1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BranchProbabilityInfo.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/Loads.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/CodeGen/Analysis.h" 39 #include "llvm/CodeGen/FunctionLoweringInfo.h" 40 #include "llvm/CodeGen/GCMetadata.h" 41 #include "llvm/CodeGen/ISDOpcodes.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBuilder.h" 47 #include "llvm/CodeGen/MachineJumpTableInfo.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineModuleInfo.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/RuntimeLibcalls.h" 53 #include "llvm/CodeGen/SelectionDAG.h" 54 #include "llvm/CodeGen/SelectionDAGNodes.h" 55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 56 #include "llvm/CodeGen/StackMaps.h" 57 #include "llvm/CodeGen/TargetFrameLowering.h" 58 #include "llvm/CodeGen/TargetInstrInfo.h" 59 #include "llvm/CodeGen/TargetLowering.h" 60 #include "llvm/CodeGen/TargetOpcodes.h" 61 #include "llvm/CodeGen/TargetRegisterInfo.h" 62 #include "llvm/CodeGen/TargetSubtargetInfo.h" 63 #include "llvm/CodeGen/ValueTypes.h" 64 #include "llvm/CodeGen/WinEHFuncInfo.h" 65 #include "llvm/IR/Argument.h" 66 #include "llvm/IR/Attributes.h" 67 #include "llvm/IR/BasicBlock.h" 68 #include "llvm/IR/CFG.h" 69 #include "llvm/IR/CallSite.h" 70 #include "llvm/IR/CallingConv.h" 71 #include "llvm/IR/Constant.h" 72 #include "llvm/IR/ConstantRange.h" 73 #include "llvm/IR/Constants.h" 74 #include "llvm/IR/DataLayout.h" 75 #include "llvm/IR/DebugInfoMetadata.h" 76 #include "llvm/IR/DebugLoc.h" 77 #include "llvm/IR/DerivedTypes.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GetElementPtrTypeIterator.h" 80 #include "llvm/IR/InlineAsm.h" 81 #include "llvm/IR/InstrTypes.h" 82 #include "llvm/IR/Instruction.h" 83 #include "llvm/IR/Instructions.h" 84 #include "llvm/IR/IntrinsicInst.h" 85 #include "llvm/IR/Intrinsics.h" 86 #include "llvm/IR/LLVMContext.h" 87 #include "llvm/IR/Metadata.h" 88 #include "llvm/IR/Module.h" 89 #include "llvm/IR/Operator.h" 90 #include "llvm/IR/PatternMatch.h" 91 #include "llvm/IR/Statepoint.h" 92 #include "llvm/IR/Type.h" 93 #include "llvm/IR/User.h" 94 #include "llvm/IR/Value.h" 95 #include "llvm/MC/MCContext.h" 96 #include "llvm/MC/MCSymbol.h" 97 #include "llvm/Support/AtomicOrdering.h" 98 #include "llvm/Support/BranchProbability.h" 99 #include "llvm/Support/Casting.h" 100 #include "llvm/Support/CodeGen.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/Compiler.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/MachineValueType.h" 106 #include "llvm/Support/MathExtras.h" 107 #include "llvm/Support/raw_ostream.h" 108 #include "llvm/Target/TargetIntrinsicInfo.h" 109 #include "llvm/Target/TargetMachine.h" 110 #include "llvm/Target/TargetOptions.h" 111 #include "llvm/Transforms/Utils/Local.h" 112 #include <algorithm> 113 #include <cassert> 114 #include <cstddef> 115 #include <cstdint> 116 #include <cstring> 117 #include <iterator> 118 #include <limits> 119 #include <numeric> 120 #include <tuple> 121 #include <utility> 122 #include <vector> 123 124 using namespace llvm; 125 using namespace PatternMatch; 126 127 #define DEBUG_TYPE "isel" 128 129 /// LimitFloatPrecision - Generate low-precision inline sequences for 130 /// some float libcalls (6, 8 or 12 bits). 131 static unsigned LimitFloatPrecision; 132 133 static cl::opt<unsigned, true> 134 LimitFPPrecision("limit-float-precision", 135 cl::desc("Generate low-precision inline sequences " 136 "for some float libcalls"), 137 cl::location(LimitFloatPrecision), cl::Hidden, 138 cl::init(0)); 139 140 static cl::opt<unsigned> SwitchPeelThreshold( 141 "switch-peel-threshold", cl::Hidden, cl::init(66), 142 cl::desc("Set the case probability threshold for peeling the case from a " 143 "switch statement. A value greater than 100 will void this " 144 "optimization")); 145 146 // Limit the width of DAG chains. This is important in general to prevent 147 // DAG-based analysis from blowing up. For example, alias analysis and 148 // load clustering may not complete in reasonable time. It is difficult to 149 // recognize and avoid this situation within each individual analysis, and 150 // future analyses are likely to have the same behavior. Limiting DAG width is 151 // the safe approach and will be especially important with global DAGs. 152 // 153 // MaxParallelChains default is arbitrarily high to avoid affecting 154 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 155 // sequence over this should have been converted to llvm.memcpy by the 156 // frontend. It is easy to induce this behavior with .ll code such as: 157 // %buffer = alloca [4096 x i8] 158 // %data = load [4096 x i8]* %argPtr 159 // store [4096 x i8] %data, [4096 x i8]* %buffer 160 static const unsigned MaxParallelChains = 64; 161 162 // Return the calling convention if the Value passed requires ABI mangling as it 163 // is a parameter to a function or a return value from a function which is not 164 // an intrinsic. 165 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 166 if (auto *R = dyn_cast<ReturnInst>(V)) 167 return R->getParent()->getParent()->getCallingConv(); 168 169 if (auto *CI = dyn_cast<CallInst>(V)) { 170 const bool IsInlineAsm = CI->isInlineAsm(); 171 const bool IsIndirectFunctionCall = 172 !IsInlineAsm && !CI->getCalledFunction(); 173 174 // It is possible that the call instruction is an inline asm statement or an 175 // indirect function call in which case the return value of 176 // getCalledFunction() would be nullptr. 177 const bool IsInstrinsicCall = 178 !IsInlineAsm && !IsIndirectFunctionCall && 179 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 180 181 if (!IsInlineAsm && !IsInstrinsicCall) 182 return CI->getCallingConv(); 183 } 184 185 return None; 186 } 187 188 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 189 const SDValue *Parts, unsigned NumParts, 190 MVT PartVT, EVT ValueVT, const Value *V, 191 Optional<CallingConv::ID> CC); 192 193 /// getCopyFromParts - Create a value that contains the specified legal parts 194 /// combined into the value they represent. If the parts combine to a type 195 /// larger than ValueVT then AssertOp can be used to specify whether the extra 196 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 197 /// (ISD::AssertSext). 198 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 199 const SDValue *Parts, unsigned NumParts, 200 MVT PartVT, EVT ValueVT, const Value *V, 201 Optional<CallingConv::ID> CC = None, 202 Optional<ISD::NodeType> AssertOp = None) { 203 if (ValueVT.isVector()) 204 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 205 CC); 206 207 assert(NumParts > 0 && "No parts to assemble!"); 208 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 209 SDValue Val = Parts[0]; 210 211 if (NumParts > 1) { 212 // Assemble the value from multiple parts. 213 if (ValueVT.isInteger()) { 214 unsigned PartBits = PartVT.getSizeInBits(); 215 unsigned ValueBits = ValueVT.getSizeInBits(); 216 217 // Assemble the power of 2 part. 218 unsigned RoundParts = NumParts & (NumParts - 1) ? 219 1 << Log2_32(NumParts) : NumParts; 220 unsigned RoundBits = PartBits * RoundParts; 221 EVT RoundVT = RoundBits == ValueBits ? 222 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 223 SDValue Lo, Hi; 224 225 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 226 227 if (RoundParts > 2) { 228 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 229 PartVT, HalfVT, V); 230 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 231 RoundParts / 2, PartVT, HalfVT, V); 232 } else { 233 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 234 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 235 } 236 237 if (DAG.getDataLayout().isBigEndian()) 238 std::swap(Lo, Hi); 239 240 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 241 242 if (RoundParts < NumParts) { 243 // Assemble the trailing non-power-of-2 part. 244 unsigned OddParts = NumParts - RoundParts; 245 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 246 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 247 OddVT, V, CC); 248 249 // Combine the round and odd parts. 250 Lo = Val; 251 if (DAG.getDataLayout().isBigEndian()) 252 std::swap(Lo, Hi); 253 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 254 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 255 Hi = 256 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 257 DAG.getConstant(Lo.getValueSizeInBits(), DL, 258 TLI.getPointerTy(DAG.getDataLayout()))); 259 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 260 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 261 } 262 } else if (PartVT.isFloatingPoint()) { 263 // FP split into multiple FP parts (for ppcf128) 264 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 265 "Unexpected split"); 266 SDValue Lo, Hi; 267 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 268 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 269 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 270 std::swap(Lo, Hi); 271 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 272 } else { 273 // FP split into integer parts (soft fp) 274 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 275 !PartVT.isVector() && "Unexpected split"); 276 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 277 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 278 } 279 } 280 281 // There is now one part, held in Val. Correct it to match ValueVT. 282 // PartEVT is the type of the register class that holds the value. 283 // ValueVT is the type of the inline asm operation. 284 EVT PartEVT = Val.getValueType(); 285 286 if (PartEVT == ValueVT) 287 return Val; 288 289 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 290 ValueVT.bitsLT(PartEVT)) { 291 // For an FP value in an integer part, we need to truncate to the right 292 // width first. 293 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 294 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 295 } 296 297 // Handle types that have the same size. 298 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 299 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 300 301 // Handle types with different sizes. 302 if (PartEVT.isInteger() && ValueVT.isInteger()) { 303 if (ValueVT.bitsLT(PartEVT)) { 304 // For a truncate, see if we have any information to 305 // indicate whether the truncated bits will always be 306 // zero or sign-extension. 307 if (AssertOp.hasValue()) 308 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 309 DAG.getValueType(ValueVT)); 310 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 311 } 312 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 313 } 314 315 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 316 // FP_ROUND's are always exact here. 317 if (ValueVT.bitsLT(Val.getValueType())) 318 return DAG.getNode( 319 ISD::FP_ROUND, DL, ValueVT, Val, 320 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 321 322 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 323 } 324 325 llvm_unreachable("Unknown mismatch!"); 326 } 327 328 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 329 const Twine &ErrMsg) { 330 const Instruction *I = dyn_cast_or_null<Instruction>(V); 331 if (!V) 332 return Ctx.emitError(ErrMsg); 333 334 const char *AsmError = ", possible invalid constraint for vector type"; 335 if (const CallInst *CI = dyn_cast<CallInst>(I)) 336 if (isa<InlineAsm>(CI->getCalledValue())) 337 return Ctx.emitError(I, ErrMsg + AsmError); 338 339 return Ctx.emitError(I, ErrMsg); 340 } 341 342 /// getCopyFromPartsVector - Create a value that contains the specified legal 343 /// parts combined into the value they represent. If the parts combine to a 344 /// type larger than ValueVT then AssertOp can be used to specify whether the 345 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 346 /// ValueVT (ISD::AssertSext). 347 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 348 const SDValue *Parts, unsigned NumParts, 349 MVT PartVT, EVT ValueVT, const Value *V, 350 Optional<CallingConv::ID> CallConv) { 351 assert(ValueVT.isVector() && "Not a vector value"); 352 assert(NumParts > 0 && "No parts to assemble!"); 353 const bool IsABIRegCopy = CallConv.hasValue(); 354 355 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 356 SDValue Val = Parts[0]; 357 358 // Handle a multi-element vector. 359 if (NumParts > 1) { 360 EVT IntermediateVT; 361 MVT RegisterVT; 362 unsigned NumIntermediates; 363 unsigned NumRegs; 364 365 if (IsABIRegCopy) { 366 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 367 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 368 NumIntermediates, RegisterVT); 369 } else { 370 NumRegs = 371 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 372 NumIntermediates, RegisterVT); 373 } 374 375 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 376 NumParts = NumRegs; // Silence a compiler warning. 377 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 378 assert(RegisterVT.getSizeInBits() == 379 Parts[0].getSimpleValueType().getSizeInBits() && 380 "Part type sizes don't match!"); 381 382 // Assemble the parts into intermediate operands. 383 SmallVector<SDValue, 8> Ops(NumIntermediates); 384 if (NumIntermediates == NumParts) { 385 // If the register was not expanded, truncate or copy the value, 386 // as appropriate. 387 for (unsigned i = 0; i != NumParts; ++i) 388 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 389 PartVT, IntermediateVT, V); 390 } else if (NumParts > 0) { 391 // If the intermediate type was expanded, build the intermediate 392 // operands from the parts. 393 assert(NumParts % NumIntermediates == 0 && 394 "Must expand into a divisible number of parts!"); 395 unsigned Factor = NumParts / NumIntermediates; 396 for (unsigned i = 0; i != NumIntermediates; ++i) 397 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 398 PartVT, IntermediateVT, V); 399 } 400 401 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 402 // intermediate operands. 403 EVT BuiltVectorTy = 404 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 405 (IntermediateVT.isVector() 406 ? IntermediateVT.getVectorNumElements() * NumParts 407 : NumIntermediates)); 408 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 409 : ISD::BUILD_VECTOR, 410 DL, BuiltVectorTy, Ops); 411 } 412 413 // There is now one part, held in Val. Correct it to match ValueVT. 414 EVT PartEVT = Val.getValueType(); 415 416 if (PartEVT == ValueVT) 417 return Val; 418 419 if (PartEVT.isVector()) { 420 // If the element type of the source/dest vectors are the same, but the 421 // parts vector has more elements than the value vector, then we have a 422 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 423 // elements we want. 424 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 425 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 426 "Cannot narrow, it would be a lossy transformation"); 427 return DAG.getNode( 428 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 429 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 430 } 431 432 // Vector/Vector bitcast. 433 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 434 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 435 436 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 437 "Cannot handle this kind of promotion"); 438 // Promoted vector extract 439 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 440 441 } 442 443 // Trivial bitcast if the types are the same size and the destination 444 // vector type is legal. 445 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 446 TLI.isTypeLegal(ValueVT)) 447 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 448 449 if (ValueVT.getVectorNumElements() != 1) { 450 // Certain ABIs require that vectors are passed as integers. For vectors 451 // are the same size, this is an obvious bitcast. 452 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 453 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 454 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 455 // Bitcast Val back the original type and extract the corresponding 456 // vector we want. 457 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 458 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 459 ValueVT.getVectorElementType(), Elts); 460 Val = DAG.getBitcast(WiderVecType, Val); 461 return DAG.getNode( 462 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 463 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 464 } 465 466 diagnosePossiblyInvalidConstraint( 467 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 468 return DAG.getUNDEF(ValueVT); 469 } 470 471 // Handle cases such as i8 -> <1 x i1> 472 EVT ValueSVT = ValueVT.getVectorElementType(); 473 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 474 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 475 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 476 477 return DAG.getBuildVector(ValueVT, DL, Val); 478 } 479 480 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 481 SDValue Val, SDValue *Parts, unsigned NumParts, 482 MVT PartVT, const Value *V, 483 Optional<CallingConv::ID> CallConv); 484 485 /// getCopyToParts - Create a series of nodes that contain the specified value 486 /// split into legal parts. If the parts contain more bits than Val, then, for 487 /// integers, ExtendKind can be used to specify how to generate the extra bits. 488 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 489 SDValue *Parts, unsigned NumParts, MVT PartVT, 490 const Value *V, 491 Optional<CallingConv::ID> CallConv = None, 492 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 493 EVT ValueVT = Val.getValueType(); 494 495 // Handle the vector case separately. 496 if (ValueVT.isVector()) 497 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 498 CallConv); 499 500 unsigned PartBits = PartVT.getSizeInBits(); 501 unsigned OrigNumParts = NumParts; 502 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 503 "Copying to an illegal type!"); 504 505 if (NumParts == 0) 506 return; 507 508 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 509 EVT PartEVT = PartVT; 510 if (PartEVT == ValueVT) { 511 assert(NumParts == 1 && "No-op copy with multiple parts!"); 512 Parts[0] = Val; 513 return; 514 } 515 516 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 517 // If the parts cover more bits than the value has, promote the value. 518 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 519 assert(NumParts == 1 && "Do not know what to promote to!"); 520 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 521 } else { 522 if (ValueVT.isFloatingPoint()) { 523 // FP values need to be bitcast, then extended if they are being put 524 // into a larger container. 525 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 526 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 527 } 528 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 529 ValueVT.isInteger() && 530 "Unknown mismatch!"); 531 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 532 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 533 if (PartVT == MVT::x86mmx) 534 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 535 } 536 } else if (PartBits == ValueVT.getSizeInBits()) { 537 // Different types of the same size. 538 assert(NumParts == 1 && PartEVT != ValueVT); 539 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 540 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 541 // If the parts cover less bits than value has, truncate the value. 542 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 543 ValueVT.isInteger() && 544 "Unknown mismatch!"); 545 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 546 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 547 if (PartVT == MVT::x86mmx) 548 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 549 } 550 551 // The value may have changed - recompute ValueVT. 552 ValueVT = Val.getValueType(); 553 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 554 "Failed to tile the value with PartVT!"); 555 556 if (NumParts == 1) { 557 if (PartEVT != ValueVT) { 558 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 559 "scalar-to-vector conversion failed"); 560 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 561 } 562 563 Parts[0] = Val; 564 return; 565 } 566 567 // Expand the value into multiple parts. 568 if (NumParts & (NumParts - 1)) { 569 // The number of parts is not a power of 2. Split off and copy the tail. 570 assert(PartVT.isInteger() && ValueVT.isInteger() && 571 "Do not know what to expand to!"); 572 unsigned RoundParts = 1 << Log2_32(NumParts); 573 unsigned RoundBits = RoundParts * PartBits; 574 unsigned OddParts = NumParts - RoundParts; 575 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 576 DAG.getIntPtrConstant(RoundBits, DL)); 577 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 578 CallConv); 579 580 if (DAG.getDataLayout().isBigEndian()) 581 // The odd parts were reversed by getCopyToParts - unreverse them. 582 std::reverse(Parts + RoundParts, Parts + NumParts); 583 584 NumParts = RoundParts; 585 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 586 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 587 } 588 589 // The number of parts is a power of 2. Repeatedly bisect the value using 590 // EXTRACT_ELEMENT. 591 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 592 EVT::getIntegerVT(*DAG.getContext(), 593 ValueVT.getSizeInBits()), 594 Val); 595 596 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 597 for (unsigned i = 0; i < NumParts; i += StepSize) { 598 unsigned ThisBits = StepSize * PartBits / 2; 599 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 600 SDValue &Part0 = Parts[i]; 601 SDValue &Part1 = Parts[i+StepSize/2]; 602 603 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 604 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 605 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 606 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 607 608 if (ThisBits == PartBits && ThisVT != PartVT) { 609 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 610 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 611 } 612 } 613 } 614 615 if (DAG.getDataLayout().isBigEndian()) 616 std::reverse(Parts, Parts + OrigNumParts); 617 } 618 619 static SDValue widenVectorToPartType(SelectionDAG &DAG, 620 SDValue Val, const SDLoc &DL, EVT PartVT) { 621 if (!PartVT.isVector()) 622 return SDValue(); 623 624 EVT ValueVT = Val.getValueType(); 625 unsigned PartNumElts = PartVT.getVectorNumElements(); 626 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 627 if (PartNumElts > ValueNumElts && 628 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 629 EVT ElementVT = PartVT.getVectorElementType(); 630 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 631 // undef elements. 632 SmallVector<SDValue, 16> Ops; 633 DAG.ExtractVectorElements(Val, Ops); 634 SDValue EltUndef = DAG.getUNDEF(ElementVT); 635 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 636 Ops.push_back(EltUndef); 637 638 // FIXME: Use CONCAT for 2x -> 4x. 639 return DAG.getBuildVector(PartVT, DL, Ops); 640 } 641 642 return SDValue(); 643 } 644 645 /// getCopyToPartsVector - Create a series of nodes that contain the specified 646 /// value split into legal parts. 647 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 648 SDValue Val, SDValue *Parts, unsigned NumParts, 649 MVT PartVT, const Value *V, 650 Optional<CallingConv::ID> CallConv) { 651 EVT ValueVT = Val.getValueType(); 652 assert(ValueVT.isVector() && "Not a vector"); 653 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 654 const bool IsABIRegCopy = CallConv.hasValue(); 655 656 if (NumParts == 1) { 657 EVT PartEVT = PartVT; 658 if (PartEVT == ValueVT) { 659 // Nothing to do. 660 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 661 // Bitconvert vector->vector case. 662 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 663 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 664 Val = Widened; 665 } else if (PartVT.isVector() && 666 PartEVT.getVectorElementType().bitsGE( 667 ValueVT.getVectorElementType()) && 668 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 669 670 // Promoted vector extract 671 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 672 } else { 673 if (ValueVT.getVectorNumElements() == 1) { 674 Val = DAG.getNode( 675 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 676 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 677 } else { 678 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 679 "lossy conversion of vector to scalar type"); 680 EVT IntermediateType = 681 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 682 Val = DAG.getBitcast(IntermediateType, Val); 683 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 684 } 685 } 686 687 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 688 Parts[0] = Val; 689 return; 690 } 691 692 // Handle a multi-element vector. 693 EVT IntermediateVT; 694 MVT RegisterVT; 695 unsigned NumIntermediates; 696 unsigned NumRegs; 697 if (IsABIRegCopy) { 698 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 699 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 700 NumIntermediates, RegisterVT); 701 } else { 702 NumRegs = 703 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 704 NumIntermediates, RegisterVT); 705 } 706 707 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 708 NumParts = NumRegs; // Silence a compiler warning. 709 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 710 711 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 712 IntermediateVT.getVectorNumElements() : 1; 713 714 // Convert the vector to the appropiate type if necessary. 715 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 716 717 EVT BuiltVectorTy = EVT::getVectorVT( 718 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 719 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 720 if (ValueVT != BuiltVectorTy) { 721 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 722 Val = Widened; 723 724 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 725 } 726 727 // Split the vector into intermediate operands. 728 SmallVector<SDValue, 8> Ops(NumIntermediates); 729 for (unsigned i = 0; i != NumIntermediates; ++i) { 730 if (IntermediateVT.isVector()) { 731 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 732 DAG.getConstant(i * IntermediateNumElts, DL, IdxVT)); 733 } else { 734 Ops[i] = DAG.getNode( 735 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 736 DAG.getConstant(i, DL, IdxVT)); 737 } 738 } 739 740 // Split the intermediate operands into legal parts. 741 if (NumParts == NumIntermediates) { 742 // If the register was not expanded, promote or copy the value, 743 // as appropriate. 744 for (unsigned i = 0; i != NumParts; ++i) 745 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 746 } else if (NumParts > 0) { 747 // If the intermediate type was expanded, split each the value into 748 // legal parts. 749 assert(NumIntermediates != 0 && "division by zero"); 750 assert(NumParts % NumIntermediates == 0 && 751 "Must expand into a divisible number of parts!"); 752 unsigned Factor = NumParts / NumIntermediates; 753 for (unsigned i = 0; i != NumIntermediates; ++i) 754 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 755 CallConv); 756 } 757 } 758 759 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 760 EVT valuevt, Optional<CallingConv::ID> CC) 761 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 762 RegCount(1, regs.size()), CallConv(CC) {} 763 764 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 765 const DataLayout &DL, unsigned Reg, Type *Ty, 766 Optional<CallingConv::ID> CC) { 767 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 768 769 CallConv = CC; 770 771 for (EVT ValueVT : ValueVTs) { 772 unsigned NumRegs = 773 isABIMangled() 774 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 775 : TLI.getNumRegisters(Context, ValueVT); 776 MVT RegisterVT = 777 isABIMangled() 778 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 779 : TLI.getRegisterType(Context, ValueVT); 780 for (unsigned i = 0; i != NumRegs; ++i) 781 Regs.push_back(Reg + i); 782 RegVTs.push_back(RegisterVT); 783 RegCount.push_back(NumRegs); 784 Reg += NumRegs; 785 } 786 } 787 788 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 789 FunctionLoweringInfo &FuncInfo, 790 const SDLoc &dl, SDValue &Chain, 791 SDValue *Flag, const Value *V) const { 792 // A Value with type {} or [0 x %t] needs no registers. 793 if (ValueVTs.empty()) 794 return SDValue(); 795 796 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 797 798 // Assemble the legal parts into the final values. 799 SmallVector<SDValue, 4> Values(ValueVTs.size()); 800 SmallVector<SDValue, 8> Parts; 801 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 802 // Copy the legal parts from the registers. 803 EVT ValueVT = ValueVTs[Value]; 804 unsigned NumRegs = RegCount[Value]; 805 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 806 *DAG.getContext(), 807 CallConv.getValue(), RegVTs[Value]) 808 : RegVTs[Value]; 809 810 Parts.resize(NumRegs); 811 for (unsigned i = 0; i != NumRegs; ++i) { 812 SDValue P; 813 if (!Flag) { 814 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 815 } else { 816 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 817 *Flag = P.getValue(2); 818 } 819 820 Chain = P.getValue(1); 821 Parts[i] = P; 822 823 // If the source register was virtual and if we know something about it, 824 // add an assert node. 825 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 826 !RegisterVT.isInteger()) 827 continue; 828 829 const FunctionLoweringInfo::LiveOutInfo *LOI = 830 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 831 if (!LOI) 832 continue; 833 834 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 835 unsigned NumSignBits = LOI->NumSignBits; 836 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 837 838 if (NumZeroBits == RegSize) { 839 // The current value is a zero. 840 // Explicitly express that as it would be easier for 841 // optimizations to kick in. 842 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 843 continue; 844 } 845 846 // FIXME: We capture more information than the dag can represent. For 847 // now, just use the tightest assertzext/assertsext possible. 848 bool isSExt; 849 EVT FromVT(MVT::Other); 850 if (NumZeroBits) { 851 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 852 isSExt = false; 853 } else if (NumSignBits > 1) { 854 FromVT = 855 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 856 isSExt = true; 857 } else { 858 continue; 859 } 860 // Add an assertion node. 861 assert(FromVT != MVT::Other); 862 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 863 RegisterVT, P, DAG.getValueType(FromVT)); 864 } 865 866 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 867 RegisterVT, ValueVT, V, CallConv); 868 Part += NumRegs; 869 Parts.clear(); 870 } 871 872 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 873 } 874 875 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 876 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 877 const Value *V, 878 ISD::NodeType PreferredExtendType) const { 879 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 880 ISD::NodeType ExtendKind = PreferredExtendType; 881 882 // Get the list of the values's legal parts. 883 unsigned NumRegs = Regs.size(); 884 SmallVector<SDValue, 8> Parts(NumRegs); 885 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 886 unsigned NumParts = RegCount[Value]; 887 888 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 889 *DAG.getContext(), 890 CallConv.getValue(), RegVTs[Value]) 891 : RegVTs[Value]; 892 893 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 894 ExtendKind = ISD::ZERO_EXTEND; 895 896 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 897 NumParts, RegisterVT, V, CallConv, ExtendKind); 898 Part += NumParts; 899 } 900 901 // Copy the parts into the registers. 902 SmallVector<SDValue, 8> Chains(NumRegs); 903 for (unsigned i = 0; i != NumRegs; ++i) { 904 SDValue Part; 905 if (!Flag) { 906 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 907 } else { 908 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 909 *Flag = Part.getValue(1); 910 } 911 912 Chains[i] = Part.getValue(0); 913 } 914 915 if (NumRegs == 1 || Flag) 916 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 917 // flagged to it. That is the CopyToReg nodes and the user are considered 918 // a single scheduling unit. If we create a TokenFactor and return it as 919 // chain, then the TokenFactor is both a predecessor (operand) of the 920 // user as well as a successor (the TF operands are flagged to the user). 921 // c1, f1 = CopyToReg 922 // c2, f2 = CopyToReg 923 // c3 = TokenFactor c1, c2 924 // ... 925 // = op c3, ..., f2 926 Chain = Chains[NumRegs-1]; 927 else 928 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 929 } 930 931 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 932 unsigned MatchingIdx, const SDLoc &dl, 933 SelectionDAG &DAG, 934 std::vector<SDValue> &Ops) const { 935 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 936 937 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 938 if (HasMatching) 939 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 940 else if (!Regs.empty() && 941 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 942 // Put the register class of the virtual registers in the flag word. That 943 // way, later passes can recompute register class constraints for inline 944 // assembly as well as normal instructions. 945 // Don't do this for tied operands that can use the regclass information 946 // from the def. 947 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 948 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 949 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 950 } 951 952 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 953 Ops.push_back(Res); 954 955 if (Code == InlineAsm::Kind_Clobber) { 956 // Clobbers should always have a 1:1 mapping with registers, and may 957 // reference registers that have illegal (e.g. vector) types. Hence, we 958 // shouldn't try to apply any sort of splitting logic to them. 959 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 960 "No 1:1 mapping from clobbers to regs?"); 961 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 962 (void)SP; 963 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 964 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 965 assert( 966 (Regs[I] != SP || 967 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 968 "If we clobbered the stack pointer, MFI should know about it."); 969 } 970 return; 971 } 972 973 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 974 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 975 MVT RegisterVT = RegVTs[Value]; 976 for (unsigned i = 0; i != NumRegs; ++i) { 977 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 978 unsigned TheReg = Regs[Reg++]; 979 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 980 } 981 } 982 } 983 984 SmallVector<std::pair<unsigned, unsigned>, 4> 985 RegsForValue::getRegsAndSizes() const { 986 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 987 unsigned I = 0; 988 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 989 unsigned RegCount = std::get<0>(CountAndVT); 990 MVT RegisterVT = std::get<1>(CountAndVT); 991 unsigned RegisterSize = RegisterVT.getSizeInBits(); 992 for (unsigned E = I + RegCount; I != E; ++I) 993 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 994 } 995 return OutVec; 996 } 997 998 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 999 const TargetLibraryInfo *li) { 1000 AA = aa; 1001 GFI = gfi; 1002 LibInfo = li; 1003 DL = &DAG.getDataLayout(); 1004 Context = DAG.getContext(); 1005 LPadToCallSiteMap.clear(); 1006 } 1007 1008 void SelectionDAGBuilder::clear() { 1009 NodeMap.clear(); 1010 UnusedArgNodeMap.clear(); 1011 PendingLoads.clear(); 1012 PendingExports.clear(); 1013 CurInst = nullptr; 1014 HasTailCall = false; 1015 SDNodeOrder = LowestSDNodeOrder; 1016 StatepointLowering.clear(); 1017 } 1018 1019 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1020 DanglingDebugInfoMap.clear(); 1021 } 1022 1023 SDValue SelectionDAGBuilder::getRoot() { 1024 if (PendingLoads.empty()) 1025 return DAG.getRoot(); 1026 1027 if (PendingLoads.size() == 1) { 1028 SDValue Root = PendingLoads[0]; 1029 DAG.setRoot(Root); 1030 PendingLoads.clear(); 1031 return Root; 1032 } 1033 1034 // Otherwise, we have to make a token factor node. 1035 SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads); 1036 PendingLoads.clear(); 1037 DAG.setRoot(Root); 1038 return Root; 1039 } 1040 1041 SDValue SelectionDAGBuilder::getControlRoot() { 1042 SDValue Root = DAG.getRoot(); 1043 1044 if (PendingExports.empty()) 1045 return Root; 1046 1047 // Turn all of the CopyToReg chains into one factored node. 1048 if (Root.getOpcode() != ISD::EntryToken) { 1049 unsigned i = 0, e = PendingExports.size(); 1050 for (; i != e; ++i) { 1051 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1052 if (PendingExports[i].getNode()->getOperand(0) == Root) 1053 break; // Don't add the root if we already indirectly depend on it. 1054 } 1055 1056 if (i == e) 1057 PendingExports.push_back(Root); 1058 } 1059 1060 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1061 PendingExports); 1062 PendingExports.clear(); 1063 DAG.setRoot(Root); 1064 return Root; 1065 } 1066 1067 void SelectionDAGBuilder::visit(const Instruction &I) { 1068 // Set up outgoing PHI node register values before emitting the terminator. 1069 if (I.isTerminator()) { 1070 HandlePHINodesInSuccessorBlocks(I.getParent()); 1071 } 1072 1073 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1074 if (!isa<DbgInfoIntrinsic>(I)) 1075 ++SDNodeOrder; 1076 1077 CurInst = &I; 1078 1079 visit(I.getOpcode(), I); 1080 1081 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1082 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1083 // maps to this instruction. 1084 // TODO: We could handle all flags (nsw, etc) here. 1085 // TODO: If an IR instruction maps to >1 node, only the final node will have 1086 // flags set. 1087 if (SDNode *Node = getNodeForIRValue(&I)) { 1088 SDNodeFlags IncomingFlags; 1089 IncomingFlags.copyFMF(*FPMO); 1090 if (!Node->getFlags().isDefined()) 1091 Node->setFlags(IncomingFlags); 1092 else 1093 Node->intersectFlagsWith(IncomingFlags); 1094 } 1095 } 1096 1097 if (!I.isTerminator() && !HasTailCall && 1098 !isStatepoint(&I)) // statepoints handle their exports internally 1099 CopyToExportRegsIfNeeded(&I); 1100 1101 CurInst = nullptr; 1102 } 1103 1104 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1105 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1106 } 1107 1108 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1109 // Note: this doesn't use InstVisitor, because it has to work with 1110 // ConstantExpr's in addition to instructions. 1111 switch (Opcode) { 1112 default: llvm_unreachable("Unknown instruction type encountered!"); 1113 // Build the switch statement using the Instruction.def file. 1114 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1115 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1116 #include "llvm/IR/Instruction.def" 1117 } 1118 } 1119 1120 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1121 const DIExpression *Expr) { 1122 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1123 const DbgValueInst *DI = DDI.getDI(); 1124 DIVariable *DanglingVariable = DI->getVariable(); 1125 DIExpression *DanglingExpr = DI->getExpression(); 1126 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1127 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1128 return true; 1129 } 1130 return false; 1131 }; 1132 1133 for (auto &DDIMI : DanglingDebugInfoMap) { 1134 DanglingDebugInfoVector &DDIV = DDIMI.second; 1135 1136 // If debug info is to be dropped, run it through final checks to see 1137 // whether it can be salvaged. 1138 for (auto &DDI : DDIV) 1139 if (isMatchingDbgValue(DDI)) 1140 salvageUnresolvedDbgValue(DDI); 1141 1142 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1143 } 1144 } 1145 1146 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1147 // generate the debug data structures now that we've seen its definition. 1148 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1149 SDValue Val) { 1150 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1151 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1152 return; 1153 1154 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1155 for (auto &DDI : DDIV) { 1156 const DbgValueInst *DI = DDI.getDI(); 1157 assert(DI && "Ill-formed DanglingDebugInfo"); 1158 DebugLoc dl = DDI.getdl(); 1159 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1160 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1161 DILocalVariable *Variable = DI->getVariable(); 1162 DIExpression *Expr = DI->getExpression(); 1163 assert(Variable->isValidLocationForIntrinsic(dl) && 1164 "Expected inlined-at fields to agree"); 1165 SDDbgValue *SDV; 1166 if (Val.getNode()) { 1167 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1168 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1169 // we couldn't resolve it directly when examining the DbgValue intrinsic 1170 // in the first place we should not be more successful here). Unless we 1171 // have some test case that prove this to be correct we should avoid 1172 // calling EmitFuncArgumentDbgValue here. 1173 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1174 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1175 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1176 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1177 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1178 // inserted after the definition of Val when emitting the instructions 1179 // after ISel. An alternative could be to teach 1180 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1181 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1182 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1183 << ValSDNodeOrder << "\n"); 1184 SDV = getDbgValue(Val, Variable, Expr, dl, 1185 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1186 DAG.AddDbgValue(SDV, Val.getNode(), false); 1187 } else 1188 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1189 << "in EmitFuncArgumentDbgValue\n"); 1190 } else { 1191 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1192 auto Undef = 1193 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1194 auto SDV = 1195 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1196 DAG.AddDbgValue(SDV, nullptr, false); 1197 } 1198 } 1199 DDIV.clear(); 1200 } 1201 1202 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1203 Value *V = DDI.getDI()->getValue(); 1204 DILocalVariable *Var = DDI.getDI()->getVariable(); 1205 DIExpression *Expr = DDI.getDI()->getExpression(); 1206 DebugLoc DL = DDI.getdl(); 1207 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1208 unsigned SDOrder = DDI.getSDNodeOrder(); 1209 1210 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1211 // that DW_OP_stack_value is desired. 1212 assert(isa<DbgValueInst>(DDI.getDI())); 1213 bool StackValue = true; 1214 1215 // Can this Value can be encoded without any further work? 1216 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1217 return; 1218 1219 // Attempt to salvage back through as many instructions as possible. Bail if 1220 // a non-instruction is seen, such as a constant expression or global 1221 // variable. FIXME: Further work could recover those too. 1222 while (isa<Instruction>(V)) { 1223 Instruction &VAsInst = *cast<Instruction>(V); 1224 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1225 1226 // If we cannot salvage any further, and haven't yet found a suitable debug 1227 // expression, bail out. 1228 if (!NewExpr) 1229 break; 1230 1231 // New value and expr now represent this debuginfo. 1232 V = VAsInst.getOperand(0); 1233 Expr = NewExpr; 1234 1235 // Some kind of simplification occurred: check whether the operand of the 1236 // salvaged debug expression can be encoded in this DAG. 1237 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1238 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1239 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1240 return; 1241 } 1242 } 1243 1244 // This was the final opportunity to salvage this debug information, and it 1245 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1246 // any earlier variable location. 1247 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1248 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1249 DAG.AddDbgValue(SDV, nullptr, false); 1250 1251 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1252 << "\n"); 1253 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1254 << "\n"); 1255 } 1256 1257 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1258 DIExpression *Expr, DebugLoc dl, 1259 DebugLoc InstDL, unsigned Order) { 1260 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1261 SDDbgValue *SDV; 1262 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1263 isa<ConstantPointerNull>(V)) { 1264 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1265 DAG.AddDbgValue(SDV, nullptr, false); 1266 return true; 1267 } 1268 1269 // If the Value is a frame index, we can create a FrameIndex debug value 1270 // without relying on the DAG at all. 1271 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1272 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1273 if (SI != FuncInfo.StaticAllocaMap.end()) { 1274 auto SDV = 1275 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1276 /*IsIndirect*/ false, dl, SDNodeOrder); 1277 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1278 // is still available even if the SDNode gets optimized out. 1279 DAG.AddDbgValue(SDV, nullptr, false); 1280 return true; 1281 } 1282 } 1283 1284 // Do not use getValue() in here; we don't want to generate code at 1285 // this point if it hasn't been done yet. 1286 SDValue N = NodeMap[V]; 1287 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1288 N = UnusedArgNodeMap[V]; 1289 if (N.getNode()) { 1290 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1291 return true; 1292 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1293 DAG.AddDbgValue(SDV, N.getNode(), false); 1294 return true; 1295 } 1296 1297 // Special rules apply for the first dbg.values of parameter variables in a 1298 // function. Identify them by the fact they reference Argument Values, that 1299 // they're parameters, and they are parameters of the current function. We 1300 // need to let them dangle until they get an SDNode. 1301 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1302 !InstDL.getInlinedAt(); 1303 if (!IsParamOfFunc) { 1304 // The value is not used in this block yet (or it would have an SDNode). 1305 // We still want the value to appear for the user if possible -- if it has 1306 // an associated VReg, we can refer to that instead. 1307 auto VMI = FuncInfo.ValueMap.find(V); 1308 if (VMI != FuncInfo.ValueMap.end()) { 1309 unsigned Reg = VMI->second; 1310 // If this is a PHI node, it may be split up into several MI PHI nodes 1311 // (in FunctionLoweringInfo::set). 1312 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1313 V->getType(), None); 1314 if (RFV.occupiesMultipleRegs()) { 1315 unsigned Offset = 0; 1316 unsigned BitsToDescribe = 0; 1317 if (auto VarSize = Var->getSizeInBits()) 1318 BitsToDescribe = *VarSize; 1319 if (auto Fragment = Expr->getFragmentInfo()) 1320 BitsToDescribe = Fragment->SizeInBits; 1321 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1322 unsigned RegisterSize = RegAndSize.second; 1323 // Bail out if all bits are described already. 1324 if (Offset >= BitsToDescribe) 1325 break; 1326 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1327 ? BitsToDescribe - Offset 1328 : RegisterSize; 1329 auto FragmentExpr = DIExpression::createFragmentExpression( 1330 Expr, Offset, FragmentSize); 1331 if (!FragmentExpr) 1332 continue; 1333 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1334 false, dl, SDNodeOrder); 1335 DAG.AddDbgValue(SDV, nullptr, false); 1336 Offset += RegisterSize; 1337 } 1338 } else { 1339 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1340 DAG.AddDbgValue(SDV, nullptr, false); 1341 } 1342 return true; 1343 } 1344 } 1345 1346 return false; 1347 } 1348 1349 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1350 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1351 for (auto &Pair : DanglingDebugInfoMap) 1352 for (auto &DDI : Pair.getSecond()) 1353 salvageUnresolvedDbgValue(DDI); 1354 clearDanglingDebugInfo(); 1355 } 1356 1357 /// getCopyFromRegs - If there was virtual register allocated for the value V 1358 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1359 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1360 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1361 SDValue Result; 1362 1363 if (It != FuncInfo.ValueMap.end()) { 1364 unsigned InReg = It->second; 1365 1366 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1367 DAG.getDataLayout(), InReg, Ty, 1368 None); // This is not an ABI copy. 1369 SDValue Chain = DAG.getEntryNode(); 1370 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1371 V); 1372 resolveDanglingDebugInfo(V, Result); 1373 } 1374 1375 return Result; 1376 } 1377 1378 /// getValue - Return an SDValue for the given Value. 1379 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1380 // If we already have an SDValue for this value, use it. It's important 1381 // to do this first, so that we don't create a CopyFromReg if we already 1382 // have a regular SDValue. 1383 SDValue &N = NodeMap[V]; 1384 if (N.getNode()) return N; 1385 1386 // If there's a virtual register allocated and initialized for this 1387 // value, use it. 1388 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1389 return copyFromReg; 1390 1391 // Otherwise create a new SDValue and remember it. 1392 SDValue Val = getValueImpl(V); 1393 NodeMap[V] = Val; 1394 resolveDanglingDebugInfo(V, Val); 1395 return Val; 1396 } 1397 1398 // Return true if SDValue exists for the given Value 1399 bool SelectionDAGBuilder::findValue(const Value *V) const { 1400 return (NodeMap.find(V) != NodeMap.end()) || 1401 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1402 } 1403 1404 /// getNonRegisterValue - Return an SDValue for the given Value, but 1405 /// don't look in FuncInfo.ValueMap for a virtual register. 1406 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1407 // If we already have an SDValue for this value, use it. 1408 SDValue &N = NodeMap[V]; 1409 if (N.getNode()) { 1410 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1411 // Remove the debug location from the node as the node is about to be used 1412 // in a location which may differ from the original debug location. This 1413 // is relevant to Constant and ConstantFP nodes because they can appear 1414 // as constant expressions inside PHI nodes. 1415 N->setDebugLoc(DebugLoc()); 1416 } 1417 return N; 1418 } 1419 1420 // Otherwise create a new SDValue and remember it. 1421 SDValue Val = getValueImpl(V); 1422 NodeMap[V] = Val; 1423 resolveDanglingDebugInfo(V, Val); 1424 return Val; 1425 } 1426 1427 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1428 /// Create an SDValue for the given value. 1429 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1430 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1431 1432 if (const Constant *C = dyn_cast<Constant>(V)) { 1433 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1434 1435 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1436 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1437 1438 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1439 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1440 1441 if (isa<ConstantPointerNull>(C)) { 1442 unsigned AS = V->getType()->getPointerAddressSpace(); 1443 return DAG.getConstant(0, getCurSDLoc(), 1444 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1445 } 1446 1447 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1448 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1449 1450 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1451 return DAG.getUNDEF(VT); 1452 1453 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1454 visit(CE->getOpcode(), *CE); 1455 SDValue N1 = NodeMap[V]; 1456 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1457 return N1; 1458 } 1459 1460 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1461 SmallVector<SDValue, 4> Constants; 1462 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1463 OI != OE; ++OI) { 1464 SDNode *Val = getValue(*OI).getNode(); 1465 // If the operand is an empty aggregate, there are no values. 1466 if (!Val) continue; 1467 // Add each leaf value from the operand to the Constants list 1468 // to form a flattened list of all the values. 1469 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1470 Constants.push_back(SDValue(Val, i)); 1471 } 1472 1473 return DAG.getMergeValues(Constants, getCurSDLoc()); 1474 } 1475 1476 if (const ConstantDataSequential *CDS = 1477 dyn_cast<ConstantDataSequential>(C)) { 1478 SmallVector<SDValue, 4> Ops; 1479 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1480 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1481 // Add each leaf value from the operand to the Constants list 1482 // to form a flattened list of all the values. 1483 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1484 Ops.push_back(SDValue(Val, i)); 1485 } 1486 1487 if (isa<ArrayType>(CDS->getType())) 1488 return DAG.getMergeValues(Ops, getCurSDLoc()); 1489 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1490 } 1491 1492 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1493 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1494 "Unknown struct or array constant!"); 1495 1496 SmallVector<EVT, 4> ValueVTs; 1497 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1498 unsigned NumElts = ValueVTs.size(); 1499 if (NumElts == 0) 1500 return SDValue(); // empty struct 1501 SmallVector<SDValue, 4> Constants(NumElts); 1502 for (unsigned i = 0; i != NumElts; ++i) { 1503 EVT EltVT = ValueVTs[i]; 1504 if (isa<UndefValue>(C)) 1505 Constants[i] = DAG.getUNDEF(EltVT); 1506 else if (EltVT.isFloatingPoint()) 1507 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1508 else 1509 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1510 } 1511 1512 return DAG.getMergeValues(Constants, getCurSDLoc()); 1513 } 1514 1515 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1516 return DAG.getBlockAddress(BA, VT); 1517 1518 VectorType *VecTy = cast<VectorType>(V->getType()); 1519 unsigned NumElements = VecTy->getNumElements(); 1520 1521 // Now that we know the number and type of the elements, get that number of 1522 // elements into the Ops array based on what kind of constant it is. 1523 SmallVector<SDValue, 16> Ops; 1524 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1525 for (unsigned i = 0; i != NumElements; ++i) 1526 Ops.push_back(getValue(CV->getOperand(i))); 1527 } else { 1528 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1529 EVT EltVT = 1530 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1531 1532 SDValue Op; 1533 if (EltVT.isFloatingPoint()) 1534 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1535 else 1536 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1537 Ops.assign(NumElements, Op); 1538 } 1539 1540 // Create a BUILD_VECTOR node. 1541 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1542 } 1543 1544 // If this is a static alloca, generate it as the frameindex instead of 1545 // computation. 1546 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1547 DenseMap<const AllocaInst*, int>::iterator SI = 1548 FuncInfo.StaticAllocaMap.find(AI); 1549 if (SI != FuncInfo.StaticAllocaMap.end()) 1550 return DAG.getFrameIndex(SI->second, 1551 TLI.getFrameIndexTy(DAG.getDataLayout())); 1552 } 1553 1554 // If this is an instruction which fast-isel has deferred, select it now. 1555 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1556 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1557 1558 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1559 Inst->getType(), getABIRegCopyCC(V)); 1560 SDValue Chain = DAG.getEntryNode(); 1561 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1562 } 1563 1564 llvm_unreachable("Can't get register for value!"); 1565 } 1566 1567 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1568 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1569 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1570 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1571 bool IsSEH = isAsynchronousEHPersonality(Pers); 1572 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; 1573 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1574 if (!IsSEH) 1575 CatchPadMBB->setIsEHScopeEntry(); 1576 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1577 if (IsMSVCCXX || IsCoreCLR) 1578 CatchPadMBB->setIsEHFuncletEntry(); 1579 // Wasm does not need catchpads anymore 1580 if (!IsWasmCXX) 1581 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, 1582 getControlRoot())); 1583 } 1584 1585 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1586 // Update machine-CFG edge. 1587 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1588 FuncInfo.MBB->addSuccessor(TargetMBB); 1589 1590 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1591 bool IsSEH = isAsynchronousEHPersonality(Pers); 1592 if (IsSEH) { 1593 // If this is not a fall-through branch or optimizations are switched off, 1594 // emit the branch. 1595 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1596 TM.getOptLevel() == CodeGenOpt::None) 1597 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1598 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1599 return; 1600 } 1601 1602 // Figure out the funclet membership for the catchret's successor. 1603 // This will be used by the FuncletLayout pass to determine how to order the 1604 // BB's. 1605 // A 'catchret' returns to the outer scope's color. 1606 Value *ParentPad = I.getCatchSwitchParentPad(); 1607 const BasicBlock *SuccessorColor; 1608 if (isa<ConstantTokenNone>(ParentPad)) 1609 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1610 else 1611 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1612 assert(SuccessorColor && "No parent funclet for catchret!"); 1613 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1614 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1615 1616 // Create the terminator node. 1617 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1618 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1619 DAG.getBasicBlock(SuccessorColorMBB)); 1620 DAG.setRoot(Ret); 1621 } 1622 1623 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1624 // Don't emit any special code for the cleanuppad instruction. It just marks 1625 // the start of an EH scope/funclet. 1626 FuncInfo.MBB->setIsEHScopeEntry(); 1627 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1628 if (Pers != EHPersonality::Wasm_CXX) { 1629 FuncInfo.MBB->setIsEHFuncletEntry(); 1630 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1631 } 1632 } 1633 1634 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1635 // the control flow always stops at the single catch pad, as it does for a 1636 // cleanup pad. In case the exception caught is not of the types the catch pad 1637 // catches, it will be rethrown by a rethrow. 1638 static void findWasmUnwindDestinations( 1639 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1640 BranchProbability Prob, 1641 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1642 &UnwindDests) { 1643 while (EHPadBB) { 1644 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1645 if (isa<CleanupPadInst>(Pad)) { 1646 // Stop on cleanup pads. 1647 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1648 UnwindDests.back().first->setIsEHScopeEntry(); 1649 break; 1650 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1651 // Add the catchpad handlers to the possible destinations. We don't 1652 // continue to the unwind destination of the catchswitch for wasm. 1653 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1654 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1655 UnwindDests.back().first->setIsEHScopeEntry(); 1656 } 1657 break; 1658 } else { 1659 continue; 1660 } 1661 } 1662 } 1663 1664 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1665 /// many places it could ultimately go. In the IR, we have a single unwind 1666 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1667 /// This function skips over imaginary basic blocks that hold catchswitch 1668 /// instructions, and finds all the "real" machine 1669 /// basic block destinations. As those destinations may not be successors of 1670 /// EHPadBB, here we also calculate the edge probability to those destinations. 1671 /// The passed-in Prob is the edge probability to EHPadBB. 1672 static void findUnwindDestinations( 1673 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1674 BranchProbability Prob, 1675 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1676 &UnwindDests) { 1677 EHPersonality Personality = 1678 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1679 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1680 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1681 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1682 bool IsSEH = isAsynchronousEHPersonality(Personality); 1683 1684 if (IsWasmCXX) { 1685 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1686 return; 1687 } 1688 1689 while (EHPadBB) { 1690 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1691 BasicBlock *NewEHPadBB = nullptr; 1692 if (isa<LandingPadInst>(Pad)) { 1693 // Stop on landingpads. They are not funclets. 1694 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1695 break; 1696 } else if (isa<CleanupPadInst>(Pad)) { 1697 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1698 // personalities. 1699 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1700 UnwindDests.back().first->setIsEHScopeEntry(); 1701 UnwindDests.back().first->setIsEHFuncletEntry(); 1702 break; 1703 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1704 // Add the catchpad handlers to the possible destinations. 1705 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1706 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1707 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1708 if (IsMSVCCXX || IsCoreCLR) 1709 UnwindDests.back().first->setIsEHFuncletEntry(); 1710 if (!IsSEH) 1711 UnwindDests.back().first->setIsEHScopeEntry(); 1712 } 1713 NewEHPadBB = CatchSwitch->getUnwindDest(); 1714 } else { 1715 continue; 1716 } 1717 1718 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1719 if (BPI && NewEHPadBB) 1720 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1721 EHPadBB = NewEHPadBB; 1722 } 1723 } 1724 1725 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1726 // Update successor info. 1727 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1728 auto UnwindDest = I.getUnwindDest(); 1729 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1730 BranchProbability UnwindDestProb = 1731 (BPI && UnwindDest) 1732 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1733 : BranchProbability::getZero(); 1734 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1735 for (auto &UnwindDest : UnwindDests) { 1736 UnwindDest.first->setIsEHPad(); 1737 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1738 } 1739 FuncInfo.MBB->normalizeSuccProbs(); 1740 1741 // Create the terminator node. 1742 SDValue Ret = 1743 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1744 DAG.setRoot(Ret); 1745 } 1746 1747 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1748 report_fatal_error("visitCatchSwitch not yet implemented!"); 1749 } 1750 1751 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1752 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1753 auto &DL = DAG.getDataLayout(); 1754 SDValue Chain = getControlRoot(); 1755 SmallVector<ISD::OutputArg, 8> Outs; 1756 SmallVector<SDValue, 8> OutVals; 1757 1758 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1759 // lower 1760 // 1761 // %val = call <ty> @llvm.experimental.deoptimize() 1762 // ret <ty> %val 1763 // 1764 // differently. 1765 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1766 LowerDeoptimizingReturn(); 1767 return; 1768 } 1769 1770 if (!FuncInfo.CanLowerReturn) { 1771 unsigned DemoteReg = FuncInfo.DemoteRegister; 1772 const Function *F = I.getParent()->getParent(); 1773 1774 // Emit a store of the return value through the virtual register. 1775 // Leave Outs empty so that LowerReturn won't try to load return 1776 // registers the usual way. 1777 SmallVector<EVT, 1> PtrValueVTs; 1778 ComputeValueVTs(TLI, DL, 1779 F->getReturnType()->getPointerTo( 1780 DAG.getDataLayout().getAllocaAddrSpace()), 1781 PtrValueVTs); 1782 1783 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1784 DemoteReg, PtrValueVTs[0]); 1785 SDValue RetOp = getValue(I.getOperand(0)); 1786 1787 SmallVector<EVT, 4> ValueVTs; 1788 SmallVector<uint64_t, 4> Offsets; 1789 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1790 unsigned NumValues = ValueVTs.size(); 1791 1792 SmallVector<SDValue, 4> Chains(NumValues); 1793 for (unsigned i = 0; i != NumValues; ++i) { 1794 // An aggregate return value cannot wrap around the address space, so 1795 // offsets to its parts don't wrap either. 1796 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1797 Chains[i] = DAG.getStore( 1798 Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1799 // FIXME: better loc info would be nice. 1800 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1801 } 1802 1803 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1804 MVT::Other, Chains); 1805 } else if (I.getNumOperands() != 0) { 1806 SmallVector<EVT, 4> ValueVTs; 1807 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1808 unsigned NumValues = ValueVTs.size(); 1809 if (NumValues) { 1810 SDValue RetOp = getValue(I.getOperand(0)); 1811 1812 const Function *F = I.getParent()->getParent(); 1813 1814 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1815 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1816 Attribute::SExt)) 1817 ExtendKind = ISD::SIGN_EXTEND; 1818 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1819 Attribute::ZExt)) 1820 ExtendKind = ISD::ZERO_EXTEND; 1821 1822 LLVMContext &Context = F->getContext(); 1823 bool RetInReg = F->getAttributes().hasAttribute( 1824 AttributeList::ReturnIndex, Attribute::InReg); 1825 1826 for (unsigned j = 0; j != NumValues; ++j) { 1827 EVT VT = ValueVTs[j]; 1828 1829 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1830 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1831 1832 CallingConv::ID CC = F->getCallingConv(); 1833 1834 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1835 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1836 SmallVector<SDValue, 4> Parts(NumParts); 1837 getCopyToParts(DAG, getCurSDLoc(), 1838 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1839 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1840 1841 // 'inreg' on function refers to return value 1842 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1843 if (RetInReg) 1844 Flags.setInReg(); 1845 1846 // Propagate extension type if any 1847 if (ExtendKind == ISD::SIGN_EXTEND) 1848 Flags.setSExt(); 1849 else if (ExtendKind == ISD::ZERO_EXTEND) 1850 Flags.setZExt(); 1851 1852 for (unsigned i = 0; i < NumParts; ++i) { 1853 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1854 VT, /*isfixed=*/true, 0, 0)); 1855 OutVals.push_back(Parts[i]); 1856 } 1857 } 1858 } 1859 } 1860 1861 // Push in swifterror virtual register as the last element of Outs. This makes 1862 // sure swifterror virtual register will be returned in the swifterror 1863 // physical register. 1864 const Function *F = I.getParent()->getParent(); 1865 if (TLI.supportSwiftError() && 1866 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1867 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1868 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1869 Flags.setSwiftError(); 1870 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1871 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1872 true /*isfixed*/, 1 /*origidx*/, 1873 0 /*partOffs*/)); 1874 // Create SDNode for the swifterror virtual register. 1875 OutVals.push_back( 1876 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt( 1877 &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first, 1878 EVT(TLI.getPointerTy(DL)))); 1879 } 1880 1881 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1882 CallingConv::ID CallConv = 1883 DAG.getMachineFunction().getFunction().getCallingConv(); 1884 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1885 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1886 1887 // Verify that the target's LowerReturn behaved as expected. 1888 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1889 "LowerReturn didn't return a valid chain!"); 1890 1891 // Update the DAG with the new chain value resulting from return lowering. 1892 DAG.setRoot(Chain); 1893 } 1894 1895 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1896 /// created for it, emit nodes to copy the value into the virtual 1897 /// registers. 1898 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1899 // Skip empty types 1900 if (V->getType()->isEmptyTy()) 1901 return; 1902 1903 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1904 if (VMI != FuncInfo.ValueMap.end()) { 1905 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1906 CopyValueToVirtualRegister(V, VMI->second); 1907 } 1908 } 1909 1910 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1911 /// the current basic block, add it to ValueMap now so that we'll get a 1912 /// CopyTo/FromReg. 1913 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1914 // No need to export constants. 1915 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1916 1917 // Already exported? 1918 if (FuncInfo.isExportedInst(V)) return; 1919 1920 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1921 CopyValueToVirtualRegister(V, Reg); 1922 } 1923 1924 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1925 const BasicBlock *FromBB) { 1926 // The operands of the setcc have to be in this block. We don't know 1927 // how to export them from some other block. 1928 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1929 // Can export from current BB. 1930 if (VI->getParent() == FromBB) 1931 return true; 1932 1933 // Is already exported, noop. 1934 return FuncInfo.isExportedInst(V); 1935 } 1936 1937 // If this is an argument, we can export it if the BB is the entry block or 1938 // if it is already exported. 1939 if (isa<Argument>(V)) { 1940 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1941 return true; 1942 1943 // Otherwise, can only export this if it is already exported. 1944 return FuncInfo.isExportedInst(V); 1945 } 1946 1947 // Otherwise, constants can always be exported. 1948 return true; 1949 } 1950 1951 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1952 BranchProbability 1953 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1954 const MachineBasicBlock *Dst) const { 1955 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1956 const BasicBlock *SrcBB = Src->getBasicBlock(); 1957 const BasicBlock *DstBB = Dst->getBasicBlock(); 1958 if (!BPI) { 1959 // If BPI is not available, set the default probability as 1 / N, where N is 1960 // the number of successors. 1961 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 1962 return BranchProbability(1, SuccSize); 1963 } 1964 return BPI->getEdgeProbability(SrcBB, DstBB); 1965 } 1966 1967 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1968 MachineBasicBlock *Dst, 1969 BranchProbability Prob) { 1970 if (!FuncInfo.BPI) 1971 Src->addSuccessorWithoutProb(Dst); 1972 else { 1973 if (Prob.isUnknown()) 1974 Prob = getEdgeProbability(Src, Dst); 1975 Src->addSuccessor(Dst, Prob); 1976 } 1977 } 1978 1979 static bool InBlock(const Value *V, const BasicBlock *BB) { 1980 if (const Instruction *I = dyn_cast<Instruction>(V)) 1981 return I->getParent() == BB; 1982 return true; 1983 } 1984 1985 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1986 /// This function emits a branch and is used at the leaves of an OR or an 1987 /// AND operator tree. 1988 void 1989 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1990 MachineBasicBlock *TBB, 1991 MachineBasicBlock *FBB, 1992 MachineBasicBlock *CurBB, 1993 MachineBasicBlock *SwitchBB, 1994 BranchProbability TProb, 1995 BranchProbability FProb, 1996 bool InvertCond) { 1997 const BasicBlock *BB = CurBB->getBasicBlock(); 1998 1999 // If the leaf of the tree is a comparison, merge the condition into 2000 // the caseblock. 2001 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2002 // The operands of the cmp have to be in this block. We don't know 2003 // how to export them from some other block. If this is the first block 2004 // of the sequence, no exporting is needed. 2005 if (CurBB == SwitchBB || 2006 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2007 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2008 ISD::CondCode Condition; 2009 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2010 ICmpInst::Predicate Pred = 2011 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2012 Condition = getICmpCondCode(Pred); 2013 } else { 2014 const FCmpInst *FC = cast<FCmpInst>(Cond); 2015 FCmpInst::Predicate Pred = 2016 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2017 Condition = getFCmpCondCode(Pred); 2018 if (TM.Options.NoNaNsFPMath) 2019 Condition = getFCmpCodeWithoutNaN(Condition); 2020 } 2021 2022 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2023 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2024 SwitchCases.push_back(CB); 2025 return; 2026 } 2027 } 2028 2029 // Create a CaseBlock record representing this branch. 2030 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2031 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2032 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2033 SwitchCases.push_back(CB); 2034 } 2035 2036 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2037 MachineBasicBlock *TBB, 2038 MachineBasicBlock *FBB, 2039 MachineBasicBlock *CurBB, 2040 MachineBasicBlock *SwitchBB, 2041 Instruction::BinaryOps Opc, 2042 BranchProbability TProb, 2043 BranchProbability FProb, 2044 bool InvertCond) { 2045 // Skip over not part of the tree and remember to invert op and operands at 2046 // next level. 2047 Value *NotCond; 2048 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2049 InBlock(NotCond, CurBB->getBasicBlock())) { 2050 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2051 !InvertCond); 2052 return; 2053 } 2054 2055 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2056 // Compute the effective opcode for Cond, taking into account whether it needs 2057 // to be inverted, e.g. 2058 // and (not (or A, B)), C 2059 // gets lowered as 2060 // and (and (not A, not B), C) 2061 unsigned BOpc = 0; 2062 if (BOp) { 2063 BOpc = BOp->getOpcode(); 2064 if (InvertCond) { 2065 if (BOpc == Instruction::And) 2066 BOpc = Instruction::Or; 2067 else if (BOpc == Instruction::Or) 2068 BOpc = Instruction::And; 2069 } 2070 } 2071 2072 // If this node is not part of the or/and tree, emit it as a branch. 2073 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2074 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2075 BOp->getParent() != CurBB->getBasicBlock() || 2076 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2077 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2078 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2079 TProb, FProb, InvertCond); 2080 return; 2081 } 2082 2083 // Create TmpBB after CurBB. 2084 MachineFunction::iterator BBI(CurBB); 2085 MachineFunction &MF = DAG.getMachineFunction(); 2086 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2087 CurBB->getParent()->insert(++BBI, TmpBB); 2088 2089 if (Opc == Instruction::Or) { 2090 // Codegen X | Y as: 2091 // BB1: 2092 // jmp_if_X TBB 2093 // jmp TmpBB 2094 // TmpBB: 2095 // jmp_if_Y TBB 2096 // jmp FBB 2097 // 2098 2099 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2100 // The requirement is that 2101 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2102 // = TrueProb for original BB. 2103 // Assuming the original probabilities are A and B, one choice is to set 2104 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2105 // A/(1+B) and 2B/(1+B). This choice assumes that 2106 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2107 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2108 // TmpBB, but the math is more complicated. 2109 2110 auto NewTrueProb = TProb / 2; 2111 auto NewFalseProb = TProb / 2 + FProb; 2112 // Emit the LHS condition. 2113 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2114 NewTrueProb, NewFalseProb, InvertCond); 2115 2116 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2117 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2118 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2119 // Emit the RHS condition into TmpBB. 2120 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2121 Probs[0], Probs[1], InvertCond); 2122 } else { 2123 assert(Opc == Instruction::And && "Unknown merge op!"); 2124 // Codegen X & Y as: 2125 // BB1: 2126 // jmp_if_X TmpBB 2127 // jmp FBB 2128 // TmpBB: 2129 // jmp_if_Y TBB 2130 // jmp FBB 2131 // 2132 // This requires creation of TmpBB after CurBB. 2133 2134 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2135 // The requirement is that 2136 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2137 // = FalseProb for original BB. 2138 // Assuming the original probabilities are A and B, one choice is to set 2139 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2140 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2141 // TrueProb for BB1 * FalseProb for TmpBB. 2142 2143 auto NewTrueProb = TProb + FProb / 2; 2144 auto NewFalseProb = FProb / 2; 2145 // Emit the LHS condition. 2146 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2147 NewTrueProb, NewFalseProb, InvertCond); 2148 2149 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2150 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2151 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2152 // Emit the RHS condition into TmpBB. 2153 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2154 Probs[0], Probs[1], InvertCond); 2155 } 2156 } 2157 2158 /// If the set of cases should be emitted as a series of branches, return true. 2159 /// If we should emit this as a bunch of and/or'd together conditions, return 2160 /// false. 2161 bool 2162 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2163 if (Cases.size() != 2) return true; 2164 2165 // If this is two comparisons of the same values or'd or and'd together, they 2166 // will get folded into a single comparison, so don't emit two blocks. 2167 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2168 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2169 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2170 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2171 return false; 2172 } 2173 2174 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2175 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2176 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2177 Cases[0].CC == Cases[1].CC && 2178 isa<Constant>(Cases[0].CmpRHS) && 2179 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2180 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2181 return false; 2182 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2183 return false; 2184 } 2185 2186 return true; 2187 } 2188 2189 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2190 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2191 2192 // Update machine-CFG edges. 2193 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2194 2195 if (I.isUnconditional()) { 2196 // Update machine-CFG edges. 2197 BrMBB->addSuccessor(Succ0MBB); 2198 2199 // If this is not a fall-through branch or optimizations are switched off, 2200 // emit the branch. 2201 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2202 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2203 MVT::Other, getControlRoot(), 2204 DAG.getBasicBlock(Succ0MBB))); 2205 2206 return; 2207 } 2208 2209 // If this condition is one of the special cases we handle, do special stuff 2210 // now. 2211 const Value *CondVal = I.getCondition(); 2212 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2213 2214 // If this is a series of conditions that are or'd or and'd together, emit 2215 // this as a sequence of branches instead of setcc's with and/or operations. 2216 // As long as jumps are not expensive, this should improve performance. 2217 // For example, instead of something like: 2218 // cmp A, B 2219 // C = seteq 2220 // cmp D, E 2221 // F = setle 2222 // or C, F 2223 // jnz foo 2224 // Emit: 2225 // cmp A, B 2226 // je foo 2227 // cmp D, E 2228 // jle foo 2229 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2230 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2231 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2232 !I.getMetadata(LLVMContext::MD_unpredictable) && 2233 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2234 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2235 Opcode, 2236 getEdgeProbability(BrMBB, Succ0MBB), 2237 getEdgeProbability(BrMBB, Succ1MBB), 2238 /*InvertCond=*/false); 2239 // If the compares in later blocks need to use values not currently 2240 // exported from this block, export them now. This block should always 2241 // be the first entry. 2242 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2243 2244 // Allow some cases to be rejected. 2245 if (ShouldEmitAsBranches(SwitchCases)) { 2246 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 2247 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 2248 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 2249 } 2250 2251 // Emit the branch for this block. 2252 visitSwitchCase(SwitchCases[0], BrMBB); 2253 SwitchCases.erase(SwitchCases.begin()); 2254 return; 2255 } 2256 2257 // Okay, we decided not to do this, remove any inserted MBB's and clear 2258 // SwitchCases. 2259 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 2260 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 2261 2262 SwitchCases.clear(); 2263 } 2264 } 2265 2266 // Create a CaseBlock record representing this branch. 2267 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2268 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2269 2270 // Use visitSwitchCase to actually insert the fast branch sequence for this 2271 // cond branch. 2272 visitSwitchCase(CB, BrMBB); 2273 } 2274 2275 /// visitSwitchCase - Emits the necessary code to represent a single node in 2276 /// the binary search tree resulting from lowering a switch instruction. 2277 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2278 MachineBasicBlock *SwitchBB) { 2279 SDValue Cond; 2280 SDValue CondLHS = getValue(CB.CmpLHS); 2281 SDLoc dl = CB.DL; 2282 2283 // Build the setcc now. 2284 if (!CB.CmpMHS) { 2285 // Fold "(X == true)" to X and "(X == false)" to !X to 2286 // handle common cases produced by branch lowering. 2287 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2288 CB.CC == ISD::SETEQ) 2289 Cond = CondLHS; 2290 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2291 CB.CC == ISD::SETEQ) { 2292 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2293 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2294 } else 2295 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 2296 } else { 2297 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2298 2299 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2300 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2301 2302 SDValue CmpOp = getValue(CB.CmpMHS); 2303 EVT VT = CmpOp.getValueType(); 2304 2305 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2306 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2307 ISD::SETLE); 2308 } else { 2309 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2310 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2311 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2312 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2313 } 2314 } 2315 2316 // Update successor info 2317 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2318 // TrueBB and FalseBB are always different unless the incoming IR is 2319 // degenerate. This only happens when running llc on weird IR. 2320 if (CB.TrueBB != CB.FalseBB) 2321 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2322 SwitchBB->normalizeSuccProbs(); 2323 2324 // If the lhs block is the next block, invert the condition so that we can 2325 // fall through to the lhs instead of the rhs block. 2326 if (CB.TrueBB == NextBlock(SwitchBB)) { 2327 std::swap(CB.TrueBB, CB.FalseBB); 2328 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2329 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2330 } 2331 2332 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2333 MVT::Other, getControlRoot(), Cond, 2334 DAG.getBasicBlock(CB.TrueBB)); 2335 2336 // Insert the false branch. Do this even if it's a fall through branch, 2337 // this makes it easier to do DAG optimizations which require inverting 2338 // the branch condition. 2339 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2340 DAG.getBasicBlock(CB.FalseBB)); 2341 2342 DAG.setRoot(BrCond); 2343 } 2344 2345 /// visitJumpTable - Emit JumpTable node in the current MBB 2346 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 2347 // Emit the code for the jump table 2348 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2349 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2350 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2351 JT.Reg, PTy); 2352 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2353 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2354 MVT::Other, Index.getValue(1), 2355 Table, Index); 2356 DAG.setRoot(BrJumpTable); 2357 } 2358 2359 /// visitJumpTableHeader - This function emits necessary code to produce index 2360 /// in the JumpTable from switch case. 2361 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 2362 JumpTableHeader &JTH, 2363 MachineBasicBlock *SwitchBB) { 2364 SDLoc dl = getCurSDLoc(); 2365 2366 // Subtract the lowest switch case value from the value being switched on and 2367 // conditional branch to default mbb if the result is greater than the 2368 // difference between smallest and largest cases. 2369 SDValue SwitchOp = getValue(JTH.SValue); 2370 EVT VT = SwitchOp.getValueType(); 2371 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2372 DAG.getConstant(JTH.First, dl, VT)); 2373 2374 // The SDNode we just created, which holds the value being switched on minus 2375 // the smallest case value, needs to be copied to a virtual register so it 2376 // can be used as an index into the jump table in a subsequent basic block. 2377 // This value may be smaller or larger than the target's pointer type, and 2378 // therefore require extension or truncating. 2379 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2380 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2381 2382 unsigned JumpTableReg = 2383 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2384 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2385 JumpTableReg, SwitchOp); 2386 JT.Reg = JumpTableReg; 2387 2388 // Emit the range check for the jump table, and branch to the default block 2389 // for the switch statement if the value being switched on exceeds the largest 2390 // case in the switch. 2391 SDValue CMP = DAG.getSetCC( 2392 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2393 Sub.getValueType()), 2394 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2395 2396 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2397 MVT::Other, CopyTo, CMP, 2398 DAG.getBasicBlock(JT.Default)); 2399 2400 // Avoid emitting unnecessary branches to the next block. 2401 if (JT.MBB != NextBlock(SwitchBB)) 2402 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2403 DAG.getBasicBlock(JT.MBB)); 2404 2405 DAG.setRoot(BrCond); 2406 } 2407 2408 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2409 /// variable if there exists one. 2410 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2411 SDValue &Chain) { 2412 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2413 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2414 MachineFunction &MF = DAG.getMachineFunction(); 2415 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2416 MachineSDNode *Node = 2417 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2418 if (Global) { 2419 MachinePointerInfo MPInfo(Global); 2420 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2421 MachineMemOperand::MODereferenceable; 2422 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2423 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy)); 2424 DAG.setNodeMemRefs(Node, {MemRef}); 2425 } 2426 return SDValue(Node, 0); 2427 } 2428 2429 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2430 /// tail spliced into a stack protector check success bb. 2431 /// 2432 /// For a high level explanation of how this fits into the stack protector 2433 /// generation see the comment on the declaration of class 2434 /// StackProtectorDescriptor. 2435 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2436 MachineBasicBlock *ParentBB) { 2437 2438 // First create the loads to the guard/stack slot for the comparison. 2439 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2440 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2441 2442 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2443 int FI = MFI.getStackProtectorIndex(); 2444 2445 SDValue Guard; 2446 SDLoc dl = getCurSDLoc(); 2447 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2448 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2449 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2450 2451 // Generate code to load the content of the guard slot. 2452 SDValue GuardVal = DAG.getLoad( 2453 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2454 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2455 MachineMemOperand::MOVolatile); 2456 2457 if (TLI.useStackGuardXorFP()) 2458 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2459 2460 // Retrieve guard check function, nullptr if instrumentation is inlined. 2461 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2462 // The target provides a guard check function to validate the guard value. 2463 // Generate a call to that function with the content of the guard slot as 2464 // argument. 2465 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2466 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2467 2468 TargetLowering::ArgListTy Args; 2469 TargetLowering::ArgListEntry Entry; 2470 Entry.Node = GuardVal; 2471 Entry.Ty = FnTy->getParamType(0); 2472 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2473 Entry.IsInReg = true; 2474 Args.push_back(Entry); 2475 2476 TargetLowering::CallLoweringInfo CLI(DAG); 2477 CLI.setDebugLoc(getCurSDLoc()) 2478 .setChain(DAG.getEntryNode()) 2479 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2480 getValue(GuardCheckFn), std::move(Args)); 2481 2482 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2483 DAG.setRoot(Result.second); 2484 return; 2485 } 2486 2487 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2488 // Otherwise, emit a volatile load to retrieve the stack guard value. 2489 SDValue Chain = DAG.getEntryNode(); 2490 if (TLI.useLoadStackGuardNode()) { 2491 Guard = getLoadStackGuard(DAG, dl, Chain); 2492 } else { 2493 const Value *IRGuard = TLI.getSDagStackGuard(M); 2494 SDValue GuardPtr = getValue(IRGuard); 2495 2496 Guard = 2497 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2498 Align, MachineMemOperand::MOVolatile); 2499 } 2500 2501 // Perform the comparison via a subtract/getsetcc. 2502 EVT VT = Guard.getValueType(); 2503 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2504 2505 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2506 *DAG.getContext(), 2507 Sub.getValueType()), 2508 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2509 2510 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2511 // branch to failure MBB. 2512 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2513 MVT::Other, GuardVal.getOperand(0), 2514 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2515 // Otherwise branch to success MBB. 2516 SDValue Br = DAG.getNode(ISD::BR, dl, 2517 MVT::Other, BrCond, 2518 DAG.getBasicBlock(SPD.getSuccessMBB())); 2519 2520 DAG.setRoot(Br); 2521 } 2522 2523 /// Codegen the failure basic block for a stack protector check. 2524 /// 2525 /// A failure stack protector machine basic block consists simply of a call to 2526 /// __stack_chk_fail(). 2527 /// 2528 /// For a high level explanation of how this fits into the stack protector 2529 /// generation see the comment on the declaration of class 2530 /// StackProtectorDescriptor. 2531 void 2532 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2533 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2534 SDValue Chain = 2535 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2536 None, false, getCurSDLoc(), false, false).second; 2537 DAG.setRoot(Chain); 2538 } 2539 2540 /// visitBitTestHeader - This function emits necessary code to produce value 2541 /// suitable for "bit tests" 2542 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2543 MachineBasicBlock *SwitchBB) { 2544 SDLoc dl = getCurSDLoc(); 2545 2546 // Subtract the minimum value 2547 SDValue SwitchOp = getValue(B.SValue); 2548 EVT VT = SwitchOp.getValueType(); 2549 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2550 DAG.getConstant(B.First, dl, VT)); 2551 2552 // Check range 2553 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2554 SDValue RangeCmp = DAG.getSetCC( 2555 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2556 Sub.getValueType()), 2557 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2558 2559 // Determine the type of the test operands. 2560 bool UsePtrType = false; 2561 if (!TLI.isTypeLegal(VT)) 2562 UsePtrType = true; 2563 else { 2564 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2565 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2566 // Switch table case range are encoded into series of masks. 2567 // Just use pointer type, it's guaranteed to fit. 2568 UsePtrType = true; 2569 break; 2570 } 2571 } 2572 if (UsePtrType) { 2573 VT = TLI.getPointerTy(DAG.getDataLayout()); 2574 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2575 } 2576 2577 B.RegVT = VT.getSimpleVT(); 2578 B.Reg = FuncInfo.CreateReg(B.RegVT); 2579 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2580 2581 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2582 2583 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2584 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2585 SwitchBB->normalizeSuccProbs(); 2586 2587 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2588 MVT::Other, CopyTo, RangeCmp, 2589 DAG.getBasicBlock(B.Default)); 2590 2591 // Avoid emitting unnecessary branches to the next block. 2592 if (MBB != NextBlock(SwitchBB)) 2593 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2594 DAG.getBasicBlock(MBB)); 2595 2596 DAG.setRoot(BrRange); 2597 } 2598 2599 /// visitBitTestCase - this function produces one "bit test" 2600 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2601 MachineBasicBlock* NextMBB, 2602 BranchProbability BranchProbToNext, 2603 unsigned Reg, 2604 BitTestCase &B, 2605 MachineBasicBlock *SwitchBB) { 2606 SDLoc dl = getCurSDLoc(); 2607 MVT VT = BB.RegVT; 2608 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2609 SDValue Cmp; 2610 unsigned PopCount = countPopulation(B.Mask); 2611 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2612 if (PopCount == 1) { 2613 // Testing for a single bit; just compare the shift count with what it 2614 // would need to be to shift a 1 bit in that position. 2615 Cmp = DAG.getSetCC( 2616 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2617 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2618 ISD::SETEQ); 2619 } else if (PopCount == BB.Range) { 2620 // There is only one zero bit in the range, test for it directly. 2621 Cmp = DAG.getSetCC( 2622 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2623 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2624 ISD::SETNE); 2625 } else { 2626 // Make desired shift 2627 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2628 DAG.getConstant(1, dl, VT), ShiftOp); 2629 2630 // Emit bit tests and jumps 2631 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2632 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2633 Cmp = DAG.getSetCC( 2634 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2635 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2636 } 2637 2638 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2639 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2640 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2641 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2642 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2643 // one as they are relative probabilities (and thus work more like weights), 2644 // and hence we need to normalize them to let the sum of them become one. 2645 SwitchBB->normalizeSuccProbs(); 2646 2647 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2648 MVT::Other, getControlRoot(), 2649 Cmp, DAG.getBasicBlock(B.TargetBB)); 2650 2651 // Avoid emitting unnecessary branches to the next block. 2652 if (NextMBB != NextBlock(SwitchBB)) 2653 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2654 DAG.getBasicBlock(NextMBB)); 2655 2656 DAG.setRoot(BrAnd); 2657 } 2658 2659 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2660 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2661 2662 // Retrieve successors. Look through artificial IR level blocks like 2663 // catchswitch for successors. 2664 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2665 const BasicBlock *EHPadBB = I.getSuccessor(1); 2666 2667 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2668 // have to do anything here to lower funclet bundles. 2669 assert(!I.hasOperandBundlesOtherThan( 2670 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2671 "Cannot lower invokes with arbitrary operand bundles yet!"); 2672 2673 const Value *Callee(I.getCalledValue()); 2674 const Function *Fn = dyn_cast<Function>(Callee); 2675 if (isa<InlineAsm>(Callee)) 2676 visitInlineAsm(&I); 2677 else if (Fn && Fn->isIntrinsic()) { 2678 switch (Fn->getIntrinsicID()) { 2679 default: 2680 llvm_unreachable("Cannot invoke this intrinsic"); 2681 case Intrinsic::donothing: 2682 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2683 break; 2684 case Intrinsic::experimental_patchpoint_void: 2685 case Intrinsic::experimental_patchpoint_i64: 2686 visitPatchpoint(&I, EHPadBB); 2687 break; 2688 case Intrinsic::experimental_gc_statepoint: 2689 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2690 break; 2691 } 2692 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2693 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2694 // Eventually we will support lowering the @llvm.experimental.deoptimize 2695 // intrinsic, and right now there are no plans to support other intrinsics 2696 // with deopt state. 2697 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2698 } else { 2699 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2700 } 2701 2702 // If the value of the invoke is used outside of its defining block, make it 2703 // available as a virtual register. 2704 // We already took care of the exported value for the statepoint instruction 2705 // during call to the LowerStatepoint. 2706 if (!isStatepoint(I)) { 2707 CopyToExportRegsIfNeeded(&I); 2708 } 2709 2710 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2711 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2712 BranchProbability EHPadBBProb = 2713 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2714 : BranchProbability::getZero(); 2715 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2716 2717 // Update successor info. 2718 addSuccessorWithProb(InvokeMBB, Return); 2719 for (auto &UnwindDest : UnwindDests) { 2720 UnwindDest.first->setIsEHPad(); 2721 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2722 } 2723 InvokeMBB->normalizeSuccProbs(); 2724 2725 // Drop into normal successor. 2726 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2727 DAG.getBasicBlock(Return))); 2728 } 2729 2730 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2731 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2732 2733 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2734 // have to do anything here to lower funclet bundles. 2735 assert(!I.hasOperandBundlesOtherThan( 2736 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2737 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2738 2739 assert(isa<InlineAsm>(I.getCalledValue()) && 2740 "Only know how to handle inlineasm callbr"); 2741 visitInlineAsm(&I); 2742 2743 // Retrieve successors. 2744 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2745 2746 // Update successor info. 2747 addSuccessorWithProb(CallBrMBB, Return); 2748 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2749 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2750 addSuccessorWithProb(CallBrMBB, Target); 2751 } 2752 CallBrMBB->normalizeSuccProbs(); 2753 2754 // Drop into default successor. 2755 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2756 MVT::Other, getControlRoot(), 2757 DAG.getBasicBlock(Return))); 2758 } 2759 2760 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2761 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2762 } 2763 2764 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2765 assert(FuncInfo.MBB->isEHPad() && 2766 "Call to landingpad not in landing pad!"); 2767 2768 // If there aren't registers to copy the values into (e.g., during SjLj 2769 // exceptions), then don't bother to create these DAG nodes. 2770 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2771 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2772 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2773 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2774 return; 2775 2776 // If landingpad's return type is token type, we don't create DAG nodes 2777 // for its exception pointer and selector value. The extraction of exception 2778 // pointer or selector value from token type landingpads is not currently 2779 // supported. 2780 if (LP.getType()->isTokenTy()) 2781 return; 2782 2783 SmallVector<EVT, 2> ValueVTs; 2784 SDLoc dl = getCurSDLoc(); 2785 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2786 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2787 2788 // Get the two live-in registers as SDValues. The physregs have already been 2789 // copied into virtual registers. 2790 SDValue Ops[2]; 2791 if (FuncInfo.ExceptionPointerVirtReg) { 2792 Ops[0] = DAG.getZExtOrTrunc( 2793 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2794 FuncInfo.ExceptionPointerVirtReg, 2795 TLI.getPointerTy(DAG.getDataLayout())), 2796 dl, ValueVTs[0]); 2797 } else { 2798 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2799 } 2800 Ops[1] = DAG.getZExtOrTrunc( 2801 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2802 FuncInfo.ExceptionSelectorVirtReg, 2803 TLI.getPointerTy(DAG.getDataLayout())), 2804 dl, ValueVTs[1]); 2805 2806 // Merge into one. 2807 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2808 DAG.getVTList(ValueVTs), Ops); 2809 setValue(&LP, Res); 2810 } 2811 2812 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2813 #ifndef NDEBUG 2814 for (const CaseCluster &CC : Clusters) 2815 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2816 #endif 2817 2818 llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) { 2819 return a.Low->getValue().slt(b.Low->getValue()); 2820 }); 2821 2822 // Merge adjacent clusters with the same destination. 2823 const unsigned N = Clusters.size(); 2824 unsigned DstIndex = 0; 2825 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2826 CaseCluster &CC = Clusters[SrcIndex]; 2827 const ConstantInt *CaseVal = CC.Low; 2828 MachineBasicBlock *Succ = CC.MBB; 2829 2830 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2831 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2832 // If this case has the same successor and is a neighbour, merge it into 2833 // the previous cluster. 2834 Clusters[DstIndex - 1].High = CaseVal; 2835 Clusters[DstIndex - 1].Prob += CC.Prob; 2836 } else { 2837 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2838 sizeof(Clusters[SrcIndex])); 2839 } 2840 } 2841 Clusters.resize(DstIndex); 2842 } 2843 2844 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2845 MachineBasicBlock *Last) { 2846 // Update JTCases. 2847 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2848 if (JTCases[i].first.HeaderBB == First) 2849 JTCases[i].first.HeaderBB = Last; 2850 2851 // Update BitTestCases. 2852 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2853 if (BitTestCases[i].Parent == First) 2854 BitTestCases[i].Parent = Last; 2855 } 2856 2857 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2858 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2859 2860 // Update machine-CFG edges with unique successors. 2861 SmallSet<BasicBlock*, 32> Done; 2862 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2863 BasicBlock *BB = I.getSuccessor(i); 2864 bool Inserted = Done.insert(BB).second; 2865 if (!Inserted) 2866 continue; 2867 2868 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2869 addSuccessorWithProb(IndirectBrMBB, Succ); 2870 } 2871 IndirectBrMBB->normalizeSuccProbs(); 2872 2873 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2874 MVT::Other, getControlRoot(), 2875 getValue(I.getAddress()))); 2876 } 2877 2878 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2879 if (!DAG.getTarget().Options.TrapUnreachable) 2880 return; 2881 2882 // We may be able to ignore unreachable behind a noreturn call. 2883 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2884 const BasicBlock &BB = *I.getParent(); 2885 if (&I != &BB.front()) { 2886 BasicBlock::const_iterator PredI = 2887 std::prev(BasicBlock::const_iterator(&I)); 2888 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2889 if (Call->doesNotReturn()) 2890 return; 2891 } 2892 } 2893 } 2894 2895 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2896 } 2897 2898 void SelectionDAGBuilder::visitFSub(const User &I) { 2899 // -0.0 - X --> fneg 2900 Type *Ty = I.getType(); 2901 if (isa<Constant>(I.getOperand(0)) && 2902 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2903 SDValue Op2 = getValue(I.getOperand(1)); 2904 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2905 Op2.getValueType(), Op2)); 2906 return; 2907 } 2908 2909 visitBinary(I, ISD::FSUB); 2910 } 2911 2912 /// Checks if the given instruction performs a vector reduction, in which case 2913 /// we have the freedom to alter the elements in the result as long as the 2914 /// reduction of them stays unchanged. 2915 static bool isVectorReductionOp(const User *I) { 2916 const Instruction *Inst = dyn_cast<Instruction>(I); 2917 if (!Inst || !Inst->getType()->isVectorTy()) 2918 return false; 2919 2920 auto OpCode = Inst->getOpcode(); 2921 switch (OpCode) { 2922 case Instruction::Add: 2923 case Instruction::Mul: 2924 case Instruction::And: 2925 case Instruction::Or: 2926 case Instruction::Xor: 2927 break; 2928 case Instruction::FAdd: 2929 case Instruction::FMul: 2930 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2931 if (FPOp->getFastMathFlags().isFast()) 2932 break; 2933 LLVM_FALLTHROUGH; 2934 default: 2935 return false; 2936 } 2937 2938 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2939 // Ensure the reduction size is a power of 2. 2940 if (!isPowerOf2_32(ElemNum)) 2941 return false; 2942 2943 unsigned ElemNumToReduce = ElemNum; 2944 2945 // Do DFS search on the def-use chain from the given instruction. We only 2946 // allow four kinds of operations during the search until we reach the 2947 // instruction that extracts the first element from the vector: 2948 // 2949 // 1. The reduction operation of the same opcode as the given instruction. 2950 // 2951 // 2. PHI node. 2952 // 2953 // 3. ShuffleVector instruction together with a reduction operation that 2954 // does a partial reduction. 2955 // 2956 // 4. ExtractElement that extracts the first element from the vector, and we 2957 // stop searching the def-use chain here. 2958 // 2959 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2960 // from 1-3 to the stack to continue the DFS. The given instruction is not 2961 // a reduction operation if we meet any other instructions other than those 2962 // listed above. 2963 2964 SmallVector<const User *, 16> UsersToVisit{Inst}; 2965 SmallPtrSet<const User *, 16> Visited; 2966 bool ReduxExtracted = false; 2967 2968 while (!UsersToVisit.empty()) { 2969 auto User = UsersToVisit.back(); 2970 UsersToVisit.pop_back(); 2971 if (!Visited.insert(User).second) 2972 continue; 2973 2974 for (const auto &U : User->users()) { 2975 auto Inst = dyn_cast<Instruction>(U); 2976 if (!Inst) 2977 return false; 2978 2979 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2980 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2981 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 2982 return false; 2983 UsersToVisit.push_back(U); 2984 } else if (const ShuffleVectorInst *ShufInst = 2985 dyn_cast<ShuffleVectorInst>(U)) { 2986 // Detect the following pattern: A ShuffleVector instruction together 2987 // with a reduction that do partial reduction on the first and second 2988 // ElemNumToReduce / 2 elements, and store the result in 2989 // ElemNumToReduce / 2 elements in another vector. 2990 2991 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2992 if (ResultElements < ElemNum) 2993 return false; 2994 2995 if (ElemNumToReduce == 1) 2996 return false; 2997 if (!isa<UndefValue>(U->getOperand(1))) 2998 return false; 2999 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 3000 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 3001 return false; 3002 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 3003 if (ShufInst->getMaskValue(i) != -1) 3004 return false; 3005 3006 // There is only one user of this ShuffleVector instruction, which 3007 // must be a reduction operation. 3008 if (!U->hasOneUse()) 3009 return false; 3010 3011 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 3012 if (!U2 || U2->getOpcode() != OpCode) 3013 return false; 3014 3015 // Check operands of the reduction operation. 3016 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 3017 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 3018 UsersToVisit.push_back(U2); 3019 ElemNumToReduce /= 2; 3020 } else 3021 return false; 3022 } else if (isa<ExtractElementInst>(U)) { 3023 // At this moment we should have reduced all elements in the vector. 3024 if (ElemNumToReduce != 1) 3025 return false; 3026 3027 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 3028 if (!Val || !Val->isZero()) 3029 return false; 3030 3031 ReduxExtracted = true; 3032 } else 3033 return false; 3034 } 3035 } 3036 return ReduxExtracted; 3037 } 3038 3039 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3040 SDNodeFlags Flags; 3041 3042 SDValue Op = getValue(I.getOperand(0)); 3043 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3044 Op, Flags); 3045 setValue(&I, UnNodeValue); 3046 } 3047 3048 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3049 SDNodeFlags Flags; 3050 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3051 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3052 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3053 } 3054 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3055 Flags.setExact(ExactOp->isExact()); 3056 } 3057 if (isVectorReductionOp(&I)) { 3058 Flags.setVectorReduction(true); 3059 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 3060 } 3061 3062 SDValue Op1 = getValue(I.getOperand(0)); 3063 SDValue Op2 = getValue(I.getOperand(1)); 3064 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3065 Op1, Op2, Flags); 3066 setValue(&I, BinNodeValue); 3067 } 3068 3069 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3070 SDValue Op1 = getValue(I.getOperand(0)); 3071 SDValue Op2 = getValue(I.getOperand(1)); 3072 3073 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3074 Op1.getValueType(), DAG.getDataLayout()); 3075 3076 // Coerce the shift amount to the right type if we can. 3077 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3078 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3079 unsigned Op2Size = Op2.getValueSizeInBits(); 3080 SDLoc DL = getCurSDLoc(); 3081 3082 // If the operand is smaller than the shift count type, promote it. 3083 if (ShiftSize > Op2Size) 3084 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3085 3086 // If the operand is larger than the shift count type but the shift 3087 // count type has enough bits to represent any shift value, truncate 3088 // it now. This is a common case and it exposes the truncate to 3089 // optimization early. 3090 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3091 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3092 // Otherwise we'll need to temporarily settle for some other convenient 3093 // type. Type legalization will make adjustments once the shiftee is split. 3094 else 3095 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3096 } 3097 3098 bool nuw = false; 3099 bool nsw = false; 3100 bool exact = false; 3101 3102 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3103 3104 if (const OverflowingBinaryOperator *OFBinOp = 3105 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3106 nuw = OFBinOp->hasNoUnsignedWrap(); 3107 nsw = OFBinOp->hasNoSignedWrap(); 3108 } 3109 if (const PossiblyExactOperator *ExactOp = 3110 dyn_cast<const PossiblyExactOperator>(&I)) 3111 exact = ExactOp->isExact(); 3112 } 3113 SDNodeFlags Flags; 3114 Flags.setExact(exact); 3115 Flags.setNoSignedWrap(nsw); 3116 Flags.setNoUnsignedWrap(nuw); 3117 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3118 Flags); 3119 setValue(&I, Res); 3120 } 3121 3122 void SelectionDAGBuilder::visitSDiv(const User &I) { 3123 SDValue Op1 = getValue(I.getOperand(0)); 3124 SDValue Op2 = getValue(I.getOperand(1)); 3125 3126 SDNodeFlags Flags; 3127 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3128 cast<PossiblyExactOperator>(&I)->isExact()); 3129 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3130 Op2, Flags)); 3131 } 3132 3133 void SelectionDAGBuilder::visitICmp(const User &I) { 3134 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3135 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3136 predicate = IC->getPredicate(); 3137 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3138 predicate = ICmpInst::Predicate(IC->getPredicate()); 3139 SDValue Op1 = getValue(I.getOperand(0)); 3140 SDValue Op2 = getValue(I.getOperand(1)); 3141 ISD::CondCode Opcode = getICmpCondCode(predicate); 3142 3143 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3144 I.getType()); 3145 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3146 } 3147 3148 void SelectionDAGBuilder::visitFCmp(const User &I) { 3149 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3150 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3151 predicate = FC->getPredicate(); 3152 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3153 predicate = FCmpInst::Predicate(FC->getPredicate()); 3154 SDValue Op1 = getValue(I.getOperand(0)); 3155 SDValue Op2 = getValue(I.getOperand(1)); 3156 3157 ISD::CondCode Condition = getFCmpCondCode(predicate); 3158 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3159 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3160 Condition = getFCmpCodeWithoutNaN(Condition); 3161 3162 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3163 I.getType()); 3164 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3165 } 3166 3167 // Check if the condition of the select has one use or two users that are both 3168 // selects with the same condition. 3169 static bool hasOnlySelectUsers(const Value *Cond) { 3170 return llvm::all_of(Cond->users(), [](const Value *V) { 3171 return isa<SelectInst>(V); 3172 }); 3173 } 3174 3175 void SelectionDAGBuilder::visitSelect(const User &I) { 3176 SmallVector<EVT, 4> ValueVTs; 3177 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3178 ValueVTs); 3179 unsigned NumValues = ValueVTs.size(); 3180 if (NumValues == 0) return; 3181 3182 SmallVector<SDValue, 4> Values(NumValues); 3183 SDValue Cond = getValue(I.getOperand(0)); 3184 SDValue LHSVal = getValue(I.getOperand(1)); 3185 SDValue RHSVal = getValue(I.getOperand(2)); 3186 auto BaseOps = {Cond}; 3187 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 3188 ISD::VSELECT : ISD::SELECT; 3189 3190 // Min/max matching is only viable if all output VTs are the same. 3191 if (is_splat(ValueVTs)) { 3192 EVT VT = ValueVTs[0]; 3193 LLVMContext &Ctx = *DAG.getContext(); 3194 auto &TLI = DAG.getTargetLoweringInfo(); 3195 3196 // We care about the legality of the operation after it has been type 3197 // legalized. 3198 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 3199 VT != TLI.getTypeToTransformTo(Ctx, VT)) 3200 VT = TLI.getTypeToTransformTo(Ctx, VT); 3201 3202 // If the vselect is legal, assume we want to leave this as a vector setcc + 3203 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3204 // min/max is legal on the scalar type. 3205 bool UseScalarMinMax = VT.isVector() && 3206 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3207 3208 Value *LHS, *RHS; 3209 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3210 ISD::NodeType Opc = ISD::DELETED_NODE; 3211 switch (SPR.Flavor) { 3212 case SPF_UMAX: Opc = ISD::UMAX; break; 3213 case SPF_UMIN: Opc = ISD::UMIN; break; 3214 case SPF_SMAX: Opc = ISD::SMAX; break; 3215 case SPF_SMIN: Opc = ISD::SMIN; break; 3216 case SPF_FMINNUM: 3217 switch (SPR.NaNBehavior) { 3218 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3219 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3220 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3221 case SPNB_RETURNS_ANY: { 3222 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3223 Opc = ISD::FMINNUM; 3224 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3225 Opc = ISD::FMINIMUM; 3226 else if (UseScalarMinMax) 3227 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3228 ISD::FMINNUM : ISD::FMINIMUM; 3229 break; 3230 } 3231 } 3232 break; 3233 case SPF_FMAXNUM: 3234 switch (SPR.NaNBehavior) { 3235 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3236 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3237 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3238 case SPNB_RETURNS_ANY: 3239 3240 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3241 Opc = ISD::FMAXNUM; 3242 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3243 Opc = ISD::FMAXIMUM; 3244 else if (UseScalarMinMax) 3245 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3246 ISD::FMAXNUM : ISD::FMAXIMUM; 3247 break; 3248 } 3249 break; 3250 default: break; 3251 } 3252 3253 if (Opc != ISD::DELETED_NODE && 3254 (TLI.isOperationLegalOrCustom(Opc, VT) || 3255 (UseScalarMinMax && 3256 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3257 // If the underlying comparison instruction is used by any other 3258 // instruction, the consumed instructions won't be destroyed, so it is 3259 // not profitable to convert to a min/max. 3260 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3261 OpCode = Opc; 3262 LHSVal = getValue(LHS); 3263 RHSVal = getValue(RHS); 3264 BaseOps = {}; 3265 } 3266 } 3267 3268 for (unsigned i = 0; i != NumValues; ++i) { 3269 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3270 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3271 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3272 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 3273 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 3274 Ops); 3275 } 3276 3277 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3278 DAG.getVTList(ValueVTs), Values)); 3279 } 3280 3281 void SelectionDAGBuilder::visitTrunc(const User &I) { 3282 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3283 SDValue N = getValue(I.getOperand(0)); 3284 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3285 I.getType()); 3286 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3287 } 3288 3289 void SelectionDAGBuilder::visitZExt(const User &I) { 3290 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3291 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3292 SDValue N = getValue(I.getOperand(0)); 3293 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3294 I.getType()); 3295 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3296 } 3297 3298 void SelectionDAGBuilder::visitSExt(const User &I) { 3299 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3300 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3301 SDValue N = getValue(I.getOperand(0)); 3302 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3303 I.getType()); 3304 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3305 } 3306 3307 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3308 // FPTrunc is never a no-op cast, no need to check 3309 SDValue N = getValue(I.getOperand(0)); 3310 SDLoc dl = getCurSDLoc(); 3311 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3312 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3313 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3314 DAG.getTargetConstant( 3315 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3316 } 3317 3318 void SelectionDAGBuilder::visitFPExt(const User &I) { 3319 // FPExt is never a no-op cast, no need to check 3320 SDValue N = getValue(I.getOperand(0)); 3321 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3322 I.getType()); 3323 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3324 } 3325 3326 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3327 // FPToUI is never a no-op cast, no need to check 3328 SDValue N = getValue(I.getOperand(0)); 3329 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3330 I.getType()); 3331 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3332 } 3333 3334 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3335 // FPToSI is never a no-op cast, no need to check 3336 SDValue N = getValue(I.getOperand(0)); 3337 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3338 I.getType()); 3339 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3340 } 3341 3342 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3343 // UIToFP is never a no-op cast, no need to check 3344 SDValue N = getValue(I.getOperand(0)); 3345 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3346 I.getType()); 3347 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3348 } 3349 3350 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3351 // SIToFP is never a no-op cast, no need to check 3352 SDValue N = getValue(I.getOperand(0)); 3353 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3354 I.getType()); 3355 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3356 } 3357 3358 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3359 // What to do depends on the size of the integer and the size of the pointer. 3360 // We can either truncate, zero extend, or no-op, accordingly. 3361 SDValue N = getValue(I.getOperand(0)); 3362 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3363 I.getType()); 3364 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3365 } 3366 3367 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3368 // What to do depends on the size of the integer and the size of the pointer. 3369 // We can either truncate, zero extend, or no-op, accordingly. 3370 SDValue N = getValue(I.getOperand(0)); 3371 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3372 I.getType()); 3373 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3374 } 3375 3376 void SelectionDAGBuilder::visitBitCast(const User &I) { 3377 SDValue N = getValue(I.getOperand(0)); 3378 SDLoc dl = getCurSDLoc(); 3379 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3380 I.getType()); 3381 3382 // BitCast assures us that source and destination are the same size so this is 3383 // either a BITCAST or a no-op. 3384 if (DestVT != N.getValueType()) 3385 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3386 DestVT, N)); // convert types. 3387 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3388 // might fold any kind of constant expression to an integer constant and that 3389 // is not what we are looking for. Only recognize a bitcast of a genuine 3390 // constant integer as an opaque constant. 3391 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3392 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3393 /*isOpaque*/true)); 3394 else 3395 setValue(&I, N); // noop cast. 3396 } 3397 3398 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3399 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3400 const Value *SV = I.getOperand(0); 3401 SDValue N = getValue(SV); 3402 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3403 3404 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3405 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3406 3407 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3408 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3409 3410 setValue(&I, N); 3411 } 3412 3413 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3414 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3415 SDValue InVec = getValue(I.getOperand(0)); 3416 SDValue InVal = getValue(I.getOperand(1)); 3417 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3418 TLI.getVectorIdxTy(DAG.getDataLayout())); 3419 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3420 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3421 InVec, InVal, InIdx)); 3422 } 3423 3424 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3425 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3426 SDValue InVec = getValue(I.getOperand(0)); 3427 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3428 TLI.getVectorIdxTy(DAG.getDataLayout())); 3429 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3430 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3431 InVec, InIdx)); 3432 } 3433 3434 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3435 SDValue Src1 = getValue(I.getOperand(0)); 3436 SDValue Src2 = getValue(I.getOperand(1)); 3437 SDLoc DL = getCurSDLoc(); 3438 3439 SmallVector<int, 8> Mask; 3440 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3441 unsigned MaskNumElts = Mask.size(); 3442 3443 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3444 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3445 EVT SrcVT = Src1.getValueType(); 3446 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3447 3448 if (SrcNumElts == MaskNumElts) { 3449 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3450 return; 3451 } 3452 3453 // Normalize the shuffle vector since mask and vector length don't match. 3454 if (SrcNumElts < MaskNumElts) { 3455 // Mask is longer than the source vectors. We can use concatenate vector to 3456 // make the mask and vectors lengths match. 3457 3458 if (MaskNumElts % SrcNumElts == 0) { 3459 // Mask length is a multiple of the source vector length. 3460 // Check if the shuffle is some kind of concatenation of the input 3461 // vectors. 3462 unsigned NumConcat = MaskNumElts / SrcNumElts; 3463 bool IsConcat = true; 3464 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3465 for (unsigned i = 0; i != MaskNumElts; ++i) { 3466 int Idx = Mask[i]; 3467 if (Idx < 0) 3468 continue; 3469 // Ensure the indices in each SrcVT sized piece are sequential and that 3470 // the same source is used for the whole piece. 3471 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3472 (ConcatSrcs[i / SrcNumElts] >= 0 && 3473 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3474 IsConcat = false; 3475 break; 3476 } 3477 // Remember which source this index came from. 3478 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3479 } 3480 3481 // The shuffle is concatenating multiple vectors together. Just emit 3482 // a CONCAT_VECTORS operation. 3483 if (IsConcat) { 3484 SmallVector<SDValue, 8> ConcatOps; 3485 for (auto Src : ConcatSrcs) { 3486 if (Src < 0) 3487 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3488 else if (Src == 0) 3489 ConcatOps.push_back(Src1); 3490 else 3491 ConcatOps.push_back(Src2); 3492 } 3493 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3494 return; 3495 } 3496 } 3497 3498 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3499 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3500 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3501 PaddedMaskNumElts); 3502 3503 // Pad both vectors with undefs to make them the same length as the mask. 3504 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3505 3506 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3507 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3508 MOps1[0] = Src1; 3509 MOps2[0] = Src2; 3510 3511 Src1 = Src1.isUndef() 3512 ? DAG.getUNDEF(PaddedVT) 3513 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3514 Src2 = Src2.isUndef() 3515 ? DAG.getUNDEF(PaddedVT) 3516 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3517 3518 // Readjust mask for new input vector length. 3519 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3520 for (unsigned i = 0; i != MaskNumElts; ++i) { 3521 int Idx = Mask[i]; 3522 if (Idx >= (int)SrcNumElts) 3523 Idx -= SrcNumElts - PaddedMaskNumElts; 3524 MappedOps[i] = Idx; 3525 } 3526 3527 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3528 3529 // If the concatenated vector was padded, extract a subvector with the 3530 // correct number of elements. 3531 if (MaskNumElts != PaddedMaskNumElts) 3532 Result = DAG.getNode( 3533 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3534 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3535 3536 setValue(&I, Result); 3537 return; 3538 } 3539 3540 if (SrcNumElts > MaskNumElts) { 3541 // Analyze the access pattern of the vector to see if we can extract 3542 // two subvectors and do the shuffle. 3543 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3544 bool CanExtract = true; 3545 for (int Idx : Mask) { 3546 unsigned Input = 0; 3547 if (Idx < 0) 3548 continue; 3549 3550 if (Idx >= (int)SrcNumElts) { 3551 Input = 1; 3552 Idx -= SrcNumElts; 3553 } 3554 3555 // If all the indices come from the same MaskNumElts sized portion of 3556 // the sources we can use extract. Also make sure the extract wouldn't 3557 // extract past the end of the source. 3558 int NewStartIdx = alignDown(Idx, MaskNumElts); 3559 if (NewStartIdx + MaskNumElts > SrcNumElts || 3560 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3561 CanExtract = false; 3562 // Make sure we always update StartIdx as we use it to track if all 3563 // elements are undef. 3564 StartIdx[Input] = NewStartIdx; 3565 } 3566 3567 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3568 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3569 return; 3570 } 3571 if (CanExtract) { 3572 // Extract appropriate subvector and generate a vector shuffle 3573 for (unsigned Input = 0; Input < 2; ++Input) { 3574 SDValue &Src = Input == 0 ? Src1 : Src2; 3575 if (StartIdx[Input] < 0) 3576 Src = DAG.getUNDEF(VT); 3577 else { 3578 Src = DAG.getNode( 3579 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3580 DAG.getConstant(StartIdx[Input], DL, 3581 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3582 } 3583 } 3584 3585 // Calculate new mask. 3586 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3587 for (int &Idx : MappedOps) { 3588 if (Idx >= (int)SrcNumElts) 3589 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3590 else if (Idx >= 0) 3591 Idx -= StartIdx[0]; 3592 } 3593 3594 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3595 return; 3596 } 3597 } 3598 3599 // We can't use either concat vectors or extract subvectors so fall back to 3600 // replacing the shuffle with extract and build vector. 3601 // to insert and build vector. 3602 EVT EltVT = VT.getVectorElementType(); 3603 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3604 SmallVector<SDValue,8> Ops; 3605 for (int Idx : Mask) { 3606 SDValue Res; 3607 3608 if (Idx < 0) { 3609 Res = DAG.getUNDEF(EltVT); 3610 } else { 3611 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3612 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3613 3614 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3615 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3616 } 3617 3618 Ops.push_back(Res); 3619 } 3620 3621 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3622 } 3623 3624 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3625 ArrayRef<unsigned> Indices; 3626 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3627 Indices = IV->getIndices(); 3628 else 3629 Indices = cast<ConstantExpr>(&I)->getIndices(); 3630 3631 const Value *Op0 = I.getOperand(0); 3632 const Value *Op1 = I.getOperand(1); 3633 Type *AggTy = I.getType(); 3634 Type *ValTy = Op1->getType(); 3635 bool IntoUndef = isa<UndefValue>(Op0); 3636 bool FromUndef = isa<UndefValue>(Op1); 3637 3638 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3639 3640 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3641 SmallVector<EVT, 4> AggValueVTs; 3642 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3643 SmallVector<EVT, 4> ValValueVTs; 3644 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3645 3646 unsigned NumAggValues = AggValueVTs.size(); 3647 unsigned NumValValues = ValValueVTs.size(); 3648 SmallVector<SDValue, 4> Values(NumAggValues); 3649 3650 // Ignore an insertvalue that produces an empty object 3651 if (!NumAggValues) { 3652 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3653 return; 3654 } 3655 3656 SDValue Agg = getValue(Op0); 3657 unsigned i = 0; 3658 // Copy the beginning value(s) from the original aggregate. 3659 for (; i != LinearIndex; ++i) 3660 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3661 SDValue(Agg.getNode(), Agg.getResNo() + i); 3662 // Copy values from the inserted value(s). 3663 if (NumValValues) { 3664 SDValue Val = getValue(Op1); 3665 for (; i != LinearIndex + NumValValues; ++i) 3666 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3667 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3668 } 3669 // Copy remaining value(s) from the original aggregate. 3670 for (; i != NumAggValues; ++i) 3671 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3672 SDValue(Agg.getNode(), Agg.getResNo() + i); 3673 3674 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3675 DAG.getVTList(AggValueVTs), Values)); 3676 } 3677 3678 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3679 ArrayRef<unsigned> Indices; 3680 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3681 Indices = EV->getIndices(); 3682 else 3683 Indices = cast<ConstantExpr>(&I)->getIndices(); 3684 3685 const Value *Op0 = I.getOperand(0); 3686 Type *AggTy = Op0->getType(); 3687 Type *ValTy = I.getType(); 3688 bool OutOfUndef = isa<UndefValue>(Op0); 3689 3690 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3691 3692 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3693 SmallVector<EVT, 4> ValValueVTs; 3694 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3695 3696 unsigned NumValValues = ValValueVTs.size(); 3697 3698 // Ignore a extractvalue that produces an empty object 3699 if (!NumValValues) { 3700 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3701 return; 3702 } 3703 3704 SmallVector<SDValue, 4> Values(NumValValues); 3705 3706 SDValue Agg = getValue(Op0); 3707 // Copy out the selected value(s). 3708 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3709 Values[i - LinearIndex] = 3710 OutOfUndef ? 3711 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3712 SDValue(Agg.getNode(), Agg.getResNo() + i); 3713 3714 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3715 DAG.getVTList(ValValueVTs), Values)); 3716 } 3717 3718 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3719 Value *Op0 = I.getOperand(0); 3720 // Note that the pointer operand may be a vector of pointers. Take the scalar 3721 // element which holds a pointer. 3722 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3723 SDValue N = getValue(Op0); 3724 SDLoc dl = getCurSDLoc(); 3725 3726 // Normalize Vector GEP - all scalar operands should be converted to the 3727 // splat vector. 3728 unsigned VectorWidth = I.getType()->isVectorTy() ? 3729 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3730 3731 if (VectorWidth && !N.getValueType().isVector()) { 3732 LLVMContext &Context = *DAG.getContext(); 3733 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3734 N = DAG.getSplatBuildVector(VT, dl, N); 3735 } 3736 3737 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3738 GTI != E; ++GTI) { 3739 const Value *Idx = GTI.getOperand(); 3740 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3741 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3742 if (Field) { 3743 // N = N + Offset 3744 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3745 3746 // In an inbounds GEP with an offset that is nonnegative even when 3747 // interpreted as signed, assume there is no unsigned overflow. 3748 SDNodeFlags Flags; 3749 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3750 Flags.setNoUnsignedWrap(true); 3751 3752 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3753 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3754 } 3755 } else { 3756 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3757 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3758 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3759 3760 // If this is a scalar constant or a splat vector of constants, 3761 // handle it quickly. 3762 const auto *CI = dyn_cast<ConstantInt>(Idx); 3763 if (!CI && isa<ConstantDataVector>(Idx) && 3764 cast<ConstantDataVector>(Idx)->getSplatValue()) 3765 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3766 3767 if (CI) { 3768 if (CI->isZero()) 3769 continue; 3770 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3771 LLVMContext &Context = *DAG.getContext(); 3772 SDValue OffsVal = VectorWidth ? 3773 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3774 DAG.getConstant(Offs, dl, IdxTy); 3775 3776 // In an inbouds GEP with an offset that is nonnegative even when 3777 // interpreted as signed, assume there is no unsigned overflow. 3778 SDNodeFlags Flags; 3779 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3780 Flags.setNoUnsignedWrap(true); 3781 3782 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3783 continue; 3784 } 3785 3786 // N = N + Idx * ElementSize; 3787 SDValue IdxN = getValue(Idx); 3788 3789 if (!IdxN.getValueType().isVector() && VectorWidth) { 3790 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3791 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3792 } 3793 3794 // If the index is smaller or larger than intptr_t, truncate or extend 3795 // it. 3796 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3797 3798 // If this is a multiply by a power of two, turn it into a shl 3799 // immediately. This is a very common case. 3800 if (ElementSize != 1) { 3801 if (ElementSize.isPowerOf2()) { 3802 unsigned Amt = ElementSize.logBase2(); 3803 IdxN = DAG.getNode(ISD::SHL, dl, 3804 N.getValueType(), IdxN, 3805 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3806 } else { 3807 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3808 IdxN = DAG.getNode(ISD::MUL, dl, 3809 N.getValueType(), IdxN, Scale); 3810 } 3811 } 3812 3813 N = DAG.getNode(ISD::ADD, dl, 3814 N.getValueType(), N, IdxN); 3815 } 3816 } 3817 3818 setValue(&I, N); 3819 } 3820 3821 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3822 // If this is a fixed sized alloca in the entry block of the function, 3823 // allocate it statically on the stack. 3824 if (FuncInfo.StaticAllocaMap.count(&I)) 3825 return; // getValue will auto-populate this. 3826 3827 SDLoc dl = getCurSDLoc(); 3828 Type *Ty = I.getAllocatedType(); 3829 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3830 auto &DL = DAG.getDataLayout(); 3831 uint64_t TySize = DL.getTypeAllocSize(Ty); 3832 unsigned Align = 3833 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3834 3835 SDValue AllocSize = getValue(I.getArraySize()); 3836 3837 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3838 if (AllocSize.getValueType() != IntPtr) 3839 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3840 3841 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3842 AllocSize, 3843 DAG.getConstant(TySize, dl, IntPtr)); 3844 3845 // Handle alignment. If the requested alignment is less than or equal to 3846 // the stack alignment, ignore it. If the size is greater than or equal to 3847 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3848 unsigned StackAlign = 3849 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3850 if (Align <= StackAlign) 3851 Align = 0; 3852 3853 // Round the size of the allocation up to the stack alignment size 3854 // by add SA-1 to the size. This doesn't overflow because we're computing 3855 // an address inside an alloca. 3856 SDNodeFlags Flags; 3857 Flags.setNoUnsignedWrap(true); 3858 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3859 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3860 3861 // Mask out the low bits for alignment purposes. 3862 AllocSize = 3863 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3864 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 3865 3866 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 3867 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3868 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3869 setValue(&I, DSA); 3870 DAG.setRoot(DSA.getValue(1)); 3871 3872 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3873 } 3874 3875 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3876 if (I.isAtomic()) 3877 return visitAtomicLoad(I); 3878 3879 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3880 const Value *SV = I.getOperand(0); 3881 if (TLI.supportSwiftError()) { 3882 // Swifterror values can come from either a function parameter with 3883 // swifterror attribute or an alloca with swifterror attribute. 3884 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3885 if (Arg->hasSwiftErrorAttr()) 3886 return visitLoadFromSwiftError(I); 3887 } 3888 3889 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3890 if (Alloca->isSwiftError()) 3891 return visitLoadFromSwiftError(I); 3892 } 3893 } 3894 3895 SDValue Ptr = getValue(SV); 3896 3897 Type *Ty = I.getType(); 3898 3899 bool isVolatile = I.isVolatile(); 3900 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3901 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3902 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3903 unsigned Alignment = I.getAlignment(); 3904 3905 AAMDNodes AAInfo; 3906 I.getAAMetadata(AAInfo); 3907 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3908 3909 SmallVector<EVT, 4> ValueVTs; 3910 SmallVector<uint64_t, 4> Offsets; 3911 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3912 unsigned NumValues = ValueVTs.size(); 3913 if (NumValues == 0) 3914 return; 3915 3916 SDValue Root; 3917 bool ConstantMemory = false; 3918 if (isVolatile || NumValues > MaxParallelChains) 3919 // Serialize volatile loads with other side effects. 3920 Root = getRoot(); 3921 else if (AA && 3922 AA->pointsToConstantMemory(MemoryLocation( 3923 SV, 3924 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 3925 AAInfo))) { 3926 // Do not serialize (non-volatile) loads of constant memory with anything. 3927 Root = DAG.getEntryNode(); 3928 ConstantMemory = true; 3929 } else { 3930 // Do not serialize non-volatile loads against each other. 3931 Root = DAG.getRoot(); 3932 } 3933 3934 SDLoc dl = getCurSDLoc(); 3935 3936 if (isVolatile) 3937 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3938 3939 // An aggregate load cannot wrap around the address space, so offsets to its 3940 // parts don't wrap either. 3941 SDNodeFlags Flags; 3942 Flags.setNoUnsignedWrap(true); 3943 3944 SmallVector<SDValue, 4> Values(NumValues); 3945 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3946 EVT PtrVT = Ptr.getValueType(); 3947 unsigned ChainI = 0; 3948 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3949 // Serializing loads here may result in excessive register pressure, and 3950 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3951 // could recover a bit by hoisting nodes upward in the chain by recognizing 3952 // they are side-effect free or do not alias. The optimizer should really 3953 // avoid this case by converting large object/array copies to llvm.memcpy 3954 // (MaxParallelChains should always remain as failsafe). 3955 if (ChainI == MaxParallelChains) { 3956 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3957 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3958 makeArrayRef(Chains.data(), ChainI)); 3959 Root = Chain; 3960 ChainI = 0; 3961 } 3962 SDValue A = DAG.getNode(ISD::ADD, dl, 3963 PtrVT, Ptr, 3964 DAG.getConstant(Offsets[i], dl, PtrVT), 3965 Flags); 3966 auto MMOFlags = MachineMemOperand::MONone; 3967 if (isVolatile) 3968 MMOFlags |= MachineMemOperand::MOVolatile; 3969 if (isNonTemporal) 3970 MMOFlags |= MachineMemOperand::MONonTemporal; 3971 if (isInvariant) 3972 MMOFlags |= MachineMemOperand::MOInvariant; 3973 if (isDereferenceable) 3974 MMOFlags |= MachineMemOperand::MODereferenceable; 3975 MMOFlags |= TLI.getMMOFlags(I); 3976 3977 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 3978 MachinePointerInfo(SV, Offsets[i]), Alignment, 3979 MMOFlags, AAInfo, Ranges); 3980 3981 Values[i] = L; 3982 Chains[ChainI] = L.getValue(1); 3983 } 3984 3985 if (!ConstantMemory) { 3986 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3987 makeArrayRef(Chains.data(), ChainI)); 3988 if (isVolatile) 3989 DAG.setRoot(Chain); 3990 else 3991 PendingLoads.push_back(Chain); 3992 } 3993 3994 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3995 DAG.getVTList(ValueVTs), Values)); 3996 } 3997 3998 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3999 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4000 "call visitStoreToSwiftError when backend supports swifterror"); 4001 4002 SmallVector<EVT, 4> ValueVTs; 4003 SmallVector<uint64_t, 4> Offsets; 4004 const Value *SrcV = I.getOperand(0); 4005 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4006 SrcV->getType(), ValueVTs, &Offsets); 4007 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4008 "expect a single EVT for swifterror"); 4009 4010 SDValue Src = getValue(SrcV); 4011 // Create a virtual register, then update the virtual register. 4012 unsigned VReg; bool CreatedVReg; 4013 std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I); 4014 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4015 // Chain can be getRoot or getControlRoot. 4016 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4017 SDValue(Src.getNode(), Src.getResNo())); 4018 DAG.setRoot(CopyNode); 4019 if (CreatedVReg) 4020 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 4021 } 4022 4023 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4024 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4025 "call visitLoadFromSwiftError when backend supports swifterror"); 4026 4027 assert(!I.isVolatile() && 4028 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 4029 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 4030 "Support volatile, non temporal, invariant for load_from_swift_error"); 4031 4032 const Value *SV = I.getOperand(0); 4033 Type *Ty = I.getType(); 4034 AAMDNodes AAInfo; 4035 I.getAAMetadata(AAInfo); 4036 assert( 4037 (!AA || 4038 !AA->pointsToConstantMemory(MemoryLocation( 4039 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4040 AAInfo))) && 4041 "load_from_swift_error should not be constant memory"); 4042 4043 SmallVector<EVT, 4> ValueVTs; 4044 SmallVector<uint64_t, 4> Offsets; 4045 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4046 ValueVTs, &Offsets); 4047 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4048 "expect a single EVT for swifterror"); 4049 4050 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4051 SDValue L = DAG.getCopyFromReg( 4052 getRoot(), getCurSDLoc(), 4053 FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first, 4054 ValueVTs[0]); 4055 4056 setValue(&I, L); 4057 } 4058 4059 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4060 if (I.isAtomic()) 4061 return visitAtomicStore(I); 4062 4063 const Value *SrcV = I.getOperand(0); 4064 const Value *PtrV = I.getOperand(1); 4065 4066 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4067 if (TLI.supportSwiftError()) { 4068 // Swifterror values can come from either a function parameter with 4069 // swifterror attribute or an alloca with swifterror attribute. 4070 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4071 if (Arg->hasSwiftErrorAttr()) 4072 return visitStoreToSwiftError(I); 4073 } 4074 4075 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4076 if (Alloca->isSwiftError()) 4077 return visitStoreToSwiftError(I); 4078 } 4079 } 4080 4081 SmallVector<EVT, 4> ValueVTs; 4082 SmallVector<uint64_t, 4> Offsets; 4083 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4084 SrcV->getType(), ValueVTs, &Offsets); 4085 unsigned NumValues = ValueVTs.size(); 4086 if (NumValues == 0) 4087 return; 4088 4089 // Get the lowered operands. Note that we do this after 4090 // checking if NumResults is zero, because with zero results 4091 // the operands won't have values in the map. 4092 SDValue Src = getValue(SrcV); 4093 SDValue Ptr = getValue(PtrV); 4094 4095 SDValue Root = getRoot(); 4096 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4097 SDLoc dl = getCurSDLoc(); 4098 EVT PtrVT = Ptr.getValueType(); 4099 unsigned Alignment = I.getAlignment(); 4100 AAMDNodes AAInfo; 4101 I.getAAMetadata(AAInfo); 4102 4103 auto MMOFlags = MachineMemOperand::MONone; 4104 if (I.isVolatile()) 4105 MMOFlags |= MachineMemOperand::MOVolatile; 4106 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 4107 MMOFlags |= MachineMemOperand::MONonTemporal; 4108 MMOFlags |= TLI.getMMOFlags(I); 4109 4110 // An aggregate load cannot wrap around the address space, so offsets to its 4111 // parts don't wrap either. 4112 SDNodeFlags Flags; 4113 Flags.setNoUnsignedWrap(true); 4114 4115 unsigned ChainI = 0; 4116 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4117 // See visitLoad comments. 4118 if (ChainI == MaxParallelChains) { 4119 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4120 makeArrayRef(Chains.data(), ChainI)); 4121 Root = Chain; 4122 ChainI = 0; 4123 } 4124 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 4125 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 4126 SDValue St = DAG.getStore( 4127 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 4128 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 4129 Chains[ChainI] = St; 4130 } 4131 4132 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4133 makeArrayRef(Chains.data(), ChainI)); 4134 DAG.setRoot(StoreNode); 4135 } 4136 4137 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4138 bool IsCompressing) { 4139 SDLoc sdl = getCurSDLoc(); 4140 4141 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4142 unsigned& Alignment) { 4143 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4144 Src0 = I.getArgOperand(0); 4145 Ptr = I.getArgOperand(1); 4146 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 4147 Mask = I.getArgOperand(3); 4148 }; 4149 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4150 unsigned& Alignment) { 4151 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4152 Src0 = I.getArgOperand(0); 4153 Ptr = I.getArgOperand(1); 4154 Mask = I.getArgOperand(2); 4155 Alignment = 0; 4156 }; 4157 4158 Value *PtrOperand, *MaskOperand, *Src0Operand; 4159 unsigned Alignment; 4160 if (IsCompressing) 4161 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4162 else 4163 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4164 4165 SDValue Ptr = getValue(PtrOperand); 4166 SDValue Src0 = getValue(Src0Operand); 4167 SDValue Mask = getValue(MaskOperand); 4168 4169 EVT VT = Src0.getValueType(); 4170 if (!Alignment) 4171 Alignment = DAG.getEVTAlignment(VT); 4172 4173 AAMDNodes AAInfo; 4174 I.getAAMetadata(AAInfo); 4175 4176 MachineMemOperand *MMO = 4177 DAG.getMachineFunction(). 4178 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4179 MachineMemOperand::MOStore, VT.getStoreSize(), 4180 Alignment, AAInfo); 4181 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 4182 MMO, false /* Truncating */, 4183 IsCompressing); 4184 DAG.setRoot(StoreNode); 4185 setValue(&I, StoreNode); 4186 } 4187 4188 // Get a uniform base for the Gather/Scatter intrinsic. 4189 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4190 // We try to represent it as a base pointer + vector of indices. 4191 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4192 // The first operand of the GEP may be a single pointer or a vector of pointers 4193 // Example: 4194 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4195 // or 4196 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4197 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4198 // 4199 // When the first GEP operand is a single pointer - it is the uniform base we 4200 // are looking for. If first operand of the GEP is a splat vector - we 4201 // extract the splat value and use it as a uniform base. 4202 // In all other cases the function returns 'false'. 4203 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 4204 SDValue &Scale, SelectionDAGBuilder* SDB) { 4205 SelectionDAG& DAG = SDB->DAG; 4206 LLVMContext &Context = *DAG.getContext(); 4207 4208 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4209 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4210 if (!GEP) 4211 return false; 4212 4213 const Value *GEPPtr = GEP->getPointerOperand(); 4214 if (!GEPPtr->getType()->isVectorTy()) 4215 Ptr = GEPPtr; 4216 else if (!(Ptr = getSplatValue(GEPPtr))) 4217 return false; 4218 4219 unsigned FinalIndex = GEP->getNumOperands() - 1; 4220 Value *IndexVal = GEP->getOperand(FinalIndex); 4221 4222 // Ensure all the other indices are 0. 4223 for (unsigned i = 1; i < FinalIndex; ++i) { 4224 auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i)); 4225 if (!C || !C->isZero()) 4226 return false; 4227 } 4228 4229 // The operands of the GEP may be defined in another basic block. 4230 // In this case we'll not find nodes for the operands. 4231 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 4232 return false; 4233 4234 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4235 const DataLayout &DL = DAG.getDataLayout(); 4236 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()), 4237 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4238 Base = SDB->getValue(Ptr); 4239 Index = SDB->getValue(IndexVal); 4240 4241 if (!Index.getValueType().isVector()) { 4242 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 4243 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 4244 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 4245 } 4246 return true; 4247 } 4248 4249 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4250 SDLoc sdl = getCurSDLoc(); 4251 4252 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 4253 const Value *Ptr = I.getArgOperand(1); 4254 SDValue Src0 = getValue(I.getArgOperand(0)); 4255 SDValue Mask = getValue(I.getArgOperand(3)); 4256 EVT VT = Src0.getValueType(); 4257 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 4258 if (!Alignment) 4259 Alignment = DAG.getEVTAlignment(VT); 4260 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4261 4262 AAMDNodes AAInfo; 4263 I.getAAMetadata(AAInfo); 4264 4265 SDValue Base; 4266 SDValue Index; 4267 SDValue Scale; 4268 const Value *BasePtr = Ptr; 4269 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4270 4271 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 4272 MachineMemOperand *MMO = DAG.getMachineFunction(). 4273 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 4274 MachineMemOperand::MOStore, VT.getStoreSize(), 4275 Alignment, AAInfo); 4276 if (!UniformBase) { 4277 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4278 Index = getValue(Ptr); 4279 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4280 } 4281 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 4282 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4283 Ops, MMO); 4284 DAG.setRoot(Scatter); 4285 setValue(&I, Scatter); 4286 } 4287 4288 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4289 SDLoc sdl = getCurSDLoc(); 4290 4291 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4292 unsigned& Alignment) { 4293 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4294 Ptr = I.getArgOperand(0); 4295 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4296 Mask = I.getArgOperand(2); 4297 Src0 = I.getArgOperand(3); 4298 }; 4299 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4300 unsigned& Alignment) { 4301 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4302 Ptr = I.getArgOperand(0); 4303 Alignment = 0; 4304 Mask = I.getArgOperand(1); 4305 Src0 = I.getArgOperand(2); 4306 }; 4307 4308 Value *PtrOperand, *MaskOperand, *Src0Operand; 4309 unsigned Alignment; 4310 if (IsExpanding) 4311 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4312 else 4313 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4314 4315 SDValue Ptr = getValue(PtrOperand); 4316 SDValue Src0 = getValue(Src0Operand); 4317 SDValue Mask = getValue(MaskOperand); 4318 4319 EVT VT = Src0.getValueType(); 4320 if (!Alignment) 4321 Alignment = DAG.getEVTAlignment(VT); 4322 4323 AAMDNodes AAInfo; 4324 I.getAAMetadata(AAInfo); 4325 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4326 4327 // Do not serialize masked loads of constant memory with anything. 4328 bool AddToChain = 4329 !AA || !AA->pointsToConstantMemory(MemoryLocation( 4330 PtrOperand, 4331 LocationSize::precise( 4332 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4333 AAInfo)); 4334 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4335 4336 MachineMemOperand *MMO = 4337 DAG.getMachineFunction(). 4338 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4339 MachineMemOperand::MOLoad, VT.getStoreSize(), 4340 Alignment, AAInfo, Ranges); 4341 4342 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 4343 ISD::NON_EXTLOAD, IsExpanding); 4344 if (AddToChain) 4345 PendingLoads.push_back(Load.getValue(1)); 4346 setValue(&I, Load); 4347 } 4348 4349 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4350 SDLoc sdl = getCurSDLoc(); 4351 4352 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4353 const Value *Ptr = I.getArgOperand(0); 4354 SDValue Src0 = getValue(I.getArgOperand(3)); 4355 SDValue Mask = getValue(I.getArgOperand(2)); 4356 4357 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4358 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4359 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4360 if (!Alignment) 4361 Alignment = DAG.getEVTAlignment(VT); 4362 4363 AAMDNodes AAInfo; 4364 I.getAAMetadata(AAInfo); 4365 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4366 4367 SDValue Root = DAG.getRoot(); 4368 SDValue Base; 4369 SDValue Index; 4370 SDValue Scale; 4371 const Value *BasePtr = Ptr; 4372 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4373 bool ConstantMemory = false; 4374 if (UniformBase && AA && 4375 AA->pointsToConstantMemory( 4376 MemoryLocation(BasePtr, 4377 LocationSize::precise( 4378 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4379 AAInfo))) { 4380 // Do not serialize (non-volatile) loads of constant memory with anything. 4381 Root = DAG.getEntryNode(); 4382 ConstantMemory = true; 4383 } 4384 4385 MachineMemOperand *MMO = 4386 DAG.getMachineFunction(). 4387 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4388 MachineMemOperand::MOLoad, VT.getStoreSize(), 4389 Alignment, AAInfo, Ranges); 4390 4391 if (!UniformBase) { 4392 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4393 Index = getValue(Ptr); 4394 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4395 } 4396 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4397 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4398 Ops, MMO); 4399 4400 SDValue OutChain = Gather.getValue(1); 4401 if (!ConstantMemory) 4402 PendingLoads.push_back(OutChain); 4403 setValue(&I, Gather); 4404 } 4405 4406 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4407 SDLoc dl = getCurSDLoc(); 4408 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 4409 AtomicOrdering FailureOrder = I.getFailureOrdering(); 4410 SyncScope::ID SSID = I.getSyncScopeID(); 4411 4412 SDValue InChain = getRoot(); 4413 4414 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4415 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4416 SDValue L = DAG.getAtomicCmpSwap( 4417 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 4418 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 4419 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 4420 /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID); 4421 4422 SDValue OutChain = L.getValue(2); 4423 4424 setValue(&I, L); 4425 DAG.setRoot(OutChain); 4426 } 4427 4428 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4429 SDLoc dl = getCurSDLoc(); 4430 ISD::NodeType NT; 4431 switch (I.getOperation()) { 4432 default: llvm_unreachable("Unknown atomicrmw operation"); 4433 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4434 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4435 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4436 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4437 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4438 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4439 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4440 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4441 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4442 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4443 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4444 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4445 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4446 } 4447 AtomicOrdering Order = I.getOrdering(); 4448 SyncScope::ID SSID = I.getSyncScopeID(); 4449 4450 SDValue InChain = getRoot(); 4451 4452 SDValue L = 4453 DAG.getAtomic(NT, dl, 4454 getValue(I.getValOperand()).getSimpleValueType(), 4455 InChain, 4456 getValue(I.getPointerOperand()), 4457 getValue(I.getValOperand()), 4458 I.getPointerOperand(), 4459 /* Alignment=*/ 0, Order, SSID); 4460 4461 SDValue OutChain = L.getValue(1); 4462 4463 setValue(&I, L); 4464 DAG.setRoot(OutChain); 4465 } 4466 4467 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4468 SDLoc dl = getCurSDLoc(); 4469 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4470 SDValue Ops[3]; 4471 Ops[0] = getRoot(); 4472 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4473 TLI.getFenceOperandTy(DAG.getDataLayout())); 4474 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4475 TLI.getFenceOperandTy(DAG.getDataLayout())); 4476 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4477 } 4478 4479 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4480 SDLoc dl = getCurSDLoc(); 4481 AtomicOrdering Order = I.getOrdering(); 4482 SyncScope::ID SSID = I.getSyncScopeID(); 4483 4484 SDValue InChain = getRoot(); 4485 4486 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4487 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4488 4489 if (!TLI.supportsUnalignedAtomics() && 4490 I.getAlignment() < VT.getStoreSize()) 4491 report_fatal_error("Cannot generate unaligned atomic load"); 4492 4493 MachineMemOperand *MMO = 4494 DAG.getMachineFunction(). 4495 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4496 MachineMemOperand::MOVolatile | 4497 MachineMemOperand::MOLoad, 4498 VT.getStoreSize(), 4499 I.getAlignment() ? I.getAlignment() : 4500 DAG.getEVTAlignment(VT), 4501 AAMDNodes(), nullptr, SSID, Order); 4502 4503 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4504 SDValue L = 4505 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4506 getValue(I.getPointerOperand()), MMO); 4507 4508 SDValue OutChain = L.getValue(1); 4509 4510 setValue(&I, L); 4511 DAG.setRoot(OutChain); 4512 } 4513 4514 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4515 SDLoc dl = getCurSDLoc(); 4516 4517 AtomicOrdering Order = I.getOrdering(); 4518 SyncScope::ID SSID = I.getSyncScopeID(); 4519 4520 SDValue InChain = getRoot(); 4521 4522 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4523 EVT VT = 4524 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4525 4526 if (I.getAlignment() < VT.getStoreSize()) 4527 report_fatal_error("Cannot generate unaligned atomic store"); 4528 4529 SDValue OutChain = 4530 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 4531 InChain, 4532 getValue(I.getPointerOperand()), 4533 getValue(I.getValueOperand()), 4534 I.getPointerOperand(), I.getAlignment(), 4535 Order, SSID); 4536 4537 DAG.setRoot(OutChain); 4538 } 4539 4540 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4541 /// node. 4542 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4543 unsigned Intrinsic) { 4544 // Ignore the callsite's attributes. A specific call site may be marked with 4545 // readnone, but the lowering code will expect the chain based on the 4546 // definition. 4547 const Function *F = I.getCalledFunction(); 4548 bool HasChain = !F->doesNotAccessMemory(); 4549 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4550 4551 // Build the operand list. 4552 SmallVector<SDValue, 8> Ops; 4553 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4554 if (OnlyLoad) { 4555 // We don't need to serialize loads against other loads. 4556 Ops.push_back(DAG.getRoot()); 4557 } else { 4558 Ops.push_back(getRoot()); 4559 } 4560 } 4561 4562 // Info is set by getTgtMemInstrinsic 4563 TargetLowering::IntrinsicInfo Info; 4564 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4565 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4566 DAG.getMachineFunction(), 4567 Intrinsic); 4568 4569 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4570 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4571 Info.opc == ISD::INTRINSIC_W_CHAIN) 4572 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4573 TLI.getPointerTy(DAG.getDataLayout()))); 4574 4575 // Add all operands of the call to the operand list. 4576 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4577 SDValue Op = getValue(I.getArgOperand(i)); 4578 Ops.push_back(Op); 4579 } 4580 4581 SmallVector<EVT, 4> ValueVTs; 4582 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4583 4584 if (HasChain) 4585 ValueVTs.push_back(MVT::Other); 4586 4587 SDVTList VTs = DAG.getVTList(ValueVTs); 4588 4589 // Create the node. 4590 SDValue Result; 4591 if (IsTgtIntrinsic) { 4592 // This is target intrinsic that touches memory 4593 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, 4594 Ops, Info.memVT, 4595 MachinePointerInfo(Info.ptrVal, Info.offset), Info.align, 4596 Info.flags, Info.size); 4597 } else if (!HasChain) { 4598 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4599 } else if (!I.getType()->isVoidTy()) { 4600 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4601 } else { 4602 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4603 } 4604 4605 if (HasChain) { 4606 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4607 if (OnlyLoad) 4608 PendingLoads.push_back(Chain); 4609 else 4610 DAG.setRoot(Chain); 4611 } 4612 4613 if (!I.getType()->isVoidTy()) { 4614 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4615 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4616 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4617 } else 4618 Result = lowerRangeToAssertZExt(DAG, I, Result); 4619 4620 setValue(&I, Result); 4621 } 4622 } 4623 4624 /// GetSignificand - Get the significand and build it into a floating-point 4625 /// number with exponent of 1: 4626 /// 4627 /// Op = (Op & 0x007fffff) | 0x3f800000; 4628 /// 4629 /// where Op is the hexadecimal representation of floating point value. 4630 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4631 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4632 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4633 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4634 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4635 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4636 } 4637 4638 /// GetExponent - Get the exponent: 4639 /// 4640 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4641 /// 4642 /// where Op is the hexadecimal representation of floating point value. 4643 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4644 const TargetLowering &TLI, const SDLoc &dl) { 4645 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4646 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4647 SDValue t1 = DAG.getNode( 4648 ISD::SRL, dl, MVT::i32, t0, 4649 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4650 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4651 DAG.getConstant(127, dl, MVT::i32)); 4652 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4653 } 4654 4655 /// getF32Constant - Get 32-bit floating point constant. 4656 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4657 const SDLoc &dl) { 4658 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4659 MVT::f32); 4660 } 4661 4662 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4663 SelectionDAG &DAG) { 4664 // TODO: What fast-math-flags should be set on the floating-point nodes? 4665 4666 // IntegerPartOfX = ((int32_t)(t0); 4667 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4668 4669 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4670 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4671 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4672 4673 // IntegerPartOfX <<= 23; 4674 IntegerPartOfX = DAG.getNode( 4675 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4676 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4677 DAG.getDataLayout()))); 4678 4679 SDValue TwoToFractionalPartOfX; 4680 if (LimitFloatPrecision <= 6) { 4681 // For floating-point precision of 6: 4682 // 4683 // TwoToFractionalPartOfX = 4684 // 0.997535578f + 4685 // (0.735607626f + 0.252464424f * x) * x; 4686 // 4687 // error 0.0144103317, which is 6 bits 4688 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4689 getF32Constant(DAG, 0x3e814304, dl)); 4690 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4691 getF32Constant(DAG, 0x3f3c50c8, dl)); 4692 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4693 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4694 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4695 } else if (LimitFloatPrecision <= 12) { 4696 // For floating-point precision of 12: 4697 // 4698 // TwoToFractionalPartOfX = 4699 // 0.999892986f + 4700 // (0.696457318f + 4701 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4702 // 4703 // error 0.000107046256, which is 13 to 14 bits 4704 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4705 getF32Constant(DAG, 0x3da235e3, dl)); 4706 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4707 getF32Constant(DAG, 0x3e65b8f3, dl)); 4708 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4709 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4710 getF32Constant(DAG, 0x3f324b07, dl)); 4711 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4712 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4713 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4714 } else { // LimitFloatPrecision <= 18 4715 // For floating-point precision of 18: 4716 // 4717 // TwoToFractionalPartOfX = 4718 // 0.999999982f + 4719 // (0.693148872f + 4720 // (0.240227044f + 4721 // (0.554906021e-1f + 4722 // (0.961591928e-2f + 4723 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4724 // error 2.47208000*10^(-7), which is better than 18 bits 4725 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4726 getF32Constant(DAG, 0x3924b03e, dl)); 4727 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4728 getF32Constant(DAG, 0x3ab24b87, dl)); 4729 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4730 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4731 getF32Constant(DAG, 0x3c1d8c17, dl)); 4732 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4733 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4734 getF32Constant(DAG, 0x3d634a1d, dl)); 4735 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4736 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4737 getF32Constant(DAG, 0x3e75fe14, dl)); 4738 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4739 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4740 getF32Constant(DAG, 0x3f317234, dl)); 4741 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4742 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4743 getF32Constant(DAG, 0x3f800000, dl)); 4744 } 4745 4746 // Add the exponent into the result in integer domain. 4747 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4748 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4749 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4750 } 4751 4752 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4753 /// limited-precision mode. 4754 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4755 const TargetLowering &TLI) { 4756 if (Op.getValueType() == MVT::f32 && 4757 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4758 4759 // Put the exponent in the right bit position for later addition to the 4760 // final result: 4761 // 4762 // #define LOG2OFe 1.4426950f 4763 // t0 = Op * LOG2OFe 4764 4765 // TODO: What fast-math-flags should be set here? 4766 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4767 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4768 return getLimitedPrecisionExp2(t0, dl, DAG); 4769 } 4770 4771 // No special expansion. 4772 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4773 } 4774 4775 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4776 /// limited-precision mode. 4777 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4778 const TargetLowering &TLI) { 4779 // TODO: What fast-math-flags should be set on the floating-point nodes? 4780 4781 if (Op.getValueType() == MVT::f32 && 4782 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4783 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4784 4785 // Scale the exponent by log(2) [0.69314718f]. 4786 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4787 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4788 getF32Constant(DAG, 0x3f317218, dl)); 4789 4790 // Get the significand and build it into a floating-point number with 4791 // exponent of 1. 4792 SDValue X = GetSignificand(DAG, Op1, dl); 4793 4794 SDValue LogOfMantissa; 4795 if (LimitFloatPrecision <= 6) { 4796 // For floating-point precision of 6: 4797 // 4798 // LogofMantissa = 4799 // -1.1609546f + 4800 // (1.4034025f - 0.23903021f * x) * x; 4801 // 4802 // error 0.0034276066, which is better than 8 bits 4803 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4804 getF32Constant(DAG, 0xbe74c456, dl)); 4805 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4806 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4807 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4808 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4809 getF32Constant(DAG, 0x3f949a29, dl)); 4810 } else if (LimitFloatPrecision <= 12) { 4811 // For floating-point precision of 12: 4812 // 4813 // LogOfMantissa = 4814 // -1.7417939f + 4815 // (2.8212026f + 4816 // (-1.4699568f + 4817 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4818 // 4819 // error 0.000061011436, which is 14 bits 4820 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4821 getF32Constant(DAG, 0xbd67b6d6, dl)); 4822 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4823 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4824 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4825 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4826 getF32Constant(DAG, 0x3fbc278b, dl)); 4827 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4828 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4829 getF32Constant(DAG, 0x40348e95, dl)); 4830 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4831 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4832 getF32Constant(DAG, 0x3fdef31a, dl)); 4833 } else { // LimitFloatPrecision <= 18 4834 // For floating-point precision of 18: 4835 // 4836 // LogOfMantissa = 4837 // -2.1072184f + 4838 // (4.2372794f + 4839 // (-3.7029485f + 4840 // (2.2781945f + 4841 // (-0.87823314f + 4842 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4843 // 4844 // error 0.0000023660568, which is better than 18 bits 4845 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4846 getF32Constant(DAG, 0xbc91e5ac, dl)); 4847 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4848 getF32Constant(DAG, 0x3e4350aa, dl)); 4849 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4850 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4851 getF32Constant(DAG, 0x3f60d3e3, dl)); 4852 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4853 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4854 getF32Constant(DAG, 0x4011cdf0, dl)); 4855 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4856 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4857 getF32Constant(DAG, 0x406cfd1c, dl)); 4858 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4859 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4860 getF32Constant(DAG, 0x408797cb, dl)); 4861 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4862 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4863 getF32Constant(DAG, 0x4006dcab, dl)); 4864 } 4865 4866 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4867 } 4868 4869 // No special expansion. 4870 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4871 } 4872 4873 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4874 /// limited-precision mode. 4875 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4876 const TargetLowering &TLI) { 4877 // TODO: What fast-math-flags should be set on the floating-point nodes? 4878 4879 if (Op.getValueType() == MVT::f32 && 4880 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4881 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4882 4883 // Get the exponent. 4884 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4885 4886 // Get the significand and build it into a floating-point number with 4887 // exponent of 1. 4888 SDValue X = GetSignificand(DAG, Op1, dl); 4889 4890 // Different possible minimax approximations of significand in 4891 // floating-point for various degrees of accuracy over [1,2]. 4892 SDValue Log2ofMantissa; 4893 if (LimitFloatPrecision <= 6) { 4894 // For floating-point precision of 6: 4895 // 4896 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4897 // 4898 // error 0.0049451742, which is more than 7 bits 4899 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4900 getF32Constant(DAG, 0xbeb08fe0, dl)); 4901 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4902 getF32Constant(DAG, 0x40019463, dl)); 4903 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4904 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4905 getF32Constant(DAG, 0x3fd6633d, dl)); 4906 } else if (LimitFloatPrecision <= 12) { 4907 // For floating-point precision of 12: 4908 // 4909 // Log2ofMantissa = 4910 // -2.51285454f + 4911 // (4.07009056f + 4912 // (-2.12067489f + 4913 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4914 // 4915 // error 0.0000876136000, which is better than 13 bits 4916 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4917 getF32Constant(DAG, 0xbda7262e, dl)); 4918 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4919 getF32Constant(DAG, 0x3f25280b, dl)); 4920 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4921 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4922 getF32Constant(DAG, 0x4007b923, dl)); 4923 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4924 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4925 getF32Constant(DAG, 0x40823e2f, dl)); 4926 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4927 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4928 getF32Constant(DAG, 0x4020d29c, dl)); 4929 } else { // LimitFloatPrecision <= 18 4930 // For floating-point precision of 18: 4931 // 4932 // Log2ofMantissa = 4933 // -3.0400495f + 4934 // (6.1129976f + 4935 // (-5.3420409f + 4936 // (3.2865683f + 4937 // (-1.2669343f + 4938 // (0.27515199f - 4939 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4940 // 4941 // error 0.0000018516, which is better than 18 bits 4942 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4943 getF32Constant(DAG, 0xbcd2769e, dl)); 4944 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4945 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4946 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4947 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4948 getF32Constant(DAG, 0x3fa22ae7, dl)); 4949 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4950 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4951 getF32Constant(DAG, 0x40525723, dl)); 4952 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4953 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4954 getF32Constant(DAG, 0x40aaf200, dl)); 4955 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4956 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4957 getF32Constant(DAG, 0x40c39dad, dl)); 4958 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4959 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4960 getF32Constant(DAG, 0x4042902c, dl)); 4961 } 4962 4963 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4964 } 4965 4966 // No special expansion. 4967 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4968 } 4969 4970 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4971 /// limited-precision mode. 4972 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4973 const TargetLowering &TLI) { 4974 // TODO: What fast-math-flags should be set on the floating-point nodes? 4975 4976 if (Op.getValueType() == MVT::f32 && 4977 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4978 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4979 4980 // Scale the exponent by log10(2) [0.30102999f]. 4981 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4982 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4983 getF32Constant(DAG, 0x3e9a209a, dl)); 4984 4985 // Get the significand and build it into a floating-point number with 4986 // exponent of 1. 4987 SDValue X = GetSignificand(DAG, Op1, dl); 4988 4989 SDValue Log10ofMantissa; 4990 if (LimitFloatPrecision <= 6) { 4991 // For floating-point precision of 6: 4992 // 4993 // Log10ofMantissa = 4994 // -0.50419619f + 4995 // (0.60948995f - 0.10380950f * x) * x; 4996 // 4997 // error 0.0014886165, which is 6 bits 4998 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4999 getF32Constant(DAG, 0xbdd49a13, dl)); 5000 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5001 getF32Constant(DAG, 0x3f1c0789, dl)); 5002 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5003 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5004 getF32Constant(DAG, 0x3f011300, dl)); 5005 } else if (LimitFloatPrecision <= 12) { 5006 // For floating-point precision of 12: 5007 // 5008 // Log10ofMantissa = 5009 // -0.64831180f + 5010 // (0.91751397f + 5011 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5012 // 5013 // error 0.00019228036, which is better than 12 bits 5014 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5015 getF32Constant(DAG, 0x3d431f31, dl)); 5016 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5017 getF32Constant(DAG, 0x3ea21fb2, dl)); 5018 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5019 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5020 getF32Constant(DAG, 0x3f6ae232, dl)); 5021 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5022 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5023 getF32Constant(DAG, 0x3f25f7c3, dl)); 5024 } else { // LimitFloatPrecision <= 18 5025 // For floating-point precision of 18: 5026 // 5027 // Log10ofMantissa = 5028 // -0.84299375f + 5029 // (1.5327582f + 5030 // (-1.0688956f + 5031 // (0.49102474f + 5032 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5033 // 5034 // error 0.0000037995730, which is better than 18 bits 5035 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5036 getF32Constant(DAG, 0x3c5d51ce, dl)); 5037 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5038 getF32Constant(DAG, 0x3e00685a, dl)); 5039 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5040 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5041 getF32Constant(DAG, 0x3efb6798, dl)); 5042 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5043 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5044 getF32Constant(DAG, 0x3f88d192, dl)); 5045 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5046 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5047 getF32Constant(DAG, 0x3fc4316c, dl)); 5048 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5049 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5050 getF32Constant(DAG, 0x3f57ce70, dl)); 5051 } 5052 5053 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5054 } 5055 5056 // No special expansion. 5057 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5058 } 5059 5060 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5061 /// limited-precision mode. 5062 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5063 const TargetLowering &TLI) { 5064 if (Op.getValueType() == MVT::f32 && 5065 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5066 return getLimitedPrecisionExp2(Op, dl, DAG); 5067 5068 // No special expansion. 5069 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5070 } 5071 5072 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5073 /// limited-precision mode with x == 10.0f. 5074 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5075 SelectionDAG &DAG, const TargetLowering &TLI) { 5076 bool IsExp10 = false; 5077 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5078 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5079 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5080 APFloat Ten(10.0f); 5081 IsExp10 = LHSC->isExactlyValue(Ten); 5082 } 5083 } 5084 5085 // TODO: What fast-math-flags should be set on the FMUL node? 5086 if (IsExp10) { 5087 // Put the exponent in the right bit position for later addition to the 5088 // final result: 5089 // 5090 // #define LOG2OF10 3.3219281f 5091 // t0 = Op * LOG2OF10; 5092 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5093 getF32Constant(DAG, 0x40549a78, dl)); 5094 return getLimitedPrecisionExp2(t0, dl, DAG); 5095 } 5096 5097 // No special expansion. 5098 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5099 } 5100 5101 /// ExpandPowI - Expand a llvm.powi intrinsic. 5102 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5103 SelectionDAG &DAG) { 5104 // If RHS is a constant, we can expand this out to a multiplication tree, 5105 // otherwise we end up lowering to a call to __powidf2 (for example). When 5106 // optimizing for size, we only want to do this if the expansion would produce 5107 // a small number of multiplies, otherwise we do the full expansion. 5108 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5109 // Get the exponent as a positive value. 5110 unsigned Val = RHSC->getSExtValue(); 5111 if ((int)Val < 0) Val = -Val; 5112 5113 // powi(x, 0) -> 1.0 5114 if (Val == 0) 5115 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5116 5117 const Function &F = DAG.getMachineFunction().getFunction(); 5118 if (!F.optForSize() || 5119 // If optimizing for size, don't insert too many multiplies. 5120 // This inserts up to 5 multiplies. 5121 countPopulation(Val) + Log2_32(Val) < 7) { 5122 // We use the simple binary decomposition method to generate the multiply 5123 // sequence. There are more optimal ways to do this (for example, 5124 // powi(x,15) generates one more multiply than it should), but this has 5125 // the benefit of being both really simple and much better than a libcall. 5126 SDValue Res; // Logically starts equal to 1.0 5127 SDValue CurSquare = LHS; 5128 // TODO: Intrinsics should have fast-math-flags that propagate to these 5129 // nodes. 5130 while (Val) { 5131 if (Val & 1) { 5132 if (Res.getNode()) 5133 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5134 else 5135 Res = CurSquare; // 1.0*CurSquare. 5136 } 5137 5138 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5139 CurSquare, CurSquare); 5140 Val >>= 1; 5141 } 5142 5143 // If the original was negative, invert the result, producing 1/(x*x*x). 5144 if (RHSC->getSExtValue() < 0) 5145 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5146 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5147 return Res; 5148 } 5149 } 5150 5151 // Otherwise, expand to a libcall. 5152 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5153 } 5154 5155 // getUnderlyingArgReg - Find underlying register used for a truncated or 5156 // bitcasted argument. 5157 static unsigned getUnderlyingArgReg(const SDValue &N) { 5158 switch (N.getOpcode()) { 5159 case ISD::CopyFromReg: 5160 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 5161 case ISD::BITCAST: 5162 case ISD::AssertZext: 5163 case ISD::AssertSext: 5164 case ISD::TRUNCATE: 5165 return getUnderlyingArgReg(N.getOperand(0)); 5166 default: 5167 return 0; 5168 } 5169 } 5170 5171 /// If the DbgValueInst is a dbg_value of a function argument, create the 5172 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5173 /// instruction selection, they will be inserted to the entry BB. 5174 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5175 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5176 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5177 const Argument *Arg = dyn_cast<Argument>(V); 5178 if (!Arg) 5179 return false; 5180 5181 if (!IsDbgDeclare) { 5182 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5183 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5184 // the entry block. 5185 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5186 if (!IsInEntryBlock) 5187 return false; 5188 5189 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5190 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5191 // variable that also is a param. 5192 // 5193 // Although, if we are at the top of the entry block already, we can still 5194 // emit using ArgDbgValue. This might catch some situations when the 5195 // dbg.value refers to an argument that isn't used in the entry block, so 5196 // any CopyToReg node would be optimized out and the only way to express 5197 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5198 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5199 // we should only emit as ArgDbgValue if the Variable is an argument to the 5200 // current function, and the dbg.value intrinsic is found in the entry 5201 // block. 5202 bool VariableIsFunctionInputArg = Variable->isParameter() && 5203 !DL->getInlinedAt(); 5204 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5205 if (!IsInPrologue && !VariableIsFunctionInputArg) 5206 return false; 5207 5208 // Here we assume that a function argument on IR level only can be used to 5209 // describe one input parameter on source level. If we for example have 5210 // source code like this 5211 // 5212 // struct A { long x, y; }; 5213 // void foo(struct A a, long b) { 5214 // ... 5215 // b = a.x; 5216 // ... 5217 // } 5218 // 5219 // and IR like this 5220 // 5221 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5222 // entry: 5223 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5224 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5225 // call void @llvm.dbg.value(metadata i32 %b, "b", 5226 // ... 5227 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5228 // ... 5229 // 5230 // then the last dbg.value is describing a parameter "b" using a value that 5231 // is an argument. But since we already has used %a1 to describe a parameter 5232 // we should not handle that last dbg.value here (that would result in an 5233 // incorrect hoisting of the DBG_VALUE to the function entry). 5234 // Notice that we allow one dbg.value per IR level argument, to accomodate 5235 // for the situation with fragments above. 5236 if (VariableIsFunctionInputArg) { 5237 unsigned ArgNo = Arg->getArgNo(); 5238 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5239 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5240 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5241 return false; 5242 FuncInfo.DescribedArgs.set(ArgNo); 5243 } 5244 } 5245 5246 MachineFunction &MF = DAG.getMachineFunction(); 5247 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5248 5249 bool IsIndirect = false; 5250 Optional<MachineOperand> Op; 5251 // Some arguments' frame index is recorded during argument lowering. 5252 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5253 if (FI != std::numeric_limits<int>::max()) 5254 Op = MachineOperand::CreateFI(FI); 5255 5256 if (!Op && N.getNode()) { 5257 unsigned Reg = getUnderlyingArgReg(N); 5258 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 5259 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5260 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 5261 if (PR) 5262 Reg = PR; 5263 } 5264 if (Reg) { 5265 Op = MachineOperand::CreateReg(Reg, false); 5266 IsIndirect = IsDbgDeclare; 5267 } 5268 } 5269 5270 if (!Op && N.getNode()) 5271 // Check if frame index is available. 5272 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 5273 if (FrameIndexSDNode *FINode = 5274 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5275 Op = MachineOperand::CreateFI(FINode->getIndex()); 5276 5277 if (!Op) { 5278 // Check if ValueMap has reg number. 5279 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 5280 if (VMI != FuncInfo.ValueMap.end()) { 5281 const auto &TLI = DAG.getTargetLoweringInfo(); 5282 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5283 V->getType(), getABIRegCopyCC(V)); 5284 if (RFV.occupiesMultipleRegs()) { 5285 unsigned Offset = 0; 5286 for (auto RegAndSize : RFV.getRegsAndSizes()) { 5287 Op = MachineOperand::CreateReg(RegAndSize.first, false); 5288 auto FragmentExpr = DIExpression::createFragmentExpression( 5289 Expr, Offset, RegAndSize.second); 5290 if (!FragmentExpr) 5291 continue; 5292 FuncInfo.ArgDbgValues.push_back( 5293 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5294 Op->getReg(), Variable, *FragmentExpr)); 5295 Offset += RegAndSize.second; 5296 } 5297 return true; 5298 } 5299 Op = MachineOperand::CreateReg(VMI->second, false); 5300 IsIndirect = IsDbgDeclare; 5301 } 5302 } 5303 5304 if (!Op) 5305 return false; 5306 5307 assert(Variable->isValidLocationForIntrinsic(DL) && 5308 "Expected inlined-at fields to agree"); 5309 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5310 FuncInfo.ArgDbgValues.push_back( 5311 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5312 *Op, Variable, Expr)); 5313 5314 return true; 5315 } 5316 5317 /// Return the appropriate SDDbgValue based on N. 5318 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5319 DILocalVariable *Variable, 5320 DIExpression *Expr, 5321 const DebugLoc &dl, 5322 unsigned DbgSDNodeOrder) { 5323 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5324 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5325 // stack slot locations. 5326 // 5327 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5328 // debug values here after optimization: 5329 // 5330 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5331 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5332 // 5333 // Both describe the direct values of their associated variables. 5334 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5335 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5336 } 5337 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5338 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5339 } 5340 5341 // VisualStudio defines setjmp as _setjmp 5342 #if defined(_MSC_VER) && defined(setjmp) && \ 5343 !defined(setjmp_undefined_for_msvc) 5344 # pragma push_macro("setjmp") 5345 # undef setjmp 5346 # define setjmp_undefined_for_msvc 5347 #endif 5348 5349 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5350 switch (Intrinsic) { 5351 case Intrinsic::smul_fix: 5352 return ISD::SMULFIX; 5353 case Intrinsic::umul_fix: 5354 return ISD::UMULFIX; 5355 default: 5356 llvm_unreachable("Unhandled fixed point intrinsic"); 5357 } 5358 } 5359 5360 /// Lower the call to the specified intrinsic function. If we want to emit this 5361 /// as a call to a named external function, return the name. Otherwise, lower it 5362 /// and return null. 5363 const char * 5364 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 5365 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5366 SDLoc sdl = getCurSDLoc(); 5367 DebugLoc dl = getCurDebugLoc(); 5368 SDValue Res; 5369 5370 switch (Intrinsic) { 5371 default: 5372 // By default, turn this into a target intrinsic node. 5373 visitTargetIntrinsic(I, Intrinsic); 5374 return nullptr; 5375 case Intrinsic::vastart: visitVAStart(I); return nullptr; 5376 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 5377 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 5378 case Intrinsic::returnaddress: 5379 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5380 TLI.getPointerTy(DAG.getDataLayout()), 5381 getValue(I.getArgOperand(0)))); 5382 return nullptr; 5383 case Intrinsic::addressofreturnaddress: 5384 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5385 TLI.getPointerTy(DAG.getDataLayout()))); 5386 return nullptr; 5387 case Intrinsic::sponentry: 5388 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5389 TLI.getPointerTy(DAG.getDataLayout()))); 5390 return nullptr; 5391 case Intrinsic::frameaddress: 5392 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5393 TLI.getPointerTy(DAG.getDataLayout()), 5394 getValue(I.getArgOperand(0)))); 5395 return nullptr; 5396 case Intrinsic::read_register: { 5397 Value *Reg = I.getArgOperand(0); 5398 SDValue Chain = getRoot(); 5399 SDValue RegName = 5400 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5401 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5402 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5403 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5404 setValue(&I, Res); 5405 DAG.setRoot(Res.getValue(1)); 5406 return nullptr; 5407 } 5408 case Intrinsic::write_register: { 5409 Value *Reg = I.getArgOperand(0); 5410 Value *RegValue = I.getArgOperand(1); 5411 SDValue Chain = getRoot(); 5412 SDValue RegName = 5413 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5414 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5415 RegName, getValue(RegValue))); 5416 return nullptr; 5417 } 5418 case Intrinsic::setjmp: 5419 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 5420 case Intrinsic::longjmp: 5421 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 5422 case Intrinsic::memcpy: { 5423 const auto &MCI = cast<MemCpyInst>(I); 5424 SDValue Op1 = getValue(I.getArgOperand(0)); 5425 SDValue Op2 = getValue(I.getArgOperand(1)); 5426 SDValue Op3 = getValue(I.getArgOperand(2)); 5427 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5428 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5429 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5430 unsigned Align = MinAlign(DstAlign, SrcAlign); 5431 bool isVol = MCI.isVolatile(); 5432 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5433 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5434 // node. 5435 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5436 false, isTC, 5437 MachinePointerInfo(I.getArgOperand(0)), 5438 MachinePointerInfo(I.getArgOperand(1))); 5439 updateDAGForMaybeTailCall(MC); 5440 return nullptr; 5441 } 5442 case Intrinsic::memset: { 5443 const auto &MSI = cast<MemSetInst>(I); 5444 SDValue Op1 = getValue(I.getArgOperand(0)); 5445 SDValue Op2 = getValue(I.getArgOperand(1)); 5446 SDValue Op3 = getValue(I.getArgOperand(2)); 5447 // @llvm.memset defines 0 and 1 to both mean no alignment. 5448 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5449 bool isVol = MSI.isVolatile(); 5450 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5451 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5452 isTC, MachinePointerInfo(I.getArgOperand(0))); 5453 updateDAGForMaybeTailCall(MS); 5454 return nullptr; 5455 } 5456 case Intrinsic::memmove: { 5457 const auto &MMI = cast<MemMoveInst>(I); 5458 SDValue Op1 = getValue(I.getArgOperand(0)); 5459 SDValue Op2 = getValue(I.getArgOperand(1)); 5460 SDValue Op3 = getValue(I.getArgOperand(2)); 5461 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5462 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5463 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5464 unsigned Align = MinAlign(DstAlign, SrcAlign); 5465 bool isVol = MMI.isVolatile(); 5466 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5467 // FIXME: Support passing different dest/src alignments to the memmove DAG 5468 // node. 5469 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5470 isTC, MachinePointerInfo(I.getArgOperand(0)), 5471 MachinePointerInfo(I.getArgOperand(1))); 5472 updateDAGForMaybeTailCall(MM); 5473 return nullptr; 5474 } 5475 case Intrinsic::memcpy_element_unordered_atomic: { 5476 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5477 SDValue Dst = getValue(MI.getRawDest()); 5478 SDValue Src = getValue(MI.getRawSource()); 5479 SDValue Length = getValue(MI.getLength()); 5480 5481 unsigned DstAlign = MI.getDestAlignment(); 5482 unsigned SrcAlign = MI.getSourceAlignment(); 5483 Type *LengthTy = MI.getLength()->getType(); 5484 unsigned ElemSz = MI.getElementSizeInBytes(); 5485 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5486 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5487 SrcAlign, Length, LengthTy, ElemSz, isTC, 5488 MachinePointerInfo(MI.getRawDest()), 5489 MachinePointerInfo(MI.getRawSource())); 5490 updateDAGForMaybeTailCall(MC); 5491 return nullptr; 5492 } 5493 case Intrinsic::memmove_element_unordered_atomic: { 5494 auto &MI = cast<AtomicMemMoveInst>(I); 5495 SDValue Dst = getValue(MI.getRawDest()); 5496 SDValue Src = getValue(MI.getRawSource()); 5497 SDValue Length = getValue(MI.getLength()); 5498 5499 unsigned DstAlign = MI.getDestAlignment(); 5500 unsigned SrcAlign = MI.getSourceAlignment(); 5501 Type *LengthTy = MI.getLength()->getType(); 5502 unsigned ElemSz = MI.getElementSizeInBytes(); 5503 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5504 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5505 SrcAlign, Length, LengthTy, ElemSz, isTC, 5506 MachinePointerInfo(MI.getRawDest()), 5507 MachinePointerInfo(MI.getRawSource())); 5508 updateDAGForMaybeTailCall(MC); 5509 return nullptr; 5510 } 5511 case Intrinsic::memset_element_unordered_atomic: { 5512 auto &MI = cast<AtomicMemSetInst>(I); 5513 SDValue Dst = getValue(MI.getRawDest()); 5514 SDValue Val = getValue(MI.getValue()); 5515 SDValue Length = getValue(MI.getLength()); 5516 5517 unsigned DstAlign = MI.getDestAlignment(); 5518 Type *LengthTy = MI.getLength()->getType(); 5519 unsigned ElemSz = MI.getElementSizeInBytes(); 5520 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5521 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5522 LengthTy, ElemSz, isTC, 5523 MachinePointerInfo(MI.getRawDest())); 5524 updateDAGForMaybeTailCall(MC); 5525 return nullptr; 5526 } 5527 case Intrinsic::dbg_addr: 5528 case Intrinsic::dbg_declare: { 5529 const auto &DI = cast<DbgVariableIntrinsic>(I); 5530 DILocalVariable *Variable = DI.getVariable(); 5531 DIExpression *Expression = DI.getExpression(); 5532 dropDanglingDebugInfo(Variable, Expression); 5533 assert(Variable && "Missing variable"); 5534 5535 // Check if address has undef value. 5536 const Value *Address = DI.getVariableLocation(); 5537 if (!Address || isa<UndefValue>(Address) || 5538 (Address->use_empty() && !isa<Argument>(Address))) { 5539 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5540 return nullptr; 5541 } 5542 5543 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5544 5545 // Check if this variable can be described by a frame index, typically 5546 // either as a static alloca or a byval parameter. 5547 int FI = std::numeric_limits<int>::max(); 5548 if (const auto *AI = 5549 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5550 if (AI->isStaticAlloca()) { 5551 auto I = FuncInfo.StaticAllocaMap.find(AI); 5552 if (I != FuncInfo.StaticAllocaMap.end()) 5553 FI = I->second; 5554 } 5555 } else if (const auto *Arg = dyn_cast<Argument>( 5556 Address->stripInBoundsConstantOffsets())) { 5557 FI = FuncInfo.getArgumentFrameIndex(Arg); 5558 } 5559 5560 // llvm.dbg.addr is control dependent and always generates indirect 5561 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5562 // the MachineFunction variable table. 5563 if (FI != std::numeric_limits<int>::max()) { 5564 if (Intrinsic == Intrinsic::dbg_addr) { 5565 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5566 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5567 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5568 } 5569 return nullptr; 5570 } 5571 5572 SDValue &N = NodeMap[Address]; 5573 if (!N.getNode() && isa<Argument>(Address)) 5574 // Check unused arguments map. 5575 N = UnusedArgNodeMap[Address]; 5576 SDDbgValue *SDV; 5577 if (N.getNode()) { 5578 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5579 Address = BCI->getOperand(0); 5580 // Parameters are handled specially. 5581 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5582 if (isParameter && FINode) { 5583 // Byval parameter. We have a frame index at this point. 5584 SDV = 5585 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5586 /*IsIndirect*/ true, dl, SDNodeOrder); 5587 } else if (isa<Argument>(Address)) { 5588 // Address is an argument, so try to emit its dbg value using 5589 // virtual register info from the FuncInfo.ValueMap. 5590 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5591 return nullptr; 5592 } else { 5593 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5594 true, dl, SDNodeOrder); 5595 } 5596 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5597 } else { 5598 // If Address is an argument then try to emit its dbg value using 5599 // virtual register info from the FuncInfo.ValueMap. 5600 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5601 N)) { 5602 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5603 } 5604 } 5605 return nullptr; 5606 } 5607 case Intrinsic::dbg_label: { 5608 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5609 DILabel *Label = DI.getLabel(); 5610 assert(Label && "Missing label"); 5611 5612 SDDbgLabel *SDV; 5613 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5614 DAG.AddDbgLabel(SDV); 5615 return nullptr; 5616 } 5617 case Intrinsic::dbg_value: { 5618 const DbgValueInst &DI = cast<DbgValueInst>(I); 5619 assert(DI.getVariable() && "Missing variable"); 5620 5621 DILocalVariable *Variable = DI.getVariable(); 5622 DIExpression *Expression = DI.getExpression(); 5623 dropDanglingDebugInfo(Variable, Expression); 5624 const Value *V = DI.getValue(); 5625 if (!V) 5626 return nullptr; 5627 5628 if (handleDebugValue(V, Variable, Expression, DI.getDebugLoc(), dl, 5629 SDNodeOrder)) 5630 return nullptr; 5631 5632 // TODO: Dangling debug info will eventually either be resolved or produce 5633 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5634 // between the original dbg.value location and its resolved DBG_VALUE, which 5635 // we should ideally fill with an extra Undef DBG_VALUE. 5636 5637 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5638 return nullptr; 5639 } 5640 5641 case Intrinsic::eh_typeid_for: { 5642 // Find the type id for the given typeinfo. 5643 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5644 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5645 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5646 setValue(&I, Res); 5647 return nullptr; 5648 } 5649 5650 case Intrinsic::eh_return_i32: 5651 case Intrinsic::eh_return_i64: 5652 DAG.getMachineFunction().setCallsEHReturn(true); 5653 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5654 MVT::Other, 5655 getControlRoot(), 5656 getValue(I.getArgOperand(0)), 5657 getValue(I.getArgOperand(1)))); 5658 return nullptr; 5659 case Intrinsic::eh_unwind_init: 5660 DAG.getMachineFunction().setCallsUnwindInit(true); 5661 return nullptr; 5662 case Intrinsic::eh_dwarf_cfa: 5663 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5664 TLI.getPointerTy(DAG.getDataLayout()), 5665 getValue(I.getArgOperand(0)))); 5666 return nullptr; 5667 case Intrinsic::eh_sjlj_callsite: { 5668 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5669 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5670 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5671 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5672 5673 MMI.setCurrentCallSite(CI->getZExtValue()); 5674 return nullptr; 5675 } 5676 case Intrinsic::eh_sjlj_functioncontext: { 5677 // Get and store the index of the function context. 5678 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5679 AllocaInst *FnCtx = 5680 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5681 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5682 MFI.setFunctionContextIndex(FI); 5683 return nullptr; 5684 } 5685 case Intrinsic::eh_sjlj_setjmp: { 5686 SDValue Ops[2]; 5687 Ops[0] = getRoot(); 5688 Ops[1] = getValue(I.getArgOperand(0)); 5689 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5690 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5691 setValue(&I, Op.getValue(0)); 5692 DAG.setRoot(Op.getValue(1)); 5693 return nullptr; 5694 } 5695 case Intrinsic::eh_sjlj_longjmp: 5696 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5697 getRoot(), getValue(I.getArgOperand(0)))); 5698 return nullptr; 5699 case Intrinsic::eh_sjlj_setup_dispatch: 5700 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5701 getRoot())); 5702 return nullptr; 5703 case Intrinsic::masked_gather: 5704 visitMaskedGather(I); 5705 return nullptr; 5706 case Intrinsic::masked_load: 5707 visitMaskedLoad(I); 5708 return nullptr; 5709 case Intrinsic::masked_scatter: 5710 visitMaskedScatter(I); 5711 return nullptr; 5712 case Intrinsic::masked_store: 5713 visitMaskedStore(I); 5714 return nullptr; 5715 case Intrinsic::masked_expandload: 5716 visitMaskedLoad(I, true /* IsExpanding */); 5717 return nullptr; 5718 case Intrinsic::masked_compressstore: 5719 visitMaskedStore(I, true /* IsCompressing */); 5720 return nullptr; 5721 case Intrinsic::x86_mmx_pslli_w: 5722 case Intrinsic::x86_mmx_pslli_d: 5723 case Intrinsic::x86_mmx_pslli_q: 5724 case Intrinsic::x86_mmx_psrli_w: 5725 case Intrinsic::x86_mmx_psrli_d: 5726 case Intrinsic::x86_mmx_psrli_q: 5727 case Intrinsic::x86_mmx_psrai_w: 5728 case Intrinsic::x86_mmx_psrai_d: { 5729 SDValue ShAmt = getValue(I.getArgOperand(1)); 5730 if (isa<ConstantSDNode>(ShAmt)) { 5731 visitTargetIntrinsic(I, Intrinsic); 5732 return nullptr; 5733 } 5734 unsigned NewIntrinsic = 0; 5735 EVT ShAmtVT = MVT::v2i32; 5736 switch (Intrinsic) { 5737 case Intrinsic::x86_mmx_pslli_w: 5738 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5739 break; 5740 case Intrinsic::x86_mmx_pslli_d: 5741 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5742 break; 5743 case Intrinsic::x86_mmx_pslli_q: 5744 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5745 break; 5746 case Intrinsic::x86_mmx_psrli_w: 5747 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5748 break; 5749 case Intrinsic::x86_mmx_psrli_d: 5750 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5751 break; 5752 case Intrinsic::x86_mmx_psrli_q: 5753 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5754 break; 5755 case Intrinsic::x86_mmx_psrai_w: 5756 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5757 break; 5758 case Intrinsic::x86_mmx_psrai_d: 5759 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5760 break; 5761 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5762 } 5763 5764 // The vector shift intrinsics with scalars uses 32b shift amounts but 5765 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5766 // to be zero. 5767 // We must do this early because v2i32 is not a legal type. 5768 SDValue ShOps[2]; 5769 ShOps[0] = ShAmt; 5770 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5771 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5772 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5773 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5774 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5775 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5776 getValue(I.getArgOperand(0)), ShAmt); 5777 setValue(&I, Res); 5778 return nullptr; 5779 } 5780 case Intrinsic::powi: 5781 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5782 getValue(I.getArgOperand(1)), DAG)); 5783 return nullptr; 5784 case Intrinsic::log: 5785 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5786 return nullptr; 5787 case Intrinsic::log2: 5788 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5789 return nullptr; 5790 case Intrinsic::log10: 5791 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5792 return nullptr; 5793 case Intrinsic::exp: 5794 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5795 return nullptr; 5796 case Intrinsic::exp2: 5797 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5798 return nullptr; 5799 case Intrinsic::pow: 5800 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5801 getValue(I.getArgOperand(1)), DAG, TLI)); 5802 return nullptr; 5803 case Intrinsic::sqrt: 5804 case Intrinsic::fabs: 5805 case Intrinsic::sin: 5806 case Intrinsic::cos: 5807 case Intrinsic::floor: 5808 case Intrinsic::ceil: 5809 case Intrinsic::trunc: 5810 case Intrinsic::rint: 5811 case Intrinsic::nearbyint: 5812 case Intrinsic::round: 5813 case Intrinsic::canonicalize: { 5814 unsigned Opcode; 5815 switch (Intrinsic) { 5816 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5817 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5818 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5819 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5820 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5821 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5822 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5823 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5824 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5825 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5826 case Intrinsic::round: Opcode = ISD::FROUND; break; 5827 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5828 } 5829 5830 setValue(&I, DAG.getNode(Opcode, sdl, 5831 getValue(I.getArgOperand(0)).getValueType(), 5832 getValue(I.getArgOperand(0)))); 5833 return nullptr; 5834 } 5835 case Intrinsic::minnum: { 5836 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5837 unsigned Opc = 5838 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT) 5839 ? ISD::FMINIMUM 5840 : ISD::FMINNUM; 5841 setValue(&I, DAG.getNode(Opc, sdl, VT, 5842 getValue(I.getArgOperand(0)), 5843 getValue(I.getArgOperand(1)))); 5844 return nullptr; 5845 } 5846 case Intrinsic::maxnum: { 5847 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5848 unsigned Opc = 5849 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT) 5850 ? ISD::FMAXIMUM 5851 : ISD::FMAXNUM; 5852 setValue(&I, DAG.getNode(Opc, sdl, VT, 5853 getValue(I.getArgOperand(0)), 5854 getValue(I.getArgOperand(1)))); 5855 return nullptr; 5856 } 5857 case Intrinsic::minimum: 5858 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 5859 getValue(I.getArgOperand(0)).getValueType(), 5860 getValue(I.getArgOperand(0)), 5861 getValue(I.getArgOperand(1)))); 5862 return nullptr; 5863 case Intrinsic::maximum: 5864 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 5865 getValue(I.getArgOperand(0)).getValueType(), 5866 getValue(I.getArgOperand(0)), 5867 getValue(I.getArgOperand(1)))); 5868 return nullptr; 5869 case Intrinsic::copysign: 5870 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5871 getValue(I.getArgOperand(0)).getValueType(), 5872 getValue(I.getArgOperand(0)), 5873 getValue(I.getArgOperand(1)))); 5874 return nullptr; 5875 case Intrinsic::fma: 5876 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5877 getValue(I.getArgOperand(0)).getValueType(), 5878 getValue(I.getArgOperand(0)), 5879 getValue(I.getArgOperand(1)), 5880 getValue(I.getArgOperand(2)))); 5881 return nullptr; 5882 case Intrinsic::experimental_constrained_fadd: 5883 case Intrinsic::experimental_constrained_fsub: 5884 case Intrinsic::experimental_constrained_fmul: 5885 case Intrinsic::experimental_constrained_fdiv: 5886 case Intrinsic::experimental_constrained_frem: 5887 case Intrinsic::experimental_constrained_fma: 5888 case Intrinsic::experimental_constrained_sqrt: 5889 case Intrinsic::experimental_constrained_pow: 5890 case Intrinsic::experimental_constrained_powi: 5891 case Intrinsic::experimental_constrained_sin: 5892 case Intrinsic::experimental_constrained_cos: 5893 case Intrinsic::experimental_constrained_exp: 5894 case Intrinsic::experimental_constrained_exp2: 5895 case Intrinsic::experimental_constrained_log: 5896 case Intrinsic::experimental_constrained_log10: 5897 case Intrinsic::experimental_constrained_log2: 5898 case Intrinsic::experimental_constrained_rint: 5899 case Intrinsic::experimental_constrained_nearbyint: 5900 case Intrinsic::experimental_constrained_maxnum: 5901 case Intrinsic::experimental_constrained_minnum: 5902 case Intrinsic::experimental_constrained_ceil: 5903 case Intrinsic::experimental_constrained_floor: 5904 case Intrinsic::experimental_constrained_round: 5905 case Intrinsic::experimental_constrained_trunc: 5906 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 5907 return nullptr; 5908 case Intrinsic::fmuladd: { 5909 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5910 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5911 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5912 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5913 getValue(I.getArgOperand(0)).getValueType(), 5914 getValue(I.getArgOperand(0)), 5915 getValue(I.getArgOperand(1)), 5916 getValue(I.getArgOperand(2)))); 5917 } else { 5918 // TODO: Intrinsic calls should have fast-math-flags. 5919 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5920 getValue(I.getArgOperand(0)).getValueType(), 5921 getValue(I.getArgOperand(0)), 5922 getValue(I.getArgOperand(1))); 5923 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5924 getValue(I.getArgOperand(0)).getValueType(), 5925 Mul, 5926 getValue(I.getArgOperand(2))); 5927 setValue(&I, Add); 5928 } 5929 return nullptr; 5930 } 5931 case Intrinsic::convert_to_fp16: 5932 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5933 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5934 getValue(I.getArgOperand(0)), 5935 DAG.getTargetConstant(0, sdl, 5936 MVT::i32)))); 5937 return nullptr; 5938 case Intrinsic::convert_from_fp16: 5939 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5940 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5941 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5942 getValue(I.getArgOperand(0))))); 5943 return nullptr; 5944 case Intrinsic::pcmarker: { 5945 SDValue Tmp = getValue(I.getArgOperand(0)); 5946 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5947 return nullptr; 5948 } 5949 case Intrinsic::readcyclecounter: { 5950 SDValue Op = getRoot(); 5951 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5952 DAG.getVTList(MVT::i64, MVT::Other), Op); 5953 setValue(&I, Res); 5954 DAG.setRoot(Res.getValue(1)); 5955 return nullptr; 5956 } 5957 case Intrinsic::bitreverse: 5958 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5959 getValue(I.getArgOperand(0)).getValueType(), 5960 getValue(I.getArgOperand(0)))); 5961 return nullptr; 5962 case Intrinsic::bswap: 5963 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5964 getValue(I.getArgOperand(0)).getValueType(), 5965 getValue(I.getArgOperand(0)))); 5966 return nullptr; 5967 case Intrinsic::cttz: { 5968 SDValue Arg = getValue(I.getArgOperand(0)); 5969 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5970 EVT Ty = Arg.getValueType(); 5971 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5972 sdl, Ty, Arg)); 5973 return nullptr; 5974 } 5975 case Intrinsic::ctlz: { 5976 SDValue Arg = getValue(I.getArgOperand(0)); 5977 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5978 EVT Ty = Arg.getValueType(); 5979 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5980 sdl, Ty, Arg)); 5981 return nullptr; 5982 } 5983 case Intrinsic::ctpop: { 5984 SDValue Arg = getValue(I.getArgOperand(0)); 5985 EVT Ty = Arg.getValueType(); 5986 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5987 return nullptr; 5988 } 5989 case Intrinsic::fshl: 5990 case Intrinsic::fshr: { 5991 bool IsFSHL = Intrinsic == Intrinsic::fshl; 5992 SDValue X = getValue(I.getArgOperand(0)); 5993 SDValue Y = getValue(I.getArgOperand(1)); 5994 SDValue Z = getValue(I.getArgOperand(2)); 5995 EVT VT = X.getValueType(); 5996 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 5997 SDValue Zero = DAG.getConstant(0, sdl, VT); 5998 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 5999 6000 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6001 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6002 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6003 return nullptr; 6004 } 6005 6006 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6007 // avoid the select that is necessary in the general case to filter out 6008 // the 0-shift possibility that leads to UB. 6009 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6010 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6011 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6012 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6013 return nullptr; 6014 } 6015 6016 // Some targets only rotate one way. Try the opposite direction. 6017 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6018 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6019 // Negate the shift amount because it is safe to ignore the high bits. 6020 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6021 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6022 return nullptr; 6023 } 6024 6025 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6026 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6027 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6028 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6029 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6030 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6031 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6032 return nullptr; 6033 } 6034 6035 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6036 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6037 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6038 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6039 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6040 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6041 6042 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6043 // and that is undefined. We must compare and select to avoid UB. 6044 EVT CCVT = MVT::i1; 6045 if (VT.isVector()) 6046 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6047 6048 // For fshl, 0-shift returns the 1st arg (X). 6049 // For fshr, 0-shift returns the 2nd arg (Y). 6050 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6051 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6052 return nullptr; 6053 } 6054 case Intrinsic::sadd_sat: { 6055 SDValue Op1 = getValue(I.getArgOperand(0)); 6056 SDValue Op2 = getValue(I.getArgOperand(1)); 6057 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6058 return nullptr; 6059 } 6060 case Intrinsic::uadd_sat: { 6061 SDValue Op1 = getValue(I.getArgOperand(0)); 6062 SDValue Op2 = getValue(I.getArgOperand(1)); 6063 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6064 return nullptr; 6065 } 6066 case Intrinsic::ssub_sat: { 6067 SDValue Op1 = getValue(I.getArgOperand(0)); 6068 SDValue Op2 = getValue(I.getArgOperand(1)); 6069 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6070 return nullptr; 6071 } 6072 case Intrinsic::usub_sat: { 6073 SDValue Op1 = getValue(I.getArgOperand(0)); 6074 SDValue Op2 = getValue(I.getArgOperand(1)); 6075 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6076 return nullptr; 6077 } 6078 case Intrinsic::smul_fix: 6079 case Intrinsic::umul_fix: { 6080 SDValue Op1 = getValue(I.getArgOperand(0)); 6081 SDValue Op2 = getValue(I.getArgOperand(1)); 6082 SDValue Op3 = getValue(I.getArgOperand(2)); 6083 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6084 Op1.getValueType(), Op1, Op2, Op3)); 6085 return nullptr; 6086 } 6087 case Intrinsic::stacksave: { 6088 SDValue Op = getRoot(); 6089 Res = DAG.getNode( 6090 ISD::STACKSAVE, sdl, 6091 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 6092 setValue(&I, Res); 6093 DAG.setRoot(Res.getValue(1)); 6094 return nullptr; 6095 } 6096 case Intrinsic::stackrestore: 6097 Res = getValue(I.getArgOperand(0)); 6098 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6099 return nullptr; 6100 case Intrinsic::get_dynamic_area_offset: { 6101 SDValue Op = getRoot(); 6102 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6103 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6104 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6105 // target. 6106 if (PtrTy != ResTy) 6107 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6108 " intrinsic!"); 6109 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6110 Op); 6111 DAG.setRoot(Op); 6112 setValue(&I, Res); 6113 return nullptr; 6114 } 6115 case Intrinsic::stackguard: { 6116 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6117 MachineFunction &MF = DAG.getMachineFunction(); 6118 const Module &M = *MF.getFunction().getParent(); 6119 SDValue Chain = getRoot(); 6120 if (TLI.useLoadStackGuardNode()) { 6121 Res = getLoadStackGuard(DAG, sdl, Chain); 6122 } else { 6123 const Value *Global = TLI.getSDagStackGuard(M); 6124 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6125 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6126 MachinePointerInfo(Global, 0), Align, 6127 MachineMemOperand::MOVolatile); 6128 } 6129 if (TLI.useStackGuardXorFP()) 6130 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6131 DAG.setRoot(Chain); 6132 setValue(&I, Res); 6133 return nullptr; 6134 } 6135 case Intrinsic::stackprotector: { 6136 // Emit code into the DAG to store the stack guard onto the stack. 6137 MachineFunction &MF = DAG.getMachineFunction(); 6138 MachineFrameInfo &MFI = MF.getFrameInfo(); 6139 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6140 SDValue Src, Chain = getRoot(); 6141 6142 if (TLI.useLoadStackGuardNode()) 6143 Src = getLoadStackGuard(DAG, sdl, Chain); 6144 else 6145 Src = getValue(I.getArgOperand(0)); // The guard's value. 6146 6147 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6148 6149 int FI = FuncInfo.StaticAllocaMap[Slot]; 6150 MFI.setStackProtectorIndex(FI); 6151 6152 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6153 6154 // Store the stack protector onto the stack. 6155 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6156 DAG.getMachineFunction(), FI), 6157 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6158 setValue(&I, Res); 6159 DAG.setRoot(Res); 6160 return nullptr; 6161 } 6162 case Intrinsic::objectsize: { 6163 // If we don't know by now, we're never going to know. 6164 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 6165 6166 assert(CI && "Non-constant type in __builtin_object_size?"); 6167 6168 SDValue Arg = getValue(I.getCalledValue()); 6169 EVT Ty = Arg.getValueType(); 6170 6171 if (CI->isZero()) 6172 Res = DAG.getConstant(-1ULL, sdl, Ty); 6173 else 6174 Res = DAG.getConstant(0, sdl, Ty); 6175 6176 setValue(&I, Res); 6177 return nullptr; 6178 } 6179 6180 case Intrinsic::is_constant: 6181 // If this wasn't constant-folded away by now, then it's not a 6182 // constant. 6183 setValue(&I, DAG.getConstant(0, sdl, MVT::i1)); 6184 return nullptr; 6185 6186 case Intrinsic::annotation: 6187 case Intrinsic::ptr_annotation: 6188 case Intrinsic::launder_invariant_group: 6189 case Intrinsic::strip_invariant_group: 6190 // Drop the intrinsic, but forward the value 6191 setValue(&I, getValue(I.getOperand(0))); 6192 return nullptr; 6193 case Intrinsic::assume: 6194 case Intrinsic::var_annotation: 6195 case Intrinsic::sideeffect: 6196 // Discard annotate attributes, assumptions, and artificial side-effects. 6197 return nullptr; 6198 6199 case Intrinsic::codeview_annotation: { 6200 // Emit a label associated with this metadata. 6201 MachineFunction &MF = DAG.getMachineFunction(); 6202 MCSymbol *Label = 6203 MF.getMMI().getContext().createTempSymbol("annotation", true); 6204 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6205 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6206 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6207 DAG.setRoot(Res); 6208 return nullptr; 6209 } 6210 6211 case Intrinsic::init_trampoline: { 6212 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6213 6214 SDValue Ops[6]; 6215 Ops[0] = getRoot(); 6216 Ops[1] = getValue(I.getArgOperand(0)); 6217 Ops[2] = getValue(I.getArgOperand(1)); 6218 Ops[3] = getValue(I.getArgOperand(2)); 6219 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6220 Ops[5] = DAG.getSrcValue(F); 6221 6222 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6223 6224 DAG.setRoot(Res); 6225 return nullptr; 6226 } 6227 case Intrinsic::adjust_trampoline: 6228 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6229 TLI.getPointerTy(DAG.getDataLayout()), 6230 getValue(I.getArgOperand(0)))); 6231 return nullptr; 6232 case Intrinsic::gcroot: { 6233 assert(DAG.getMachineFunction().getFunction().hasGC() && 6234 "only valid in functions with gc specified, enforced by Verifier"); 6235 assert(GFI && "implied by previous"); 6236 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6237 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6238 6239 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6240 GFI->addStackRoot(FI->getIndex(), TypeMap); 6241 return nullptr; 6242 } 6243 case Intrinsic::gcread: 6244 case Intrinsic::gcwrite: 6245 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6246 case Intrinsic::flt_rounds: 6247 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 6248 return nullptr; 6249 6250 case Intrinsic::expect: 6251 // Just replace __builtin_expect(exp, c) with EXP. 6252 setValue(&I, getValue(I.getArgOperand(0))); 6253 return nullptr; 6254 6255 case Intrinsic::debugtrap: 6256 case Intrinsic::trap: { 6257 StringRef TrapFuncName = 6258 I.getAttributes() 6259 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6260 .getValueAsString(); 6261 if (TrapFuncName.empty()) { 6262 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6263 ISD::TRAP : ISD::DEBUGTRAP; 6264 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6265 return nullptr; 6266 } 6267 TargetLowering::ArgListTy Args; 6268 6269 TargetLowering::CallLoweringInfo CLI(DAG); 6270 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6271 CallingConv::C, I.getType(), 6272 DAG.getExternalSymbol(TrapFuncName.data(), 6273 TLI.getPointerTy(DAG.getDataLayout())), 6274 std::move(Args)); 6275 6276 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6277 DAG.setRoot(Result.second); 6278 return nullptr; 6279 } 6280 6281 case Intrinsic::uadd_with_overflow: 6282 case Intrinsic::sadd_with_overflow: 6283 case Intrinsic::usub_with_overflow: 6284 case Intrinsic::ssub_with_overflow: 6285 case Intrinsic::umul_with_overflow: 6286 case Intrinsic::smul_with_overflow: { 6287 ISD::NodeType Op; 6288 switch (Intrinsic) { 6289 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6290 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6291 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6292 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6293 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6294 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6295 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6296 } 6297 SDValue Op1 = getValue(I.getArgOperand(0)); 6298 SDValue Op2 = getValue(I.getArgOperand(1)); 6299 6300 EVT ResultVT = Op1.getValueType(); 6301 EVT OverflowVT = MVT::i1; 6302 if (ResultVT.isVector()) 6303 OverflowVT = EVT::getVectorVT( 6304 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6305 6306 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6307 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6308 return nullptr; 6309 } 6310 case Intrinsic::prefetch: { 6311 SDValue Ops[5]; 6312 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6313 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6314 Ops[0] = DAG.getRoot(); 6315 Ops[1] = getValue(I.getArgOperand(0)); 6316 Ops[2] = getValue(I.getArgOperand(1)); 6317 Ops[3] = getValue(I.getArgOperand(2)); 6318 Ops[4] = getValue(I.getArgOperand(3)); 6319 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 6320 DAG.getVTList(MVT::Other), Ops, 6321 EVT::getIntegerVT(*Context, 8), 6322 MachinePointerInfo(I.getArgOperand(0)), 6323 0, /* align */ 6324 Flags); 6325 6326 // Chain the prefetch in parallell with any pending loads, to stay out of 6327 // the way of later optimizations. 6328 PendingLoads.push_back(Result); 6329 Result = getRoot(); 6330 DAG.setRoot(Result); 6331 return nullptr; 6332 } 6333 case Intrinsic::lifetime_start: 6334 case Intrinsic::lifetime_end: { 6335 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6336 // Stack coloring is not enabled in O0, discard region information. 6337 if (TM.getOptLevel() == CodeGenOpt::None) 6338 return nullptr; 6339 6340 SmallVector<Value *, 4> Allocas; 6341 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 6342 6343 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 6344 E = Allocas.end(); Object != E; ++Object) { 6345 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6346 6347 // Could not find an Alloca. 6348 if (!LifetimeObject) 6349 continue; 6350 6351 // First check that the Alloca is static, otherwise it won't have a 6352 // valid frame index. 6353 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6354 if (SI == FuncInfo.StaticAllocaMap.end()) 6355 return nullptr; 6356 6357 int FI = SI->second; 6358 6359 SDValue Ops[2]; 6360 Ops[0] = getRoot(); 6361 Ops[1] = 6362 DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true); 6363 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 6364 6365 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 6366 DAG.setRoot(Res); 6367 } 6368 return nullptr; 6369 } 6370 case Intrinsic::invariant_start: 6371 // Discard region information. 6372 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6373 return nullptr; 6374 case Intrinsic::invariant_end: 6375 // Discard region information. 6376 return nullptr; 6377 case Intrinsic::clear_cache: 6378 return TLI.getClearCacheBuiltinName(); 6379 case Intrinsic::donothing: 6380 // ignore 6381 return nullptr; 6382 case Intrinsic::experimental_stackmap: 6383 visitStackmap(I); 6384 return nullptr; 6385 case Intrinsic::experimental_patchpoint_void: 6386 case Intrinsic::experimental_patchpoint_i64: 6387 visitPatchpoint(&I); 6388 return nullptr; 6389 case Intrinsic::experimental_gc_statepoint: 6390 LowerStatepoint(ImmutableStatepoint(&I)); 6391 return nullptr; 6392 case Intrinsic::experimental_gc_result: 6393 visitGCResult(cast<GCResultInst>(I)); 6394 return nullptr; 6395 case Intrinsic::experimental_gc_relocate: 6396 visitGCRelocate(cast<GCRelocateInst>(I)); 6397 return nullptr; 6398 case Intrinsic::instrprof_increment: 6399 llvm_unreachable("instrprof failed to lower an increment"); 6400 case Intrinsic::instrprof_value_profile: 6401 llvm_unreachable("instrprof failed to lower a value profiling call"); 6402 case Intrinsic::localescape: { 6403 MachineFunction &MF = DAG.getMachineFunction(); 6404 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6405 6406 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6407 // is the same on all targets. 6408 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6409 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6410 if (isa<ConstantPointerNull>(Arg)) 6411 continue; // Skip null pointers. They represent a hole in index space. 6412 AllocaInst *Slot = cast<AllocaInst>(Arg); 6413 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6414 "can only escape static allocas"); 6415 int FI = FuncInfo.StaticAllocaMap[Slot]; 6416 MCSymbol *FrameAllocSym = 6417 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6418 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6419 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6420 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6421 .addSym(FrameAllocSym) 6422 .addFrameIndex(FI); 6423 } 6424 6425 return nullptr; 6426 } 6427 6428 case Intrinsic::localrecover: { 6429 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6430 MachineFunction &MF = DAG.getMachineFunction(); 6431 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6432 6433 // Get the symbol that defines the frame offset. 6434 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6435 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6436 unsigned IdxVal = 6437 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6438 MCSymbol *FrameAllocSym = 6439 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6440 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6441 6442 // Create a MCSymbol for the label to avoid any target lowering 6443 // that would make this PC relative. 6444 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6445 SDValue OffsetVal = 6446 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6447 6448 // Add the offset to the FP. 6449 Value *FP = I.getArgOperand(1); 6450 SDValue FPVal = getValue(FP); 6451 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 6452 setValue(&I, Add); 6453 6454 return nullptr; 6455 } 6456 6457 case Intrinsic::eh_exceptionpointer: 6458 case Intrinsic::eh_exceptioncode: { 6459 // Get the exception pointer vreg, copy from it, and resize it to fit. 6460 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6461 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6462 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6463 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6464 SDValue N = 6465 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6466 if (Intrinsic == Intrinsic::eh_exceptioncode) 6467 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6468 setValue(&I, N); 6469 return nullptr; 6470 } 6471 case Intrinsic::xray_customevent: { 6472 // Here we want to make sure that the intrinsic behaves as if it has a 6473 // specific calling convention, and only for x86_64. 6474 // FIXME: Support other platforms later. 6475 const auto &Triple = DAG.getTarget().getTargetTriple(); 6476 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6477 return nullptr; 6478 6479 SDLoc DL = getCurSDLoc(); 6480 SmallVector<SDValue, 8> Ops; 6481 6482 // We want to say that we always want the arguments in registers. 6483 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6484 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6485 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6486 SDValue Chain = getRoot(); 6487 Ops.push_back(LogEntryVal); 6488 Ops.push_back(StrSizeVal); 6489 Ops.push_back(Chain); 6490 6491 // We need to enforce the calling convention for the callsite, so that 6492 // argument ordering is enforced correctly, and that register allocation can 6493 // see that some registers may be assumed clobbered and have to preserve 6494 // them across calls to the intrinsic. 6495 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6496 DL, NodeTys, Ops); 6497 SDValue patchableNode = SDValue(MN, 0); 6498 DAG.setRoot(patchableNode); 6499 setValue(&I, patchableNode); 6500 return nullptr; 6501 } 6502 case Intrinsic::xray_typedevent: { 6503 // Here we want to make sure that the intrinsic behaves as if it has a 6504 // specific calling convention, and only for x86_64. 6505 // FIXME: Support other platforms later. 6506 const auto &Triple = DAG.getTarget().getTargetTriple(); 6507 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6508 return nullptr; 6509 6510 SDLoc DL = getCurSDLoc(); 6511 SmallVector<SDValue, 8> Ops; 6512 6513 // We want to say that we always want the arguments in registers. 6514 // It's unclear to me how manipulating the selection DAG here forces callers 6515 // to provide arguments in registers instead of on the stack. 6516 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6517 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6518 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6519 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6520 SDValue Chain = getRoot(); 6521 Ops.push_back(LogTypeId); 6522 Ops.push_back(LogEntryVal); 6523 Ops.push_back(StrSizeVal); 6524 Ops.push_back(Chain); 6525 6526 // We need to enforce the calling convention for the callsite, so that 6527 // argument ordering is enforced correctly, and that register allocation can 6528 // see that some registers may be assumed clobbered and have to preserve 6529 // them across calls to the intrinsic. 6530 MachineSDNode *MN = DAG.getMachineNode( 6531 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6532 SDValue patchableNode = SDValue(MN, 0); 6533 DAG.setRoot(patchableNode); 6534 setValue(&I, patchableNode); 6535 return nullptr; 6536 } 6537 case Intrinsic::experimental_deoptimize: 6538 LowerDeoptimizeCall(&I); 6539 return nullptr; 6540 6541 case Intrinsic::experimental_vector_reduce_fadd: 6542 case Intrinsic::experimental_vector_reduce_fmul: 6543 case Intrinsic::experimental_vector_reduce_add: 6544 case Intrinsic::experimental_vector_reduce_mul: 6545 case Intrinsic::experimental_vector_reduce_and: 6546 case Intrinsic::experimental_vector_reduce_or: 6547 case Intrinsic::experimental_vector_reduce_xor: 6548 case Intrinsic::experimental_vector_reduce_smax: 6549 case Intrinsic::experimental_vector_reduce_smin: 6550 case Intrinsic::experimental_vector_reduce_umax: 6551 case Intrinsic::experimental_vector_reduce_umin: 6552 case Intrinsic::experimental_vector_reduce_fmax: 6553 case Intrinsic::experimental_vector_reduce_fmin: 6554 visitVectorReduce(I, Intrinsic); 6555 return nullptr; 6556 6557 case Intrinsic::icall_branch_funnel: { 6558 SmallVector<SDValue, 16> Ops; 6559 Ops.push_back(DAG.getRoot()); 6560 Ops.push_back(getValue(I.getArgOperand(0))); 6561 6562 int64_t Offset; 6563 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6564 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6565 if (!Base) 6566 report_fatal_error( 6567 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6568 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6569 6570 struct BranchFunnelTarget { 6571 int64_t Offset; 6572 SDValue Target; 6573 }; 6574 SmallVector<BranchFunnelTarget, 8> Targets; 6575 6576 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6577 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6578 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6579 if (ElemBase != Base) 6580 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6581 "to the same GlobalValue"); 6582 6583 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6584 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6585 if (!GA) 6586 report_fatal_error( 6587 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6588 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6589 GA->getGlobal(), getCurSDLoc(), 6590 Val.getValueType(), GA->getOffset())}); 6591 } 6592 llvm::sort(Targets, 6593 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6594 return T1.Offset < T2.Offset; 6595 }); 6596 6597 for (auto &T : Targets) { 6598 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6599 Ops.push_back(T.Target); 6600 } 6601 6602 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6603 getCurSDLoc(), MVT::Other, Ops), 6604 0); 6605 DAG.setRoot(N); 6606 setValue(&I, N); 6607 HasTailCall = true; 6608 return nullptr; 6609 } 6610 6611 case Intrinsic::wasm_landingpad_index: 6612 // Information this intrinsic contained has been transferred to 6613 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6614 // delete it now. 6615 return nullptr; 6616 } 6617 } 6618 6619 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6620 const ConstrainedFPIntrinsic &FPI) { 6621 SDLoc sdl = getCurSDLoc(); 6622 unsigned Opcode; 6623 switch (FPI.getIntrinsicID()) { 6624 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6625 case Intrinsic::experimental_constrained_fadd: 6626 Opcode = ISD::STRICT_FADD; 6627 break; 6628 case Intrinsic::experimental_constrained_fsub: 6629 Opcode = ISD::STRICT_FSUB; 6630 break; 6631 case Intrinsic::experimental_constrained_fmul: 6632 Opcode = ISD::STRICT_FMUL; 6633 break; 6634 case Intrinsic::experimental_constrained_fdiv: 6635 Opcode = ISD::STRICT_FDIV; 6636 break; 6637 case Intrinsic::experimental_constrained_frem: 6638 Opcode = ISD::STRICT_FREM; 6639 break; 6640 case Intrinsic::experimental_constrained_fma: 6641 Opcode = ISD::STRICT_FMA; 6642 break; 6643 case Intrinsic::experimental_constrained_sqrt: 6644 Opcode = ISD::STRICT_FSQRT; 6645 break; 6646 case Intrinsic::experimental_constrained_pow: 6647 Opcode = ISD::STRICT_FPOW; 6648 break; 6649 case Intrinsic::experimental_constrained_powi: 6650 Opcode = ISD::STRICT_FPOWI; 6651 break; 6652 case Intrinsic::experimental_constrained_sin: 6653 Opcode = ISD::STRICT_FSIN; 6654 break; 6655 case Intrinsic::experimental_constrained_cos: 6656 Opcode = ISD::STRICT_FCOS; 6657 break; 6658 case Intrinsic::experimental_constrained_exp: 6659 Opcode = ISD::STRICT_FEXP; 6660 break; 6661 case Intrinsic::experimental_constrained_exp2: 6662 Opcode = ISD::STRICT_FEXP2; 6663 break; 6664 case Intrinsic::experimental_constrained_log: 6665 Opcode = ISD::STRICT_FLOG; 6666 break; 6667 case Intrinsic::experimental_constrained_log10: 6668 Opcode = ISD::STRICT_FLOG10; 6669 break; 6670 case Intrinsic::experimental_constrained_log2: 6671 Opcode = ISD::STRICT_FLOG2; 6672 break; 6673 case Intrinsic::experimental_constrained_rint: 6674 Opcode = ISD::STRICT_FRINT; 6675 break; 6676 case Intrinsic::experimental_constrained_nearbyint: 6677 Opcode = ISD::STRICT_FNEARBYINT; 6678 break; 6679 case Intrinsic::experimental_constrained_maxnum: 6680 Opcode = ISD::STRICT_FMAXNUM; 6681 break; 6682 case Intrinsic::experimental_constrained_minnum: 6683 Opcode = ISD::STRICT_FMINNUM; 6684 break; 6685 case Intrinsic::experimental_constrained_ceil: 6686 Opcode = ISD::STRICT_FCEIL; 6687 break; 6688 case Intrinsic::experimental_constrained_floor: 6689 Opcode = ISD::STRICT_FFLOOR; 6690 break; 6691 case Intrinsic::experimental_constrained_round: 6692 Opcode = ISD::STRICT_FROUND; 6693 break; 6694 case Intrinsic::experimental_constrained_trunc: 6695 Opcode = ISD::STRICT_FTRUNC; 6696 break; 6697 } 6698 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6699 SDValue Chain = getRoot(); 6700 SmallVector<EVT, 4> ValueVTs; 6701 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6702 ValueVTs.push_back(MVT::Other); // Out chain 6703 6704 SDVTList VTs = DAG.getVTList(ValueVTs); 6705 SDValue Result; 6706 if (FPI.isUnaryOp()) 6707 Result = DAG.getNode(Opcode, sdl, VTs, 6708 { Chain, getValue(FPI.getArgOperand(0)) }); 6709 else if (FPI.isTernaryOp()) 6710 Result = DAG.getNode(Opcode, sdl, VTs, 6711 { Chain, getValue(FPI.getArgOperand(0)), 6712 getValue(FPI.getArgOperand(1)), 6713 getValue(FPI.getArgOperand(2)) }); 6714 else 6715 Result = DAG.getNode(Opcode, sdl, VTs, 6716 { Chain, getValue(FPI.getArgOperand(0)), 6717 getValue(FPI.getArgOperand(1)) }); 6718 6719 assert(Result.getNode()->getNumValues() == 2); 6720 SDValue OutChain = Result.getValue(1); 6721 DAG.setRoot(OutChain); 6722 SDValue FPResult = Result.getValue(0); 6723 setValue(&FPI, FPResult); 6724 } 6725 6726 std::pair<SDValue, SDValue> 6727 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6728 const BasicBlock *EHPadBB) { 6729 MachineFunction &MF = DAG.getMachineFunction(); 6730 MachineModuleInfo &MMI = MF.getMMI(); 6731 MCSymbol *BeginLabel = nullptr; 6732 6733 if (EHPadBB) { 6734 // Insert a label before the invoke call to mark the try range. This can be 6735 // used to detect deletion of the invoke via the MachineModuleInfo. 6736 BeginLabel = MMI.getContext().createTempSymbol(); 6737 6738 // For SjLj, keep track of which landing pads go with which invokes 6739 // so as to maintain the ordering of pads in the LSDA. 6740 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6741 if (CallSiteIndex) { 6742 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6743 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6744 6745 // Now that the call site is handled, stop tracking it. 6746 MMI.setCurrentCallSite(0); 6747 } 6748 6749 // Both PendingLoads and PendingExports must be flushed here; 6750 // this call might not return. 6751 (void)getRoot(); 6752 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6753 6754 CLI.setChain(getRoot()); 6755 } 6756 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6757 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6758 6759 assert((CLI.IsTailCall || Result.second.getNode()) && 6760 "Non-null chain expected with non-tail call!"); 6761 assert((Result.second.getNode() || !Result.first.getNode()) && 6762 "Null value expected with tail call!"); 6763 6764 if (!Result.second.getNode()) { 6765 // As a special case, a null chain means that a tail call has been emitted 6766 // and the DAG root is already updated. 6767 HasTailCall = true; 6768 6769 // Since there's no actual continuation from this block, nothing can be 6770 // relying on us setting vregs for them. 6771 PendingExports.clear(); 6772 } else { 6773 DAG.setRoot(Result.second); 6774 } 6775 6776 if (EHPadBB) { 6777 // Insert a label at the end of the invoke call to mark the try range. This 6778 // can be used to detect deletion of the invoke via the MachineModuleInfo. 6779 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 6780 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 6781 6782 // Inform MachineModuleInfo of range. 6783 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 6784 // There is a platform (e.g. wasm) that uses funclet style IR but does not 6785 // actually use outlined funclets and their LSDA info style. 6786 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 6787 assert(CLI.CS); 6788 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 6789 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 6790 BeginLabel, EndLabel); 6791 } else if (!isScopedEHPersonality(Pers)) { 6792 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 6793 } 6794 } 6795 6796 return Result; 6797 } 6798 6799 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 6800 bool isTailCall, 6801 const BasicBlock *EHPadBB) { 6802 auto &DL = DAG.getDataLayout(); 6803 FunctionType *FTy = CS.getFunctionType(); 6804 Type *RetTy = CS.getType(); 6805 6806 TargetLowering::ArgListTy Args; 6807 Args.reserve(CS.arg_size()); 6808 6809 const Value *SwiftErrorVal = nullptr; 6810 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6811 6812 // We can't tail call inside a function with a swifterror argument. Lowering 6813 // does not support this yet. It would have to move into the swifterror 6814 // register before the call. 6815 auto *Caller = CS.getInstruction()->getParent()->getParent(); 6816 if (TLI.supportSwiftError() && 6817 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 6818 isTailCall = false; 6819 6820 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 6821 i != e; ++i) { 6822 TargetLowering::ArgListEntry Entry; 6823 const Value *V = *i; 6824 6825 // Skip empty types 6826 if (V->getType()->isEmptyTy()) 6827 continue; 6828 6829 SDValue ArgNode = getValue(V); 6830 Entry.Node = ArgNode; Entry.Ty = V->getType(); 6831 6832 Entry.setAttributes(&CS, i - CS.arg_begin()); 6833 6834 // Use swifterror virtual register as input to the call. 6835 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 6836 SwiftErrorVal = V; 6837 // We find the virtual register for the actual swifterror argument. 6838 // Instead of using the Value, we use the virtual register instead. 6839 Entry.Node = DAG.getRegister(FuncInfo 6840 .getOrCreateSwiftErrorVRegUseAt( 6841 CS.getInstruction(), FuncInfo.MBB, V) 6842 .first, 6843 EVT(TLI.getPointerTy(DL))); 6844 } 6845 6846 Args.push_back(Entry); 6847 6848 // If we have an explicit sret argument that is an Instruction, (i.e., it 6849 // might point to function-local memory), we can't meaningfully tail-call. 6850 if (Entry.IsSRet && isa<Instruction>(V)) 6851 isTailCall = false; 6852 } 6853 6854 // Check if target-independent constraints permit a tail call here. 6855 // Target-dependent constraints are checked within TLI->LowerCallTo. 6856 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 6857 isTailCall = false; 6858 6859 // Disable tail calls if there is an swifterror argument. Targets have not 6860 // been updated to support tail calls. 6861 if (TLI.supportSwiftError() && SwiftErrorVal) 6862 isTailCall = false; 6863 6864 TargetLowering::CallLoweringInfo CLI(DAG); 6865 CLI.setDebugLoc(getCurSDLoc()) 6866 .setChain(getRoot()) 6867 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 6868 .setTailCall(isTailCall) 6869 .setConvergent(CS.isConvergent()); 6870 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 6871 6872 if (Result.first.getNode()) { 6873 const Instruction *Inst = CS.getInstruction(); 6874 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 6875 setValue(Inst, Result.first); 6876 } 6877 6878 // The last element of CLI.InVals has the SDValue for swifterror return. 6879 // Here we copy it to a virtual register and update SwiftErrorMap for 6880 // book-keeping. 6881 if (SwiftErrorVal && TLI.supportSwiftError()) { 6882 // Get the last element of InVals. 6883 SDValue Src = CLI.InVals.back(); 6884 unsigned VReg; bool CreatedVReg; 6885 std::tie(VReg, CreatedVReg) = 6886 FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction()); 6887 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 6888 // We update the virtual register for the actual swifterror argument. 6889 if (CreatedVReg) 6890 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 6891 DAG.setRoot(CopyNode); 6892 } 6893 } 6894 6895 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 6896 SelectionDAGBuilder &Builder) { 6897 // Check to see if this load can be trivially constant folded, e.g. if the 6898 // input is from a string literal. 6899 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 6900 // Cast pointer to the type we really want to load. 6901 Type *LoadTy = 6902 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 6903 if (LoadVT.isVector()) 6904 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 6905 6906 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 6907 PointerType::getUnqual(LoadTy)); 6908 6909 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 6910 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 6911 return Builder.getValue(LoadCst); 6912 } 6913 6914 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 6915 // still constant memory, the input chain can be the entry node. 6916 SDValue Root; 6917 bool ConstantMemory = false; 6918 6919 // Do not serialize (non-volatile) loads of constant memory with anything. 6920 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 6921 Root = Builder.DAG.getEntryNode(); 6922 ConstantMemory = true; 6923 } else { 6924 // Do not serialize non-volatile loads against each other. 6925 Root = Builder.DAG.getRoot(); 6926 } 6927 6928 SDValue Ptr = Builder.getValue(PtrVal); 6929 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 6930 Ptr, MachinePointerInfo(PtrVal), 6931 /* Alignment = */ 1); 6932 6933 if (!ConstantMemory) 6934 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 6935 return LoadVal; 6936 } 6937 6938 /// Record the value for an instruction that produces an integer result, 6939 /// converting the type where necessary. 6940 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 6941 SDValue Value, 6942 bool IsSigned) { 6943 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6944 I.getType(), true); 6945 if (IsSigned) 6946 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 6947 else 6948 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 6949 setValue(&I, Value); 6950 } 6951 6952 /// See if we can lower a memcmp call into an optimized form. If so, return 6953 /// true and lower it. Otherwise return false, and it will be lowered like a 6954 /// normal call. 6955 /// The caller already checked that \p I calls the appropriate LibFunc with a 6956 /// correct prototype. 6957 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 6958 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 6959 const Value *Size = I.getArgOperand(2); 6960 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 6961 if (CSize && CSize->getZExtValue() == 0) { 6962 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6963 I.getType(), true); 6964 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 6965 return true; 6966 } 6967 6968 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6969 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 6970 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 6971 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 6972 if (Res.first.getNode()) { 6973 processIntegerCallValue(I, Res.first, true); 6974 PendingLoads.push_back(Res.second); 6975 return true; 6976 } 6977 6978 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 6979 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 6980 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 6981 return false; 6982 6983 // If the target has a fast compare for the given size, it will return a 6984 // preferred load type for that size. Require that the load VT is legal and 6985 // that the target supports unaligned loads of that type. Otherwise, return 6986 // INVALID. 6987 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 6988 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6989 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 6990 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 6991 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 6992 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 6993 // TODO: Check alignment of src and dest ptrs. 6994 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 6995 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 6996 if (!TLI.isTypeLegal(LVT) || 6997 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 6998 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 6999 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7000 } 7001 7002 return LVT; 7003 }; 7004 7005 // This turns into unaligned loads. We only do this if the target natively 7006 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7007 // we'll only produce a small number of byte loads. 7008 MVT LoadVT; 7009 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7010 switch (NumBitsToCompare) { 7011 default: 7012 return false; 7013 case 16: 7014 LoadVT = MVT::i16; 7015 break; 7016 case 32: 7017 LoadVT = MVT::i32; 7018 break; 7019 case 64: 7020 case 128: 7021 case 256: 7022 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7023 break; 7024 } 7025 7026 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7027 return false; 7028 7029 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7030 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7031 7032 // Bitcast to a wide integer type if the loads are vectors. 7033 if (LoadVT.isVector()) { 7034 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7035 LoadL = DAG.getBitcast(CmpVT, LoadL); 7036 LoadR = DAG.getBitcast(CmpVT, LoadR); 7037 } 7038 7039 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7040 processIntegerCallValue(I, Cmp, false); 7041 return true; 7042 } 7043 7044 /// See if we can lower a memchr call into an optimized form. If so, return 7045 /// true and lower it. Otherwise return false, and it will be lowered like a 7046 /// normal call. 7047 /// The caller already checked that \p I calls the appropriate LibFunc with a 7048 /// correct prototype. 7049 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7050 const Value *Src = I.getArgOperand(0); 7051 const Value *Char = I.getArgOperand(1); 7052 const Value *Length = I.getArgOperand(2); 7053 7054 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7055 std::pair<SDValue, SDValue> Res = 7056 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7057 getValue(Src), getValue(Char), getValue(Length), 7058 MachinePointerInfo(Src)); 7059 if (Res.first.getNode()) { 7060 setValue(&I, Res.first); 7061 PendingLoads.push_back(Res.second); 7062 return true; 7063 } 7064 7065 return false; 7066 } 7067 7068 /// See if we can lower a mempcpy call into an optimized form. If so, return 7069 /// true and lower it. Otherwise return false, and it will be lowered like a 7070 /// normal call. 7071 /// The caller already checked that \p I calls the appropriate LibFunc with a 7072 /// correct prototype. 7073 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7074 SDValue Dst = getValue(I.getArgOperand(0)); 7075 SDValue Src = getValue(I.getArgOperand(1)); 7076 SDValue Size = getValue(I.getArgOperand(2)); 7077 7078 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 7079 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 7080 unsigned Align = std::min(DstAlign, SrcAlign); 7081 if (Align == 0) // Alignment of one or both could not be inferred. 7082 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 7083 7084 bool isVol = false; 7085 SDLoc sdl = getCurSDLoc(); 7086 7087 // In the mempcpy context we need to pass in a false value for isTailCall 7088 // because the return pointer needs to be adjusted by the size of 7089 // the copied memory. 7090 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 7091 false, /*isTailCall=*/false, 7092 MachinePointerInfo(I.getArgOperand(0)), 7093 MachinePointerInfo(I.getArgOperand(1))); 7094 assert(MC.getNode() != nullptr && 7095 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7096 DAG.setRoot(MC); 7097 7098 // Check if Size needs to be truncated or extended. 7099 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7100 7101 // Adjust return pointer to point just past the last dst byte. 7102 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7103 Dst, Size); 7104 setValue(&I, DstPlusSize); 7105 return true; 7106 } 7107 7108 /// See if we can lower a strcpy call into an optimized form. If so, return 7109 /// true and lower it, otherwise return false and it will be lowered like a 7110 /// normal call. 7111 /// The caller already checked that \p I calls the appropriate LibFunc with a 7112 /// correct prototype. 7113 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7114 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7115 7116 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7117 std::pair<SDValue, SDValue> Res = 7118 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7119 getValue(Arg0), getValue(Arg1), 7120 MachinePointerInfo(Arg0), 7121 MachinePointerInfo(Arg1), isStpcpy); 7122 if (Res.first.getNode()) { 7123 setValue(&I, Res.first); 7124 DAG.setRoot(Res.second); 7125 return true; 7126 } 7127 7128 return false; 7129 } 7130 7131 /// See if we can lower a strcmp call into an optimized form. If so, return 7132 /// true and lower it, otherwise return false and it will be lowered like a 7133 /// normal call. 7134 /// The caller already checked that \p I calls the appropriate LibFunc with a 7135 /// correct prototype. 7136 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7137 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7138 7139 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7140 std::pair<SDValue, SDValue> Res = 7141 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7142 getValue(Arg0), getValue(Arg1), 7143 MachinePointerInfo(Arg0), 7144 MachinePointerInfo(Arg1)); 7145 if (Res.first.getNode()) { 7146 processIntegerCallValue(I, Res.first, true); 7147 PendingLoads.push_back(Res.second); 7148 return true; 7149 } 7150 7151 return false; 7152 } 7153 7154 /// See if we can lower a strlen call into an optimized form. If so, return 7155 /// true and lower it, otherwise return false and it will be lowered like a 7156 /// normal call. 7157 /// The caller already checked that \p I calls the appropriate LibFunc with a 7158 /// correct prototype. 7159 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7160 const Value *Arg0 = I.getArgOperand(0); 7161 7162 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7163 std::pair<SDValue, SDValue> Res = 7164 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7165 getValue(Arg0), MachinePointerInfo(Arg0)); 7166 if (Res.first.getNode()) { 7167 processIntegerCallValue(I, Res.first, false); 7168 PendingLoads.push_back(Res.second); 7169 return true; 7170 } 7171 7172 return false; 7173 } 7174 7175 /// See if we can lower a strnlen call into an optimized form. If so, return 7176 /// true and lower it, otherwise return false and it will be lowered like a 7177 /// normal call. 7178 /// The caller already checked that \p I calls the appropriate LibFunc with a 7179 /// correct prototype. 7180 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7181 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7182 7183 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7184 std::pair<SDValue, SDValue> Res = 7185 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7186 getValue(Arg0), getValue(Arg1), 7187 MachinePointerInfo(Arg0)); 7188 if (Res.first.getNode()) { 7189 processIntegerCallValue(I, Res.first, false); 7190 PendingLoads.push_back(Res.second); 7191 return true; 7192 } 7193 7194 return false; 7195 } 7196 7197 /// See if we can lower a unary floating-point operation into an SDNode with 7198 /// the specified Opcode. If so, return true and lower it, otherwise return 7199 /// false and it will be lowered like a normal call. 7200 /// The caller already checked that \p I calls the appropriate LibFunc with a 7201 /// correct prototype. 7202 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7203 unsigned Opcode) { 7204 // We already checked this call's prototype; verify it doesn't modify errno. 7205 if (!I.onlyReadsMemory()) 7206 return false; 7207 7208 SDValue Tmp = getValue(I.getArgOperand(0)); 7209 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7210 return true; 7211 } 7212 7213 /// See if we can lower a binary floating-point operation into an SDNode with 7214 /// the specified Opcode. If so, return true and lower it. Otherwise return 7215 /// false, and it will be lowered like a normal call. 7216 /// The caller already checked that \p I calls the appropriate LibFunc with a 7217 /// correct prototype. 7218 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7219 unsigned Opcode) { 7220 // We already checked this call's prototype; verify it doesn't modify errno. 7221 if (!I.onlyReadsMemory()) 7222 return false; 7223 7224 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7225 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7226 EVT VT = Tmp0.getValueType(); 7227 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7228 return true; 7229 } 7230 7231 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7232 // Handle inline assembly differently. 7233 if (isa<InlineAsm>(I.getCalledValue())) { 7234 visitInlineAsm(&I); 7235 return; 7236 } 7237 7238 const char *RenameFn = nullptr; 7239 if (Function *F = I.getCalledFunction()) { 7240 if (F->isDeclaration()) { 7241 // Is this an LLVM intrinsic or a target-specific intrinsic? 7242 unsigned IID = F->getIntrinsicID(); 7243 if (!IID) 7244 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7245 IID = II->getIntrinsicID(F); 7246 7247 if (IID) { 7248 RenameFn = visitIntrinsicCall(I, IID); 7249 if (!RenameFn) 7250 return; 7251 } 7252 } 7253 7254 // Check for well-known libc/libm calls. If the function is internal, it 7255 // can't be a library call. Don't do the check if marked as nobuiltin for 7256 // some reason or the call site requires strict floating point semantics. 7257 LibFunc Func; 7258 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7259 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7260 LibInfo->hasOptimizedCodeGen(Func)) { 7261 switch (Func) { 7262 default: break; 7263 case LibFunc_copysign: 7264 case LibFunc_copysignf: 7265 case LibFunc_copysignl: 7266 // We already checked this call's prototype; verify it doesn't modify 7267 // errno. 7268 if (I.onlyReadsMemory()) { 7269 SDValue LHS = getValue(I.getArgOperand(0)); 7270 SDValue RHS = getValue(I.getArgOperand(1)); 7271 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7272 LHS.getValueType(), LHS, RHS)); 7273 return; 7274 } 7275 break; 7276 case LibFunc_fabs: 7277 case LibFunc_fabsf: 7278 case LibFunc_fabsl: 7279 if (visitUnaryFloatCall(I, ISD::FABS)) 7280 return; 7281 break; 7282 case LibFunc_fmin: 7283 case LibFunc_fminf: 7284 case LibFunc_fminl: 7285 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7286 return; 7287 break; 7288 case LibFunc_fmax: 7289 case LibFunc_fmaxf: 7290 case LibFunc_fmaxl: 7291 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7292 return; 7293 break; 7294 case LibFunc_sin: 7295 case LibFunc_sinf: 7296 case LibFunc_sinl: 7297 if (visitUnaryFloatCall(I, ISD::FSIN)) 7298 return; 7299 break; 7300 case LibFunc_cos: 7301 case LibFunc_cosf: 7302 case LibFunc_cosl: 7303 if (visitUnaryFloatCall(I, ISD::FCOS)) 7304 return; 7305 break; 7306 case LibFunc_sqrt: 7307 case LibFunc_sqrtf: 7308 case LibFunc_sqrtl: 7309 case LibFunc_sqrt_finite: 7310 case LibFunc_sqrtf_finite: 7311 case LibFunc_sqrtl_finite: 7312 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7313 return; 7314 break; 7315 case LibFunc_floor: 7316 case LibFunc_floorf: 7317 case LibFunc_floorl: 7318 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7319 return; 7320 break; 7321 case LibFunc_nearbyint: 7322 case LibFunc_nearbyintf: 7323 case LibFunc_nearbyintl: 7324 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7325 return; 7326 break; 7327 case LibFunc_ceil: 7328 case LibFunc_ceilf: 7329 case LibFunc_ceill: 7330 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7331 return; 7332 break; 7333 case LibFunc_rint: 7334 case LibFunc_rintf: 7335 case LibFunc_rintl: 7336 if (visitUnaryFloatCall(I, ISD::FRINT)) 7337 return; 7338 break; 7339 case LibFunc_round: 7340 case LibFunc_roundf: 7341 case LibFunc_roundl: 7342 if (visitUnaryFloatCall(I, ISD::FROUND)) 7343 return; 7344 break; 7345 case LibFunc_trunc: 7346 case LibFunc_truncf: 7347 case LibFunc_truncl: 7348 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7349 return; 7350 break; 7351 case LibFunc_log2: 7352 case LibFunc_log2f: 7353 case LibFunc_log2l: 7354 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7355 return; 7356 break; 7357 case LibFunc_exp2: 7358 case LibFunc_exp2f: 7359 case LibFunc_exp2l: 7360 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7361 return; 7362 break; 7363 case LibFunc_memcmp: 7364 if (visitMemCmpCall(I)) 7365 return; 7366 break; 7367 case LibFunc_mempcpy: 7368 if (visitMemPCpyCall(I)) 7369 return; 7370 break; 7371 case LibFunc_memchr: 7372 if (visitMemChrCall(I)) 7373 return; 7374 break; 7375 case LibFunc_strcpy: 7376 if (visitStrCpyCall(I, false)) 7377 return; 7378 break; 7379 case LibFunc_stpcpy: 7380 if (visitStrCpyCall(I, true)) 7381 return; 7382 break; 7383 case LibFunc_strcmp: 7384 if (visitStrCmpCall(I)) 7385 return; 7386 break; 7387 case LibFunc_strlen: 7388 if (visitStrLenCall(I)) 7389 return; 7390 break; 7391 case LibFunc_strnlen: 7392 if (visitStrNLenCall(I)) 7393 return; 7394 break; 7395 } 7396 } 7397 } 7398 7399 SDValue Callee; 7400 if (!RenameFn) 7401 Callee = getValue(I.getCalledValue()); 7402 else 7403 Callee = DAG.getExternalSymbol( 7404 RenameFn, 7405 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 7406 7407 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7408 // have to do anything here to lower funclet bundles. 7409 assert(!I.hasOperandBundlesOtherThan( 7410 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 7411 "Cannot lower calls with arbitrary operand bundles!"); 7412 7413 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7414 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7415 else 7416 // Check if we can potentially perform a tail call. More detailed checking 7417 // is be done within LowerCallTo, after more information about the call is 7418 // known. 7419 LowerCallTo(&I, Callee, I.isTailCall()); 7420 } 7421 7422 namespace { 7423 7424 /// AsmOperandInfo - This contains information for each constraint that we are 7425 /// lowering. 7426 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7427 public: 7428 /// CallOperand - If this is the result output operand or a clobber 7429 /// this is null, otherwise it is the incoming operand to the CallInst. 7430 /// This gets modified as the asm is processed. 7431 SDValue CallOperand; 7432 7433 /// AssignedRegs - If this is a register or register class operand, this 7434 /// contains the set of register corresponding to the operand. 7435 RegsForValue AssignedRegs; 7436 7437 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7438 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7439 } 7440 7441 /// Whether or not this operand accesses memory 7442 bool hasMemory(const TargetLowering &TLI) const { 7443 // Indirect operand accesses access memory. 7444 if (isIndirect) 7445 return true; 7446 7447 for (const auto &Code : Codes) 7448 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7449 return true; 7450 7451 return false; 7452 } 7453 7454 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7455 /// corresponds to. If there is no Value* for this operand, it returns 7456 /// MVT::Other. 7457 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7458 const DataLayout &DL) const { 7459 if (!CallOperandVal) return MVT::Other; 7460 7461 if (isa<BasicBlock>(CallOperandVal)) 7462 return TLI.getPointerTy(DL); 7463 7464 llvm::Type *OpTy = CallOperandVal->getType(); 7465 7466 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7467 // If this is an indirect operand, the operand is a pointer to the 7468 // accessed type. 7469 if (isIndirect) { 7470 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7471 if (!PtrTy) 7472 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7473 OpTy = PtrTy->getElementType(); 7474 } 7475 7476 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7477 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7478 if (STy->getNumElements() == 1) 7479 OpTy = STy->getElementType(0); 7480 7481 // If OpTy is not a single value, it may be a struct/union that we 7482 // can tile with integers. 7483 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7484 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7485 switch (BitSize) { 7486 default: break; 7487 case 1: 7488 case 8: 7489 case 16: 7490 case 32: 7491 case 64: 7492 case 128: 7493 OpTy = IntegerType::get(Context, BitSize); 7494 break; 7495 } 7496 } 7497 7498 return TLI.getValueType(DL, OpTy, true); 7499 } 7500 }; 7501 7502 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7503 7504 } // end anonymous namespace 7505 7506 /// Make sure that the output operand \p OpInfo and its corresponding input 7507 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7508 /// out). 7509 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7510 SDISelAsmOperandInfo &MatchingOpInfo, 7511 SelectionDAG &DAG) { 7512 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7513 return; 7514 7515 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7516 const auto &TLI = DAG.getTargetLoweringInfo(); 7517 7518 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7519 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7520 OpInfo.ConstraintVT); 7521 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7522 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7523 MatchingOpInfo.ConstraintVT); 7524 if ((OpInfo.ConstraintVT.isInteger() != 7525 MatchingOpInfo.ConstraintVT.isInteger()) || 7526 (MatchRC.second != InputRC.second)) { 7527 // FIXME: error out in a more elegant fashion 7528 report_fatal_error("Unsupported asm: input constraint" 7529 " with a matching output constraint of" 7530 " incompatible type!"); 7531 } 7532 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7533 } 7534 7535 /// Get a direct memory input to behave well as an indirect operand. 7536 /// This may introduce stores, hence the need for a \p Chain. 7537 /// \return The (possibly updated) chain. 7538 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7539 SDISelAsmOperandInfo &OpInfo, 7540 SelectionDAG &DAG) { 7541 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7542 7543 // If we don't have an indirect input, put it in the constpool if we can, 7544 // otherwise spill it to a stack slot. 7545 // TODO: This isn't quite right. We need to handle these according to 7546 // the addressing mode that the constraint wants. Also, this may take 7547 // an additional register for the computation and we don't want that 7548 // either. 7549 7550 // If the operand is a float, integer, or vector constant, spill to a 7551 // constant pool entry to get its address. 7552 const Value *OpVal = OpInfo.CallOperandVal; 7553 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7554 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7555 OpInfo.CallOperand = DAG.getConstantPool( 7556 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7557 return Chain; 7558 } 7559 7560 // Otherwise, create a stack slot and emit a store to it before the asm. 7561 Type *Ty = OpVal->getType(); 7562 auto &DL = DAG.getDataLayout(); 7563 uint64_t TySize = DL.getTypeAllocSize(Ty); 7564 unsigned Align = DL.getPrefTypeAlignment(Ty); 7565 MachineFunction &MF = DAG.getMachineFunction(); 7566 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7567 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7568 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7569 MachinePointerInfo::getFixedStack(MF, SSFI)); 7570 OpInfo.CallOperand = StackSlot; 7571 7572 return Chain; 7573 } 7574 7575 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7576 /// specified operand. We prefer to assign virtual registers, to allow the 7577 /// register allocator to handle the assignment process. However, if the asm 7578 /// uses features that we can't model on machineinstrs, we have SDISel do the 7579 /// allocation. This produces generally horrible, but correct, code. 7580 /// 7581 /// OpInfo describes the operand 7582 /// RefOpInfo describes the matching operand if any, the operand otherwise 7583 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7584 SDISelAsmOperandInfo &OpInfo, 7585 SDISelAsmOperandInfo &RefOpInfo) { 7586 LLVMContext &Context = *DAG.getContext(); 7587 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7588 7589 MachineFunction &MF = DAG.getMachineFunction(); 7590 SmallVector<unsigned, 4> Regs; 7591 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7592 7593 // No work to do for memory operations. 7594 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7595 return; 7596 7597 // If this is a constraint for a single physreg, or a constraint for a 7598 // register class, find it. 7599 unsigned AssignedReg; 7600 const TargetRegisterClass *RC; 7601 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7602 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7603 // RC is unset only on failure. Return immediately. 7604 if (!RC) 7605 return; 7606 7607 // Get the actual register value type. This is important, because the user 7608 // may have asked for (e.g.) the AX register in i32 type. We need to 7609 // remember that AX is actually i16 to get the right extension. 7610 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7611 7612 if (OpInfo.ConstraintVT != MVT::Other) { 7613 // If this is an FP operand in an integer register (or visa versa), or more 7614 // generally if the operand value disagrees with the register class we plan 7615 // to stick it in, fix the operand type. 7616 // 7617 // If this is an input value, the bitcast to the new type is done now. 7618 // Bitcast for output value is done at the end of visitInlineAsm(). 7619 if ((OpInfo.Type == InlineAsm::isOutput || 7620 OpInfo.Type == InlineAsm::isInput) && 7621 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7622 // Try to convert to the first EVT that the reg class contains. If the 7623 // types are identical size, use a bitcast to convert (e.g. two differing 7624 // vector types). Note: output bitcast is done at the end of 7625 // visitInlineAsm(). 7626 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7627 // Exclude indirect inputs while they are unsupported because the code 7628 // to perform the load is missing and thus OpInfo.CallOperand still 7629 // refers to the input address rather than the pointed-to value. 7630 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7631 OpInfo.CallOperand = 7632 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7633 OpInfo.ConstraintVT = RegVT; 7634 // If the operand is an FP value and we want it in integer registers, 7635 // use the corresponding integer type. This turns an f64 value into 7636 // i64, which can be passed with two i32 values on a 32-bit machine. 7637 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7638 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7639 if (OpInfo.Type == InlineAsm::isInput) 7640 OpInfo.CallOperand = 7641 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7642 OpInfo.ConstraintVT = VT; 7643 } 7644 } 7645 } 7646 7647 // No need to allocate a matching input constraint since the constraint it's 7648 // matching to has already been allocated. 7649 if (OpInfo.isMatchingInputConstraint()) 7650 return; 7651 7652 EVT ValueVT = OpInfo.ConstraintVT; 7653 if (OpInfo.ConstraintVT == MVT::Other) 7654 ValueVT = RegVT; 7655 7656 // Initialize NumRegs. 7657 unsigned NumRegs = 1; 7658 if (OpInfo.ConstraintVT != MVT::Other) 7659 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7660 7661 // If this is a constraint for a specific physical register, like {r17}, 7662 // assign it now. 7663 7664 // If this associated to a specific register, initialize iterator to correct 7665 // place. If virtual, make sure we have enough registers 7666 7667 // Initialize iterator if necessary 7668 TargetRegisterClass::iterator I = RC->begin(); 7669 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7670 7671 // Do not check for single registers. 7672 if (AssignedReg) { 7673 for (; *I != AssignedReg; ++I) 7674 assert(I != RC->end() && "AssignedReg should be member of RC"); 7675 } 7676 7677 for (; NumRegs; --NumRegs, ++I) { 7678 assert(I != RC->end() && "Ran out of registers to allocate!"); 7679 auto R = (AssignedReg) ? *I : RegInfo.createVirtualRegister(RC); 7680 Regs.push_back(R); 7681 } 7682 7683 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7684 } 7685 7686 static unsigned 7687 findMatchingInlineAsmOperand(unsigned OperandNo, 7688 const std::vector<SDValue> &AsmNodeOperands) { 7689 // Scan until we find the definition we already emitted of this operand. 7690 unsigned CurOp = InlineAsm::Op_FirstOperand; 7691 for (; OperandNo; --OperandNo) { 7692 // Advance to the next operand. 7693 unsigned OpFlag = 7694 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7695 assert((InlineAsm::isRegDefKind(OpFlag) || 7696 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7697 InlineAsm::isMemKind(OpFlag)) && 7698 "Skipped past definitions?"); 7699 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7700 } 7701 return CurOp; 7702 } 7703 7704 namespace { 7705 7706 class ExtraFlags { 7707 unsigned Flags = 0; 7708 7709 public: 7710 explicit ExtraFlags(ImmutableCallSite CS) { 7711 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7712 if (IA->hasSideEffects()) 7713 Flags |= InlineAsm::Extra_HasSideEffects; 7714 if (IA->isAlignStack()) 7715 Flags |= InlineAsm::Extra_IsAlignStack; 7716 if (CS.isConvergent()) 7717 Flags |= InlineAsm::Extra_IsConvergent; 7718 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7719 } 7720 7721 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7722 // Ideally, we would only check against memory constraints. However, the 7723 // meaning of an Other constraint can be target-specific and we can't easily 7724 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7725 // for Other constraints as well. 7726 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7727 OpInfo.ConstraintType == TargetLowering::C_Other) { 7728 if (OpInfo.Type == InlineAsm::isInput) 7729 Flags |= InlineAsm::Extra_MayLoad; 7730 else if (OpInfo.Type == InlineAsm::isOutput) 7731 Flags |= InlineAsm::Extra_MayStore; 7732 else if (OpInfo.Type == InlineAsm::isClobber) 7733 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7734 } 7735 } 7736 7737 unsigned get() const { return Flags; } 7738 }; 7739 7740 } // end anonymous namespace 7741 7742 /// visitInlineAsm - Handle a call to an InlineAsm object. 7743 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7744 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7745 7746 /// ConstraintOperands - Information about all of the constraints. 7747 SDISelAsmOperandInfoVector ConstraintOperands; 7748 7749 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7750 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7751 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 7752 7753 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 7754 // AsmDialect, MayLoad, MayStore). 7755 bool HasSideEffect = IA->hasSideEffects(); 7756 ExtraFlags ExtraInfo(CS); 7757 7758 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 7759 unsigned ResNo = 0; // ResNo - The result number of the next output. 7760 for (auto &T : TargetConstraints) { 7761 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 7762 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 7763 7764 // Compute the value type for each operand. 7765 if (OpInfo.Type == InlineAsm::isInput || 7766 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 7767 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 7768 7769 // Process the call argument. BasicBlocks are labels, currently appearing 7770 // only in asm's. 7771 const Instruction *I = CS.getInstruction(); 7772 if (isa<CallBrInst>(I) && 7773 (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() - 7774 cast<CallBrInst>(I)->getNumIndirectDests())) { 7775 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 7776 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 7777 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 7778 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 7779 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 7780 } else { 7781 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 7782 } 7783 7784 OpInfo.ConstraintVT = 7785 OpInfo 7786 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 7787 .getSimpleVT(); 7788 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 7789 // The return value of the call is this value. As such, there is no 7790 // corresponding argument. 7791 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7792 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 7793 OpInfo.ConstraintVT = TLI.getSimpleValueType( 7794 DAG.getDataLayout(), STy->getElementType(ResNo)); 7795 } else { 7796 assert(ResNo == 0 && "Asm only has one result!"); 7797 OpInfo.ConstraintVT = 7798 TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 7799 } 7800 ++ResNo; 7801 } else { 7802 OpInfo.ConstraintVT = MVT::Other; 7803 } 7804 7805 if (!HasSideEffect) 7806 HasSideEffect = OpInfo.hasMemory(TLI); 7807 7808 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 7809 // FIXME: Could we compute this on OpInfo rather than T? 7810 7811 // Compute the constraint code and ConstraintType to use. 7812 TLI.ComputeConstraintToUse(T, SDValue()); 7813 7814 ExtraInfo.update(T); 7815 } 7816 7817 // We won't need to flush pending loads if this asm doesn't touch 7818 // memory and is nonvolatile. 7819 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 7820 7821 // Second pass over the constraints: compute which constraint option to use. 7822 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 7823 // If this is an output operand with a matching input operand, look up the 7824 // matching input. If their types mismatch, e.g. one is an integer, the 7825 // other is floating point, or their sizes are different, flag it as an 7826 // error. 7827 if (OpInfo.hasMatchingInput()) { 7828 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 7829 patchMatchingInput(OpInfo, Input, DAG); 7830 } 7831 7832 // Compute the constraint code and ConstraintType to use. 7833 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 7834 7835 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7836 OpInfo.Type == InlineAsm::isClobber) 7837 continue; 7838 7839 // If this is a memory input, and if the operand is not indirect, do what we 7840 // need to provide an address for the memory input. 7841 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7842 !OpInfo.isIndirect) { 7843 assert((OpInfo.isMultipleAlternative || 7844 (OpInfo.Type == InlineAsm::isInput)) && 7845 "Can only indirectify direct input operands!"); 7846 7847 // Memory operands really want the address of the value. 7848 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 7849 7850 // There is no longer a Value* corresponding to this operand. 7851 OpInfo.CallOperandVal = nullptr; 7852 7853 // It is now an indirect operand. 7854 OpInfo.isIndirect = true; 7855 } 7856 7857 } 7858 7859 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 7860 std::vector<SDValue> AsmNodeOperands; 7861 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 7862 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 7863 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 7864 7865 // If we have a !srcloc metadata node associated with it, we want to attach 7866 // this to the ultimately generated inline asm machineinstr. To do this, we 7867 // pass in the third operand as this (potentially null) inline asm MDNode. 7868 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 7869 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 7870 7871 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7872 // bits as operand 3. 7873 AsmNodeOperands.push_back(DAG.getTargetConstant( 7874 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7875 7876 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 7877 // this, assign virtual and physical registers for inputs and otput. 7878 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 7879 // Assign Registers. 7880 SDISelAsmOperandInfo &RefOpInfo = 7881 OpInfo.isMatchingInputConstraint() 7882 ? ConstraintOperands[OpInfo.getMatchedOperand()] 7883 : OpInfo; 7884 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 7885 7886 switch (OpInfo.Type) { 7887 case InlineAsm::isOutput: 7888 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7889 (OpInfo.ConstraintType == TargetLowering::C_Other && 7890 OpInfo.isIndirect)) { 7891 unsigned ConstraintID = 7892 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7893 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7894 "Failed to convert memory constraint code to constraint id."); 7895 7896 // Add information to the INLINEASM node to know about this output. 7897 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7898 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 7899 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 7900 MVT::i32)); 7901 AsmNodeOperands.push_back(OpInfo.CallOperand); 7902 break; 7903 } else if ((OpInfo.ConstraintType == TargetLowering::C_Other && 7904 !OpInfo.isIndirect) || 7905 OpInfo.ConstraintType == TargetLowering::C_Register || 7906 OpInfo.ConstraintType == TargetLowering::C_RegisterClass) { 7907 // Otherwise, this outputs to a register (directly for C_Register / 7908 // C_RegisterClass, and a target-defined fashion for C_Other). Find a 7909 // register that we can use. 7910 if (OpInfo.AssignedRegs.Regs.empty()) { 7911 emitInlineAsmError( 7912 CS, "couldn't allocate output register for constraint '" + 7913 Twine(OpInfo.ConstraintCode) + "'"); 7914 return; 7915 } 7916 7917 // Add information to the INLINEASM node to know that this register is 7918 // set. 7919 OpInfo.AssignedRegs.AddInlineAsmOperands( 7920 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 7921 : InlineAsm::Kind_RegDef, 7922 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 7923 } 7924 break; 7925 7926 case InlineAsm::isInput: { 7927 SDValue InOperandVal = OpInfo.CallOperand; 7928 7929 if (OpInfo.isMatchingInputConstraint()) { 7930 // If this is required to match an output register we have already set, 7931 // just use its register. 7932 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 7933 AsmNodeOperands); 7934 unsigned OpFlag = 7935 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7936 if (InlineAsm::isRegDefKind(OpFlag) || 7937 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 7938 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 7939 if (OpInfo.isIndirect) { 7940 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 7941 emitInlineAsmError(CS, "inline asm not supported yet:" 7942 " don't know how to handle tied " 7943 "indirect register inputs"); 7944 return; 7945 } 7946 7947 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 7948 SmallVector<unsigned, 4> Regs; 7949 7950 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 7951 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 7952 MachineRegisterInfo &RegInfo = 7953 DAG.getMachineFunction().getRegInfo(); 7954 for (unsigned i = 0; i != NumRegs; ++i) 7955 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7956 } else { 7957 emitInlineAsmError(CS, "inline asm error: This value type register " 7958 "class is not natively supported!"); 7959 return; 7960 } 7961 7962 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 7963 7964 SDLoc dl = getCurSDLoc(); 7965 // Use the produced MatchedRegs object to 7966 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 7967 CS.getInstruction()); 7968 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 7969 true, OpInfo.getMatchedOperand(), dl, 7970 DAG, AsmNodeOperands); 7971 break; 7972 } 7973 7974 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 7975 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 7976 "Unexpected number of operands"); 7977 // Add information to the INLINEASM node to know about this input. 7978 // See InlineAsm.h isUseOperandTiedToDef. 7979 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 7980 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 7981 OpInfo.getMatchedOperand()); 7982 AsmNodeOperands.push_back(DAG.getTargetConstant( 7983 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7984 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 7985 break; 7986 } 7987 7988 // Treat indirect 'X' constraint as memory. 7989 if (OpInfo.ConstraintType == TargetLowering::C_Other && 7990 OpInfo.isIndirect) 7991 OpInfo.ConstraintType = TargetLowering::C_Memory; 7992 7993 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 7994 std::vector<SDValue> Ops; 7995 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 7996 Ops, DAG); 7997 if (Ops.empty()) { 7998 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 7999 Twine(OpInfo.ConstraintCode) + "'"); 8000 return; 8001 } 8002 8003 // Add information to the INLINEASM node to know about this input. 8004 unsigned ResOpType = 8005 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8006 AsmNodeOperands.push_back(DAG.getTargetConstant( 8007 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8008 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8009 break; 8010 } 8011 8012 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8013 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8014 assert(InOperandVal.getValueType() == 8015 TLI.getPointerTy(DAG.getDataLayout()) && 8016 "Memory operands expect pointer values"); 8017 8018 unsigned ConstraintID = 8019 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8020 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8021 "Failed to convert memory constraint code to constraint id."); 8022 8023 // Add information to the INLINEASM node to know about this input. 8024 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8025 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8026 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8027 getCurSDLoc(), 8028 MVT::i32)); 8029 AsmNodeOperands.push_back(InOperandVal); 8030 break; 8031 } 8032 8033 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8034 OpInfo.ConstraintType == TargetLowering::C_Register) && 8035 "Unknown constraint type!"); 8036 8037 // TODO: Support this. 8038 if (OpInfo.isIndirect) { 8039 emitInlineAsmError( 8040 CS, "Don't know how to handle indirect register inputs yet " 8041 "for constraint '" + 8042 Twine(OpInfo.ConstraintCode) + "'"); 8043 return; 8044 } 8045 8046 // Copy the input into the appropriate registers. 8047 if (OpInfo.AssignedRegs.Regs.empty()) { 8048 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 8049 Twine(OpInfo.ConstraintCode) + "'"); 8050 return; 8051 } 8052 8053 SDLoc dl = getCurSDLoc(); 8054 8055 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 8056 Chain, &Flag, CS.getInstruction()); 8057 8058 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8059 dl, DAG, AsmNodeOperands); 8060 break; 8061 } 8062 case InlineAsm::isClobber: 8063 // Add the clobbered value to the operand list, so that the register 8064 // allocator is aware that the physreg got clobbered. 8065 if (!OpInfo.AssignedRegs.Regs.empty()) 8066 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8067 false, 0, getCurSDLoc(), DAG, 8068 AsmNodeOperands); 8069 break; 8070 } 8071 } 8072 8073 // Finish up input operands. Set the input chain and add the flag last. 8074 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8075 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8076 8077 unsigned ISDOpc = isa<CallBrInst>(CS.getInstruction()) ? ISD::INLINEASM_BR : ISD::INLINEASM; 8078 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8079 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8080 Flag = Chain.getValue(1); 8081 8082 // Do additional work to generate outputs. 8083 8084 SmallVector<EVT, 1> ResultVTs; 8085 SmallVector<SDValue, 1> ResultValues; 8086 SmallVector<SDValue, 8> OutChains; 8087 8088 llvm::Type *CSResultType = CS.getType(); 8089 ArrayRef<Type *> ResultTypes; 8090 if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) 8091 ResultTypes = StructResult->elements(); 8092 else if (!CSResultType->isVoidTy()) 8093 ResultTypes = makeArrayRef(CSResultType); 8094 8095 auto CurResultType = ResultTypes.begin(); 8096 auto handleRegAssign = [&](SDValue V) { 8097 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8098 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8099 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8100 ++CurResultType; 8101 // If the type of the inline asm call site return value is different but has 8102 // same size as the type of the asm output bitcast it. One example of this 8103 // is for vectors with different width / number of elements. This can 8104 // happen for register classes that can contain multiple different value 8105 // types. The preg or vreg allocated may not have the same VT as was 8106 // expected. 8107 // 8108 // This can also happen for a return value that disagrees with the register 8109 // class it is put in, eg. a double in a general-purpose register on a 8110 // 32-bit machine. 8111 if (ResultVT != V.getValueType() && 8112 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8113 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8114 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8115 V.getValueType().isInteger()) { 8116 // If a result value was tied to an input value, the computed result 8117 // may have a wider width than the expected result. Extract the 8118 // relevant portion. 8119 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8120 } 8121 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8122 ResultVTs.push_back(ResultVT); 8123 ResultValues.push_back(V); 8124 }; 8125 8126 // Deal with output operands. 8127 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8128 if (OpInfo.Type == InlineAsm::isOutput) { 8129 SDValue Val; 8130 // Skip trivial output operands. 8131 if (OpInfo.AssignedRegs.Regs.empty()) 8132 continue; 8133 8134 switch (OpInfo.ConstraintType) { 8135 case TargetLowering::C_Register: 8136 case TargetLowering::C_RegisterClass: 8137 Val = OpInfo.AssignedRegs.getCopyFromRegs( 8138 DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); 8139 break; 8140 case TargetLowering::C_Other: 8141 Val = TLI.LowerAsmOutputForConstraint(Chain, &Flag, getCurSDLoc(), 8142 OpInfo, DAG); 8143 break; 8144 case TargetLowering::C_Memory: 8145 break; // Already handled. 8146 case TargetLowering::C_Unknown: 8147 assert(false && "Unexpected unknown constraint"); 8148 } 8149 8150 // Indirect output manifest as stores. Record output chains. 8151 if (OpInfo.isIndirect) { 8152 8153 const Value *Ptr = OpInfo.CallOperandVal; 8154 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8155 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8156 MachinePointerInfo(Ptr)); 8157 OutChains.push_back(Store); 8158 } else { 8159 // generate CopyFromRegs to associated registers. 8160 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8161 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8162 for (const SDValue &V : Val->op_values()) 8163 handleRegAssign(V); 8164 } else 8165 handleRegAssign(Val); 8166 } 8167 } 8168 } 8169 8170 // Set results. 8171 if (!ResultValues.empty()) { 8172 assert(CurResultType == ResultTypes.end() && 8173 "Mismatch in number of ResultTypes"); 8174 assert(ResultValues.size() == ResultTypes.size() && 8175 "Mismatch in number of output operands in asm result"); 8176 8177 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8178 DAG.getVTList(ResultVTs), ResultValues); 8179 setValue(CS.getInstruction(), V); 8180 } 8181 8182 // Collect store chains. 8183 if (!OutChains.empty()) 8184 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8185 8186 // Only Update Root if inline assembly has a memory effect. 8187 if (ResultValues.empty() || HasSideEffect || !OutChains.empty()) 8188 DAG.setRoot(Chain); 8189 } 8190 8191 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 8192 const Twine &Message) { 8193 LLVMContext &Ctx = *DAG.getContext(); 8194 Ctx.emitError(CS.getInstruction(), Message); 8195 8196 // Make sure we leave the DAG in a valid state 8197 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8198 SmallVector<EVT, 1> ValueVTs; 8199 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8200 8201 if (ValueVTs.empty()) 8202 return; 8203 8204 SmallVector<SDValue, 1> Ops; 8205 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8206 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8207 8208 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 8209 } 8210 8211 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8212 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8213 MVT::Other, getRoot(), 8214 getValue(I.getArgOperand(0)), 8215 DAG.getSrcValue(I.getArgOperand(0)))); 8216 } 8217 8218 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8219 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8220 const DataLayout &DL = DAG.getDataLayout(); 8221 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 8222 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 8223 DAG.getSrcValue(I.getOperand(0)), 8224 DL.getABITypeAlignment(I.getType())); 8225 setValue(&I, V); 8226 DAG.setRoot(V.getValue(1)); 8227 } 8228 8229 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8230 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8231 MVT::Other, getRoot(), 8232 getValue(I.getArgOperand(0)), 8233 DAG.getSrcValue(I.getArgOperand(0)))); 8234 } 8235 8236 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8237 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8238 MVT::Other, getRoot(), 8239 getValue(I.getArgOperand(0)), 8240 getValue(I.getArgOperand(1)), 8241 DAG.getSrcValue(I.getArgOperand(0)), 8242 DAG.getSrcValue(I.getArgOperand(1)))); 8243 } 8244 8245 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8246 const Instruction &I, 8247 SDValue Op) { 8248 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8249 if (!Range) 8250 return Op; 8251 8252 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8253 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet()) 8254 return Op; 8255 8256 APInt Lo = CR.getUnsignedMin(); 8257 if (!Lo.isMinValue()) 8258 return Op; 8259 8260 APInt Hi = CR.getUnsignedMax(); 8261 unsigned Bits = std::max(Hi.getActiveBits(), 8262 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8263 8264 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8265 8266 SDLoc SL = getCurSDLoc(); 8267 8268 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8269 DAG.getValueType(SmallVT)); 8270 unsigned NumVals = Op.getNode()->getNumValues(); 8271 if (NumVals == 1) 8272 return ZExt; 8273 8274 SmallVector<SDValue, 4> Ops; 8275 8276 Ops.push_back(ZExt); 8277 for (unsigned I = 1; I != NumVals; ++I) 8278 Ops.push_back(Op.getValue(I)); 8279 8280 return DAG.getMergeValues(Ops, SL); 8281 } 8282 8283 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8284 /// the call being lowered. 8285 /// 8286 /// This is a helper for lowering intrinsics that follow a target calling 8287 /// convention or require stack pointer adjustment. Only a subset of the 8288 /// intrinsic's operands need to participate in the calling convention. 8289 void SelectionDAGBuilder::populateCallLoweringInfo( 8290 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8291 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8292 bool IsPatchPoint) { 8293 TargetLowering::ArgListTy Args; 8294 Args.reserve(NumArgs); 8295 8296 // Populate the argument list. 8297 // Attributes for args start at offset 1, after the return attribute. 8298 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8299 ArgI != ArgE; ++ArgI) { 8300 const Value *V = Call->getOperand(ArgI); 8301 8302 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8303 8304 TargetLowering::ArgListEntry Entry; 8305 Entry.Node = getValue(V); 8306 Entry.Ty = V->getType(); 8307 Entry.setAttributes(Call, ArgI); 8308 Args.push_back(Entry); 8309 } 8310 8311 CLI.setDebugLoc(getCurSDLoc()) 8312 .setChain(getRoot()) 8313 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8314 .setDiscardResult(Call->use_empty()) 8315 .setIsPatchPoint(IsPatchPoint); 8316 } 8317 8318 /// Add a stack map intrinsic call's live variable operands to a stackmap 8319 /// or patchpoint target node's operand list. 8320 /// 8321 /// Constants are converted to TargetConstants purely as an optimization to 8322 /// avoid constant materialization and register allocation. 8323 /// 8324 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8325 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 8326 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8327 /// address materialization and register allocation, but may also be required 8328 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8329 /// alloca in the entry block, then the runtime may assume that the alloca's 8330 /// StackMap location can be read immediately after compilation and that the 8331 /// location is valid at any point during execution (this is similar to the 8332 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8333 /// only available in a register, then the runtime would need to trap when 8334 /// execution reaches the StackMap in order to read the alloca's location. 8335 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8336 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8337 SelectionDAGBuilder &Builder) { 8338 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8339 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8340 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8341 Ops.push_back( 8342 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8343 Ops.push_back( 8344 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8345 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8346 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8347 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8348 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8349 } else 8350 Ops.push_back(OpVal); 8351 } 8352 } 8353 8354 /// Lower llvm.experimental.stackmap directly to its target opcode. 8355 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8356 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8357 // [live variables...]) 8358 8359 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8360 8361 SDValue Chain, InFlag, Callee, NullPtr; 8362 SmallVector<SDValue, 32> Ops; 8363 8364 SDLoc DL = getCurSDLoc(); 8365 Callee = getValue(CI.getCalledValue()); 8366 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8367 8368 // The stackmap intrinsic only records the live variables (the arguemnts 8369 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8370 // intrinsic, this won't be lowered to a function call. This means we don't 8371 // have to worry about calling conventions and target specific lowering code. 8372 // Instead we perform the call lowering right here. 8373 // 8374 // chain, flag = CALLSEQ_START(chain, 0, 0) 8375 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8376 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8377 // 8378 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8379 InFlag = Chain.getValue(1); 8380 8381 // Add the <id> and <numBytes> constants. 8382 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8383 Ops.push_back(DAG.getTargetConstant( 8384 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8385 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8386 Ops.push_back(DAG.getTargetConstant( 8387 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8388 MVT::i32)); 8389 8390 // Push live variables for the stack map. 8391 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8392 8393 // We are not pushing any register mask info here on the operands list, 8394 // because the stackmap doesn't clobber anything. 8395 8396 // Push the chain and the glue flag. 8397 Ops.push_back(Chain); 8398 Ops.push_back(InFlag); 8399 8400 // Create the STACKMAP node. 8401 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8402 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8403 Chain = SDValue(SM, 0); 8404 InFlag = Chain.getValue(1); 8405 8406 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8407 8408 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8409 8410 // Set the root to the target-lowered call chain. 8411 DAG.setRoot(Chain); 8412 8413 // Inform the Frame Information that we have a stackmap in this function. 8414 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8415 } 8416 8417 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8418 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8419 const BasicBlock *EHPadBB) { 8420 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8421 // i32 <numBytes>, 8422 // i8* <target>, 8423 // i32 <numArgs>, 8424 // [Args...], 8425 // [live variables...]) 8426 8427 CallingConv::ID CC = CS.getCallingConv(); 8428 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8429 bool HasDef = !CS->getType()->isVoidTy(); 8430 SDLoc dl = getCurSDLoc(); 8431 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8432 8433 // Handle immediate and symbolic callees. 8434 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8435 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8436 /*isTarget=*/true); 8437 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8438 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8439 SDLoc(SymbolicCallee), 8440 SymbolicCallee->getValueType(0)); 8441 8442 // Get the real number of arguments participating in the call <numArgs> 8443 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8444 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8445 8446 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8447 // Intrinsics include all meta-operands up to but not including CC. 8448 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8449 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8450 "Not enough arguments provided to the patchpoint intrinsic"); 8451 8452 // For AnyRegCC the arguments are lowered later on manually. 8453 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8454 Type *ReturnTy = 8455 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8456 8457 TargetLowering::CallLoweringInfo CLI(DAG); 8458 populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()), 8459 NumMetaOpers, NumCallArgs, Callee, ReturnTy, true); 8460 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8461 8462 SDNode *CallEnd = Result.second.getNode(); 8463 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8464 CallEnd = CallEnd->getOperand(0).getNode(); 8465 8466 /// Get a call instruction from the call sequence chain. 8467 /// Tail calls are not allowed. 8468 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8469 "Expected a callseq node."); 8470 SDNode *Call = CallEnd->getOperand(0).getNode(); 8471 bool HasGlue = Call->getGluedNode(); 8472 8473 // Replace the target specific call node with the patchable intrinsic. 8474 SmallVector<SDValue, 8> Ops; 8475 8476 // Add the <id> and <numBytes> constants. 8477 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8478 Ops.push_back(DAG.getTargetConstant( 8479 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8480 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8481 Ops.push_back(DAG.getTargetConstant( 8482 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8483 MVT::i32)); 8484 8485 // Add the callee. 8486 Ops.push_back(Callee); 8487 8488 // Adjust <numArgs> to account for any arguments that have been passed on the 8489 // stack instead. 8490 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8491 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8492 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8493 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8494 8495 // Add the calling convention 8496 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8497 8498 // Add the arguments we omitted previously. The register allocator should 8499 // place these in any free register. 8500 if (IsAnyRegCC) 8501 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8502 Ops.push_back(getValue(CS.getArgument(i))); 8503 8504 // Push the arguments from the call instruction up to the register mask. 8505 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8506 Ops.append(Call->op_begin() + 2, e); 8507 8508 // Push live variables for the stack map. 8509 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8510 8511 // Push the register mask info. 8512 if (HasGlue) 8513 Ops.push_back(*(Call->op_end()-2)); 8514 else 8515 Ops.push_back(*(Call->op_end()-1)); 8516 8517 // Push the chain (this is originally the first operand of the call, but 8518 // becomes now the last or second to last operand). 8519 Ops.push_back(*(Call->op_begin())); 8520 8521 // Push the glue flag (last operand). 8522 if (HasGlue) 8523 Ops.push_back(*(Call->op_end()-1)); 8524 8525 SDVTList NodeTys; 8526 if (IsAnyRegCC && HasDef) { 8527 // Create the return types based on the intrinsic definition 8528 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8529 SmallVector<EVT, 3> ValueVTs; 8530 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8531 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8532 8533 // There is always a chain and a glue type at the end 8534 ValueVTs.push_back(MVT::Other); 8535 ValueVTs.push_back(MVT::Glue); 8536 NodeTys = DAG.getVTList(ValueVTs); 8537 } else 8538 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8539 8540 // Replace the target specific call node with a PATCHPOINT node. 8541 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8542 dl, NodeTys, Ops); 8543 8544 // Update the NodeMap. 8545 if (HasDef) { 8546 if (IsAnyRegCC) 8547 setValue(CS.getInstruction(), SDValue(MN, 0)); 8548 else 8549 setValue(CS.getInstruction(), Result.first); 8550 } 8551 8552 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8553 // call sequence. Furthermore the location of the chain and glue can change 8554 // when the AnyReg calling convention is used and the intrinsic returns a 8555 // value. 8556 if (IsAnyRegCC && HasDef) { 8557 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8558 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8559 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8560 } else 8561 DAG.ReplaceAllUsesWith(Call, MN); 8562 DAG.DeleteNode(Call); 8563 8564 // Inform the Frame Information that we have a patchpoint in this function. 8565 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8566 } 8567 8568 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8569 unsigned Intrinsic) { 8570 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8571 SDValue Op1 = getValue(I.getArgOperand(0)); 8572 SDValue Op2; 8573 if (I.getNumArgOperands() > 1) 8574 Op2 = getValue(I.getArgOperand(1)); 8575 SDLoc dl = getCurSDLoc(); 8576 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8577 SDValue Res; 8578 FastMathFlags FMF; 8579 if (isa<FPMathOperator>(I)) 8580 FMF = I.getFastMathFlags(); 8581 8582 switch (Intrinsic) { 8583 case Intrinsic::experimental_vector_reduce_fadd: 8584 if (FMF.isFast()) 8585 Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2); 8586 else 8587 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8588 break; 8589 case Intrinsic::experimental_vector_reduce_fmul: 8590 if (FMF.isFast()) 8591 Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2); 8592 else 8593 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8594 break; 8595 case Intrinsic::experimental_vector_reduce_add: 8596 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8597 break; 8598 case Intrinsic::experimental_vector_reduce_mul: 8599 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8600 break; 8601 case Intrinsic::experimental_vector_reduce_and: 8602 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8603 break; 8604 case Intrinsic::experimental_vector_reduce_or: 8605 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8606 break; 8607 case Intrinsic::experimental_vector_reduce_xor: 8608 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8609 break; 8610 case Intrinsic::experimental_vector_reduce_smax: 8611 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8612 break; 8613 case Intrinsic::experimental_vector_reduce_smin: 8614 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8615 break; 8616 case Intrinsic::experimental_vector_reduce_umax: 8617 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8618 break; 8619 case Intrinsic::experimental_vector_reduce_umin: 8620 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8621 break; 8622 case Intrinsic::experimental_vector_reduce_fmax: 8623 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8624 break; 8625 case Intrinsic::experimental_vector_reduce_fmin: 8626 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8627 break; 8628 default: 8629 llvm_unreachable("Unhandled vector reduce intrinsic"); 8630 } 8631 setValue(&I, Res); 8632 } 8633 8634 /// Returns an AttributeList representing the attributes applied to the return 8635 /// value of the given call. 8636 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8637 SmallVector<Attribute::AttrKind, 2> Attrs; 8638 if (CLI.RetSExt) 8639 Attrs.push_back(Attribute::SExt); 8640 if (CLI.RetZExt) 8641 Attrs.push_back(Attribute::ZExt); 8642 if (CLI.IsInReg) 8643 Attrs.push_back(Attribute::InReg); 8644 8645 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8646 Attrs); 8647 } 8648 8649 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8650 /// implementation, which just calls LowerCall. 8651 /// FIXME: When all targets are 8652 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8653 std::pair<SDValue, SDValue> 8654 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8655 // Handle the incoming return values from the call. 8656 CLI.Ins.clear(); 8657 Type *OrigRetTy = CLI.RetTy; 8658 SmallVector<EVT, 4> RetTys; 8659 SmallVector<uint64_t, 4> Offsets; 8660 auto &DL = CLI.DAG.getDataLayout(); 8661 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8662 8663 if (CLI.IsPostTypeLegalization) { 8664 // If we are lowering a libcall after legalization, split the return type. 8665 SmallVector<EVT, 4> OldRetTys = std::move(RetTys); 8666 SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets); 8667 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8668 EVT RetVT = OldRetTys[i]; 8669 uint64_t Offset = OldOffsets[i]; 8670 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8671 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8672 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8673 RetTys.append(NumRegs, RegisterVT); 8674 for (unsigned j = 0; j != NumRegs; ++j) 8675 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8676 } 8677 } 8678 8679 SmallVector<ISD::OutputArg, 4> Outs; 8680 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8681 8682 bool CanLowerReturn = 8683 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8684 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8685 8686 SDValue DemoteStackSlot; 8687 int DemoteStackIdx = -100; 8688 if (!CanLowerReturn) { 8689 // FIXME: equivalent assert? 8690 // assert(!CS.hasInAllocaArgument() && 8691 // "sret demotion is incompatible with inalloca"); 8692 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8693 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8694 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8695 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8696 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 8697 DL.getAllocaAddrSpace()); 8698 8699 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8700 ArgListEntry Entry; 8701 Entry.Node = DemoteStackSlot; 8702 Entry.Ty = StackSlotPtrType; 8703 Entry.IsSExt = false; 8704 Entry.IsZExt = false; 8705 Entry.IsInReg = false; 8706 Entry.IsSRet = true; 8707 Entry.IsNest = false; 8708 Entry.IsByVal = false; 8709 Entry.IsReturned = false; 8710 Entry.IsSwiftSelf = false; 8711 Entry.IsSwiftError = false; 8712 Entry.Alignment = Align; 8713 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 8714 CLI.NumFixedArgs += 1; 8715 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 8716 8717 // sret demotion isn't compatible with tail-calls, since the sret argument 8718 // points into the callers stack frame. 8719 CLI.IsTailCall = false; 8720 } else { 8721 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8722 EVT VT = RetTys[I]; 8723 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8724 CLI.CallConv, VT); 8725 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8726 CLI.CallConv, VT); 8727 for (unsigned i = 0; i != NumRegs; ++i) { 8728 ISD::InputArg MyFlags; 8729 MyFlags.VT = RegisterVT; 8730 MyFlags.ArgVT = VT; 8731 MyFlags.Used = CLI.IsReturnValueUsed; 8732 if (CLI.RetSExt) 8733 MyFlags.Flags.setSExt(); 8734 if (CLI.RetZExt) 8735 MyFlags.Flags.setZExt(); 8736 if (CLI.IsInReg) 8737 MyFlags.Flags.setInReg(); 8738 CLI.Ins.push_back(MyFlags); 8739 } 8740 } 8741 } 8742 8743 // We push in swifterror return as the last element of CLI.Ins. 8744 ArgListTy &Args = CLI.getArgs(); 8745 if (supportSwiftError()) { 8746 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8747 if (Args[i].IsSwiftError) { 8748 ISD::InputArg MyFlags; 8749 MyFlags.VT = getPointerTy(DL); 8750 MyFlags.ArgVT = EVT(getPointerTy(DL)); 8751 MyFlags.Flags.setSwiftError(); 8752 CLI.Ins.push_back(MyFlags); 8753 } 8754 } 8755 } 8756 8757 // Handle all of the outgoing arguments. 8758 CLI.Outs.clear(); 8759 CLI.OutVals.clear(); 8760 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8761 SmallVector<EVT, 4> ValueVTs; 8762 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 8763 // FIXME: Split arguments if CLI.IsPostTypeLegalization 8764 Type *FinalType = Args[i].Ty; 8765 if (Args[i].IsByVal) 8766 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 8767 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8768 FinalType, CLI.CallConv, CLI.IsVarArg); 8769 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 8770 ++Value) { 8771 EVT VT = ValueVTs[Value]; 8772 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 8773 SDValue Op = SDValue(Args[i].Node.getNode(), 8774 Args[i].Node.getResNo() + Value); 8775 ISD::ArgFlagsTy Flags; 8776 8777 // Certain targets (such as MIPS), may have a different ABI alignment 8778 // for a type depending on the context. Give the target a chance to 8779 // specify the alignment it wants. 8780 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 8781 8782 if (Args[i].IsZExt) 8783 Flags.setZExt(); 8784 if (Args[i].IsSExt) 8785 Flags.setSExt(); 8786 if (Args[i].IsInReg) { 8787 // If we are using vectorcall calling convention, a structure that is 8788 // passed InReg - is surely an HVA 8789 if (CLI.CallConv == CallingConv::X86_VectorCall && 8790 isa<StructType>(FinalType)) { 8791 // The first value of a structure is marked 8792 if (0 == Value) 8793 Flags.setHvaStart(); 8794 Flags.setHva(); 8795 } 8796 // Set InReg Flag 8797 Flags.setInReg(); 8798 } 8799 if (Args[i].IsSRet) 8800 Flags.setSRet(); 8801 if (Args[i].IsSwiftSelf) 8802 Flags.setSwiftSelf(); 8803 if (Args[i].IsSwiftError) 8804 Flags.setSwiftError(); 8805 if (Args[i].IsByVal) 8806 Flags.setByVal(); 8807 if (Args[i].IsInAlloca) { 8808 Flags.setInAlloca(); 8809 // Set the byval flag for CCAssignFn callbacks that don't know about 8810 // inalloca. This way we can know how many bytes we should've allocated 8811 // and how many bytes a callee cleanup function will pop. If we port 8812 // inalloca to more targets, we'll have to add custom inalloca handling 8813 // in the various CC lowering callbacks. 8814 Flags.setByVal(); 8815 } 8816 if (Args[i].IsByVal || Args[i].IsInAlloca) { 8817 PointerType *Ty = cast<PointerType>(Args[i].Ty); 8818 Type *ElementTy = Ty->getElementType(); 8819 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8820 // For ByVal, alignment should come from FE. BE will guess if this 8821 // info is not there but there are cases it cannot get right. 8822 unsigned FrameAlign; 8823 if (Args[i].Alignment) 8824 FrameAlign = Args[i].Alignment; 8825 else 8826 FrameAlign = getByValTypeAlignment(ElementTy, DL); 8827 Flags.setByValAlign(FrameAlign); 8828 } 8829 if (Args[i].IsNest) 8830 Flags.setNest(); 8831 if (NeedsRegBlock) 8832 Flags.setInConsecutiveRegs(); 8833 Flags.setOrigAlign(OriginalAlignment); 8834 8835 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8836 CLI.CallConv, VT); 8837 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8838 CLI.CallConv, VT); 8839 SmallVector<SDValue, 4> Parts(NumParts); 8840 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 8841 8842 if (Args[i].IsSExt) 8843 ExtendKind = ISD::SIGN_EXTEND; 8844 else if (Args[i].IsZExt) 8845 ExtendKind = ISD::ZERO_EXTEND; 8846 8847 // Conservatively only handle 'returned' on non-vectors that can be lowered, 8848 // for now. 8849 if (Args[i].IsReturned && !Op.getValueType().isVector() && 8850 CanLowerReturn) { 8851 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 8852 "unexpected use of 'returned'"); 8853 // Before passing 'returned' to the target lowering code, ensure that 8854 // either the register MVT and the actual EVT are the same size or that 8855 // the return value and argument are extended in the same way; in these 8856 // cases it's safe to pass the argument register value unchanged as the 8857 // return register value (although it's at the target's option whether 8858 // to do so) 8859 // TODO: allow code generation to take advantage of partially preserved 8860 // registers rather than clobbering the entire register when the 8861 // parameter extension method is not compatible with the return 8862 // extension method 8863 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 8864 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 8865 CLI.RetZExt == Args[i].IsZExt)) 8866 Flags.setReturned(); 8867 } 8868 8869 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 8870 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 8871 8872 for (unsigned j = 0; j != NumParts; ++j) { 8873 // if it isn't first piece, alignment must be 1 8874 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 8875 i < CLI.NumFixedArgs, 8876 i, j*Parts[j].getValueType().getStoreSize()); 8877 if (NumParts > 1 && j == 0) 8878 MyFlags.Flags.setSplit(); 8879 else if (j != 0) { 8880 MyFlags.Flags.setOrigAlign(1); 8881 if (j == NumParts - 1) 8882 MyFlags.Flags.setSplitEnd(); 8883 } 8884 8885 CLI.Outs.push_back(MyFlags); 8886 CLI.OutVals.push_back(Parts[j]); 8887 } 8888 8889 if (NeedsRegBlock && Value == NumValues - 1) 8890 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 8891 } 8892 } 8893 8894 SmallVector<SDValue, 4> InVals; 8895 CLI.Chain = LowerCall(CLI, InVals); 8896 8897 // Update CLI.InVals to use outside of this function. 8898 CLI.InVals = InVals; 8899 8900 // Verify that the target's LowerCall behaved as expected. 8901 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 8902 "LowerCall didn't return a valid chain!"); 8903 assert((!CLI.IsTailCall || InVals.empty()) && 8904 "LowerCall emitted a return value for a tail call!"); 8905 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 8906 "LowerCall didn't emit the correct number of values!"); 8907 8908 // For a tail call, the return value is merely live-out and there aren't 8909 // any nodes in the DAG representing it. Return a special value to 8910 // indicate that a tail call has been emitted and no more Instructions 8911 // should be processed in the current block. 8912 if (CLI.IsTailCall) { 8913 CLI.DAG.setRoot(CLI.Chain); 8914 return std::make_pair(SDValue(), SDValue()); 8915 } 8916 8917 #ifndef NDEBUG 8918 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 8919 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 8920 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 8921 "LowerCall emitted a value with the wrong type!"); 8922 } 8923 #endif 8924 8925 SmallVector<SDValue, 4> ReturnValues; 8926 if (!CanLowerReturn) { 8927 // The instruction result is the result of loading from the 8928 // hidden sret parameter. 8929 SmallVector<EVT, 1> PVTs; 8930 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 8931 8932 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 8933 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 8934 EVT PtrVT = PVTs[0]; 8935 8936 unsigned NumValues = RetTys.size(); 8937 ReturnValues.resize(NumValues); 8938 SmallVector<SDValue, 4> Chains(NumValues); 8939 8940 // An aggregate return value cannot wrap around the address space, so 8941 // offsets to its parts don't wrap either. 8942 SDNodeFlags Flags; 8943 Flags.setNoUnsignedWrap(true); 8944 8945 for (unsigned i = 0; i < NumValues; ++i) { 8946 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 8947 CLI.DAG.getConstant(Offsets[i], CLI.DL, 8948 PtrVT), Flags); 8949 SDValue L = CLI.DAG.getLoad( 8950 RetTys[i], CLI.DL, CLI.Chain, Add, 8951 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 8952 DemoteStackIdx, Offsets[i]), 8953 /* Alignment = */ 1); 8954 ReturnValues[i] = L; 8955 Chains[i] = L.getValue(1); 8956 } 8957 8958 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 8959 } else { 8960 // Collect the legal value parts into potentially illegal values 8961 // that correspond to the original function's return values. 8962 Optional<ISD::NodeType> AssertOp; 8963 if (CLI.RetSExt) 8964 AssertOp = ISD::AssertSext; 8965 else if (CLI.RetZExt) 8966 AssertOp = ISD::AssertZext; 8967 unsigned CurReg = 0; 8968 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8969 EVT VT = RetTys[I]; 8970 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8971 CLI.CallConv, VT); 8972 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8973 CLI.CallConv, VT); 8974 8975 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 8976 NumRegs, RegisterVT, VT, nullptr, 8977 CLI.CallConv, AssertOp)); 8978 CurReg += NumRegs; 8979 } 8980 8981 // For a function returning void, there is no return value. We can't create 8982 // such a node, so we just return a null return value in that case. In 8983 // that case, nothing will actually look at the value. 8984 if (ReturnValues.empty()) 8985 return std::make_pair(SDValue(), CLI.Chain); 8986 } 8987 8988 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 8989 CLI.DAG.getVTList(RetTys), ReturnValues); 8990 return std::make_pair(Res, CLI.Chain); 8991 } 8992 8993 void TargetLowering::LowerOperationWrapper(SDNode *N, 8994 SmallVectorImpl<SDValue> &Results, 8995 SelectionDAG &DAG) const { 8996 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 8997 Results.push_back(Res); 8998 } 8999 9000 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9001 llvm_unreachable("LowerOperation not implemented for this target!"); 9002 } 9003 9004 void 9005 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9006 SDValue Op = getNonRegisterValue(V); 9007 assert((Op.getOpcode() != ISD::CopyFromReg || 9008 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9009 "Copy from a reg to the same reg!"); 9010 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 9011 9012 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9013 // If this is an InlineAsm we have to match the registers required, not the 9014 // notional registers required by the type. 9015 9016 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9017 None); // This is not an ABI copy. 9018 SDValue Chain = DAG.getEntryNode(); 9019 9020 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9021 FuncInfo.PreferredExtendType.end()) 9022 ? ISD::ANY_EXTEND 9023 : FuncInfo.PreferredExtendType[V]; 9024 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9025 PendingExports.push_back(Chain); 9026 } 9027 9028 #include "llvm/CodeGen/SelectionDAGISel.h" 9029 9030 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9031 /// entry block, return true. This includes arguments used by switches, since 9032 /// the switch may expand into multiple basic blocks. 9033 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9034 // With FastISel active, we may be splitting blocks, so force creation 9035 // of virtual registers for all non-dead arguments. 9036 if (FastISel) 9037 return A->use_empty(); 9038 9039 const BasicBlock &Entry = A->getParent()->front(); 9040 for (const User *U : A->users()) 9041 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9042 return false; // Use not in entry block. 9043 9044 return true; 9045 } 9046 9047 using ArgCopyElisionMapTy = 9048 DenseMap<const Argument *, 9049 std::pair<const AllocaInst *, const StoreInst *>>; 9050 9051 /// Scan the entry block of the function in FuncInfo for arguments that look 9052 /// like copies into a local alloca. Record any copied arguments in 9053 /// ArgCopyElisionCandidates. 9054 static void 9055 findArgumentCopyElisionCandidates(const DataLayout &DL, 9056 FunctionLoweringInfo *FuncInfo, 9057 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9058 // Record the state of every static alloca used in the entry block. Argument 9059 // allocas are all used in the entry block, so we need approximately as many 9060 // entries as we have arguments. 9061 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9062 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9063 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9064 StaticAllocas.reserve(NumArgs * 2); 9065 9066 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9067 if (!V) 9068 return nullptr; 9069 V = V->stripPointerCasts(); 9070 const auto *AI = dyn_cast<AllocaInst>(V); 9071 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9072 return nullptr; 9073 auto Iter = StaticAllocas.insert({AI, Unknown}); 9074 return &Iter.first->second; 9075 }; 9076 9077 // Look for stores of arguments to static allocas. Look through bitcasts and 9078 // GEPs to handle type coercions, as long as the alloca is fully initialized 9079 // by the store. Any non-store use of an alloca escapes it and any subsequent 9080 // unanalyzed store might write it. 9081 // FIXME: Handle structs initialized with multiple stores. 9082 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9083 // Look for stores, and handle non-store uses conservatively. 9084 const auto *SI = dyn_cast<StoreInst>(&I); 9085 if (!SI) { 9086 // We will look through cast uses, so ignore them completely. 9087 if (I.isCast()) 9088 continue; 9089 // Ignore debug info intrinsics, they don't escape or store to allocas. 9090 if (isa<DbgInfoIntrinsic>(I)) 9091 continue; 9092 // This is an unknown instruction. Assume it escapes or writes to all 9093 // static alloca operands. 9094 for (const Use &U : I.operands()) { 9095 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9096 *Info = StaticAllocaInfo::Clobbered; 9097 } 9098 continue; 9099 } 9100 9101 // If the stored value is a static alloca, mark it as escaped. 9102 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9103 *Info = StaticAllocaInfo::Clobbered; 9104 9105 // Check if the destination is a static alloca. 9106 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9107 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9108 if (!Info) 9109 continue; 9110 const AllocaInst *AI = cast<AllocaInst>(Dst); 9111 9112 // Skip allocas that have been initialized or clobbered. 9113 if (*Info != StaticAllocaInfo::Unknown) 9114 continue; 9115 9116 // Check if the stored value is an argument, and that this store fully 9117 // initializes the alloca. Don't elide copies from the same argument twice. 9118 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9119 const auto *Arg = dyn_cast<Argument>(Val); 9120 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 9121 Arg->getType()->isEmptyTy() || 9122 DL.getTypeStoreSize(Arg->getType()) != 9123 DL.getTypeAllocSize(AI->getAllocatedType()) || 9124 ArgCopyElisionCandidates.count(Arg)) { 9125 *Info = StaticAllocaInfo::Clobbered; 9126 continue; 9127 } 9128 9129 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9130 << '\n'); 9131 9132 // Mark this alloca and store for argument copy elision. 9133 *Info = StaticAllocaInfo::Elidable; 9134 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9135 9136 // Stop scanning if we've seen all arguments. This will happen early in -O0 9137 // builds, which is useful, because -O0 builds have large entry blocks and 9138 // many allocas. 9139 if (ArgCopyElisionCandidates.size() == NumArgs) 9140 break; 9141 } 9142 } 9143 9144 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9145 /// ArgVal is a load from a suitable fixed stack object. 9146 static void tryToElideArgumentCopy( 9147 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 9148 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9149 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9150 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9151 SDValue ArgVal, bool &ArgHasUses) { 9152 // Check if this is a load from a fixed stack object. 9153 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9154 if (!LNode) 9155 return; 9156 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9157 if (!FINode) 9158 return; 9159 9160 // Check that the fixed stack object is the right size and alignment. 9161 // Look at the alignment that the user wrote on the alloca instead of looking 9162 // at the stack object. 9163 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9164 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9165 const AllocaInst *AI = ArgCopyIter->second.first; 9166 int FixedIndex = FINode->getIndex(); 9167 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 9168 int OldIndex = AllocaIndex; 9169 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 9170 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9171 LLVM_DEBUG( 9172 dbgs() << " argument copy elision failed due to bad fixed stack " 9173 "object size\n"); 9174 return; 9175 } 9176 unsigned RequiredAlignment = AI->getAlignment(); 9177 if (!RequiredAlignment) { 9178 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 9179 AI->getAllocatedType()); 9180 } 9181 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 9182 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9183 "greater than stack argument alignment (" 9184 << RequiredAlignment << " vs " 9185 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 9186 return; 9187 } 9188 9189 // Perform the elision. Delete the old stack object and replace its only use 9190 // in the variable info map. Mark the stack object as mutable. 9191 LLVM_DEBUG({ 9192 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9193 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9194 << '\n'; 9195 }); 9196 MFI.RemoveStackObject(OldIndex); 9197 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9198 AllocaIndex = FixedIndex; 9199 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9200 Chains.push_back(ArgVal.getValue(1)); 9201 9202 // Avoid emitting code for the store implementing the copy. 9203 const StoreInst *SI = ArgCopyIter->second.second; 9204 ElidedArgCopyInstrs.insert(SI); 9205 9206 // Check for uses of the argument again so that we can avoid exporting ArgVal 9207 // if it is't used by anything other than the store. 9208 for (const Value *U : Arg.users()) { 9209 if (U != SI) { 9210 ArgHasUses = true; 9211 break; 9212 } 9213 } 9214 } 9215 9216 void SelectionDAGISel::LowerArguments(const Function &F) { 9217 SelectionDAG &DAG = SDB->DAG; 9218 SDLoc dl = SDB->getCurSDLoc(); 9219 const DataLayout &DL = DAG.getDataLayout(); 9220 SmallVector<ISD::InputArg, 16> Ins; 9221 9222 if (!FuncInfo->CanLowerReturn) { 9223 // Put in an sret pointer parameter before all the other parameters. 9224 SmallVector<EVT, 1> ValueVTs; 9225 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9226 F.getReturnType()->getPointerTo( 9227 DAG.getDataLayout().getAllocaAddrSpace()), 9228 ValueVTs); 9229 9230 // NOTE: Assuming that a pointer will never break down to more than one VT 9231 // or one register. 9232 ISD::ArgFlagsTy Flags; 9233 Flags.setSRet(); 9234 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9235 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9236 ISD::InputArg::NoArgIndex, 0); 9237 Ins.push_back(RetArg); 9238 } 9239 9240 // Look for stores of arguments to static allocas. Mark such arguments with a 9241 // flag to ask the target to give us the memory location of that argument if 9242 // available. 9243 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9244 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 9245 9246 // Set up the incoming argument description vector. 9247 for (const Argument &Arg : F.args()) { 9248 unsigned ArgNo = Arg.getArgNo(); 9249 SmallVector<EVT, 4> ValueVTs; 9250 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9251 bool isArgValueUsed = !Arg.use_empty(); 9252 unsigned PartBase = 0; 9253 Type *FinalType = Arg.getType(); 9254 if (Arg.hasAttribute(Attribute::ByVal)) 9255 FinalType = cast<PointerType>(FinalType)->getElementType(); 9256 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9257 FinalType, F.getCallingConv(), F.isVarArg()); 9258 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9259 Value != NumValues; ++Value) { 9260 EVT VT = ValueVTs[Value]; 9261 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9262 ISD::ArgFlagsTy Flags; 9263 9264 // Certain targets (such as MIPS), may have a different ABI alignment 9265 // for a type depending on the context. Give the target a chance to 9266 // specify the alignment it wants. 9267 unsigned OriginalAlignment = 9268 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 9269 9270 if (Arg.hasAttribute(Attribute::ZExt)) 9271 Flags.setZExt(); 9272 if (Arg.hasAttribute(Attribute::SExt)) 9273 Flags.setSExt(); 9274 if (Arg.hasAttribute(Attribute::InReg)) { 9275 // If we are using vectorcall calling convention, a structure that is 9276 // passed InReg - is surely an HVA 9277 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9278 isa<StructType>(Arg.getType())) { 9279 // The first value of a structure is marked 9280 if (0 == Value) 9281 Flags.setHvaStart(); 9282 Flags.setHva(); 9283 } 9284 // Set InReg Flag 9285 Flags.setInReg(); 9286 } 9287 if (Arg.hasAttribute(Attribute::StructRet)) 9288 Flags.setSRet(); 9289 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9290 Flags.setSwiftSelf(); 9291 if (Arg.hasAttribute(Attribute::SwiftError)) 9292 Flags.setSwiftError(); 9293 if (Arg.hasAttribute(Attribute::ByVal)) 9294 Flags.setByVal(); 9295 if (Arg.hasAttribute(Attribute::InAlloca)) { 9296 Flags.setInAlloca(); 9297 // Set the byval flag for CCAssignFn callbacks that don't know about 9298 // inalloca. This way we can know how many bytes we should've allocated 9299 // and how many bytes a callee cleanup function will pop. If we port 9300 // inalloca to more targets, we'll have to add custom inalloca handling 9301 // in the various CC lowering callbacks. 9302 Flags.setByVal(); 9303 } 9304 if (F.getCallingConv() == CallingConv::X86_INTR) { 9305 // IA Interrupt passes frame (1st parameter) by value in the stack. 9306 if (ArgNo == 0) 9307 Flags.setByVal(); 9308 } 9309 if (Flags.isByVal() || Flags.isInAlloca()) { 9310 PointerType *Ty = cast<PointerType>(Arg.getType()); 9311 Type *ElementTy = Ty->getElementType(); 9312 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 9313 // For ByVal, alignment should be passed from FE. BE will guess if 9314 // this info is not there but there are cases it cannot get right. 9315 unsigned FrameAlign; 9316 if (Arg.getParamAlignment()) 9317 FrameAlign = Arg.getParamAlignment(); 9318 else 9319 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9320 Flags.setByValAlign(FrameAlign); 9321 } 9322 if (Arg.hasAttribute(Attribute::Nest)) 9323 Flags.setNest(); 9324 if (NeedsRegBlock) 9325 Flags.setInConsecutiveRegs(); 9326 Flags.setOrigAlign(OriginalAlignment); 9327 if (ArgCopyElisionCandidates.count(&Arg)) 9328 Flags.setCopyElisionCandidate(); 9329 9330 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9331 *CurDAG->getContext(), F.getCallingConv(), VT); 9332 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9333 *CurDAG->getContext(), F.getCallingConv(), VT); 9334 for (unsigned i = 0; i != NumRegs; ++i) { 9335 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9336 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 9337 if (NumRegs > 1 && i == 0) 9338 MyFlags.Flags.setSplit(); 9339 // if it isn't first piece, alignment must be 1 9340 else if (i > 0) { 9341 MyFlags.Flags.setOrigAlign(1); 9342 if (i == NumRegs - 1) 9343 MyFlags.Flags.setSplitEnd(); 9344 } 9345 Ins.push_back(MyFlags); 9346 } 9347 if (NeedsRegBlock && Value == NumValues - 1) 9348 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9349 PartBase += VT.getStoreSize(); 9350 } 9351 } 9352 9353 // Call the target to set up the argument values. 9354 SmallVector<SDValue, 8> InVals; 9355 SDValue NewRoot = TLI->LowerFormalArguments( 9356 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9357 9358 // Verify that the target's LowerFormalArguments behaved as expected. 9359 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9360 "LowerFormalArguments didn't return a valid chain!"); 9361 assert(InVals.size() == Ins.size() && 9362 "LowerFormalArguments didn't emit the correct number of values!"); 9363 LLVM_DEBUG({ 9364 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9365 assert(InVals[i].getNode() && 9366 "LowerFormalArguments emitted a null value!"); 9367 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9368 "LowerFormalArguments emitted a value with the wrong type!"); 9369 } 9370 }); 9371 9372 // Update the DAG with the new chain value resulting from argument lowering. 9373 DAG.setRoot(NewRoot); 9374 9375 // Set up the argument values. 9376 unsigned i = 0; 9377 if (!FuncInfo->CanLowerReturn) { 9378 // Create a virtual register for the sret pointer, and put in a copy 9379 // from the sret argument into it. 9380 SmallVector<EVT, 1> ValueVTs; 9381 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9382 F.getReturnType()->getPointerTo( 9383 DAG.getDataLayout().getAllocaAddrSpace()), 9384 ValueVTs); 9385 MVT VT = ValueVTs[0].getSimpleVT(); 9386 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9387 Optional<ISD::NodeType> AssertOp = None; 9388 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9389 nullptr, F.getCallingConv(), AssertOp); 9390 9391 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9392 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9393 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9394 FuncInfo->DemoteRegister = SRetReg; 9395 NewRoot = 9396 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9397 DAG.setRoot(NewRoot); 9398 9399 // i indexes lowered arguments. Bump it past the hidden sret argument. 9400 ++i; 9401 } 9402 9403 SmallVector<SDValue, 4> Chains; 9404 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9405 for (const Argument &Arg : F.args()) { 9406 SmallVector<SDValue, 4> ArgValues; 9407 SmallVector<EVT, 4> ValueVTs; 9408 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9409 unsigned NumValues = ValueVTs.size(); 9410 if (NumValues == 0) 9411 continue; 9412 9413 bool ArgHasUses = !Arg.use_empty(); 9414 9415 // Elide the copying store if the target loaded this argument from a 9416 // suitable fixed stack object. 9417 if (Ins[i].Flags.isCopyElisionCandidate()) { 9418 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9419 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9420 InVals[i], ArgHasUses); 9421 } 9422 9423 // If this argument is unused then remember its value. It is used to generate 9424 // debugging information. 9425 bool isSwiftErrorArg = 9426 TLI->supportSwiftError() && 9427 Arg.hasAttribute(Attribute::SwiftError); 9428 if (!ArgHasUses && !isSwiftErrorArg) { 9429 SDB->setUnusedArgValue(&Arg, InVals[i]); 9430 9431 // Also remember any frame index for use in FastISel. 9432 if (FrameIndexSDNode *FI = 9433 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9434 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9435 } 9436 9437 for (unsigned Val = 0; Val != NumValues; ++Val) { 9438 EVT VT = ValueVTs[Val]; 9439 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9440 F.getCallingConv(), VT); 9441 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9442 *CurDAG->getContext(), F.getCallingConv(), VT); 9443 9444 // Even an apparant 'unused' swifterror argument needs to be returned. So 9445 // we do generate a copy for it that can be used on return from the 9446 // function. 9447 if (ArgHasUses || isSwiftErrorArg) { 9448 Optional<ISD::NodeType> AssertOp; 9449 if (Arg.hasAttribute(Attribute::SExt)) 9450 AssertOp = ISD::AssertSext; 9451 else if (Arg.hasAttribute(Attribute::ZExt)) 9452 AssertOp = ISD::AssertZext; 9453 9454 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9455 PartVT, VT, nullptr, 9456 F.getCallingConv(), AssertOp)); 9457 } 9458 9459 i += NumParts; 9460 } 9461 9462 // We don't need to do anything else for unused arguments. 9463 if (ArgValues.empty()) 9464 continue; 9465 9466 // Note down frame index. 9467 if (FrameIndexSDNode *FI = 9468 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9469 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9470 9471 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9472 SDB->getCurSDLoc()); 9473 9474 SDB->setValue(&Arg, Res); 9475 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9476 // We want to associate the argument with the frame index, among 9477 // involved operands, that correspond to the lowest address. The 9478 // getCopyFromParts function, called earlier, is swapping the order of 9479 // the operands to BUILD_PAIR depending on endianness. The result of 9480 // that swapping is that the least significant bits of the argument will 9481 // be in the first operand of the BUILD_PAIR node, and the most 9482 // significant bits will be in the second operand. 9483 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9484 if (LoadSDNode *LNode = 9485 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9486 if (FrameIndexSDNode *FI = 9487 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9488 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9489 } 9490 9491 // Update the SwiftErrorVRegDefMap. 9492 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9493 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9494 if (TargetRegisterInfo::isVirtualRegister(Reg)) 9495 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 9496 FuncInfo->SwiftErrorArg, Reg); 9497 } 9498 9499 // If this argument is live outside of the entry block, insert a copy from 9500 // wherever we got it to the vreg that other BB's will reference it as. 9501 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 9502 // If we can, though, try to skip creating an unnecessary vreg. 9503 // FIXME: This isn't very clean... it would be nice to make this more 9504 // general. It's also subtly incompatible with the hacks FastISel 9505 // uses with vregs. 9506 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9507 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 9508 FuncInfo->ValueMap[&Arg] = Reg; 9509 continue; 9510 } 9511 } 9512 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9513 FuncInfo->InitializeRegForValue(&Arg); 9514 SDB->CopyToExportRegsIfNeeded(&Arg); 9515 } 9516 } 9517 9518 if (!Chains.empty()) { 9519 Chains.push_back(NewRoot); 9520 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9521 } 9522 9523 DAG.setRoot(NewRoot); 9524 9525 assert(i == InVals.size() && "Argument register count mismatch!"); 9526 9527 // If any argument copy elisions occurred and we have debug info, update the 9528 // stale frame indices used in the dbg.declare variable info table. 9529 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9530 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9531 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9532 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9533 if (I != ArgCopyElisionFrameIndexMap.end()) 9534 VI.Slot = I->second; 9535 } 9536 } 9537 9538 // Finally, if the target has anything special to do, allow it to do so. 9539 EmitFunctionEntryCode(); 9540 } 9541 9542 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9543 /// ensure constants are generated when needed. Remember the virtual registers 9544 /// that need to be added to the Machine PHI nodes as input. We cannot just 9545 /// directly add them, because expansion might result in multiple MBB's for one 9546 /// BB. As such, the start of the BB might correspond to a different MBB than 9547 /// the end. 9548 void 9549 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9550 const Instruction *TI = LLVMBB->getTerminator(); 9551 9552 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9553 9554 // Check PHI nodes in successors that expect a value to be available from this 9555 // block. 9556 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9557 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9558 if (!isa<PHINode>(SuccBB->begin())) continue; 9559 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9560 9561 // If this terminator has multiple identical successors (common for 9562 // switches), only handle each succ once. 9563 if (!SuccsHandled.insert(SuccMBB).second) 9564 continue; 9565 9566 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9567 9568 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9569 // nodes and Machine PHI nodes, but the incoming operands have not been 9570 // emitted yet. 9571 for (const PHINode &PN : SuccBB->phis()) { 9572 // Ignore dead phi's. 9573 if (PN.use_empty()) 9574 continue; 9575 9576 // Skip empty types 9577 if (PN.getType()->isEmptyTy()) 9578 continue; 9579 9580 unsigned Reg; 9581 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9582 9583 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9584 unsigned &RegOut = ConstantsOut[C]; 9585 if (RegOut == 0) { 9586 RegOut = FuncInfo.CreateRegs(C->getType()); 9587 CopyValueToVirtualRegister(C, RegOut); 9588 } 9589 Reg = RegOut; 9590 } else { 9591 DenseMap<const Value *, unsigned>::iterator I = 9592 FuncInfo.ValueMap.find(PHIOp); 9593 if (I != FuncInfo.ValueMap.end()) 9594 Reg = I->second; 9595 else { 9596 assert(isa<AllocaInst>(PHIOp) && 9597 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9598 "Didn't codegen value into a register!??"); 9599 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 9600 CopyValueToVirtualRegister(PHIOp, Reg); 9601 } 9602 } 9603 9604 // Remember that this register needs to added to the machine PHI node as 9605 // the input for this MBB. 9606 SmallVector<EVT, 4> ValueVTs; 9607 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9608 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9609 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9610 EVT VT = ValueVTs[vti]; 9611 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9612 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9613 FuncInfo.PHINodesToUpdate.push_back( 9614 std::make_pair(&*MBBI++, Reg + i)); 9615 Reg += NumRegisters; 9616 } 9617 } 9618 } 9619 9620 ConstantsOut.clear(); 9621 } 9622 9623 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9624 /// is 0. 9625 MachineBasicBlock * 9626 SelectionDAGBuilder::StackProtectorDescriptor:: 9627 AddSuccessorMBB(const BasicBlock *BB, 9628 MachineBasicBlock *ParentMBB, 9629 bool IsLikely, 9630 MachineBasicBlock *SuccMBB) { 9631 // If SuccBB has not been created yet, create it. 9632 if (!SuccMBB) { 9633 MachineFunction *MF = ParentMBB->getParent(); 9634 MachineFunction::iterator BBI(ParentMBB); 9635 SuccMBB = MF->CreateMachineBasicBlock(BB); 9636 MF->insert(++BBI, SuccMBB); 9637 } 9638 // Add it as a successor of ParentMBB. 9639 ParentMBB->addSuccessor( 9640 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9641 return SuccMBB; 9642 } 9643 9644 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9645 MachineFunction::iterator I(MBB); 9646 if (++I == FuncInfo.MF->end()) 9647 return nullptr; 9648 return &*I; 9649 } 9650 9651 /// During lowering new call nodes can be created (such as memset, etc.). 9652 /// Those will become new roots of the current DAG, but complications arise 9653 /// when they are tail calls. In such cases, the call lowering will update 9654 /// the root, but the builder still needs to know that a tail call has been 9655 /// lowered in order to avoid generating an additional return. 9656 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9657 // If the node is null, we do have a tail call. 9658 if (MaybeTC.getNode() != nullptr) 9659 DAG.setRoot(MaybeTC); 9660 else 9661 HasTailCall = true; 9662 } 9663 9664 uint64_t 9665 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters, 9666 unsigned First, unsigned Last) const { 9667 assert(Last >= First); 9668 const APInt &LowCase = Clusters[First].Low->getValue(); 9669 const APInt &HighCase = Clusters[Last].High->getValue(); 9670 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 9671 9672 // FIXME: A range of consecutive cases has 100% density, but only requires one 9673 // comparison to lower. We should discriminate against such consecutive ranges 9674 // in jump tables. 9675 9676 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; 9677 } 9678 9679 uint64_t SelectionDAGBuilder::getJumpTableNumCases( 9680 const SmallVectorImpl<unsigned> &TotalCases, unsigned First, 9681 unsigned Last) const { 9682 assert(Last >= First); 9683 assert(TotalCases[Last] >= TotalCases[First]); 9684 uint64_t NumCases = 9685 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 9686 return NumCases; 9687 } 9688 9689 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 9690 unsigned First, unsigned Last, 9691 const SwitchInst *SI, 9692 MachineBasicBlock *DefaultMBB, 9693 CaseCluster &JTCluster) { 9694 assert(First <= Last); 9695 9696 auto Prob = BranchProbability::getZero(); 9697 unsigned NumCmps = 0; 9698 std::vector<MachineBasicBlock*> Table; 9699 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 9700 9701 // Initialize probabilities in JTProbs. 9702 for (unsigned I = First; I <= Last; ++I) 9703 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 9704 9705 for (unsigned I = First; I <= Last; ++I) { 9706 assert(Clusters[I].Kind == CC_Range); 9707 Prob += Clusters[I].Prob; 9708 const APInt &Low = Clusters[I].Low->getValue(); 9709 const APInt &High = Clusters[I].High->getValue(); 9710 NumCmps += (Low == High) ? 1 : 2; 9711 if (I != First) { 9712 // Fill the gap between this and the previous cluster. 9713 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 9714 assert(PreviousHigh.slt(Low)); 9715 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 9716 for (uint64_t J = 0; J < Gap; J++) 9717 Table.push_back(DefaultMBB); 9718 } 9719 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 9720 for (uint64_t J = 0; J < ClusterSize; ++J) 9721 Table.push_back(Clusters[I].MBB); 9722 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 9723 } 9724 9725 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9726 unsigned NumDests = JTProbs.size(); 9727 if (TLI.isSuitableForBitTests( 9728 NumDests, NumCmps, Clusters[First].Low->getValue(), 9729 Clusters[Last].High->getValue(), DAG.getDataLayout())) { 9730 // Clusters[First..Last] should be lowered as bit tests instead. 9731 return false; 9732 } 9733 9734 // Create the MBB that will load from and jump through the table. 9735 // Note: We create it here, but it's not inserted into the function yet. 9736 MachineFunction *CurMF = FuncInfo.MF; 9737 MachineBasicBlock *JumpTableMBB = 9738 CurMF->CreateMachineBasicBlock(SI->getParent()); 9739 9740 // Add successors. Note: use table order for determinism. 9741 SmallPtrSet<MachineBasicBlock *, 8> Done; 9742 for (MachineBasicBlock *Succ : Table) { 9743 if (Done.count(Succ)) 9744 continue; 9745 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 9746 Done.insert(Succ); 9747 } 9748 JumpTableMBB->normalizeSuccProbs(); 9749 9750 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 9751 ->createJumpTableIndex(Table); 9752 9753 // Set up the jump table info. 9754 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 9755 JumpTableHeader JTH(Clusters[First].Low->getValue(), 9756 Clusters[Last].High->getValue(), SI->getCondition(), 9757 nullptr, false); 9758 JTCases.emplace_back(std::move(JTH), std::move(JT)); 9759 9760 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 9761 JTCases.size() - 1, Prob); 9762 return true; 9763 } 9764 9765 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 9766 const SwitchInst *SI, 9767 MachineBasicBlock *DefaultMBB) { 9768 #ifndef NDEBUG 9769 // Clusters must be non-empty, sorted, and only contain Range clusters. 9770 assert(!Clusters.empty()); 9771 for (CaseCluster &C : Clusters) 9772 assert(C.Kind == CC_Range); 9773 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 9774 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 9775 #endif 9776 9777 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9778 if (!TLI.areJTsAllowed(SI->getParent()->getParent())) 9779 return; 9780 9781 const int64_t N = Clusters.size(); 9782 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 9783 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 9784 9785 if (N < 2 || N < MinJumpTableEntries) 9786 return; 9787 9788 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 9789 SmallVector<unsigned, 8> TotalCases(N); 9790 for (unsigned i = 0; i < N; ++i) { 9791 const APInt &Hi = Clusters[i].High->getValue(); 9792 const APInt &Lo = Clusters[i].Low->getValue(); 9793 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 9794 if (i != 0) 9795 TotalCases[i] += TotalCases[i - 1]; 9796 } 9797 9798 // Cheap case: the whole range may be suitable for jump table. 9799 uint64_t Range = getJumpTableRange(Clusters,0, N - 1); 9800 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); 9801 assert(NumCases < UINT64_MAX / 100); 9802 assert(Range >= NumCases); 9803 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9804 CaseCluster JTCluster; 9805 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 9806 Clusters[0] = JTCluster; 9807 Clusters.resize(1); 9808 return; 9809 } 9810 } 9811 9812 // The algorithm below is not suitable for -O0. 9813 if (TM.getOptLevel() == CodeGenOpt::None) 9814 return; 9815 9816 // Split Clusters into minimum number of dense partitions. The algorithm uses 9817 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 9818 // for the Case Statement'" (1994), but builds the MinPartitions array in 9819 // reverse order to make it easier to reconstruct the partitions in ascending 9820 // order. In the choice between two optimal partitionings, it picks the one 9821 // which yields more jump tables. 9822 9823 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9824 SmallVector<unsigned, 8> MinPartitions(N); 9825 // LastElement[i] is the last element of the partition starting at i. 9826 SmallVector<unsigned, 8> LastElement(N); 9827 // PartitionsScore[i] is used to break ties when choosing between two 9828 // partitionings resulting in the same number of partitions. 9829 SmallVector<unsigned, 8> PartitionsScore(N); 9830 // For PartitionsScore, a small number of comparisons is considered as good as 9831 // a jump table and a single comparison is considered better than a jump 9832 // table. 9833 enum PartitionScores : unsigned { 9834 NoTable = 0, 9835 Table = 1, 9836 FewCases = 1, 9837 SingleCase = 2 9838 }; 9839 9840 // Base case: There is only one way to partition Clusters[N-1]. 9841 MinPartitions[N - 1] = 1; 9842 LastElement[N - 1] = N - 1; 9843 PartitionsScore[N - 1] = PartitionScores::SingleCase; 9844 9845 // Note: loop indexes are signed to avoid underflow. 9846 for (int64_t i = N - 2; i >= 0; i--) { 9847 // Find optimal partitioning of Clusters[i..N-1]. 9848 // Baseline: Put Clusters[i] into a partition on its own. 9849 MinPartitions[i] = MinPartitions[i + 1] + 1; 9850 LastElement[i] = i; 9851 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 9852 9853 // Search for a solution that results in fewer partitions. 9854 for (int64_t j = N - 1; j > i; j--) { 9855 // Try building a partition from Clusters[i..j]. 9856 uint64_t Range = getJumpTableRange(Clusters, i, j); 9857 uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j); 9858 assert(NumCases < UINT64_MAX / 100); 9859 assert(Range >= NumCases); 9860 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9861 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9862 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 9863 int64_t NumEntries = j - i + 1; 9864 9865 if (NumEntries == 1) 9866 Score += PartitionScores::SingleCase; 9867 else if (NumEntries <= SmallNumberOfEntries) 9868 Score += PartitionScores::FewCases; 9869 else if (NumEntries >= MinJumpTableEntries) 9870 Score += PartitionScores::Table; 9871 9872 // If this leads to fewer partitions, or to the same number of 9873 // partitions with better score, it is a better partitioning. 9874 if (NumPartitions < MinPartitions[i] || 9875 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 9876 MinPartitions[i] = NumPartitions; 9877 LastElement[i] = j; 9878 PartitionsScore[i] = Score; 9879 } 9880 } 9881 } 9882 } 9883 9884 // Iterate over the partitions, replacing some with jump tables in-place. 9885 unsigned DstIndex = 0; 9886 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9887 Last = LastElement[First]; 9888 assert(Last >= First); 9889 assert(DstIndex <= First); 9890 unsigned NumClusters = Last - First + 1; 9891 9892 CaseCluster JTCluster; 9893 if (NumClusters >= MinJumpTableEntries && 9894 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 9895 Clusters[DstIndex++] = JTCluster; 9896 } else { 9897 for (unsigned I = First; I <= Last; ++I) 9898 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 9899 } 9900 } 9901 Clusters.resize(DstIndex); 9902 } 9903 9904 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 9905 unsigned First, unsigned Last, 9906 const SwitchInst *SI, 9907 CaseCluster &BTCluster) { 9908 assert(First <= Last); 9909 if (First == Last) 9910 return false; 9911 9912 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9913 unsigned NumCmps = 0; 9914 for (int64_t I = First; I <= Last; ++I) { 9915 assert(Clusters[I].Kind == CC_Range); 9916 Dests.set(Clusters[I].MBB->getNumber()); 9917 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 9918 } 9919 unsigned NumDests = Dests.count(); 9920 9921 APInt Low = Clusters[First].Low->getValue(); 9922 APInt High = Clusters[Last].High->getValue(); 9923 assert(Low.slt(High)); 9924 9925 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9926 const DataLayout &DL = DAG.getDataLayout(); 9927 if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL)) 9928 return false; 9929 9930 APInt LowBound; 9931 APInt CmpRange; 9932 9933 const int BitWidth = TLI.getPointerTy(DL).getSizeInBits(); 9934 assert(TLI.rangeFitsInWord(Low, High, DL) && 9935 "Case range must fit in bit mask!"); 9936 9937 // Check if the clusters cover a contiguous range such that no value in the 9938 // range will jump to the default statement. 9939 bool ContiguousRange = true; 9940 for (int64_t I = First + 1; I <= Last; ++I) { 9941 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 9942 ContiguousRange = false; 9943 break; 9944 } 9945 } 9946 9947 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 9948 // Optimize the case where all the case values fit in a word without having 9949 // to subtract minValue. In this case, we can optimize away the subtraction. 9950 LowBound = APInt::getNullValue(Low.getBitWidth()); 9951 CmpRange = High; 9952 ContiguousRange = false; 9953 } else { 9954 LowBound = Low; 9955 CmpRange = High - Low; 9956 } 9957 9958 CaseBitsVector CBV; 9959 auto TotalProb = BranchProbability::getZero(); 9960 for (unsigned i = First; i <= Last; ++i) { 9961 // Find the CaseBits for this destination. 9962 unsigned j; 9963 for (j = 0; j < CBV.size(); ++j) 9964 if (CBV[j].BB == Clusters[i].MBB) 9965 break; 9966 if (j == CBV.size()) 9967 CBV.push_back( 9968 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 9969 CaseBits *CB = &CBV[j]; 9970 9971 // Update Mask, Bits and ExtraProb. 9972 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 9973 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 9974 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 9975 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 9976 CB->Bits += Hi - Lo + 1; 9977 CB->ExtraProb += Clusters[i].Prob; 9978 TotalProb += Clusters[i].Prob; 9979 } 9980 9981 BitTestInfo BTI; 9982 llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) { 9983 // Sort by probability first, number of bits second, bit mask third. 9984 if (a.ExtraProb != b.ExtraProb) 9985 return a.ExtraProb > b.ExtraProb; 9986 if (a.Bits != b.Bits) 9987 return a.Bits > b.Bits; 9988 return a.Mask < b.Mask; 9989 }); 9990 9991 for (auto &CB : CBV) { 9992 MachineBasicBlock *BitTestBB = 9993 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 9994 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 9995 } 9996 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 9997 SI->getCondition(), -1U, MVT::Other, false, 9998 ContiguousRange, nullptr, nullptr, std::move(BTI), 9999 TotalProb); 10000 10001 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 10002 BitTestCases.size() - 1, TotalProb); 10003 return true; 10004 } 10005 10006 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 10007 const SwitchInst *SI) { 10008 // Partition Clusters into as few subsets as possible, where each subset has a 10009 // range that fits in a machine word and has <= 3 unique destinations. 10010 10011 #ifndef NDEBUG 10012 // Clusters must be sorted and contain Range or JumpTable clusters. 10013 assert(!Clusters.empty()); 10014 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 10015 for (const CaseCluster &C : Clusters) 10016 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 10017 for (unsigned i = 1; i < Clusters.size(); ++i) 10018 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 10019 #endif 10020 10021 // The algorithm below is not suitable for -O0. 10022 if (TM.getOptLevel() == CodeGenOpt::None) 10023 return; 10024 10025 // If target does not have legal shift left, do not emit bit tests at all. 10026 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10027 const DataLayout &DL = DAG.getDataLayout(); 10028 10029 EVT PTy = TLI.getPointerTy(DL); 10030 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 10031 return; 10032 10033 int BitWidth = PTy.getSizeInBits(); 10034 const int64_t N = Clusters.size(); 10035 10036 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 10037 SmallVector<unsigned, 8> MinPartitions(N); 10038 // LastElement[i] is the last element of the partition starting at i. 10039 SmallVector<unsigned, 8> LastElement(N); 10040 10041 // FIXME: This might not be the best algorithm for finding bit test clusters. 10042 10043 // Base case: There is only one way to partition Clusters[N-1]. 10044 MinPartitions[N - 1] = 1; 10045 LastElement[N - 1] = N - 1; 10046 10047 // Note: loop indexes are signed to avoid underflow. 10048 for (int64_t i = N - 2; i >= 0; --i) { 10049 // Find optimal partitioning of Clusters[i..N-1]. 10050 // Baseline: Put Clusters[i] into a partition on its own. 10051 MinPartitions[i] = MinPartitions[i + 1] + 1; 10052 LastElement[i] = i; 10053 10054 // Search for a solution that results in fewer partitions. 10055 // Note: the search is limited by BitWidth, reducing time complexity. 10056 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 10057 // Try building a partition from Clusters[i..j]. 10058 10059 // Check the range. 10060 if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(), 10061 Clusters[j].High->getValue(), DL)) 10062 continue; 10063 10064 // Check nbr of destinations and cluster types. 10065 // FIXME: This works, but doesn't seem very efficient. 10066 bool RangesOnly = true; 10067 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 10068 for (int64_t k = i; k <= j; k++) { 10069 if (Clusters[k].Kind != CC_Range) { 10070 RangesOnly = false; 10071 break; 10072 } 10073 Dests.set(Clusters[k].MBB->getNumber()); 10074 } 10075 if (!RangesOnly || Dests.count() > 3) 10076 break; 10077 10078 // Check if it's a better partition. 10079 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 10080 if (NumPartitions < MinPartitions[i]) { 10081 // Found a better partition. 10082 MinPartitions[i] = NumPartitions; 10083 LastElement[i] = j; 10084 } 10085 } 10086 } 10087 10088 // Iterate over the partitions, replacing with bit-test clusters in-place. 10089 unsigned DstIndex = 0; 10090 for (unsigned First = 0, Last; First < N; First = Last + 1) { 10091 Last = LastElement[First]; 10092 assert(First <= Last); 10093 assert(DstIndex <= First); 10094 10095 CaseCluster BitTestCluster; 10096 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 10097 Clusters[DstIndex++] = BitTestCluster; 10098 } else { 10099 size_t NumClusters = Last - First + 1; 10100 std::memmove(&Clusters[DstIndex], &Clusters[First], 10101 sizeof(Clusters[0]) * NumClusters); 10102 DstIndex += NumClusters; 10103 } 10104 } 10105 Clusters.resize(DstIndex); 10106 } 10107 10108 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10109 MachineBasicBlock *SwitchMBB, 10110 MachineBasicBlock *DefaultMBB) { 10111 MachineFunction *CurMF = FuncInfo.MF; 10112 MachineBasicBlock *NextMBB = nullptr; 10113 MachineFunction::iterator BBI(W.MBB); 10114 if (++BBI != FuncInfo.MF->end()) 10115 NextMBB = &*BBI; 10116 10117 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10118 10119 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10120 10121 if (Size == 2 && W.MBB == SwitchMBB) { 10122 // If any two of the cases has the same destination, and if one value 10123 // is the same as the other, but has one bit unset that the other has set, 10124 // use bit manipulation to do two compares at once. For example: 10125 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10126 // TODO: This could be extended to merge any 2 cases in switches with 3 10127 // cases. 10128 // TODO: Handle cases where W.CaseBB != SwitchBB. 10129 CaseCluster &Small = *W.FirstCluster; 10130 CaseCluster &Big = *W.LastCluster; 10131 10132 if (Small.Low == Small.High && Big.Low == Big.High && 10133 Small.MBB == Big.MBB) { 10134 const APInt &SmallValue = Small.Low->getValue(); 10135 const APInt &BigValue = Big.Low->getValue(); 10136 10137 // Check that there is only one bit different. 10138 APInt CommonBit = BigValue ^ SmallValue; 10139 if (CommonBit.isPowerOf2()) { 10140 SDValue CondLHS = getValue(Cond); 10141 EVT VT = CondLHS.getValueType(); 10142 SDLoc DL = getCurSDLoc(); 10143 10144 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10145 DAG.getConstant(CommonBit, DL, VT)); 10146 SDValue Cond = DAG.getSetCC( 10147 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10148 ISD::SETEQ); 10149 10150 // Update successor info. 10151 // Both Small and Big will jump to Small.BB, so we sum up the 10152 // probabilities. 10153 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10154 if (BPI) 10155 addSuccessorWithProb( 10156 SwitchMBB, DefaultMBB, 10157 // The default destination is the first successor in IR. 10158 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10159 else 10160 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10161 10162 // Insert the true branch. 10163 SDValue BrCond = 10164 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10165 DAG.getBasicBlock(Small.MBB)); 10166 // Insert the false branch. 10167 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10168 DAG.getBasicBlock(DefaultMBB)); 10169 10170 DAG.setRoot(BrCond); 10171 return; 10172 } 10173 } 10174 } 10175 10176 if (TM.getOptLevel() != CodeGenOpt::None) { 10177 // Here, we order cases by probability so the most likely case will be 10178 // checked first. However, two clusters can have the same probability in 10179 // which case their relative ordering is non-deterministic. So we use Low 10180 // as a tie-breaker as clusters are guaranteed to never overlap. 10181 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10182 [](const CaseCluster &a, const CaseCluster &b) { 10183 return a.Prob != b.Prob ? 10184 a.Prob > b.Prob : 10185 a.Low->getValue().slt(b.Low->getValue()); 10186 }); 10187 10188 // Rearrange the case blocks so that the last one falls through if possible 10189 // without changing the order of probabilities. 10190 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10191 --I; 10192 if (I->Prob > W.LastCluster->Prob) 10193 break; 10194 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10195 std::swap(*I, *W.LastCluster); 10196 break; 10197 } 10198 } 10199 } 10200 10201 // Compute total probability. 10202 BranchProbability DefaultProb = W.DefaultProb; 10203 BranchProbability UnhandledProbs = DefaultProb; 10204 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10205 UnhandledProbs += I->Prob; 10206 10207 MachineBasicBlock *CurMBB = W.MBB; 10208 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10209 MachineBasicBlock *Fallthrough; 10210 if (I == W.LastCluster) { 10211 // For the last cluster, fall through to the default destination. 10212 Fallthrough = DefaultMBB; 10213 } else { 10214 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10215 CurMF->insert(BBI, Fallthrough); 10216 // Put Cond in a virtual register to make it available from the new blocks. 10217 ExportFromCurrentBlock(Cond); 10218 } 10219 UnhandledProbs -= I->Prob; 10220 10221 switch (I->Kind) { 10222 case CC_JumpTable: { 10223 // FIXME: Optimize away range check based on pivot comparisons. 10224 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 10225 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 10226 10227 // The jump block hasn't been inserted yet; insert it here. 10228 MachineBasicBlock *JumpMBB = JT->MBB; 10229 CurMF->insert(BBI, JumpMBB); 10230 10231 auto JumpProb = I->Prob; 10232 auto FallthroughProb = UnhandledProbs; 10233 10234 // If the default statement is a target of the jump table, we evenly 10235 // distribute the default probability to successors of CurMBB. Also 10236 // update the probability on the edge from JumpMBB to Fallthrough. 10237 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10238 SE = JumpMBB->succ_end(); 10239 SI != SE; ++SI) { 10240 if (*SI == DefaultMBB) { 10241 JumpProb += DefaultProb / 2; 10242 FallthroughProb -= DefaultProb / 2; 10243 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10244 JumpMBB->normalizeSuccProbs(); 10245 break; 10246 } 10247 } 10248 10249 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10250 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10251 CurMBB->normalizeSuccProbs(); 10252 10253 // The jump table header will be inserted in our current block, do the 10254 // range check, and fall through to our fallthrough block. 10255 JTH->HeaderBB = CurMBB; 10256 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10257 10258 // If we're in the right place, emit the jump table header right now. 10259 if (CurMBB == SwitchMBB) { 10260 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10261 JTH->Emitted = true; 10262 } 10263 break; 10264 } 10265 case CC_BitTests: { 10266 // FIXME: Optimize away range check based on pivot comparisons. 10267 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 10268 10269 // The bit test blocks haven't been inserted yet; insert them here. 10270 for (BitTestCase &BTC : BTB->Cases) 10271 CurMF->insert(BBI, BTC.ThisBB); 10272 10273 // Fill in fields of the BitTestBlock. 10274 BTB->Parent = CurMBB; 10275 BTB->Default = Fallthrough; 10276 10277 BTB->DefaultProb = UnhandledProbs; 10278 // If the cases in bit test don't form a contiguous range, we evenly 10279 // distribute the probability on the edge to Fallthrough to two 10280 // successors of CurMBB. 10281 if (!BTB->ContiguousRange) { 10282 BTB->Prob += DefaultProb / 2; 10283 BTB->DefaultProb -= DefaultProb / 2; 10284 } 10285 10286 // If we're in the right place, emit the bit test header right now. 10287 if (CurMBB == SwitchMBB) { 10288 visitBitTestHeader(*BTB, SwitchMBB); 10289 BTB->Emitted = true; 10290 } 10291 break; 10292 } 10293 case CC_Range: { 10294 const Value *RHS, *LHS, *MHS; 10295 ISD::CondCode CC; 10296 if (I->Low == I->High) { 10297 // Check Cond == I->Low. 10298 CC = ISD::SETEQ; 10299 LHS = Cond; 10300 RHS=I->Low; 10301 MHS = nullptr; 10302 } else { 10303 // Check I->Low <= Cond <= I->High. 10304 CC = ISD::SETLE; 10305 LHS = I->Low; 10306 MHS = Cond; 10307 RHS = I->High; 10308 } 10309 10310 // The false probability is the sum of all unhandled cases. 10311 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10312 getCurSDLoc(), I->Prob, UnhandledProbs); 10313 10314 if (CurMBB == SwitchMBB) 10315 visitSwitchCase(CB, SwitchMBB); 10316 else 10317 SwitchCases.push_back(CB); 10318 10319 break; 10320 } 10321 } 10322 CurMBB = Fallthrough; 10323 } 10324 } 10325 10326 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10327 CaseClusterIt First, 10328 CaseClusterIt Last) { 10329 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10330 if (X.Prob != CC.Prob) 10331 return X.Prob > CC.Prob; 10332 10333 // Ties are broken by comparing the case value. 10334 return X.Low->getValue().slt(CC.Low->getValue()); 10335 }); 10336 } 10337 10338 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10339 const SwitchWorkListItem &W, 10340 Value *Cond, 10341 MachineBasicBlock *SwitchMBB) { 10342 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10343 "Clusters not sorted?"); 10344 10345 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10346 10347 // Balance the tree based on branch probabilities to create a near-optimal (in 10348 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10349 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10350 CaseClusterIt LastLeft = W.FirstCluster; 10351 CaseClusterIt FirstRight = W.LastCluster; 10352 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10353 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10354 10355 // Move LastLeft and FirstRight towards each other from opposite directions to 10356 // find a partitioning of the clusters which balances the probability on both 10357 // sides. If LeftProb and RightProb are equal, alternate which side is 10358 // taken to ensure 0-probability nodes are distributed evenly. 10359 unsigned I = 0; 10360 while (LastLeft + 1 < FirstRight) { 10361 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10362 LeftProb += (++LastLeft)->Prob; 10363 else 10364 RightProb += (--FirstRight)->Prob; 10365 I++; 10366 } 10367 10368 while (true) { 10369 // Our binary search tree differs from a typical BST in that ours can have up 10370 // to three values in each leaf. The pivot selection above doesn't take that 10371 // into account, which means the tree might require more nodes and be less 10372 // efficient. We compensate for this here. 10373 10374 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10375 unsigned NumRight = W.LastCluster - FirstRight + 1; 10376 10377 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10378 // If one side has less than 3 clusters, and the other has more than 3, 10379 // consider taking a cluster from the other side. 10380 10381 if (NumLeft < NumRight) { 10382 // Consider moving the first cluster on the right to the left side. 10383 CaseCluster &CC = *FirstRight; 10384 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10385 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10386 if (LeftSideRank <= RightSideRank) { 10387 // Moving the cluster to the left does not demote it. 10388 ++LastLeft; 10389 ++FirstRight; 10390 continue; 10391 } 10392 } else { 10393 assert(NumRight < NumLeft); 10394 // Consider moving the last element on the left to the right side. 10395 CaseCluster &CC = *LastLeft; 10396 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10397 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10398 if (RightSideRank <= LeftSideRank) { 10399 // Moving the cluster to the right does not demot it. 10400 --LastLeft; 10401 --FirstRight; 10402 continue; 10403 } 10404 } 10405 } 10406 break; 10407 } 10408 10409 assert(LastLeft + 1 == FirstRight); 10410 assert(LastLeft >= W.FirstCluster); 10411 assert(FirstRight <= W.LastCluster); 10412 10413 // Use the first element on the right as pivot since we will make less-than 10414 // comparisons against it. 10415 CaseClusterIt PivotCluster = FirstRight; 10416 assert(PivotCluster > W.FirstCluster); 10417 assert(PivotCluster <= W.LastCluster); 10418 10419 CaseClusterIt FirstLeft = W.FirstCluster; 10420 CaseClusterIt LastRight = W.LastCluster; 10421 10422 const ConstantInt *Pivot = PivotCluster->Low; 10423 10424 // New blocks will be inserted immediately after the current one. 10425 MachineFunction::iterator BBI(W.MBB); 10426 ++BBI; 10427 10428 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10429 // we can branch to its destination directly if it's squeezed exactly in 10430 // between the known lower bound and Pivot - 1. 10431 MachineBasicBlock *LeftMBB; 10432 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10433 FirstLeft->Low == W.GE && 10434 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10435 LeftMBB = FirstLeft->MBB; 10436 } else { 10437 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10438 FuncInfo.MF->insert(BBI, LeftMBB); 10439 WorkList.push_back( 10440 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10441 // Put Cond in a virtual register to make it available from the new blocks. 10442 ExportFromCurrentBlock(Cond); 10443 } 10444 10445 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10446 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10447 // directly if RHS.High equals the current upper bound. 10448 MachineBasicBlock *RightMBB; 10449 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10450 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10451 RightMBB = FirstRight->MBB; 10452 } else { 10453 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10454 FuncInfo.MF->insert(BBI, RightMBB); 10455 WorkList.push_back( 10456 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10457 // Put Cond in a virtual register to make it available from the new blocks. 10458 ExportFromCurrentBlock(Cond); 10459 } 10460 10461 // Create the CaseBlock record that will be used to lower the branch. 10462 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10463 getCurSDLoc(), LeftProb, RightProb); 10464 10465 if (W.MBB == SwitchMBB) 10466 visitSwitchCase(CB, SwitchMBB); 10467 else 10468 SwitchCases.push_back(CB); 10469 } 10470 10471 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10472 // from the swith statement. 10473 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10474 BranchProbability PeeledCaseProb) { 10475 if (PeeledCaseProb == BranchProbability::getOne()) 10476 return BranchProbability::getZero(); 10477 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10478 10479 uint32_t Numerator = CaseProb.getNumerator(); 10480 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10481 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10482 } 10483 10484 // Try to peel the top probability case if it exceeds the threshold. 10485 // Return current MachineBasicBlock for the switch statement if the peeling 10486 // does not occur. 10487 // If the peeling is performed, return the newly created MachineBasicBlock 10488 // for the peeled switch statement. Also update Clusters to remove the peeled 10489 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10490 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10491 const SwitchInst &SI, CaseClusterVector &Clusters, 10492 BranchProbability &PeeledCaseProb) { 10493 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10494 // Don't perform if there is only one cluster or optimizing for size. 10495 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10496 TM.getOptLevel() == CodeGenOpt::None || 10497 SwitchMBB->getParent()->getFunction().optForMinSize()) 10498 return SwitchMBB; 10499 10500 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10501 unsigned PeeledCaseIndex = 0; 10502 bool SwitchPeeled = false; 10503 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10504 CaseCluster &CC = Clusters[Index]; 10505 if (CC.Prob < TopCaseProb) 10506 continue; 10507 TopCaseProb = CC.Prob; 10508 PeeledCaseIndex = Index; 10509 SwitchPeeled = true; 10510 } 10511 if (!SwitchPeeled) 10512 return SwitchMBB; 10513 10514 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10515 << TopCaseProb << "\n"); 10516 10517 // Record the MBB for the peeled switch statement. 10518 MachineFunction::iterator BBI(SwitchMBB); 10519 ++BBI; 10520 MachineBasicBlock *PeeledSwitchMBB = 10521 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10522 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10523 10524 ExportFromCurrentBlock(SI.getCondition()); 10525 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10526 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10527 nullptr, nullptr, TopCaseProb.getCompl()}; 10528 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10529 10530 Clusters.erase(PeeledCaseIt); 10531 for (CaseCluster &CC : Clusters) { 10532 LLVM_DEBUG( 10533 dbgs() << "Scale the probablity for one cluster, before scaling: " 10534 << CC.Prob << "\n"); 10535 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10536 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10537 } 10538 PeeledCaseProb = TopCaseProb; 10539 return PeeledSwitchMBB; 10540 } 10541 10542 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10543 // Extract cases from the switch. 10544 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10545 CaseClusterVector Clusters; 10546 Clusters.reserve(SI.getNumCases()); 10547 for (auto I : SI.cases()) { 10548 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10549 const ConstantInt *CaseVal = I.getCaseValue(); 10550 BranchProbability Prob = 10551 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10552 : BranchProbability(1, SI.getNumCases() + 1); 10553 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10554 } 10555 10556 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10557 10558 // Cluster adjacent cases with the same destination. We do this at all 10559 // optimization levels because it's cheap to do and will make codegen faster 10560 // if there are many clusters. 10561 sortAndRangeify(Clusters); 10562 10563 if (TM.getOptLevel() != CodeGenOpt::None) { 10564 // Replace an unreachable default with the most popular destination. 10565 // FIXME: Exploit unreachable default more aggressively. 10566 bool UnreachableDefault = 10567 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 10568 if (UnreachableDefault && !Clusters.empty()) { 10569 DenseMap<const BasicBlock *, unsigned> Popularity; 10570 unsigned MaxPop = 0; 10571 const BasicBlock *MaxBB = nullptr; 10572 for (auto I : SI.cases()) { 10573 const BasicBlock *BB = I.getCaseSuccessor(); 10574 if (++Popularity[BB] > MaxPop) { 10575 MaxPop = Popularity[BB]; 10576 MaxBB = BB; 10577 } 10578 } 10579 // Set new default. 10580 assert(MaxPop > 0 && MaxBB); 10581 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 10582 10583 // Remove cases that were pointing to the destination that is now the 10584 // default. 10585 CaseClusterVector New; 10586 New.reserve(Clusters.size()); 10587 for (CaseCluster &CC : Clusters) { 10588 if (CC.MBB != DefaultMBB) 10589 New.push_back(CC); 10590 } 10591 Clusters = std::move(New); 10592 } 10593 } 10594 10595 // The branch probablity of the peeled case. 10596 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10597 MachineBasicBlock *PeeledSwitchMBB = 10598 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10599 10600 // If there is only the default destination, jump there directly. 10601 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10602 if (Clusters.empty()) { 10603 assert(PeeledSwitchMBB == SwitchMBB); 10604 SwitchMBB->addSuccessor(DefaultMBB); 10605 if (DefaultMBB != NextBlock(SwitchMBB)) { 10606 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10607 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10608 } 10609 return; 10610 } 10611 10612 findJumpTables(Clusters, &SI, DefaultMBB); 10613 findBitTestClusters(Clusters, &SI); 10614 10615 LLVM_DEBUG({ 10616 dbgs() << "Case clusters: "; 10617 for (const CaseCluster &C : Clusters) { 10618 if (C.Kind == CC_JumpTable) 10619 dbgs() << "JT:"; 10620 if (C.Kind == CC_BitTests) 10621 dbgs() << "BT:"; 10622 10623 C.Low->getValue().print(dbgs(), true); 10624 if (C.Low != C.High) { 10625 dbgs() << '-'; 10626 C.High->getValue().print(dbgs(), true); 10627 } 10628 dbgs() << ' '; 10629 } 10630 dbgs() << '\n'; 10631 }); 10632 10633 assert(!Clusters.empty()); 10634 SwitchWorkList WorkList; 10635 CaseClusterIt First = Clusters.begin(); 10636 CaseClusterIt Last = Clusters.end() - 1; 10637 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10638 // Scale the branchprobability for DefaultMBB if the peel occurs and 10639 // DefaultMBB is not replaced. 10640 if (PeeledCaseProb != BranchProbability::getZero() && 10641 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10642 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10643 WorkList.push_back( 10644 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10645 10646 while (!WorkList.empty()) { 10647 SwitchWorkListItem W = WorkList.back(); 10648 WorkList.pop_back(); 10649 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10650 10651 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10652 !DefaultMBB->getParent()->getFunction().optForMinSize()) { 10653 // For optimized builds, lower large range as a balanced binary tree. 10654 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10655 continue; 10656 } 10657 10658 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10659 } 10660 } 10661