl, 6997 MVT::i32)))); 6998 return; 6999 case Intrinsic::convert_from_fp16: 7000 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 7001 TLI.getValueType(DAG.getDataLayout(), I.getType()), 7002 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 7003 getValue(I.getArgOperand(0))))); 7004 return; 7005 case Intrinsic::fptosi_sat: { 7006 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7007 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 7008 getValue(I.getArgOperand(0)), 7009 DAG.getValueType(VT.getScalarType()))); 7010 return; 7011 } 7012 case Intrinsic::fptoui_sat: { 7013 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7014 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 7015 getValue(I.getArgOperand(0)), 7016 DAG.getValueType(VT.getScalarType()))); 7017 return; 7018 } 7019 case Intrinsic::set_rounding: 7020 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 7021 {getRoot(), getValue(I.getArgOperand(0))}); 7022 setValue(&I, Res); 7023 DAG.setRoot(Res.getValue(0)); 7024 return; 7025 case Intrinsic::is_fpclass: { 7026 const DataLayout DLayout = DAG.getDataLayout(); 7027 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 7028 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 7029 FPClassTest Test = static_cast<FPClassTest>( 7030 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 7031 MachineFunction &MF = DAG.getMachineFunction(); 7032 const Function &F = MF.getFunction(); 7033 SDValue Op = getValue(I.getArgOperand(0)); 7034 SDNodeFlags Flags; 7035 Flags.setNoFPExcept( 7036 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 7037 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 7038 // expansion can use illegal types. Making expansion early allows 7039 // legalizing these types prior to selection. 7040 if (!TLI.isOperationLegal(ISD::IS_FPCLASS, ArgVT) && 7041 !TLI.isOperationCustom(ISD::IS_FPCLASS, ArgVT)) { 7042 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 7043 setValue(&I, Result); 7044 return; 7045 } 7046 7047 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 7048 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 7049 setValue(&I, V); 7050 return; 7051 } 7052 case Intrinsic::get_fpenv: { 7053 const DataLayout DLayout = DAG.getDataLayout(); 7054 EVT EnvVT = TLI.getValueType(DLayout, I.getType()); 7055 Align TempAlign = DAG.getEVTAlign(EnvVT); 7056 SDValue Chain = getRoot(); 7057 // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node 7058 // and temporary storage in stack. 7059 if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) { 7060 Res = DAG.getNode( 7061 ISD::GET_FPENV, sdl, 7062 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7063 MVT::Other), 7064 Chain); 7065 } else { 7066 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 7067 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 7068 auto MPI = 7069 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 7070 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7071 MPI, MachineMemOperand::MOStore, LocationSize::beforeOrAfterPointer(), 7072 TempAlign); 7073 Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 7074 Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI); 7075 } 7076 setValue(&I, Res); 7077 DAG.setRoot(Res.getValue(1)); 7078 return; 7079 } 7080 case Intrinsic::set_fpenv: { 7081 const DataLayout DLayout = DAG.getDataLayout(); 7082 SDValue Env = getValue(I.getArgOperand(0)); 7083 EVT EnvVT = Env.getValueType(); 7084 Align TempAlign = DAG.getEVTAlign(EnvVT); 7085 SDValue Chain = getRoot(); 7086 // If SET_FPENV is custom or legal, use it. Otherwise use loading 7087 // environment from memory. 7088 if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) { 7089 Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env); 7090 } else { 7091 // Allocate space in stack, copy environment bits into it and use this 7092 // memory in SET_FPENV_MEM. 7093 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 7094 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 7095 auto MPI = 7096 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 7097 Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign, 7098 MachineMemOperand::MOStore); 7099 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7100 MPI, MachineMemOperand::MOLoad, LocationSize::beforeOrAfterPointer(), 7101 TempAlign); 7102 Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 7103 } 7104 DAG.setRoot(Chain); 7105 return; 7106 } 7107 case Intrinsic::reset_fpenv: 7108 DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot())); 7109 return; 7110 case Intrinsic::get_fpmode: 7111 Res = DAG.getNode( 7112 ISD::GET_FPMODE, sdl, 7113 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7114 MVT::Other), 7115 DAG.getRoot()); 7116 setValue(&I, Res); 7117 DAG.setRoot(Res.getValue(1)); 7118 return; 7119 case Intrinsic::set_fpmode: 7120 Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()}, 7121 getValue(I.getArgOperand(0))); 7122 DAG.setRoot(Res); 7123 return; 7124 case Intrinsic::reset_fpmode: { 7125 Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot()); 7126 DAG.setRoot(Res); 7127 return; 7128 } 7129 case Intrinsic::pcmarker: { 7130 SDValue Tmp = getValue(I.getArgOperand(0)); 7131 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 7132 return; 7133 } 7134 case Intrinsic::readcyclecounter: { 7135 SDValue Op = getRoot(); 7136 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 7137 DAG.getVTList(MVT::i64, MVT::Other), Op); 7138 setValue(&I, Res); 7139 DAG.setRoot(Res.getValue(1)); 7140 return; 7141 } 7142 case Intrinsic::readsteadycounter: { 7143 SDValue Op = getRoot(); 7144 Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl, 7145 DAG.getVTList(MVT::i64, MVT::Other), Op); 7146 setValue(&I, Res); 7147 DAG.setRoot(Res.getValue(1)); 7148 return; 7149 } 7150 case Intrinsic::bitreverse: 7151 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 7152 getValue(I.getArgOperand(0)).getValueType(), 7153 getValue(I.getArgOperand(0)))); 7154 return; 7155 case Intrinsic::bswap: 7156 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 7157 getValue(I.getArgOperand(0)).getValueType(), 7158 getValue(I.getArgOperand(0)))); 7159 return; 7160 case Intrinsic::cttz: { 7161 SDValue Arg = getValue(I.getArgOperand(0)); 7162 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 7163 EVT Ty = Arg.getValueType(); 7164 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 7165 sdl, Ty, Arg)); 7166 return; 7167 } 7168 case Intrinsic::ctlz: { 7169 SDValue Arg = getValue(I.getArgOperand(0)); 7170 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 7171 EVT Ty = Arg.getValueType(); 7172 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 7173 sdl, Ty, Arg)); 7174 return; 7175 } 7176 case Intrinsic::ctpop: { 7177 SDValue Arg = getValue(I.getArgOperand(0)); 7178 EVT Ty = Arg.getValueType(); 7179 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 7180 return; 7181 } 7182 case Intrinsic::fshl: 7183 case Intrinsic::fshr: { 7184 bool IsFSHL = Intrinsic == Intrinsic::fshl; 7185 SDValue X = getValue(I.getArgOperand(0)); 7186 SDValue Y = getValue(I.getArgOperand(1)); 7187 SDValue Z = getValue(I.getArgOperand(2)); 7188 EVT VT = X.getValueType(); 7189 7190 if (X == Y) { 7191 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 7192 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 7193 } else { 7194 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 7195 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 7196 } 7197 return; 7198 } 7199 case Intrinsic::sadd_sat: { 7200 SDValue Op1 = getValue(I.getArgOperand(0)); 7201 SDValue Op2 = getValue(I.getArgOperand(1)); 7202 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 7203 return; 7204 } 7205 case Intrinsic::uadd_sat: { 7206 SDValue Op1 = getValue(I.getArgOperand(0)); 7207 SDValue Op2 = getValue(I.getArgOperand(1)); 7208 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 7209 return; 7210 } 7211 case Intrinsic::ssub_sat: { 7212 SDValue Op1 = getValue(I.getArgOperand(0)); 7213 SDValue Op2 = getValue(I.getArgOperand(1)); 7214 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 7215 return; 7216 } 7217 case Intrinsic::usub_sat: { 7218 SDValue Op1 = getValue(I.getArgOperand(0)); 7219 SDValue Op2 = getValue(I.getArgOperand(1)); 7220 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 7221 return; 7222 } 7223 case Intrinsic::sshl_sat: { 7224 SDValue Op1 = getValue(I.getArgOperand(0)); 7225 SDValue Op2 = getValue(I.getArgOperand(1)); 7226 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 7227 return; 7228 } 7229 case Intrinsic::ushl_sat: { 7230 SDValue Op1 = getValue(I.getArgOperand(0)); 7231 SDValue Op2 = getValue(I.getArgOperand(1)); 7232 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 7233 return; 7234 } 7235 case Intrinsic::smul_fix: 7236 case Intrinsic::umul_fix: 7237 case Intrinsic::smul_fix_sat: 7238 case Intrinsic::umul_fix_sat: { 7239 SDValue Op1 = getValue(I.getArgOperand(0)); 7240 SDValue Op2 = getValue(I.getArgOperand(1)); 7241 SDValue Op3 = getValue(I.getArgOperand(2)); 7242 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 7243 Op1.getValueType(), Op1, Op2, Op3)); 7244 return; 7245 } 7246 case Intrinsic::sdiv_fix: 7247 case Intrinsic::udiv_fix: 7248 case Intrinsic::sdiv_fix_sat: 7249 case Intrinsic::udiv_fix_sat: { 7250 SDValue Op1 = getValue(I.getArgOperand(0)); 7251 SDValue Op2 = getValue(I.getArgOperand(1)); 7252 SDValue Op3 = getValue(I.getArgOperand(2)); 7253 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 7254 Op1, Op2, Op3, DAG, TLI)); 7255 return; 7256 } 7257 case Intrinsic::smax: { 7258 SDValue Op1 = getValue(I.getArgOperand(0)); 7259 SDValue Op2 = getValue(I.getArgOperand(1)); 7260 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 7261 return; 7262 } 7263 case Intrinsic::smin: { 7264 SDValue Op1 = getValue(I.getArgOperand(0)); 7265 SDValue Op2 = getValue(I.getArgOperand(1)); 7266 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 7267 return; 7268 } 7269 case Intrinsic::umax: { 7270 SDValue Op1 = getValue(I.getArgOperand(0)); 7271 SDValue Op2 = getValue(I.getArgOperand(1)); 7272 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 7273 return; 7274 } 7275 case Intrinsic::umin: { 7276 SDValue Op1 = getValue(I.getArgOperand(0)); 7277 SDValue Op2 = getValue(I.getArgOperand(1)); 7278 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 7279 return; 7280 } 7281 case Intrinsic::abs: { 7282 // TODO: Preserve "int min is poison" arg in SDAG? 7283 SDValue Op1 = getValue(I.getArgOperand(0)); 7284 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 7285 return; 7286 } 7287 case Intrinsic::scmp: { 7288 SDValue Op1 = getValue(I.getArgOperand(0)); 7289 SDValue Op2 = getValue(I.getArgOperand(1)); 7290 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7291 setValue(&I, DAG.getNode(ISD::SCMP, sdl, DestVT, Op1, Op2)); 7292 break; 7293 } 7294 case Intrinsic::ucmp: { 7295 SDValue Op1 = getValue(I.getArgOperand(0)); 7296 SDValue Op2 = getValue(I.getArgOperand(1)); 7297 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7298 setValue(&I, DAG.getNode(ISD::UCMP, sdl, DestVT, Op1, Op2)); 7299 break; 7300 } 7301 case Intrinsic::stacksave: { 7302 SDValue Op = getRoot(); 7303 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7304 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 7305 setValue(&I, Res); 7306 DAG.setRoot(Res.getValue(1)); 7307 return; 7308 } 7309 case Intrinsic::stackrestore: 7310 Res = getValue(I.getArgOperand(0)); 7311 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 7312 return; 7313 case Intrinsic::get_dynamic_area_offset: { 7314 SDValue Op = getRoot(); 7315 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 7316 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7317 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 7318 // target. 7319 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 7320 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 7321 " intrinsic!"); 7322 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 7323 Op); 7324 DAG.setRoot(Op); 7325 setValue(&I, Res); 7326 return; 7327 } 7328 case Intrinsic::stackguard: { 7329 MachineFunction &MF = DAG.getMachineFunction(); 7330 const Module &M = *MF.getFunction().getParent(); 7331 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7332 SDValue Chain = getRoot(); 7333 if (TLI.useLoadStackGuardNode()) { 7334 Res = getLoadStackGuard(DAG, sdl, Chain); 7335 Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy); 7336 } else { 7337 const Value *Global = TLI.getSDagStackGuard(M); 7338 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 7339 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 7340 MachinePointerInfo(Global, 0), Align, 7341 MachineMemOperand::MOVolatile); 7342 } 7343 if (TLI.useStackGuardXorFP()) 7344 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 7345 DAG.setRoot(Chain); 7346 setValue(&I, Res); 7347 return; 7348 } 7349 case Intrinsic::stackprotector: { 7350 // Emit code into the DAG to store the stack guard onto the stack. 7351 MachineFunction &MF = DAG.getMachineFunction(); 7352 MachineFrameInfo &MFI = MF.getFrameInfo(); 7353 SDValue Src, Chain = getRoot(); 7354 7355 if (TLI.useLoadStackGuardNode()) 7356 Src = getLoadStackGuard(DAG, sdl, Chain); 7357 else 7358 Src = getValue(I.getArgOperand(0)); // The guard's value. 7359 7360 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 7361 7362 int FI = FuncInfo.StaticAllocaMap[Slot]; 7363 MFI.setStackProtectorIndex(FI); 7364 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 7365 7366 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 7367 7368 // Store the stack protector onto the stack. 7369 Res = DAG.getStore( 7370 Chain, sdl, Src, FIN, 7371 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 7372 MaybeAlign(), MachineMemOperand::MOVolatile); 7373 setValue(&I, Res); 7374 DAG.setRoot(Res); 7375 return; 7376 } 7377 case Intrinsic::objectsize: 7378 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 7379 7380 case Intrinsic::is_constant: 7381 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 7382 7383 case Intrinsic::annotation: 7384 case Intrinsic::ptr_annotation: 7385 case Intrinsic::launder_invariant_group: 7386 case Intrinsic::strip_invariant_group: 7387 // Drop the intrinsic, but forward the value 7388 setValue(&I, getValue(I.getOperand(0))); 7389 return; 7390 7391 case Intrinsic::assume: 7392 case Intrinsic::experimental_noalias_scope_decl: 7393 case Intrinsic::var_annotation: 7394 case Intrinsic::sideeffect: 7395 // Discard annotate attributes, noalias scope declarations, assumptions, and 7396 // artificial side-effects. 7397 return; 7398 7399 case Intrinsic::codeview_annotation: { 7400 // Emit a label associated with this metadata. 7401 MachineFunction &MF = DAG.getMachineFunction(); 7402 MCSymbol *Label = MF.getContext().createTempSymbol("annotation", true); 7403 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 7404 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 7405 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 7406 DAG.setRoot(Res); 7407 return; 7408 } 7409 7410 case Intrinsic::init_trampoline: { 7411 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 7412 7413 SDValue Ops[6]; 7414 Ops[0] = getRoot(); 7415 Ops[1] = getValue(I.getArgOperand(0)); 7416 Ops[2] = getValue(I.getArgOperand(1)); 7417 Ops[3] = getValue(I.getArgOperand(2)); 7418 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 7419 Ops[5] = DAG.getSrcValue(F); 7420 7421 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 7422 7423 DAG.setRoot(Res); 7424 return; 7425 } 7426 case Intrinsic::adjust_trampoline: 7427 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 7428 TLI.getPointerTy(DAG.getDataLayout()), 7429 getValue(I.getArgOperand(0)))); 7430 return; 7431 case Intrinsic::gcroot: { 7432 assert(DAG.getMachineFunction().getFunction().hasGC() && 7433 "only valid in functions with gc specified, enforced by Verifier"); 7434 assert(GFI && "implied by previous"); 7435 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 7436 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 7437 7438 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 7439 GFI->addStackRoot(FI->getIndex(), TypeMap); 7440 return; 7441 } 7442 case Intrinsic::gcread: 7443 case Intrinsic::gcwrite: 7444 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 7445 case Intrinsic::get_rounding: 7446 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot()); 7447 setValue(&I, Res); 7448 DAG.setRoot(Res.getValue(1)); 7449 return; 7450 7451 case Intrinsic::expect: 7452 // Just replace __builtin_expect(exp, c) with EXP. 7453 setValue(&I, getValue(I.getArgOperand(0))); 7454 return; 7455 7456 case Intrinsic::ubsantrap: 7457 case Intrinsic::debugtrap: 7458 case Intrinsic::trap: { 7459 StringRef TrapFuncName = 7460 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 7461 if (TrapFuncName.empty()) { 7462 switch (Intrinsic) { 7463 case Intrinsic::trap: 7464 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 7465 break; 7466 case Intrinsic::debugtrap: 7467 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 7468 break; 7469 case Intrinsic::ubsantrap: 7470 DAG.setRoot(DAG.getNode( 7471 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 7472 DAG.getTargetConstant( 7473 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 7474 MVT::i32))); 7475 break; 7476 default: llvm_unreachable("unknown trap intrinsic"); 7477 } 7478 DAG.addNoMergeSiteInfo(DAG.getRoot().getNode(), 7479 I.hasFnAttr(Attribute::NoMerge)); 7480 return; 7481 } 7482 TargetLowering::ArgListTy Args; 7483 if (Intrinsic == Intrinsic::ubsantrap) { 7484 Args.push_back(TargetLoweringBase::ArgListEntry()); 7485 Args[0].Val = I.getArgOperand(0); 7486 Args[0].Node = getValue(Args[0].Val); 7487 Args[0].Ty = Args[0].Val->getType(); 7488 } 7489 7490 TargetLowering::CallLoweringInfo CLI(DAG); 7491 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 7492 CallingConv::C, I.getType(), 7493 DAG.getExternalSymbol(TrapFuncName.data(), 7494 TLI.getPointerTy(DAG.getDataLayout())), 7495 std::move(Args)); 7496 CLI.NoMerge = I.hasFnAttr(Attribute::NoMerge); 7497 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7498 DAG.setRoot(Result.second); 7499 return; 7500 } 7501 7502 case Intrinsic::allow_runtime_check: 7503 case Intrinsic::allow_ubsan_check: 7504 setValue(&I, getValue(ConstantInt::getTrue(I.getType()))); 7505 return; 7506 7507 case Intrinsic::uadd_with_overflow: 7508 case Intrinsic::sadd_with_overflow: 7509 case Intrinsic::usub_with_overflow: 7510 case Intrinsic::ssub_with_overflow: 7511 case Intrinsic::umul_with_overflow: 7512 case Intrinsic::smul_with_overflow: { 7513 ISD::NodeType Op; 7514 switch (Intrinsic) { 7515 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7516 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 7517 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 7518 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 7519 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 7520 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 7521 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 7522 } 7523 SDValue Op1 = getValue(I.getArgOperand(0)); 7524 SDValue Op2 = getValue(I.getArgOperand(1)); 7525 7526 EVT ResultVT = Op1.getValueType(); 7527 EVT OverflowVT = MVT::i1; 7528 if (ResultVT.isVector()) 7529 OverflowVT = EVT::getVectorVT( 7530 *Context, OverflowVT, ResultVT.getVectorElementCount()); 7531 7532 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 7533 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 7534 return; 7535 } 7536 case Intrinsic::prefetch: { 7537 SDValue Ops[5]; 7538 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7539 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 7540 Ops[0] = DAG.getRoot(); 7541 Ops[1] = getValue(I.getArgOperand(0)); 7542 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 7543 MVT::i32); 7544 Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl, 7545 MVT::i32); 7546 Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl, 7547 MVT::i32); 7548 SDValue Result = DAG.getMemIntrinsicNode( 7549 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 7550 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 7551 /* align */ std::nullopt, Flags); 7552 7553 // Chain the prefetch in parallel with any pending loads, to stay out of 7554 // the way of later optimizations. 7555 PendingLoads.push_back(Result); 7556 Result = getRoot(); 7557 DAG.setRoot(Result); 7558 return; 7559 } 7560 case Intrinsic::lifetime_start: 7561 case Intrinsic::lifetime_end: { 7562 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 7563 // Stack coloring is not enabled in O0, discard region information. 7564 if (TM.getOptLevel() == CodeGenOptLevel::None) 7565 return; 7566 7567 const int64_t ObjectSize = 7568 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 7569 Value *const ObjectPtr = I.getArgOperand(1); 7570 SmallVector<const Value *, 4> Allocas; 7571 getUnderlyingObjects(ObjectPtr, Allocas); 7572 7573 for (const Value *Alloca : Allocas) { 7574 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 7575 7576 // Could not find an Alloca. 7577 if (!LifetimeObject) 7578 continue; 7579 7580 // First check that the Alloca is static, otherwise it won't have a 7581 // valid frame index. 7582 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 7583 if (SI == FuncInfo.StaticAllocaMap.end()) 7584 return; 7585 7586 const int FrameIndex = SI->second; 7587 int64_t Offset; 7588 if (GetPointerBaseWithConstantOffset( 7589 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 7590 Offset = -1; // Cannot determine offset from alloca to lifetime object. 7591 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 7592 Offset); 7593 DAG.setRoot(Res); 7594 } 7595 return; 7596 } 7597 case Intrinsic::pseudoprobe: { 7598 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 7599 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7600 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 7601 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 7602 DAG.setRoot(Res); 7603 return; 7604 } 7605 case Intrinsic::invariant_start: 7606 // Discard region information. 7607 setValue(&I, 7608 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 7609 return; 7610 case Intrinsic::invariant_end: 7611 // Discard region information. 7612 return; 7613 case Intrinsic::clear_cache: { 7614 SDValue InputChain = DAG.getRoot(); 7615 SDValue StartVal = getValue(I.getArgOperand(0)); 7616 SDValue EndVal = getValue(I.getArgOperand(1)); 7617 Res = DAG.getNode(ISD::CLEAR_CACHE, sdl, DAG.getVTList(MVT::Other), 7618 {InputChain, StartVal, EndVal}); 7619 setValue(&I, Res); 7620 DAG.setRoot(Res); 7621 return; 7622 } 7623 case Intrinsic::donothing: 7624 case Intrinsic::seh_try_begin: 7625 case Intrinsic::seh_scope_begin: 7626 case Intrinsic::seh_try_end: 7627 case Intrinsic::seh_scope_end: 7628 // ignore 7629 return; 7630 case Intrinsic::experimental_stackmap: 7631 visitStackmap(I); 7632 return; 7633 case Intrinsic::experimental_patchpoint_void: 7634 case Intrinsic::experimental_patchpoint: 7635 visitPatchpoint(I); 7636 return; 7637 case Intrinsic::experimental_gc_statepoint: 7638 LowerStatepoint(cast<GCStatepointInst>(I)); 7639 return; 7640 case Intrinsic::experimental_gc_result: 7641 visitGCResult(cast<GCResultInst>(I)); 7642 return; 7643 case Intrinsic::experimental_gc_relocate: 7644 visitGCRelocate(cast<GCRelocateInst>(I)); 7645 return; 7646 case Intrinsic::instrprof_cover: 7647 llvm_unreachable("instrprof failed to lower a cover"); 7648 case Intrinsic::instrprof_increment: 7649 llvm_unreachable("instrprof failed to lower an increment"); 7650 case Intrinsic::instrprof_timestamp: 7651 llvm_unreachable("instrprof failed to lower a timestamp"); 7652 case Intrinsic::instrprof_value_profile: 7653 llvm_unreachable("instrprof failed to lower a value profiling call"); 7654 case Intrinsic::instrprof_mcdc_parameters: 7655 llvm_unreachable("instrprof failed to lower mcdc parameters"); 7656 case Intrinsic::instrprof_mcdc_tvbitmap_update: 7657 llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update"); 7658 case Intrinsic::localescape: { 7659 MachineFunction &MF = DAG.getMachineFunction(); 7660 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 7661 7662 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 7663 // is the same on all targets. 7664 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 7665 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 7666 if (isa<ConstantPointerNull>(Arg)) 7667 continue; // Skip null pointers. They represent a hole in index space. 7668 AllocaInst *Slot = cast<AllocaInst>(Arg); 7669 assert(FuncInfo.StaticAllocaMap.count(Slot) && 7670 "can only escape static allocas"); 7671 int FI = FuncInfo.StaticAllocaMap[Slot]; 7672 MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol( 7673 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7674 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7675 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7676 .addSym(FrameAllocSym) 7677 .addFrameIndex(FI); 7678 } 7679 7680 return; 7681 } 7682 7683 case Intrinsic::localrecover: { 7684 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7685 MachineFunction &MF = DAG.getMachineFunction(); 7686 7687 // Get the symbol that defines the frame offset. 7688 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7689 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7690 unsigned IdxVal = 7691 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7692 MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol( 7693 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7694 7695 Value *FP = I.getArgOperand(1); 7696 SDValue FPVal = getValue(FP); 7697 EVT PtrVT = FPVal.getValueType(); 7698 7699 // Create a MCSymbol for the label to avoid any target lowering 7700 // that would make this PC relative. 7701 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7702 SDValue OffsetVal = 7703 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7704 7705 // Add the offset to the FP. 7706 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7707 setValue(&I, Add); 7708 7709 return; 7710 } 7711 7712 case Intrinsic::fake_use: { 7713 Value *V = I.getArgOperand(0); 7714 SDValue Ops[2]; 7715 // For Values not declared or previously used in this basic block, the 7716 // NodeMap will not have an entry, and `getValue` will assert if V has no 7717 // valid register value. 7718 auto FakeUseValue = [&]() -> SDValue { 7719 SDValue &N = NodeMap[V]; 7720 if (N.getNode()) 7721 return N; 7722 7723 // If there's a virtual register allocated and initialized for this 7724 // value, use it. 7725 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 7726 return copyFromReg; 7727 // FIXME: Do we want to preserve constants? It seems pointless. 7728 if (isa<Constant>(V)) 7729 return getValue(V); 7730 return SDValue(); 7731 }(); 7732 if (!FakeUseValue || FakeUseValue.isUndef()) 7733 return; 7734 Ops[0] = getRoot(); 7735 Ops[1] = FakeUseValue; 7736 // Also, do not translate a fake use with an undef operand, or any other 7737 // empty SDValues. 7738 if (!Ops[1] || Ops[1].isUndef()) 7739 return; 7740 DAG.setRoot(DAG.getNode(ISD::FAKE_USE, sdl, MVT::Other, Ops)); 7741 return; 7742 } 7743 7744 case Intrinsic::eh_exceptionpointer: 7745 case Intrinsic::eh_exceptioncode: { 7746 // Get the exception pointer vreg, copy from it, and resize it to fit. 7747 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7748 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7749 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7750 Register VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7751 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7752 if (Intrinsic == Intrinsic::eh_exceptioncode) 7753 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7754 setValue(&I, N); 7755 return; 7756 } 7757 case Intrinsic::xray_customevent: { 7758 // Here we want to make sure that the intrinsic behaves as if it has a 7759 // specific calling convention. 7760 const auto &Triple = DAG.getTarget().getTargetTriple(); 7761 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7762 return; 7763 7764 SmallVector<SDValue, 8> Ops; 7765 7766 // We want to say that we always want the arguments in registers. 7767 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7768 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7769 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7770 SDValue Chain = getRoot(); 7771 Ops.push_back(LogEntryVal); 7772 Ops.push_back(StrSizeVal); 7773 Ops.push_back(Chain); 7774 7775 // We need to enforce the calling convention for the callsite, so that 7776 // argument ordering is enforced correctly, and that register allocation can 7777 // see that some registers may be assumed clobbered and have to preserve 7778 // them across calls to the intrinsic. 7779 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7780 sdl, NodeTys, Ops); 7781 SDValue patchableNode = SDValue(MN, 0); 7782 DAG.setRoot(patchableNode); 7783 setValue(&I, patchableNode); 7784 return; 7785 } 7786 case Intrinsic::xray_typedevent: { 7787 // Here we want to make sure that the intrinsic behaves as if it has a 7788 // specific calling convention. 7789 const auto &Triple = DAG.getTarget().getTargetTriple(); 7790 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7791 return; 7792 7793 SmallVector<SDValue, 8> Ops; 7794 7795 // We want to say that we always want the arguments in registers. 7796 // It's unclear to me how manipulating the selection DAG here forces callers 7797 // to provide arguments in registers instead of on the stack. 7798 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7799 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7800 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7801 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7802 SDValue Chain = getRoot(); 7803 Ops.push_back(LogTypeId); 7804 Ops.push_back(LogEntryVal); 7805 Ops.push_back(StrSizeVal); 7806 Ops.push_back(Chain); 7807 7808 // We need to enforce the calling convention for the callsite, so that 7809 // argument ordering is enforced correctly, and that register allocation can 7810 // see that some registers may be assumed clobbered and have to preserve 7811 // them across calls to the intrinsic. 7812 MachineSDNode *MN = DAG.getMachineNode( 7813 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7814 SDValue patchableNode = SDValue(MN, 0); 7815 DAG.setRoot(patchableNode); 7816 setValue(&I, patchableNode); 7817 return; 7818 } 7819 case Intrinsic::experimental_deoptimize: 7820 LowerDeoptimizeCall(&I); 7821 return; 7822 case Intrinsic::stepvector: 7823 visitStepVector(I); 7824 return; 7825 case Intrinsic::vector_reduce_fadd: 7826 case Intrinsic::vector_reduce_fmul: 7827 case Intrinsic::vector_reduce_add: 7828 case Intrinsic::vector_reduce_mul: 7829 case Intrinsic::vector_reduce_and: 7830 case Intrinsic::vector_reduce_or: 7831 case Intrinsic::vector_reduce_xor: 7832 case Intrinsic::vector_reduce_smax: 7833 case Intrinsic::vector_reduce_smin: 7834 case Intrinsic::vector_reduce_umax: 7835 case Intrinsic::vector_reduce_umin: 7836 case Intrinsic::vector_reduce_fmax: 7837 case Intrinsic::vector_reduce_fmin: 7838 case Intrinsic::vector_reduce_fmaximum: 7839 case Intrinsic::vector_reduce_fminimum: 7840 visitVectorReduce(I, Intrinsic); 7841 return; 7842 7843 case Intrinsic::icall_branch_funnel: { 7844 SmallVector<SDValue, 16> Ops; 7845 Ops.push_back(getValue(I.getArgOperand(0))); 7846 7847 int64_t Offset; 7848 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7849 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7850 if (!Base) 7851 report_fatal_error( 7852 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7853 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7854 7855 struct BranchFunnelTarget { 7856 int64_t Offset; 7857 SDValue Target; 7858 }; 7859 SmallVector<BranchFunnelTarget, 8> Targets; 7860 7861 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7862 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7863 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7864 if (ElemBase != Base) 7865 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7866 "to the same GlobalValue"); 7867 7868 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7869 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7870 if (!GA) 7871 report_fatal_error( 7872 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7873 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7874 GA->getGlobal(), sdl, Val.getValueType(), 7875 GA->getOffset())}); 7876 } 7877 llvm::sort(Targets, 7878 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7879 return T1.Offset < T2.Offset; 7880 }); 7881 7882 for (auto &T : Targets) { 7883 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7884 Ops.push_back(T.Target); 7885 } 7886 7887 Ops.push_back(DAG.getRoot()); // Chain 7888 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7889 MVT::Other, Ops), 7890 0); 7891 DAG.setRoot(N); 7892 setValue(&I, N); 7893 HasTailCall = true; 7894 return; 7895 } 7896 7897 case Intrinsic::wasm_landingpad_index: 7898 // Information this intrinsic contained has been transferred to 7899 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7900 // delete it now. 7901 return; 7902 7903 case Intrinsic::aarch64_settag: 7904 case Intrinsic::aarch64_settag_zero: { 7905 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7906 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7907 SDValue Val = TSI.EmitTargetCodeForSetTag( 7908 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7909 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7910 ZeroMemory); 7911 DAG.setRoot(Val); 7912 setValue(&I, Val); 7913 return; 7914 } 7915 case Intrinsic::amdgcn_cs_chain: { 7916 assert(I.arg_size() == 5 && "Additional args not supported yet"); 7917 assert(cast<ConstantInt>(I.getOperand(4))->isZero() && 7918 "Non-zero flags not supported yet"); 7919 7920 // At this point we don't care if it's amdgpu_cs_chain or 7921 // amdgpu_cs_chain_preserve. 7922 CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain; 7923 7924 Type *RetTy = I.getType(); 7925 assert(RetTy->isVoidTy() && "Should not return"); 7926 7927 SDValue Callee = getValue(I.getOperand(0)); 7928 7929 // We only have 2 actual args: one for the SGPRs and one for the VGPRs. 7930 // We'll also tack the value of the EXEC mask at the end. 7931 TargetLowering::ArgListTy Args; 7932 Args.reserve(3); 7933 7934 for (unsigned Idx : {2, 3, 1}) { 7935 TargetLowering::ArgListEntry Arg; 7936 Arg.Node = getValue(I.getOperand(Idx)); 7937 Arg.Ty = I.getOperand(Idx)->getType(); 7938 Arg.setAttributes(&I, Idx); 7939 Args.push_back(Arg); 7940 } 7941 7942 assert(Args[0].IsInReg && "SGPR args should be marked inreg"); 7943 assert(!Args[1].IsInReg && "VGPR args should not be marked inreg"); 7944 Args[2].IsInReg = true; // EXEC should be inreg 7945 7946 TargetLowering::CallLoweringInfo CLI(DAG); 7947 CLI.setDebugLoc(getCurSDLoc()) 7948 .setChain(getRoot()) 7949 .setCallee(CC, RetTy, Callee, std::move(Args)) 7950 .setNoReturn(true) 7951 .setTailCall(true) 7952 .setConvergent(I.isConvergent()); 7953 CLI.CB = &I; 7954 std::pair<SDValue, SDValue> Result = 7955 lowerInvokable(CLI, /*EHPadBB*/ nullptr); 7956 (void)Result; 7957 assert(!Result.first.getNode() && !Result.second.getNode() && 7958 "Should've lowered as tail call"); 7959 7960 HasTailCall = true; 7961 return; 7962 } 7963 case Intrinsic::ptrmask: { 7964 SDValue Ptr = getValue(I.getOperand(0)); 7965 SDValue Mask = getValue(I.getOperand(1)); 7966 7967 // On arm64_32, pointers are 32 bits when stored in memory, but 7968 // zero-extended to 64 bits when in registers. Thus the mask is 32 bits to 7969 // match the index type, but the pointer is 64 bits, so the the mask must be 7970 // zero-extended up to 64 bits to match the pointer. 7971 EVT PtrVT = 7972 TLI.getValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 7973 EVT MemVT = 7974 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 7975 assert(PtrVT == Ptr.getValueType()); 7976 assert(MemVT == Mask.getValueType()); 7977 if (MemVT != PtrVT) 7978 Mask = DAG.getPtrExtOrTrunc(Mask, sdl, PtrVT); 7979 7980 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask)); 7981 return; 7982 } 7983 case Intrinsic::threadlocal_address: { 7984 setValue(&I, getValue(I.getOperand(0))); 7985 return; 7986 } 7987 case Intrinsic::get_active_lane_mask: { 7988 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7989 SDValue Index = getValue(I.getOperand(0)); 7990 EVT ElementVT = Index.getValueType(); 7991 7992 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7993 visitTargetIntrinsic(I, Intrinsic); 7994 return; 7995 } 7996 7997 SDValue TripCount = getValue(I.getOperand(1)); 7998 EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT, 7999 CCVT.getVectorElementCount()); 8000 8001 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index); 8002 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount); 8003 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 8004 SDValue VectorInduction = DAG.getNode( 8005 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 8006 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 8007 VectorTripCount, ISD::CondCode::SETULT); 8008 setValue(&I, SetCC); 8009 return; 8010 } 8011 case Intrinsic::experimental_get_vector_length: { 8012 assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 && 8013 "Expected positive VF"); 8014 unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue(); 8015 bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne(); 8016 8017 SDValue Count = getValue(I.getOperand(0)); 8018 EVT CountVT = Count.getValueType(); 8019 8020 if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) { 8021 visitTargetIntrinsic(I, Intrinsic); 8022 return; 8023 } 8024 8025 // Expand to a umin between the trip count and the maximum elements the type 8026 // can hold. 8027 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8028 8029 // Extend the trip count to at least the result VT. 8030 if (CountVT.bitsLT(VT)) { 8031 Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count); 8032 CountVT = VT; 8033 } 8034 8035 SDValue MaxEVL = DAG.getElementCount(sdl, CountVT, 8036 ElementCount::get(VF, IsScalable)); 8037 8038 SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL); 8039 // Clip to the result type if needed. 8040 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin); 8041 8042 setValue(&I, Trunc); 8043 return; 8044 } 8045 case Intrinsic::experimental_vector_partial_reduce_add: { 8046 8047 if (!TLI.shouldExpandPartialReductionIntrinsic(cast<IntrinsicInst>(&I))) { 8048 visitTargetIntrinsic(I, Intrinsic); 8049 return; 8050 } 8051 8052 setValue(&I, DAG.getPartialReduceAdd(sdl, EVT::getEVT(I.getType()), 8053 getValue(I.getOperand(0)), 8054 getValue(I.getOperand(1)))); 8055 return; 8056 } 8057 case Intrinsic::experimental_cttz_elts: { 8058 auto DL = getCurSDLoc(); 8059 SDValue Op = getValue(I.getOperand(0)); 8060 EVT OpVT = Op.getValueType(); 8061 8062 if (!TLI.shouldExpandCttzElements(OpVT)) { 8063 visitTargetIntrinsic(I, Intrinsic); 8064 return; 8065 } 8066 8067 if (OpVT.getScalarType() != MVT::i1) { 8068 // Compare the input vector elements to zero & use to count trailing zeros 8069 SDValue AllZero = DAG.getConstant(0, DL, OpVT); 8070 OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 8071 OpVT.getVectorElementCount()); 8072 Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE); 8073 } 8074 8075 // If the zero-is-poison flag is set, we can assume the upper limit 8076 // of the result is VF-1. 8077 bool ZeroIsPoison = 8078 !cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero(); 8079 ConstantRange VScaleRange(1, true); // Dummy value. 8080 if (isa<ScalableVectorType>(I.getOperand(0)->getType())) 8081 VScaleRange = getVScaleRange(I.getCaller(), 64); 8082 unsigned EltWidth = TLI.getBitWidthForCttzElements( 8083 I.getType(), OpVT.getVectorElementCount(), ZeroIsPoison, &VScaleRange); 8084 8085 MVT NewEltTy = MVT::getIntegerVT(EltWidth); 8086 8087 // Create the new vector type & get the vector length 8088 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy, 8089 OpVT.getVectorElementCount()); 8090 8091 SDValue VL = 8092 DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount()); 8093 8094 SDValue StepVec = DAG.getStepVector(DL, NewVT); 8095 SDValue SplatVL = DAG.getSplat(NewVT, DL, VL); 8096 SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec); 8097 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op); 8098 SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext); 8099 SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And); 8100 SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max); 8101 8102 EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8103 SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy); 8104 8105 setValue(&I, Ret); 8106 return; 8107 } 8108 case Intrinsic::vector_insert: { 8109 SDValue Vec = getValue(I.getOperand(0)); 8110 SDValue SubVec = getValue(I.getOperand(1)); 8111 SDValue Index = getValue(I.getOperand(2)); 8112 8113 // The intrinsic's index type is i64, but the SDNode requires an index type 8114 // suitable for the target. Convert the index as required. 8115 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 8116 if (Index.getValueType() != VectorIdxTy) 8117 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 8118 8119 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8120 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 8121 Index)); 8122 return; 8123 } 8124 case Intrinsic::vector_extract: { 8125 SDValue Vec = getValue(I.getOperand(0)); 8126 SDValue Index = getValue(I.getOperand(1)); 8127 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8128 8129 // The intrinsic's index type is i64, but the SDNode requires an index type 8130 // suitable for the target. Convert the index as required. 8131 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 8132 if (Index.getValueType() != VectorIdxTy) 8133 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 8134 8135 setValue(&I, 8136 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 8137 return; 8138 } 8139 case Intrinsic::vector_reverse: 8140 visitVectorReverse(I); 8141 return; 8142 case Intrinsic::vector_splice: 8143 visitVectorSplice(I); 8144 return; 8145 case Intrinsic::callbr_landingpad: 8146 visitCallBrLandingPad(I); 8147 return; 8148 case Intrinsic::vector_interleave2: 8149 visitVectorInterleave(I); 8150 return; 8151 case Intrinsic::vector_deinterleave2: 8152 visitVectorDeinterleave(I); 8153 return; 8154 case Intrinsic::experimental_vector_compress: 8155 setValue(&I, DAG.getNode(ISD::VECTOR_COMPRESS, sdl, 8156 getValue(I.getArgOperand(0)).getValueType(), 8157 getValue(I.getArgOperand(0)), 8158 getValue(I.getArgOperand(1)), 8159 getValue(I.getArgOperand(2)), Flags)); 8160 return; 8161 case Intrinsic::experimental_convergence_anchor: 8162 case Intrinsic::experimental_convergence_entry: 8163 case Intrinsic::experimental_convergence_loop: 8164 visitConvergenceControl(I, Intrinsic); 8165 return; 8166 case Intrinsic::experimental_vector_histogram_add: { 8167 visitVectorHistogram(I, Intrinsic); 8168 return; 8169 } 8170 } 8171 } 8172 8173 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 8174 const ConstrainedFPIntrinsic &FPI) { 8175 SDLoc sdl = getCurSDLoc(); 8176 8177 // We do not need to serialize constrained FP intrinsics against 8178 // each other or against (nonvolatile) loads, so they can be 8179 // chained like loads. 8180 SDValue Chain = DAG.getRoot(); 8181 SmallVector<SDValue, 4> Opers; 8182 Opers.push_back(Chain); 8183 for (unsigned I = 0, E = FPI.getNonMetadataArgCount(); I != E; ++I) 8184 Opers.push_back(getValue(FPI.getArgOperand(I))); 8185 8186 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 8187 assert(Result.getNode()->getNumValues() == 2); 8188 8189 // Push node to the appropriate list so that future instructions can be 8190 // chained up correctly. 8191 SDValue OutChain = Result.getValue(1); 8192 switch (EB) { 8193 case fp::ExceptionBehavior::ebIgnore: 8194 // The only reason why ebIgnore nodes still need to be chained is that 8195 // they might depend on the current rounding mode, and therefore must 8196 // not be moved across instruction that may change that mode. 8197 [[fallthrough]]; 8198 case fp::ExceptionBehavior::ebMayTrap: 8199 // These must not be moved across calls or instructions that may change 8200 // floating-point exception masks. 8201 PendingConstrainedFP.push_back(OutChain); 8202 break; 8203 case fp::ExceptionBehavior::ebStrict: 8204 // These must not be moved across calls or instructions that may change 8205 // floating-point exception masks or read floating-point exception flags. 8206 // In addition, they cannot be optimized out even if unused. 8207 PendingConstrainedFPStrict.push_back(OutChain); 8208 break; 8209 } 8210 }; 8211 8212 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8213 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 8214 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 8215 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 8216 8217 SDNodeFlags Flags; 8218 if (EB == fp::ExceptionBehavior::ebIgnore) 8219 Flags.setNoFPExcept(true); 8220 8221 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 8222 Flags.copyFMF(*FPOp); 8223 8224 unsigned Opcode; 8225 switch (FPI.getIntrinsicID()) { 8226 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 8227 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8228 case Intrinsic::INTRINSIC: \ 8229 Opcode = ISD::STRICT_##DAGN; \ 8230 break; 8231 #include "llvm/IR/ConstrainedOps.def" 8232 case Intrinsic::experimental_constrained_fmuladd: { 8233 Opcode = ISD::STRICT_FMA; 8234 // Break fmuladd into fmul and fadd. 8235 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 8236 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 8237 Opers.pop_back(); 8238 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 8239 pushOutChain(Mul, EB); 8240 Opcode = ISD::STRICT_FADD; 8241 Opers.clear(); 8242 Opers.push_back(Mul.getValue(1)); 8243 Opers.push_back(Mul.getValue(0)); 8244 Opers.push_back(getValue(FPI.getArgOperand(2))); 8245 } 8246 break; 8247 } 8248 } 8249 8250 // A few strict DAG nodes carry additional operands that are not 8251 // set up by the default code above. 8252 switch (Opcode) { 8253 default: break; 8254 case ISD::STRICT_FP_ROUND: 8255 Opers.push_back( 8256 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 8257 break; 8258 case ISD::STRICT_FSETCC: 8259 case ISD::STRICT_FSETCCS: { 8260 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 8261 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 8262 if (TM.Options.NoNaNsFPMath) 8263 Condition = getFCmpCodeWithoutNaN(Condition); 8264 Opers.push_back(DAG.getCondCode(Condition)); 8265 break; 8266 } 8267 } 8268 8269 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 8270 pushOutChain(Result, EB); 8271 8272 SDValue FPResult = Result.getValue(0); 8273 setValue(&FPI, FPResult); 8274 } 8275 8276 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 8277 std::optional<unsigned> ResOPC; 8278 switch (VPIntrin.getIntrinsicID()) { 8279 case Intrinsic::vp_ctlz: { 8280 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8281 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ; 8282 break; 8283 } 8284 case Intrinsic::vp_cttz: { 8285 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8286 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ; 8287 break; 8288 } 8289 case Intrinsic::vp_cttz_elts: { 8290 bool IsZeroPoison = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8291 ResOPC = IsZeroPoison ? ISD::VP_CTTZ_ELTS_ZERO_UNDEF : ISD::VP_CTTZ_ELTS; 8292 break; 8293 } 8294 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 8295 case Intrinsic::VPID: \ 8296 ResOPC = ISD::VPSD; \ 8297 break; 8298 #include "llvm/IR/VPIntrinsics.def" 8299 } 8300 8301 if (!ResOPC) 8302 llvm_unreachable( 8303 "Inconsistency: no SDNode available for this VPIntrinsic!"); 8304 8305 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 8306 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 8307 if (VPIntrin.getFastMathFlags().allowReassoc()) 8308 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 8309 : ISD::VP_REDUCE_FMUL; 8310 } 8311 8312 return *ResOPC; 8313 } 8314 8315 void SelectionDAGBuilder::visitVPLoad( 8316 const VPIntrinsic &VPIntrin, EVT VT, 8317 const SmallVectorImpl<SDValue> &OpValues) { 8318 SDLoc DL = getCurSDLoc(); 8319 Value *PtrOperand = VPIntrin.getArgOperand(0); 8320 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8321 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8322 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8323 SDValue LD; 8324 // Do not serialize variable-length loads of constant memory with 8325 // anything. 8326 if (!Alignment) 8327 Alignment = DAG.getEVTAlign(VT); 8328 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 8329 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 8330 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 8331 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8332 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 8333 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8334 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 8335 MMO, false /*IsExpanding */); 8336 if (AddToChain) 8337 PendingLoads.push_back(LD.getValue(1)); 8338 setValue(&VPIntrin, LD); 8339 } 8340 8341 void SelectionDAGBuilder::visitVPGather( 8342 const VPIntrinsic &VPIntrin, EVT VT, 8343 const SmallVectorImpl<SDValue> &OpValues) { 8344 SDLoc DL = getCurSDLoc(); 8345 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8346 Value *PtrOperand = VPIntrin.getArgOperand(0); 8347 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8348 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8349 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8350 SDValue LD; 8351 if (!Alignment) 8352 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8353 unsigned AS = 8354 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 8355 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8356 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 8357 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8358 SDValue Base, Index, Scale; 8359 ISD::MemIndexType IndexType; 8360 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 8361 this, VPIntrin.getParent(), 8362 VT.getScalarStoreSize()); 8363 if (!UniformBase) { 8364 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 8365 Index = getValue(PtrOperand); 8366 IndexType = ISD::SIGNED_SCALED; 8367 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 8368 } 8369 EVT IdxVT = Index.getValueType(); 8370 EVT EltTy = IdxVT.getVectorElementType(); 8371 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 8372 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 8373 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 8374 } 8375 LD = DAG.getGatherVP( 8376 DAG.getVTList(VT, MVT::Other), VT, DL, 8377 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 8378 IndexType); 8379 PendingLoads.push_back(LD.getValue(1)); 8380 setValue(&VPIntrin, LD); 8381 } 8382 8383 void SelectionDAGBuilder::visitVPStore( 8384 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8385 SDLoc DL = getCurSDLoc(); 8386 Value *PtrOperand = VPIntrin.getArgOperand(1); 8387 EVT VT = OpValues[0].getValueType(); 8388 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8389 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8390 SDValue ST; 8391 if (!Alignment) 8392 Alignment = DAG.getEVTAlign(VT); 8393 SDValue Ptr = OpValues[1]; 8394 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 8395 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8396 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 8397 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8398 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 8399 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 8400 /* IsTruncating */ false, /*IsCompressing*/ false); 8401 DAG.setRoot(ST); 8402 setValue(&VPIntrin, ST); 8403 } 8404 8405 void SelectionDAGBuilder::visitVPScatter( 8406 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8407 SDLoc DL = getCurSDLoc(); 8408 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8409 Value *PtrOperand = VPIntrin.getArgOperand(1); 8410 EVT VT = OpValues[0].getValueType(); 8411 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8412 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8413 SDValue ST; 8414 if (!Alignment) 8415 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8416 unsigned AS = 8417 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 8418 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8419 MachinePointerInfo(AS), MachineMemOperand::MOStore, 8420 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8421 SDValue Base, Index, Scale; 8422 ISD::MemIndexType IndexType; 8423 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 8424 this, VPIntrin.getParent(), 8425 VT.getScalarStoreSize()); 8426 if (!UniformBase) { 8427 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 8428 Index = getValue(PtrOperand); 8429 IndexType = ISD::SIGNED_SCALED; 8430 Scale = 8431 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 8432 } 8433 EVT IdxVT = Index.getValueType(); 8434 EVT EltTy = IdxVT.getVectorElementType(); 8435 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 8436 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 8437 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 8438 } 8439 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 8440 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 8441 OpValues[2], OpValues[3]}, 8442 MMO, IndexType); 8443 DAG.setRoot(ST); 8444 setValue(&VPIntrin, ST); 8445 } 8446 8447 void SelectionDAGBuilder::visitVPStridedLoad( 8448 const VPIntrinsic &VPIntrin, EVT VT, 8449 const SmallVectorImpl<SDValue> &OpValues) { 8450 SDLoc DL = getCurSDLoc(); 8451 Value *PtrOperand = VPIntrin.getArgOperand(0); 8452 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8453 if (!Alignment) 8454 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8455 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8456 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8457 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 8458 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 8459 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 8460 unsigned AS = PtrOperand->getType()->getPointerAddressSpace(); 8461 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8462 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 8463 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8464 8465 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 8466 OpValues[2], OpValues[3], MMO, 8467 false /*IsExpanding*/); 8468 8469 if (AddToChain) 8470 PendingLoads.push_back(LD.getValue(1)); 8471 setValue(&VPIntrin, LD); 8472 } 8473 8474 void SelectionDAGBuilder::visitVPStridedStore( 8475 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8476 SDLoc DL = getCurSDLoc(); 8477 Value *PtrOperand = VPIntrin.getArgOperand(1); 8478 EVT VT = OpValues[0].getValueType(); 8479 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8480 if (!Alignment) 8481 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8482 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8483 unsigned AS = PtrOperand->getType()->getPointerAddressSpace(); 8484 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8485 MachinePointerInfo(AS), MachineMemOperand::MOStore, 8486 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8487 8488 SDValue ST = DAG.getStridedStoreVP( 8489 getMemoryRoot(), DL, OpValues[0], OpValues[1], 8490 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 8491 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 8492 /*IsCompressing*/ false); 8493 8494 DAG.setRoot(ST); 8495 setValue(&VPIntrin, ST); 8496 } 8497 8498 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 8499 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8500 SDLoc DL = getCurSDLoc(); 8501 8502 ISD::CondCode Condition; 8503 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 8504 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 8505 if (IsFP) { 8506 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 8507 // flags, but calls that don't return floating-point types can't be 8508 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 8509 Condition = getFCmpCondCode(CondCode); 8510 if (TM.Options.NoNaNsFPMath) 8511 Condition = getFCmpCodeWithoutNaN(Condition); 8512 } else { 8513 Condition = getICmpCondCode(CondCode); 8514 } 8515 8516 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 8517 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 8518 // #2 is the condition code 8519 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 8520 SDValue EVL = getValue(VPIntrin.getOperand(4)); 8521 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8522 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8523 "Unexpected target EVL type"); 8524 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 8525 8526 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8527 VPIntrin.getType()); 8528 setValue(&VPIntrin, 8529 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 8530 } 8531 8532 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 8533 const VPIntrinsic &VPIntrin) { 8534 SDLoc DL = getCurSDLoc(); 8535 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 8536 8537 auto IID = VPIntrin.getIntrinsicID(); 8538 8539 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 8540 return visitVPCmp(*CmpI); 8541 8542 SmallVector<EVT, 4> ValueVTs; 8543 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8544 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 8545 SDVTList VTs = DAG.getVTList(ValueVTs); 8546 8547 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 8548 8549 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8550 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8551 "Unexpected target EVL type"); 8552 8553 // Request operands. 8554 SmallVector<SDValue, 7> OpValues; 8555 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 8556 auto Op = getValue(VPIntrin.getArgOperand(I)); 8557 if (I == EVLParamPos) 8558 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 8559 OpValues.push_back(Op); 8560 } 8561 8562 switch (Opcode) { 8563 default: { 8564 SDNodeFlags SDFlags; 8565 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8566 SDFlags.copyFMF(*FPMO); 8567 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 8568 setValue(&VPIntrin, Result); 8569 break; 8570 } 8571 case ISD::VP_LOAD: 8572 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 8573 break; 8574 case ISD::VP_GATHER: 8575 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 8576 break; 8577 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 8578 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 8579 break; 8580 case ISD::VP_STORE: 8581 visitVPStore(VPIntrin, OpValues); 8582 break; 8583 case ISD::VP_SCATTER: 8584 visitVPScatter(VPIntrin, OpValues); 8585 break; 8586 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 8587 visitVPStridedStore(VPIntrin, OpValues); 8588 break; 8589 case ISD::VP_FMULADD: { 8590 assert(OpValues.size() == 5 && "Unexpected number of operands"); 8591 SDNodeFlags SDFlags; 8592 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8593 SDFlags.copyFMF(*FPMO); 8594 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 8595 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 8596 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 8597 } else { 8598 SDValue Mul = DAG.getNode( 8599 ISD::VP_FMUL, DL, VTs, 8600 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 8601 SDValue Add = 8602 DAG.getNode(ISD::VP_FADD, DL, VTs, 8603 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 8604 setValue(&VPIntrin, Add); 8605 } 8606 break; 8607 } 8608 case ISD::VP_IS_FPCLASS: { 8609 const DataLayout DLayout = DAG.getDataLayout(); 8610 EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType()); 8611 auto Constant = OpValues[1]->getAsZExtVal(); 8612 SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32); 8613 SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT, 8614 {OpValues[0], Check, OpValues[2], OpValues[3]}); 8615 setValue(&VPIntrin, V); 8616 return; 8617 } 8618 case ISD::VP_INTTOPTR: { 8619 SDValue N = OpValues[0]; 8620 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType()); 8621 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType()); 8622 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8623 OpValues[2]); 8624 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8625 OpValues[2]); 8626 setValue(&VPIntrin, N); 8627 break; 8628 } 8629 case ISD::VP_PTRTOINT: { 8630 SDValue N = OpValues[0]; 8631 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8632 VPIntrin.getType()); 8633 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), 8634 VPIntrin.getOperand(0)->getType()); 8635 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8636 OpValues[2]); 8637 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8638 OpValues[2]); 8639 setValue(&VPIntrin, N); 8640 break; 8641 } 8642 case ISD::VP_ABS: 8643 case ISD::VP_CTLZ: 8644 case ISD::VP_CTLZ_ZERO_UNDEF: 8645 case ISD::VP_CTTZ: 8646 case ISD::VP_CTTZ_ZERO_UNDEF: 8647 case ISD::VP_CTTZ_ELTS_ZERO_UNDEF: 8648 case ISD::VP_CTTZ_ELTS: { 8649 SDValue Result = 8650 DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]}); 8651 setValue(&VPIntrin, Result); 8652 break; 8653 } 8654 } 8655 } 8656 8657 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 8658 const BasicBlock *EHPadBB, 8659 MCSymbol *&BeginLabel) { 8660 MachineFunction &MF = DAG.getMachineFunction(); 8661 8662 // Insert a label before the invoke call to mark the try range. This can be 8663 // used to detect deletion of the invoke via the MachineModuleInfo. 8664 BeginLabel = MF.getContext().createTempSymbol(); 8665 8666 // For SjLj, keep track of which landing pads go with which invokes 8667 // so as to maintain the ordering of pads in the LSDA. 8668 unsigned CallSiteIndex = FuncInfo.getCurrentCallSite(); 8669 if (CallSiteIndex) { 8670 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 8671 LPadToCallSiteMap[FuncInfo.getMBB(EHPadBB)].push_back(CallSiteIndex); 8672 8673 // Now that the call site is handled, stop tracking it. 8674 FuncInfo.setCurrentCallSite(0); 8675 } 8676 8677 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 8678 } 8679 8680 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 8681 const BasicBlock *EHPadBB, 8682 MCSymbol *BeginLabel) { 8683 assert(BeginLabel && "BeginLabel should've been set"); 8684 8685 MachineFunction &MF = DAG.getMachineFunction(); 8686 8687 // Insert a label at the end of the invoke call to mark the try range. This 8688 // can be used to detect deletion of the invoke via the MachineModuleInfo. 8689 MCSymbol *EndLabel = MF.getContext().createTempSymbol(); 8690 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 8691 8692 // Inform MachineModuleInfo of range. 8693 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 8694 // There is a platform (e.g. wasm) that uses funclet style IR but does not 8695 // actually use outlined funclets and their LSDA info style. 8696 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 8697 assert(II && "II should've been set"); 8698 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 8699 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 8700 } else if (!isScopedEHPersonality(Pers)) { 8701 assert(EHPadBB); 8702 MF.addInvoke(FuncInfo.getMBB(EHPadBB), BeginLabel, EndLabel); 8703 } 8704 8705 return Chain; 8706 } 8707 8708 std::pair<SDValue, SDValue> 8709 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 8710 const BasicBlock *EHPadBB) { 8711 MCSymbol *BeginLabel = nullptr; 8712 8713 if (EHPadBB) { 8714 // Both PendingLoads and PendingExports must be flushed here; 8715 // this call might not return. 8716 (void)getRoot(); 8717 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 8718 CLI.setChain(getRoot()); 8719 } 8720 8721 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8722 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 8723 8724 assert((CLI.IsTailCall || Result.second.getNode()) && 8725 "Non-null chain expected with non-tail call!"); 8726 assert((Result.second.getNode() || !Result.first.getNode()) && 8727 "Null value expected with tail call!"); 8728 8729 if (!Result.second.getNode()) { 8730 // As a special case, a null chain means that a tail call has been emitted 8731 // and the DAG root is already updated. 8732 HasTailCall = true; 8733 8734 // Since there's no actual continuation from this block, nothing can be 8735 // relying on us setting vregs for them. 8736 PendingExports.clear(); 8737 } else { 8738 DAG.setRoot(Result.second); 8739 } 8740 8741 if (EHPadBB) { 8742 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 8743 BeginLabel)); 8744 Result.second = getRoot(); 8745 } 8746 8747 return Result; 8748 } 8749 8750 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 8751 bool isTailCall, bool isMustTailCall, 8752 const BasicBlock *EHPadBB, 8753 const TargetLowering::PtrAuthInfo *PAI) { 8754 auto &DL = DAG.getDataLayout(); 8755 FunctionType *FTy = CB.getFunctionType(); 8756 Type *RetTy = CB.getType(); 8757 8758 TargetLowering::ArgListTy Args; 8759 Args.reserve(CB.arg_size()); 8760 8761 const Value *SwiftErrorVal = nullptr; 8762 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8763 8764 if (isTailCall) { 8765 // Avoid emitting tail calls in functions with the disable-tail-calls 8766 // attribute. 8767 auto *Caller = CB.getParent()->getParent(); 8768 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 8769 "true" && !isMustTailCall) 8770 isTailCall = false; 8771 8772 // We can't tail call inside a function with a swifterror argument. Lowering 8773 // does not support this yet. It would have to move into the swifterror 8774 // register before the call. 8775 if (TLI.supportSwiftError() && 8776 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 8777 isTailCall = false; 8778 } 8779 8780 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 8781 TargetLowering::ArgListEntry Entry; 8782 const Value *V = *I; 8783 8784 // Skip empty types 8785 if (V->getType()->isEmptyTy()) 8786 continue; 8787 8788 SDValue ArgNode = getValue(V); 8789 Entry.Node = ArgNode; Entry.Ty = V->getType(); 8790 8791 Entry.setAttributes(&CB, I - CB.arg_begin()); 8792 8793 // Use swifterror virtual register as input to the call. 8794 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 8795 SwiftErrorVal = V; 8796 // We find the virtual register for the actual swifterror argument. 8797 // Instead of using the Value, we use the virtual register instead. 8798 Entry.Node = 8799 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 8800 EVT(TLI.getPointerTy(DL))); 8801 } 8802 8803 Args.push_back(Entry); 8804 8805 // If we have an explicit sret argument that is an Instruction, (i.e., it 8806 // might point to function-local memory), we can't meaningfully tail-call. 8807 if (Entry.IsSRet && isa<Instruction>(V)) 8808 isTailCall = false; 8809 } 8810 8811 // If call site has a cfguardtarget operand bundle, create and add an 8812 // additional ArgListEntry. 8813 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 8814 TargetLowering::ArgListEntry Entry; 8815 Value *V = Bundle->Inputs[0]; 8816 SDValue ArgNode = getValue(V); 8817 Entry.Node = ArgNode; 8818 Entry.Ty = V->getType(); 8819 Entry.IsCFGuardTarget = true; 8820 Args.push_back(Entry); 8821 } 8822 8823 // Check if target-independent constraints permit a tail call here. 8824 // Target-dependent constraints are checked within TLI->LowerCallTo. 8825 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 8826 isTailCall = false; 8827 8828 // Disable tail calls if there is an swifterror argument. Targets have not 8829 // been updated to support tail calls. 8830 if (TLI.supportSwiftError() && SwiftErrorVal) 8831 isTailCall = false; 8832 8833 ConstantInt *CFIType = nullptr; 8834 if (CB.isIndirectCall()) { 8835 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 8836 if (!TLI.supportKCFIBundles()) 8837 report_fatal_error( 8838 "Target doesn't support calls with kcfi operand bundles."); 8839 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 8840 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 8841 } 8842 } 8843 8844 SDValue ConvControlToken; 8845 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) { 8846 auto *Token = Bundle->Inputs[0].get(); 8847 ConvControlToken = getValue(Token); 8848 } 8849 8850 TargetLowering::CallLoweringInfo CLI(DAG); 8851 CLI.setDebugLoc(getCurSDLoc()) 8852 .setChain(getRoot()) 8853 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 8854 .setTailCall(isTailCall) 8855 .setConvergent(CB.isConvergent()) 8856 .setIsPreallocated( 8857 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 8858 .setCFIType(CFIType) 8859 .setConvergenceControlToken(ConvControlToken); 8860 8861 // Set the pointer authentication info if we have it. 8862 if (PAI) { 8863 if (!TLI.supportPtrAuthBundles()) 8864 report_fatal_error( 8865 "This target doesn't support calls with ptrauth operand bundles."); 8866 CLI.setPtrAuth(*PAI); 8867 } 8868 8869 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8870 8871 if (Result.first.getNode()) { 8872 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 8873 setValue(&CB, Result.first); 8874 } 8875 8876 // The last element of CLI.InVals has the SDValue for swifterror return. 8877 // Here we copy it to a virtual register and update SwiftErrorMap for 8878 // book-keeping. 8879 if (SwiftErrorVal && TLI.supportSwiftError()) { 8880 // Get the last element of InVals. 8881 SDValue Src = CLI.InVals.back(); 8882 Register VReg = 8883 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 8884 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 8885 DAG.setRoot(CopyNode); 8886 } 8887 } 8888 8889 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 8890 SelectionDAGBuilder &Builder) { 8891 // Check to see if this load can be trivially constant folded, e.g. if the 8892 // input is from a string literal. 8893 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 8894 // Cast pointer to the type we really want to load. 8895 Type *LoadTy = 8896 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 8897 if (LoadVT.isVector()) 8898 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 8899 8900 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 8901 PointerType::getUnqual(LoadTy)); 8902 8903 if (const Constant *LoadCst = 8904 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 8905 LoadTy, Builder.DAG.getDataLayout())) 8906 return Builder.getValue(LoadCst); 8907 } 8908 8909 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 8910 // still constant memory, the input chain can be the entry node. 8911 SDValue Root; 8912 bool ConstantMemory = false; 8913 8914 // Do not serialize (non-volatile) loads of constant memory with anything. 8915 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 8916 Root = Builder.DAG.getEntryNode(); 8917 ConstantMemory = true; 8918 } else { 8919 // Do not serialize non-volatile loads against each other. 8920 Root = Builder.DAG.getRoot(); 8921 } 8922 8923 SDValue Ptr = Builder.getValue(PtrVal); 8924 SDValue LoadVal = 8925 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 8926 MachinePointerInfo(PtrVal), Align(1)); 8927 8928 if (!ConstantMemory) 8929 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 8930 return LoadVal; 8931 } 8932 8933 /// Record the value for an instruction that produces an integer result, 8934 /// converting the type where necessary. 8935 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 8936 SDValue Value, 8937 bool IsSigned) { 8938 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8939 I.getType(), true); 8940 Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT); 8941 setValue(&I, Value); 8942 } 8943 8944 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 8945 /// true and lower it. Otherwise return false, and it will be lowered like a 8946 /// normal call. 8947 /// The caller already checked that \p I calls the appropriate LibFunc with a 8948 /// correct prototype. 8949 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 8950 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 8951 const Value *Size = I.getArgOperand(2); 8952 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 8953 if (CSize && CSize->getZExtValue() == 0) { 8954 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8955 I.getType(), true); 8956 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 8957 return true; 8958 } 8959 8960 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8961 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 8962 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 8963 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 8964 if (Res.first.getNode()) { 8965 processIntegerCallValue(I, Res.first, true); 8966 PendingLoads.push_back(Res.second); 8967 return true; 8968 } 8969 8970 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 8971 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 8972 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 8973 return false; 8974 8975 // If the target has a fast compare for the given size, it will return a 8976 // preferred load type for that size. Require that the load VT is legal and 8977 // that the target supports unaligned loads of that type. Otherwise, return 8978 // INVALID. 8979 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 8980 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8981 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 8982 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 8983 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 8984 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 8985 // TODO: Check alignment of src and dest ptrs. 8986 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 8987 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 8988 if (!TLI.isTypeLegal(LVT) || 8989 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 8990 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 8991 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 8992 } 8993 8994 return LVT; 8995 }; 8996 8997 // This turns into unaligned loads. We only do this if the target natively 8998 // supports the MVT we'll be loading or if it is small enough (<= 4) that 8999 // we'll only produce a small number of byte loads. 9000 MVT LoadVT; 9001 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 9002 switch (NumBitsToCompare) { 9003 default: 9004 return false; 9005 case 16: 9006 LoadVT = MVT::i16; 9007 break; 9008 case 32: 9009 LoadVT = MVT::i32; 9010 break; 9011 case 64: 9012 case 128: 9013 case 256: 9014 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 9015 break; 9016 } 9017 9018 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 9019 return false; 9020 9021 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 9022 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 9023 9024 // Bitcast to a wide integer type if the loads are vectors. 9025 if (LoadVT.isVector()) { 9026 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 9027 LoadL = DAG.getBitcast(CmpVT, LoadL); 9028 LoadR = DAG.getBitcast(CmpVT, LoadR); 9029 } 9030 9031 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 9032 processIntegerCallValue(I, Cmp, false); 9033 return true; 9034 } 9035 9036 /// See if we can lower a memchr call into an optimized form. If so, return 9037 /// true and lower it. Otherwise return false, and it will be lowered like a 9038 /// normal call. 9039 /// The caller already checked that \p I calls the appropriate LibFunc with a 9040 /// correct prototype. 9041 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 9042 const Value *Src = I.getArgOperand(0); 9043 const Value *Char = I.getArgOperand(1); 9044 const Value *Length = I.getArgOperand(2); 9045 9046 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9047 std::pair<SDValue, SDValue> Res = 9048 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 9049 getValue(Src), getValue(Char), getValue(Length), 9050 MachinePointerInfo(Src)); 9051 if (Res.first.getNode()) { 9052 setValue(&I, Res.first); 9053 PendingLoads.push_back(Res.second); 9054 return true; 9055 } 9056 9057 return false; 9058 } 9059 9060 /// See if we can lower a mempcpy call into an optimized form. If so, return 9061 /// true and lower it. Otherwise return false, and it will be lowered like a 9062 /// normal call. 9063 /// The caller already checked that \p I calls the appropriate LibFunc with a 9064 /// correct prototype. 9065 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 9066 SDValue Dst = getValue(I.getArgOperand(0)); 9067 SDValue Src = getValue(I.getArgOperand(1)); 9068 SDValue Size = getValue(I.getArgOperand(2)); 9069 9070 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 9071 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 9072 // DAG::getMemcpy needs Alignment to be defined. 9073 Align Alignment = std::min(DstAlign, SrcAlign); 9074 9075 SDLoc sdl = getCurSDLoc(); 9076 9077 // In the mempcpy context we need to pass in a false value for isTailCall 9078 // because the return pointer needs to be adjusted by the size of 9079 // the copied memory. 9080 SDValue Root = getMemoryRoot(); 9081 SDValue MC = DAG.getMemcpy( 9082 Root, sdl, Dst, Src, Size, Alignment, false, false, /*CI=*/nullptr, 9083 std::nullopt, MachinePointerInfo(I.getArgOperand(0)), 9084 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata()); 9085 assert(MC.getNode() != nullptr && 9086 "** memcpy should not be lowered as TailCall in mempcpy context **"); 9087 DAG.setRoot(MC); 9088 9089 // Check if Size needs to be truncated or extended. 9090 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 9091 9092 // Adjust return pointer to point just past the last dst byte. 9093 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 9094 Dst, Size); 9095 setValue(&I, DstPlusSize); 9096 return true; 9097 } 9098 9099 /// See if we can lower a strcpy call into an optimized form. If so, return 9100 /// true and lower it, otherwise return false and it will be lowered like a 9101 /// normal call. 9102 /// The caller already checked that \p I calls the appropriate LibFunc with a 9103 /// correct prototype. 9104 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 9105 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9106 9107 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9108 std::pair<SDValue, SDValue> Res = 9109 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 9110 getValue(Arg0), getValue(Arg1), 9111 MachinePointerInfo(Arg0), 9112 MachinePointerInfo(Arg1), isStpcpy); 9113 if (Res.first.getNode()) { 9114 setValue(&I, Res.first); 9115 DAG.setRoot(Res.second); 9116 return true; 9117 } 9118 9119 return false; 9120 } 9121 9122 /// See if we can lower a strcmp call into an optimized form. If so, return 9123 /// true and lower it, otherwise return false and it will be lowered like a 9124 /// normal call. 9125 /// The caller already checked that \p I calls the appropriate LibFunc with a 9126 /// correct prototype. 9127 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 9128 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9129 9130 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9131 std::pair<SDValue, SDValue> Res = 9132 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 9133 getValue(Arg0), getValue(Arg1), 9134 MachinePointerInfo(Arg0), 9135 MachinePointerInfo(Arg1)); 9136 if (Res.first.getNode()) { 9137 processIntegerCallValue(I, Res.first, true); 9138 PendingLoads.push_back(Res.second); 9139 return true; 9140 } 9141 9142 return false; 9143 } 9144 9145 /// See if we can lower a strlen call into an optimized form. If so, return 9146 /// true and lower it, otherwise return false and it will be lowered like a 9147 /// normal call. 9148 /// The caller already checked that \p I calls the appropriate LibFunc with a 9149 /// correct prototype. 9150 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 9151 const Value *Arg0 = I.getArgOperand(0); 9152 9153 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9154 std::pair<SDValue, SDValue> Res = 9155 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 9156 getValue(Arg0), MachinePointerInfo(Arg0)); 9157 if (Res.first.getNode()) { 9158 processIntegerCallValue(I, Res.first, false); 9159 PendingLoads.push_back(Res.second); 9160 return true; 9161 } 9162 9163 return false; 9164 } 9165 9166 /// See if we can lower a strnlen call into an optimized form. If so, return 9167 /// true and lower it, otherwise return false and it will be lowered like a 9168 /// normal call. 9169 /// The caller already checked that \p I calls the appropriate LibFunc with a 9170 /// correct prototype. 9171 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 9172 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9173 9174 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9175 std::pair<SDValue, SDValue> Res = 9176 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 9177 getValue(Arg0), getValue(Arg1), 9178 MachinePointerInfo(Arg0)); 9179 if (Res.first.getNode()) { 9180 processIntegerCallValue(I, Res.first, false); 9181 PendingLoads.push_back(Res.second); 9182 return true; 9183 } 9184 9185 return false; 9186 } 9187 9188 /// See if we can lower a unary floating-point operation into an SDNode with 9189 /// the specified Opcode. If so, return true and lower it, otherwise return 9190 /// false and it will be lowered like a normal call. 9191 /// The caller already checked that \p I calls the appropriate LibFunc with a 9192 /// correct prototype. 9193 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 9194 unsigned Opcode) { 9195 // We already checked this call's prototype; verify it doesn't modify errno. 9196 if (!I.onlyReadsMemory()) 9197 return false; 9198 9199 SDNodeFlags Flags; 9200 Flags.copyFMF(cast<FPMathOperator>(I)); 9201 9202 SDValue Tmp = getValue(I.getArgOperand(0)); 9203 setValue(&I, 9204 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 9205 return true; 9206 } 9207 9208 /// See if we can lower a binary floating-point operation into an SDNode with 9209 /// the specified Opcode. If so, return true and lower it. Otherwise return 9210 /// false, and it will be lowered like a normal call. 9211 /// The caller already checked that \p I calls the appropriate LibFunc with a 9212 /// correct prototype. 9213 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 9214 unsigned Opcode) { 9215 // We already checked this call's prototype; verify it doesn't modify errno. 9216 if (!I.onlyReadsMemory()) 9217 return false; 9218 9219 SDNodeFlags Flags; 9220 Flags.copyFMF(cast<FPMathOperator>(I)); 9221 9222 SDValue Tmp0 = getValue(I.getArgOperand(0)); 9223 SDValue Tmp1 = getValue(I.getArgOperand(1)); 9224 EVT VT = Tmp0.getValueType(); 9225 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 9226 return true; 9227 } 9228 9229 void SelectionDAGBuilder::visitCall(const CallInst &I) { 9230 // Handle inline assembly differently. 9231 if (I.isInlineAsm()) { 9232 visitInlineAsm(I); 9233 return; 9234 } 9235 9236 diagnoseDontCall(I); 9237 9238 if (Function *F = I.getCalledFunction()) { 9239 if (F->isDeclaration()) { 9240 // Is this an LLVM intrinsic or a target-specific intrinsic? 9241 unsigned IID = F->getIntrinsicID(); 9242 if (!IID) 9243 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 9244 IID = II->getIntrinsicID(F); 9245 9246 if (IID) { 9247 visitIntrinsicCall(I, IID); 9248 return; 9249 } 9250 } 9251 9252 // Check for well-known libc/libm calls. If the function is internal, it 9253 // can't be a library call. Don't do the check if marked as nobuiltin for 9254 // some reason or the call site requires strict floating point semantics. 9255 LibFunc Func; 9256 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 9257 F->hasName() && LibInfo->getLibFunc(*F, Func) && 9258 LibInfo->hasOptimizedCodeGen(Func)) { 9259 switch (Func) { 9260 default: break; 9261 case LibFunc_bcmp: 9262 if (visitMemCmpBCmpCall(I)) 9263 return; 9264 break; 9265 case LibFunc_copysign: 9266 case LibFunc_copysignf: 9267 case LibFunc_copysignl: 9268 // We already checked this call's prototype; verify it doesn't modify 9269 // errno. 9270 if (I.onlyReadsMemory()) { 9271 SDValue LHS = getValue(I.getArgOperand(0)); 9272 SDValue RHS = getValue(I.getArgOperand(1)); 9273 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 9274 LHS.getValueType(), LHS, RHS)); 9275 return; 9276 } 9277 break; 9278 case LibFunc_fabs: 9279 case LibFunc_fabsf: 9280 case LibFunc_fabsl: 9281 if (visitUnaryFloatCall(I, ISD::FABS)) 9282 return; 9283 break; 9284 case LibFunc_fmin: 9285 case LibFunc_fminf: 9286 case LibFunc_fminl: 9287 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 9288 return; 9289 break; 9290 case LibFunc_fmax: 9291 case LibFunc_fmaxf: 9292 case LibFunc_fmaxl: 9293 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 9294 return; 9295 break; 9296 case LibFunc_fminimum_num: 9297 case LibFunc_fminimum_numf: 9298 case LibFunc_fminimum_numl: 9299 if (visitBinaryFloatCall(I, ISD::FMINIMUMNUM)) 9300 return; 9301 break; 9302 case LibFunc_fmaximum_num: 9303 case LibFunc_fmaximum_numf: 9304 case LibFunc_fmaximum_numl: 9305 if (visitBinaryFloatCall(I, ISD::FMAXIMUMNUM)) 9306 return; 9307 break; 9308 case LibFunc_sin: 9309 case LibFunc_sinf: 9310 case LibFunc_sinl: 9311 if (visitUnaryFloatCall(I, ISD::FSIN)) 9312 return; 9313 break; 9314 case LibFunc_cos: 9315 case LibFunc_cosf: 9316 case LibFunc_cosl: 9317 if (visitUnaryFloatCall(I, ISD::FCOS)) 9318 return; 9319 break; 9320 case LibFunc_tan: 9321 case LibFunc_tanf: 9322 case LibFunc_tanl: 9323 if (visitUnaryFloatCall(I, ISD::FTAN)) 9324 return; 9325 break; 9326 case LibFunc_asin: 9327 case LibFunc_asinf: 9328 case LibFunc_asinl: 9329 if (visitUnaryFloatCall(I, ISD::FASIN)) 9330 return; 9331 break; 9332 case LibFunc_acos: 9333 case LibFunc_acosf: 9334 case LibFunc_acosl: 9335 if (visitUnaryFloatCall(I, ISD::FACOS)) 9336 return; 9337 break; 9338 case LibFunc_atan: 9339 case LibFunc_atanf: 9340 case LibFunc_atanl: 9341 if (visitUnaryFloatCall(I, ISD::FATAN)) 9342 return; 9343 break; 9344 case LibFunc_sinh: 9345 case LibFunc_sinhf: 9346 case LibFunc_sinhl: 9347 if (visitUnaryFloatCall(I, ISD::FSINH)) 9348 return; 9349 break; 9350 case LibFunc_cosh: 9351 case LibFunc_coshf: 9352 case LibFunc_coshl: 9353 if (visitUnaryFloatCall(I, ISD::FCOSH)) 9354 return; 9355 break; 9356 case LibFunc_tanh: 9357 case LibFunc_tanhf: 9358 case LibFunc_tanhl: 9359 if (visitUnaryFloatCall(I, ISD::FTANH)) 9360 return; 9361 break; 9362 case LibFunc_sqrt: 9363 case LibFunc_sqrtf: 9364 case LibFunc_sqrtl: 9365 case LibFunc_sqrt_finite: 9366 case LibFunc_sqrtf_finite: 9367 case LibFunc_sqrtl_finite: 9368 if (visitUnaryFloatCall(I, ISD::FSQRT)) 9369 return; 9370 break; 9371 case LibFunc_floor: 9372 case LibFunc_floorf: 9373 case LibFunc_floorl: 9374 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 9375 return; 9376 break; 9377 case LibFunc_nearbyint: 9378 case LibFunc_nearbyintf: 9379 case LibFunc_nearbyintl: 9380 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 9381 return; 9382 break; 9383 case LibFunc_ceil: 9384 case LibFunc_ceilf: 9385 case LibFunc_ceill: 9386 if (visitUnaryFloatCall(I, ISD::FCEIL)) 9387 return; 9388 break; 9389 case LibFunc_rint: 9390 case LibFunc_rintf: 9391 case LibFunc_rintl: 9392 if (visitUnaryFloatCall(I, ISD::FRINT)) 9393 return; 9394 break; 9395 case LibFunc_round: 9396 case LibFunc_roundf: 9397 case LibFunc_roundl: 9398 if (visitUnaryFloatCall(I, ISD::FROUND)) 9399 return; 9400 break; 9401 case LibFunc_trunc: 9402 case LibFunc_truncf: 9403 case LibFunc_truncl: 9404 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 9405 return; 9406 break; 9407 case LibFunc_log2: 9408 case LibFunc_log2f: 9409 case LibFunc_log2l: 9410 if (visitUnaryFloatCall(I, ISD::FLOG2)) 9411 return; 9412 break; 9413 case LibFunc_exp2: 9414 case LibFunc_exp2f: 9415 case LibFunc_exp2l: 9416 if (visitUnaryFloatCall(I, ISD::FEXP2)) 9417 return; 9418 break; 9419 case LibFunc_exp10: 9420 case LibFunc_exp10f: 9421 case LibFunc_exp10l: 9422 if (visitUnaryFloatCall(I, ISD::FEXP10)) 9423 return; 9424 break; 9425 case LibFunc_ldexp: 9426 case LibFunc_ldexpf: 9427 case LibFunc_ldexpl: 9428 if (visitBinaryFloatCall(I, ISD::FLDEXP)) 9429 return; 9430 break; 9431 case LibFunc_memcmp: 9432 if (visitMemCmpBCmpCall(I)) 9433 return; 9434 break; 9435 case LibFunc_mempcpy: 9436 if (visitMemPCpyCall(I)) 9437 return; 9438 break; 9439 case LibFunc_memchr: 9440 if (visitMemChrCall(I)) 9441 return; 9442 break; 9443 case LibFunc_strcpy: 9444 if (visitStrCpyCall(I, false)) 9445 return; 9446 break; 9447 case LibFunc_stpcpy: 9448 if (visitStrCpyCall(I, true)) 9449 return; 9450 break; 9451 case LibFunc_strcmp: 9452 if (visitStrCmpCall(I)) 9453 return; 9454 break; 9455 case LibFunc_strlen: 9456 if (visitStrLenCall(I)) 9457 return; 9458 break; 9459 case LibFunc_strnlen: 9460 if (visitStrNLenCall(I)) 9461 return; 9462 break; 9463 } 9464 } 9465 } 9466 9467 if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) { 9468 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), /*EHPadBB=*/nullptr); 9469 return; 9470 } 9471 9472 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 9473 // have to do anything here to lower funclet bundles. 9474 // CFGuardTarget bundles are lowered in LowerCallTo. 9475 assert(!I.hasOperandBundlesOtherThan( 9476 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 9477 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 9478 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi, 9479 LLVMContext::OB_convergencectrl}) && 9480 "Cannot lower calls with arbitrary operand bundles!"); 9481 9482 SDValue Callee = getValue(I.getCalledOperand()); 9483 9484 if (I.hasDeoptState()) 9485 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 9486 else 9487 // Check if we can potentially perform a tail call. More detailed checking 9488 // is be done within LowerCallTo, after more information about the call is 9489 // known. 9490 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 9491 } 9492 9493 void SelectionDAGBuilder::LowerCallSiteWithPtrAuthBundle( 9494 const CallBase &CB, const BasicBlock *EHPadBB) { 9495 auto PAB = CB.getOperandBundle("ptrauth"); 9496 const Value *CalleeV = CB.getCalledOperand(); 9497 9498 // Gather the call ptrauth data from the operand bundle: 9499 // [ i32 <key>, i64 <discriminator> ] 9500 const auto *Key = cast<ConstantInt>(PAB->Inputs[0]); 9501 const Value *Discriminator = PAB->Inputs[1]; 9502 9503 assert(Key->getType()->isIntegerTy(32) && "Invalid ptrauth key"); 9504 assert(Discriminator->getType()->isIntegerTy(64) && 9505 "Invalid ptrauth discriminator"); 9506 9507 // Look through ptrauth constants to find the raw callee. 9508 // Do a direct unauthenticated call if we found it and everything matches. 9509 if (const auto *CalleeCPA = dyn_cast<ConstantPtrAuth>(CalleeV)) 9510 if (CalleeCPA->isKnownCompatibleWith(Key, Discriminator, 9511 DAG.getDataLayout())) 9512 return LowerCallTo(CB, getValue(CalleeCPA->getPointer()), CB.isTailCall(), 9513 CB.isMustTailCall(), EHPadBB); 9514 9515 // Functions should never be ptrauth-called directly. 9516 assert(!isa<Function>(CalleeV) && "invalid direct ptrauth call"); 9517 9518 // Otherwise, do an authenticated indirect call. 9519 TargetLowering::PtrAuthInfo PAI = {Key->getZExtValue(), 9520 getValue(Discriminator)}; 9521 9522 LowerCallTo(CB, getValue(CalleeV), CB.isTailCall(), CB.isMustTailCall(), 9523 EHPadBB, &PAI); 9524 } 9525 9526 namespace { 9527 9528 /// AsmOperandInfo - This contains information for each constraint that we are 9529 /// lowering. 9530 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 9531 public: 9532 /// CallOperand - If this is the result output operand or a clobber 9533 /// this is null, otherwise it is the incoming operand to the CallInst. 9534 /// This gets modified as the asm is processed. 9535 SDValue CallOperand; 9536 9537 /// AssignedRegs - If this is a register or register class operand, this 9538 /// contains the set of register corresponding to the operand. 9539 RegsForValue AssignedRegs; 9540 9541 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 9542 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 9543 } 9544 9545 /// Whether or not this operand accesses memory 9546 bool hasMemory(const TargetLowering &TLI) const { 9547 // Indirect operand accesses access memory. 9548 if (isIndirect) 9549 return true; 9550 9551 for (const auto &Code : Codes) 9552 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 9553 return true; 9554 9555 return false; 9556 } 9557 }; 9558 9559 9560 } // end anonymous namespace 9561 9562 /// Make sure that the output operand \p OpInfo and its corresponding input 9563 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 9564 /// out). 9565 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 9566 SDISelAsmOperandInfo &MatchingOpInfo, 9567 SelectionDAG &DAG) { 9568 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 9569 return; 9570 9571 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 9572 const auto &TLI = DAG.getTargetLoweringInfo(); 9573 9574 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 9575 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 9576 OpInfo.ConstraintVT); 9577 std::pair<unsigned, const TargetRegisterClass *> InputRC = 9578 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 9579 MatchingOpInfo.ConstraintVT); 9580 const bool OutOpIsIntOrFP = 9581 OpInfo.ConstraintVT.isInteger() || OpInfo.ConstraintVT.isFloatingPoint(); 9582 const bool InOpIsIntOrFP = MatchingOpInfo.ConstraintVT.isInteger() || 9583 MatchingOpInfo.ConstraintVT.isFloatingPoint(); 9584 if ((OutOpIsIntOrFP != InOpIsIntOrFP) || (MatchRC.second != InputRC.second)) { 9585 // FIXME: error out in a more elegant fashion 9586 report_fatal_error("Unsupported asm: input constraint" 9587 " with a matching output constraint of" 9588 " incompatible type!"); 9589 } 9590 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 9591 } 9592 9593 /// Get a direct memory input to behave well as an indirect operand. 9594 /// This may introduce stores, hence the need for a \p Chain. 9595 /// \return The (possibly updated) chain. 9596 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 9597 SDISelAsmOperandInfo &OpInfo, 9598 SelectionDAG &DAG) { 9599 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9600 9601 // If we don't have an indirect input, put it in the constpool if we can, 9602 // otherwise spill it to a stack slot. 9603 // TODO: This isn't quite right. We need to handle these according to 9604 // the addressing mode that the constraint wants. Also, this may take 9605 // an additional register for the computation and we don't want that 9606 // either. 9607 9608 // If the operand is a float, integer, or vector constant, spill to a 9609 // constant pool entry to get its address. 9610 const Value *OpVal = OpInfo.CallOperandVal; 9611 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 9612 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 9613 OpInfo.CallOperand = DAG.getConstantPool( 9614 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 9615 return Chain; 9616 } 9617 9618 // Otherwise, create a stack slot and emit a store to it before the asm. 9619 Type *Ty = OpVal->getType(); 9620 auto &DL = DAG.getDataLayout(); 9621 TypeSize TySize = DL.getTypeAllocSize(Ty); 9622 MachineFunction &MF = DAG.getMachineFunction(); 9623 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 9624 int StackID = 0; 9625 if (TySize.isScalable()) 9626 StackID = TFI->getStackIDForScalableVectors(); 9627 int SSFI = MF.getFrameInfo().CreateStackObject(TySize.getKnownMinValue(), 9628 DL.getPrefTypeAlign(Ty), false, 9629 nullptr, StackID); 9630 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 9631 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 9632 MachinePointerInfo::getFixedStack(MF, SSFI), 9633 TLI.getMemValueType(DL, Ty)); 9634 OpInfo.CallOperand = StackSlot; 9635 9636 return Chain; 9637 } 9638 9639 /// GetRegistersForValue - Assign registers (virtual or physical) for the 9640 /// specified operand. We prefer to assign virtual registers, to allow the 9641 /// register allocator to handle the assignment process. However, if the asm 9642 /// uses features that we can't model on machineinstrs, we have SDISel do the 9643 /// allocation. This produces generally horrible, but correct, code. 9644 /// 9645 /// OpInfo describes the operand 9646 /// RefOpInfo describes the matching operand if any, the operand otherwise 9647 static std::optional<unsigned> 9648 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 9649 SDISelAsmOperandInfo &OpInfo, 9650 SDISelAsmOperandInfo &RefOpInfo) { 9651 LLVMContext &Context = *DAG.getContext(); 9652 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9653 9654 MachineFunction &MF = DAG.getMachineFunction(); 9655 SmallVector<Register, 4> Regs; 9656 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9657 9658 // No work to do for memory/address operands. 9659 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9660 OpInfo.ConstraintType == TargetLowering::C_Address) 9661 return std::nullopt; 9662 9663 // If this is a constraint for a single physreg, or a constraint for a 9664 // register class, find it. 9665 unsigned AssignedReg; 9666 const TargetRegisterClass *RC; 9667 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 9668 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 9669 // RC is unset only on failure. Return immediately. 9670 if (!RC) 9671 return std::nullopt; 9672 9673 // Get the actual register value type. This is important, because the user 9674 // may have asked for (e.g.) the AX register in i32 type. We need to 9675 // remember that AX is actually i16 to get the right extension. 9676 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 9677 9678 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 9679 // If this is an FP operand in an integer register (or visa versa), or more 9680 // generally if the operand value disagrees with the register class we plan 9681 // to stick it in, fix the operand type. 9682 // 9683 // If this is an input value, the bitcast to the new type is done now. 9684 // Bitcast for output value is done at the end of visitInlineAsm(). 9685 if ((OpInfo.Type == InlineAsm::isOutput || 9686 OpInfo.Type == InlineAsm::isInput) && 9687 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 9688 // Try to convert to the first EVT that the reg class contains. If the 9689 // types are identical size, use a bitcast to convert (e.g. two differing 9690 // vector types). Note: output bitcast is done at the end of 9691 // visitInlineAsm(). 9692 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 9693 // Exclude indirect inputs while they are unsupported because the code 9694 // to perform the load is missing and thus OpInfo.CallOperand still 9695 // refers to the input address rather than the pointed-to value. 9696 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 9697 OpInfo.CallOperand = 9698 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 9699 OpInfo.ConstraintVT = RegVT; 9700 // If the operand is an FP value and we want it in integer registers, 9701 // use the corresponding integer type. This turns an f64 value into 9702 // i64, which can be passed with two i32 values on a 32-bit machine. 9703 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 9704 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 9705 if (OpInfo.Type == InlineAsm::isInput) 9706 OpInfo.CallOperand = 9707 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 9708 OpInfo.ConstraintVT = VT; 9709 } 9710 } 9711 } 9712 9713 // No need to allocate a matching input constraint since the constraint it's 9714 // matching to has already been allocated. 9715 if (OpInfo.isMatchingInputConstraint()) 9716 return std::nullopt; 9717 9718 EVT ValueVT = OpInfo.ConstraintVT; 9719 if (OpInfo.ConstraintVT == MVT::Other) 9720 ValueVT = RegVT; 9721 9722 // Initialize NumRegs. 9723 unsigned NumRegs = 1; 9724 if (OpInfo.ConstraintVT != MVT::Other) 9725 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 9726 9727 // If this is a constraint for a specific physical register, like {r17}, 9728 // assign it now. 9729 9730 // If this associated to a specific register, initialize iterator to correct 9731 // place. If virtual, make sure we have enough registers 9732 9733 // Initialize iterator if necessary 9734 TargetRegisterClass::iterator I = RC->begin(); 9735 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9736 9737 // Do not check for single registers. 9738 if (AssignedReg) { 9739 I = std::find(I, RC->end(), AssignedReg); 9740 if (I == RC->end()) { 9741 // RC does not contain the selected register, which indicates a 9742 // mismatch between the register and the required type/bitwidth. 9743 return {AssignedReg}; 9744 } 9745 } 9746 9747 for (; NumRegs; --NumRegs, ++I) { 9748 assert(I != RC->end() && "Ran out of registers to allocate!"); 9749 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 9750 Regs.push_back(R); 9751 } 9752 9753 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 9754 return std::nullopt; 9755 } 9756 9757 static unsigned 9758 findMatchingInlineAsmOperand(unsigned OperandNo, 9759 const std::vector<SDValue> &AsmNodeOperands) { 9760 // Scan until we find the definition we already emitted of this operand. 9761 unsigned CurOp = InlineAsm::Op_FirstOperand; 9762 for (; OperandNo; --OperandNo) { 9763 // Advance to the next operand. 9764 unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal(); 9765 const InlineAsm::Flag F(OpFlag); 9766 assert( 9767 (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) && 9768 "Skipped past definitions?"); 9769 CurOp += F.getNumOperandRegisters() + 1; 9770 } 9771 return CurOp; 9772 } 9773 9774 namespace { 9775 9776 class ExtraFlags { 9777 unsigned Flags = 0; 9778 9779 public: 9780 explicit ExtraFlags(const CallBase &Call) { 9781 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9782 if (IA->hasSideEffects()) 9783 Flags |= InlineAsm::Extra_HasSideEffects; 9784 if (IA->isAlignStack()) 9785 Flags |= InlineAsm::Extra_IsAlignStack; 9786 if (Call.isConvergent()) 9787 Flags |= InlineAsm::Extra_IsConvergent; 9788 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 9789 } 9790 9791 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 9792 // Ideally, we would only check against memory constraints. However, the 9793 // meaning of an Other constraint can be target-specific and we can't easily 9794 // reason about it. Therefore, be conservative and set MayLoad/MayStore 9795 // for Other constraints as well. 9796 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9797 OpInfo.ConstraintType == TargetLowering::C_Other) { 9798 if (OpInfo.Type == InlineAsm::isInput) 9799 Flags |= InlineAsm::Extra_MayLoad; 9800 else if (OpInfo.Type == InlineAsm::isOutput) 9801 Flags |= InlineAsm::Extra_MayStore; 9802 else if (OpInfo.Type == InlineAsm::isClobber) 9803 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 9804 } 9805 } 9806 9807 unsigned get() const { return Flags; } 9808 }; 9809 9810 } // end anonymous namespace 9811 9812 static bool isFunction(SDValue Op) { 9813 if (Op && Op.getOpcode() == ISD::GlobalAddress) { 9814 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9815 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal()); 9816 9817 // In normal "call dllimport func" instruction (non-inlineasm) it force 9818 // indirect access by specifing call opcode. And usually specially print 9819 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can 9820 // not do in this way now. (In fact, this is similar with "Data Access" 9821 // action). So here we ignore dllimport function. 9822 if (Fn && !Fn->hasDLLImportStorageClass()) 9823 return true; 9824 } 9825 } 9826 return false; 9827 } 9828 9829 /// visitInlineAsm - Handle a call to an InlineAsm object. 9830 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 9831 const BasicBlock *EHPadBB) { 9832 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9833 9834 /// ConstraintOperands - Information about all of the constraints. 9835 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 9836 9837 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9838 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 9839 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 9840 9841 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 9842 // AsmDialect, MayLoad, MayStore). 9843 bool HasSideEffect = IA->hasSideEffects(); 9844 ExtraFlags ExtraInfo(Call); 9845 9846 for (auto &T : TargetConstraints) { 9847 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 9848 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 9849 9850 if (OpInfo.CallOperandVal) 9851 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 9852 9853 if (!HasSideEffect) 9854 HasSideEffect = OpInfo.hasMemory(TLI); 9855 9856 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 9857 // FIXME: Could we compute this on OpInfo rather than T? 9858 9859 // Compute the constraint code and ConstraintType to use. 9860 TLI.ComputeConstraintToUse(T, SDValue()); 9861 9862 if (T.ConstraintType == TargetLowering::C_Immediate && 9863 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 9864 // We've delayed emitting a diagnostic like the "n" constraint because 9865 // inlining could cause an integer showing up. 9866 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 9867 "' expects an integer constant " 9868 "expression"); 9869 9870 ExtraInfo.update(T); 9871 } 9872 9873 // We won't need to flush pending loads if this asm doesn't touch 9874 // memory and is nonvolatile. 9875 SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 9876 9877 bool EmitEHLabels = isa<InvokeInst>(Call); 9878 if (EmitEHLabels) { 9879 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 9880 } 9881 bool IsCallBr = isa<CallBrInst>(Call); 9882 9883 if (IsCallBr || EmitEHLabels) { 9884 // If this is a callbr or invoke we need to flush pending exports since 9885 // inlineasm_br and invoke are terminators. 9886 // We need to do this before nodes are glued to the inlineasm_br node. 9887 Chain = getControlRoot(); 9888 } 9889 9890 MCSymbol *BeginLabel = nullptr; 9891 if (EmitEHLabels) { 9892 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 9893 } 9894 9895 int OpNo = -1; 9896 SmallVector<StringRef> AsmStrs; 9897 IA->collectAsmStrs(AsmStrs); 9898 9899 // Second pass over the constraints: compute which constraint option to use. 9900 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9901 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput) 9902 OpNo++; 9903 9904 // If this is an output operand with a matching input operand, look up the 9905 // matching input. If their types mismatch, e.g. one is an integer, the 9906 // other is floating point, or their sizes are different, flag it as an 9907 // error. 9908 if (OpInfo.hasMatchingInput()) { 9909 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 9910 patchMatchingInput(OpInfo, Input, DAG); 9911 } 9912 9913 // Compute the constraint code and ConstraintType to use. 9914 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 9915 9916 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 9917 OpInfo.Type == InlineAsm::isClobber) || 9918 OpInfo.ConstraintType == TargetLowering::C_Address) 9919 continue; 9920 9921 // In Linux PIC model, there are 4 cases about value/label addressing: 9922 // 9923 // 1: Function call or Label jmp inside the module. 9924 // 2: Data access (such as global variable, static variable) inside module. 9925 // 3: Function call or Label jmp outside the module. 9926 // 4: Data access (such as global variable) outside the module. 9927 // 9928 // Due to current llvm inline asm architecture designed to not "recognize" 9929 // the asm code, there are quite troubles for us to treat mem addressing 9930 // differently for same value/adress used in different instuctions. 9931 // For example, in pic model, call a func may in plt way or direclty 9932 // pc-related, but lea/mov a function adress may use got. 9933 // 9934 // Here we try to "recognize" function call for the case 1 and case 3 in 9935 // inline asm. And try to adjust the constraint for them. 9936 // 9937 // TODO: Due to current inline asm didn't encourage to jmp to the outsider 9938 // label, so here we don't handle jmp function label now, but we need to 9939 // enhance it (especilly in PIC model) if we meet meaningful requirements. 9940 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) && 9941 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) && 9942 TM.getCodeModel() != CodeModel::Large) { 9943 OpInfo.isIndirect = false; 9944 OpInfo.ConstraintType = TargetLowering::C_Address; 9945 } 9946 9947 // If this is a memory input, and if the operand is not indirect, do what we 9948 // need to provide an address for the memory input. 9949 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 9950 !OpInfo.isIndirect) { 9951 assert((OpInfo.isMultipleAlternative || 9952 (OpInfo.Type == InlineAsm::isInput)) && 9953 "Can only indirectify direct input operands!"); 9954 9955 // Memory operands really want the address of the value. 9956 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 9957 9958 // There is no longer a Value* corresponding to this operand. 9959 OpInfo.CallOperandVal = nullptr; 9960 9961 // It is now an indirect operand. 9962 OpInfo.isIndirect = true; 9963 } 9964 9965 } 9966 9967 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 9968 std::vector<SDValue> AsmNodeOperands; 9969 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 9970 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 9971 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 9972 9973 // If we have a !srcloc metadata node associated with it, we want to attach 9974 // this to the ultimately generated inline asm machineinstr. To do this, we 9975 // pass in the third operand as this (potentially null) inline asm MDNode. 9976 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 9977 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 9978 9979 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 9980 // bits as operand 3. 9981 AsmNodeOperands.push_back(DAG.getTargetConstant( 9982 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9983 9984 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 9985 // this, assign virtual and physical registers for inputs and otput. 9986 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9987 // Assign Registers. 9988 SDISelAsmOperandInfo &RefOpInfo = 9989 OpInfo.isMatchingInputConstraint() 9990 ? ConstraintOperands[OpInfo.getMatchedOperand()] 9991 : OpInfo; 9992 const auto RegError = 9993 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 9994 if (RegError) { 9995 const MachineFunction &MF = DAG.getMachineFunction(); 9996 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9997 const char *RegName = TRI.getName(*RegError); 9998 emitInlineAsmError(Call, "register '" + Twine(RegName) + 9999 "' allocated for constraint '" + 10000 Twine(OpInfo.ConstraintCode) + 10001 "' does not match required type"); 10002 return; 10003 } 10004 10005 auto DetectWriteToReservedRegister = [&]() { 10006 const MachineFunction &MF = DAG.getMachineFunction(); 10007 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 10008 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 10009 if (Register::isPhysicalRegister(Reg) && 10010 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 10011 const char *RegName = TRI.getName(Reg); 10012 emitInlineAsmError(Call, "write to reserved register '" + 10013 Twine(RegName) + "'"); 10014 return true; 10015 } 10016 } 10017 return false; 10018 }; 10019 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 10020 (OpInfo.Type == InlineAsm::isInput && 10021 !OpInfo.isMatchingInputConstraint())) && 10022 "Only address as input operand is allowed."); 10023 10024 switch (OpInfo.Type) { 10025 case InlineAsm::isOutput: 10026 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 10027 const InlineAsm::ConstraintCode ConstraintID = 10028 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 10029 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 10030 "Failed to convert memory constraint code to constraint id."); 10031 10032 // Add information to the INLINEASM node to know about this output. 10033 InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1); 10034 OpFlags.setMemConstraint(ConstraintID); 10035 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 10036 MVT::i32)); 10037 AsmNodeOperands.push_back(OpInfo.CallOperand); 10038 } else { 10039 // Otherwise, this outputs to a register (directly for C_Register / 10040 // C_RegisterClass, and a target-defined fashion for 10041 // C_Immediate/C_Other). Find a register that we can use. 10042 if (OpInfo.AssignedRegs.Regs.empty()) { 10043 emitInlineAsmError( 10044 Call, "couldn't allocate output register for constraint '" + 10045 Twine(OpInfo.ConstraintCode) + "'"); 10046 return; 10047 } 10048 10049 if (DetectWriteToReservedRegister()) 10050 return; 10051 10052 // Add information to the INLINEASM node to know that this register is 10053 // set. 10054 OpInfo.AssignedRegs.AddInlineAsmOperands( 10055 OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber 10056 : InlineAsm::Kind::RegDef, 10057 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 10058 } 10059 break; 10060 10061 case InlineAsm::isInput: 10062 case InlineAsm::isLabel: { 10063 SDValue InOperandVal = OpInfo.CallOperand; 10064 10065 if (OpInfo.isMatchingInputConstraint()) { 10066 // If this is required to match an output register we have already set, 10067 // just use its register. 10068 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 10069 AsmNodeOperands); 10070 InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal()); 10071 if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) { 10072 if (OpInfo.isIndirect) { 10073 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 10074 emitInlineAsmError(Call, "inline asm not supported yet: " 10075 "don't know how to handle tied " 10076 "indirect register inputs"); 10077 return; 10078 } 10079 10080 SmallVector<Register, 4> Regs; 10081 MachineFunction &MF = DAG.getMachineFunction(); 10082 MachineRegisterInfo &MRI = MF.getRegInfo(); 10083 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 10084 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 10085 Register TiedReg = R->getReg(); 10086 MVT RegVT = R->getSimpleValueType(0); 10087 const TargetRegisterClass *RC = 10088 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 10089 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 10090 : TRI.getMinimalPhysRegClass(TiedReg); 10091 for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i) 10092 Regs.push_back(MRI.createVirtualRegister(RC)); 10093 10094 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 10095 10096 SDLoc dl = getCurSDLoc(); 10097 // Use the produced MatchedRegs object to 10098 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call); 10099 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true, 10100 OpInfo.getMatchedOperand(), dl, DAG, 10101 AsmNodeOperands); 10102 break; 10103 } 10104 10105 assert(Flag.isMemKind() && "Unknown matching constraint!"); 10106 assert(Flag.getNumOperandRegisters() == 1 && 10107 "Unexpected number of operands"); 10108 // Add information to the INLINEASM node to know about this input. 10109 // See InlineAsm.h isUseOperandTiedToDef. 10110 Flag.clearMemConstraint(); 10111 Flag.setMatchingOp(OpInfo.getMatchedOperand()); 10112 AsmNodeOperands.push_back(DAG.getTargetConstant( 10113 Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 10114 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 10115 break; 10116 } 10117 10118 // Treat indirect 'X' constraint as memory. 10119 if (OpInfo.ConstraintType == TargetLowering::C_Other && 10120 OpInfo.isIndirect) 10121 OpInfo.ConstraintType = TargetLowering::C_Memory; 10122 10123 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 10124 OpInfo.ConstraintType == TargetLowering::C_Other) { 10125 std::vector<SDValue> Ops; 10126 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 10127 Ops, DAG); 10128 if (Ops.empty()) { 10129 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 10130 if (isa<ConstantSDNode>(InOperandVal)) { 10131 emitInlineAsmError(Call, "value out of range for constraint '" + 10132 Twine(OpInfo.ConstraintCode) + "'"); 10133 return; 10134 } 10135 10136 emitInlineAsmError(Call, 10137 "invalid operand for inline asm constraint '" + 10138 Twine(OpInfo.ConstraintCode) + "'"); 10139 return; 10140 } 10141 10142 // Add information to the INLINEASM node to know about this input. 10143 InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size()); 10144 AsmNodeOperands.push_back(DAG.getTargetConstant( 10145 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 10146 llvm::append_range(AsmNodeOperands, Ops); 10147 break; 10148 } 10149 10150 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 10151 assert((OpInfo.isIndirect || 10152 OpInfo.ConstraintType != TargetLowering::C_Memory) && 10153 "Operand must be indirect to be a mem!"); 10154 assert(InOperandVal.getValueType() == 10155 TLI.getPointerTy(DAG.getDataLayout()) && 10156 "Memory operands expect pointer values"); 10157 10158 const InlineAsm::ConstraintCode ConstraintID = 10159 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 10160 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 10161 "Failed to convert memory constraint code to constraint id."); 10162 10163 // Add information to the INLINEASM node to know about this input. 10164 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 10165 ResOpType.setMemConstraint(ConstraintID); 10166 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 10167 getCurSDLoc(), 10168 MVT::i32)); 10169 AsmNodeOperands.push_back(InOperandVal); 10170 break; 10171 } 10172 10173 if (OpInfo.ConstraintType == TargetLowering::C_Address) { 10174 const InlineAsm::ConstraintCode ConstraintID = 10175 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 10176 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 10177 "Failed to convert memory constraint code to constraint id."); 10178 10179 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 10180 10181 SDValue AsmOp = InOperandVal; 10182 if (isFunction(InOperandVal)) { 10183 auto *GA = cast<GlobalAddressSDNode>(InOperandVal); 10184 ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1); 10185 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(), 10186 InOperandVal.getValueType(), 10187 GA->getOffset()); 10188 } 10189 10190 // Add information to the INLINEASM node to know about this input. 10191 ResOpType.setMemConstraint(ConstraintID); 10192 10193 AsmNodeOperands.push_back( 10194 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); 10195 10196 AsmNodeOperands.push_back(AsmOp); 10197 break; 10198 } 10199 10200 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 10201 OpInfo.ConstraintType != TargetLowering::C_Register) { 10202 emitInlineAsmError(Call, "unknown asm constraint '" + 10203 Twine(OpInfo.ConstraintCode) + "'"); 10204 return; 10205 } 10206 10207 // TODO: Support this. 10208 if (OpInfo.isIndirect) { 10209 emitInlineAsmError( 10210 Call, "Don't know how to handle indirect register inputs yet " 10211 "for constraint '" + 10212 Twine(OpInfo.ConstraintCode) + "'"); 10213 return; 10214 } 10215 10216 // Copy the input into the appropriate registers. 10217 if (OpInfo.AssignedRegs.Regs.empty()) { 10218 emitInlineAsmError(Call, 10219 "couldn't allocate input reg for constraint '" + 10220 Twine(OpInfo.ConstraintCode) + "'"); 10221 return; 10222 } 10223 10224 if (DetectWriteToReservedRegister()) 10225 return; 10226 10227 SDLoc dl = getCurSDLoc(); 10228 10229 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, 10230 &Call); 10231 10232 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false, 10233 0, dl, DAG, AsmNodeOperands); 10234 break; 10235 } 10236 case InlineAsm::isClobber: 10237 // Add the clobbered value to the operand list, so that the register 10238 // allocator is aware that the physreg got clobbered. 10239 if (!OpInfo.AssignedRegs.Regs.empty()) 10240 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber, 10241 false, 0, getCurSDLoc(), DAG, 10242 AsmNodeOperands); 10243 break; 10244 } 10245 } 10246 10247 // Finish up input operands. Set the input chain and add the flag last. 10248 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 10249 if (Glue.getNode()) AsmNodeOperands.push_back(Glue); 10250 10251 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 10252 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 10253 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 10254 Glue = Chain.getValue(1); 10255 10256 // Do additional work to generate outputs. 10257 10258 SmallVector<EVT, 1> ResultVTs; 10259 SmallVector<SDValue, 1> ResultValues; 10260 SmallVector<SDValue, 8> OutChains; 10261 10262 llvm::Type *CallResultType = Call.getType(); 10263 ArrayRef<Type *> ResultTypes; 10264 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 10265 ResultTypes = StructResult->elements(); 10266 else if (!CallResultType->isVoidTy()) 10267 ResultTypes = ArrayRef(CallResultType); 10268 10269 auto CurResultType = ResultTypes.begin(); 10270 auto handleRegAssign = [&](SDValue V) { 10271 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 10272 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 10273 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 10274 ++CurResultType; 10275 // If the type of the inline asm call site return value is different but has 10276 // same size as the type of the asm output bitcast it. One example of this 10277 // is for vectors with different width / number of elements. This can 10278 // happen for register classes that can contain multiple different value 10279 // types. The preg or vreg allocated may not have the same VT as was 10280 // expected. 10281 // 10282 // This can also happen for a return value that disagrees with the register 10283 // class it is put in, eg. a double in a general-purpose register on a 10284 // 32-bit machine. 10285 if (ResultVT != V.getValueType() && 10286 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 10287 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 10288 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 10289 V.getValueType().isInteger()) { 10290 // If a result value was tied to an input value, the computed result 10291 // may have a wider width than the expected result. Extract the 10292 // relevant portion. 10293 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 10294 } 10295 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 10296 ResultVTs.push_back(ResultVT); 10297 ResultValues.push_back(V); 10298 }; 10299 10300 // Deal with output operands. 10301 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 10302 if (OpInfo.Type == InlineAsm::isOutput) { 10303 SDValue Val; 10304 // Skip trivial output operands. 10305 if (OpInfo.AssignedRegs.Regs.empty()) 10306 continue; 10307 10308 switch (OpInfo.ConstraintType) { 10309 case TargetLowering::C_Register: 10310 case TargetLowering::C_RegisterClass: 10311 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 10312 Chain, &Glue, &Call); 10313 break; 10314 case TargetLowering::C_Immediate: 10315 case TargetLowering::C_Other: 10316 Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(), 10317 OpInfo, DAG); 10318 break; 10319 case TargetLowering::C_Memory: 10320 break; // Already handled. 10321 case TargetLowering::C_Address: 10322 break; // Silence warning. 10323 case TargetLowering::C_Unknown: 10324 assert(false && "Unexpected unknown constraint"); 10325 } 10326 10327 // Indirect output manifest as stores. Record output chains. 10328 if (OpInfo.isIndirect) { 10329 const Value *Ptr = OpInfo.CallOperandVal; 10330 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 10331 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 10332 MachinePointerInfo(Ptr)); 10333 OutChains.push_back(Store); 10334 } else { 10335 // generate CopyFromRegs to associated registers. 10336 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 10337 if (Val.getOpcode() == ISD::MERGE_VALUES) { 10338 for (const SDValue &V : Val->op_values()) 10339 handleRegAssign(V); 10340 } else 10341 handleRegAssign(Val); 10342 } 10343 } 10344 } 10345 10346 // Set results. 10347 if (!ResultValues.empty()) { 10348 assert(CurResultType == ResultTypes.end() && 10349 "Mismatch in number of ResultTypes"); 10350 assert(ResultValues.size() == ResultTypes.size() && 10351 "Mismatch in number of output operands in asm result"); 10352 10353 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 10354 DAG.getVTList(ResultVTs), ResultValues); 10355 setValue(&Call, V); 10356 } 10357 10358 // Collect store chains. 10359 if (!OutChains.empty()) 10360 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 10361 10362 if (EmitEHLabels) { 10363 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 10364 } 10365 10366 // Only Update Root if inline assembly has a memory effect. 10367 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 10368 EmitEHLabels) 10369 DAG.setRoot(Chain); 10370 } 10371 10372 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 10373 const Twine &Message) { 10374 LLVMContext &Ctx = *DAG.getContext(); 10375 Ctx.emitError(&Call, Message); 10376 10377 // Make sure we leave the DAG in a valid state 10378 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10379 SmallVector<EVT, 1> ValueVTs; 10380 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 10381 10382 if (ValueVTs.empty()) 10383 return; 10384 10385 SmallVector<SDValue, 1> Ops; 10386 for (const EVT &VT : ValueVTs) 10387 Ops.push_back(DAG.getUNDEF(VT)); 10388 10389 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 10390 } 10391 10392 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 10393 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 10394 MVT::Other, getRoot(), 10395 getValue(I.getArgOperand(0)), 10396 DAG.getSrcValue(I.getArgOperand(0)))); 10397 } 10398 10399 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 10400 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10401 const DataLayout &DL = DAG.getDataLayout(); 10402 SDValue V = DAG.getVAArg( 10403 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 10404 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 10405 DL.getABITypeAlign(I.getType()).value()); 10406 DAG.setRoot(V.getValue(1)); 10407 10408 if (I.getType()->isPointerTy()) 10409 V = DAG.getPtrExtOrTrunc( 10410 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 10411 setValue(&I, V); 10412 } 10413 10414 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 10415 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 10416 MVT::Other, getRoot(), 10417 getValue(I.getArgOperand(0)), 10418 DAG.getSrcValue(I.getArgOperand(0)))); 10419 } 10420 10421 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 10422 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 10423 MVT::Other, getRoot(), 10424 getValue(I.getArgOperand(0)), 10425 getValue(I.getArgOperand(1)), 10426 DAG.getSrcValue(I.getArgOperand(0)), 10427 DAG.getSrcValue(I.getArgOperand(1)))); 10428 } 10429 10430 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 10431 const Instruction &I, 10432 SDValue Op) { 10433 std::optional<ConstantRange> CR = getRange(I); 10434 10435 if (!CR || CR->isFullSet() || CR->isEmptySet() || CR->isUpperWrapped()) 10436 return Op; 10437 10438 APInt Lo = CR->getUnsignedMin(); 10439 if (!Lo.isMinValue()) 10440 return Op; 10441 10442 APInt Hi = CR->getUnsignedMax(); 10443 unsigned Bits = std::max(Hi.getActiveBits(), 10444 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 10445 10446 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 10447 10448 SDLoc SL = getCurSDLoc(); 10449 10450 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 10451 DAG.getValueType(SmallVT)); 10452 unsigned NumVals = Op.getNode()->getNumValues(); 10453 if (NumVals == 1) 10454 return ZExt; 10455 10456 SmallVector<SDValue, 4> Ops; 10457 10458 Ops.push_back(ZExt); 10459 for (unsigned I = 1; I != NumVals; ++I) 10460 Ops.push_back(Op.getValue(I)); 10461 10462 return DAG.getMergeValues(Ops, SL); 10463 } 10464 10465 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 10466 /// the call being lowered. 10467 /// 10468 /// This is a helper for lowering intrinsics that follow a target calling 10469 /// convention or require stack pointer adjustment. Only a subset of the 10470 /// intrinsic's operands need to participate in the calling convention. 10471 void SelectionDAGBuilder::populateCallLoweringInfo( 10472 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 10473 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 10474 AttributeSet RetAttrs, bool IsPatchPoint) { 10475 TargetLowering::ArgListTy Args; 10476 Args.reserve(NumArgs); 10477 10478 // Populate the argument list. 10479 // Attributes for args start at offset 1, after the return attribute. 10480 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 10481 ArgI != ArgE; ++ArgI) { 10482 const Value *V = Call->getOperand(ArgI); 10483 10484 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 10485 10486 TargetLowering::ArgListEntry Entry; 10487 Entry.Node = getValue(V); 10488 Entry.Ty = V->getType(); 10489 Entry.setAttributes(Call, ArgI); 10490 Args.push_back(Entry); 10491 } 10492 10493 CLI.setDebugLoc(getCurSDLoc()) 10494 .setChain(getRoot()) 10495 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args), 10496 RetAttrs) 10497 .setDiscardResult(Call->use_empty()) 10498 .setIsPatchPoint(IsPatchPoint) 10499 .setIsPreallocated( 10500 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 10501 } 10502 10503 /// Add a stack map intrinsic call's live variable operands to a stackmap 10504 /// or patchpoint target node's operand list. 10505 /// 10506 /// Constants are converted to TargetConstants purely as an optimization to 10507 /// avoid constant materialization and register allocation. 10508 /// 10509 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 10510 /// generate addess computation nodes, and so FinalizeISel can convert the 10511 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 10512 /// address materialization and register allocation, but may also be required 10513 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 10514 /// alloca in the entry block, then the runtime may assume that the alloca's 10515 /// StackMap location can be read immediately after compilation and that the 10516 /// location is valid at any point during execution (this is similar to the 10517 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 10518 /// only available in a register, then the runtime would need to trap when 10519 /// execution reaches the StackMap in order to read the alloca's location. 10520 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 10521 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 10522 SelectionDAGBuilder &Builder) { 10523 SelectionDAG &DAG = Builder.DAG; 10524 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 10525 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 10526 10527 // Things on the stack are pointer-typed, meaning that they are already 10528 // legal and can be emitted directly to target nodes. 10529 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 10530 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 10531 } else { 10532 // Otherwise emit a target independent node to be legalised. 10533 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 10534 } 10535 } 10536 } 10537 10538 /// Lower llvm.experimental.stackmap. 10539 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 10540 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 10541 // [live variables...]) 10542 10543 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 10544 10545 SDValue Chain, InGlue, Callee; 10546 SmallVector<SDValue, 32> Ops; 10547 10548 SDLoc DL = getCurSDLoc(); 10549 Callee = getValue(CI.getCalledOperand()); 10550 10551 // The stackmap intrinsic only records the live variables (the arguments 10552 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 10553 // intrinsic, this won't be lowered to a function call. This means we don't 10554 // have to worry about calling conventions and target specific lowering code. 10555 // Instead we perform the call lowering right here. 10556 // 10557 // chain, flag = CALLSEQ_START(chain, 0, 0) 10558 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 10559 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 10560 // 10561 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 10562 InGlue = Chain.getValue(1); 10563 10564 // Add the STACKMAP operands, starting with DAG house-keeping. 10565 Ops.push_back(Chain); 10566 Ops.push_back(InGlue); 10567 10568 // Add the <id>, <numShadowBytes> operands. 10569 // 10570 // These do not require legalisation, and can be emitted directly to target 10571 // constant nodes. 10572 SDValue ID = getValue(CI.getArgOperand(0)); 10573 assert(ID.getValueType() == MVT::i64); 10574 SDValue IDConst = 10575 DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType()); 10576 Ops.push_back(IDConst); 10577 10578 SDValue Shad = getValue(CI.getArgOperand(1)); 10579 assert(Shad.getValueType() == MVT::i32); 10580 SDValue ShadConst = 10581 DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType()); 10582 Ops.push_back(ShadConst); 10583 10584 // Add the live variables. 10585 addStackMapLiveVars(CI, 2, DL, Ops, *this); 10586 10587 // Create the STACKMAP node. 10588 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10589 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 10590 InGlue = Chain.getValue(1); 10591 10592 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL); 10593 10594 // Stackmaps don't generate values, so nothing goes into the NodeMap. 10595 10596 // Set the root to the target-lowered call chain. 10597 DAG.setRoot(Chain); 10598 10599 // Inform the Frame Information that we have a stackmap in this function. 10600 FuncInfo.MF->getFrameInfo().setHasStackMap(); 10601 } 10602 10603 /// Lower llvm.experimental.patchpoint directly to its target opcode. 10604 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 10605 const BasicBlock *EHPadBB) { 10606 // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>, 10607 // i32 <numBytes>, 10608 // i8* <target>, 10609 // i32 <numArgs>, 10610 // [Args...], 10611 // [live variables...]) 10612 10613 CallingConv::ID CC = CB.getCallingConv(); 10614 bool IsAnyRegCC = CC == CallingConv::AnyReg; 10615 bool HasDef = !CB.getType()->isVoidTy(); 10616 SDLoc dl = getCurSDLoc(); 10617 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 10618 10619 // Handle immediate and symbolic callees. 10620 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 10621 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 10622 /*isTarget=*/true); 10623 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 10624 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 10625 SDLoc(SymbolicCallee), 10626 SymbolicCallee->getValueType(0)); 10627 10628 // Get the real number of arguments participating in the call <numArgs> 10629 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 10630 unsigned NumArgs = NArgVal->getAsZExtVal(); 10631 10632 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 10633 // Intrinsics include all meta-operands up to but not including CC. 10634 unsigned NumMetaOpers = PatchPointOpers::CCPos; 10635 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 10636 "Not enough arguments provided to the patchpoint intrinsic"); 10637 10638 // For AnyRegCC the arguments are lowered later on manually. 10639 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 10640 Type *ReturnTy = 10641 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 10642 10643 TargetLowering::CallLoweringInfo CLI(DAG); 10644 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 10645 ReturnTy, CB.getAttributes().getRetAttrs(), true); 10646 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 10647 10648 SDNode *CallEnd = Result.second.getNode(); 10649 if (CallEnd->getOpcode() == ISD::EH_LABEL) 10650 CallEnd = CallEnd->getOperand(0).getNode(); 10651 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 10652 CallEnd = CallEnd->getOperand(0).getNode(); 10653 10654 /// Get a call instruction from the call sequence chain. 10655 /// Tail calls are not allowed. 10656 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 10657 "Expected a callseq node."); 10658 SDNode *Call = CallEnd->getOperand(0).getNode(); 10659 bool HasGlue = Call->getGluedNode(); 10660 10661 // Replace the target specific call node with the patchable intrinsic. 10662 SmallVector<SDValue, 8> Ops; 10663 10664 // Push the chain. 10665 Ops.push_back(*(Call->op_begin())); 10666 10667 // Optionally, push the glue (if any). 10668 if (HasGlue) 10669 Ops.push_back(*(Call->op_end() - 1)); 10670 10671 // Push the register mask info. 10672 if (HasGlue) 10673 Ops.push_back(*(Call->op_end() - 2)); 10674 else 10675 Ops.push_back(*(Call->op_end() - 1)); 10676 10677 // Add the <id> and <numBytes> constants. 10678 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 10679 Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64)); 10680 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 10681 Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32)); 10682 10683 // Add the callee. 10684 Ops.push_back(Callee); 10685 10686 // Adjust <numArgs> to account for any arguments that have been passed on the 10687 // stack instead. 10688 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 10689 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 10690 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 10691 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 10692 10693 // Add the calling convention 10694 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 10695 10696 // Add the arguments we omitted previously. The register allocator should 10697 // place these in any free register. 10698 if (IsAnyRegCC) 10699 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 10700 Ops.push_back(getValue(CB.getArgOperand(i))); 10701 10702 // Push the arguments from the call instruction. 10703 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 10704 Ops.append(Call->op_begin() + 2, e); 10705 10706 // Push live variables for the stack map. 10707 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 10708 10709 SDVTList NodeTys; 10710 if (IsAnyRegCC && HasDef) { 10711 // Create the return types based on the intrinsic definition 10712 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10713 SmallVector<EVT, 3> ValueVTs; 10714 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 10715 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 10716 10717 // There is always a chain and a glue type at the end 10718 ValueVTs.push_back(MVT::Other); 10719 ValueVTs.push_back(MVT::Glue); 10720 NodeTys = DAG.getVTList(ValueVTs); 10721 } else 10722 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10723 10724 // Replace the target specific call node with a PATCHPOINT node. 10725 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 10726 10727 // Update the NodeMap. 10728 if (HasDef) { 10729 if (IsAnyRegCC) 10730 setValue(&CB, SDValue(PPV.getNode(), 0)); 10731 else 10732 setValue(&CB, Result.first); 10733 } 10734 10735 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 10736 // call sequence. Furthermore the location of the chain and glue can change 10737 // when the AnyReg calling convention is used and the intrinsic returns a 10738 // value. 10739 if (IsAnyRegCC && HasDef) { 10740 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 10741 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 10742 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 10743 } else 10744 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 10745 DAG.DeleteNode(Call); 10746 10747 // Inform the Frame Information that we have a patchpoint in this function. 10748 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 10749 } 10750 10751 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 10752 unsigned Intrinsic) { 10753 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10754 SDValue Op1 = getValue(I.getArgOperand(0)); 10755 SDValue Op2; 10756 if (I.arg_size() > 1) 10757 Op2 = getValue(I.getArgOperand(1)); 10758 SDLoc dl = getCurSDLoc(); 10759 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 10760 SDValue Res; 10761 SDNodeFlags SDFlags; 10762 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 10763 SDFlags.copyFMF(*FPMO); 10764 10765 switch (Intrinsic) { 10766 case Intrinsic::vector_reduce_fadd: 10767 if (SDFlags.hasAllowReassociation()) 10768 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 10769 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 10770 SDFlags); 10771 else 10772 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 10773 break; 10774 case Intrinsic::vector_reduce_fmul: 10775 if (SDFlags.hasAllowReassociation()) 10776 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 10777 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 10778 SDFlags); 10779 else 10780 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 10781 break; 10782 case Intrinsic::vector_reduce_add: 10783 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 10784 break; 10785 case Intrinsic::vector_reduce_mul: 10786 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 10787 break; 10788 case Intrinsic::vector_reduce_and: 10789 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 10790 break; 10791 case Intrinsic::vector_reduce_or: 10792 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 10793 break; 10794 case Intrinsic::vector_reduce_xor: 10795 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 10796 break; 10797 case Intrinsic::vector_reduce_smax: 10798 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 10799 break; 10800 case Intrinsic::vector_reduce_smin: 10801 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 10802 break; 10803 case Intrinsic::vector_reduce_umax: 10804 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 10805 break; 10806 case Intrinsic::vector_reduce_umin: 10807 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 10808 break; 10809 case Intrinsic::vector_reduce_fmax: 10810 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 10811 break; 10812 case Intrinsic::vector_reduce_fmin: 10813 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 10814 break; 10815 case Intrinsic::vector_reduce_fmaximum: 10816 Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags); 10817 break; 10818 case Intrinsic::vector_reduce_fminimum: 10819 Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags); 10820 break; 10821 default: 10822 llvm_unreachable("Unhandled vector reduce intrinsic"); 10823 } 10824 setValue(&I, Res); 10825 } 10826 10827 /// Returns an AttributeList representing the attributes applied to the return 10828 /// value of the given call. 10829 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 10830 SmallVector<Attribute::AttrKind, 2> Attrs; 10831 if (CLI.RetSExt) 10832 Attrs.push_back(Attribute::SExt); 10833 if (CLI.RetZExt) 10834 Attrs.push_back(Attribute::ZExt); 10835 if (CLI.IsInReg) 10836 Attrs.push_back(Attribute::InReg); 10837 10838 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 10839 Attrs); 10840 } 10841 10842 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 10843 /// implementation, which just calls LowerCall. 10844 /// FIXME: When all targets are 10845 /// migrated to using LowerCall, this hook should be integrated into SDISel. 10846 std::pair<SDValue, SDValue> 10847 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 10848 // Handle the incoming return values from the call. 10849 CLI.Ins.clear(); 10850 Type *OrigRetTy = CLI.RetTy; 10851 SmallVector<EVT, 4> RetTys; 10852 SmallVector<TypeSize, 4> Offsets; 10853 auto &DL = CLI.DAG.getDataLayout(); 10854 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 10855 10856 if (CLI.IsPostTypeLegalization) { 10857 // If we are lowering a libcall after legalization, split the return type. 10858 SmallVector<EVT, 4> OldRetTys; 10859 SmallVector<TypeSize, 4> OldOffsets; 10860 RetTys.swap(OldRetTys); 10861 Offsets.swap(OldOffsets); 10862 10863 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 10864 EVT RetVT = OldRetTys[i]; 10865 uint64_t Offset = OldOffsets[i]; 10866 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 10867 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 10868 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 10869 RetTys.append(NumRegs, RegisterVT); 10870 for (unsigned j = 0; j != NumRegs; ++j) 10871 Offsets.push_back(TypeSize::getFixed(Offset + j * RegisterVTByteSZ)); 10872 } 10873 } 10874 10875 SmallVector<ISD::OutputArg, 4> Outs; 10876 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 10877 10878 bool CanLowerReturn = 10879 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 10880 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 10881 10882 SDValue DemoteStackSlot; 10883 int DemoteStackIdx = -100; 10884 if (!CanLowerReturn) { 10885 // FIXME: equivalent assert? 10886 // assert(!CS.hasInAllocaArgument() && 10887 // "sret demotion is incompatible with inalloca"); 10888 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 10889 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 10890 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10891 DemoteStackIdx = 10892 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 10893 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 10894 DL.getAllocaAddrSpace()); 10895 10896 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 10897 ArgListEntry Entry; 10898 Entry.Node = DemoteStackSlot; 10899 Entry.Ty = StackSlotPtrType; 10900 Entry.IsSExt = false; 10901 Entry.IsZExt = false; 10902 Entry.IsInReg = false; 10903 Entry.IsSRet = true; 10904 Entry.IsNest = false; 10905 Entry.IsByVal = false; 10906 Entry.IsByRef = false; 10907 Entry.IsReturned = false; 10908 Entry.IsSwiftSelf = false; 10909 Entry.IsSwiftAsync = false; 10910 Entry.IsSwiftError = false; 10911 Entry.IsCFGuardTarget = false; 10912 Entry.Alignment = Alignment; 10913 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 10914 CLI.NumFixedArgs += 1; 10915 CLI.getArgs()[0].IndirectType = CLI.RetTy; 10916 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 10917 10918 // sret demotion isn't compatible with tail-calls, since the sret argument 10919 // points into the callers stack frame. 10920 CLI.IsTailCall = false; 10921 } else { 10922 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10923 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 10924 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10925 ISD::ArgFlagsTy Flags; 10926 if (NeedsRegBlock) { 10927 Flags.setInConsecutiveRegs(); 10928 if (I == RetTys.size() - 1) 10929 Flags.setInConsecutiveRegsLast(); 10930 } 10931 EVT VT = RetTys[I]; 10932 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10933 CLI.CallConv, VT); 10934 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10935 CLI.CallConv, VT); 10936 for (unsigned i = 0; i != NumRegs; ++i) { 10937 ISD::InputArg MyFlags; 10938 MyFlags.Flags = Flags; 10939 MyFlags.VT = RegisterVT; 10940 MyFlags.ArgVT = VT; 10941 MyFlags.Used = CLI.IsReturnValueUsed; 10942 if (CLI.RetTy->isPointerTy()) { 10943 MyFlags.Flags.setPointer(); 10944 MyFlags.Flags.setPointerAddrSpace( 10945 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 10946 } 10947 if (CLI.RetSExt) 10948 MyFlags.Flags.setSExt(); 10949 if (CLI.RetZExt) 10950 MyFlags.Flags.setZExt(); 10951 if (CLI.IsInReg) 10952 MyFlags.Flags.setInReg(); 10953 CLI.Ins.push_back(MyFlags); 10954 } 10955 } 10956 } 10957 10958 // We push in swifterror return as the last element of CLI.Ins. 10959 ArgListTy &Args = CLI.getArgs(); 10960 if (supportSwiftError()) { 10961 for (const ArgListEntry &Arg : Args) { 10962 if (Arg.IsSwiftError) { 10963 ISD::InputArg MyFlags; 10964 MyFlags.VT = getPointerTy(DL); 10965 MyFlags.ArgVT = EVT(getPointerTy(DL)); 10966 MyFlags.Flags.setSwiftError(); 10967 CLI.Ins.push_back(MyFlags); 10968 } 10969 } 10970 } 10971 10972 // Handle all of the outgoing arguments. 10973 CLI.Outs.clear(); 10974 CLI.OutVals.clear(); 10975 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 10976 SmallVector<EVT, 4> ValueVTs; 10977 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 10978 // FIXME: Split arguments if CLI.IsPostTypeLegalization 10979 Type *FinalType = Args[i].Ty; 10980 if (Args[i].IsByVal) 10981 FinalType = Args[i].IndirectType; 10982 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10983 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 10984 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 10985 ++Value) { 10986 EVT VT = ValueVTs[Value]; 10987 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 10988 SDValue Op = SDValue(Args[i].Node.getNode(), 10989 Args[i].Node.getResNo() + Value); 10990 ISD::ArgFlagsTy Flags; 10991 10992 // Certain targets (such as MIPS), may have a different ABI alignment 10993 // for a type depending on the context. Give the target a chance to 10994 // specify the alignment it wants. 10995 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 10996 Flags.setOrigAlign(OriginalAlignment); 10997 10998 if (Args[i].Ty->isPointerTy()) { 10999 Flags.setPointer(); 11000 Flags.setPointerAddrSpace( 11001 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 11002 } 11003 if (Args[i].IsZExt) 11004 Flags.setZExt(); 11005 if (Args[i].IsSExt) 11006 Flags.setSExt(); 11007 if (Args[i].IsInReg) { 11008 // If we are using vectorcall calling convention, a structure that is 11009 // passed InReg - is surely an HVA 11010 if (CLI.CallConv == CallingConv::X86_VectorCall && 11011 isa<StructType>(FinalType)) { 11012 // The first value of a structure is marked 11013 if (0 == Value) 11014 Flags.setHvaStart(); 11015 Flags.setHva(); 11016 } 11017 // Set InReg Flag 11018 Flags.setInReg(); 11019 } 11020 if (Args[i].IsSRet) 11021 Flags.setSRet(); 11022 if (Args[i].IsSwiftSelf) 11023 Flags.setSwiftSelf(); 11024 if (Args[i].IsSwiftAsync) 11025 Flags.setSwiftAsync(); 11026 if (Args[i].IsSwiftError) 11027 Flags.setSwiftError(); 11028 if (Args[i].IsCFGuardTarget) 11029 Flags.setCFGuardTarget(); 11030 if (Args[i].IsByVal) 11031 Flags.setByVal(); 11032 if (Args[i].IsByRef) 11033 Flags.setByRef(); 11034 if (Args[i].IsPreallocated) { 11035 Flags.setPreallocated(); 11036 // Set the byval flag for CCAssignFn callbacks that don't know about 11037 // preallocated. This way we can know how many bytes we should've 11038 // allocated and how many bytes a callee cleanup function will pop. If 11039 // we port preallocated to more targets, we'll have to add custom 11040 // preallocated handling in the various CC lowering callbacks. 11041 Flags.setByVal(); 11042 } 11043 if (Args[i].IsInAlloca) { 11044 Flags.setInAlloca(); 11045 // Set the byval flag for CCAssignFn callbacks that don't know about 11046 // inalloca. This way we can know how many bytes we should've allocated 11047 // and how many bytes a callee cleanup function will pop. If we port 11048 // inalloca to more targets, we'll have to add custom inalloca handling 11049 // in the various CC lowering callbacks. 11050 Flags.setByVal(); 11051 } 11052 Align MemAlign; 11053 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 11054 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 11055 Flags.setByValSize(FrameSize); 11056 11057 // info is not there but there are cases it cannot get right. 11058 if (auto MA = Args[i].Alignment) 11059 MemAlign = *MA; 11060 else 11061 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 11062 } else if (auto MA = Args[i].Alignment) { 11063 MemAlign = *MA; 11064 } else { 11065 MemAlign = OriginalAlignment; 11066 } 11067 Flags.setMemAlign(MemAlign); 11068 if (Args[i].IsNest) 11069 Flags.setNest(); 11070 if (NeedsRegBlock) 11071 Flags.setInConsecutiveRegs(); 11072 11073 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 11074 CLI.CallConv, VT); 11075 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 11076 CLI.CallConv, VT); 11077 SmallVector<SDValue, 4> Parts(NumParts); 11078 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 11079 11080 if (Args[i].IsSExt) 11081 ExtendKind = ISD::SIGN_EXTEND; 11082 else if (Args[i].IsZExt) 11083 ExtendKind = ISD::ZERO_EXTEND; 11084 11085 // Conservatively only handle 'returned' on non-vectors that can be lowered, 11086 // for now. 11087 if (Args[i].IsReturned && !Op.getValueType().isVector() && 11088 CanLowerReturn) { 11089 assert((CLI.RetTy == Args[i].Ty || 11090 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 11091 CLI.RetTy->getPointerAddressSpace() == 11092 Args[i].Ty->getPointerAddressSpace())) && 11093 RetTys.size() == NumValues && "unexpected use of 'returned'"); 11094 // Before passing 'returned' to the target lowering code, ensure that 11095 // either the register MVT and the actual EVT are the same size or that 11096 // the return value and argument are extended in the same way; in these 11097 // cases it's safe to pass the argument register value unchanged as the 11098 // return register value (although it's at the target's option whether 11099 // to do so) 11100 // TODO: allow code generation to take advantage of partially preserved 11101 // registers rather than clobbering the entire register when the 11102 // parameter extension method is not compatible with the return 11103 // extension method 11104 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 11105 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 11106 CLI.RetZExt == Args[i].IsZExt)) 11107 Flags.setReturned(); 11108 } 11109 11110 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 11111 CLI.CallConv, ExtendKind); 11112 11113 for (unsigned j = 0; j != NumParts; ++j) { 11114 // if it isn't first piece, alignment must be 1 11115 // For scalable vectors the scalable part is currently handled 11116 // by individual targets, so we just use the known minimum size here. 11117 ISD::OutputArg MyFlags( 11118 Flags, Parts[j].getValueType().getSimpleVT(), VT, 11119 i < CLI.NumFixedArgs, i, 11120 j * Parts[j].getValueType().getStoreSize().getKnownMinValue()); 11121 if (NumParts > 1 && j == 0) 11122 MyFlags.Flags.setSplit(); 11123 else if (j != 0) { 11124 MyFlags.Flags.setOrigAlign(Align(1)); 11125 if (j == NumParts - 1) 11126 MyFlags.Flags.setSplitEnd(); 11127 } 11128 11129 CLI.Outs.push_back(MyFlags); 11130 CLI.OutVals.push_back(Parts[j]); 11131 } 11132 11133 if (NeedsRegBlock && Value == NumValues - 1) 11134 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 11135 } 11136 } 11137 11138 SmallVector<SDValue, 4> InVals; 11139 CLI.Chain = LowerCall(CLI, InVals); 11140 11141 // Update CLI.InVals to use outside of this function. 11142 CLI.InVals = InVals; 11143 11144 // Verify that the target's LowerCall behaved as expected. 11145 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 11146 "LowerCall didn't return a valid chain!"); 11147 assert((!CLI.IsTailCall || InVals.empty()) && 11148 "LowerCall emitted a return value for a tail call!"); 11149 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 11150 "LowerCall didn't emit the correct number of values!"); 11151 11152 // For a tail call, the return value is merely live-out and there aren't 11153 // any nodes in the DAG representing it. Return a special value to 11154 // indicate that a tail call has been emitted and no more Instructions 11155 // should be processed in the current block. 11156 if (CLI.IsTailCall) { 11157 CLI.DAG.setRoot(CLI.Chain); 11158 return std::make_pair(SDValue(), SDValue()); 11159 } 11160 11161 #ifndef NDEBUG 11162 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 11163 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 11164 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 11165 "LowerCall emitted a value with the wrong type!"); 11166 } 11167 #endif 11168 11169 SmallVector<SDValue, 4> ReturnValues; 11170 if (!CanLowerReturn) { 11171 // The instruction result is the result of loading from the 11172 // hidden sret parameter. 11173 SmallVector<EVT, 1> PVTs; 11174 Type *PtrRetTy = 11175 PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace()); 11176 11177 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 11178 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 11179 EVT PtrVT = PVTs[0]; 11180 11181 unsigned NumValues = RetTys.size(); 11182 ReturnValues.resize(NumValues); 11183 SmallVector<SDValue, 4> Chains(NumValues); 11184 11185 // An aggregate return value cannot wrap around the address space, so 11186 // offsets to its parts don't wrap either. 11187 SDNodeFlags Flags; 11188 Flags.setNoUnsignedWrap(true); 11189 11190 MachineFunction &MF = CLI.DAG.getMachineFunction(); 11191 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 11192 for (unsigned i = 0; i < NumValues; ++i) { 11193 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 11194 CLI.DAG.getConstant(Offsets[i], CLI.DL, 11195 PtrVT), Flags); 11196 SDValue L = CLI.DAG.getLoad( 11197 RetTys[i], CLI.DL, CLI.Chain, Add, 11198 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 11199 DemoteStackIdx, Offsets[i]), 11200 HiddenSRetAlign); 11201 ReturnValues[i] = L; 11202 Chains[i] = L.getValue(1); 11203 } 11204 11205 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 11206 } else { 11207 // Collect the legal value parts into potentially illegal values 11208 // that correspond to the original function's return values. 11209 std::optional<ISD::NodeType> AssertOp; 11210 if (CLI.RetSExt) 11211 AssertOp = ISD::AssertSext; 11212 else if (CLI.RetZExt) 11213 AssertOp = ISD::AssertZext; 11214 unsigned CurReg = 0; 11215 for (EVT VT : RetTys) { 11216 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 11217 CLI.CallConv, VT); 11218 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 11219 CLI.CallConv, VT); 11220 11221 ReturnValues.push_back(getCopyFromParts( 11222 CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr, 11223 CLI.Chain, CLI.CallConv, AssertOp)); 11224 CurReg += NumRegs; 11225 } 11226 11227 // For a function returning void, there is no return value. We can't create 11228 // such a node, so we just return a null return value in that case. In 11229 // that case, nothing will actually look at the value. 11230 if (ReturnValues.empty()) 11231 return std::make_pair(SDValue(), CLI.Chain); 11232 } 11233 11234 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 11235 CLI.DAG.getVTList(RetTys), ReturnValues); 11236 return std::make_pair(Res, CLI.Chain); 11237 } 11238 11239 /// Places new result values for the node in Results (their number 11240 /// and types must exactly match those of the original return values of 11241 /// the node), or leaves Results empty, which indicates that the node is not 11242 /// to be custom lowered after all. 11243 void TargetLowering::LowerOperationWrapper(SDNode *N, 11244 SmallVectorImpl<SDValue> &Results, 11245 SelectionDAG &DAG) const { 11246 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 11247 11248 if (!Res.getNode()) 11249 return; 11250 11251 // If the original node has one result, take the return value from 11252 // LowerOperation as is. It might not be result number 0. 11253 if (N->getNumValues() == 1) { 11254 Results.push_back(Res); 11255 return; 11256 } 11257 11258 // If the original node has multiple results, then the return node should 11259 // have the same number of results. 11260 assert((N->getNumValues() == Res->getNumValues()) && 11261 "Lowering returned the wrong number of results!"); 11262 11263 // Places new result values base on N result number. 11264 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 11265 Results.push_back(Res.getValue(I)); 11266 } 11267 11268 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 11269 llvm_unreachable("LowerOperation not implemented for this target!"); 11270 } 11271 11272 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 11273 unsigned Reg, 11274 ISD::NodeType ExtendType) { 11275 SDValue Op = getNonRegisterValue(V); 11276 assert((Op.getOpcode() != ISD::CopyFromReg || 11277 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 11278 "Copy from a reg to the same reg!"); 11279 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 11280 11281 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11282 // If this is an InlineAsm we have to match the registers required, not the 11283 // notional registers required by the type. 11284 11285 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 11286 std::nullopt); // This is not an ABI copy. 11287 SDValue Chain = DAG.getEntryNode(); 11288 11289 if (ExtendType == ISD::ANY_EXTEND) { 11290 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 11291 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 11292 ExtendType = PreferredExtendIt->second; 11293 } 11294 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 11295 PendingExports.push_back(Chain); 11296 } 11297 11298 #include "llvm/CodeGen/SelectionDAGISel.h" 11299 11300 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 11301 /// entry block, return true. This includes arguments used by switches, since 11302 /// the switch may expand into multiple basic blocks. 11303 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 11304 // With FastISel active, we may be splitting blocks, so force creation 11305 // of virtual registers for all non-dead arguments. 11306 if (FastISel) 11307 return A->use_empty(); 11308 11309 const BasicBlock &Entry = A->getParent()->front(); 11310 for (const User *U : A->users()) 11311 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 11312 return false; // Use not in entry block. 11313 11314 return true; 11315 } 11316 11317 using ArgCopyElisionMapTy = 11318 DenseMap<const Argument *, 11319 std::pair<const AllocaInst *, const StoreInst *>>; 11320 11321 /// Scan the entry block of the function in FuncInfo for arguments that look 11322 /// like copies into a local alloca. Record any copied arguments in 11323 /// ArgCopyElisionCandidates. 11324 static void 11325 findArgumentCopyElisionCandidates(const DataLayout &DL, 11326 FunctionLoweringInfo *FuncInfo, 11327 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 11328 // Record the state of every static alloca used in the entry block. Argument 11329 // allocas are all used in the entry block, so we need approximately as many 11330 // entries as we have arguments. 11331 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 11332 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 11333 unsigned NumArgs = FuncInfo->Fn->arg_size(); 11334 StaticAllocas.reserve(NumArgs * 2); 11335 11336 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 11337 if (!V) 11338 return nullptr; 11339 V = V->stripPointerCasts(); 11340 const auto *AI = dyn_cast<AllocaInst>(V); 11341 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 11342 return nullptr; 11343 auto Iter = StaticAllocas.insert({AI, Unknown}); 11344 return &Iter.first->second; 11345 }; 11346 11347 // Look for stores of arguments to static allocas. Look through bitcasts and 11348 // GEPs to handle type coercions, as long as the alloca is fully initialized 11349 // by the store. Any non-store use of an alloca escapes it and any subsequent 11350 // unanalyzed store might write it. 11351 // FIXME: Handle structs initialized with multiple stores. 11352 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 11353 // Look for stores, and handle non-store uses conservatively. 11354 const auto *SI = dyn_cast<StoreInst>(&I); 11355 if (!SI) { 11356 // We will look through cast uses, so ignore them completely. 11357 if (I.isCast()) 11358 continue; 11359 // Ignore debug info and pseudo op intrinsics, they don't escape or store 11360 // to allocas. 11361 if (I.isDebugOrPseudoInst()) 11362 continue; 11363 // This is an unknown instruction. Assume it escapes or writes to all 11364 // static alloca operands. 11365 for (const Use &U : I.operands()) { 11366 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 11367 *Info = StaticAllocaInfo::Clobbered; 11368 } 11369 continue; 11370 } 11371 11372 // If the stored value is a static alloca, mark it as escaped. 11373 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 11374 *Info = StaticAllocaInfo::Clobbered; 11375 11376 // Check if the destination is a static alloca. 11377 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 11378 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 11379 if (!Info) 11380 continue; 11381 const AllocaInst *AI = cast<AllocaInst>(Dst); 11382 11383 // Skip allocas that have been initialized or clobbered. 11384 if (*Info != StaticAllocaInfo::Unknown) 11385 continue; 11386 11387 // Check if the stored value is an argument, and that this store fully 11388 // initializes the alloca. 11389 // If the argument type has padding bits we can't directly forward a pointer 11390 // as the upper bits may contain garbage. 11391 // Don't elide copies from the same argument twice. 11392 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 11393 const auto *Arg = dyn_cast<Argument>(Val); 11394 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 11395 Arg->getType()->isEmptyTy() || 11396 DL.getTypeStoreSize(Arg->getType()) != 11397 DL.getTypeAllocSize(AI->getAllocatedType()) || 11398 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 11399 ArgCopyElisionCandidates.count(Arg)) { 11400 *Info = StaticAllocaInfo::Clobbered; 11401 continue; 11402 } 11403 11404 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 11405 << '\n'); 11406 11407 // Mark this alloca and store for argument copy elision. 11408 *Info = StaticAllocaInfo::Elidable; 11409 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 11410 11411 // Stop scanning if we've seen all arguments. This will happen early in -O0 11412 // builds, which is useful, because -O0 builds have large entry blocks and 11413 // many allocas. 11414 if (ArgCopyElisionCandidates.size() == NumArgs) 11415 break; 11416 } 11417 } 11418 11419 /// Try to elide argument copies from memory into a local alloca. Succeeds if 11420 /// ArgVal is a load from a suitable fixed stack object. 11421 static void tryToElideArgumentCopy( 11422 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 11423 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 11424 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 11425 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 11426 ArrayRef<SDValue> ArgVals, bool &ArgHasUses) { 11427 // Check if this is a load from a fixed stack object. 11428 auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]); 11429 if (!LNode) 11430 return; 11431 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 11432 if (!FINode) 11433 return; 11434 11435 // Check that the fixed stack object is the right size and alignment. 11436 // Look at the alignment that the user wrote on the alloca instead of looking 11437 // at the stack object. 11438 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 11439 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 11440 const AllocaInst *AI = ArgCopyIter->second.first; 11441 int FixedIndex = FINode->getIndex(); 11442 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 11443 int OldIndex = AllocaIndex; 11444 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 11445 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 11446 LLVM_DEBUG( 11447 dbgs() << " argument copy elision failed due to bad fixed stack " 11448 "object size\n"); 11449 return; 11450 } 11451 Align RequiredAlignment = AI->getAlign(); 11452 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 11453 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 11454 "greater than stack argument alignment (" 11455 << DebugStr(RequiredAlignment) << " vs " 11456 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 11457 return; 11458 } 11459 11460 // Perform the elision. Delete the old stack object and replace its only use 11461 // in the variable info map. Mark the stack object as mutable and aliased. 11462 LLVM_DEBUG({ 11463 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 11464 << " Replacing frame index " << OldIndex << " with " << FixedIndex 11465 << '\n'; 11466 }); 11467 MFI.RemoveStackObject(OldIndex); 11468 MFI.setIsImmutableObjectIndex(FixedIndex, false); 11469 MFI.setIsAliasedObjectIndex(FixedIndex, true); 11470 AllocaIndex = FixedIndex; 11471 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 11472 for (SDValue ArgVal : ArgVals) 11473 Chains.push_back(ArgVal.getValue(1)); 11474 11475 // Avoid emitting code for the store implementing the copy. 11476 const StoreInst *SI = ArgCopyIter->second.second; 11477 ElidedArgCopyInstrs.insert(SI); 11478 11479 // Check for uses of the argument again so that we can avoid exporting ArgVal 11480 // if it is't used by anything other than the store. 11481 for (const Value *U : Arg.users()) { 11482 if (U != SI) { 11483 ArgHasUses = true; 11484 break; 11485 } 11486 } 11487 } 11488 11489 void SelectionDAGISel::LowerArguments(const Function &F) { 11490 SelectionDAG &DAG = SDB->DAG; 11491 SDLoc dl = SDB->getCurSDLoc(); 11492 const DataLayout &DL = DAG.getDataLayout(); 11493 SmallVector<ISD::InputArg, 16> Ins; 11494 11495 // In Naked functions we aren't going to save any registers. 11496 if (F.hasFnAttribute(Attribute::Naked)) 11497 return; 11498 11499 if (!FuncInfo->CanLowerReturn) { 11500 // Put in an sret pointer parameter before all the other parameters. 11501 SmallVector<EVT, 1> ValueVTs; 11502 ComputeValueVTs(*TLI, DAG.getDataLayout(), 11503 PointerType::get(F.getContext(), 11504 DAG.getDataLayout().getAllocaAddrSpace()), 11505 ValueVTs); 11506 11507 // NOTE: Assuming that a pointer will never break down to more than one VT 11508 // or one register. 11509 ISD::ArgFlagsTy Flags; 11510 Flags.setSRet(); 11511 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 11512 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 11513 ISD::InputArg::NoArgIndex, 0); 11514 Ins.push_back(RetArg); 11515 } 11516 11517 // Look for stores of arguments to static allocas. Mark such arguments with a 11518 // flag to ask the target to give us the memory location of that argument if 11519 // available. 11520 ArgCopyElisionMapTy ArgCopyElisionCandidates; 11521 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 11522 ArgCopyElisionCandidates); 11523 11524 // Set up the incoming argument description vector. 11525 for (const Argument &Arg : F.args()) { 11526 unsigned ArgNo = Arg.getArgNo(); 11527 SmallVector<EVT, 4> ValueVTs; 11528 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11529 bool isArgValueUsed = !Arg.use_empty(); 11530 unsigned PartBase = 0; 11531 Type *FinalType = Arg.getType(); 11532 if (Arg.hasAttribute(Attribute::ByVal)) 11533 FinalType = Arg.getParamByValType(); 11534 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 11535 FinalType, F.getCallingConv(), F.isVarArg(), DL); 11536 for (unsigned Value = 0, NumValues = ValueVTs.size(); 11537 Value != NumValues; ++Value) { 11538 EVT VT = ValueVTs[Value]; 11539 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 11540 ISD::ArgFlagsTy Flags; 11541 11542 11543 if (Arg.getType()->isPointerTy()) { 11544 Flags.setPointer(); 11545 Flags.setPointerAddrSpace( 11546 cast<PointerType>(Arg.getType())->getAddressSpace()); 11547 } 11548 if (Arg.hasAttribute(Attribute::ZExt)) 11549 Flags.setZExt(); 11550 if (Arg.hasAttribute(Attribute::SExt)) 11551 Flags.setSExt(); 11552 if (Arg.hasAttribute(Attribute::InReg)) { 11553 // If we are using vectorcall calling convention, a structure that is 11554 // passed InReg - is surely an HVA 11555 if (F.getCallingConv() == CallingConv::X86_VectorCall && 11556 isa<StructType>(Arg.getType())) { 11557 // The first value of a structure is marked 11558 if (0 == Value) 11559 Flags.setHvaStart(); 11560 Flags.setHva(); 11561 } 11562 // Set InReg Flag 11563 Flags.setInReg(); 11564 } 11565 if (Arg.hasAttribute(Attribute::StructRet)) 11566 Flags.setSRet(); 11567 if (Arg.hasAttribute(Attribute::SwiftSelf)) 11568 Flags.setSwiftSelf(); 11569 if (Arg.hasAttribute(Attribute::SwiftAsync)) 11570 Flags.setSwiftAsync(); 11571 if (Arg.hasAttribute(Attribute::SwiftError)) 11572 Flags.setSwiftError(); 11573 if (Arg.hasAttribute(Attribute::ByVal)) 11574 Flags.setByVal(); 11575 if (Arg.hasAttribute(Attribute::ByRef)) 11576 Flags.setByRef(); 11577 if (Arg.hasAttribute(Attribute::InAlloca)) { 11578 Flags.setInAlloca(); 11579 // Set the byval flag for CCAssignFn callbacks that don't know about 11580 // inalloca. This way we can know how many bytes we should've allocated 11581 // and how many bytes a callee cleanup function will pop. If we port 11582 // inalloca to more targets, we'll have to add custom inalloca handling 11583 // in the various CC lowering callbacks. 11584 Flags.setByVal(); 11585 } 11586 if (Arg.hasAttribute(Attribute::Preallocated)) { 11587 Flags.setPreallocated(); 11588 // Set the byval flag for CCAssignFn callbacks that don't know about 11589 // preallocated. This way we can know how many bytes we should've 11590 // allocated and how many bytes a callee cleanup function will pop. If 11591 // we port preallocated to more targets, we'll have to add custom 11592 // preallocated handling in the various CC lowering callbacks. 11593 Flags.setByVal(); 11594 } 11595 11596 // Certain targets (such as MIPS), may have a different ABI alignment 11597 // for a type depending on the context. Give the target a chance to 11598 // specify the alignment it wants. 11599 const Align OriginalAlignment( 11600 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 11601 Flags.setOrigAlign(OriginalAlignment); 11602 11603 Align MemAlign; 11604 Type *ArgMemTy = nullptr; 11605 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 11606 Flags.isByRef()) { 11607 if (!ArgMemTy) 11608 ArgMemTy = Arg.getPointeeInMemoryValueType(); 11609 11610 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 11611 11612 // For in-memory arguments, size and alignment should be passed from FE. 11613 // BE will guess if this info is not there but there are cases it cannot 11614 // get right. 11615 if (auto ParamAlign = Arg.getParamStackAlign()) 11616 MemAlign = *ParamAlign; 11617 else if ((ParamAlign = Arg.getParamAlign())) 11618 MemAlign = *ParamAlign; 11619 else 11620 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 11621 if (Flags.isByRef()) 11622 Flags.setByRefSize(MemSize); 11623 else 11624 Flags.setByValSize(MemSize); 11625 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 11626 MemAlign = *ParamAlign; 11627 } else { 11628 MemAlign = OriginalAlignment; 11629 } 11630 Flags.setMemAlign(MemAlign); 11631 11632 if (Arg.hasAttribute(Attribute::Nest)) 11633 Flags.setNest(); 11634 if (NeedsRegBlock) 11635 Flags.setInConsecutiveRegs(); 11636 if (ArgCopyElisionCandidates.count(&Arg)) 11637 Flags.setCopyElisionCandidate(); 11638 if (Arg.hasAttribute(Attribute::Returned)) 11639 Flags.setReturned(); 11640 11641 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 11642 *CurDAG->getContext(), F.getCallingConv(), VT); 11643 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 11644 *CurDAG->getContext(), F.getCallingConv(), VT); 11645 for (unsigned i = 0; i != NumRegs; ++i) { 11646 // For scalable vectors, use the minimum size; individual targets 11647 // are responsible for handling scalable vector arguments and 11648 // return values. 11649 ISD::InputArg MyFlags( 11650 Flags, RegisterVT, VT, isArgValueUsed, ArgNo, 11651 PartBase + i * RegisterVT.getStoreSize().getKnownMinValue()); 11652 if (NumRegs > 1 && i == 0) 11653 MyFlags.Flags.setSplit(); 11654 // if it isn't first piece, alignment must be 1 11655 else if (i > 0) { 11656 MyFlags.Flags.setOrigAlign(Align(1)); 11657 if (i == NumRegs - 1) 11658 MyFlags.Flags.setSplitEnd(); 11659 } 11660 Ins.push_back(MyFlags); 11661 } 11662 if (NeedsRegBlock && Value == NumValues - 1) 11663 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 11664 PartBase += VT.getStoreSize().getKnownMinValue(); 11665 } 11666 } 11667 11668 // Call the target to set up the argument values. 11669 SmallVector<SDValue, 8> InVals; 11670 SDValue NewRoot = TLI->LowerFormalArguments( 11671 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 11672 11673 // Verify that the target's LowerFormalArguments behaved as expected. 11674 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 11675 "LowerFormalArguments didn't return a valid chain!"); 11676 assert(InVals.size() == Ins.size() && 11677 "LowerFormalArguments didn't emit the correct number of values!"); 11678 LLVM_DEBUG({ 11679 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 11680 assert(InVals[i].getNode() && 11681 "LowerFormalArguments emitted a null value!"); 11682 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 11683 "LowerFormalArguments emitted a value with the wrong type!"); 11684 } 11685 }); 11686 11687 // Update the DAG with the new chain value resulting from argument lowering. 11688 DAG.setRoot(NewRoot); 11689 11690 // Set up the argument values. 11691 unsigned i = 0; 11692 if (!FuncInfo->CanLowerReturn) { 11693 // Create a virtual register for the sret pointer, and put in a copy 11694 // from the sret argument into it. 11695 SmallVector<EVT, 1> ValueVTs; 11696 ComputeValueVTs(*TLI, DAG.getDataLayout(), 11697 PointerType::get(F.getContext(), 11698 DAG.getDataLayout().getAllocaAddrSpace()), 11699 ValueVTs); 11700 MVT VT = ValueVTs[0].getSimpleVT(); 11701 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 11702 std::optional<ISD::NodeType> AssertOp; 11703 SDValue ArgValue = 11704 getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot, 11705 F.getCallingConv(), AssertOp); 11706 11707 MachineFunction& MF = SDB->DAG.getMachineFunction(); 11708 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 11709 Register SRetReg = 11710 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 11711 FuncInfo->DemoteRegister = SRetReg; 11712 NewRoot = 11713 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 11714 DAG.setRoot(NewRoot); 11715 11716 // i indexes lowered arguments. Bump it past the hidden sret argument. 11717 ++i; 11718 } 11719 11720 SmallVector<SDValue, 4> Chains; 11721 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 11722 for (const Argument &Arg : F.args()) { 11723 SmallVector<SDValue, 4> ArgValues; 11724 SmallVector<EVT, 4> ValueVTs; 11725 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11726 unsigned NumValues = ValueVTs.size(); 11727 if (NumValues == 0) 11728 continue; 11729 11730 bool ArgHasUses = !Arg.use_empty(); 11731 11732 // Elide the copying store if the target loaded this argument from a 11733 // suitable fixed stack object. 11734 if (Ins[i].Flags.isCopyElisionCandidate()) { 11735 unsigned NumParts = 0; 11736 for (EVT VT : ValueVTs) 11737 NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), 11738 F.getCallingConv(), VT); 11739 11740 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 11741 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 11742 ArrayRef(&InVals[i], NumParts), ArgHasUses); 11743 } 11744 11745 // If this argument is unused then remember its value. It is used to generate 11746 // debugging information. 11747 bool isSwiftErrorArg = 11748 TLI->supportSwiftError() && 11749 Arg.hasAttribute(Attribute::SwiftError); 11750 if (!ArgHasUses && !isSwiftErrorArg) { 11751 SDB->setUnusedArgValue(&Arg, InVals[i]); 11752 11753 // Also remember any frame index for use in FastISel. 11754 if (FrameIndexSDNode *FI = 11755 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 11756 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11757 } 11758 11759 for (unsigned Val = 0; Val != NumValues; ++Val) { 11760 EVT VT = ValueVTs[Val]; 11761 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 11762 F.getCallingConv(), VT); 11763 unsigned NumParts = TLI->getNumRegistersForCallingConv( 11764 *CurDAG->getContext(), F.getCallingConv(), VT); 11765 11766 // Even an apparent 'unused' swifterror argument needs to be returned. So 11767 // we do generate a copy for it that can be used on return from the 11768 // function. 11769 if (ArgHasUses || isSwiftErrorArg) { 11770 std::optional<ISD::NodeType> AssertOp; 11771 if (Arg.hasAttribute(Attribute::SExt)) 11772 AssertOp = ISD::AssertSext; 11773 else if (Arg.hasAttribute(Attribute::ZExt)) 11774 AssertOp = ISD::AssertZext; 11775 11776 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 11777 PartVT, VT, nullptr, NewRoot, 11778 F.getCallingConv(), AssertOp)); 11779 } 11780 11781 i += NumParts; 11782 } 11783 11784 // We don't need to do anything else for unused arguments. 11785 if (ArgValues.empty()) 11786 continue; 11787 11788 // Note down frame index. 11789 if (FrameIndexSDNode *FI = 11790 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 11791 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11792 11793 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues), 11794 SDB->getCurSDLoc()); 11795 11796 SDB->setValue(&Arg, Res); 11797 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 11798 // We want to associate the argument with the frame index, among 11799 // involved operands, that correspond to the lowest address. The 11800 // getCopyFromParts function, called earlier, is swapping the order of 11801 // the operands to BUILD_PAIR depending on endianness. The result of 11802 // that swapping is that the least significant bits of the argument will 11803 // be in the first operand of the BUILD_PAIR node, and the most 11804 // significant bits will be in the second operand. 11805 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 11806 if (LoadSDNode *LNode = 11807 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 11808 if (FrameIndexSDNode *FI = 11809 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 11810 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11811 } 11812 11813 // Analyses past this point are naive and don't expect an assertion. 11814 if (Res.getOpcode() == ISD::AssertZext) 11815 Res = Res.getOperand(0); 11816 11817 // Update the SwiftErrorVRegDefMap. 11818 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 11819 Register Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11820 if (Reg.isVirtual()) 11821 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 11822 Reg); 11823 } 11824 11825 // If this argument is live outside of the entry block, insert a copy from 11826 // wherever we got it to the vreg that other BB's will reference it as. 11827 if (Res.getOpcode() == ISD::CopyFromReg) { 11828 // If we can, though, try to skip creating an unnecessary vreg. 11829 // FIXME: This isn't very clean... it would be nice to make this more 11830 // general. 11831 Register Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11832 if (Reg.isVirtual()) { 11833 FuncInfo->ValueMap[&Arg] = Reg; 11834 continue; 11835 } 11836 } 11837 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 11838 FuncInfo->InitializeRegForValue(&Arg); 11839 SDB->CopyToExportRegsIfNeeded(&Arg); 11840 } 11841 } 11842 11843 if (!Chains.empty()) { 11844 Chains.push_back(NewRoot); 11845 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 11846 } 11847 11848 DAG.setRoot(NewRoot); 11849 11850 assert(i == InVals.size() && "Argument register count mismatch!"); 11851 11852 // If any argument copy elisions occurred and we have debug info, update the 11853 // stale frame indices used in the dbg.declare variable info table. 11854 if (!ArgCopyElisionFrameIndexMap.empty()) { 11855 for (MachineFunction::VariableDbgInfo &VI : 11856 MF->getInStackSlotVariableDbgInfo()) { 11857 auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot()); 11858 if (I != ArgCopyElisionFrameIndexMap.end()) 11859 VI.updateStackSlot(I->second); 11860 } 11861 } 11862 11863 // Finally, if the target has anything special to do, allow it to do so. 11864 emitFunctionEntryCode(); 11865 } 11866 11867 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 11868 /// ensure constants are generated when needed. Remember the virtual registers 11869 /// that need to be added to the Machine PHI nodes as input. We cannot just 11870 /// directly add them, because expansion might result in multiple MBB's for one 11871 /// BB. As such, the start of the BB might correspond to a different MBB than 11872 /// the end. 11873 void 11874 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 11875 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11876 11877 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 11878 11879 // Check PHI nodes in successors that expect a value to be available from this 11880 // block. 11881 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) { 11882 if (!isa<PHINode>(SuccBB->begin())) continue; 11883 MachineBasicBlock *SuccMBB = FuncInfo.getMBB(SuccBB); 11884 11885 // If this terminator has multiple identical successors (common for 11886 // switches), only handle each succ once. 11887 if (!SuccsHandled.insert(SuccMBB).second) 11888 continue; 11889 11890 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 11891 11892 // At this point we know that there is a 1-1 correspondence between LLVM PHI 11893 // nodes and Machine PHI nodes, but the incoming operands have not been 11894 // emitted yet. 11895 for (const PHINode &PN : SuccBB->phis()) { 11896 // Ignore dead phi's. 11897 if (PN.use_empty()) 11898 continue; 11899 11900 // Skip empty types 11901 if (PN.getType()->isEmptyTy()) 11902 continue; 11903 11904 unsigned Reg; 11905 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 11906 11907 if (const auto *C = dyn_cast<Constant>(PHIOp)) { 11908 unsigned &RegOut = ConstantsOut[C]; 11909 if (RegOut == 0) { 11910 RegOut = FuncInfo.CreateRegs(C); 11911 // We need to zero/sign extend ConstantInt phi operands to match 11912 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 11913 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 11914 if (auto *CI = dyn_cast<ConstantInt>(C)) 11915 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 11916 : ISD::ZERO_EXTEND; 11917 CopyValueToVirtualRegister(C, RegOut, ExtendType); 11918 } 11919 Reg = RegOut; 11920 } else { 11921 DenseMap<const Value *, Register>::iterator I = 11922 FuncInfo.ValueMap.find(PHIOp); 11923 if (I != FuncInfo.ValueMap.end()) 11924 Reg = I->second; 11925 else { 11926 assert(isa<AllocaInst>(PHIOp) && 11927 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 11928 "Didn't codegen value into a register!??"); 11929 Reg = FuncInfo.CreateRegs(PHIOp); 11930 CopyValueToVirtualRegister(PHIOp, Reg); 11931 } 11932 } 11933 11934 // Remember that this register needs to added to the machine PHI node as 11935 // the input for this MBB. 11936 SmallVector<EVT, 4> ValueVTs; 11937 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 11938 for (EVT VT : ValueVTs) { 11939 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 11940 for (unsigned i = 0; i != NumRegisters; ++i) 11941 FuncInfo.PHINodesToUpdate.push_back( 11942 std::make_pair(&*MBBI++, Reg + i)); 11943 Reg += NumRegisters; 11944 } 11945 } 11946 } 11947 11948 ConstantsOut.clear(); 11949 } 11950 11951 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 11952 MachineFunction::iterator I(MBB); 11953 if (++I == FuncInfo.MF->end()) 11954 return nullptr; 11955 return &*I; 11956 } 11957 11958 /// During lowering new call nodes can be created (such as memset, etc.). 11959 /// Those will become new roots of the current DAG, but complications arise 11960 /// when they are tail calls. In such cases, the call lowering will update 11961 /// the root, but the builder still needs to know that a tail call has been 11962 /// lowered in order to avoid generating an additional return. 11963 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 11964 // If the node is null, we do have a tail call. 11965 if (MaybeTC.getNode() != nullptr) 11966 DAG.setRoot(MaybeTC); 11967 else 11968 HasTailCall = true; 11969 } 11970 11971 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 11972 MachineBasicBlock *SwitchMBB, 11973 MachineBasicBlock *DefaultMBB) { 11974 MachineFunction *CurMF = FuncInfo.MF; 11975 MachineBasicBlock *NextMBB = nullptr; 11976 MachineFunction::iterator BBI(W.MBB); 11977 if (++BBI != FuncInfo.MF->end()) 11978 NextMBB = &*BBI; 11979 11980 unsigned Size = W.LastCluster - W.FirstCluster + 1; 11981 11982 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11983 11984 if (Size == 2 && W.MBB == SwitchMBB) { 11985 // If any two of the cases has the same destination, and if one value 11986 // is the same as the other, but has one bit unset that the other has set, 11987 // use bit manipulation to do two compares at once. For example: 11988 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 11989 // TODO: This could be extended to merge any 2 cases in switches with 3 11990 // cases. 11991 // TODO: Handle cases where W.CaseBB != SwitchBB. 11992 CaseCluster &Small = *W.FirstCluster; 11993 CaseCluster &Big = *W.LastCluster; 11994 11995 if (Small.Low == Small.High && Big.Low == Big.High && 11996 Small.MBB == Big.MBB) { 11997 const APInt &SmallValue = Small.Low->getValue(); 11998 const APInt &BigValue = Big.Low->getValue(); 11999 12000 // Check that there is only one bit different. 12001 APInt CommonBit = BigValue ^ SmallValue; 12002 if (CommonBit.isPowerOf2()) { 12003 SDValue CondLHS = getValue(Cond); 12004 EVT VT = CondLHS.getValueType(); 12005 SDLoc DL = getCurSDLoc(); 12006 12007 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 12008 DAG.getConstant(CommonBit, DL, VT)); 12009 SDValue Cond = DAG.getSetCC( 12010 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 12011 ISD::SETEQ); 12012 12013 // Update successor info. 12014 // Both Small and Big will jump to Small.BB, so we sum up the 12015 // probabilities. 12016 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 12017 if (BPI) 12018 addSuccessorWithProb( 12019 SwitchMBB, DefaultMBB, 12020 // The default destination is the first successor in IR. 12021 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 12022 else 12023 addSuccessorWithProb(SwitchMBB, DefaultMBB); 12024 12025 // Insert the true branch. 12026 SDValue BrCond = 12027 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 12028 DAG.getBasicBlock(Small.MBB)); 12029 // Insert the false branch. 12030 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 12031 DAG.getBasicBlock(DefaultMBB)); 12032 12033 DAG.setRoot(BrCond); 12034 return; 12035 } 12036 } 12037 } 12038 12039 if (TM.getOptLevel() != CodeGenOptLevel::None) { 12040 // Here, we order cases by probability so the most likely case will be 12041 // checked first. However, two clusters can have the same probability in 12042 // which case their relative ordering is non-deterministic. So we use Low 12043 // as a tie-breaker as clusters are guaranteed to never overlap. 12044 llvm::sort(W.FirstCluster, W.LastCluster + 1, 12045 [](const CaseCluster &a, const CaseCluster &b) { 12046 return a.Prob != b.Prob ? 12047 a.Prob > b.Prob : 12048 a.Low->getValue().slt(b.Low->getValue()); 12049 }); 12050 12051 // Rearrange the case blocks so that the last one falls through if possible 12052 // without changing the order of probabilities. 12053 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 12054 --I; 12055 if (I->Prob > W.LastCluster->Prob) 12056 break; 12057 if (I->Kind == CC_Range && I->MBB == NextMBB) { 12058 std::swap(*I, *W.LastCluster); 12059 break; 12060 } 12061 } 12062 } 12063 12064 // Compute total probability. 12065 BranchProbability DefaultProb = W.DefaultProb; 12066 BranchProbability UnhandledProbs = DefaultProb; 12067 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 12068 UnhandledProbs += I->Prob; 12069 12070 MachineBasicBlock *CurMBB = W.MBB; 12071 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 12072 bool FallthroughUnreachable = false; 12073 MachineBasicBlock *Fallthrough; 12074 if (I == W.LastCluster) { 12075 // For the last cluster, fall through to the default destination. 12076 Fallthrough = DefaultMBB; 12077 FallthroughUnreachable = isa<UnreachableInst>( 12078 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 12079 } else { 12080 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 12081 CurMF->insert(BBI, Fallthrough); 12082 // Put Cond in a virtual register to make it available from the new blocks. 12083 ExportFromCurrentBlock(Cond); 12084 } 12085 UnhandledProbs -= I->Prob; 12086 12087 switch (I->Kind) { 12088 case CC_JumpTable: { 12089 // FIXME: Optimize away range check based on pivot comparisons. 12090 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 12091 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 12092 12093 // The jump block hasn't been inserted yet; insert it here. 12094 MachineBasicBlock *JumpMBB = JT->MBB; 12095 CurMF->insert(BBI, JumpMBB); 12096 12097 auto JumpProb = I->Prob; 12098 auto FallthroughProb = UnhandledProbs; 12099 12100 // If the default statement is a target of the jump table, we evenly 12101 // distribute the default probability to successors of CurMBB. Also 12102 // update the probability on the edge from JumpMBB to Fallthrough. 12103 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 12104 SE = JumpMBB->succ_end(); 12105 SI != SE; ++SI) { 12106 if (*SI == DefaultMBB) { 12107 JumpProb += DefaultProb / 2; 12108 FallthroughProb -= DefaultProb / 2; 12109 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 12110 JumpMBB->normalizeSuccProbs(); 12111 break; 12112 } 12113 } 12114 12115 // If the default clause is unreachable, propagate that knowledge into 12116 // JTH->FallthroughUnreachable which will use it to suppress the range 12117 // check. 12118 // 12119 // However, don't do this if we're doing branch target enforcement, 12120 // because a table branch _without_ a range check can be a tempting JOP 12121 // gadget - out-of-bounds inputs that are impossible in correct 12122 // execution become possible again if an attacker can influence the 12123 // control flow. So if an attacker doesn't already have a BTI bypass 12124 // available, we don't want them to be able to get one out of this 12125 // table branch. 12126 if (FallthroughUnreachable) { 12127 Function &CurFunc = CurMF->getFunction(); 12128 if (!CurFunc.hasFnAttribute("branch-target-enforcement")) 12129 JTH->FallthroughUnreachable = true; 12130 } 12131 12132 if (!JTH->FallthroughUnreachable) 12133 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 12134 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 12135 CurMBB->normalizeSuccProbs(); 12136 12137 // The jump table header will be inserted in our current block, do the 12138 // range check, and fall through to our fallthrough block. 12139 JTH->HeaderBB = CurMBB; 12140 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 12141 12142 // If we're in the right place, emit the jump table header right now. 12143 if (CurMBB == SwitchMBB) { 12144 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 12145 JTH->Emitted = true; 12146 } 12147 break; 12148 } 12149 case CC_BitTests: { 12150 // FIXME: Optimize away range check based on pivot comparisons. 12151 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 12152 12153 // The bit test blocks haven't been inserted yet; insert them here. 12154 for (BitTestCase &BTC : BTB->Cases) 12155 CurMF->insert(BBI, BTC.ThisBB); 12156 12157 // Fill in fields of the BitTestBlock. 12158 BTB->Parent = CurMBB; 12159 BTB->Default = Fallthrough; 12160 12161 BTB->DefaultProb = UnhandledProbs; 12162 // If the cases in bit test don't form a contiguous range, we evenly 12163 // distribute the probability on the edge to Fallthrough to two 12164 // successors of CurMBB. 12165 if (!BTB->ContiguousRange) { 12166 BTB->Prob += DefaultProb / 2; 12167 BTB->DefaultProb -= DefaultProb / 2; 12168 } 12169 12170 if (FallthroughUnreachable) 12171 BTB->FallthroughUnreachable = true; 12172 12173 // If we're in the right place, emit the bit test header right now. 12174 if (CurMBB == SwitchMBB) { 12175 visitBitTestHeader(*BTB, SwitchMBB); 12176 BTB->Emitted = true; 12177 } 12178 break; 12179 } 12180 case CC_Range: { 12181 const Value *RHS, *LHS, *MHS; 12182 ISD::CondCode CC; 12183 if (I->Low == I->High) { 12184 // Check Cond == I->Low. 12185 CC = ISD::SETEQ; 12186 LHS = Cond; 12187 RHS=I->Low; 12188 MHS = nullptr; 12189 } else { 12190 // Check I->Low <= Cond <= I->High. 12191 CC = ISD::SETLE; 12192 LHS = I->Low; 12193 MHS = Cond; 12194 RHS = I->High; 12195 } 12196 12197 // If Fallthrough is unreachable, fold away the comparison. 12198 if (FallthroughUnreachable) 12199 CC = ISD::SETTRUE; 12200 12201 // The false probability is the sum of all unhandled cases. 12202 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 12203 getCurSDLoc(), I->Prob, UnhandledProbs); 12204 12205 if (CurMBB == SwitchMBB) 12206 visitSwitchCase(CB, SwitchMBB); 12207 else 12208 SL->SwitchCases.push_back(CB); 12209 12210 break; 12211 } 12212 } 12213 CurMBB = Fallthrough; 12214 } 12215 } 12216 12217 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 12218 const SwitchWorkListItem &W, 12219 Value *Cond, 12220 MachineBasicBlock *SwitchMBB) { 12221 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 12222 "Clusters not sorted?"); 12223 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 12224 12225 auto [LastLeft, FirstRight, LeftProb, RightProb] = 12226 SL->computeSplitWorkItemInfo(W); 12227 12228 // Use the first element on the right as pivot since we will make less-than 12229 // comparisons against it. 12230 CaseClusterIt PivotCluster = FirstRight; 12231 assert(PivotCluster > W.FirstCluster); 12232 assert(PivotCluster <= W.LastCluster); 12233 12234 CaseClusterIt FirstLeft = W.FirstCluster; 12235 CaseClusterIt LastRight = W.LastCluster; 12236 12237 const ConstantInt *Pivot = PivotCluster->Low; 12238 12239 // New blocks will be inserted immediately after the current one. 12240 MachineFunction::iterator BBI(W.MBB); 12241 ++BBI; 12242 12243 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 12244 // we can branch to its destination directly if it's squeezed exactly in 12245 // between the known lower bound and Pivot - 1. 12246 MachineBasicBlock *LeftMBB; 12247 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 12248 FirstLeft->Low == W.GE && 12249 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 12250 LeftMBB = FirstLeft->MBB; 12251 } else { 12252 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 12253 FuncInfo.MF->insert(BBI, LeftMBB); 12254 WorkList.push_back( 12255 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 12256 // Put Cond in a virtual register to make it available from the new blocks. 12257 ExportFromCurrentBlock(Cond); 12258 } 12259 12260 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 12261 // single cluster, RHS.Low == Pivot, and we can branch to its destination 12262 // directly if RHS.High equals the current upper bound. 12263 MachineBasicBlock *RightMBB; 12264 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 12265 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 12266 RightMBB = FirstRight->MBB; 12267 } else { 12268 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 12269 FuncInfo.MF->insert(BBI, RightMBB); 12270 WorkList.push_back( 12271 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 12272 // Put Cond in a virtual register to make it available from the new blocks. 12273 ExportFromCurrentBlock(Cond); 12274 } 12275 12276 // Create the CaseBlock record that will be used to lower the branch. 12277 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 12278 getCurSDLoc(), LeftProb, RightProb); 12279 12280 if (W.MBB == SwitchMBB) 12281 visitSwitchCase(CB, SwitchMBB); 12282 else 12283 SL->SwitchCases.push_back(CB); 12284 } 12285 12286 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 12287 // from the swith statement. 12288 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 12289 BranchProbability PeeledCaseProb) { 12290 if (PeeledCaseProb == BranchProbability::getOne()) 12291 return BranchProbability::getZero(); 12292 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 12293 12294 uint32_t Numerator = CaseProb.getNumerator(); 12295 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 12296 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 12297 } 12298 12299 // Try to peel the top probability case if it exceeds the threshold. 12300 // Return current MachineBasicBlock for the switch statement if the peeling 12301 // does not occur. 12302 // If the peeling is performed, return the newly created MachineBasicBlock 12303 // for the peeled switch statement. Also update Clusters to remove the peeled 12304 // case. PeeledCaseProb is the BranchProbability for the peeled case. 12305 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 12306 const SwitchInst &SI, CaseClusterVector &Clusters, 12307 BranchProbability &PeeledCaseProb) { 12308 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 12309 // Don't perform if there is only one cluster or optimizing for size. 12310 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 12311 TM.getOptLevel() == CodeGenOptLevel::None || 12312 SwitchMBB->getParent()->getFunction().hasMinSize()) 12313 return SwitchMBB; 12314 12315 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 12316 unsigned PeeledCaseIndex = 0; 12317 bool SwitchPeeled = false; 12318 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 12319 CaseCluster &CC = Clusters[Index]; 12320 if (CC.Prob < TopCaseProb) 12321 continue; 12322 TopCaseProb = CC.Prob; 12323 PeeledCaseIndex = Index; 12324 SwitchPeeled = true; 12325 } 12326 if (!SwitchPeeled) 12327 return SwitchMBB; 12328 12329 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 12330 << TopCaseProb << "\n"); 12331 12332 // Record the MBB for the peeled switch statement. 12333 MachineFunction::iterator BBI(SwitchMBB); 12334 ++BBI; 12335 MachineBasicBlock *PeeledSwitchMBB = 12336 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 12337 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 12338 12339 ExportFromCurrentBlock(SI.getCondition()); 12340 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 12341 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 12342 nullptr, nullptr, TopCaseProb.getCompl()}; 12343 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 12344 12345 Clusters.erase(PeeledCaseIt); 12346 for (CaseCluster &CC : Clusters) { 12347 LLVM_DEBUG( 12348 dbgs() << "Scale the probablity for one cluster, before scaling: " 12349 << CC.Prob << "\n"); 12350 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 12351 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 12352 } 12353 PeeledCaseProb = TopCaseProb; 12354 return PeeledSwitchMBB; 12355 } 12356 12357 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 12358 // Extract cases from the switch. 12359 BranchProbabilityInfo *BPI = FuncInfo.BPI; 12360 CaseClusterVector Clusters; 12361 Clusters.reserve(SI.getNumCases()); 12362 for (auto I : SI.cases()) { 12363 MachineBasicBlock *Succ = FuncInfo.getMBB(I.getCaseSuccessor()); 12364 const ConstantInt *CaseVal = I.getCaseValue(); 12365 BranchProbability Prob = 12366 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 12367 : BranchProbability(1, SI.getNumCases() + 1); 12368 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 12369 } 12370 12371 MachineBasicBlock *DefaultMBB = FuncInfo.getMBB(SI.getDefaultDest()); 12372 12373 // Cluster adjacent cases with the same destination. We do this at all 12374 // optimization levels because it's cheap to do and will make codegen faster 12375 // if there are many clusters. 12376 sortAndRangeify(Clusters); 12377 12378 // The branch probablity of the peeled case. 12379 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 12380 MachineBasicBlock *PeeledSwitchMBB = 12381 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 12382 12383 // If there is only the default destination, jump there directly. 12384 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 12385 if (Clusters.empty()) { 12386 assert(PeeledSwitchMBB == SwitchMBB); 12387 SwitchMBB->addSuccessor(DefaultMBB); 12388 if (DefaultMBB != NextBlock(SwitchMBB)) { 12389 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 12390 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 12391 } 12392 return; 12393 } 12394 12395 SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(), 12396 DAG.getBFI()); 12397 SL->findBitTestClusters(Clusters, &SI); 12398 12399 LLVM_DEBUG({ 12400 dbgs() << "Case clusters: "; 12401 for (const CaseCluster &C : Clusters) { 12402 if (C.Kind == CC_JumpTable) 12403 dbgs() << "JT:"; 12404 if (C.Kind == CC_BitTests) 12405 dbgs() << "BT:"; 12406 12407 C.Low->getValue().print(dbgs(), true); 12408 if (C.Low != C.High) { 12409 dbgs() << '-'; 12410 C.High->getValue().print(dbgs(), true); 12411 } 12412 dbgs() << ' '; 12413 } 12414 dbgs() << '\n'; 12415 }); 12416 12417 assert(!Clusters.empty()); 12418 SwitchWorkList WorkList; 12419 CaseClusterIt First = Clusters.begin(); 12420 CaseClusterIt Last = Clusters.end() - 1; 12421 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 12422 // Scale the branchprobability for DefaultMBB if the peel occurs and 12423 // DefaultMBB is not replaced. 12424 if (PeeledCaseProb != BranchProbability::getZero() && 12425 DefaultMBB == FuncInfo.getMBB(SI.getDefaultDest())) 12426 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 12427 WorkList.push_back( 12428 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 12429 12430 while (!WorkList.empty()) { 12431 SwitchWorkListItem W = WorkList.pop_back_val(); 12432 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 12433 12434 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None && 12435 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 12436 // For optimized builds, lower large range as a balanced binary tree. 12437 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 12438 continue; 12439 } 12440 12441 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 12442 } 12443 } 12444 12445 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 12446 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12447 auto DL = getCurSDLoc(); 12448 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12449 setValue(&I, DAG.getStepVector(DL, ResultVT)); 12450 } 12451 12452 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 12453 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12454 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12455 12456 SDLoc DL = getCurSDLoc(); 12457 SDValue V = getValue(I.getOperand(0)); 12458 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 12459 12460 if (VT.isScalableVector()) { 12461 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 12462 return; 12463 } 12464 12465 // Use VECTOR_SHUFFLE for the fixed-length vector 12466 // to maintain existing behavior. 12467 SmallVector<int, 8> Mask; 12468 unsigned NumElts = VT.getVectorMinNumElements(); 12469 for (unsigned i = 0; i != NumElts; ++i) 12470 Mask.push_back(NumElts - 1 - i); 12471 12472 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 12473 } 12474 12475 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) { 12476 auto DL = getCurSDLoc(); 12477 SDValue InVec = getValue(I.getOperand(0)); 12478 EVT OutVT = 12479 InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 12480 12481 unsigned OutNumElts = OutVT.getVectorMinNumElements(); 12482 12483 // ISD Node needs the input vectors split into two equal parts 12484 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 12485 DAG.getVectorIdxConstant(0, DL)); 12486 SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 12487 DAG.getVectorIdxConstant(OutNumElts, DL)); 12488 12489 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 12490 // legalisation and combines. 12491 if (OutVT.isFixedLengthVector()) { 12492 SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 12493 createStrideMask(0, 2, OutNumElts)); 12494 SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 12495 createStrideMask(1, 2, OutNumElts)); 12496 SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc()); 12497 setValue(&I, Res); 12498 return; 12499 } 12500 12501 SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL, 12502 DAG.getVTList(OutVT, OutVT), Lo, Hi); 12503 setValue(&I, Res); 12504 } 12505 12506 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) { 12507 auto DL = getCurSDLoc(); 12508 EVT InVT = getValue(I.getOperand(0)).getValueType(); 12509 SDValue InVec0 = getValue(I.getOperand(0)); 12510 SDValue InVec1 = getValue(I.getOperand(1)); 12511 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12512 EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12513 12514 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 12515 // legalisation and combines. 12516 if (OutVT.isFixedLengthVector()) { 12517 unsigned NumElts = InVT.getVectorMinNumElements(); 12518 SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1); 12519 setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT), 12520 createInterleaveMask(NumElts, 2))); 12521 return; 12522 } 12523 12524 SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, 12525 DAG.getVTList(InVT, InVT), InVec0, InVec1); 12526 Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0), 12527 Res.getValue(1)); 12528 setValue(&I, Res); 12529 } 12530 12531 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 12532 SmallVector<EVT, 4> ValueVTs; 12533 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 12534 ValueVTs); 12535 unsigned NumValues = ValueVTs.size(); 12536 if (NumValues == 0) return; 12537 12538 SmallVector<SDValue, 4> Values(NumValues); 12539 SDValue Op = getValue(I.getOperand(0)); 12540 12541 for (unsigned i = 0; i != NumValues; ++i) 12542 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 12543 SDValue(Op.getNode(), Op.getResNo() + i)); 12544 12545 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12546 DAG.getVTList(ValueVTs), Values)); 12547 } 12548 12549 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 12550 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12551 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12552 12553 SDLoc DL = getCurSDLoc(); 12554 SDValue V1 = getValue(I.getOperand(0)); 12555 SDValue V2 = getValue(I.getOperand(1)); 12556 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 12557 12558 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 12559 if (VT.isScalableVector()) { 12560 setValue( 12561 &I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 12562 DAG.getSignedConstant( 12563 Imm, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 12564 return; 12565 } 12566 12567 unsigned NumElts = VT.getVectorNumElements(); 12568 12569 uint64_t Idx = (NumElts + Imm) % NumElts; 12570 12571 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 12572 SmallVector<int, 8> Mask; 12573 for (unsigned i = 0; i < NumElts; ++i) 12574 Mask.push_back(Idx + i); 12575 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 12576 } 12577 12578 // Consider the following MIR after SelectionDAG, which produces output in 12579 // phyregs in the first case or virtregs in the second case. 12580 // 12581 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx 12582 // %5:gr32 = COPY $ebx 12583 // %6:gr32 = COPY $edx 12584 // %1:gr32 = COPY %6:gr32 12585 // %0:gr32 = COPY %5:gr32 12586 // 12587 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32 12588 // %1:gr32 = COPY %6:gr32 12589 // %0:gr32 = COPY %5:gr32 12590 // 12591 // Given %0, we'd like to return $ebx in the first case and %5 in the second. 12592 // Given %1, we'd like to return $edx in the first case and %6 in the second. 12593 // 12594 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap 12595 // to a single virtreg (such as %0). The remaining outputs monotonically 12596 // increase in virtreg number from there. If a callbr has no outputs, then it 12597 // should not have a corresponding callbr landingpad; in fact, the callbr 12598 // landingpad would not even be able to refer to such a callbr. 12599 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) { 12600 MachineInstr *MI = MRI.def_begin(Reg)->getParent(); 12601 // There is definitely at least one copy. 12602 assert(MI->getOpcode() == TargetOpcode::COPY && 12603 "start of copy chain MUST be COPY"); 12604 Reg = MI->getOperand(1).getReg(); 12605 MI = MRI.def_begin(Reg)->getParent(); 12606 // There may be an optional second copy. 12607 if (MI->getOpcode() == TargetOpcode::COPY) { 12608 assert(Reg.isVirtual() && "expected COPY of virtual register"); 12609 Reg = MI->getOperand(1).getReg(); 12610 assert(Reg.isPhysical() && "expected COPY of physical register"); 12611 MI = MRI.def_begin(Reg)->getParent(); 12612 } 12613 // The start of the chain must be an INLINEASM_BR. 12614 assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR && 12615 "end of copy chain MUST be INLINEASM_BR"); 12616 return Reg; 12617 } 12618 12619 // We must do this walk rather than the simpler 12620 // setValue(&I, getCopyFromRegs(CBR, CBR->getType())); 12621 // otherwise we will end up with copies of virtregs only valid along direct 12622 // edges. 12623 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) { 12624 SmallVector<EVT, 8> ResultVTs; 12625 SmallVector<SDValue, 8> ResultValues; 12626 const auto *CBR = 12627 cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator()); 12628 12629 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12630 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 12631 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 12632 12633 unsigned InitialDef = FuncInfo.ValueMap[CBR]; 12634 SDValue Chain = DAG.getRoot(); 12635 12636 // Re-parse the asm constraints string. 12637 TargetLowering::AsmOperandInfoVector TargetConstraints = 12638 TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR); 12639 for (auto &T : TargetConstraints) { 12640 SDISelAsmOperandInfo OpInfo(T); 12641 if (OpInfo.Type != InlineAsm::isOutput) 12642 continue; 12643 12644 // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the 12645 // individual constraint. 12646 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 12647 12648 switch (OpInfo.ConstraintType) { 12649 case TargetLowering::C_Register: 12650 case TargetLowering::C_RegisterClass: { 12651 // Fill in OpInfo.AssignedRegs.Regs. 12652 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo); 12653 12654 // getRegistersForValue may produce 1 to many registers based on whether 12655 // the OpInfo.ConstraintVT is legal on the target or not. 12656 for (Register &Reg : OpInfo.AssignedRegs.Regs) { 12657 Register OriginalDef = FollowCopyChain(MRI, InitialDef++); 12658 if (Register::isPhysicalRegister(OriginalDef)) 12659 FuncInfo.MBB->addLiveIn(OriginalDef); 12660 // Update the assigned registers to use the original defs. 12661 Reg = OriginalDef; 12662 } 12663 12664 SDValue V = OpInfo.AssignedRegs.getCopyFromRegs( 12665 DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR); 12666 ResultValues.push_back(V); 12667 ResultVTs.push_back(OpInfo.ConstraintVT); 12668 break; 12669 } 12670 case TargetLowering::C_Other: { 12671 SDValue Flag; 12672 SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 12673 OpInfo, DAG); 12674 ++InitialDef; 12675 ResultValues.push_back(V); 12676 ResultVTs.push_back(OpInfo.ConstraintVT); 12677 break; 12678 } 12679 default: 12680 break; 12681 } 12682 } 12683 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12684 DAG.getVTList(ResultVTs), ResultValues); 12685 setValue(&I, V); 12686 } 12687