1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/BlockFrequencyInfo.h" 27 #include "llvm/Analysis/BranchProbabilityInfo.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/MemoryLocation.h" 32 #include "llvm/Analysis/ProfileSummaryInfo.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/Analysis/VectorUtils.h" 36 #include "llvm/CodeGen/Analysis.h" 37 #include "llvm/CodeGen/FunctionLoweringInfo.h" 38 #include "llvm/CodeGen/GCMetadata.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineMemOperand.h" 46 #include "llvm/CodeGen/MachineModuleInfo.h" 47 #include "llvm/CodeGen/MachineOperand.h" 48 #include "llvm/CodeGen/MachineRegisterInfo.h" 49 #include "llvm/CodeGen/RuntimeLibcalls.h" 50 #include "llvm/CodeGen/SelectionDAG.h" 51 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 52 #include "llvm/CodeGen/StackMaps.h" 53 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 54 #include "llvm/CodeGen/TargetFrameLowering.h" 55 #include "llvm/CodeGen/TargetInstrInfo.h" 56 #include "llvm/CodeGen/TargetOpcodes.h" 57 #include "llvm/CodeGen/TargetRegisterInfo.h" 58 #include "llvm/CodeGen/TargetSubtargetInfo.h" 59 #include "llvm/CodeGen/WinEHFuncInfo.h" 60 #include "llvm/IR/Argument.h" 61 #include "llvm/IR/Attributes.h" 62 #include "llvm/IR/BasicBlock.h" 63 #include "llvm/IR/CFG.h" 64 #include "llvm/IR/CallingConv.h" 65 #include "llvm/IR/Constant.h" 66 #include "llvm/IR/ConstantRange.h" 67 #include "llvm/IR/Constants.h" 68 #include "llvm/IR/DataLayout.h" 69 #include "llvm/IR/DebugInfoMetadata.h" 70 #include "llvm/IR/DerivedTypes.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/GetElementPtrTypeIterator.h" 73 #include "llvm/IR/InlineAsm.h" 74 #include "llvm/IR/InstrTypes.h" 75 #include "llvm/IR/Instructions.h" 76 #include "llvm/IR/IntrinsicInst.h" 77 #include "llvm/IR/Intrinsics.h" 78 #include "llvm/IR/IntrinsicsAArch64.h" 79 #include "llvm/IR/IntrinsicsWebAssembly.h" 80 #include "llvm/IR/LLVMContext.h" 81 #include "llvm/IR/Metadata.h" 82 #include "llvm/IR/Module.h" 83 #include "llvm/IR/Operator.h" 84 #include "llvm/IR/PatternMatch.h" 85 #include "llvm/IR/Type.h" 86 #include "llvm/IR/User.h" 87 #include "llvm/IR/Value.h" 88 #include "llvm/MC/MCContext.h" 89 #include "llvm/MC/MCSymbol.h" 90 #include "llvm/Support/AtomicOrdering.h" 91 #include "llvm/Support/Casting.h" 92 #include "llvm/Support/CommandLine.h" 93 #include "llvm/Support/Compiler.h" 94 #include "llvm/Support/Debug.h" 95 #include "llvm/Support/MathExtras.h" 96 #include "llvm/Support/raw_ostream.h" 97 #include "llvm/Target/TargetIntrinsicInfo.h" 98 #include "llvm/Target/TargetMachine.h" 99 #include "llvm/Target/TargetOptions.h" 100 #include "llvm/Transforms/Utils/Local.h" 101 #include <cstddef> 102 #include <cstring> 103 #include <iterator> 104 #include <limits> 105 #include <numeric> 106 #include <tuple> 107 108 using namespace llvm; 109 using namespace PatternMatch; 110 using namespace SwitchCG; 111 112 #define DEBUG_TYPE "isel" 113 114 /// LimitFloatPrecision - Generate low-precision inline sequences for 115 /// some float libcalls (6, 8 or 12 bits). 116 static unsigned LimitFloatPrecision; 117 118 static cl::opt<bool> 119 InsertAssertAlign("insert-assert-align", cl::init(true), 120 cl::desc("Insert the experimental `assertalign` node."), 121 cl::ReallyHidden); 122 123 static cl::opt<unsigned, true> 124 LimitFPPrecision("limit-float-precision", 125 cl::desc("Generate low-precision inline sequences " 126 "for some float libcalls"), 127 cl::location(LimitFloatPrecision), cl::Hidden, 128 cl::init(0)); 129 130 static cl::opt<unsigned> SwitchPeelThreshold( 131 "switch-peel-threshold", cl::Hidden, cl::init(66), 132 cl::desc("Set the case probability threshold for peeling the case from a " 133 "switch statement. A value greater than 100 will void this " 134 "optimization")); 135 136 // Limit the width of DAG chains. This is important in general to prevent 137 // DAG-based analysis from blowing up. For example, alias analysis and 138 // load clustering may not complete in reasonable time. It is difficult to 139 // recognize and avoid this situation within each individual analysis, and 140 // future analyses are likely to have the same behavior. Limiting DAG width is 141 // the safe approach and will be especially important with global DAGs. 142 // 143 // MaxParallelChains default is arbitrarily high to avoid affecting 144 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 145 // sequence over this should have been converted to llvm.memcpy by the 146 // frontend. It is easy to induce this behavior with .ll code such as: 147 // %buffer = alloca [4096 x i8] 148 // %data = load [4096 x i8]* %argPtr 149 // store [4096 x i8] %data, [4096 x i8]* %buffer 150 static const unsigned MaxParallelChains = 64; 151 152 // Return the calling convention if the Value passed requires ABI mangling as it 153 // is a parameter to a function or a return value from a function which is not 154 // an intrinsic. 155 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 156 if (auto *R = dyn_cast<ReturnInst>(V)) 157 return R->getParent()->getParent()->getCallingConv(); 158 159 if (auto *CI = dyn_cast<CallInst>(V)) { 160 const bool IsInlineAsm = CI->isInlineAsm(); 161 const bool IsIndirectFunctionCall = 162 !IsInlineAsm && !CI->getCalledFunction(); 163 164 // It is possible that the call instruction is an inline asm statement or an 165 // indirect function call in which case the return value of 166 // getCalledFunction() would be nullptr. 167 const bool IsInstrinsicCall = 168 !IsInlineAsm && !IsIndirectFunctionCall && 169 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 170 171 if (!IsInlineAsm && !IsInstrinsicCall) 172 return CI->getCallingConv(); 173 } 174 175 return None; 176 } 177 178 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 179 const SDValue *Parts, unsigned NumParts, 180 MVT PartVT, EVT ValueVT, const Value *V, 181 Optional<CallingConv::ID> CC); 182 183 /// getCopyFromParts - Create a value that contains the specified legal parts 184 /// combined into the value they represent. If the parts combine to a type 185 /// larger than ValueVT then AssertOp can be used to specify whether the extra 186 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 187 /// (ISD::AssertSext). 188 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 189 const SDValue *Parts, unsigned NumParts, 190 MVT PartVT, EVT ValueVT, const Value *V, 191 Optional<CallingConv::ID> CC = None, 192 Optional<ISD::NodeType> AssertOp = None) { 193 // Let the target assemble the parts if it wants to 194 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 195 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 196 PartVT, ValueVT, CC)) 197 return Val; 198 199 if (ValueVT.isVector()) 200 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 201 CC); 202 203 assert(NumParts > 0 && "No parts to assemble!"); 204 SDValue Val = Parts[0]; 205 206 if (NumParts > 1) { 207 // Assemble the value from multiple parts. 208 if (ValueVT.isInteger()) { 209 unsigned PartBits = PartVT.getSizeInBits(); 210 unsigned ValueBits = ValueVT.getSizeInBits(); 211 212 // Assemble the power of 2 part. 213 unsigned RoundParts = 214 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 215 unsigned RoundBits = PartBits * RoundParts; 216 EVT RoundVT = RoundBits == ValueBits ? 217 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 218 SDValue Lo, Hi; 219 220 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 221 222 if (RoundParts > 2) { 223 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 224 PartVT, HalfVT, V); 225 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 226 RoundParts / 2, PartVT, HalfVT, V); 227 } else { 228 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 229 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 230 } 231 232 if (DAG.getDataLayout().isBigEndian()) 233 std::swap(Lo, Hi); 234 235 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 236 237 if (RoundParts < NumParts) { 238 // Assemble the trailing non-power-of-2 part. 239 unsigned OddParts = NumParts - RoundParts; 240 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 241 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 242 OddVT, V, CC); 243 244 // Combine the round and odd parts. 245 Lo = Val; 246 if (DAG.getDataLayout().isBigEndian()) 247 std::swap(Lo, Hi); 248 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 249 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 250 Hi = 251 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 252 DAG.getConstant(Lo.getValueSizeInBits(), DL, 253 TLI.getPointerTy(DAG.getDataLayout()))); 254 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 255 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 256 } 257 } else if (PartVT.isFloatingPoint()) { 258 // FP split into multiple FP parts (for ppcf128) 259 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 260 "Unexpected split"); 261 SDValue Lo, Hi; 262 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 263 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 264 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 265 std::swap(Lo, Hi); 266 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 267 } else { 268 // FP split into integer parts (soft fp) 269 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 270 !PartVT.isVector() && "Unexpected split"); 271 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 272 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 273 } 274 } 275 276 // There is now one part, held in Val. Correct it to match ValueVT. 277 // PartEVT is the type of the register class that holds the value. 278 // ValueVT is the type of the inline asm operation. 279 EVT PartEVT = Val.getValueType(); 280 281 if (PartEVT == ValueVT) 282 return Val; 283 284 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 285 ValueVT.bitsLT(PartEVT)) { 286 // For an FP value in an integer part, we need to truncate to the right 287 // width first. 288 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 289 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 290 } 291 292 // Handle types that have the same size. 293 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 294 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 295 296 // Handle types with different sizes. 297 if (PartEVT.isInteger() && ValueVT.isInteger()) { 298 if (ValueVT.bitsLT(PartEVT)) { 299 // For a truncate, see if we have any information to 300 // indicate whether the truncated bits will always be 301 // zero or sign-extension. 302 if (AssertOp.hasValue()) 303 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 304 DAG.getValueType(ValueVT)); 305 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 306 } 307 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 308 } 309 310 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 311 // FP_ROUND's are always exact here. 312 if (ValueVT.bitsLT(Val.getValueType())) 313 return DAG.getNode( 314 ISD::FP_ROUND, DL, ValueVT, Val, 315 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 316 317 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 318 } 319 320 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 321 // then truncating. 322 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 323 ValueVT.bitsLT(PartEVT)) { 324 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 325 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 326 } 327 328 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 329 } 330 331 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 332 const Twine &ErrMsg) { 333 const Instruction *I = dyn_cast_or_null<Instruction>(V); 334 if (!V) 335 return Ctx.emitError(ErrMsg); 336 337 const char *AsmError = ", possible invalid constraint for vector type"; 338 if (const CallInst *CI = dyn_cast<CallInst>(I)) 339 if (CI->isInlineAsm()) 340 return Ctx.emitError(I, ErrMsg + AsmError); 341 342 return Ctx.emitError(I, ErrMsg); 343 } 344 345 /// getCopyFromPartsVector - Create a value that contains the specified legal 346 /// parts combined into the value they represent. If the parts combine to a 347 /// type larger than ValueVT then AssertOp can be used to specify whether the 348 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 349 /// ValueVT (ISD::AssertSext). 350 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 351 const SDValue *Parts, unsigned NumParts, 352 MVT PartVT, EVT ValueVT, const Value *V, 353 Optional<CallingConv::ID> CallConv) { 354 assert(ValueVT.isVector() && "Not a vector value"); 355 assert(NumParts > 0 && "No parts to assemble!"); 356 const bool IsABIRegCopy = CallConv.hasValue(); 357 358 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 359 SDValue Val = Parts[0]; 360 361 // Handle a multi-element vector. 362 if (NumParts > 1) { 363 EVT IntermediateVT; 364 MVT RegisterVT; 365 unsigned NumIntermediates; 366 unsigned NumRegs; 367 368 if (IsABIRegCopy) { 369 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 370 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 371 NumIntermediates, RegisterVT); 372 } else { 373 NumRegs = 374 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 375 NumIntermediates, RegisterVT); 376 } 377 378 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 379 NumParts = NumRegs; // Silence a compiler warning. 380 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 381 assert(RegisterVT.getSizeInBits() == 382 Parts[0].getSimpleValueType().getSizeInBits() && 383 "Part type sizes don't match!"); 384 385 // Assemble the parts into intermediate operands. 386 SmallVector<SDValue, 8> Ops(NumIntermediates); 387 if (NumIntermediates == NumParts) { 388 // If the register was not expanded, truncate or copy the value, 389 // as appropriate. 390 for (unsigned i = 0; i != NumParts; ++i) 391 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 392 PartVT, IntermediateVT, V); 393 } else if (NumParts > 0) { 394 // If the intermediate type was expanded, build the intermediate 395 // operands from the parts. 396 assert(NumParts % NumIntermediates == 0 && 397 "Must expand into a divisible number of parts!"); 398 unsigned Factor = NumParts / NumIntermediates; 399 for (unsigned i = 0; i != NumIntermediates; ++i) 400 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 401 PartVT, IntermediateVT, V); 402 } 403 404 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 405 // intermediate operands. 406 EVT BuiltVectorTy = 407 IntermediateVT.isVector() 408 ? EVT::getVectorVT( 409 *DAG.getContext(), IntermediateVT.getScalarType(), 410 IntermediateVT.getVectorElementCount() * NumParts) 411 : EVT::getVectorVT(*DAG.getContext(), 412 IntermediateVT.getScalarType(), 413 NumIntermediates); 414 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 415 : ISD::BUILD_VECTOR, 416 DL, BuiltVectorTy, Ops); 417 } 418 419 // There is now one part, held in Val. Correct it to match ValueVT. 420 EVT PartEVT = Val.getValueType(); 421 422 if (PartEVT == ValueVT) 423 return Val; 424 425 if (PartEVT.isVector()) { 426 // If the element type of the source/dest vectors are the same, but the 427 // parts vector has more elements than the value vector, then we have a 428 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 429 // elements we want. 430 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 431 assert((PartEVT.getVectorElementCount().Min > 432 ValueVT.getVectorElementCount().Min) && 433 (PartEVT.getVectorElementCount().Scalable == 434 ValueVT.getVectorElementCount().Scalable) && 435 "Cannot narrow, it would be a lossy transformation"); 436 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 437 DAG.getVectorIdxConstant(0, DL)); 438 } 439 440 // Vector/Vector bitcast. 441 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 442 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 443 444 assert(PartEVT.getVectorElementCount() == ValueVT.getVectorElementCount() && 445 "Cannot handle this kind of promotion"); 446 // Promoted vector extract 447 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 448 449 } 450 451 // Trivial bitcast if the types are the same size and the destination 452 // vector type is legal. 453 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 454 TLI.isTypeLegal(ValueVT)) 455 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 456 457 if (ValueVT.getVectorNumElements() != 1) { 458 // Certain ABIs require that vectors are passed as integers. For vectors 459 // are the same size, this is an obvious bitcast. 460 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 461 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 462 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 463 // Bitcast Val back the original type and extract the corresponding 464 // vector we want. 465 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 466 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 467 ValueVT.getVectorElementType(), Elts); 468 Val = DAG.getBitcast(WiderVecType, Val); 469 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 470 DAG.getVectorIdxConstant(0, DL)); 471 } 472 473 diagnosePossiblyInvalidConstraint( 474 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 475 return DAG.getUNDEF(ValueVT); 476 } 477 478 // Handle cases such as i8 -> <1 x i1> 479 EVT ValueSVT = ValueVT.getVectorElementType(); 480 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 481 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 482 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 483 else 484 Val = ValueVT.isFloatingPoint() 485 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 486 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 487 } 488 489 return DAG.getBuildVector(ValueVT, DL, Val); 490 } 491 492 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 493 SDValue Val, SDValue *Parts, unsigned NumParts, 494 MVT PartVT, const Value *V, 495 Optional<CallingConv::ID> CallConv); 496 497 /// getCopyToParts - Create a series of nodes that contain the specified value 498 /// split into legal parts. If the parts contain more bits than Val, then, for 499 /// integers, ExtendKind can be used to specify how to generate the extra bits. 500 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 501 SDValue *Parts, unsigned NumParts, MVT PartVT, 502 const Value *V, 503 Optional<CallingConv::ID> CallConv = None, 504 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 505 // Let the target split the parts if it wants to 506 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 507 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 508 CallConv)) 509 return; 510 EVT ValueVT = Val.getValueType(); 511 512 // Handle the vector case separately. 513 if (ValueVT.isVector()) 514 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 515 CallConv); 516 517 unsigned PartBits = PartVT.getSizeInBits(); 518 unsigned OrigNumParts = NumParts; 519 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 520 "Copying to an illegal type!"); 521 522 if (NumParts == 0) 523 return; 524 525 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 526 EVT PartEVT = PartVT; 527 if (PartEVT == ValueVT) { 528 assert(NumParts == 1 && "No-op copy with multiple parts!"); 529 Parts[0] = Val; 530 return; 531 } 532 533 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 534 // If the parts cover more bits than the value has, promote the value. 535 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 536 assert(NumParts == 1 && "Do not know what to promote to!"); 537 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 538 } else { 539 if (ValueVT.isFloatingPoint()) { 540 // FP values need to be bitcast, then extended if they are being put 541 // into a larger container. 542 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 543 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 544 } 545 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 546 ValueVT.isInteger() && 547 "Unknown mismatch!"); 548 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 549 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 550 if (PartVT == MVT::x86mmx) 551 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 552 } 553 } else if (PartBits == ValueVT.getSizeInBits()) { 554 // Different types of the same size. 555 assert(NumParts == 1 && PartEVT != ValueVT); 556 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 557 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 558 // If the parts cover less bits than value has, truncate the value. 559 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 560 ValueVT.isInteger() && 561 "Unknown mismatch!"); 562 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 563 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 564 if (PartVT == MVT::x86mmx) 565 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 566 } 567 568 // The value may have changed - recompute ValueVT. 569 ValueVT = Val.getValueType(); 570 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 571 "Failed to tile the value with PartVT!"); 572 573 if (NumParts == 1) { 574 if (PartEVT != ValueVT) { 575 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 576 "scalar-to-vector conversion failed"); 577 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 578 } 579 580 Parts[0] = Val; 581 return; 582 } 583 584 // Expand the value into multiple parts. 585 if (NumParts & (NumParts - 1)) { 586 // The number of parts is not a power of 2. Split off and copy the tail. 587 assert(PartVT.isInteger() && ValueVT.isInteger() && 588 "Do not know what to expand to!"); 589 unsigned RoundParts = 1 << Log2_32(NumParts); 590 unsigned RoundBits = RoundParts * PartBits; 591 unsigned OddParts = NumParts - RoundParts; 592 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 593 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 594 595 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 596 CallConv); 597 598 if (DAG.getDataLayout().isBigEndian()) 599 // The odd parts were reversed by getCopyToParts - unreverse them. 600 std::reverse(Parts + RoundParts, Parts + NumParts); 601 602 NumParts = RoundParts; 603 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 604 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 605 } 606 607 // The number of parts is a power of 2. Repeatedly bisect the value using 608 // EXTRACT_ELEMENT. 609 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 610 EVT::getIntegerVT(*DAG.getContext(), 611 ValueVT.getSizeInBits()), 612 Val); 613 614 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 615 for (unsigned i = 0; i < NumParts; i += StepSize) { 616 unsigned ThisBits = StepSize * PartBits / 2; 617 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 618 SDValue &Part0 = Parts[i]; 619 SDValue &Part1 = Parts[i+StepSize/2]; 620 621 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 622 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 623 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 624 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 625 626 if (ThisBits == PartBits && ThisVT != PartVT) { 627 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 628 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 629 } 630 } 631 } 632 633 if (DAG.getDataLayout().isBigEndian()) 634 std::reverse(Parts, Parts + OrigNumParts); 635 } 636 637 static SDValue widenVectorToPartType(SelectionDAG &DAG, 638 SDValue Val, const SDLoc &DL, EVT PartVT) { 639 if (!PartVT.isFixedLengthVector()) 640 return SDValue(); 641 642 EVT ValueVT = Val.getValueType(); 643 unsigned PartNumElts = PartVT.getVectorNumElements(); 644 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 645 if (PartNumElts > ValueNumElts && 646 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 647 EVT ElementVT = PartVT.getVectorElementType(); 648 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 649 // undef elements. 650 SmallVector<SDValue, 16> Ops; 651 DAG.ExtractVectorElements(Val, Ops); 652 SDValue EltUndef = DAG.getUNDEF(ElementVT); 653 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 654 Ops.push_back(EltUndef); 655 656 // FIXME: Use CONCAT for 2x -> 4x. 657 return DAG.getBuildVector(PartVT, DL, Ops); 658 } 659 660 return SDValue(); 661 } 662 663 /// getCopyToPartsVector - Create a series of nodes that contain the specified 664 /// value split into legal parts. 665 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 666 SDValue Val, SDValue *Parts, unsigned NumParts, 667 MVT PartVT, const Value *V, 668 Optional<CallingConv::ID> CallConv) { 669 EVT ValueVT = Val.getValueType(); 670 assert(ValueVT.isVector() && "Not a vector"); 671 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 672 const bool IsABIRegCopy = CallConv.hasValue(); 673 674 if (NumParts == 1) { 675 EVT PartEVT = PartVT; 676 if (PartEVT == ValueVT) { 677 // Nothing to do. 678 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 679 // Bitconvert vector->vector case. 680 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 681 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 682 Val = Widened; 683 } else if (PartVT.isVector() && 684 PartEVT.getVectorElementType().bitsGE( 685 ValueVT.getVectorElementType()) && 686 PartEVT.getVectorElementCount() == 687 ValueVT.getVectorElementCount()) { 688 689 // Promoted vector extract 690 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 691 } else { 692 if (ValueVT.getVectorNumElements() == 1) { 693 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 694 DAG.getVectorIdxConstant(0, DL)); 695 } else { 696 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 697 "lossy conversion of vector to scalar type"); 698 EVT IntermediateType = 699 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 700 Val = DAG.getBitcast(IntermediateType, Val); 701 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 702 } 703 } 704 705 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 706 Parts[0] = Val; 707 return; 708 } 709 710 // Handle a multi-element vector. 711 EVT IntermediateVT; 712 MVT RegisterVT; 713 unsigned NumIntermediates; 714 unsigned NumRegs; 715 if (IsABIRegCopy) { 716 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 717 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 718 NumIntermediates, RegisterVT); 719 } else { 720 NumRegs = 721 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 722 NumIntermediates, RegisterVT); 723 } 724 725 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 726 NumParts = NumRegs; // Silence a compiler warning. 727 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 728 729 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 730 "Mixing scalable and fixed vectors when copying in parts"); 731 732 ElementCount DestEltCnt; 733 734 if (IntermediateVT.isVector()) 735 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 736 else 737 DestEltCnt = ElementCount(NumIntermediates, false); 738 739 EVT BuiltVectorTy = EVT::getVectorVT( 740 *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt); 741 if (ValueVT != BuiltVectorTy) { 742 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 743 Val = Widened; 744 745 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 746 } 747 748 // Split the vector into intermediate operands. 749 SmallVector<SDValue, 8> Ops(NumIntermediates); 750 for (unsigned i = 0; i != NumIntermediates; ++i) { 751 if (IntermediateVT.isVector()) { 752 // This does something sensible for scalable vectors - see the 753 // definition of EXTRACT_SUBVECTOR for further details. 754 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 755 Ops[i] = 756 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 757 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 758 } else { 759 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 760 DAG.getVectorIdxConstant(i, DL)); 761 } 762 } 763 764 // Split the intermediate operands into legal parts. 765 if (NumParts == NumIntermediates) { 766 // If the register was not expanded, promote or copy the value, 767 // as appropriate. 768 for (unsigned i = 0; i != NumParts; ++i) 769 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 770 } else if (NumParts > 0) { 771 // If the intermediate type was expanded, split each the value into 772 // legal parts. 773 assert(NumIntermediates != 0 && "division by zero"); 774 assert(NumParts % NumIntermediates == 0 && 775 "Must expand into a divisible number of parts!"); 776 unsigned Factor = NumParts / NumIntermediates; 777 for (unsigned i = 0; i != NumIntermediates; ++i) 778 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 779 CallConv); 780 } 781 } 782 783 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 784 EVT valuevt, Optional<CallingConv::ID> CC) 785 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 786 RegCount(1, regs.size()), CallConv(CC) {} 787 788 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 789 const DataLayout &DL, unsigned Reg, Type *Ty, 790 Optional<CallingConv::ID> CC) { 791 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 792 793 CallConv = CC; 794 795 for (EVT ValueVT : ValueVTs) { 796 unsigned NumRegs = 797 isABIMangled() 798 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 799 : TLI.getNumRegisters(Context, ValueVT); 800 MVT RegisterVT = 801 isABIMangled() 802 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 803 : TLI.getRegisterType(Context, ValueVT); 804 for (unsigned i = 0; i != NumRegs; ++i) 805 Regs.push_back(Reg + i); 806 RegVTs.push_back(RegisterVT); 807 RegCount.push_back(NumRegs); 808 Reg += NumRegs; 809 } 810 } 811 812 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 813 FunctionLoweringInfo &FuncInfo, 814 const SDLoc &dl, SDValue &Chain, 815 SDValue *Flag, const Value *V) const { 816 // A Value with type {} or [0 x %t] needs no registers. 817 if (ValueVTs.empty()) 818 return SDValue(); 819 820 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 821 822 // Assemble the legal parts into the final values. 823 SmallVector<SDValue, 4> Values(ValueVTs.size()); 824 SmallVector<SDValue, 8> Parts; 825 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 826 // Copy the legal parts from the registers. 827 EVT ValueVT = ValueVTs[Value]; 828 unsigned NumRegs = RegCount[Value]; 829 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 830 *DAG.getContext(), 831 CallConv.getValue(), RegVTs[Value]) 832 : RegVTs[Value]; 833 834 Parts.resize(NumRegs); 835 for (unsigned i = 0; i != NumRegs; ++i) { 836 SDValue P; 837 if (!Flag) { 838 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 839 } else { 840 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 841 *Flag = P.getValue(2); 842 } 843 844 Chain = P.getValue(1); 845 Parts[i] = P; 846 847 // If the source register was virtual and if we know something about it, 848 // add an assert node. 849 if (!Register::isVirtualRegister(Regs[Part + i]) || 850 !RegisterVT.isInteger()) 851 continue; 852 853 const FunctionLoweringInfo::LiveOutInfo *LOI = 854 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 855 if (!LOI) 856 continue; 857 858 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 859 unsigned NumSignBits = LOI->NumSignBits; 860 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 861 862 if (NumZeroBits == RegSize) { 863 // The current value is a zero. 864 // Explicitly express that as it would be easier for 865 // optimizations to kick in. 866 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 867 continue; 868 } 869 870 // FIXME: We capture more information than the dag can represent. For 871 // now, just use the tightest assertzext/assertsext possible. 872 bool isSExt; 873 EVT FromVT(MVT::Other); 874 if (NumZeroBits) { 875 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 876 isSExt = false; 877 } else if (NumSignBits > 1) { 878 FromVT = 879 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 880 isSExt = true; 881 } else { 882 continue; 883 } 884 // Add an assertion node. 885 assert(FromVT != MVT::Other); 886 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 887 RegisterVT, P, DAG.getValueType(FromVT)); 888 } 889 890 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 891 RegisterVT, ValueVT, V, CallConv); 892 Part += NumRegs; 893 Parts.clear(); 894 } 895 896 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 897 } 898 899 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 900 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 901 const Value *V, 902 ISD::NodeType PreferredExtendType) const { 903 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 904 ISD::NodeType ExtendKind = PreferredExtendType; 905 906 // Get the list of the values's legal parts. 907 unsigned NumRegs = Regs.size(); 908 SmallVector<SDValue, 8> Parts(NumRegs); 909 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 910 unsigned NumParts = RegCount[Value]; 911 912 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 913 *DAG.getContext(), 914 CallConv.getValue(), RegVTs[Value]) 915 : RegVTs[Value]; 916 917 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 918 ExtendKind = ISD::ZERO_EXTEND; 919 920 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 921 NumParts, RegisterVT, V, CallConv, ExtendKind); 922 Part += NumParts; 923 } 924 925 // Copy the parts into the registers. 926 SmallVector<SDValue, 8> Chains(NumRegs); 927 for (unsigned i = 0; i != NumRegs; ++i) { 928 SDValue Part; 929 if (!Flag) { 930 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 931 } else { 932 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 933 *Flag = Part.getValue(1); 934 } 935 936 Chains[i] = Part.getValue(0); 937 } 938 939 if (NumRegs == 1 || Flag) 940 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 941 // flagged to it. That is the CopyToReg nodes and the user are considered 942 // a single scheduling unit. If we create a TokenFactor and return it as 943 // chain, then the TokenFactor is both a predecessor (operand) of the 944 // user as well as a successor (the TF operands are flagged to the user). 945 // c1, f1 = CopyToReg 946 // c2, f2 = CopyToReg 947 // c3 = TokenFactor c1, c2 948 // ... 949 // = op c3, ..., f2 950 Chain = Chains[NumRegs-1]; 951 else 952 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 953 } 954 955 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 956 unsigned MatchingIdx, const SDLoc &dl, 957 SelectionDAG &DAG, 958 std::vector<SDValue> &Ops) const { 959 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 960 961 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 962 if (HasMatching) 963 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 964 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 965 // Put the register class of the virtual registers in the flag word. That 966 // way, later passes can recompute register class constraints for inline 967 // assembly as well as normal instructions. 968 // Don't do this for tied operands that can use the regclass information 969 // from the def. 970 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 971 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 972 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 973 } 974 975 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 976 Ops.push_back(Res); 977 978 if (Code == InlineAsm::Kind_Clobber) { 979 // Clobbers should always have a 1:1 mapping with registers, and may 980 // reference registers that have illegal (e.g. vector) types. Hence, we 981 // shouldn't try to apply any sort of splitting logic to them. 982 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 983 "No 1:1 mapping from clobbers to regs?"); 984 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 985 (void)SP; 986 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 987 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 988 assert( 989 (Regs[I] != SP || 990 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 991 "If we clobbered the stack pointer, MFI should know about it."); 992 } 993 return; 994 } 995 996 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 997 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 998 MVT RegisterVT = RegVTs[Value]; 999 for (unsigned i = 0; i != NumRegs; ++i) { 1000 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1001 unsigned TheReg = Regs[Reg++]; 1002 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1003 } 1004 } 1005 } 1006 1007 SmallVector<std::pair<unsigned, unsigned>, 4> 1008 RegsForValue::getRegsAndSizes() const { 1009 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 1010 unsigned I = 0; 1011 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1012 unsigned RegCount = std::get<0>(CountAndVT); 1013 MVT RegisterVT = std::get<1>(CountAndVT); 1014 unsigned RegisterSize = RegisterVT.getSizeInBits(); 1015 for (unsigned E = I + RegCount; I != E; ++I) 1016 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1017 } 1018 return OutVec; 1019 } 1020 1021 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1022 const TargetLibraryInfo *li) { 1023 AA = aa; 1024 GFI = gfi; 1025 LibInfo = li; 1026 DL = &DAG.getDataLayout(); 1027 Context = DAG.getContext(); 1028 LPadToCallSiteMap.clear(); 1029 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1030 } 1031 1032 void SelectionDAGBuilder::clear() { 1033 NodeMap.clear(); 1034 UnusedArgNodeMap.clear(); 1035 PendingLoads.clear(); 1036 PendingExports.clear(); 1037 PendingConstrainedFP.clear(); 1038 PendingConstrainedFPStrict.clear(); 1039 CurInst = nullptr; 1040 HasTailCall = false; 1041 SDNodeOrder = LowestSDNodeOrder; 1042 StatepointLowering.clear(); 1043 } 1044 1045 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1046 DanglingDebugInfoMap.clear(); 1047 } 1048 1049 // Update DAG root to include dependencies on Pending chains. 1050 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1051 SDValue Root = DAG.getRoot(); 1052 1053 if (Pending.empty()) 1054 return Root; 1055 1056 // Add current root to PendingChains, unless we already indirectly 1057 // depend on it. 1058 if (Root.getOpcode() != ISD::EntryToken) { 1059 unsigned i = 0, e = Pending.size(); 1060 for (; i != e; ++i) { 1061 assert(Pending[i].getNode()->getNumOperands() > 1); 1062 if (Pending[i].getNode()->getOperand(0) == Root) 1063 break; // Don't add the root if we already indirectly depend on it. 1064 } 1065 1066 if (i == e) 1067 Pending.push_back(Root); 1068 } 1069 1070 if (Pending.size() == 1) 1071 Root = Pending[0]; 1072 else 1073 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1074 1075 DAG.setRoot(Root); 1076 Pending.clear(); 1077 return Root; 1078 } 1079 1080 SDValue SelectionDAGBuilder::getMemoryRoot() { 1081 return updateRoot(PendingLoads); 1082 } 1083 1084 SDValue SelectionDAGBuilder::getRoot() { 1085 // Chain up all pending constrained intrinsics together with all 1086 // pending loads, by simply appending them to PendingLoads and 1087 // then calling getMemoryRoot(). 1088 PendingLoads.reserve(PendingLoads.size() + 1089 PendingConstrainedFP.size() + 1090 PendingConstrainedFPStrict.size()); 1091 PendingLoads.append(PendingConstrainedFP.begin(), 1092 PendingConstrainedFP.end()); 1093 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1094 PendingConstrainedFPStrict.end()); 1095 PendingConstrainedFP.clear(); 1096 PendingConstrainedFPStrict.clear(); 1097 return getMemoryRoot(); 1098 } 1099 1100 SDValue SelectionDAGBuilder::getControlRoot() { 1101 // We need to emit pending fpexcept.strict constrained intrinsics, 1102 // so append them to the PendingExports list. 1103 PendingExports.append(PendingConstrainedFPStrict.begin(), 1104 PendingConstrainedFPStrict.end()); 1105 PendingConstrainedFPStrict.clear(); 1106 return updateRoot(PendingExports); 1107 } 1108 1109 void SelectionDAGBuilder::visit(const Instruction &I) { 1110 // Set up outgoing PHI node register values before emitting the terminator. 1111 if (I.isTerminator()) { 1112 HandlePHINodesInSuccessorBlocks(I.getParent()); 1113 } 1114 1115 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1116 if (!isa<DbgInfoIntrinsic>(I)) 1117 ++SDNodeOrder; 1118 1119 CurInst = &I; 1120 1121 visit(I.getOpcode(), I); 1122 1123 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1124 // ConstrainedFPIntrinsics handle their own FMF. 1125 if (!isa<ConstrainedFPIntrinsic>(&I)) { 1126 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1127 // maps to this instruction. 1128 // TODO: We could handle all flags (nsw, etc) here. 1129 // TODO: If an IR instruction maps to >1 node, only the final node will have 1130 // flags set. 1131 if (SDNode *Node = getNodeForIRValue(&I)) { 1132 SDNodeFlags IncomingFlags; 1133 IncomingFlags.copyFMF(*FPMO); 1134 if (!Node->getFlags().isDefined()) 1135 Node->setFlags(IncomingFlags); 1136 else 1137 Node->intersectFlagsWith(IncomingFlags); 1138 } 1139 } 1140 } 1141 1142 if (!I.isTerminator() && !HasTailCall && 1143 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1144 CopyToExportRegsIfNeeded(&I); 1145 1146 CurInst = nullptr; 1147 } 1148 1149 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1150 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1151 } 1152 1153 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1154 // Note: this doesn't use InstVisitor, because it has to work with 1155 // ConstantExpr's in addition to instructions. 1156 switch (Opcode) { 1157 default: llvm_unreachable("Unknown instruction type encountered!"); 1158 // Build the switch statement using the Instruction.def file. 1159 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1160 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1161 #include "llvm/IR/Instruction.def" 1162 } 1163 } 1164 1165 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1166 const DIExpression *Expr) { 1167 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1168 const DbgValueInst *DI = DDI.getDI(); 1169 DIVariable *DanglingVariable = DI->getVariable(); 1170 DIExpression *DanglingExpr = DI->getExpression(); 1171 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1172 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1173 return true; 1174 } 1175 return false; 1176 }; 1177 1178 for (auto &DDIMI : DanglingDebugInfoMap) { 1179 DanglingDebugInfoVector &DDIV = DDIMI.second; 1180 1181 // If debug info is to be dropped, run it through final checks to see 1182 // whether it can be salvaged. 1183 for (auto &DDI : DDIV) 1184 if (isMatchingDbgValue(DDI)) 1185 salvageUnresolvedDbgValue(DDI); 1186 1187 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1188 } 1189 } 1190 1191 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1192 // generate the debug data structures now that we've seen its definition. 1193 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1194 SDValue Val) { 1195 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1196 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1197 return; 1198 1199 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1200 for (auto &DDI : DDIV) { 1201 const DbgValueInst *DI = DDI.getDI(); 1202 assert(DI && "Ill-formed DanglingDebugInfo"); 1203 DebugLoc dl = DDI.getdl(); 1204 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1205 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1206 DILocalVariable *Variable = DI->getVariable(); 1207 DIExpression *Expr = DI->getExpression(); 1208 assert(Variable->isValidLocationForIntrinsic(dl) && 1209 "Expected inlined-at fields to agree"); 1210 SDDbgValue *SDV; 1211 if (Val.getNode()) { 1212 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1213 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1214 // we couldn't resolve it directly when examining the DbgValue intrinsic 1215 // in the first place we should not be more successful here). Unless we 1216 // have some test case that prove this to be correct we should avoid 1217 // calling EmitFuncArgumentDbgValue here. 1218 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1219 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1220 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1221 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1222 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1223 // inserted after the definition of Val when emitting the instructions 1224 // after ISel. An alternative could be to teach 1225 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1226 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1227 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1228 << ValSDNodeOrder << "\n"); 1229 SDV = getDbgValue(Val, Variable, Expr, dl, 1230 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1231 DAG.AddDbgValue(SDV, Val.getNode(), false); 1232 } else 1233 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1234 << "in EmitFuncArgumentDbgValue\n"); 1235 } else { 1236 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1237 auto Undef = 1238 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1239 auto SDV = 1240 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1241 DAG.AddDbgValue(SDV, nullptr, false); 1242 } 1243 } 1244 DDIV.clear(); 1245 } 1246 1247 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1248 Value *V = DDI.getDI()->getValue(); 1249 DILocalVariable *Var = DDI.getDI()->getVariable(); 1250 DIExpression *Expr = DDI.getDI()->getExpression(); 1251 DebugLoc DL = DDI.getdl(); 1252 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1253 unsigned SDOrder = DDI.getSDNodeOrder(); 1254 1255 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1256 // that DW_OP_stack_value is desired. 1257 assert(isa<DbgValueInst>(DDI.getDI())); 1258 bool StackValue = true; 1259 1260 // Can this Value can be encoded without any further work? 1261 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1262 return; 1263 1264 // Attempt to salvage back through as many instructions as possible. Bail if 1265 // a non-instruction is seen, such as a constant expression or global 1266 // variable. FIXME: Further work could recover those too. 1267 while (isa<Instruction>(V)) { 1268 Instruction &VAsInst = *cast<Instruction>(V); 1269 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1270 1271 // If we cannot salvage any further, and haven't yet found a suitable debug 1272 // expression, bail out. 1273 if (!NewExpr) 1274 break; 1275 1276 // New value and expr now represent this debuginfo. 1277 V = VAsInst.getOperand(0); 1278 Expr = NewExpr; 1279 1280 // Some kind of simplification occurred: check whether the operand of the 1281 // salvaged debug expression can be encoded in this DAG. 1282 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1283 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1284 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1285 return; 1286 } 1287 } 1288 1289 // This was the final opportunity to salvage this debug information, and it 1290 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1291 // any earlier variable location. 1292 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1293 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1294 DAG.AddDbgValue(SDV, nullptr, false); 1295 1296 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1297 << "\n"); 1298 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1299 << "\n"); 1300 } 1301 1302 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1303 DIExpression *Expr, DebugLoc dl, 1304 DebugLoc InstDL, unsigned Order) { 1305 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1306 SDDbgValue *SDV; 1307 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1308 isa<ConstantPointerNull>(V)) { 1309 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1310 DAG.AddDbgValue(SDV, nullptr, false); 1311 return true; 1312 } 1313 1314 // If the Value is a frame index, we can create a FrameIndex debug value 1315 // without relying on the DAG at all. 1316 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1317 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1318 if (SI != FuncInfo.StaticAllocaMap.end()) { 1319 auto SDV = 1320 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1321 /*IsIndirect*/ false, dl, SDNodeOrder); 1322 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1323 // is still available even if the SDNode gets optimized out. 1324 DAG.AddDbgValue(SDV, nullptr, false); 1325 return true; 1326 } 1327 } 1328 1329 // Do not use getValue() in here; we don't want to generate code at 1330 // this point if it hasn't been done yet. 1331 SDValue N = NodeMap[V]; 1332 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1333 N = UnusedArgNodeMap[V]; 1334 if (N.getNode()) { 1335 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1336 return true; 1337 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1338 DAG.AddDbgValue(SDV, N.getNode(), false); 1339 return true; 1340 } 1341 1342 // Special rules apply for the first dbg.values of parameter variables in a 1343 // function. Identify them by the fact they reference Argument Values, that 1344 // they're parameters, and they are parameters of the current function. We 1345 // need to let them dangle until they get an SDNode. 1346 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1347 !InstDL.getInlinedAt(); 1348 if (!IsParamOfFunc) { 1349 // The value is not used in this block yet (or it would have an SDNode). 1350 // We still want the value to appear for the user if possible -- if it has 1351 // an associated VReg, we can refer to that instead. 1352 auto VMI = FuncInfo.ValueMap.find(V); 1353 if (VMI != FuncInfo.ValueMap.end()) { 1354 unsigned Reg = VMI->second; 1355 // If this is a PHI node, it may be split up into several MI PHI nodes 1356 // (in FunctionLoweringInfo::set). 1357 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1358 V->getType(), None); 1359 if (RFV.occupiesMultipleRegs()) { 1360 unsigned Offset = 0; 1361 unsigned BitsToDescribe = 0; 1362 if (auto VarSize = Var->getSizeInBits()) 1363 BitsToDescribe = *VarSize; 1364 if (auto Fragment = Expr->getFragmentInfo()) 1365 BitsToDescribe = Fragment->SizeInBits; 1366 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1367 unsigned RegisterSize = RegAndSize.second; 1368 // Bail out if all bits are described already. 1369 if (Offset >= BitsToDescribe) 1370 break; 1371 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1372 ? BitsToDescribe - Offset 1373 : RegisterSize; 1374 auto FragmentExpr = DIExpression::createFragmentExpression( 1375 Expr, Offset, FragmentSize); 1376 if (!FragmentExpr) 1377 continue; 1378 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1379 false, dl, SDNodeOrder); 1380 DAG.AddDbgValue(SDV, nullptr, false); 1381 Offset += RegisterSize; 1382 } 1383 } else { 1384 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1385 DAG.AddDbgValue(SDV, nullptr, false); 1386 } 1387 return true; 1388 } 1389 } 1390 1391 return false; 1392 } 1393 1394 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1395 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1396 for (auto &Pair : DanglingDebugInfoMap) 1397 for (auto &DDI : Pair.second) 1398 salvageUnresolvedDbgValue(DDI); 1399 clearDanglingDebugInfo(); 1400 } 1401 1402 /// getCopyFromRegs - If there was virtual register allocated for the value V 1403 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1404 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1405 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1406 SDValue Result; 1407 1408 if (It != FuncInfo.ValueMap.end()) { 1409 Register InReg = It->second; 1410 1411 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1412 DAG.getDataLayout(), InReg, Ty, 1413 None); // This is not an ABI copy. 1414 SDValue Chain = DAG.getEntryNode(); 1415 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1416 V); 1417 resolveDanglingDebugInfo(V, Result); 1418 } 1419 1420 return Result; 1421 } 1422 1423 /// getValue - Return an SDValue for the given Value. 1424 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1425 // If we already have an SDValue for this value, use it. It's important 1426 // to do this first, so that we don't create a CopyFromReg if we already 1427 // have a regular SDValue. 1428 SDValue &N = NodeMap[V]; 1429 if (N.getNode()) return N; 1430 1431 // If there's a virtual register allocated and initialized for this 1432 // value, use it. 1433 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1434 return copyFromReg; 1435 1436 // Otherwise create a new SDValue and remember it. 1437 SDValue Val = getValueImpl(V); 1438 NodeMap[V] = Val; 1439 resolveDanglingDebugInfo(V, Val); 1440 return Val; 1441 } 1442 1443 /// getNonRegisterValue - Return an SDValue for the given Value, but 1444 /// don't look in FuncInfo.ValueMap for a virtual register. 1445 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1446 // If we already have an SDValue for this value, use it. 1447 SDValue &N = NodeMap[V]; 1448 if (N.getNode()) { 1449 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1450 // Remove the debug location from the node as the node is about to be used 1451 // in a location which may differ from the original debug location. This 1452 // is relevant to Constant and ConstantFP nodes because they can appear 1453 // as constant expressions inside PHI nodes. 1454 N->setDebugLoc(DebugLoc()); 1455 } 1456 return N; 1457 } 1458 1459 // Otherwise create a new SDValue and remember it. 1460 SDValue Val = getValueImpl(V); 1461 NodeMap[V] = Val; 1462 resolveDanglingDebugInfo(V, Val); 1463 return Val; 1464 } 1465 1466 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1467 /// Create an SDValue for the given value. 1468 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1469 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1470 1471 if (const Constant *C = dyn_cast<Constant>(V)) { 1472 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1473 1474 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1475 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1476 1477 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1478 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1479 1480 if (isa<ConstantPointerNull>(C)) { 1481 unsigned AS = V->getType()->getPointerAddressSpace(); 1482 return DAG.getConstant(0, getCurSDLoc(), 1483 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1484 } 1485 1486 if (match(C, m_VScale(DAG.getDataLayout()))) 1487 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1488 1489 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1490 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1491 1492 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1493 return DAG.getUNDEF(VT); 1494 1495 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1496 visit(CE->getOpcode(), *CE); 1497 SDValue N1 = NodeMap[V]; 1498 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1499 return N1; 1500 } 1501 1502 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1503 SmallVector<SDValue, 4> Constants; 1504 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1505 OI != OE; ++OI) { 1506 SDNode *Val = getValue(*OI).getNode(); 1507 // If the operand is an empty aggregate, there are no values. 1508 if (!Val) continue; 1509 // Add each leaf value from the operand to the Constants list 1510 // to form a flattened list of all the values. 1511 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1512 Constants.push_back(SDValue(Val, i)); 1513 } 1514 1515 return DAG.getMergeValues(Constants, getCurSDLoc()); 1516 } 1517 1518 if (const ConstantDataSequential *CDS = 1519 dyn_cast<ConstantDataSequential>(C)) { 1520 SmallVector<SDValue, 4> Ops; 1521 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1522 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1523 // Add each leaf value from the operand to the Constants list 1524 // to form a flattened list of all the values. 1525 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1526 Ops.push_back(SDValue(Val, i)); 1527 } 1528 1529 if (isa<ArrayType>(CDS->getType())) 1530 return DAG.getMergeValues(Ops, getCurSDLoc()); 1531 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1532 } 1533 1534 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1535 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1536 "Unknown struct or array constant!"); 1537 1538 SmallVector<EVT, 4> ValueVTs; 1539 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1540 unsigned NumElts = ValueVTs.size(); 1541 if (NumElts == 0) 1542 return SDValue(); // empty struct 1543 SmallVector<SDValue, 4> Constants(NumElts); 1544 for (unsigned i = 0; i != NumElts; ++i) { 1545 EVT EltVT = ValueVTs[i]; 1546 if (isa<UndefValue>(C)) 1547 Constants[i] = DAG.getUNDEF(EltVT); 1548 else if (EltVT.isFloatingPoint()) 1549 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1550 else 1551 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1552 } 1553 1554 return DAG.getMergeValues(Constants, getCurSDLoc()); 1555 } 1556 1557 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1558 return DAG.getBlockAddress(BA, VT); 1559 1560 VectorType *VecTy = cast<VectorType>(V->getType()); 1561 1562 // Now that we know the number and type of the elements, get that number of 1563 // elements into the Ops array based on what kind of constant it is. 1564 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1565 SmallVector<SDValue, 16> Ops; 1566 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1567 for (unsigned i = 0; i != NumElements; ++i) 1568 Ops.push_back(getValue(CV->getOperand(i))); 1569 1570 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1571 } else if (isa<ConstantAggregateZero>(C)) { 1572 EVT EltVT = 1573 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1574 1575 SDValue Op; 1576 if (EltVT.isFloatingPoint()) 1577 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1578 else 1579 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1580 1581 if (isa<ScalableVectorType>(VecTy)) 1582 return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op); 1583 else { 1584 SmallVector<SDValue, 16> Ops; 1585 Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op); 1586 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1587 } 1588 } 1589 llvm_unreachable("Unknown vector constant"); 1590 } 1591 1592 // If this is a static alloca, generate it as the frameindex instead of 1593 // computation. 1594 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1595 DenseMap<const AllocaInst*, int>::iterator SI = 1596 FuncInfo.StaticAllocaMap.find(AI); 1597 if (SI != FuncInfo.StaticAllocaMap.end()) 1598 return DAG.getFrameIndex(SI->second, 1599 TLI.getFrameIndexTy(DAG.getDataLayout())); 1600 } 1601 1602 // If this is an instruction which fast-isel has deferred, select it now. 1603 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1604 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1605 1606 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1607 Inst->getType(), getABIRegCopyCC(V)); 1608 SDValue Chain = DAG.getEntryNode(); 1609 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1610 } 1611 1612 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) { 1613 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1614 } 1615 llvm_unreachable("Can't get register for value!"); 1616 } 1617 1618 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1619 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1620 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1621 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1622 bool IsSEH = isAsynchronousEHPersonality(Pers); 1623 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1624 if (!IsSEH) 1625 CatchPadMBB->setIsEHScopeEntry(); 1626 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1627 if (IsMSVCCXX || IsCoreCLR) 1628 CatchPadMBB->setIsEHFuncletEntry(); 1629 } 1630 1631 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1632 // Update machine-CFG edge. 1633 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1634 FuncInfo.MBB->addSuccessor(TargetMBB); 1635 1636 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1637 bool IsSEH = isAsynchronousEHPersonality(Pers); 1638 if (IsSEH) { 1639 // If this is not a fall-through branch or optimizations are switched off, 1640 // emit the branch. 1641 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1642 TM.getOptLevel() == CodeGenOpt::None) 1643 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1644 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1645 return; 1646 } 1647 1648 // Figure out the funclet membership for the catchret's successor. 1649 // This will be used by the FuncletLayout pass to determine how to order the 1650 // BB's. 1651 // A 'catchret' returns to the outer scope's color. 1652 Value *ParentPad = I.getCatchSwitchParentPad(); 1653 const BasicBlock *SuccessorColor; 1654 if (isa<ConstantTokenNone>(ParentPad)) 1655 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1656 else 1657 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1658 assert(SuccessorColor && "No parent funclet for catchret!"); 1659 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1660 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1661 1662 // Create the terminator node. 1663 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1664 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1665 DAG.getBasicBlock(SuccessorColorMBB)); 1666 DAG.setRoot(Ret); 1667 } 1668 1669 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1670 // Don't emit any special code for the cleanuppad instruction. It just marks 1671 // the start of an EH scope/funclet. 1672 FuncInfo.MBB->setIsEHScopeEntry(); 1673 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1674 if (Pers != EHPersonality::Wasm_CXX) { 1675 FuncInfo.MBB->setIsEHFuncletEntry(); 1676 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1677 } 1678 } 1679 1680 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1681 // the control flow always stops at the single catch pad, as it does for a 1682 // cleanup pad. In case the exception caught is not of the types the catch pad 1683 // catches, it will be rethrown by a rethrow. 1684 static void findWasmUnwindDestinations( 1685 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1686 BranchProbability Prob, 1687 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1688 &UnwindDests) { 1689 while (EHPadBB) { 1690 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1691 if (isa<CleanupPadInst>(Pad)) { 1692 // Stop on cleanup pads. 1693 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1694 UnwindDests.back().first->setIsEHScopeEntry(); 1695 break; 1696 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1697 // Add the catchpad handlers to the possible destinations. We don't 1698 // continue to the unwind destination of the catchswitch for wasm. 1699 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1700 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1701 UnwindDests.back().first->setIsEHScopeEntry(); 1702 } 1703 break; 1704 } else { 1705 continue; 1706 } 1707 } 1708 } 1709 1710 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1711 /// many places it could ultimately go. In the IR, we have a single unwind 1712 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1713 /// This function skips over imaginary basic blocks that hold catchswitch 1714 /// instructions, and finds all the "real" machine 1715 /// basic block destinations. As those destinations may not be successors of 1716 /// EHPadBB, here we also calculate the edge probability to those destinations. 1717 /// The passed-in Prob is the edge probability to EHPadBB. 1718 static void findUnwindDestinations( 1719 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1720 BranchProbability Prob, 1721 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1722 &UnwindDests) { 1723 EHPersonality Personality = 1724 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1725 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1726 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1727 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1728 bool IsSEH = isAsynchronousEHPersonality(Personality); 1729 1730 if (IsWasmCXX) { 1731 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1732 assert(UnwindDests.size() <= 1 && 1733 "There should be at most one unwind destination for wasm"); 1734 return; 1735 } 1736 1737 while (EHPadBB) { 1738 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1739 BasicBlock *NewEHPadBB = nullptr; 1740 if (isa<LandingPadInst>(Pad)) { 1741 // Stop on landingpads. They are not funclets. 1742 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1743 break; 1744 } else if (isa<CleanupPadInst>(Pad)) { 1745 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1746 // personalities. 1747 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1748 UnwindDests.back().first->setIsEHScopeEntry(); 1749 UnwindDests.back().first->setIsEHFuncletEntry(); 1750 break; 1751 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1752 // Add the catchpad handlers to the possible destinations. 1753 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1754 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1755 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1756 if (IsMSVCCXX || IsCoreCLR) 1757 UnwindDests.back().first->setIsEHFuncletEntry(); 1758 if (!IsSEH) 1759 UnwindDests.back().first->setIsEHScopeEntry(); 1760 } 1761 NewEHPadBB = CatchSwitch->getUnwindDest(); 1762 } else { 1763 continue; 1764 } 1765 1766 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1767 if (BPI && NewEHPadBB) 1768 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1769 EHPadBB = NewEHPadBB; 1770 } 1771 } 1772 1773 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1774 // Update successor info. 1775 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1776 auto UnwindDest = I.getUnwindDest(); 1777 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1778 BranchProbability UnwindDestProb = 1779 (BPI && UnwindDest) 1780 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1781 : BranchProbability::getZero(); 1782 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1783 for (auto &UnwindDest : UnwindDests) { 1784 UnwindDest.first->setIsEHPad(); 1785 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1786 } 1787 FuncInfo.MBB->normalizeSuccProbs(); 1788 1789 // Create the terminator node. 1790 SDValue Ret = 1791 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1792 DAG.setRoot(Ret); 1793 } 1794 1795 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1796 report_fatal_error("visitCatchSwitch not yet implemented!"); 1797 } 1798 1799 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1800 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1801 auto &DL = DAG.getDataLayout(); 1802 SDValue Chain = getControlRoot(); 1803 SmallVector<ISD::OutputArg, 8> Outs; 1804 SmallVector<SDValue, 8> OutVals; 1805 1806 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1807 // lower 1808 // 1809 // %val = call <ty> @llvm.experimental.deoptimize() 1810 // ret <ty> %val 1811 // 1812 // differently. 1813 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1814 LowerDeoptimizingReturn(); 1815 return; 1816 } 1817 1818 if (!FuncInfo.CanLowerReturn) { 1819 unsigned DemoteReg = FuncInfo.DemoteRegister; 1820 const Function *F = I.getParent()->getParent(); 1821 1822 // Emit a store of the return value through the virtual register. 1823 // Leave Outs empty so that LowerReturn won't try to load return 1824 // registers the usual way. 1825 SmallVector<EVT, 1> PtrValueVTs; 1826 ComputeValueVTs(TLI, DL, 1827 F->getReturnType()->getPointerTo( 1828 DAG.getDataLayout().getAllocaAddrSpace()), 1829 PtrValueVTs); 1830 1831 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1832 DemoteReg, PtrValueVTs[0]); 1833 SDValue RetOp = getValue(I.getOperand(0)); 1834 1835 SmallVector<EVT, 4> ValueVTs, MemVTs; 1836 SmallVector<uint64_t, 4> Offsets; 1837 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1838 &Offsets); 1839 unsigned NumValues = ValueVTs.size(); 1840 1841 SmallVector<SDValue, 4> Chains(NumValues); 1842 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1843 for (unsigned i = 0; i != NumValues; ++i) { 1844 // An aggregate return value cannot wrap around the address space, so 1845 // offsets to its parts don't wrap either. 1846 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1847 1848 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1849 if (MemVTs[i] != ValueVTs[i]) 1850 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1851 Chains[i] = DAG.getStore( 1852 Chain, getCurSDLoc(), Val, 1853 // FIXME: better loc info would be nice. 1854 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1855 commonAlignment(BaseAlign, Offsets[i])); 1856 } 1857 1858 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1859 MVT::Other, Chains); 1860 } else if (I.getNumOperands() != 0) { 1861 SmallVector<EVT, 4> ValueVTs; 1862 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1863 unsigned NumValues = ValueVTs.size(); 1864 if (NumValues) { 1865 SDValue RetOp = getValue(I.getOperand(0)); 1866 1867 const Function *F = I.getParent()->getParent(); 1868 1869 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1870 I.getOperand(0)->getType(), F->getCallingConv(), 1871 /*IsVarArg*/ false); 1872 1873 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1874 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1875 Attribute::SExt)) 1876 ExtendKind = ISD::SIGN_EXTEND; 1877 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1878 Attribute::ZExt)) 1879 ExtendKind = ISD::ZERO_EXTEND; 1880 1881 LLVMContext &Context = F->getContext(); 1882 bool RetInReg = F->getAttributes().hasAttribute( 1883 AttributeList::ReturnIndex, Attribute::InReg); 1884 1885 for (unsigned j = 0; j != NumValues; ++j) { 1886 EVT VT = ValueVTs[j]; 1887 1888 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1889 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1890 1891 CallingConv::ID CC = F->getCallingConv(); 1892 1893 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1894 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1895 SmallVector<SDValue, 4> Parts(NumParts); 1896 getCopyToParts(DAG, getCurSDLoc(), 1897 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1898 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1899 1900 // 'inreg' on function refers to return value 1901 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1902 if (RetInReg) 1903 Flags.setInReg(); 1904 1905 if (I.getOperand(0)->getType()->isPointerTy()) { 1906 Flags.setPointer(); 1907 Flags.setPointerAddrSpace( 1908 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1909 } 1910 1911 if (NeedsRegBlock) { 1912 Flags.setInConsecutiveRegs(); 1913 if (j == NumValues - 1) 1914 Flags.setInConsecutiveRegsLast(); 1915 } 1916 1917 // Propagate extension type if any 1918 if (ExtendKind == ISD::SIGN_EXTEND) 1919 Flags.setSExt(); 1920 else if (ExtendKind == ISD::ZERO_EXTEND) 1921 Flags.setZExt(); 1922 1923 for (unsigned i = 0; i < NumParts; ++i) { 1924 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1925 VT, /*isfixed=*/true, 0, 0)); 1926 OutVals.push_back(Parts[i]); 1927 } 1928 } 1929 } 1930 } 1931 1932 // Push in swifterror virtual register as the last element of Outs. This makes 1933 // sure swifterror virtual register will be returned in the swifterror 1934 // physical register. 1935 const Function *F = I.getParent()->getParent(); 1936 if (TLI.supportSwiftError() && 1937 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1938 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1939 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1940 Flags.setSwiftError(); 1941 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1942 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1943 true /*isfixed*/, 1 /*origidx*/, 1944 0 /*partOffs*/)); 1945 // Create SDNode for the swifterror virtual register. 1946 OutVals.push_back( 1947 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1948 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1949 EVT(TLI.getPointerTy(DL)))); 1950 } 1951 1952 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1953 CallingConv::ID CallConv = 1954 DAG.getMachineFunction().getFunction().getCallingConv(); 1955 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1956 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1957 1958 // Verify that the target's LowerReturn behaved as expected. 1959 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1960 "LowerReturn didn't return a valid chain!"); 1961 1962 // Update the DAG with the new chain value resulting from return lowering. 1963 DAG.setRoot(Chain); 1964 } 1965 1966 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1967 /// created for it, emit nodes to copy the value into the virtual 1968 /// registers. 1969 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1970 // Skip empty types 1971 if (V->getType()->isEmptyTy()) 1972 return; 1973 1974 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 1975 if (VMI != FuncInfo.ValueMap.end()) { 1976 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1977 CopyValueToVirtualRegister(V, VMI->second); 1978 } 1979 } 1980 1981 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1982 /// the current basic block, add it to ValueMap now so that we'll get a 1983 /// CopyTo/FromReg. 1984 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1985 // No need to export constants. 1986 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1987 1988 // Already exported? 1989 if (FuncInfo.isExportedInst(V)) return; 1990 1991 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1992 CopyValueToVirtualRegister(V, Reg); 1993 } 1994 1995 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1996 const BasicBlock *FromBB) { 1997 // The operands of the setcc have to be in this block. We don't know 1998 // how to export them from some other block. 1999 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2000 // Can export from current BB. 2001 if (VI->getParent() == FromBB) 2002 return true; 2003 2004 // Is already exported, noop. 2005 return FuncInfo.isExportedInst(V); 2006 } 2007 2008 // If this is an argument, we can export it if the BB is the entry block or 2009 // if it is already exported. 2010 if (isa<Argument>(V)) { 2011 if (FromBB == &FromBB->getParent()->getEntryBlock()) 2012 return true; 2013 2014 // Otherwise, can only export this if it is already exported. 2015 return FuncInfo.isExportedInst(V); 2016 } 2017 2018 // Otherwise, constants can always be exported. 2019 return true; 2020 } 2021 2022 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2023 BranchProbability 2024 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2025 const MachineBasicBlock *Dst) const { 2026 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2027 const BasicBlock *SrcBB = Src->getBasicBlock(); 2028 const BasicBlock *DstBB = Dst->getBasicBlock(); 2029 if (!BPI) { 2030 // If BPI is not available, set the default probability as 1 / N, where N is 2031 // the number of successors. 2032 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2033 return BranchProbability(1, SuccSize); 2034 } 2035 return BPI->getEdgeProbability(SrcBB, DstBB); 2036 } 2037 2038 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2039 MachineBasicBlock *Dst, 2040 BranchProbability Prob) { 2041 if (!FuncInfo.BPI) 2042 Src->addSuccessorWithoutProb(Dst); 2043 else { 2044 if (Prob.isUnknown()) 2045 Prob = getEdgeProbability(Src, Dst); 2046 Src->addSuccessor(Dst, Prob); 2047 } 2048 } 2049 2050 static bool InBlock(const Value *V, const BasicBlock *BB) { 2051 if (const Instruction *I = dyn_cast<Instruction>(V)) 2052 return I->getParent() == BB; 2053 return true; 2054 } 2055 2056 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2057 /// This function emits a branch and is used at the leaves of an OR or an 2058 /// AND operator tree. 2059 void 2060 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2061 MachineBasicBlock *TBB, 2062 MachineBasicBlock *FBB, 2063 MachineBasicBlock *CurBB, 2064 MachineBasicBlock *SwitchBB, 2065 BranchProbability TProb, 2066 BranchProbability FProb, 2067 bool InvertCond) { 2068 const BasicBlock *BB = CurBB->getBasicBlock(); 2069 2070 // If the leaf of the tree is a comparison, merge the condition into 2071 // the caseblock. 2072 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2073 // The operands of the cmp have to be in this block. We don't know 2074 // how to export them from some other block. If this is the first block 2075 // of the sequence, no exporting is needed. 2076 if (CurBB == SwitchBB || 2077 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2078 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2079 ISD::CondCode Condition; 2080 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2081 ICmpInst::Predicate Pred = 2082 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2083 Condition = getICmpCondCode(Pred); 2084 } else { 2085 const FCmpInst *FC = cast<FCmpInst>(Cond); 2086 FCmpInst::Predicate Pred = 2087 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2088 Condition = getFCmpCondCode(Pred); 2089 if (TM.Options.NoNaNsFPMath) 2090 Condition = getFCmpCodeWithoutNaN(Condition); 2091 } 2092 2093 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2094 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2095 SL->SwitchCases.push_back(CB); 2096 return; 2097 } 2098 } 2099 2100 // Create a CaseBlock record representing this branch. 2101 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2102 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2103 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2104 SL->SwitchCases.push_back(CB); 2105 } 2106 2107 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2108 MachineBasicBlock *TBB, 2109 MachineBasicBlock *FBB, 2110 MachineBasicBlock *CurBB, 2111 MachineBasicBlock *SwitchBB, 2112 Instruction::BinaryOps Opc, 2113 BranchProbability TProb, 2114 BranchProbability FProb, 2115 bool InvertCond) { 2116 // Skip over not part of the tree and remember to invert op and operands at 2117 // next level. 2118 Value *NotCond; 2119 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2120 InBlock(NotCond, CurBB->getBasicBlock())) { 2121 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2122 !InvertCond); 2123 return; 2124 } 2125 2126 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2127 // Compute the effective opcode for Cond, taking into account whether it needs 2128 // to be inverted, e.g. 2129 // and (not (or A, B)), C 2130 // gets lowered as 2131 // and (and (not A, not B), C) 2132 unsigned BOpc = 0; 2133 if (BOp) { 2134 BOpc = BOp->getOpcode(); 2135 if (InvertCond) { 2136 if (BOpc == Instruction::And) 2137 BOpc = Instruction::Or; 2138 else if (BOpc == Instruction::Or) 2139 BOpc = Instruction::And; 2140 } 2141 } 2142 2143 // If this node is not part of the or/and tree, emit it as a branch. 2144 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2145 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2146 BOp->getParent() != CurBB->getBasicBlock() || 2147 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2148 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2149 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2150 TProb, FProb, InvertCond); 2151 return; 2152 } 2153 2154 // Create TmpBB after CurBB. 2155 MachineFunction::iterator BBI(CurBB); 2156 MachineFunction &MF = DAG.getMachineFunction(); 2157 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2158 CurBB->getParent()->insert(++BBI, TmpBB); 2159 2160 if (Opc == Instruction::Or) { 2161 // Codegen X | Y as: 2162 // BB1: 2163 // jmp_if_X TBB 2164 // jmp TmpBB 2165 // TmpBB: 2166 // jmp_if_Y TBB 2167 // jmp FBB 2168 // 2169 2170 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2171 // The requirement is that 2172 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2173 // = TrueProb for original BB. 2174 // Assuming the original probabilities are A and B, one choice is to set 2175 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2176 // A/(1+B) and 2B/(1+B). This choice assumes that 2177 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2178 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2179 // TmpBB, but the math is more complicated. 2180 2181 auto NewTrueProb = TProb / 2; 2182 auto NewFalseProb = TProb / 2 + FProb; 2183 // Emit the LHS condition. 2184 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2185 NewTrueProb, NewFalseProb, InvertCond); 2186 2187 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2188 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2189 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2190 // Emit the RHS condition into TmpBB. 2191 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2192 Probs[0], Probs[1], InvertCond); 2193 } else { 2194 assert(Opc == Instruction::And && "Unknown merge op!"); 2195 // Codegen X & Y as: 2196 // BB1: 2197 // jmp_if_X TmpBB 2198 // jmp FBB 2199 // TmpBB: 2200 // jmp_if_Y TBB 2201 // jmp FBB 2202 // 2203 // This requires creation of TmpBB after CurBB. 2204 2205 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2206 // The requirement is that 2207 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2208 // = FalseProb for original BB. 2209 // Assuming the original probabilities are A and B, one choice is to set 2210 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2211 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2212 // TrueProb for BB1 * FalseProb for TmpBB. 2213 2214 auto NewTrueProb = TProb + FProb / 2; 2215 auto NewFalseProb = FProb / 2; 2216 // Emit the LHS condition. 2217 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2218 NewTrueProb, NewFalseProb, InvertCond); 2219 2220 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2221 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2222 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2223 // Emit the RHS condition into TmpBB. 2224 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2225 Probs[0], Probs[1], InvertCond); 2226 } 2227 } 2228 2229 /// If the set of cases should be emitted as a series of branches, return true. 2230 /// If we should emit this as a bunch of and/or'd together conditions, return 2231 /// false. 2232 bool 2233 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2234 if (Cases.size() != 2) return true; 2235 2236 // If this is two comparisons of the same values or'd or and'd together, they 2237 // will get folded into a single comparison, so don't emit two blocks. 2238 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2239 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2240 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2241 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2242 return false; 2243 } 2244 2245 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2246 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2247 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2248 Cases[0].CC == Cases[1].CC && 2249 isa<Constant>(Cases[0].CmpRHS) && 2250 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2251 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2252 return false; 2253 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2254 return false; 2255 } 2256 2257 return true; 2258 } 2259 2260 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2261 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2262 2263 // Update machine-CFG edges. 2264 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2265 2266 if (I.isUnconditional()) { 2267 // Update machine-CFG edges. 2268 BrMBB->addSuccessor(Succ0MBB); 2269 2270 // If this is not a fall-through branch or optimizations are switched off, 2271 // emit the branch. 2272 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2273 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2274 MVT::Other, getControlRoot(), 2275 DAG.getBasicBlock(Succ0MBB))); 2276 2277 return; 2278 } 2279 2280 // If this condition is one of the special cases we handle, do special stuff 2281 // now. 2282 const Value *CondVal = I.getCondition(); 2283 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2284 2285 // If this is a series of conditions that are or'd or and'd together, emit 2286 // this as a sequence of branches instead of setcc's with and/or operations. 2287 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2288 // unpredictable branches, and vector extracts because those jumps are likely 2289 // expensive for any target), this should improve performance. 2290 // For example, instead of something like: 2291 // cmp A, B 2292 // C = seteq 2293 // cmp D, E 2294 // F = setle 2295 // or C, F 2296 // jnz foo 2297 // Emit: 2298 // cmp A, B 2299 // je foo 2300 // cmp D, E 2301 // jle foo 2302 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2303 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2304 Value *Vec, *BOp0 = BOp->getOperand(0), *BOp1 = BOp->getOperand(1); 2305 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2306 !I.hasMetadata(LLVMContext::MD_unpredictable) && 2307 (Opcode == Instruction::And || Opcode == Instruction::Or) && 2308 !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2309 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2310 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2311 Opcode, 2312 getEdgeProbability(BrMBB, Succ0MBB), 2313 getEdgeProbability(BrMBB, Succ1MBB), 2314 /*InvertCond=*/false); 2315 // If the compares in later blocks need to use values not currently 2316 // exported from this block, export them now. This block should always 2317 // be the first entry. 2318 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2319 2320 // Allow some cases to be rejected. 2321 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2322 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2323 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2324 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2325 } 2326 2327 // Emit the branch for this block. 2328 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2329 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2330 return; 2331 } 2332 2333 // Okay, we decided not to do this, remove any inserted MBB's and clear 2334 // SwitchCases. 2335 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2336 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2337 2338 SL->SwitchCases.clear(); 2339 } 2340 } 2341 2342 // Create a CaseBlock record representing this branch. 2343 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2344 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2345 2346 // Use visitSwitchCase to actually insert the fast branch sequence for this 2347 // cond branch. 2348 visitSwitchCase(CB, BrMBB); 2349 } 2350 2351 /// visitSwitchCase - Emits the necessary code to represent a single node in 2352 /// the binary search tree resulting from lowering a switch instruction. 2353 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2354 MachineBasicBlock *SwitchBB) { 2355 SDValue Cond; 2356 SDValue CondLHS = getValue(CB.CmpLHS); 2357 SDLoc dl = CB.DL; 2358 2359 if (CB.CC == ISD::SETTRUE) { 2360 // Branch or fall through to TrueBB. 2361 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2362 SwitchBB->normalizeSuccProbs(); 2363 if (CB.TrueBB != NextBlock(SwitchBB)) { 2364 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2365 DAG.getBasicBlock(CB.TrueBB))); 2366 } 2367 return; 2368 } 2369 2370 auto &TLI = DAG.getTargetLoweringInfo(); 2371 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2372 2373 // Build the setcc now. 2374 if (!CB.CmpMHS) { 2375 // Fold "(X == true)" to X and "(X == false)" to !X to 2376 // handle common cases produced by branch lowering. 2377 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2378 CB.CC == ISD::SETEQ) 2379 Cond = CondLHS; 2380 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2381 CB.CC == ISD::SETEQ) { 2382 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2383 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2384 } else { 2385 SDValue CondRHS = getValue(CB.CmpRHS); 2386 2387 // If a pointer's DAG type is larger than its memory type then the DAG 2388 // values are zero-extended. This breaks signed comparisons so truncate 2389 // back to the underlying type before doing the compare. 2390 if (CondLHS.getValueType() != MemVT) { 2391 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2392 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2393 } 2394 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2395 } 2396 } else { 2397 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2398 2399 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2400 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2401 2402 SDValue CmpOp = getValue(CB.CmpMHS); 2403 EVT VT = CmpOp.getValueType(); 2404 2405 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2406 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2407 ISD::SETLE); 2408 } else { 2409 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2410 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2411 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2412 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2413 } 2414 } 2415 2416 // Update successor info 2417 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2418 // TrueBB and FalseBB are always different unless the incoming IR is 2419 // degenerate. This only happens when running llc on weird IR. 2420 if (CB.TrueBB != CB.FalseBB) 2421 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2422 SwitchBB->normalizeSuccProbs(); 2423 2424 // If the lhs block is the next block, invert the condition so that we can 2425 // fall through to the lhs instead of the rhs block. 2426 if (CB.TrueBB == NextBlock(SwitchBB)) { 2427 std::swap(CB.TrueBB, CB.FalseBB); 2428 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2429 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2430 } 2431 2432 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2433 MVT::Other, getControlRoot(), Cond, 2434 DAG.getBasicBlock(CB.TrueBB)); 2435 2436 // Insert the false branch. Do this even if it's a fall through branch, 2437 // this makes it easier to do DAG optimizations which require inverting 2438 // the branch condition. 2439 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2440 DAG.getBasicBlock(CB.FalseBB)); 2441 2442 DAG.setRoot(BrCond); 2443 } 2444 2445 /// visitJumpTable - Emit JumpTable node in the current MBB 2446 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2447 // Emit the code for the jump table 2448 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2449 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2450 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2451 JT.Reg, PTy); 2452 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2453 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2454 MVT::Other, Index.getValue(1), 2455 Table, Index); 2456 DAG.setRoot(BrJumpTable); 2457 } 2458 2459 /// visitJumpTableHeader - This function emits necessary code to produce index 2460 /// in the JumpTable from switch case. 2461 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2462 JumpTableHeader &JTH, 2463 MachineBasicBlock *SwitchBB) { 2464 SDLoc dl = getCurSDLoc(); 2465 2466 // Subtract the lowest switch case value from the value being switched on. 2467 SDValue SwitchOp = getValue(JTH.SValue); 2468 EVT VT = SwitchOp.getValueType(); 2469 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2470 DAG.getConstant(JTH.First, dl, VT)); 2471 2472 // The SDNode we just created, which holds the value being switched on minus 2473 // the smallest case value, needs to be copied to a virtual register so it 2474 // can be used as an index into the jump table in a subsequent basic block. 2475 // This value may be smaller or larger than the target's pointer type, and 2476 // therefore require extension or truncating. 2477 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2478 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2479 2480 unsigned JumpTableReg = 2481 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2482 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2483 JumpTableReg, SwitchOp); 2484 JT.Reg = JumpTableReg; 2485 2486 if (!JTH.OmitRangeCheck) { 2487 // Emit the range check for the jump table, and branch to the default block 2488 // for the switch statement if the value being switched on exceeds the 2489 // largest case in the switch. 2490 SDValue CMP = DAG.getSetCC( 2491 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2492 Sub.getValueType()), 2493 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2494 2495 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2496 MVT::Other, CopyTo, CMP, 2497 DAG.getBasicBlock(JT.Default)); 2498 2499 // Avoid emitting unnecessary branches to the next block. 2500 if (JT.MBB != NextBlock(SwitchBB)) 2501 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2502 DAG.getBasicBlock(JT.MBB)); 2503 2504 DAG.setRoot(BrCond); 2505 } else { 2506 // Avoid emitting unnecessary branches to the next block. 2507 if (JT.MBB != NextBlock(SwitchBB)) 2508 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2509 DAG.getBasicBlock(JT.MBB))); 2510 else 2511 DAG.setRoot(CopyTo); 2512 } 2513 } 2514 2515 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2516 /// variable if there exists one. 2517 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2518 SDValue &Chain) { 2519 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2520 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2521 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2522 MachineFunction &MF = DAG.getMachineFunction(); 2523 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2524 MachineSDNode *Node = 2525 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2526 if (Global) { 2527 MachinePointerInfo MPInfo(Global); 2528 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2529 MachineMemOperand::MODereferenceable; 2530 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2531 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2532 DAG.setNodeMemRefs(Node, {MemRef}); 2533 } 2534 if (PtrTy != PtrMemTy) 2535 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2536 return SDValue(Node, 0); 2537 } 2538 2539 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2540 /// tail spliced into a stack protector check success bb. 2541 /// 2542 /// For a high level explanation of how this fits into the stack protector 2543 /// generation see the comment on the declaration of class 2544 /// StackProtectorDescriptor. 2545 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2546 MachineBasicBlock *ParentBB) { 2547 2548 // First create the loads to the guard/stack slot for the comparison. 2549 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2550 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2551 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2552 2553 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2554 int FI = MFI.getStackProtectorIndex(); 2555 2556 SDValue Guard; 2557 SDLoc dl = getCurSDLoc(); 2558 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2559 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2560 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2561 2562 // Generate code to load the content of the guard slot. 2563 SDValue GuardVal = DAG.getLoad( 2564 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2565 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2566 MachineMemOperand::MOVolatile); 2567 2568 if (TLI.useStackGuardXorFP()) 2569 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2570 2571 // Retrieve guard check function, nullptr if instrumentation is inlined. 2572 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2573 // The target provides a guard check function to validate the guard value. 2574 // Generate a call to that function with the content of the guard slot as 2575 // argument. 2576 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2577 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2578 2579 TargetLowering::ArgListTy Args; 2580 TargetLowering::ArgListEntry Entry; 2581 Entry.Node = GuardVal; 2582 Entry.Ty = FnTy->getParamType(0); 2583 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2584 Entry.IsInReg = true; 2585 Args.push_back(Entry); 2586 2587 TargetLowering::CallLoweringInfo CLI(DAG); 2588 CLI.setDebugLoc(getCurSDLoc()) 2589 .setChain(DAG.getEntryNode()) 2590 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2591 getValue(GuardCheckFn), std::move(Args)); 2592 2593 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2594 DAG.setRoot(Result.second); 2595 return; 2596 } 2597 2598 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2599 // Otherwise, emit a volatile load to retrieve the stack guard value. 2600 SDValue Chain = DAG.getEntryNode(); 2601 if (TLI.useLoadStackGuardNode()) { 2602 Guard = getLoadStackGuard(DAG, dl, Chain); 2603 } else { 2604 const Value *IRGuard = TLI.getSDagStackGuard(M); 2605 SDValue GuardPtr = getValue(IRGuard); 2606 2607 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2608 MachinePointerInfo(IRGuard, 0), Align, 2609 MachineMemOperand::MOVolatile); 2610 } 2611 2612 // Perform the comparison via a getsetcc. 2613 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2614 *DAG.getContext(), 2615 Guard.getValueType()), 2616 Guard, GuardVal, ISD::SETNE); 2617 2618 // If the guard/stackslot do not equal, branch to failure MBB. 2619 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2620 MVT::Other, GuardVal.getOperand(0), 2621 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2622 // Otherwise branch to success MBB. 2623 SDValue Br = DAG.getNode(ISD::BR, dl, 2624 MVT::Other, BrCond, 2625 DAG.getBasicBlock(SPD.getSuccessMBB())); 2626 2627 DAG.setRoot(Br); 2628 } 2629 2630 /// Codegen the failure basic block for a stack protector check. 2631 /// 2632 /// A failure stack protector machine basic block consists simply of a call to 2633 /// __stack_chk_fail(). 2634 /// 2635 /// For a high level explanation of how this fits into the stack protector 2636 /// generation see the comment on the declaration of class 2637 /// StackProtectorDescriptor. 2638 void 2639 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2640 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2641 TargetLowering::MakeLibCallOptions CallOptions; 2642 CallOptions.setDiscardResult(true); 2643 SDValue Chain = 2644 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2645 None, CallOptions, getCurSDLoc()).second; 2646 // On PS4, the "return address" must still be within the calling function, 2647 // even if it's at the very end, so emit an explicit TRAP here. 2648 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2649 if (TM.getTargetTriple().isPS4CPU()) 2650 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2651 // WebAssembly needs an unreachable instruction after a non-returning call, 2652 // because the function return type can be different from __stack_chk_fail's 2653 // return type (void). 2654 if (TM.getTargetTriple().isWasm()) 2655 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2656 2657 DAG.setRoot(Chain); 2658 } 2659 2660 /// visitBitTestHeader - This function emits necessary code to produce value 2661 /// suitable for "bit tests" 2662 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2663 MachineBasicBlock *SwitchBB) { 2664 SDLoc dl = getCurSDLoc(); 2665 2666 // Subtract the minimum value. 2667 SDValue SwitchOp = getValue(B.SValue); 2668 EVT VT = SwitchOp.getValueType(); 2669 SDValue RangeSub = 2670 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2671 2672 // Determine the type of the test operands. 2673 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2674 bool UsePtrType = false; 2675 if (!TLI.isTypeLegal(VT)) { 2676 UsePtrType = true; 2677 } else { 2678 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2679 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2680 // Switch table case range are encoded into series of masks. 2681 // Just use pointer type, it's guaranteed to fit. 2682 UsePtrType = true; 2683 break; 2684 } 2685 } 2686 SDValue Sub = RangeSub; 2687 if (UsePtrType) { 2688 VT = TLI.getPointerTy(DAG.getDataLayout()); 2689 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2690 } 2691 2692 B.RegVT = VT.getSimpleVT(); 2693 B.Reg = FuncInfo.CreateReg(B.RegVT); 2694 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2695 2696 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2697 2698 if (!B.OmitRangeCheck) 2699 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2700 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2701 SwitchBB->normalizeSuccProbs(); 2702 2703 SDValue Root = CopyTo; 2704 if (!B.OmitRangeCheck) { 2705 // Conditional branch to the default block. 2706 SDValue RangeCmp = DAG.getSetCC(dl, 2707 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2708 RangeSub.getValueType()), 2709 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2710 ISD::SETUGT); 2711 2712 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2713 DAG.getBasicBlock(B.Default)); 2714 } 2715 2716 // Avoid emitting unnecessary branches to the next block. 2717 if (MBB != NextBlock(SwitchBB)) 2718 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2719 2720 DAG.setRoot(Root); 2721 } 2722 2723 /// visitBitTestCase - this function produces one "bit test" 2724 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2725 MachineBasicBlock* NextMBB, 2726 BranchProbability BranchProbToNext, 2727 unsigned Reg, 2728 BitTestCase &B, 2729 MachineBasicBlock *SwitchBB) { 2730 SDLoc dl = getCurSDLoc(); 2731 MVT VT = BB.RegVT; 2732 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2733 SDValue Cmp; 2734 unsigned PopCount = countPopulation(B.Mask); 2735 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2736 if (PopCount == 1) { 2737 // Testing for a single bit; just compare the shift count with what it 2738 // would need to be to shift a 1 bit in that position. 2739 Cmp = DAG.getSetCC( 2740 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2741 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2742 ISD::SETEQ); 2743 } else if (PopCount == BB.Range) { 2744 // There is only one zero bit in the range, test for it directly. 2745 Cmp = DAG.getSetCC( 2746 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2747 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2748 ISD::SETNE); 2749 } else { 2750 // Make desired shift 2751 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2752 DAG.getConstant(1, dl, VT), ShiftOp); 2753 2754 // Emit bit tests and jumps 2755 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2756 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2757 Cmp = DAG.getSetCC( 2758 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2759 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2760 } 2761 2762 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2763 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2764 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2765 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2766 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2767 // one as they are relative probabilities (and thus work more like weights), 2768 // and hence we need to normalize them to let the sum of them become one. 2769 SwitchBB->normalizeSuccProbs(); 2770 2771 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2772 MVT::Other, getControlRoot(), 2773 Cmp, DAG.getBasicBlock(B.TargetBB)); 2774 2775 // Avoid emitting unnecessary branches to the next block. 2776 if (NextMBB != NextBlock(SwitchBB)) 2777 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2778 DAG.getBasicBlock(NextMBB)); 2779 2780 DAG.setRoot(BrAnd); 2781 } 2782 2783 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2784 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2785 2786 // Retrieve successors. Look through artificial IR level blocks like 2787 // catchswitch for successors. 2788 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2789 const BasicBlock *EHPadBB = I.getSuccessor(1); 2790 2791 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2792 // have to do anything here to lower funclet bundles. 2793 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 2794 LLVMContext::OB_gc_transition, 2795 LLVMContext::OB_gc_live, 2796 LLVMContext::OB_funclet, 2797 LLVMContext::OB_cfguardtarget}) && 2798 "Cannot lower invokes with arbitrary operand bundles yet!"); 2799 2800 const Value *Callee(I.getCalledOperand()); 2801 const Function *Fn = dyn_cast<Function>(Callee); 2802 if (isa<InlineAsm>(Callee)) 2803 visitInlineAsm(I); 2804 else if (Fn && Fn->isIntrinsic()) { 2805 switch (Fn->getIntrinsicID()) { 2806 default: 2807 llvm_unreachable("Cannot invoke this intrinsic"); 2808 case Intrinsic::donothing: 2809 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2810 break; 2811 case Intrinsic::experimental_patchpoint_void: 2812 case Intrinsic::experimental_patchpoint_i64: 2813 visitPatchpoint(I, EHPadBB); 2814 break; 2815 case Intrinsic::experimental_gc_statepoint: 2816 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2817 break; 2818 case Intrinsic::wasm_rethrow_in_catch: { 2819 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2820 // special because it can be invoked, so we manually lower it to a DAG 2821 // node here. 2822 SmallVector<SDValue, 8> Ops; 2823 Ops.push_back(getRoot()); // inchain 2824 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2825 Ops.push_back( 2826 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2827 TLI.getPointerTy(DAG.getDataLayout()))); 2828 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2829 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2830 break; 2831 } 2832 } 2833 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2834 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2835 // Eventually we will support lowering the @llvm.experimental.deoptimize 2836 // intrinsic, and right now there are no plans to support other intrinsics 2837 // with deopt state. 2838 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2839 } else { 2840 LowerCallTo(I, getValue(Callee), false, EHPadBB); 2841 } 2842 2843 // If the value of the invoke is used outside of its defining block, make it 2844 // available as a virtual register. 2845 // We already took care of the exported value for the statepoint instruction 2846 // during call to the LowerStatepoint. 2847 if (!isa<GCStatepointInst>(I)) { 2848 CopyToExportRegsIfNeeded(&I); 2849 } 2850 2851 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2852 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2853 BranchProbability EHPadBBProb = 2854 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2855 : BranchProbability::getZero(); 2856 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2857 2858 // Update successor info. 2859 addSuccessorWithProb(InvokeMBB, Return); 2860 for (auto &UnwindDest : UnwindDests) { 2861 UnwindDest.first->setIsEHPad(); 2862 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2863 } 2864 InvokeMBB->normalizeSuccProbs(); 2865 2866 // Drop into normal successor. 2867 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2868 DAG.getBasicBlock(Return))); 2869 } 2870 2871 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2872 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2873 2874 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2875 // have to do anything here to lower funclet bundles. 2876 assert(!I.hasOperandBundlesOtherThan( 2877 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2878 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2879 2880 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 2881 visitInlineAsm(I); 2882 CopyToExportRegsIfNeeded(&I); 2883 2884 // Retrieve successors. 2885 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2886 2887 // Update successor info. 2888 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 2889 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2890 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2891 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 2892 Target->setIsInlineAsmBrIndirectTarget(); 2893 } 2894 CallBrMBB->normalizeSuccProbs(); 2895 2896 // Drop into default successor. 2897 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2898 MVT::Other, getControlRoot(), 2899 DAG.getBasicBlock(Return))); 2900 } 2901 2902 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2903 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2904 } 2905 2906 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2907 assert(FuncInfo.MBB->isEHPad() && 2908 "Call to landingpad not in landing pad!"); 2909 2910 // If there aren't registers to copy the values into (e.g., during SjLj 2911 // exceptions), then don't bother to create these DAG nodes. 2912 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2913 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2914 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2915 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2916 return; 2917 2918 // If landingpad's return type is token type, we don't create DAG nodes 2919 // for its exception pointer and selector value. The extraction of exception 2920 // pointer or selector value from token type landingpads is not currently 2921 // supported. 2922 if (LP.getType()->isTokenTy()) 2923 return; 2924 2925 SmallVector<EVT, 2> ValueVTs; 2926 SDLoc dl = getCurSDLoc(); 2927 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2928 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2929 2930 // Get the two live-in registers as SDValues. The physregs have already been 2931 // copied into virtual registers. 2932 SDValue Ops[2]; 2933 if (FuncInfo.ExceptionPointerVirtReg) { 2934 Ops[0] = DAG.getZExtOrTrunc( 2935 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2936 FuncInfo.ExceptionPointerVirtReg, 2937 TLI.getPointerTy(DAG.getDataLayout())), 2938 dl, ValueVTs[0]); 2939 } else { 2940 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2941 } 2942 Ops[1] = DAG.getZExtOrTrunc( 2943 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2944 FuncInfo.ExceptionSelectorVirtReg, 2945 TLI.getPointerTy(DAG.getDataLayout())), 2946 dl, ValueVTs[1]); 2947 2948 // Merge into one. 2949 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2950 DAG.getVTList(ValueVTs), Ops); 2951 setValue(&LP, Res); 2952 } 2953 2954 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2955 MachineBasicBlock *Last) { 2956 // Update JTCases. 2957 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 2958 if (SL->JTCases[i].first.HeaderBB == First) 2959 SL->JTCases[i].first.HeaderBB = Last; 2960 2961 // Update BitTestCases. 2962 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 2963 if (SL->BitTestCases[i].Parent == First) 2964 SL->BitTestCases[i].Parent = Last; 2965 } 2966 2967 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2968 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2969 2970 // Update machine-CFG edges with unique successors. 2971 SmallSet<BasicBlock*, 32> Done; 2972 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2973 BasicBlock *BB = I.getSuccessor(i); 2974 bool Inserted = Done.insert(BB).second; 2975 if (!Inserted) 2976 continue; 2977 2978 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2979 addSuccessorWithProb(IndirectBrMBB, Succ); 2980 } 2981 IndirectBrMBB->normalizeSuccProbs(); 2982 2983 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2984 MVT::Other, getControlRoot(), 2985 getValue(I.getAddress()))); 2986 } 2987 2988 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2989 if (!DAG.getTarget().Options.TrapUnreachable) 2990 return; 2991 2992 // We may be able to ignore unreachable behind a noreturn call. 2993 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2994 const BasicBlock &BB = *I.getParent(); 2995 if (&I != &BB.front()) { 2996 BasicBlock::const_iterator PredI = 2997 std::prev(BasicBlock::const_iterator(&I)); 2998 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2999 if (Call->doesNotReturn()) 3000 return; 3001 } 3002 } 3003 } 3004 3005 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3006 } 3007 3008 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3009 SDNodeFlags Flags; 3010 3011 SDValue Op = getValue(I.getOperand(0)); 3012 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3013 Op, Flags); 3014 setValue(&I, UnNodeValue); 3015 } 3016 3017 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3018 SDNodeFlags Flags; 3019 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3020 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3021 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3022 } 3023 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3024 Flags.setExact(ExactOp->isExact()); 3025 } 3026 3027 SDValue Op1 = getValue(I.getOperand(0)); 3028 SDValue Op2 = getValue(I.getOperand(1)); 3029 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3030 Op1, Op2, Flags); 3031 setValue(&I, BinNodeValue); 3032 } 3033 3034 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3035 SDValue Op1 = getValue(I.getOperand(0)); 3036 SDValue Op2 = getValue(I.getOperand(1)); 3037 3038 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3039 Op1.getValueType(), DAG.getDataLayout()); 3040 3041 // Coerce the shift amount to the right type if we can. 3042 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3043 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3044 unsigned Op2Size = Op2.getValueSizeInBits(); 3045 SDLoc DL = getCurSDLoc(); 3046 3047 // If the operand is smaller than the shift count type, promote it. 3048 if (ShiftSize > Op2Size) 3049 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3050 3051 // If the operand is larger than the shift count type but the shift 3052 // count type has enough bits to represent any shift value, truncate 3053 // it now. This is a common case and it exposes the truncate to 3054 // optimization early. 3055 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3056 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3057 // Otherwise we'll need to temporarily settle for some other convenient 3058 // type. Type legalization will make adjustments once the shiftee is split. 3059 else 3060 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3061 } 3062 3063 bool nuw = false; 3064 bool nsw = false; 3065 bool exact = false; 3066 3067 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3068 3069 if (const OverflowingBinaryOperator *OFBinOp = 3070 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3071 nuw = OFBinOp->hasNoUnsignedWrap(); 3072 nsw = OFBinOp->hasNoSignedWrap(); 3073 } 3074 if (const PossiblyExactOperator *ExactOp = 3075 dyn_cast<const PossiblyExactOperator>(&I)) 3076 exact = ExactOp->isExact(); 3077 } 3078 SDNodeFlags Flags; 3079 Flags.setExact(exact); 3080 Flags.setNoSignedWrap(nsw); 3081 Flags.setNoUnsignedWrap(nuw); 3082 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3083 Flags); 3084 setValue(&I, Res); 3085 } 3086 3087 void SelectionDAGBuilder::visitSDiv(const User &I) { 3088 SDValue Op1 = getValue(I.getOperand(0)); 3089 SDValue Op2 = getValue(I.getOperand(1)); 3090 3091 SDNodeFlags Flags; 3092 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3093 cast<PossiblyExactOperator>(&I)->isExact()); 3094 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3095 Op2, Flags)); 3096 } 3097 3098 void SelectionDAGBuilder::visitICmp(const User &I) { 3099 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3100 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3101 predicate = IC->getPredicate(); 3102 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3103 predicate = ICmpInst::Predicate(IC->getPredicate()); 3104 SDValue Op1 = getValue(I.getOperand(0)); 3105 SDValue Op2 = getValue(I.getOperand(1)); 3106 ISD::CondCode Opcode = getICmpCondCode(predicate); 3107 3108 auto &TLI = DAG.getTargetLoweringInfo(); 3109 EVT MemVT = 3110 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3111 3112 // If a pointer's DAG type is larger than its memory type then the DAG values 3113 // are zero-extended. This breaks signed comparisons so truncate back to the 3114 // underlying type before doing the compare. 3115 if (Op1.getValueType() != MemVT) { 3116 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3117 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3118 } 3119 3120 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3121 I.getType()); 3122 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3123 } 3124 3125 void SelectionDAGBuilder::visitFCmp(const User &I) { 3126 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3127 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3128 predicate = FC->getPredicate(); 3129 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3130 predicate = FCmpInst::Predicate(FC->getPredicate()); 3131 SDValue Op1 = getValue(I.getOperand(0)); 3132 SDValue Op2 = getValue(I.getOperand(1)); 3133 3134 ISD::CondCode Condition = getFCmpCondCode(predicate); 3135 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3136 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3137 Condition = getFCmpCodeWithoutNaN(Condition); 3138 3139 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3140 I.getType()); 3141 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3142 } 3143 3144 // Check if the condition of the select has one use or two users that are both 3145 // selects with the same condition. 3146 static bool hasOnlySelectUsers(const Value *Cond) { 3147 return llvm::all_of(Cond->users(), [](const Value *V) { 3148 return isa<SelectInst>(V); 3149 }); 3150 } 3151 3152 void SelectionDAGBuilder::visitSelect(const User &I) { 3153 SmallVector<EVT, 4> ValueVTs; 3154 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3155 ValueVTs); 3156 unsigned NumValues = ValueVTs.size(); 3157 if (NumValues == 0) return; 3158 3159 SmallVector<SDValue, 4> Values(NumValues); 3160 SDValue Cond = getValue(I.getOperand(0)); 3161 SDValue LHSVal = getValue(I.getOperand(1)); 3162 SDValue RHSVal = getValue(I.getOperand(2)); 3163 SmallVector<SDValue, 1> BaseOps(1, Cond); 3164 ISD::NodeType OpCode = 3165 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3166 3167 bool IsUnaryAbs = false; 3168 3169 // Min/max matching is only viable if all output VTs are the same. 3170 if (is_splat(ValueVTs)) { 3171 EVT VT = ValueVTs[0]; 3172 LLVMContext &Ctx = *DAG.getContext(); 3173 auto &TLI = DAG.getTargetLoweringInfo(); 3174 3175 // We care about the legality of the operation after it has been type 3176 // legalized. 3177 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3178 VT = TLI.getTypeToTransformTo(Ctx, VT); 3179 3180 // If the vselect is legal, assume we want to leave this as a vector setcc + 3181 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3182 // min/max is legal on the scalar type. 3183 bool UseScalarMinMax = VT.isVector() && 3184 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3185 3186 Value *LHS, *RHS; 3187 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3188 ISD::NodeType Opc = ISD::DELETED_NODE; 3189 switch (SPR.Flavor) { 3190 case SPF_UMAX: Opc = ISD::UMAX; break; 3191 case SPF_UMIN: Opc = ISD::UMIN; break; 3192 case SPF_SMAX: Opc = ISD::SMAX; break; 3193 case SPF_SMIN: Opc = ISD::SMIN; break; 3194 case SPF_FMINNUM: 3195 switch (SPR.NaNBehavior) { 3196 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3197 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3198 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3199 case SPNB_RETURNS_ANY: { 3200 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3201 Opc = ISD::FMINNUM; 3202 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3203 Opc = ISD::FMINIMUM; 3204 else if (UseScalarMinMax) 3205 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3206 ISD::FMINNUM : ISD::FMINIMUM; 3207 break; 3208 } 3209 } 3210 break; 3211 case SPF_FMAXNUM: 3212 switch (SPR.NaNBehavior) { 3213 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3214 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3215 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3216 case SPNB_RETURNS_ANY: 3217 3218 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3219 Opc = ISD::FMAXNUM; 3220 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3221 Opc = ISD::FMAXIMUM; 3222 else if (UseScalarMinMax) 3223 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3224 ISD::FMAXNUM : ISD::FMAXIMUM; 3225 break; 3226 } 3227 break; 3228 case SPF_ABS: 3229 IsUnaryAbs = true; 3230 Opc = ISD::ABS; 3231 break; 3232 case SPF_NABS: 3233 // TODO: we need to produce sub(0, abs(X)). 3234 default: break; 3235 } 3236 3237 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3238 (TLI.isOperationLegalOrCustom(Opc, VT) || 3239 (UseScalarMinMax && 3240 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3241 // If the underlying comparison instruction is used by any other 3242 // instruction, the consumed instructions won't be destroyed, so it is 3243 // not profitable to convert to a min/max. 3244 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3245 OpCode = Opc; 3246 LHSVal = getValue(LHS); 3247 RHSVal = getValue(RHS); 3248 BaseOps.clear(); 3249 } 3250 3251 if (IsUnaryAbs) { 3252 OpCode = Opc; 3253 LHSVal = getValue(LHS); 3254 BaseOps.clear(); 3255 } 3256 } 3257 3258 if (IsUnaryAbs) { 3259 for (unsigned i = 0; i != NumValues; ++i) { 3260 Values[i] = 3261 DAG.getNode(OpCode, getCurSDLoc(), 3262 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3263 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3264 } 3265 } else { 3266 for (unsigned i = 0; i != NumValues; ++i) { 3267 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3268 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3269 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3270 Values[i] = DAG.getNode( 3271 OpCode, getCurSDLoc(), 3272 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); 3273 } 3274 } 3275 3276 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3277 DAG.getVTList(ValueVTs), Values)); 3278 } 3279 3280 void SelectionDAGBuilder::visitTrunc(const User &I) { 3281 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3282 SDValue N = getValue(I.getOperand(0)); 3283 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3284 I.getType()); 3285 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3286 } 3287 3288 void SelectionDAGBuilder::visitZExt(const User &I) { 3289 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3290 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3291 SDValue N = getValue(I.getOperand(0)); 3292 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3293 I.getType()); 3294 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3295 } 3296 3297 void SelectionDAGBuilder::visitSExt(const User &I) { 3298 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3299 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3300 SDValue N = getValue(I.getOperand(0)); 3301 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3302 I.getType()); 3303 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3304 } 3305 3306 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3307 // FPTrunc is never a no-op cast, no need to check 3308 SDValue N = getValue(I.getOperand(0)); 3309 SDLoc dl = getCurSDLoc(); 3310 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3311 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3312 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3313 DAG.getTargetConstant( 3314 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3315 } 3316 3317 void SelectionDAGBuilder::visitFPExt(const User &I) { 3318 // FPExt is never a no-op cast, no need to check 3319 SDValue N = getValue(I.getOperand(0)); 3320 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3321 I.getType()); 3322 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3323 } 3324 3325 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3326 // FPToUI is never a no-op cast, no need to check 3327 SDValue N = getValue(I.getOperand(0)); 3328 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3329 I.getType()); 3330 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3331 } 3332 3333 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3334 // FPToSI is never a no-op cast, no need to check 3335 SDValue N = getValue(I.getOperand(0)); 3336 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3337 I.getType()); 3338 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3339 } 3340 3341 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3342 // UIToFP is never a no-op cast, no need to check 3343 SDValue N = getValue(I.getOperand(0)); 3344 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3345 I.getType()); 3346 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3347 } 3348 3349 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3350 // SIToFP is never a no-op cast, no need to check 3351 SDValue N = getValue(I.getOperand(0)); 3352 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3353 I.getType()); 3354 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3355 } 3356 3357 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3358 // What to do depends on the size of the integer and the size of the pointer. 3359 // We can either truncate, zero extend, or no-op, accordingly. 3360 SDValue N = getValue(I.getOperand(0)); 3361 auto &TLI = DAG.getTargetLoweringInfo(); 3362 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3363 I.getType()); 3364 EVT PtrMemVT = 3365 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3366 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3367 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3368 setValue(&I, N); 3369 } 3370 3371 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3372 // What to do depends on the size of the integer and the size of the pointer. 3373 // We can either truncate, zero extend, or no-op, accordingly. 3374 SDValue N = getValue(I.getOperand(0)); 3375 auto &TLI = DAG.getTargetLoweringInfo(); 3376 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3377 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3378 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3379 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3380 setValue(&I, N); 3381 } 3382 3383 void SelectionDAGBuilder::visitBitCast(const User &I) { 3384 SDValue N = getValue(I.getOperand(0)); 3385 SDLoc dl = getCurSDLoc(); 3386 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3387 I.getType()); 3388 3389 // BitCast assures us that source and destination are the same size so this is 3390 // either a BITCAST or a no-op. 3391 if (DestVT != N.getValueType()) 3392 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3393 DestVT, N)); // convert types. 3394 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3395 // might fold any kind of constant expression to an integer constant and that 3396 // is not what we are looking for. Only recognize a bitcast of a genuine 3397 // constant integer as an opaque constant. 3398 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3399 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3400 /*isOpaque*/true)); 3401 else 3402 setValue(&I, N); // noop cast. 3403 } 3404 3405 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3406 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3407 const Value *SV = I.getOperand(0); 3408 SDValue N = getValue(SV); 3409 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3410 3411 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3412 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3413 3414 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3415 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3416 3417 setValue(&I, N); 3418 } 3419 3420 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3421 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3422 SDValue InVec = getValue(I.getOperand(0)); 3423 SDValue InVal = getValue(I.getOperand(1)); 3424 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3425 TLI.getVectorIdxTy(DAG.getDataLayout())); 3426 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3427 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3428 InVec, InVal, InIdx)); 3429 } 3430 3431 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3432 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3433 SDValue InVec = getValue(I.getOperand(0)); 3434 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3435 TLI.getVectorIdxTy(DAG.getDataLayout())); 3436 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3437 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3438 InVec, InIdx)); 3439 } 3440 3441 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3442 SDValue Src1 = getValue(I.getOperand(0)); 3443 SDValue Src2 = getValue(I.getOperand(1)); 3444 ArrayRef<int> Mask; 3445 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3446 Mask = SVI->getShuffleMask(); 3447 else 3448 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3449 SDLoc DL = getCurSDLoc(); 3450 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3451 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3452 EVT SrcVT = Src1.getValueType(); 3453 3454 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3455 VT.isScalableVector()) { 3456 // Canonical splat form of first element of first input vector. 3457 SDValue FirstElt = 3458 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3459 DAG.getVectorIdxConstant(0, DL)); 3460 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3461 return; 3462 } 3463 3464 // For now, we only handle splats for scalable vectors. 3465 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3466 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3467 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3468 3469 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3470 unsigned MaskNumElts = Mask.size(); 3471 3472 if (SrcNumElts == MaskNumElts) { 3473 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3474 return; 3475 } 3476 3477 // Normalize the shuffle vector since mask and vector length don't match. 3478 if (SrcNumElts < MaskNumElts) { 3479 // Mask is longer than the source vectors. We can use concatenate vector to 3480 // make the mask and vectors lengths match. 3481 3482 if (MaskNumElts % SrcNumElts == 0) { 3483 // Mask length is a multiple of the source vector length. 3484 // Check if the shuffle is some kind of concatenation of the input 3485 // vectors. 3486 unsigned NumConcat = MaskNumElts / SrcNumElts; 3487 bool IsConcat = true; 3488 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3489 for (unsigned i = 0; i != MaskNumElts; ++i) { 3490 int Idx = Mask[i]; 3491 if (Idx < 0) 3492 continue; 3493 // Ensure the indices in each SrcVT sized piece are sequential and that 3494 // the same source is used for the whole piece. 3495 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3496 (ConcatSrcs[i / SrcNumElts] >= 0 && 3497 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3498 IsConcat = false; 3499 break; 3500 } 3501 // Remember which source this index came from. 3502 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3503 } 3504 3505 // The shuffle is concatenating multiple vectors together. Just emit 3506 // a CONCAT_VECTORS operation. 3507 if (IsConcat) { 3508 SmallVector<SDValue, 8> ConcatOps; 3509 for (auto Src : ConcatSrcs) { 3510 if (Src < 0) 3511 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3512 else if (Src == 0) 3513 ConcatOps.push_back(Src1); 3514 else 3515 ConcatOps.push_back(Src2); 3516 } 3517 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3518 return; 3519 } 3520 } 3521 3522 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3523 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3524 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3525 PaddedMaskNumElts); 3526 3527 // Pad both vectors with undefs to make them the same length as the mask. 3528 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3529 3530 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3531 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3532 MOps1[0] = Src1; 3533 MOps2[0] = Src2; 3534 3535 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3536 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3537 3538 // Readjust mask for new input vector length. 3539 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3540 for (unsigned i = 0; i != MaskNumElts; ++i) { 3541 int Idx = Mask[i]; 3542 if (Idx >= (int)SrcNumElts) 3543 Idx -= SrcNumElts - PaddedMaskNumElts; 3544 MappedOps[i] = Idx; 3545 } 3546 3547 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3548 3549 // If the concatenated vector was padded, extract a subvector with the 3550 // correct number of elements. 3551 if (MaskNumElts != PaddedMaskNumElts) 3552 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3553 DAG.getVectorIdxConstant(0, DL)); 3554 3555 setValue(&I, Result); 3556 return; 3557 } 3558 3559 if (SrcNumElts > MaskNumElts) { 3560 // Analyze the access pattern of the vector to see if we can extract 3561 // two subvectors and do the shuffle. 3562 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3563 bool CanExtract = true; 3564 for (int Idx : Mask) { 3565 unsigned Input = 0; 3566 if (Idx < 0) 3567 continue; 3568 3569 if (Idx >= (int)SrcNumElts) { 3570 Input = 1; 3571 Idx -= SrcNumElts; 3572 } 3573 3574 // If all the indices come from the same MaskNumElts sized portion of 3575 // the sources we can use extract. Also make sure the extract wouldn't 3576 // extract past the end of the source. 3577 int NewStartIdx = alignDown(Idx, MaskNumElts); 3578 if (NewStartIdx + MaskNumElts > SrcNumElts || 3579 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3580 CanExtract = false; 3581 // Make sure we always update StartIdx as we use it to track if all 3582 // elements are undef. 3583 StartIdx[Input] = NewStartIdx; 3584 } 3585 3586 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3587 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3588 return; 3589 } 3590 if (CanExtract) { 3591 // Extract appropriate subvector and generate a vector shuffle 3592 for (unsigned Input = 0; Input < 2; ++Input) { 3593 SDValue &Src = Input == 0 ? Src1 : Src2; 3594 if (StartIdx[Input] < 0) 3595 Src = DAG.getUNDEF(VT); 3596 else { 3597 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3598 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3599 } 3600 } 3601 3602 // Calculate new mask. 3603 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3604 for (int &Idx : MappedOps) { 3605 if (Idx >= (int)SrcNumElts) 3606 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3607 else if (Idx >= 0) 3608 Idx -= StartIdx[0]; 3609 } 3610 3611 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3612 return; 3613 } 3614 } 3615 3616 // We can't use either concat vectors or extract subvectors so fall back to 3617 // replacing the shuffle with extract and build vector. 3618 // to insert and build vector. 3619 EVT EltVT = VT.getVectorElementType(); 3620 SmallVector<SDValue,8> Ops; 3621 for (int Idx : Mask) { 3622 SDValue Res; 3623 3624 if (Idx < 0) { 3625 Res = DAG.getUNDEF(EltVT); 3626 } else { 3627 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3628 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3629 3630 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3631 DAG.getVectorIdxConstant(Idx, DL)); 3632 } 3633 3634 Ops.push_back(Res); 3635 } 3636 3637 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3638 } 3639 3640 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3641 ArrayRef<unsigned> Indices; 3642 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3643 Indices = IV->getIndices(); 3644 else 3645 Indices = cast<ConstantExpr>(&I)->getIndices(); 3646 3647 const Value *Op0 = I.getOperand(0); 3648 const Value *Op1 = I.getOperand(1); 3649 Type *AggTy = I.getType(); 3650 Type *ValTy = Op1->getType(); 3651 bool IntoUndef = isa<UndefValue>(Op0); 3652 bool FromUndef = isa<UndefValue>(Op1); 3653 3654 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3655 3656 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3657 SmallVector<EVT, 4> AggValueVTs; 3658 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3659 SmallVector<EVT, 4> ValValueVTs; 3660 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3661 3662 unsigned NumAggValues = AggValueVTs.size(); 3663 unsigned NumValValues = ValValueVTs.size(); 3664 SmallVector<SDValue, 4> Values(NumAggValues); 3665 3666 // Ignore an insertvalue that produces an empty object 3667 if (!NumAggValues) { 3668 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3669 return; 3670 } 3671 3672 SDValue Agg = getValue(Op0); 3673 unsigned i = 0; 3674 // Copy the beginning value(s) from the original aggregate. 3675 for (; i != LinearIndex; ++i) 3676 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3677 SDValue(Agg.getNode(), Agg.getResNo() + i); 3678 // Copy values from the inserted value(s). 3679 if (NumValValues) { 3680 SDValue Val = getValue(Op1); 3681 for (; i != LinearIndex + NumValValues; ++i) 3682 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3683 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3684 } 3685 // Copy remaining value(s) from the original aggregate. 3686 for (; i != NumAggValues; ++i) 3687 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3688 SDValue(Agg.getNode(), Agg.getResNo() + i); 3689 3690 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3691 DAG.getVTList(AggValueVTs), Values)); 3692 } 3693 3694 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3695 ArrayRef<unsigned> Indices; 3696 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3697 Indices = EV->getIndices(); 3698 else 3699 Indices = cast<ConstantExpr>(&I)->getIndices(); 3700 3701 const Value *Op0 = I.getOperand(0); 3702 Type *AggTy = Op0->getType(); 3703 Type *ValTy = I.getType(); 3704 bool OutOfUndef = isa<UndefValue>(Op0); 3705 3706 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3707 3708 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3709 SmallVector<EVT, 4> ValValueVTs; 3710 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3711 3712 unsigned NumValValues = ValValueVTs.size(); 3713 3714 // Ignore a extractvalue that produces an empty object 3715 if (!NumValValues) { 3716 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3717 return; 3718 } 3719 3720 SmallVector<SDValue, 4> Values(NumValValues); 3721 3722 SDValue Agg = getValue(Op0); 3723 // Copy out the selected value(s). 3724 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3725 Values[i - LinearIndex] = 3726 OutOfUndef ? 3727 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3728 SDValue(Agg.getNode(), Agg.getResNo() + i); 3729 3730 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3731 DAG.getVTList(ValValueVTs), Values)); 3732 } 3733 3734 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3735 Value *Op0 = I.getOperand(0); 3736 // Note that the pointer operand may be a vector of pointers. Take the scalar 3737 // element which holds a pointer. 3738 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3739 SDValue N = getValue(Op0); 3740 SDLoc dl = getCurSDLoc(); 3741 auto &TLI = DAG.getTargetLoweringInfo(); 3742 3743 // Normalize Vector GEP - all scalar operands should be converted to the 3744 // splat vector. 3745 bool IsVectorGEP = I.getType()->isVectorTy(); 3746 ElementCount VectorElementCount = 3747 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3748 : ElementCount(0, false); 3749 3750 if (IsVectorGEP && !N.getValueType().isVector()) { 3751 LLVMContext &Context = *DAG.getContext(); 3752 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3753 if (VectorElementCount.Scalable) 3754 N = DAG.getSplatVector(VT, dl, N); 3755 else 3756 N = DAG.getSplatBuildVector(VT, dl, N); 3757 } 3758 3759 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3760 GTI != E; ++GTI) { 3761 const Value *Idx = GTI.getOperand(); 3762 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3763 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3764 if (Field) { 3765 // N = N + Offset 3766 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3767 3768 // In an inbounds GEP with an offset that is nonnegative even when 3769 // interpreted as signed, assume there is no unsigned overflow. 3770 SDNodeFlags Flags; 3771 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3772 Flags.setNoUnsignedWrap(true); 3773 3774 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3775 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3776 } 3777 } else { 3778 // IdxSize is the width of the arithmetic according to IR semantics. 3779 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3780 // (and fix up the result later). 3781 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3782 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3783 TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 3784 // We intentionally mask away the high bits here; ElementSize may not 3785 // fit in IdxTy. 3786 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3787 bool ElementScalable = ElementSize.isScalable(); 3788 3789 // If this is a scalar constant or a splat vector of constants, 3790 // handle it quickly. 3791 const auto *C = dyn_cast<Constant>(Idx); 3792 if (C && isa<VectorType>(C->getType())) 3793 C = C->getSplatValue(); 3794 3795 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3796 if (CI && CI->isZero()) 3797 continue; 3798 if (CI && !ElementScalable) { 3799 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3800 LLVMContext &Context = *DAG.getContext(); 3801 SDValue OffsVal; 3802 if (IsVectorGEP) 3803 OffsVal = DAG.getConstant( 3804 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3805 else 3806 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3807 3808 // In an inbounds GEP with an offset that is nonnegative even when 3809 // interpreted as signed, assume there is no unsigned overflow. 3810 SDNodeFlags Flags; 3811 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3812 Flags.setNoUnsignedWrap(true); 3813 3814 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3815 3816 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3817 continue; 3818 } 3819 3820 // N = N + Idx * ElementMul; 3821 SDValue IdxN = getValue(Idx); 3822 3823 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3824 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3825 VectorElementCount); 3826 if (VectorElementCount.Scalable) 3827 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3828 else 3829 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3830 } 3831 3832 // If the index is smaller or larger than intptr_t, truncate or extend 3833 // it. 3834 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3835 3836 if (ElementScalable) { 3837 EVT VScaleTy = N.getValueType().getScalarType(); 3838 SDValue VScale = DAG.getNode( 3839 ISD::VSCALE, dl, VScaleTy, 3840 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3841 if (IsVectorGEP) 3842 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3843 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3844 } else { 3845 // If this is a multiply by a power of two, turn it into a shl 3846 // immediately. This is a very common case. 3847 if (ElementMul != 1) { 3848 if (ElementMul.isPowerOf2()) { 3849 unsigned Amt = ElementMul.logBase2(); 3850 IdxN = DAG.getNode(ISD::SHL, dl, 3851 N.getValueType(), IdxN, 3852 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3853 } else { 3854 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3855 IdxN.getValueType()); 3856 IdxN = DAG.getNode(ISD::MUL, dl, 3857 N.getValueType(), IdxN, Scale); 3858 } 3859 } 3860 } 3861 3862 N = DAG.getNode(ISD::ADD, dl, 3863 N.getValueType(), N, IdxN); 3864 } 3865 } 3866 3867 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3868 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3869 if (IsVectorGEP) { 3870 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 3871 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 3872 } 3873 3874 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3875 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3876 3877 setValue(&I, N); 3878 } 3879 3880 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3881 // If this is a fixed sized alloca in the entry block of the function, 3882 // allocate it statically on the stack. 3883 if (FuncInfo.StaticAllocaMap.count(&I)) 3884 return; // getValue will auto-populate this. 3885 3886 SDLoc dl = getCurSDLoc(); 3887 Type *Ty = I.getAllocatedType(); 3888 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3889 auto &DL = DAG.getDataLayout(); 3890 uint64_t TySize = DL.getTypeAllocSize(Ty); 3891 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 3892 3893 SDValue AllocSize = getValue(I.getArraySize()); 3894 3895 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3896 if (AllocSize.getValueType() != IntPtr) 3897 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3898 3899 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3900 AllocSize, 3901 DAG.getConstant(TySize, dl, IntPtr)); 3902 3903 // Handle alignment. If the requested alignment is less than or equal to 3904 // the stack alignment, ignore it. If the size is greater than or equal to 3905 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3906 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 3907 if (*Alignment <= StackAlign) 3908 Alignment = None; 3909 3910 const uint64_t StackAlignMask = StackAlign.value() - 1U; 3911 // Round the size of the allocation up to the stack alignment size 3912 // by add SA-1 to the size. This doesn't overflow because we're computing 3913 // an address inside an alloca. 3914 SDNodeFlags Flags; 3915 Flags.setNoUnsignedWrap(true); 3916 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3917 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 3918 3919 // Mask out the low bits for alignment purposes. 3920 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3921 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 3922 3923 SDValue Ops[] = { 3924 getRoot(), AllocSize, 3925 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 3926 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3927 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3928 setValue(&I, DSA); 3929 DAG.setRoot(DSA.getValue(1)); 3930 3931 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3932 } 3933 3934 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3935 if (I.isAtomic()) 3936 return visitAtomicLoad(I); 3937 3938 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3939 const Value *SV = I.getOperand(0); 3940 if (TLI.supportSwiftError()) { 3941 // Swifterror values can come from either a function parameter with 3942 // swifterror attribute or an alloca with swifterror attribute. 3943 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3944 if (Arg->hasSwiftErrorAttr()) 3945 return visitLoadFromSwiftError(I); 3946 } 3947 3948 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3949 if (Alloca->isSwiftError()) 3950 return visitLoadFromSwiftError(I); 3951 } 3952 } 3953 3954 SDValue Ptr = getValue(SV); 3955 3956 Type *Ty = I.getType(); 3957 Align Alignment = I.getAlign(); 3958 3959 AAMDNodes AAInfo; 3960 I.getAAMetadata(AAInfo); 3961 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3962 3963 SmallVector<EVT, 4> ValueVTs, MemVTs; 3964 SmallVector<uint64_t, 4> Offsets; 3965 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 3966 unsigned NumValues = ValueVTs.size(); 3967 if (NumValues == 0) 3968 return; 3969 3970 bool isVolatile = I.isVolatile(); 3971 3972 SDValue Root; 3973 bool ConstantMemory = false; 3974 if (isVolatile) 3975 // Serialize volatile loads with other side effects. 3976 Root = getRoot(); 3977 else if (NumValues > MaxParallelChains) 3978 Root = getMemoryRoot(); 3979 else if (AA && 3980 AA->pointsToConstantMemory(MemoryLocation( 3981 SV, 3982 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 3983 AAInfo))) { 3984 // Do not serialize (non-volatile) loads of constant memory with anything. 3985 Root = DAG.getEntryNode(); 3986 ConstantMemory = true; 3987 } else { 3988 // Do not serialize non-volatile loads against each other. 3989 Root = DAG.getRoot(); 3990 } 3991 3992 SDLoc dl = getCurSDLoc(); 3993 3994 if (isVolatile) 3995 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3996 3997 // An aggregate load cannot wrap around the address space, so offsets to its 3998 // parts don't wrap either. 3999 SDNodeFlags Flags; 4000 Flags.setNoUnsignedWrap(true); 4001 4002 SmallVector<SDValue, 4> Values(NumValues); 4003 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4004 EVT PtrVT = Ptr.getValueType(); 4005 4006 MachineMemOperand::Flags MMOFlags 4007 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4008 4009 unsigned ChainI = 0; 4010 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4011 // Serializing loads here may result in excessive register pressure, and 4012 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4013 // could recover a bit by hoisting nodes upward in the chain by recognizing 4014 // they are side-effect free or do not alias. The optimizer should really 4015 // avoid this case by converting large object/array copies to llvm.memcpy 4016 // (MaxParallelChains should always remain as failsafe). 4017 if (ChainI == MaxParallelChains) { 4018 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4019 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4020 makeArrayRef(Chains.data(), ChainI)); 4021 Root = Chain; 4022 ChainI = 0; 4023 } 4024 SDValue A = DAG.getNode(ISD::ADD, dl, 4025 PtrVT, Ptr, 4026 DAG.getConstant(Offsets[i], dl, PtrVT), 4027 Flags); 4028 4029 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4030 MachinePointerInfo(SV, Offsets[i]), Alignment, 4031 MMOFlags, AAInfo, Ranges); 4032 Chains[ChainI] = L.getValue(1); 4033 4034 if (MemVTs[i] != ValueVTs[i]) 4035 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4036 4037 Values[i] = L; 4038 } 4039 4040 if (!ConstantMemory) { 4041 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4042 makeArrayRef(Chains.data(), ChainI)); 4043 if (isVolatile) 4044 DAG.setRoot(Chain); 4045 else 4046 PendingLoads.push_back(Chain); 4047 } 4048 4049 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4050 DAG.getVTList(ValueVTs), Values)); 4051 } 4052 4053 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4054 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4055 "call visitStoreToSwiftError when backend supports swifterror"); 4056 4057 SmallVector<EVT, 4> ValueVTs; 4058 SmallVector<uint64_t, 4> Offsets; 4059 const Value *SrcV = I.getOperand(0); 4060 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4061 SrcV->getType(), ValueVTs, &Offsets); 4062 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4063 "expect a single EVT for swifterror"); 4064 4065 SDValue Src = getValue(SrcV); 4066 // Create a virtual register, then update the virtual register. 4067 Register VReg = 4068 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4069 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4070 // Chain can be getRoot or getControlRoot. 4071 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4072 SDValue(Src.getNode(), Src.getResNo())); 4073 DAG.setRoot(CopyNode); 4074 } 4075 4076 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4077 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4078 "call visitLoadFromSwiftError when backend supports swifterror"); 4079 4080 assert(!I.isVolatile() && 4081 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4082 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4083 "Support volatile, non temporal, invariant for load_from_swift_error"); 4084 4085 const Value *SV = I.getOperand(0); 4086 Type *Ty = I.getType(); 4087 AAMDNodes AAInfo; 4088 I.getAAMetadata(AAInfo); 4089 assert( 4090 (!AA || 4091 !AA->pointsToConstantMemory(MemoryLocation( 4092 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4093 AAInfo))) && 4094 "load_from_swift_error should not be constant memory"); 4095 4096 SmallVector<EVT, 4> ValueVTs; 4097 SmallVector<uint64_t, 4> Offsets; 4098 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4099 ValueVTs, &Offsets); 4100 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4101 "expect a single EVT for swifterror"); 4102 4103 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4104 SDValue L = DAG.getCopyFromReg( 4105 getRoot(), getCurSDLoc(), 4106 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4107 4108 setValue(&I, L); 4109 } 4110 4111 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4112 if (I.isAtomic()) 4113 return visitAtomicStore(I); 4114 4115 const Value *SrcV = I.getOperand(0); 4116 const Value *PtrV = I.getOperand(1); 4117 4118 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4119 if (TLI.supportSwiftError()) { 4120 // Swifterror values can come from either a function parameter with 4121 // swifterror attribute or an alloca with swifterror attribute. 4122 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4123 if (Arg->hasSwiftErrorAttr()) 4124 return visitStoreToSwiftError(I); 4125 } 4126 4127 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4128 if (Alloca->isSwiftError()) 4129 return visitStoreToSwiftError(I); 4130 } 4131 } 4132 4133 SmallVector<EVT, 4> ValueVTs, MemVTs; 4134 SmallVector<uint64_t, 4> Offsets; 4135 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4136 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4137 unsigned NumValues = ValueVTs.size(); 4138 if (NumValues == 0) 4139 return; 4140 4141 // Get the lowered operands. Note that we do this after 4142 // checking if NumResults is zero, because with zero results 4143 // the operands won't have values in the map. 4144 SDValue Src = getValue(SrcV); 4145 SDValue Ptr = getValue(PtrV); 4146 4147 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4148 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4149 SDLoc dl = getCurSDLoc(); 4150 Align Alignment = I.getAlign(); 4151 AAMDNodes AAInfo; 4152 I.getAAMetadata(AAInfo); 4153 4154 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4155 4156 // An aggregate load cannot wrap around the address space, so offsets to its 4157 // parts don't wrap either. 4158 SDNodeFlags Flags; 4159 Flags.setNoUnsignedWrap(true); 4160 4161 unsigned ChainI = 0; 4162 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4163 // See visitLoad comments. 4164 if (ChainI == MaxParallelChains) { 4165 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4166 makeArrayRef(Chains.data(), ChainI)); 4167 Root = Chain; 4168 ChainI = 0; 4169 } 4170 SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags); 4171 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4172 if (MemVTs[i] != ValueVTs[i]) 4173 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4174 SDValue St = 4175 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4176 Alignment, MMOFlags, AAInfo); 4177 Chains[ChainI] = St; 4178 } 4179 4180 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4181 makeArrayRef(Chains.data(), ChainI)); 4182 DAG.setRoot(StoreNode); 4183 } 4184 4185 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4186 bool IsCompressing) { 4187 SDLoc sdl = getCurSDLoc(); 4188 4189 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4190 MaybeAlign &Alignment) { 4191 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4192 Src0 = I.getArgOperand(0); 4193 Ptr = I.getArgOperand(1); 4194 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4195 Mask = I.getArgOperand(3); 4196 }; 4197 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4198 MaybeAlign &Alignment) { 4199 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4200 Src0 = I.getArgOperand(0); 4201 Ptr = I.getArgOperand(1); 4202 Mask = I.getArgOperand(2); 4203 Alignment = None; 4204 }; 4205 4206 Value *PtrOperand, *MaskOperand, *Src0Operand; 4207 MaybeAlign Alignment; 4208 if (IsCompressing) 4209 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4210 else 4211 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4212 4213 SDValue Ptr = getValue(PtrOperand); 4214 SDValue Src0 = getValue(Src0Operand); 4215 SDValue Mask = getValue(MaskOperand); 4216 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4217 4218 EVT VT = Src0.getValueType(); 4219 if (!Alignment) 4220 Alignment = DAG.getEVTAlign(VT); 4221 4222 AAMDNodes AAInfo; 4223 I.getAAMetadata(AAInfo); 4224 4225 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4226 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4227 // TODO: Make MachineMemOperands aware of scalable 4228 // vectors. 4229 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo); 4230 SDValue StoreNode = 4231 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4232 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4233 DAG.setRoot(StoreNode); 4234 setValue(&I, StoreNode); 4235 } 4236 4237 // Get a uniform base for the Gather/Scatter intrinsic. 4238 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4239 // We try to represent it as a base pointer + vector of indices. 4240 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4241 // The first operand of the GEP may be a single pointer or a vector of pointers 4242 // Example: 4243 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4244 // or 4245 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4246 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4247 // 4248 // When the first GEP operand is a single pointer - it is the uniform base we 4249 // are looking for. If first operand of the GEP is a splat vector - we 4250 // extract the splat value and use it as a uniform base. 4251 // In all other cases the function returns 'false'. 4252 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4253 ISD::MemIndexType &IndexType, SDValue &Scale, 4254 SelectionDAGBuilder *SDB, const BasicBlock *CurBB) { 4255 SelectionDAG& DAG = SDB->DAG; 4256 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4257 const DataLayout &DL = DAG.getDataLayout(); 4258 4259 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4260 4261 // Handle splat constant pointer. 4262 if (auto *C = dyn_cast<Constant>(Ptr)) { 4263 C = C->getSplatValue(); 4264 if (!C) 4265 return false; 4266 4267 Base = SDB->getValue(C); 4268 4269 unsigned NumElts = cast<FixedVectorType>(Ptr->getType())->getNumElements(); 4270 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4271 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4272 IndexType = ISD::SIGNED_SCALED; 4273 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4274 return true; 4275 } 4276 4277 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4278 if (!GEP || GEP->getParent() != CurBB) 4279 return false; 4280 4281 if (GEP->getNumOperands() != 2) 4282 return false; 4283 4284 const Value *BasePtr = GEP->getPointerOperand(); 4285 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4286 4287 // Make sure the base is scalar and the index is a vector. 4288 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4289 return false; 4290 4291 Base = SDB->getValue(BasePtr); 4292 Index = SDB->getValue(IndexVal); 4293 IndexType = ISD::SIGNED_SCALED; 4294 Scale = DAG.getTargetConstant( 4295 DL.getTypeAllocSize(GEP->getResultElementType()), 4296 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4297 return true; 4298 } 4299 4300 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4301 SDLoc sdl = getCurSDLoc(); 4302 4303 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4304 const Value *Ptr = I.getArgOperand(1); 4305 SDValue Src0 = getValue(I.getArgOperand(0)); 4306 SDValue Mask = getValue(I.getArgOperand(3)); 4307 EVT VT = Src0.getValueType(); 4308 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4309 ->getMaybeAlignValue() 4310 .getValueOr(DAG.getEVTAlign(VT)); 4311 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4312 4313 AAMDNodes AAInfo; 4314 I.getAAMetadata(AAInfo); 4315 4316 SDValue Base; 4317 SDValue Index; 4318 ISD::MemIndexType IndexType; 4319 SDValue Scale; 4320 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4321 I.getParent()); 4322 4323 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4324 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4325 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4326 // TODO: Make MachineMemOperands aware of scalable 4327 // vectors. 4328 MemoryLocation::UnknownSize, Alignment, AAInfo); 4329 if (!UniformBase) { 4330 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4331 Index = getValue(Ptr); 4332 IndexType = ISD::SIGNED_SCALED; 4333 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4334 } 4335 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4336 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4337 Ops, MMO, IndexType); 4338 DAG.setRoot(Scatter); 4339 setValue(&I, Scatter); 4340 } 4341 4342 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4343 SDLoc sdl = getCurSDLoc(); 4344 4345 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4346 MaybeAlign &Alignment) { 4347 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4348 Ptr = I.getArgOperand(0); 4349 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4350 Mask = I.getArgOperand(2); 4351 Src0 = I.getArgOperand(3); 4352 }; 4353 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4354 MaybeAlign &Alignment) { 4355 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4356 Ptr = I.getArgOperand(0); 4357 Alignment = None; 4358 Mask = I.getArgOperand(1); 4359 Src0 = I.getArgOperand(2); 4360 }; 4361 4362 Value *PtrOperand, *MaskOperand, *Src0Operand; 4363 MaybeAlign Alignment; 4364 if (IsExpanding) 4365 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4366 else 4367 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4368 4369 SDValue Ptr = getValue(PtrOperand); 4370 SDValue Src0 = getValue(Src0Operand); 4371 SDValue Mask = getValue(MaskOperand); 4372 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4373 4374 EVT VT = Src0.getValueType(); 4375 if (!Alignment) 4376 Alignment = DAG.getEVTAlign(VT); 4377 4378 AAMDNodes AAInfo; 4379 I.getAAMetadata(AAInfo); 4380 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4381 4382 // Do not serialize masked loads of constant memory with anything. 4383 MemoryLocation ML; 4384 if (VT.isScalableVector()) 4385 ML = MemoryLocation(PtrOperand); 4386 else 4387 ML = MemoryLocation(PtrOperand, LocationSize::precise( 4388 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4389 AAInfo); 4390 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4391 4392 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4393 4394 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4395 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4396 // TODO: Make MachineMemOperands aware of scalable 4397 // vectors. 4398 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges); 4399 4400 SDValue Load = 4401 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4402 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4403 if (AddToChain) 4404 PendingLoads.push_back(Load.getValue(1)); 4405 setValue(&I, Load); 4406 } 4407 4408 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4409 SDLoc sdl = getCurSDLoc(); 4410 4411 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4412 const Value *Ptr = I.getArgOperand(0); 4413 SDValue Src0 = getValue(I.getArgOperand(3)); 4414 SDValue Mask = getValue(I.getArgOperand(2)); 4415 4416 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4417 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4418 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4419 ->getMaybeAlignValue() 4420 .getValueOr(DAG.getEVTAlign(VT)); 4421 4422 AAMDNodes AAInfo; 4423 I.getAAMetadata(AAInfo); 4424 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4425 4426 SDValue Root = DAG.getRoot(); 4427 SDValue Base; 4428 SDValue Index; 4429 ISD::MemIndexType IndexType; 4430 SDValue Scale; 4431 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4432 I.getParent()); 4433 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4434 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4435 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4436 // TODO: Make MachineMemOperands aware of scalable 4437 // vectors. 4438 MemoryLocation::UnknownSize, Alignment, AAInfo, Ranges); 4439 4440 if (!UniformBase) { 4441 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4442 Index = getValue(Ptr); 4443 IndexType = ISD::SIGNED_SCALED; 4444 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4445 } 4446 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4447 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4448 Ops, MMO, IndexType); 4449 4450 PendingLoads.push_back(Gather.getValue(1)); 4451 setValue(&I, Gather); 4452 } 4453 4454 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4455 SDLoc dl = getCurSDLoc(); 4456 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4457 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4458 SyncScope::ID SSID = I.getSyncScopeID(); 4459 4460 SDValue InChain = getRoot(); 4461 4462 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4463 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4464 4465 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4466 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4467 4468 MachineFunction &MF = DAG.getMachineFunction(); 4469 MachineMemOperand *MMO = MF.getMachineMemOperand( 4470 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4471 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4472 FailureOrdering); 4473 4474 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4475 dl, MemVT, VTs, InChain, 4476 getValue(I.getPointerOperand()), 4477 getValue(I.getCompareOperand()), 4478 getValue(I.getNewValOperand()), MMO); 4479 4480 SDValue OutChain = L.getValue(2); 4481 4482 setValue(&I, L); 4483 DAG.setRoot(OutChain); 4484 } 4485 4486 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4487 SDLoc dl = getCurSDLoc(); 4488 ISD::NodeType NT; 4489 switch (I.getOperation()) { 4490 default: llvm_unreachable("Unknown atomicrmw operation"); 4491 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4492 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4493 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4494 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4495 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4496 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4497 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4498 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4499 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4500 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4501 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4502 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4503 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4504 } 4505 AtomicOrdering Ordering = I.getOrdering(); 4506 SyncScope::ID SSID = I.getSyncScopeID(); 4507 4508 SDValue InChain = getRoot(); 4509 4510 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4511 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4512 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4513 4514 MachineFunction &MF = DAG.getMachineFunction(); 4515 MachineMemOperand *MMO = MF.getMachineMemOperand( 4516 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4517 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4518 4519 SDValue L = 4520 DAG.getAtomic(NT, dl, MemVT, InChain, 4521 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4522 MMO); 4523 4524 SDValue OutChain = L.getValue(1); 4525 4526 setValue(&I, L); 4527 DAG.setRoot(OutChain); 4528 } 4529 4530 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4531 SDLoc dl = getCurSDLoc(); 4532 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4533 SDValue Ops[3]; 4534 Ops[0] = getRoot(); 4535 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4536 TLI.getFenceOperandTy(DAG.getDataLayout())); 4537 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4538 TLI.getFenceOperandTy(DAG.getDataLayout())); 4539 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4540 } 4541 4542 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4543 SDLoc dl = getCurSDLoc(); 4544 AtomicOrdering Order = I.getOrdering(); 4545 SyncScope::ID SSID = I.getSyncScopeID(); 4546 4547 SDValue InChain = getRoot(); 4548 4549 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4550 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4551 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4552 4553 if (!TLI.supportsUnalignedAtomics() && 4554 I.getAlignment() < MemVT.getSizeInBits() / 8) 4555 report_fatal_error("Cannot generate unaligned atomic load"); 4556 4557 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4558 4559 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4560 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4561 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4562 4563 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4564 4565 SDValue Ptr = getValue(I.getPointerOperand()); 4566 4567 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4568 // TODO: Once this is better exercised by tests, it should be merged with 4569 // the normal path for loads to prevent future divergence. 4570 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4571 if (MemVT != VT) 4572 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4573 4574 setValue(&I, L); 4575 SDValue OutChain = L.getValue(1); 4576 if (!I.isUnordered()) 4577 DAG.setRoot(OutChain); 4578 else 4579 PendingLoads.push_back(OutChain); 4580 return; 4581 } 4582 4583 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4584 Ptr, MMO); 4585 4586 SDValue OutChain = L.getValue(1); 4587 if (MemVT != VT) 4588 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4589 4590 setValue(&I, L); 4591 DAG.setRoot(OutChain); 4592 } 4593 4594 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4595 SDLoc dl = getCurSDLoc(); 4596 4597 AtomicOrdering Ordering = I.getOrdering(); 4598 SyncScope::ID SSID = I.getSyncScopeID(); 4599 4600 SDValue InChain = getRoot(); 4601 4602 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4603 EVT MemVT = 4604 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4605 4606 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4607 report_fatal_error("Cannot generate unaligned atomic store"); 4608 4609 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4610 4611 MachineFunction &MF = DAG.getMachineFunction(); 4612 MachineMemOperand *MMO = MF.getMachineMemOperand( 4613 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4614 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4615 4616 SDValue Val = getValue(I.getValueOperand()); 4617 if (Val.getValueType() != MemVT) 4618 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4619 SDValue Ptr = getValue(I.getPointerOperand()); 4620 4621 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4622 // TODO: Once this is better exercised by tests, it should be merged with 4623 // the normal path for stores to prevent future divergence. 4624 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4625 DAG.setRoot(S); 4626 return; 4627 } 4628 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4629 Ptr, Val, MMO); 4630 4631 4632 DAG.setRoot(OutChain); 4633 } 4634 4635 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4636 /// node. 4637 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4638 unsigned Intrinsic) { 4639 // Ignore the callsite's attributes. A specific call site may be marked with 4640 // readnone, but the lowering code will expect the chain based on the 4641 // definition. 4642 const Function *F = I.getCalledFunction(); 4643 bool HasChain = !F->doesNotAccessMemory(); 4644 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4645 4646 // Build the operand list. 4647 SmallVector<SDValue, 8> Ops; 4648 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4649 if (OnlyLoad) { 4650 // We don't need to serialize loads against other loads. 4651 Ops.push_back(DAG.getRoot()); 4652 } else { 4653 Ops.push_back(getRoot()); 4654 } 4655 } 4656 4657 // Info is set by getTgtMemInstrinsic 4658 TargetLowering::IntrinsicInfo Info; 4659 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4660 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4661 DAG.getMachineFunction(), 4662 Intrinsic); 4663 4664 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4665 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4666 Info.opc == ISD::INTRINSIC_W_CHAIN) 4667 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4668 TLI.getPointerTy(DAG.getDataLayout()))); 4669 4670 // Add all operands of the call to the operand list. 4671 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4672 const Value *Arg = I.getArgOperand(i); 4673 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4674 Ops.push_back(getValue(Arg)); 4675 continue; 4676 } 4677 4678 // Use TargetConstant instead of a regular constant for immarg. 4679 EVT VT = TLI.getValueType(*DL, Arg->getType(), true); 4680 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4681 assert(CI->getBitWidth() <= 64 && 4682 "large intrinsic immediates not handled"); 4683 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4684 } else { 4685 Ops.push_back( 4686 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4687 } 4688 } 4689 4690 SmallVector<EVT, 4> ValueVTs; 4691 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4692 4693 if (HasChain) 4694 ValueVTs.push_back(MVT::Other); 4695 4696 SDVTList VTs = DAG.getVTList(ValueVTs); 4697 4698 // Create the node. 4699 SDValue Result; 4700 if (IsTgtIntrinsic) { 4701 // This is target intrinsic that touches memory 4702 AAMDNodes AAInfo; 4703 I.getAAMetadata(AAInfo); 4704 Result = 4705 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4706 MachinePointerInfo(Info.ptrVal, Info.offset), 4707 Info.align, Info.flags, Info.size, AAInfo); 4708 } else if (!HasChain) { 4709 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4710 } else if (!I.getType()->isVoidTy()) { 4711 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4712 } else { 4713 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4714 } 4715 4716 if (HasChain) { 4717 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4718 if (OnlyLoad) 4719 PendingLoads.push_back(Chain); 4720 else 4721 DAG.setRoot(Chain); 4722 } 4723 4724 if (!I.getType()->isVoidTy()) { 4725 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4726 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4727 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4728 } else 4729 Result = lowerRangeToAssertZExt(DAG, I, Result); 4730 4731 MaybeAlign Alignment = I.getRetAlign(); 4732 if (!Alignment) 4733 Alignment = F->getAttributes().getRetAlignment(); 4734 // Insert `assertalign` node if there's an alignment. 4735 if (InsertAssertAlign && Alignment) { 4736 Result = 4737 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4738 } 4739 4740 setValue(&I, Result); 4741 } 4742 } 4743 4744 /// GetSignificand - Get the significand and build it into a floating-point 4745 /// number with exponent of 1: 4746 /// 4747 /// Op = (Op & 0x007fffff) | 0x3f800000; 4748 /// 4749 /// where Op is the hexadecimal representation of floating point value. 4750 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4751 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4752 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4753 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4754 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4755 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4756 } 4757 4758 /// GetExponent - Get the exponent: 4759 /// 4760 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4761 /// 4762 /// where Op is the hexadecimal representation of floating point value. 4763 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4764 const TargetLowering &TLI, const SDLoc &dl) { 4765 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4766 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4767 SDValue t1 = DAG.getNode( 4768 ISD::SRL, dl, MVT::i32, t0, 4769 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4770 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4771 DAG.getConstant(127, dl, MVT::i32)); 4772 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4773 } 4774 4775 /// getF32Constant - Get 32-bit floating point constant. 4776 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4777 const SDLoc &dl) { 4778 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4779 MVT::f32); 4780 } 4781 4782 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4783 SelectionDAG &DAG) { 4784 // TODO: What fast-math-flags should be set on the floating-point nodes? 4785 4786 // IntegerPartOfX = ((int32_t)(t0); 4787 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4788 4789 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4790 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4791 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4792 4793 // IntegerPartOfX <<= 23; 4794 IntegerPartOfX = DAG.getNode( 4795 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4796 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4797 DAG.getDataLayout()))); 4798 4799 SDValue TwoToFractionalPartOfX; 4800 if (LimitFloatPrecision <= 6) { 4801 // For floating-point precision of 6: 4802 // 4803 // TwoToFractionalPartOfX = 4804 // 0.997535578f + 4805 // (0.735607626f + 0.252464424f * x) * x; 4806 // 4807 // error 0.0144103317, which is 6 bits 4808 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4809 getF32Constant(DAG, 0x3e814304, dl)); 4810 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4811 getF32Constant(DAG, 0x3f3c50c8, dl)); 4812 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4813 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4814 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4815 } else if (LimitFloatPrecision <= 12) { 4816 // For floating-point precision of 12: 4817 // 4818 // TwoToFractionalPartOfX = 4819 // 0.999892986f + 4820 // (0.696457318f + 4821 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4822 // 4823 // error 0.000107046256, which is 13 to 14 bits 4824 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4825 getF32Constant(DAG, 0x3da235e3, dl)); 4826 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4827 getF32Constant(DAG, 0x3e65b8f3, dl)); 4828 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4829 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4830 getF32Constant(DAG, 0x3f324b07, dl)); 4831 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4832 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4833 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4834 } else { // LimitFloatPrecision <= 18 4835 // For floating-point precision of 18: 4836 // 4837 // TwoToFractionalPartOfX = 4838 // 0.999999982f + 4839 // (0.693148872f + 4840 // (0.240227044f + 4841 // (0.554906021e-1f + 4842 // (0.961591928e-2f + 4843 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4844 // error 2.47208000*10^(-7), which is better than 18 bits 4845 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4846 getF32Constant(DAG, 0x3924b03e, dl)); 4847 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4848 getF32Constant(DAG, 0x3ab24b87, dl)); 4849 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4850 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4851 getF32Constant(DAG, 0x3c1d8c17, dl)); 4852 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4853 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4854 getF32Constant(DAG, 0x3d634a1d, dl)); 4855 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4856 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4857 getF32Constant(DAG, 0x3e75fe14, dl)); 4858 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4859 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4860 getF32Constant(DAG, 0x3f317234, dl)); 4861 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4862 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4863 getF32Constant(DAG, 0x3f800000, dl)); 4864 } 4865 4866 // Add the exponent into the result in integer domain. 4867 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4868 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4869 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4870 } 4871 4872 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4873 /// limited-precision mode. 4874 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4875 const TargetLowering &TLI) { 4876 if (Op.getValueType() == MVT::f32 && 4877 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4878 4879 // Put the exponent in the right bit position for later addition to the 4880 // final result: 4881 // 4882 // t0 = Op * log2(e) 4883 4884 // TODO: What fast-math-flags should be set here? 4885 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4886 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 4887 return getLimitedPrecisionExp2(t0, dl, DAG); 4888 } 4889 4890 // No special expansion. 4891 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4892 } 4893 4894 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4895 /// limited-precision mode. 4896 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4897 const TargetLowering &TLI) { 4898 // TODO: What fast-math-flags should be set on the floating-point nodes? 4899 4900 if (Op.getValueType() == MVT::f32 && 4901 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4902 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4903 4904 // Scale the exponent by log(2). 4905 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4906 SDValue LogOfExponent = 4907 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4908 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 4909 4910 // Get the significand and build it into a floating-point number with 4911 // exponent of 1. 4912 SDValue X = GetSignificand(DAG, Op1, dl); 4913 4914 SDValue LogOfMantissa; 4915 if (LimitFloatPrecision <= 6) { 4916 // For floating-point precision of 6: 4917 // 4918 // LogofMantissa = 4919 // -1.1609546f + 4920 // (1.4034025f - 0.23903021f * x) * x; 4921 // 4922 // error 0.0034276066, which is better than 8 bits 4923 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4924 getF32Constant(DAG, 0xbe74c456, dl)); 4925 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4926 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4927 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4928 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4929 getF32Constant(DAG, 0x3f949a29, dl)); 4930 } else if (LimitFloatPrecision <= 12) { 4931 // For floating-point precision of 12: 4932 // 4933 // LogOfMantissa = 4934 // -1.7417939f + 4935 // (2.8212026f + 4936 // (-1.4699568f + 4937 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4938 // 4939 // error 0.000061011436, which is 14 bits 4940 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4941 getF32Constant(DAG, 0xbd67b6d6, dl)); 4942 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4943 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4944 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4945 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4946 getF32Constant(DAG, 0x3fbc278b, dl)); 4947 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4948 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4949 getF32Constant(DAG, 0x40348e95, dl)); 4950 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4951 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4952 getF32Constant(DAG, 0x3fdef31a, dl)); 4953 } else { // LimitFloatPrecision <= 18 4954 // For floating-point precision of 18: 4955 // 4956 // LogOfMantissa = 4957 // -2.1072184f + 4958 // (4.2372794f + 4959 // (-3.7029485f + 4960 // (2.2781945f + 4961 // (-0.87823314f + 4962 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4963 // 4964 // error 0.0000023660568, which is better than 18 bits 4965 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4966 getF32Constant(DAG, 0xbc91e5ac, dl)); 4967 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4968 getF32Constant(DAG, 0x3e4350aa, dl)); 4969 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4970 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4971 getF32Constant(DAG, 0x3f60d3e3, dl)); 4972 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4973 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4974 getF32Constant(DAG, 0x4011cdf0, dl)); 4975 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4976 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4977 getF32Constant(DAG, 0x406cfd1c, dl)); 4978 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4979 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4980 getF32Constant(DAG, 0x408797cb, dl)); 4981 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4982 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4983 getF32Constant(DAG, 0x4006dcab, dl)); 4984 } 4985 4986 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4987 } 4988 4989 // No special expansion. 4990 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4991 } 4992 4993 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4994 /// limited-precision mode. 4995 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4996 const TargetLowering &TLI) { 4997 // TODO: What fast-math-flags should be set on the floating-point nodes? 4998 4999 if (Op.getValueType() == MVT::f32 && 5000 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5001 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5002 5003 // Get the exponent. 5004 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5005 5006 // Get the significand and build it into a floating-point number with 5007 // exponent of 1. 5008 SDValue X = GetSignificand(DAG, Op1, dl); 5009 5010 // Different possible minimax approximations of significand in 5011 // floating-point for various degrees of accuracy over [1,2]. 5012 SDValue Log2ofMantissa; 5013 if (LimitFloatPrecision <= 6) { 5014 // For floating-point precision of 6: 5015 // 5016 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5017 // 5018 // error 0.0049451742, which is more than 7 bits 5019 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5020 getF32Constant(DAG, 0xbeb08fe0, dl)); 5021 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5022 getF32Constant(DAG, 0x40019463, dl)); 5023 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5024 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5025 getF32Constant(DAG, 0x3fd6633d, dl)); 5026 } else if (LimitFloatPrecision <= 12) { 5027 // For floating-point precision of 12: 5028 // 5029 // Log2ofMantissa = 5030 // -2.51285454f + 5031 // (4.07009056f + 5032 // (-2.12067489f + 5033 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5034 // 5035 // error 0.0000876136000, which is better than 13 bits 5036 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5037 getF32Constant(DAG, 0xbda7262e, dl)); 5038 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5039 getF32Constant(DAG, 0x3f25280b, dl)); 5040 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5041 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5042 getF32Constant(DAG, 0x4007b923, dl)); 5043 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5044 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5045 getF32Constant(DAG, 0x40823e2f, dl)); 5046 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5047 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5048 getF32Constant(DAG, 0x4020d29c, dl)); 5049 } else { // LimitFloatPrecision <= 18 5050 // For floating-point precision of 18: 5051 // 5052 // Log2ofMantissa = 5053 // -3.0400495f + 5054 // (6.1129976f + 5055 // (-5.3420409f + 5056 // (3.2865683f + 5057 // (-1.2669343f + 5058 // (0.27515199f - 5059 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5060 // 5061 // error 0.0000018516, which is better than 18 bits 5062 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5063 getF32Constant(DAG, 0xbcd2769e, dl)); 5064 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5065 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5066 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5067 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5068 getF32Constant(DAG, 0x3fa22ae7, dl)); 5069 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5070 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5071 getF32Constant(DAG, 0x40525723, dl)); 5072 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5073 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5074 getF32Constant(DAG, 0x40aaf200, dl)); 5075 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5076 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5077 getF32Constant(DAG, 0x40c39dad, dl)); 5078 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5079 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5080 getF32Constant(DAG, 0x4042902c, dl)); 5081 } 5082 5083 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5084 } 5085 5086 // No special expansion. 5087 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5088 } 5089 5090 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5091 /// limited-precision mode. 5092 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5093 const TargetLowering &TLI) { 5094 // TODO: What fast-math-flags should be set on the floating-point nodes? 5095 5096 if (Op.getValueType() == MVT::f32 && 5097 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5098 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5099 5100 // Scale the exponent by log10(2) [0.30102999f]. 5101 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5102 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5103 getF32Constant(DAG, 0x3e9a209a, dl)); 5104 5105 // Get the significand and build it into a floating-point number with 5106 // exponent of 1. 5107 SDValue X = GetSignificand(DAG, Op1, dl); 5108 5109 SDValue Log10ofMantissa; 5110 if (LimitFloatPrecision <= 6) { 5111 // For floating-point precision of 6: 5112 // 5113 // Log10ofMantissa = 5114 // -0.50419619f + 5115 // (0.60948995f - 0.10380950f * x) * x; 5116 // 5117 // error 0.0014886165, which is 6 bits 5118 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5119 getF32Constant(DAG, 0xbdd49a13, dl)); 5120 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5121 getF32Constant(DAG, 0x3f1c0789, dl)); 5122 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5123 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5124 getF32Constant(DAG, 0x3f011300, dl)); 5125 } else if (LimitFloatPrecision <= 12) { 5126 // For floating-point precision of 12: 5127 // 5128 // Log10ofMantissa = 5129 // -0.64831180f + 5130 // (0.91751397f + 5131 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5132 // 5133 // error 0.00019228036, which is better than 12 bits 5134 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5135 getF32Constant(DAG, 0x3d431f31, dl)); 5136 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5137 getF32Constant(DAG, 0x3ea21fb2, dl)); 5138 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5139 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5140 getF32Constant(DAG, 0x3f6ae232, dl)); 5141 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5142 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5143 getF32Constant(DAG, 0x3f25f7c3, dl)); 5144 } else { // LimitFloatPrecision <= 18 5145 // For floating-point precision of 18: 5146 // 5147 // Log10ofMantissa = 5148 // -0.84299375f + 5149 // (1.5327582f + 5150 // (-1.0688956f + 5151 // (0.49102474f + 5152 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5153 // 5154 // error 0.0000037995730, which is better than 18 bits 5155 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5156 getF32Constant(DAG, 0x3c5d51ce, dl)); 5157 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5158 getF32Constant(DAG, 0x3e00685a, dl)); 5159 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5160 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5161 getF32Constant(DAG, 0x3efb6798, dl)); 5162 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5163 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5164 getF32Constant(DAG, 0x3f88d192, dl)); 5165 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5166 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5167 getF32Constant(DAG, 0x3fc4316c, dl)); 5168 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5169 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5170 getF32Constant(DAG, 0x3f57ce70, dl)); 5171 } 5172 5173 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5174 } 5175 5176 // No special expansion. 5177 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5178 } 5179 5180 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5181 /// limited-precision mode. 5182 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5183 const TargetLowering &TLI) { 5184 if (Op.getValueType() == MVT::f32 && 5185 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5186 return getLimitedPrecisionExp2(Op, dl, DAG); 5187 5188 // No special expansion. 5189 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5190 } 5191 5192 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5193 /// limited-precision mode with x == 10.0f. 5194 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5195 SelectionDAG &DAG, const TargetLowering &TLI) { 5196 bool IsExp10 = false; 5197 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5198 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5199 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5200 APFloat Ten(10.0f); 5201 IsExp10 = LHSC->isExactlyValue(Ten); 5202 } 5203 } 5204 5205 // TODO: What fast-math-flags should be set on the FMUL node? 5206 if (IsExp10) { 5207 // Put the exponent in the right bit position for later addition to the 5208 // final result: 5209 // 5210 // #define LOG2OF10 3.3219281f 5211 // t0 = Op * LOG2OF10; 5212 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5213 getF32Constant(DAG, 0x40549a78, dl)); 5214 return getLimitedPrecisionExp2(t0, dl, DAG); 5215 } 5216 5217 // No special expansion. 5218 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5219 } 5220 5221 /// ExpandPowI - Expand a llvm.powi intrinsic. 5222 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5223 SelectionDAG &DAG) { 5224 // If RHS is a constant, we can expand this out to a multiplication tree, 5225 // otherwise we end up lowering to a call to __powidf2 (for example). When 5226 // optimizing for size, we only want to do this if the expansion would produce 5227 // a small number of multiplies, otherwise we do the full expansion. 5228 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5229 // Get the exponent as a positive value. 5230 unsigned Val = RHSC->getSExtValue(); 5231 if ((int)Val < 0) Val = -Val; 5232 5233 // powi(x, 0) -> 1.0 5234 if (Val == 0) 5235 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5236 5237 bool OptForSize = DAG.shouldOptForSize(); 5238 if (!OptForSize || 5239 // If optimizing for size, don't insert too many multiplies. 5240 // This inserts up to 5 multiplies. 5241 countPopulation(Val) + Log2_32(Val) < 7) { 5242 // We use the simple binary decomposition method to generate the multiply 5243 // sequence. There are more optimal ways to do this (for example, 5244 // powi(x,15) generates one more multiply than it should), but this has 5245 // the benefit of being both really simple and much better than a libcall. 5246 SDValue Res; // Logically starts equal to 1.0 5247 SDValue CurSquare = LHS; 5248 // TODO: Intrinsics should have fast-math-flags that propagate to these 5249 // nodes. 5250 while (Val) { 5251 if (Val & 1) { 5252 if (Res.getNode()) 5253 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5254 else 5255 Res = CurSquare; // 1.0*CurSquare. 5256 } 5257 5258 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5259 CurSquare, CurSquare); 5260 Val >>= 1; 5261 } 5262 5263 // If the original was negative, invert the result, producing 1/(x*x*x). 5264 if (RHSC->getSExtValue() < 0) 5265 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5266 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5267 return Res; 5268 } 5269 } 5270 5271 // Otherwise, expand to a libcall. 5272 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5273 } 5274 5275 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5276 SDValue LHS, SDValue RHS, SDValue Scale, 5277 SelectionDAG &DAG, const TargetLowering &TLI) { 5278 EVT VT = LHS.getValueType(); 5279 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5280 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5281 LLVMContext &Ctx = *DAG.getContext(); 5282 5283 // If the type is legal but the operation isn't, this node might survive all 5284 // the way to operation legalization. If we end up there and we do not have 5285 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5286 // node. 5287 5288 // Coax the legalizer into expanding the node during type legalization instead 5289 // by bumping the size by one bit. This will force it to Promote, enabling the 5290 // early expansion and avoiding the need to expand later. 5291 5292 // We don't have to do this if Scale is 0; that can always be expanded, unless 5293 // it's a saturating signed operation. Those can experience true integer 5294 // division overflow, a case which we must avoid. 5295 5296 // FIXME: We wouldn't have to do this (or any of the early 5297 // expansion/promotion) if it was possible to expand a libcall of an 5298 // illegal type during operation legalization. But it's not, so things 5299 // get a bit hacky. 5300 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5301 if ((ScaleInt > 0 || (Saturating && Signed)) && 5302 (TLI.isTypeLegal(VT) || 5303 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5304 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5305 Opcode, VT, ScaleInt); 5306 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5307 EVT PromVT; 5308 if (VT.isScalarInteger()) 5309 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5310 else if (VT.isVector()) { 5311 PromVT = VT.getVectorElementType(); 5312 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5313 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5314 } else 5315 llvm_unreachable("Wrong VT for DIVFIX?"); 5316 if (Signed) { 5317 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5318 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5319 } else { 5320 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5321 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5322 } 5323 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5324 // For saturating operations, we need to shift up the LHS to get the 5325 // proper saturation width, and then shift down again afterwards. 5326 if (Saturating) 5327 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5328 DAG.getConstant(1, DL, ShiftTy)); 5329 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5330 if (Saturating) 5331 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5332 DAG.getConstant(1, DL, ShiftTy)); 5333 return DAG.getZExtOrTrunc(Res, DL, VT); 5334 } 5335 } 5336 5337 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5338 } 5339 5340 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5341 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5342 static void 5343 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 5344 const SDValue &N) { 5345 switch (N.getOpcode()) { 5346 case ISD::CopyFromReg: { 5347 SDValue Op = N.getOperand(1); 5348 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5349 Op.getValueType().getSizeInBits()); 5350 return; 5351 } 5352 case ISD::BITCAST: 5353 case ISD::AssertZext: 5354 case ISD::AssertSext: 5355 case ISD::TRUNCATE: 5356 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5357 return; 5358 case ISD::BUILD_PAIR: 5359 case ISD::BUILD_VECTOR: 5360 case ISD::CONCAT_VECTORS: 5361 for (SDValue Op : N->op_values()) 5362 getUnderlyingArgRegs(Regs, Op); 5363 return; 5364 default: 5365 return; 5366 } 5367 } 5368 5369 /// If the DbgValueInst is a dbg_value of a function argument, create the 5370 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5371 /// instruction selection, they will be inserted to the entry BB. 5372 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5373 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5374 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5375 const Argument *Arg = dyn_cast<Argument>(V); 5376 if (!Arg) 5377 return false; 5378 5379 if (!IsDbgDeclare) { 5380 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5381 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5382 // the entry block. 5383 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5384 if (!IsInEntryBlock) 5385 return false; 5386 5387 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5388 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5389 // variable that also is a param. 5390 // 5391 // Although, if we are at the top of the entry block already, we can still 5392 // emit using ArgDbgValue. This might catch some situations when the 5393 // dbg.value refers to an argument that isn't used in the entry block, so 5394 // any CopyToReg node would be optimized out and the only way to express 5395 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5396 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5397 // we should only emit as ArgDbgValue if the Variable is an argument to the 5398 // current function, and the dbg.value intrinsic is found in the entry 5399 // block. 5400 bool VariableIsFunctionInputArg = Variable->isParameter() && 5401 !DL->getInlinedAt(); 5402 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5403 if (!IsInPrologue && !VariableIsFunctionInputArg) 5404 return false; 5405 5406 // Here we assume that a function argument on IR level only can be used to 5407 // describe one input parameter on source level. If we for example have 5408 // source code like this 5409 // 5410 // struct A { long x, y; }; 5411 // void foo(struct A a, long b) { 5412 // ... 5413 // b = a.x; 5414 // ... 5415 // } 5416 // 5417 // and IR like this 5418 // 5419 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5420 // entry: 5421 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5422 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5423 // call void @llvm.dbg.value(metadata i32 %b, "b", 5424 // ... 5425 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5426 // ... 5427 // 5428 // then the last dbg.value is describing a parameter "b" using a value that 5429 // is an argument. But since we already has used %a1 to describe a parameter 5430 // we should not handle that last dbg.value here (that would result in an 5431 // incorrect hoisting of the DBG_VALUE to the function entry). 5432 // Notice that we allow one dbg.value per IR level argument, to accommodate 5433 // for the situation with fragments above. 5434 if (VariableIsFunctionInputArg) { 5435 unsigned ArgNo = Arg->getArgNo(); 5436 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5437 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5438 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5439 return false; 5440 FuncInfo.DescribedArgs.set(ArgNo); 5441 } 5442 } 5443 5444 MachineFunction &MF = DAG.getMachineFunction(); 5445 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5446 5447 bool IsIndirect = false; 5448 Optional<MachineOperand> Op; 5449 // Some arguments' frame index is recorded during argument lowering. 5450 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5451 if (FI != std::numeric_limits<int>::max()) 5452 Op = MachineOperand::CreateFI(FI); 5453 5454 SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes; 5455 if (!Op && N.getNode()) { 5456 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5457 Register Reg; 5458 if (ArgRegsAndSizes.size() == 1) 5459 Reg = ArgRegsAndSizes.front().first; 5460 5461 if (Reg && Reg.isVirtual()) { 5462 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5463 Register PR = RegInfo.getLiveInPhysReg(Reg); 5464 if (PR) 5465 Reg = PR; 5466 } 5467 if (Reg) { 5468 Op = MachineOperand::CreateReg(Reg, false); 5469 IsIndirect = IsDbgDeclare; 5470 } 5471 } 5472 5473 if (!Op && N.getNode()) { 5474 // Check if frame index is available. 5475 SDValue LCandidate = peekThroughBitcasts(N); 5476 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5477 if (FrameIndexSDNode *FINode = 5478 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5479 Op = MachineOperand::CreateFI(FINode->getIndex()); 5480 } 5481 5482 if (!Op) { 5483 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5484 auto splitMultiRegDbgValue 5485 = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) { 5486 unsigned Offset = 0; 5487 for (auto RegAndSize : SplitRegs) { 5488 // If the expression is already a fragment, the current register 5489 // offset+size might extend beyond the fragment. In this case, only 5490 // the register bits that are inside the fragment are relevant. 5491 int RegFragmentSizeInBits = RegAndSize.second; 5492 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5493 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5494 // The register is entirely outside the expression fragment, 5495 // so is irrelevant for debug info. 5496 if (Offset >= ExprFragmentSizeInBits) 5497 break; 5498 // The register is partially outside the expression fragment, only 5499 // the low bits within the fragment are relevant for debug info. 5500 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5501 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5502 } 5503 } 5504 5505 auto FragmentExpr = DIExpression::createFragmentExpression( 5506 Expr, Offset, RegFragmentSizeInBits); 5507 Offset += RegAndSize.second; 5508 // If a valid fragment expression cannot be created, the variable's 5509 // correct value cannot be determined and so it is set as Undef. 5510 if (!FragmentExpr) { 5511 SDDbgValue *SDV = DAG.getConstantDbgValue( 5512 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5513 DAG.AddDbgValue(SDV, nullptr, false); 5514 continue; 5515 } 5516 assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?"); 5517 FuncInfo.ArgDbgValues.push_back( 5518 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5519 RegAndSize.first, Variable, *FragmentExpr)); 5520 } 5521 }; 5522 5523 // Check if ValueMap has reg number. 5524 DenseMap<const Value *, Register>::const_iterator 5525 VMI = FuncInfo.ValueMap.find(V); 5526 if (VMI != FuncInfo.ValueMap.end()) { 5527 const auto &TLI = DAG.getTargetLoweringInfo(); 5528 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5529 V->getType(), getABIRegCopyCC(V)); 5530 if (RFV.occupiesMultipleRegs()) { 5531 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5532 return true; 5533 } 5534 5535 Op = MachineOperand::CreateReg(VMI->second, false); 5536 IsIndirect = IsDbgDeclare; 5537 } else if (ArgRegsAndSizes.size() > 1) { 5538 // This was split due to the calling convention, and no virtual register 5539 // mapping exists for the value. 5540 splitMultiRegDbgValue(ArgRegsAndSizes); 5541 return true; 5542 } 5543 } 5544 5545 if (!Op) 5546 return false; 5547 5548 assert(Variable->isValidLocationForIntrinsic(DL) && 5549 "Expected inlined-at fields to agree"); 5550 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5551 FuncInfo.ArgDbgValues.push_back( 5552 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5553 *Op, Variable, Expr)); 5554 5555 return true; 5556 } 5557 5558 /// Return the appropriate SDDbgValue based on N. 5559 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5560 DILocalVariable *Variable, 5561 DIExpression *Expr, 5562 const DebugLoc &dl, 5563 unsigned DbgSDNodeOrder) { 5564 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5565 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5566 // stack slot locations. 5567 // 5568 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5569 // debug values here after optimization: 5570 // 5571 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5572 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5573 // 5574 // Both describe the direct values of their associated variables. 5575 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5576 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5577 } 5578 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5579 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5580 } 5581 5582 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5583 switch (Intrinsic) { 5584 case Intrinsic::smul_fix: 5585 return ISD::SMULFIX; 5586 case Intrinsic::umul_fix: 5587 return ISD::UMULFIX; 5588 case Intrinsic::smul_fix_sat: 5589 return ISD::SMULFIXSAT; 5590 case Intrinsic::umul_fix_sat: 5591 return ISD::UMULFIXSAT; 5592 case Intrinsic::sdiv_fix: 5593 return ISD::SDIVFIX; 5594 case Intrinsic::udiv_fix: 5595 return ISD::UDIVFIX; 5596 case Intrinsic::sdiv_fix_sat: 5597 return ISD::SDIVFIXSAT; 5598 case Intrinsic::udiv_fix_sat: 5599 return ISD::UDIVFIXSAT; 5600 default: 5601 llvm_unreachable("Unhandled fixed point intrinsic"); 5602 } 5603 } 5604 5605 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5606 const char *FunctionName) { 5607 assert(FunctionName && "FunctionName must not be nullptr"); 5608 SDValue Callee = DAG.getExternalSymbol( 5609 FunctionName, 5610 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5611 LowerCallTo(I, Callee, I.isTailCall()); 5612 } 5613 5614 /// Given a @llvm.call.preallocated.setup, return the corresponding 5615 /// preallocated call. 5616 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5617 assert(cast<CallBase>(PreallocatedSetup) 5618 ->getCalledFunction() 5619 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5620 "expected call_preallocated_setup Value"); 5621 for (auto *U : PreallocatedSetup->users()) { 5622 auto *UseCall = cast<CallBase>(U); 5623 const Function *Fn = UseCall->getCalledFunction(); 5624 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5625 return UseCall; 5626 } 5627 } 5628 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5629 } 5630 5631 /// Lower the call to the specified intrinsic function. 5632 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5633 unsigned Intrinsic) { 5634 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5635 SDLoc sdl = getCurSDLoc(); 5636 DebugLoc dl = getCurDebugLoc(); 5637 SDValue Res; 5638 5639 switch (Intrinsic) { 5640 default: 5641 // By default, turn this into a target intrinsic node. 5642 visitTargetIntrinsic(I, Intrinsic); 5643 return; 5644 case Intrinsic::vscale: { 5645 match(&I, m_VScale(DAG.getDataLayout())); 5646 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5647 setValue(&I, 5648 DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1))); 5649 return; 5650 } 5651 case Intrinsic::vastart: visitVAStart(I); return; 5652 case Intrinsic::vaend: visitVAEnd(I); return; 5653 case Intrinsic::vacopy: visitVACopy(I); return; 5654 case Intrinsic::returnaddress: 5655 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5656 TLI.getPointerTy(DAG.getDataLayout()), 5657 getValue(I.getArgOperand(0)))); 5658 return; 5659 case Intrinsic::addressofreturnaddress: 5660 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5661 TLI.getPointerTy(DAG.getDataLayout()))); 5662 return; 5663 case Intrinsic::sponentry: 5664 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5665 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5666 return; 5667 case Intrinsic::frameaddress: 5668 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5669 TLI.getFrameIndexTy(DAG.getDataLayout()), 5670 getValue(I.getArgOperand(0)))); 5671 return; 5672 case Intrinsic::read_volatile_register: 5673 case Intrinsic::read_register: { 5674 Value *Reg = I.getArgOperand(0); 5675 SDValue Chain = getRoot(); 5676 SDValue RegName = 5677 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5678 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5679 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5680 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5681 setValue(&I, Res); 5682 DAG.setRoot(Res.getValue(1)); 5683 return; 5684 } 5685 case Intrinsic::write_register: { 5686 Value *Reg = I.getArgOperand(0); 5687 Value *RegValue = I.getArgOperand(1); 5688 SDValue Chain = getRoot(); 5689 SDValue RegName = 5690 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5691 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5692 RegName, getValue(RegValue))); 5693 return; 5694 } 5695 case Intrinsic::memcpy: { 5696 const auto &MCI = cast<MemCpyInst>(I); 5697 SDValue Op1 = getValue(I.getArgOperand(0)); 5698 SDValue Op2 = getValue(I.getArgOperand(1)); 5699 SDValue Op3 = getValue(I.getArgOperand(2)); 5700 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5701 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5702 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5703 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5704 bool isVol = MCI.isVolatile(); 5705 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5706 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5707 // node. 5708 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5709 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5710 /* AlwaysInline */ false, isTC, 5711 MachinePointerInfo(I.getArgOperand(0)), 5712 MachinePointerInfo(I.getArgOperand(1))); 5713 updateDAGForMaybeTailCall(MC); 5714 return; 5715 } 5716 case Intrinsic::memcpy_inline: { 5717 const auto &MCI = cast<MemCpyInlineInst>(I); 5718 SDValue Dst = getValue(I.getArgOperand(0)); 5719 SDValue Src = getValue(I.getArgOperand(1)); 5720 SDValue Size = getValue(I.getArgOperand(2)); 5721 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5722 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5723 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5724 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5725 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5726 bool isVol = MCI.isVolatile(); 5727 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5728 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5729 // node. 5730 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5731 /* AlwaysInline */ true, isTC, 5732 MachinePointerInfo(I.getArgOperand(0)), 5733 MachinePointerInfo(I.getArgOperand(1))); 5734 updateDAGForMaybeTailCall(MC); 5735 return; 5736 } 5737 case Intrinsic::memset: { 5738 const auto &MSI = cast<MemSetInst>(I); 5739 SDValue Op1 = getValue(I.getArgOperand(0)); 5740 SDValue Op2 = getValue(I.getArgOperand(1)); 5741 SDValue Op3 = getValue(I.getArgOperand(2)); 5742 // @llvm.memset defines 0 and 1 to both mean no alignment. 5743 Align Alignment = MSI.getDestAlign().valueOrOne(); 5744 bool isVol = MSI.isVolatile(); 5745 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5746 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5747 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC, 5748 MachinePointerInfo(I.getArgOperand(0))); 5749 updateDAGForMaybeTailCall(MS); 5750 return; 5751 } 5752 case Intrinsic::memmove: { 5753 const auto &MMI = cast<MemMoveInst>(I); 5754 SDValue Op1 = getValue(I.getArgOperand(0)); 5755 SDValue Op2 = getValue(I.getArgOperand(1)); 5756 SDValue Op3 = getValue(I.getArgOperand(2)); 5757 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5758 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5759 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5760 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5761 bool isVol = MMI.isVolatile(); 5762 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5763 // FIXME: Support passing different dest/src alignments to the memmove DAG 5764 // node. 5765 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5766 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5767 isTC, MachinePointerInfo(I.getArgOperand(0)), 5768 MachinePointerInfo(I.getArgOperand(1))); 5769 updateDAGForMaybeTailCall(MM); 5770 return; 5771 } 5772 case Intrinsic::memcpy_element_unordered_atomic: { 5773 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5774 SDValue Dst = getValue(MI.getRawDest()); 5775 SDValue Src = getValue(MI.getRawSource()); 5776 SDValue Length = getValue(MI.getLength()); 5777 5778 unsigned DstAlign = MI.getDestAlignment(); 5779 unsigned SrcAlign = MI.getSourceAlignment(); 5780 Type *LengthTy = MI.getLength()->getType(); 5781 unsigned ElemSz = MI.getElementSizeInBytes(); 5782 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5783 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5784 SrcAlign, Length, LengthTy, ElemSz, isTC, 5785 MachinePointerInfo(MI.getRawDest()), 5786 MachinePointerInfo(MI.getRawSource())); 5787 updateDAGForMaybeTailCall(MC); 5788 return; 5789 } 5790 case Intrinsic::memmove_element_unordered_atomic: { 5791 auto &MI = cast<AtomicMemMoveInst>(I); 5792 SDValue Dst = getValue(MI.getRawDest()); 5793 SDValue Src = getValue(MI.getRawSource()); 5794 SDValue Length = getValue(MI.getLength()); 5795 5796 unsigned DstAlign = MI.getDestAlignment(); 5797 unsigned SrcAlign = MI.getSourceAlignment(); 5798 Type *LengthTy = MI.getLength()->getType(); 5799 unsigned ElemSz = MI.getElementSizeInBytes(); 5800 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5801 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5802 SrcAlign, Length, LengthTy, ElemSz, isTC, 5803 MachinePointerInfo(MI.getRawDest()), 5804 MachinePointerInfo(MI.getRawSource())); 5805 updateDAGForMaybeTailCall(MC); 5806 return; 5807 } 5808 case Intrinsic::memset_element_unordered_atomic: { 5809 auto &MI = cast<AtomicMemSetInst>(I); 5810 SDValue Dst = getValue(MI.getRawDest()); 5811 SDValue Val = getValue(MI.getValue()); 5812 SDValue Length = getValue(MI.getLength()); 5813 5814 unsigned DstAlign = MI.getDestAlignment(); 5815 Type *LengthTy = MI.getLength()->getType(); 5816 unsigned ElemSz = MI.getElementSizeInBytes(); 5817 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5818 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5819 LengthTy, ElemSz, isTC, 5820 MachinePointerInfo(MI.getRawDest())); 5821 updateDAGForMaybeTailCall(MC); 5822 return; 5823 } 5824 case Intrinsic::call_preallocated_setup: { 5825 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 5826 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5827 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 5828 getRoot(), SrcValue); 5829 setValue(&I, Res); 5830 DAG.setRoot(Res); 5831 return; 5832 } 5833 case Intrinsic::call_preallocated_arg: { 5834 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 5835 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5836 SDValue Ops[3]; 5837 Ops[0] = getRoot(); 5838 Ops[1] = SrcValue; 5839 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 5840 MVT::i32); // arg index 5841 SDValue Res = DAG.getNode( 5842 ISD::PREALLOCATED_ARG, sdl, 5843 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 5844 setValue(&I, Res); 5845 DAG.setRoot(Res.getValue(1)); 5846 return; 5847 } 5848 case Intrinsic::dbg_addr: 5849 case Intrinsic::dbg_declare: { 5850 const auto &DI = cast<DbgVariableIntrinsic>(I); 5851 DILocalVariable *Variable = DI.getVariable(); 5852 DIExpression *Expression = DI.getExpression(); 5853 dropDanglingDebugInfo(Variable, Expression); 5854 assert(Variable && "Missing variable"); 5855 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 5856 << "\n"); 5857 // Check if address has undef value. 5858 const Value *Address = DI.getVariableLocation(); 5859 if (!Address || isa<UndefValue>(Address) || 5860 (Address->use_empty() && !isa<Argument>(Address))) { 5861 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5862 << " (bad/undef/unused-arg address)\n"); 5863 return; 5864 } 5865 5866 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5867 5868 // Check if this variable can be described by a frame index, typically 5869 // either as a static alloca or a byval parameter. 5870 int FI = std::numeric_limits<int>::max(); 5871 if (const auto *AI = 5872 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5873 if (AI->isStaticAlloca()) { 5874 auto I = FuncInfo.StaticAllocaMap.find(AI); 5875 if (I != FuncInfo.StaticAllocaMap.end()) 5876 FI = I->second; 5877 } 5878 } else if (const auto *Arg = dyn_cast<Argument>( 5879 Address->stripInBoundsConstantOffsets())) { 5880 FI = FuncInfo.getArgumentFrameIndex(Arg); 5881 } 5882 5883 // llvm.dbg.addr is control dependent and always generates indirect 5884 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5885 // the MachineFunction variable table. 5886 if (FI != std::numeric_limits<int>::max()) { 5887 if (Intrinsic == Intrinsic::dbg_addr) { 5888 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5889 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5890 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5891 } else { 5892 LLVM_DEBUG(dbgs() << "Skipping " << DI 5893 << " (variable info stashed in MF side table)\n"); 5894 } 5895 return; 5896 } 5897 5898 SDValue &N = NodeMap[Address]; 5899 if (!N.getNode() && isa<Argument>(Address)) 5900 // Check unused arguments map. 5901 N = UnusedArgNodeMap[Address]; 5902 SDDbgValue *SDV; 5903 if (N.getNode()) { 5904 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5905 Address = BCI->getOperand(0); 5906 // Parameters are handled specially. 5907 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5908 if (isParameter && FINode) { 5909 // Byval parameter. We have a frame index at this point. 5910 SDV = 5911 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5912 /*IsIndirect*/ true, dl, SDNodeOrder); 5913 } else if (isa<Argument>(Address)) { 5914 // Address is an argument, so try to emit its dbg value using 5915 // virtual register info from the FuncInfo.ValueMap. 5916 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5917 return; 5918 } else { 5919 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5920 true, dl, SDNodeOrder); 5921 } 5922 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5923 } else { 5924 // If Address is an argument then try to emit its dbg value using 5925 // virtual register info from the FuncInfo.ValueMap. 5926 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5927 N)) { 5928 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5929 << " (could not emit func-arg dbg_value)\n"); 5930 } 5931 } 5932 return; 5933 } 5934 case Intrinsic::dbg_label: { 5935 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5936 DILabel *Label = DI.getLabel(); 5937 assert(Label && "Missing label"); 5938 5939 SDDbgLabel *SDV; 5940 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5941 DAG.AddDbgLabel(SDV); 5942 return; 5943 } 5944 case Intrinsic::dbg_value: { 5945 const DbgValueInst &DI = cast<DbgValueInst>(I); 5946 assert(DI.getVariable() && "Missing variable"); 5947 5948 DILocalVariable *Variable = DI.getVariable(); 5949 DIExpression *Expression = DI.getExpression(); 5950 dropDanglingDebugInfo(Variable, Expression); 5951 const Value *V = DI.getValue(); 5952 if (!V) 5953 return; 5954 5955 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5956 SDNodeOrder)) 5957 return; 5958 5959 // TODO: Dangling debug info will eventually either be resolved or produce 5960 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5961 // between the original dbg.value location and its resolved DBG_VALUE, which 5962 // we should ideally fill with an extra Undef DBG_VALUE. 5963 5964 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5965 return; 5966 } 5967 5968 case Intrinsic::eh_typeid_for: { 5969 // Find the type id for the given typeinfo. 5970 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5971 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5972 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5973 setValue(&I, Res); 5974 return; 5975 } 5976 5977 case Intrinsic::eh_return_i32: 5978 case Intrinsic::eh_return_i64: 5979 DAG.getMachineFunction().setCallsEHReturn(true); 5980 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5981 MVT::Other, 5982 getControlRoot(), 5983 getValue(I.getArgOperand(0)), 5984 getValue(I.getArgOperand(1)))); 5985 return; 5986 case Intrinsic::eh_unwind_init: 5987 DAG.getMachineFunction().setCallsUnwindInit(true); 5988 return; 5989 case Intrinsic::eh_dwarf_cfa: 5990 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5991 TLI.getPointerTy(DAG.getDataLayout()), 5992 getValue(I.getArgOperand(0)))); 5993 return; 5994 case Intrinsic::eh_sjlj_callsite: { 5995 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5996 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5997 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5998 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5999 6000 MMI.setCurrentCallSite(CI->getZExtValue()); 6001 return; 6002 } 6003 case Intrinsic::eh_sjlj_functioncontext: { 6004 // Get and store the index of the function context. 6005 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6006 AllocaInst *FnCtx = 6007 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6008 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6009 MFI.setFunctionContextIndex(FI); 6010 return; 6011 } 6012 case Intrinsic::eh_sjlj_setjmp: { 6013 SDValue Ops[2]; 6014 Ops[0] = getRoot(); 6015 Ops[1] = getValue(I.getArgOperand(0)); 6016 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6017 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6018 setValue(&I, Op.getValue(0)); 6019 DAG.setRoot(Op.getValue(1)); 6020 return; 6021 } 6022 case Intrinsic::eh_sjlj_longjmp: 6023 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6024 getRoot(), getValue(I.getArgOperand(0)))); 6025 return; 6026 case Intrinsic::eh_sjlj_setup_dispatch: 6027 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6028 getRoot())); 6029 return; 6030 case Intrinsic::masked_gather: 6031 visitMaskedGather(I); 6032 return; 6033 case Intrinsic::masked_load: 6034 visitMaskedLoad(I); 6035 return; 6036 case Intrinsic::masked_scatter: 6037 visitMaskedScatter(I); 6038 return; 6039 case Intrinsic::masked_store: 6040 visitMaskedStore(I); 6041 return; 6042 case Intrinsic::masked_expandload: 6043 visitMaskedLoad(I, true /* IsExpanding */); 6044 return; 6045 case Intrinsic::masked_compressstore: 6046 visitMaskedStore(I, true /* IsCompressing */); 6047 return; 6048 case Intrinsic::powi: 6049 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6050 getValue(I.getArgOperand(1)), DAG)); 6051 return; 6052 case Intrinsic::log: 6053 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6054 return; 6055 case Intrinsic::log2: 6056 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6057 return; 6058 case Intrinsic::log10: 6059 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6060 return; 6061 case Intrinsic::exp: 6062 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6063 return; 6064 case Intrinsic::exp2: 6065 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6066 return; 6067 case Intrinsic::pow: 6068 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6069 getValue(I.getArgOperand(1)), DAG, TLI)); 6070 return; 6071 case Intrinsic::sqrt: 6072 case Intrinsic::fabs: 6073 case Intrinsic::sin: 6074 case Intrinsic::cos: 6075 case Intrinsic::floor: 6076 case Intrinsic::ceil: 6077 case Intrinsic::trunc: 6078 case Intrinsic::rint: 6079 case Intrinsic::nearbyint: 6080 case Intrinsic::round: 6081 case Intrinsic::roundeven: 6082 case Intrinsic::canonicalize: { 6083 unsigned Opcode; 6084 switch (Intrinsic) { 6085 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6086 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6087 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6088 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6089 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6090 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6091 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6092 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6093 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6094 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6095 case Intrinsic::round: Opcode = ISD::FROUND; break; 6096 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6097 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6098 } 6099 6100 setValue(&I, DAG.getNode(Opcode, sdl, 6101 getValue(I.getArgOperand(0)).getValueType(), 6102 getValue(I.getArgOperand(0)))); 6103 return; 6104 } 6105 case Intrinsic::lround: 6106 case Intrinsic::llround: 6107 case Intrinsic::lrint: 6108 case Intrinsic::llrint: { 6109 unsigned Opcode; 6110 switch (Intrinsic) { 6111 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6112 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6113 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6114 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6115 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6116 } 6117 6118 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6119 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6120 getValue(I.getArgOperand(0)))); 6121 return; 6122 } 6123 case Intrinsic::minnum: 6124 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6125 getValue(I.getArgOperand(0)).getValueType(), 6126 getValue(I.getArgOperand(0)), 6127 getValue(I.getArgOperand(1)))); 6128 return; 6129 case Intrinsic::maxnum: 6130 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6131 getValue(I.getArgOperand(0)).getValueType(), 6132 getValue(I.getArgOperand(0)), 6133 getValue(I.getArgOperand(1)))); 6134 return; 6135 case Intrinsic::minimum: 6136 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6137 getValue(I.getArgOperand(0)).getValueType(), 6138 getValue(I.getArgOperand(0)), 6139 getValue(I.getArgOperand(1)))); 6140 return; 6141 case Intrinsic::maximum: 6142 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6143 getValue(I.getArgOperand(0)).getValueType(), 6144 getValue(I.getArgOperand(0)), 6145 getValue(I.getArgOperand(1)))); 6146 return; 6147 case Intrinsic::copysign: 6148 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6149 getValue(I.getArgOperand(0)).getValueType(), 6150 getValue(I.getArgOperand(0)), 6151 getValue(I.getArgOperand(1)))); 6152 return; 6153 case Intrinsic::fma: 6154 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6155 getValue(I.getArgOperand(0)).getValueType(), 6156 getValue(I.getArgOperand(0)), 6157 getValue(I.getArgOperand(1)), 6158 getValue(I.getArgOperand(2)))); 6159 return; 6160 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6161 case Intrinsic::INTRINSIC: 6162 #include "llvm/IR/ConstrainedOps.def" 6163 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6164 return; 6165 case Intrinsic::fmuladd: { 6166 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6167 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6168 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6169 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6170 getValue(I.getArgOperand(0)).getValueType(), 6171 getValue(I.getArgOperand(0)), 6172 getValue(I.getArgOperand(1)), 6173 getValue(I.getArgOperand(2)))); 6174 } else { 6175 // TODO: Intrinsic calls should have fast-math-flags. 6176 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 6177 getValue(I.getArgOperand(0)).getValueType(), 6178 getValue(I.getArgOperand(0)), 6179 getValue(I.getArgOperand(1))); 6180 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6181 getValue(I.getArgOperand(0)).getValueType(), 6182 Mul, 6183 getValue(I.getArgOperand(2))); 6184 setValue(&I, Add); 6185 } 6186 return; 6187 } 6188 case Intrinsic::convert_to_fp16: 6189 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6190 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6191 getValue(I.getArgOperand(0)), 6192 DAG.getTargetConstant(0, sdl, 6193 MVT::i32)))); 6194 return; 6195 case Intrinsic::convert_from_fp16: 6196 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6197 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6198 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6199 getValue(I.getArgOperand(0))))); 6200 return; 6201 case Intrinsic::pcmarker: { 6202 SDValue Tmp = getValue(I.getArgOperand(0)); 6203 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6204 return; 6205 } 6206 case Intrinsic::readcyclecounter: { 6207 SDValue Op = getRoot(); 6208 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6209 DAG.getVTList(MVT::i64, MVT::Other), Op); 6210 setValue(&I, Res); 6211 DAG.setRoot(Res.getValue(1)); 6212 return; 6213 } 6214 case Intrinsic::bitreverse: 6215 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6216 getValue(I.getArgOperand(0)).getValueType(), 6217 getValue(I.getArgOperand(0)))); 6218 return; 6219 case Intrinsic::bswap: 6220 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6221 getValue(I.getArgOperand(0)).getValueType(), 6222 getValue(I.getArgOperand(0)))); 6223 return; 6224 case Intrinsic::cttz: { 6225 SDValue Arg = getValue(I.getArgOperand(0)); 6226 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6227 EVT Ty = Arg.getValueType(); 6228 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6229 sdl, Ty, Arg)); 6230 return; 6231 } 6232 case Intrinsic::ctlz: { 6233 SDValue Arg = getValue(I.getArgOperand(0)); 6234 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6235 EVT Ty = Arg.getValueType(); 6236 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6237 sdl, Ty, Arg)); 6238 return; 6239 } 6240 case Intrinsic::ctpop: { 6241 SDValue Arg = getValue(I.getArgOperand(0)); 6242 EVT Ty = Arg.getValueType(); 6243 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6244 return; 6245 } 6246 case Intrinsic::fshl: 6247 case Intrinsic::fshr: { 6248 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6249 SDValue X = getValue(I.getArgOperand(0)); 6250 SDValue Y = getValue(I.getArgOperand(1)); 6251 SDValue Z = getValue(I.getArgOperand(2)); 6252 EVT VT = X.getValueType(); 6253 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6254 SDValue Zero = DAG.getConstant(0, sdl, VT); 6255 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6256 6257 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6258 // avoid the select that is necessary in the general case to filter out 6259 // the 0-shift possibility that leads to UB. 6260 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6261 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6262 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6263 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6264 return; 6265 } 6266 6267 // Some targets only rotate one way. Try the opposite direction. 6268 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6269 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6270 // Negate the shift amount because it is safe to ignore the high bits. 6271 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6272 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6273 return; 6274 } 6275 6276 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6277 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6278 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6279 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6280 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6281 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6282 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6283 return; 6284 } 6285 6286 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6287 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6288 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6289 return; 6290 } 6291 6292 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6293 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6294 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6295 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6296 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6297 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6298 6299 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6300 // and that is undefined. We must compare and select to avoid UB. 6301 EVT CCVT = MVT::i1; 6302 if (VT.isVector()) 6303 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6304 6305 // For fshl, 0-shift returns the 1st arg (X). 6306 // For fshr, 0-shift returns the 2nd arg (Y). 6307 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6308 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6309 return; 6310 } 6311 case Intrinsic::sadd_sat: { 6312 SDValue Op1 = getValue(I.getArgOperand(0)); 6313 SDValue Op2 = getValue(I.getArgOperand(1)); 6314 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6315 return; 6316 } 6317 case Intrinsic::uadd_sat: { 6318 SDValue Op1 = getValue(I.getArgOperand(0)); 6319 SDValue Op2 = getValue(I.getArgOperand(1)); 6320 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6321 return; 6322 } 6323 case Intrinsic::ssub_sat: { 6324 SDValue Op1 = getValue(I.getArgOperand(0)); 6325 SDValue Op2 = getValue(I.getArgOperand(1)); 6326 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6327 return; 6328 } 6329 case Intrinsic::usub_sat: { 6330 SDValue Op1 = getValue(I.getArgOperand(0)); 6331 SDValue Op2 = getValue(I.getArgOperand(1)); 6332 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6333 return; 6334 } 6335 case Intrinsic::smul_fix: 6336 case Intrinsic::umul_fix: 6337 case Intrinsic::smul_fix_sat: 6338 case Intrinsic::umul_fix_sat: { 6339 SDValue Op1 = getValue(I.getArgOperand(0)); 6340 SDValue Op2 = getValue(I.getArgOperand(1)); 6341 SDValue Op3 = getValue(I.getArgOperand(2)); 6342 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6343 Op1.getValueType(), Op1, Op2, Op3)); 6344 return; 6345 } 6346 case Intrinsic::sdiv_fix: 6347 case Intrinsic::udiv_fix: 6348 case Intrinsic::sdiv_fix_sat: 6349 case Intrinsic::udiv_fix_sat: { 6350 SDValue Op1 = getValue(I.getArgOperand(0)); 6351 SDValue Op2 = getValue(I.getArgOperand(1)); 6352 SDValue Op3 = getValue(I.getArgOperand(2)); 6353 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6354 Op1, Op2, Op3, DAG, TLI)); 6355 return; 6356 } 6357 case Intrinsic::smax: { 6358 SDValue Op1 = getValue(I.getArgOperand(0)); 6359 SDValue Op2 = getValue(I.getArgOperand(1)); 6360 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6361 return; 6362 } 6363 case Intrinsic::smin: { 6364 SDValue Op1 = getValue(I.getArgOperand(0)); 6365 SDValue Op2 = getValue(I.getArgOperand(1)); 6366 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6367 return; 6368 } 6369 case Intrinsic::umax: { 6370 SDValue Op1 = getValue(I.getArgOperand(0)); 6371 SDValue Op2 = getValue(I.getArgOperand(1)); 6372 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6373 return; 6374 } 6375 case Intrinsic::umin: { 6376 SDValue Op1 = getValue(I.getArgOperand(0)); 6377 SDValue Op2 = getValue(I.getArgOperand(1)); 6378 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6379 return; 6380 } 6381 case Intrinsic::abs: { 6382 // TODO: Preserve "int min is poison" arg in SDAG? 6383 SDValue Op1 = getValue(I.getArgOperand(0)); 6384 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6385 return; 6386 } 6387 case Intrinsic::stacksave: { 6388 SDValue Op = getRoot(); 6389 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6390 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6391 setValue(&I, Res); 6392 DAG.setRoot(Res.getValue(1)); 6393 return; 6394 } 6395 case Intrinsic::stackrestore: 6396 Res = getValue(I.getArgOperand(0)); 6397 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6398 return; 6399 case Intrinsic::get_dynamic_area_offset: { 6400 SDValue Op = getRoot(); 6401 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6402 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6403 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6404 // target. 6405 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) 6406 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6407 " intrinsic!"); 6408 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6409 Op); 6410 DAG.setRoot(Op); 6411 setValue(&I, Res); 6412 return; 6413 } 6414 case Intrinsic::stackguard: { 6415 MachineFunction &MF = DAG.getMachineFunction(); 6416 const Module &M = *MF.getFunction().getParent(); 6417 SDValue Chain = getRoot(); 6418 if (TLI.useLoadStackGuardNode()) { 6419 Res = getLoadStackGuard(DAG, sdl, Chain); 6420 } else { 6421 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6422 const Value *Global = TLI.getSDagStackGuard(M); 6423 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6424 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6425 MachinePointerInfo(Global, 0), Align, 6426 MachineMemOperand::MOVolatile); 6427 } 6428 if (TLI.useStackGuardXorFP()) 6429 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6430 DAG.setRoot(Chain); 6431 setValue(&I, Res); 6432 return; 6433 } 6434 case Intrinsic::stackprotector: { 6435 // Emit code into the DAG to store the stack guard onto the stack. 6436 MachineFunction &MF = DAG.getMachineFunction(); 6437 MachineFrameInfo &MFI = MF.getFrameInfo(); 6438 SDValue Src, Chain = getRoot(); 6439 6440 if (TLI.useLoadStackGuardNode()) 6441 Src = getLoadStackGuard(DAG, sdl, Chain); 6442 else 6443 Src = getValue(I.getArgOperand(0)); // The guard's value. 6444 6445 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6446 6447 int FI = FuncInfo.StaticAllocaMap[Slot]; 6448 MFI.setStackProtectorIndex(FI); 6449 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6450 6451 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6452 6453 // Store the stack protector onto the stack. 6454 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6455 DAG.getMachineFunction(), FI), 6456 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6457 setValue(&I, Res); 6458 DAG.setRoot(Res); 6459 return; 6460 } 6461 case Intrinsic::objectsize: 6462 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6463 6464 case Intrinsic::is_constant: 6465 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6466 6467 case Intrinsic::annotation: 6468 case Intrinsic::ptr_annotation: 6469 case Intrinsic::launder_invariant_group: 6470 case Intrinsic::strip_invariant_group: 6471 // Drop the intrinsic, but forward the value 6472 setValue(&I, getValue(I.getOperand(0))); 6473 return; 6474 case Intrinsic::assume: 6475 case Intrinsic::var_annotation: 6476 case Intrinsic::sideeffect: 6477 // Discard annotate attributes, assumptions, and artificial side-effects. 6478 return; 6479 6480 case Intrinsic::codeview_annotation: { 6481 // Emit a label associated with this metadata. 6482 MachineFunction &MF = DAG.getMachineFunction(); 6483 MCSymbol *Label = 6484 MF.getMMI().getContext().createTempSymbol("annotation", true); 6485 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6486 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6487 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6488 DAG.setRoot(Res); 6489 return; 6490 } 6491 6492 case Intrinsic::init_trampoline: { 6493 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6494 6495 SDValue Ops[6]; 6496 Ops[0] = getRoot(); 6497 Ops[1] = getValue(I.getArgOperand(0)); 6498 Ops[2] = getValue(I.getArgOperand(1)); 6499 Ops[3] = getValue(I.getArgOperand(2)); 6500 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6501 Ops[5] = DAG.getSrcValue(F); 6502 6503 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6504 6505 DAG.setRoot(Res); 6506 return; 6507 } 6508 case Intrinsic::adjust_trampoline: 6509 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6510 TLI.getPointerTy(DAG.getDataLayout()), 6511 getValue(I.getArgOperand(0)))); 6512 return; 6513 case Intrinsic::gcroot: { 6514 assert(DAG.getMachineFunction().getFunction().hasGC() && 6515 "only valid in functions with gc specified, enforced by Verifier"); 6516 assert(GFI && "implied by previous"); 6517 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6518 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6519 6520 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6521 GFI->addStackRoot(FI->getIndex(), TypeMap); 6522 return; 6523 } 6524 case Intrinsic::gcread: 6525 case Intrinsic::gcwrite: 6526 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6527 case Intrinsic::flt_rounds: 6528 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6529 setValue(&I, Res); 6530 DAG.setRoot(Res.getValue(1)); 6531 return; 6532 6533 case Intrinsic::expect: 6534 // Just replace __builtin_expect(exp, c) with EXP. 6535 setValue(&I, getValue(I.getArgOperand(0))); 6536 return; 6537 6538 case Intrinsic::debugtrap: 6539 case Intrinsic::trap: { 6540 StringRef TrapFuncName = 6541 I.getAttributes() 6542 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6543 .getValueAsString(); 6544 if (TrapFuncName.empty()) { 6545 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6546 ISD::TRAP : ISD::DEBUGTRAP; 6547 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6548 return; 6549 } 6550 TargetLowering::ArgListTy Args; 6551 6552 TargetLowering::CallLoweringInfo CLI(DAG); 6553 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6554 CallingConv::C, I.getType(), 6555 DAG.getExternalSymbol(TrapFuncName.data(), 6556 TLI.getPointerTy(DAG.getDataLayout())), 6557 std::move(Args)); 6558 6559 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6560 DAG.setRoot(Result.second); 6561 return; 6562 } 6563 6564 case Intrinsic::uadd_with_overflow: 6565 case Intrinsic::sadd_with_overflow: 6566 case Intrinsic::usub_with_overflow: 6567 case Intrinsic::ssub_with_overflow: 6568 case Intrinsic::umul_with_overflow: 6569 case Intrinsic::smul_with_overflow: { 6570 ISD::NodeType Op; 6571 switch (Intrinsic) { 6572 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6573 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6574 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6575 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6576 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6577 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6578 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6579 } 6580 SDValue Op1 = getValue(I.getArgOperand(0)); 6581 SDValue Op2 = getValue(I.getArgOperand(1)); 6582 6583 EVT ResultVT = Op1.getValueType(); 6584 EVT OverflowVT = MVT::i1; 6585 if (ResultVT.isVector()) 6586 OverflowVT = EVT::getVectorVT( 6587 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6588 6589 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6590 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6591 return; 6592 } 6593 case Intrinsic::prefetch: { 6594 SDValue Ops[5]; 6595 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6596 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6597 Ops[0] = DAG.getRoot(); 6598 Ops[1] = getValue(I.getArgOperand(0)); 6599 Ops[2] = getValue(I.getArgOperand(1)); 6600 Ops[3] = getValue(I.getArgOperand(2)); 6601 Ops[4] = getValue(I.getArgOperand(3)); 6602 SDValue Result = DAG.getMemIntrinsicNode( 6603 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6604 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6605 /* align */ None, Flags); 6606 6607 // Chain the prefetch in parallell with any pending loads, to stay out of 6608 // the way of later optimizations. 6609 PendingLoads.push_back(Result); 6610 Result = getRoot(); 6611 DAG.setRoot(Result); 6612 return; 6613 } 6614 case Intrinsic::lifetime_start: 6615 case Intrinsic::lifetime_end: { 6616 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6617 // Stack coloring is not enabled in O0, discard region information. 6618 if (TM.getOptLevel() == CodeGenOpt::None) 6619 return; 6620 6621 const int64_t ObjectSize = 6622 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6623 Value *const ObjectPtr = I.getArgOperand(1); 6624 SmallVector<const Value *, 4> Allocas; 6625 getUnderlyingObjects(ObjectPtr, Allocas); 6626 6627 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6628 E = Allocas.end(); Object != E; ++Object) { 6629 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6630 6631 // Could not find an Alloca. 6632 if (!LifetimeObject) 6633 continue; 6634 6635 // First check that the Alloca is static, otherwise it won't have a 6636 // valid frame index. 6637 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6638 if (SI == FuncInfo.StaticAllocaMap.end()) 6639 return; 6640 6641 const int FrameIndex = SI->second; 6642 int64_t Offset; 6643 if (GetPointerBaseWithConstantOffset( 6644 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6645 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6646 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6647 Offset); 6648 DAG.setRoot(Res); 6649 } 6650 return; 6651 } 6652 case Intrinsic::invariant_start: 6653 // Discard region information. 6654 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6655 return; 6656 case Intrinsic::invariant_end: 6657 // Discard region information. 6658 return; 6659 case Intrinsic::clear_cache: 6660 /// FunctionName may be null. 6661 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6662 lowerCallToExternalSymbol(I, FunctionName); 6663 return; 6664 case Intrinsic::donothing: 6665 // ignore 6666 return; 6667 case Intrinsic::experimental_stackmap: 6668 visitStackmap(I); 6669 return; 6670 case Intrinsic::experimental_patchpoint_void: 6671 case Intrinsic::experimental_patchpoint_i64: 6672 visitPatchpoint(I); 6673 return; 6674 case Intrinsic::experimental_gc_statepoint: 6675 LowerStatepoint(cast<GCStatepointInst>(I)); 6676 return; 6677 case Intrinsic::experimental_gc_result: 6678 visitGCResult(cast<GCResultInst>(I)); 6679 return; 6680 case Intrinsic::experimental_gc_relocate: 6681 visitGCRelocate(cast<GCRelocateInst>(I)); 6682 return; 6683 case Intrinsic::instrprof_increment: 6684 llvm_unreachable("instrprof failed to lower an increment"); 6685 case Intrinsic::instrprof_value_profile: 6686 llvm_unreachable("instrprof failed to lower a value profiling call"); 6687 case Intrinsic::localescape: { 6688 MachineFunction &MF = DAG.getMachineFunction(); 6689 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6690 6691 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6692 // is the same on all targets. 6693 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6694 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6695 if (isa<ConstantPointerNull>(Arg)) 6696 continue; // Skip null pointers. They represent a hole in index space. 6697 AllocaInst *Slot = cast<AllocaInst>(Arg); 6698 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6699 "can only escape static allocas"); 6700 int FI = FuncInfo.StaticAllocaMap[Slot]; 6701 MCSymbol *FrameAllocSym = 6702 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6703 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6704 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6705 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6706 .addSym(FrameAllocSym) 6707 .addFrameIndex(FI); 6708 } 6709 6710 return; 6711 } 6712 6713 case Intrinsic::localrecover: { 6714 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6715 MachineFunction &MF = DAG.getMachineFunction(); 6716 6717 // Get the symbol that defines the frame offset. 6718 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6719 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6720 unsigned IdxVal = 6721 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6722 MCSymbol *FrameAllocSym = 6723 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6724 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6725 6726 Value *FP = I.getArgOperand(1); 6727 SDValue FPVal = getValue(FP); 6728 EVT PtrVT = FPVal.getValueType(); 6729 6730 // Create a MCSymbol for the label to avoid any target lowering 6731 // that would make this PC relative. 6732 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6733 SDValue OffsetVal = 6734 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6735 6736 // Add the offset to the FP. 6737 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6738 setValue(&I, Add); 6739 6740 return; 6741 } 6742 6743 case Intrinsic::eh_exceptionpointer: 6744 case Intrinsic::eh_exceptioncode: { 6745 // Get the exception pointer vreg, copy from it, and resize it to fit. 6746 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6747 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6748 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6749 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6750 SDValue N = 6751 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6752 if (Intrinsic == Intrinsic::eh_exceptioncode) 6753 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6754 setValue(&I, N); 6755 return; 6756 } 6757 case Intrinsic::xray_customevent: { 6758 // Here we want to make sure that the intrinsic behaves as if it has a 6759 // specific calling convention, and only for x86_64. 6760 // FIXME: Support other platforms later. 6761 const auto &Triple = DAG.getTarget().getTargetTriple(); 6762 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6763 return; 6764 6765 SDLoc DL = getCurSDLoc(); 6766 SmallVector<SDValue, 8> Ops; 6767 6768 // We want to say that we always want the arguments in registers. 6769 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6770 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6771 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6772 SDValue Chain = getRoot(); 6773 Ops.push_back(LogEntryVal); 6774 Ops.push_back(StrSizeVal); 6775 Ops.push_back(Chain); 6776 6777 // We need to enforce the calling convention for the callsite, so that 6778 // argument ordering is enforced correctly, and that register allocation can 6779 // see that some registers may be assumed clobbered and have to preserve 6780 // them across calls to the intrinsic. 6781 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6782 DL, NodeTys, Ops); 6783 SDValue patchableNode = SDValue(MN, 0); 6784 DAG.setRoot(patchableNode); 6785 setValue(&I, patchableNode); 6786 return; 6787 } 6788 case Intrinsic::xray_typedevent: { 6789 // Here we want to make sure that the intrinsic behaves as if it has a 6790 // specific calling convention, and only for x86_64. 6791 // FIXME: Support other platforms later. 6792 const auto &Triple = DAG.getTarget().getTargetTriple(); 6793 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6794 return; 6795 6796 SDLoc DL = getCurSDLoc(); 6797 SmallVector<SDValue, 8> Ops; 6798 6799 // We want to say that we always want the arguments in registers. 6800 // It's unclear to me how manipulating the selection DAG here forces callers 6801 // to provide arguments in registers instead of on the stack. 6802 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6803 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6804 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6805 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6806 SDValue Chain = getRoot(); 6807 Ops.push_back(LogTypeId); 6808 Ops.push_back(LogEntryVal); 6809 Ops.push_back(StrSizeVal); 6810 Ops.push_back(Chain); 6811 6812 // We need to enforce the calling convention for the callsite, so that 6813 // argument ordering is enforced correctly, and that register allocation can 6814 // see that some registers may be assumed clobbered and have to preserve 6815 // them across calls to the intrinsic. 6816 MachineSDNode *MN = DAG.getMachineNode( 6817 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6818 SDValue patchableNode = SDValue(MN, 0); 6819 DAG.setRoot(patchableNode); 6820 setValue(&I, patchableNode); 6821 return; 6822 } 6823 case Intrinsic::experimental_deoptimize: 6824 LowerDeoptimizeCall(&I); 6825 return; 6826 6827 case Intrinsic::experimental_vector_reduce_v2_fadd: 6828 case Intrinsic::experimental_vector_reduce_v2_fmul: 6829 case Intrinsic::experimental_vector_reduce_add: 6830 case Intrinsic::experimental_vector_reduce_mul: 6831 case Intrinsic::experimental_vector_reduce_and: 6832 case Intrinsic::experimental_vector_reduce_or: 6833 case Intrinsic::experimental_vector_reduce_xor: 6834 case Intrinsic::experimental_vector_reduce_smax: 6835 case Intrinsic::experimental_vector_reduce_smin: 6836 case Intrinsic::experimental_vector_reduce_umax: 6837 case Intrinsic::experimental_vector_reduce_umin: 6838 case Intrinsic::experimental_vector_reduce_fmax: 6839 case Intrinsic::experimental_vector_reduce_fmin: 6840 visitVectorReduce(I, Intrinsic); 6841 return; 6842 6843 case Intrinsic::icall_branch_funnel: { 6844 SmallVector<SDValue, 16> Ops; 6845 Ops.push_back(getValue(I.getArgOperand(0))); 6846 6847 int64_t Offset; 6848 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6849 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6850 if (!Base) 6851 report_fatal_error( 6852 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6853 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6854 6855 struct BranchFunnelTarget { 6856 int64_t Offset; 6857 SDValue Target; 6858 }; 6859 SmallVector<BranchFunnelTarget, 8> Targets; 6860 6861 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6862 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6863 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6864 if (ElemBase != Base) 6865 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6866 "to the same GlobalValue"); 6867 6868 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6869 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6870 if (!GA) 6871 report_fatal_error( 6872 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6873 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6874 GA->getGlobal(), getCurSDLoc(), 6875 Val.getValueType(), GA->getOffset())}); 6876 } 6877 llvm::sort(Targets, 6878 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6879 return T1.Offset < T2.Offset; 6880 }); 6881 6882 for (auto &T : Targets) { 6883 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6884 Ops.push_back(T.Target); 6885 } 6886 6887 Ops.push_back(DAG.getRoot()); // Chain 6888 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6889 getCurSDLoc(), MVT::Other, Ops), 6890 0); 6891 DAG.setRoot(N); 6892 setValue(&I, N); 6893 HasTailCall = true; 6894 return; 6895 } 6896 6897 case Intrinsic::wasm_landingpad_index: 6898 // Information this intrinsic contained has been transferred to 6899 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6900 // delete it now. 6901 return; 6902 6903 case Intrinsic::aarch64_settag: 6904 case Intrinsic::aarch64_settag_zero: { 6905 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6906 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 6907 SDValue Val = TSI.EmitTargetCodeForSetTag( 6908 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 6909 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 6910 ZeroMemory); 6911 DAG.setRoot(Val); 6912 setValue(&I, Val); 6913 return; 6914 } 6915 case Intrinsic::ptrmask: { 6916 SDValue Ptr = getValue(I.getOperand(0)); 6917 SDValue Const = getValue(I.getOperand(1)); 6918 6919 EVT PtrVT = Ptr.getValueType(); 6920 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr, 6921 DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT))); 6922 return; 6923 } 6924 case Intrinsic::get_active_lane_mask: { 6925 auto DL = getCurSDLoc(); 6926 SDValue Index = getValue(I.getOperand(0)); 6927 SDValue BTC = getValue(I.getOperand(1)); 6928 Type *ElementTy = I.getOperand(0)->getType(); 6929 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6930 unsigned VecWidth = VT.getVectorNumElements(); 6931 6932 SmallVector<SDValue, 16> OpsBTC; 6933 SmallVector<SDValue, 16> OpsIndex; 6934 SmallVector<SDValue, 16> OpsStepConstants; 6935 for (unsigned i = 0; i < VecWidth; i++) { 6936 OpsBTC.push_back(BTC); 6937 OpsIndex.push_back(Index); 6938 OpsStepConstants.push_back(DAG.getConstant(i, DL, MVT::getVT(ElementTy))); 6939 } 6940 6941 EVT CCVT = MVT::i1; 6942 CCVT = EVT::getVectorVT(I.getContext(), CCVT, VecWidth); 6943 6944 auto VecTy = MVT::getVT(FixedVectorType::get(ElementTy, VecWidth)); 6945 SDValue VectorIndex = DAG.getBuildVector(VecTy, DL, OpsIndex); 6946 SDValue VectorStep = DAG.getBuildVector(VecTy, DL, OpsStepConstants); 6947 SDValue VectorInduction = DAG.getNode( 6948 ISD::UADDO, DL, DAG.getVTList(VecTy, CCVT), VectorIndex, VectorStep); 6949 SDValue VectorBTC = DAG.getBuildVector(VecTy, DL, OpsBTC); 6950 SDValue SetCC = DAG.getSetCC(DL, CCVT, VectorInduction.getValue(0), 6951 VectorBTC, ISD::CondCode::SETULE); 6952 setValue(&I, DAG.getNode(ISD::AND, DL, CCVT, 6953 DAG.getNOT(DL, VectorInduction.getValue(1), CCVT), 6954 SetCC)); 6955 return; 6956 } 6957 } 6958 } 6959 6960 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6961 const ConstrainedFPIntrinsic &FPI) { 6962 SDLoc sdl = getCurSDLoc(); 6963 6964 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6965 SmallVector<EVT, 4> ValueVTs; 6966 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6967 ValueVTs.push_back(MVT::Other); // Out chain 6968 6969 // We do not need to serialize constrained FP intrinsics against 6970 // each other or against (nonvolatile) loads, so they can be 6971 // chained like loads. 6972 SDValue Chain = DAG.getRoot(); 6973 SmallVector<SDValue, 4> Opers; 6974 Opers.push_back(Chain); 6975 if (FPI.isUnaryOp()) { 6976 Opers.push_back(getValue(FPI.getArgOperand(0))); 6977 } else if (FPI.isTernaryOp()) { 6978 Opers.push_back(getValue(FPI.getArgOperand(0))); 6979 Opers.push_back(getValue(FPI.getArgOperand(1))); 6980 Opers.push_back(getValue(FPI.getArgOperand(2))); 6981 } else { 6982 Opers.push_back(getValue(FPI.getArgOperand(0))); 6983 Opers.push_back(getValue(FPI.getArgOperand(1))); 6984 } 6985 6986 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 6987 assert(Result.getNode()->getNumValues() == 2); 6988 6989 // Push node to the appropriate list so that future instructions can be 6990 // chained up correctly. 6991 SDValue OutChain = Result.getValue(1); 6992 switch (EB) { 6993 case fp::ExceptionBehavior::ebIgnore: 6994 // The only reason why ebIgnore nodes still need to be chained is that 6995 // they might depend on the current rounding mode, and therefore must 6996 // not be moved across instruction that may change that mode. 6997 LLVM_FALLTHROUGH; 6998 case fp::ExceptionBehavior::ebMayTrap: 6999 // These must not be moved across calls or instructions that may change 7000 // floating-point exception masks. 7001 PendingConstrainedFP.push_back(OutChain); 7002 break; 7003 case fp::ExceptionBehavior::ebStrict: 7004 // These must not be moved across calls or instructions that may change 7005 // floating-point exception masks or read floating-point exception flags. 7006 // In addition, they cannot be optimized out even if unused. 7007 PendingConstrainedFPStrict.push_back(OutChain); 7008 break; 7009 } 7010 }; 7011 7012 SDVTList VTs = DAG.getVTList(ValueVTs); 7013 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 7014 7015 SDNodeFlags Flags; 7016 if (EB == fp::ExceptionBehavior::ebIgnore) 7017 Flags.setNoFPExcept(true); 7018 7019 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7020 Flags.copyFMF(*FPOp); 7021 7022 unsigned Opcode; 7023 switch (FPI.getIntrinsicID()) { 7024 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7025 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7026 case Intrinsic::INTRINSIC: \ 7027 Opcode = ISD::STRICT_##DAGN; \ 7028 break; 7029 #include "llvm/IR/ConstrainedOps.def" 7030 case Intrinsic::experimental_constrained_fmuladd: { 7031 Opcode = ISD::STRICT_FMA; 7032 // Break fmuladd into fmul and fadd. 7033 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7034 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 7035 ValueVTs[0])) { 7036 Opers.pop_back(); 7037 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7038 pushOutChain(Mul, EB); 7039 Opcode = ISD::STRICT_FADD; 7040 Opers.clear(); 7041 Opers.push_back(Mul.getValue(1)); 7042 Opers.push_back(Mul.getValue(0)); 7043 Opers.push_back(getValue(FPI.getArgOperand(2))); 7044 } 7045 break; 7046 } 7047 } 7048 7049 // A few strict DAG nodes carry additional operands that are not 7050 // set up by the default code above. 7051 switch (Opcode) { 7052 default: break; 7053 case ISD::STRICT_FP_ROUND: 7054 Opers.push_back( 7055 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7056 break; 7057 case ISD::STRICT_FSETCC: 7058 case ISD::STRICT_FSETCCS: { 7059 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7060 Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate()))); 7061 break; 7062 } 7063 } 7064 7065 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7066 pushOutChain(Result, EB); 7067 7068 SDValue FPResult = Result.getValue(0); 7069 setValue(&FPI, FPResult); 7070 } 7071 7072 std::pair<SDValue, SDValue> 7073 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7074 const BasicBlock *EHPadBB) { 7075 MachineFunction &MF = DAG.getMachineFunction(); 7076 MachineModuleInfo &MMI = MF.getMMI(); 7077 MCSymbol *BeginLabel = nullptr; 7078 7079 if (EHPadBB) { 7080 // Insert a label before the invoke call to mark the try range. This can be 7081 // used to detect deletion of the invoke via the MachineModuleInfo. 7082 BeginLabel = MMI.getContext().createTempSymbol(); 7083 7084 // For SjLj, keep track of which landing pads go with which invokes 7085 // so as to maintain the ordering of pads in the LSDA. 7086 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7087 if (CallSiteIndex) { 7088 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7089 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7090 7091 // Now that the call site is handled, stop tracking it. 7092 MMI.setCurrentCallSite(0); 7093 } 7094 7095 // Both PendingLoads and PendingExports must be flushed here; 7096 // this call might not return. 7097 (void)getRoot(); 7098 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 7099 7100 CLI.setChain(getRoot()); 7101 } 7102 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7103 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7104 7105 assert((CLI.IsTailCall || Result.second.getNode()) && 7106 "Non-null chain expected with non-tail call!"); 7107 assert((Result.second.getNode() || !Result.first.getNode()) && 7108 "Null value expected with tail call!"); 7109 7110 if (!Result.second.getNode()) { 7111 // As a special case, a null chain means that a tail call has been emitted 7112 // and the DAG root is already updated. 7113 HasTailCall = true; 7114 7115 // Since there's no actual continuation from this block, nothing can be 7116 // relying on us setting vregs for them. 7117 PendingExports.clear(); 7118 } else { 7119 DAG.setRoot(Result.second); 7120 } 7121 7122 if (EHPadBB) { 7123 // Insert a label at the end of the invoke call to mark the try range. This 7124 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7125 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7126 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7127 7128 // Inform MachineModuleInfo of range. 7129 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7130 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7131 // actually use outlined funclets and their LSDA info style. 7132 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7133 assert(CLI.CB); 7134 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7135 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CB), BeginLabel, EndLabel); 7136 } else if (!isScopedEHPersonality(Pers)) { 7137 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7138 } 7139 } 7140 7141 return Result; 7142 } 7143 7144 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7145 bool isTailCall, 7146 const BasicBlock *EHPadBB) { 7147 auto &DL = DAG.getDataLayout(); 7148 FunctionType *FTy = CB.getFunctionType(); 7149 Type *RetTy = CB.getType(); 7150 7151 TargetLowering::ArgListTy Args; 7152 Args.reserve(CB.arg_size()); 7153 7154 const Value *SwiftErrorVal = nullptr; 7155 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7156 7157 if (isTailCall) { 7158 // Avoid emitting tail calls in functions with the disable-tail-calls 7159 // attribute. 7160 auto *Caller = CB.getParent()->getParent(); 7161 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7162 "true") 7163 isTailCall = false; 7164 7165 // We can't tail call inside a function with a swifterror argument. Lowering 7166 // does not support this yet. It would have to move into the swifterror 7167 // register before the call. 7168 if (TLI.supportSwiftError() && 7169 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7170 isTailCall = false; 7171 } 7172 7173 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7174 TargetLowering::ArgListEntry Entry; 7175 const Value *V = *I; 7176 7177 // Skip empty types 7178 if (V->getType()->isEmptyTy()) 7179 continue; 7180 7181 SDValue ArgNode = getValue(V); 7182 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7183 7184 Entry.setAttributes(&CB, I - CB.arg_begin()); 7185 7186 // Use swifterror virtual register as input to the call. 7187 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7188 SwiftErrorVal = V; 7189 // We find the virtual register for the actual swifterror argument. 7190 // Instead of using the Value, we use the virtual register instead. 7191 Entry.Node = 7192 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7193 EVT(TLI.getPointerTy(DL))); 7194 } 7195 7196 Args.push_back(Entry); 7197 7198 // If we have an explicit sret argument that is an Instruction, (i.e., it 7199 // might point to function-local memory), we can't meaningfully tail-call. 7200 if (Entry.IsSRet && isa<Instruction>(V)) 7201 isTailCall = false; 7202 } 7203 7204 // If call site has a cfguardtarget operand bundle, create and add an 7205 // additional ArgListEntry. 7206 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7207 TargetLowering::ArgListEntry Entry; 7208 Value *V = Bundle->Inputs[0]; 7209 SDValue ArgNode = getValue(V); 7210 Entry.Node = ArgNode; 7211 Entry.Ty = V->getType(); 7212 Entry.IsCFGuardTarget = true; 7213 Args.push_back(Entry); 7214 } 7215 7216 // Check if target-independent constraints permit a tail call here. 7217 // Target-dependent constraints are checked within TLI->LowerCallTo. 7218 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7219 isTailCall = false; 7220 7221 // Disable tail calls if there is an swifterror argument. Targets have not 7222 // been updated to support tail calls. 7223 if (TLI.supportSwiftError() && SwiftErrorVal) 7224 isTailCall = false; 7225 7226 TargetLowering::CallLoweringInfo CLI(DAG); 7227 CLI.setDebugLoc(getCurSDLoc()) 7228 .setChain(getRoot()) 7229 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7230 .setTailCall(isTailCall) 7231 .setConvergent(CB.isConvergent()) 7232 .setIsPreallocated( 7233 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 7234 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7235 7236 if (Result.first.getNode()) { 7237 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7238 setValue(&CB, Result.first); 7239 } 7240 7241 // The last element of CLI.InVals has the SDValue for swifterror return. 7242 // Here we copy it to a virtual register and update SwiftErrorMap for 7243 // book-keeping. 7244 if (SwiftErrorVal && TLI.supportSwiftError()) { 7245 // Get the last element of InVals. 7246 SDValue Src = CLI.InVals.back(); 7247 Register VReg = 7248 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7249 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7250 DAG.setRoot(CopyNode); 7251 } 7252 } 7253 7254 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7255 SelectionDAGBuilder &Builder) { 7256 // Check to see if this load can be trivially constant folded, e.g. if the 7257 // input is from a string literal. 7258 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7259 // Cast pointer to the type we really want to load. 7260 Type *LoadTy = 7261 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7262 if (LoadVT.isVector()) 7263 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7264 7265 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7266 PointerType::getUnqual(LoadTy)); 7267 7268 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7269 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7270 return Builder.getValue(LoadCst); 7271 } 7272 7273 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7274 // still constant memory, the input chain can be the entry node. 7275 SDValue Root; 7276 bool ConstantMemory = false; 7277 7278 // Do not serialize (non-volatile) loads of constant memory with anything. 7279 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7280 Root = Builder.DAG.getEntryNode(); 7281 ConstantMemory = true; 7282 } else { 7283 // Do not serialize non-volatile loads against each other. 7284 Root = Builder.DAG.getRoot(); 7285 } 7286 7287 SDValue Ptr = Builder.getValue(PtrVal); 7288 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 7289 Ptr, MachinePointerInfo(PtrVal), 7290 /* Alignment = */ 1); 7291 7292 if (!ConstantMemory) 7293 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7294 return LoadVal; 7295 } 7296 7297 /// Record the value for an instruction that produces an integer result, 7298 /// converting the type where necessary. 7299 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7300 SDValue Value, 7301 bool IsSigned) { 7302 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7303 I.getType(), true); 7304 if (IsSigned) 7305 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7306 else 7307 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7308 setValue(&I, Value); 7309 } 7310 7311 /// See if we can lower a memcmp call into an optimized form. If so, return 7312 /// true and lower it. Otherwise return false, and it will be lowered like a 7313 /// normal call. 7314 /// The caller already checked that \p I calls the appropriate LibFunc with a 7315 /// correct prototype. 7316 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7317 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7318 const Value *Size = I.getArgOperand(2); 7319 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7320 if (CSize && CSize->getZExtValue() == 0) { 7321 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7322 I.getType(), true); 7323 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7324 return true; 7325 } 7326 7327 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7328 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7329 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7330 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7331 if (Res.first.getNode()) { 7332 processIntegerCallValue(I, Res.first, true); 7333 PendingLoads.push_back(Res.second); 7334 return true; 7335 } 7336 7337 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7338 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7339 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7340 return false; 7341 7342 // If the target has a fast compare for the given size, it will return a 7343 // preferred load type for that size. Require that the load VT is legal and 7344 // that the target supports unaligned loads of that type. Otherwise, return 7345 // INVALID. 7346 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7347 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7348 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7349 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7350 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7351 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7352 // TODO: Check alignment of src and dest ptrs. 7353 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7354 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7355 if (!TLI.isTypeLegal(LVT) || 7356 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7357 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7358 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7359 } 7360 7361 return LVT; 7362 }; 7363 7364 // This turns into unaligned loads. We only do this if the target natively 7365 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7366 // we'll only produce a small number of byte loads. 7367 MVT LoadVT; 7368 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7369 switch (NumBitsToCompare) { 7370 default: 7371 return false; 7372 case 16: 7373 LoadVT = MVT::i16; 7374 break; 7375 case 32: 7376 LoadVT = MVT::i32; 7377 break; 7378 case 64: 7379 case 128: 7380 case 256: 7381 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7382 break; 7383 } 7384 7385 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7386 return false; 7387 7388 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7389 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7390 7391 // Bitcast to a wide integer type if the loads are vectors. 7392 if (LoadVT.isVector()) { 7393 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7394 LoadL = DAG.getBitcast(CmpVT, LoadL); 7395 LoadR = DAG.getBitcast(CmpVT, LoadR); 7396 } 7397 7398 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7399 processIntegerCallValue(I, Cmp, false); 7400 return true; 7401 } 7402 7403 /// See if we can lower a memchr call into an optimized form. If so, return 7404 /// true and lower it. Otherwise return false, and it will be lowered like a 7405 /// normal call. 7406 /// The caller already checked that \p I calls the appropriate LibFunc with a 7407 /// correct prototype. 7408 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7409 const Value *Src = I.getArgOperand(0); 7410 const Value *Char = I.getArgOperand(1); 7411 const Value *Length = I.getArgOperand(2); 7412 7413 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7414 std::pair<SDValue, SDValue> Res = 7415 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7416 getValue(Src), getValue(Char), getValue(Length), 7417 MachinePointerInfo(Src)); 7418 if (Res.first.getNode()) { 7419 setValue(&I, Res.first); 7420 PendingLoads.push_back(Res.second); 7421 return true; 7422 } 7423 7424 return false; 7425 } 7426 7427 /// See if we can lower a mempcpy call into an optimized form. If so, return 7428 /// true and lower it. Otherwise return false, and it will be lowered like a 7429 /// normal call. 7430 /// The caller already checked that \p I calls the appropriate LibFunc with a 7431 /// correct prototype. 7432 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7433 SDValue Dst = getValue(I.getArgOperand(0)); 7434 SDValue Src = getValue(I.getArgOperand(1)); 7435 SDValue Size = getValue(I.getArgOperand(2)); 7436 7437 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 7438 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 7439 // DAG::getMemcpy needs Alignment to be defined. 7440 Align Alignment = std::min(DstAlign, SrcAlign); 7441 7442 bool isVol = false; 7443 SDLoc sdl = getCurSDLoc(); 7444 7445 // In the mempcpy context we need to pass in a false value for isTailCall 7446 // because the return pointer needs to be adjusted by the size of 7447 // the copied memory. 7448 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 7449 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 7450 /*isTailCall=*/false, 7451 MachinePointerInfo(I.getArgOperand(0)), 7452 MachinePointerInfo(I.getArgOperand(1))); 7453 assert(MC.getNode() != nullptr && 7454 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7455 DAG.setRoot(MC); 7456 7457 // Check if Size needs to be truncated or extended. 7458 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7459 7460 // Adjust return pointer to point just past the last dst byte. 7461 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7462 Dst, Size); 7463 setValue(&I, DstPlusSize); 7464 return true; 7465 } 7466 7467 /// See if we can lower a strcpy call into an optimized form. If so, return 7468 /// true and lower it, otherwise return false and it will be lowered like a 7469 /// normal call. 7470 /// The caller already checked that \p I calls the appropriate LibFunc with a 7471 /// correct prototype. 7472 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7473 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7474 7475 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7476 std::pair<SDValue, SDValue> Res = 7477 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7478 getValue(Arg0), getValue(Arg1), 7479 MachinePointerInfo(Arg0), 7480 MachinePointerInfo(Arg1), isStpcpy); 7481 if (Res.first.getNode()) { 7482 setValue(&I, Res.first); 7483 DAG.setRoot(Res.second); 7484 return true; 7485 } 7486 7487 return false; 7488 } 7489 7490 /// See if we can lower a strcmp call into an optimized form. If so, return 7491 /// true and lower it, otherwise return false and it will be lowered like a 7492 /// normal call. 7493 /// The caller already checked that \p I calls the appropriate LibFunc with a 7494 /// correct prototype. 7495 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7496 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7497 7498 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7499 std::pair<SDValue, SDValue> Res = 7500 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7501 getValue(Arg0), getValue(Arg1), 7502 MachinePointerInfo(Arg0), 7503 MachinePointerInfo(Arg1)); 7504 if (Res.first.getNode()) { 7505 processIntegerCallValue(I, Res.first, true); 7506 PendingLoads.push_back(Res.second); 7507 return true; 7508 } 7509 7510 return false; 7511 } 7512 7513 /// See if we can lower a strlen call into an optimized form. If so, return 7514 /// true and lower it, otherwise return false and it will be lowered like a 7515 /// normal call. 7516 /// The caller already checked that \p I calls the appropriate LibFunc with a 7517 /// correct prototype. 7518 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7519 const Value *Arg0 = I.getArgOperand(0); 7520 7521 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7522 std::pair<SDValue, SDValue> Res = 7523 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7524 getValue(Arg0), MachinePointerInfo(Arg0)); 7525 if (Res.first.getNode()) { 7526 processIntegerCallValue(I, Res.first, false); 7527 PendingLoads.push_back(Res.second); 7528 return true; 7529 } 7530 7531 return false; 7532 } 7533 7534 /// See if we can lower a strnlen call into an optimized form. If so, return 7535 /// true and lower it, otherwise return false and it will be lowered like a 7536 /// normal call. 7537 /// The caller already checked that \p I calls the appropriate LibFunc with a 7538 /// correct prototype. 7539 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7540 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7541 7542 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7543 std::pair<SDValue, SDValue> Res = 7544 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7545 getValue(Arg0), getValue(Arg1), 7546 MachinePointerInfo(Arg0)); 7547 if (Res.first.getNode()) { 7548 processIntegerCallValue(I, Res.first, false); 7549 PendingLoads.push_back(Res.second); 7550 return true; 7551 } 7552 7553 return false; 7554 } 7555 7556 /// See if we can lower a unary floating-point operation into an SDNode with 7557 /// the specified Opcode. If so, return true and lower it, otherwise return 7558 /// false and it will be lowered like a normal call. 7559 /// The caller already checked that \p I calls the appropriate LibFunc with a 7560 /// correct prototype. 7561 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7562 unsigned Opcode) { 7563 // We already checked this call's prototype; verify it doesn't modify errno. 7564 if (!I.onlyReadsMemory()) 7565 return false; 7566 7567 SDValue Tmp = getValue(I.getArgOperand(0)); 7568 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7569 return true; 7570 } 7571 7572 /// See if we can lower a binary floating-point operation into an SDNode with 7573 /// the specified Opcode. If so, return true and lower it. Otherwise return 7574 /// false, and it will be lowered like a normal call. 7575 /// The caller already checked that \p I calls the appropriate LibFunc with a 7576 /// correct prototype. 7577 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7578 unsigned Opcode) { 7579 // We already checked this call's prototype; verify it doesn't modify errno. 7580 if (!I.onlyReadsMemory()) 7581 return false; 7582 7583 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7584 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7585 EVT VT = Tmp0.getValueType(); 7586 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7587 return true; 7588 } 7589 7590 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7591 // Handle inline assembly differently. 7592 if (I.isInlineAsm()) { 7593 visitInlineAsm(I); 7594 return; 7595 } 7596 7597 if (Function *F = I.getCalledFunction()) { 7598 if (F->isDeclaration()) { 7599 // Is this an LLVM intrinsic or a target-specific intrinsic? 7600 unsigned IID = F->getIntrinsicID(); 7601 if (!IID) 7602 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7603 IID = II->getIntrinsicID(F); 7604 7605 if (IID) { 7606 visitIntrinsicCall(I, IID); 7607 return; 7608 } 7609 } 7610 7611 // Check for well-known libc/libm calls. If the function is internal, it 7612 // can't be a library call. Don't do the check if marked as nobuiltin for 7613 // some reason or the call site requires strict floating point semantics. 7614 LibFunc Func; 7615 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7616 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7617 LibInfo->hasOptimizedCodeGen(Func)) { 7618 switch (Func) { 7619 default: break; 7620 case LibFunc_copysign: 7621 case LibFunc_copysignf: 7622 case LibFunc_copysignl: 7623 // We already checked this call's prototype; verify it doesn't modify 7624 // errno. 7625 if (I.onlyReadsMemory()) { 7626 SDValue LHS = getValue(I.getArgOperand(0)); 7627 SDValue RHS = getValue(I.getArgOperand(1)); 7628 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7629 LHS.getValueType(), LHS, RHS)); 7630 return; 7631 } 7632 break; 7633 case LibFunc_fabs: 7634 case LibFunc_fabsf: 7635 case LibFunc_fabsl: 7636 if (visitUnaryFloatCall(I, ISD::FABS)) 7637 return; 7638 break; 7639 case LibFunc_fmin: 7640 case LibFunc_fminf: 7641 case LibFunc_fminl: 7642 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7643 return; 7644 break; 7645 case LibFunc_fmax: 7646 case LibFunc_fmaxf: 7647 case LibFunc_fmaxl: 7648 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7649 return; 7650 break; 7651 case LibFunc_sin: 7652 case LibFunc_sinf: 7653 case LibFunc_sinl: 7654 if (visitUnaryFloatCall(I, ISD::FSIN)) 7655 return; 7656 break; 7657 case LibFunc_cos: 7658 case LibFunc_cosf: 7659 case LibFunc_cosl: 7660 if (visitUnaryFloatCall(I, ISD::FCOS)) 7661 return; 7662 break; 7663 case LibFunc_sqrt: 7664 case LibFunc_sqrtf: 7665 case LibFunc_sqrtl: 7666 case LibFunc_sqrt_finite: 7667 case LibFunc_sqrtf_finite: 7668 case LibFunc_sqrtl_finite: 7669 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7670 return; 7671 break; 7672 case LibFunc_floor: 7673 case LibFunc_floorf: 7674 case LibFunc_floorl: 7675 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7676 return; 7677 break; 7678 case LibFunc_nearbyint: 7679 case LibFunc_nearbyintf: 7680 case LibFunc_nearbyintl: 7681 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7682 return; 7683 break; 7684 case LibFunc_ceil: 7685 case LibFunc_ceilf: 7686 case LibFunc_ceill: 7687 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7688 return; 7689 break; 7690 case LibFunc_rint: 7691 case LibFunc_rintf: 7692 case LibFunc_rintl: 7693 if (visitUnaryFloatCall(I, ISD::FRINT)) 7694 return; 7695 break; 7696 case LibFunc_round: 7697 case LibFunc_roundf: 7698 case LibFunc_roundl: 7699 if (visitUnaryFloatCall(I, ISD::FROUND)) 7700 return; 7701 break; 7702 case LibFunc_trunc: 7703 case LibFunc_truncf: 7704 case LibFunc_truncl: 7705 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7706 return; 7707 break; 7708 case LibFunc_log2: 7709 case LibFunc_log2f: 7710 case LibFunc_log2l: 7711 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7712 return; 7713 break; 7714 case LibFunc_exp2: 7715 case LibFunc_exp2f: 7716 case LibFunc_exp2l: 7717 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7718 return; 7719 break; 7720 case LibFunc_memcmp: 7721 if (visitMemCmpCall(I)) 7722 return; 7723 break; 7724 case LibFunc_mempcpy: 7725 if (visitMemPCpyCall(I)) 7726 return; 7727 break; 7728 case LibFunc_memchr: 7729 if (visitMemChrCall(I)) 7730 return; 7731 break; 7732 case LibFunc_strcpy: 7733 if (visitStrCpyCall(I, false)) 7734 return; 7735 break; 7736 case LibFunc_stpcpy: 7737 if (visitStrCpyCall(I, true)) 7738 return; 7739 break; 7740 case LibFunc_strcmp: 7741 if (visitStrCmpCall(I)) 7742 return; 7743 break; 7744 case LibFunc_strlen: 7745 if (visitStrLenCall(I)) 7746 return; 7747 break; 7748 case LibFunc_strnlen: 7749 if (visitStrNLenCall(I)) 7750 return; 7751 break; 7752 } 7753 } 7754 } 7755 7756 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7757 // have to do anything here to lower funclet bundles. 7758 // CFGuardTarget bundles are lowered in LowerCallTo. 7759 assert(!I.hasOperandBundlesOtherThan( 7760 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 7761 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated}) && 7762 "Cannot lower calls with arbitrary operand bundles!"); 7763 7764 SDValue Callee = getValue(I.getCalledOperand()); 7765 7766 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7767 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7768 else 7769 // Check if we can potentially perform a tail call. More detailed checking 7770 // is be done within LowerCallTo, after more information about the call is 7771 // known. 7772 LowerCallTo(I, Callee, I.isTailCall()); 7773 } 7774 7775 namespace { 7776 7777 /// AsmOperandInfo - This contains information for each constraint that we are 7778 /// lowering. 7779 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7780 public: 7781 /// CallOperand - If this is the result output operand or a clobber 7782 /// this is null, otherwise it is the incoming operand to the CallInst. 7783 /// This gets modified as the asm is processed. 7784 SDValue CallOperand; 7785 7786 /// AssignedRegs - If this is a register or register class operand, this 7787 /// contains the set of register corresponding to the operand. 7788 RegsForValue AssignedRegs; 7789 7790 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7791 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7792 } 7793 7794 /// Whether or not this operand accesses memory 7795 bool hasMemory(const TargetLowering &TLI) const { 7796 // Indirect operand accesses access memory. 7797 if (isIndirect) 7798 return true; 7799 7800 for (const auto &Code : Codes) 7801 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7802 return true; 7803 7804 return false; 7805 } 7806 7807 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7808 /// corresponds to. If there is no Value* for this operand, it returns 7809 /// MVT::Other. 7810 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7811 const DataLayout &DL) const { 7812 if (!CallOperandVal) return MVT::Other; 7813 7814 if (isa<BasicBlock>(CallOperandVal)) 7815 return TLI.getProgramPointerTy(DL); 7816 7817 llvm::Type *OpTy = CallOperandVal->getType(); 7818 7819 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7820 // If this is an indirect operand, the operand is a pointer to the 7821 // accessed type. 7822 if (isIndirect) { 7823 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7824 if (!PtrTy) 7825 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7826 OpTy = PtrTy->getElementType(); 7827 } 7828 7829 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7830 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7831 if (STy->getNumElements() == 1) 7832 OpTy = STy->getElementType(0); 7833 7834 // If OpTy is not a single value, it may be a struct/union that we 7835 // can tile with integers. 7836 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7837 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7838 switch (BitSize) { 7839 default: break; 7840 case 1: 7841 case 8: 7842 case 16: 7843 case 32: 7844 case 64: 7845 case 128: 7846 OpTy = IntegerType::get(Context, BitSize); 7847 break; 7848 } 7849 } 7850 7851 return TLI.getValueType(DL, OpTy, true); 7852 } 7853 }; 7854 7855 7856 } // end anonymous namespace 7857 7858 /// Make sure that the output operand \p OpInfo and its corresponding input 7859 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7860 /// out). 7861 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7862 SDISelAsmOperandInfo &MatchingOpInfo, 7863 SelectionDAG &DAG) { 7864 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7865 return; 7866 7867 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7868 const auto &TLI = DAG.getTargetLoweringInfo(); 7869 7870 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7871 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7872 OpInfo.ConstraintVT); 7873 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7874 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7875 MatchingOpInfo.ConstraintVT); 7876 if ((OpInfo.ConstraintVT.isInteger() != 7877 MatchingOpInfo.ConstraintVT.isInteger()) || 7878 (MatchRC.second != InputRC.second)) { 7879 // FIXME: error out in a more elegant fashion 7880 report_fatal_error("Unsupported asm: input constraint" 7881 " with a matching output constraint of" 7882 " incompatible type!"); 7883 } 7884 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7885 } 7886 7887 /// Get a direct memory input to behave well as an indirect operand. 7888 /// This may introduce stores, hence the need for a \p Chain. 7889 /// \return The (possibly updated) chain. 7890 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7891 SDISelAsmOperandInfo &OpInfo, 7892 SelectionDAG &DAG) { 7893 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7894 7895 // If we don't have an indirect input, put it in the constpool if we can, 7896 // otherwise spill it to a stack slot. 7897 // TODO: This isn't quite right. We need to handle these according to 7898 // the addressing mode that the constraint wants. Also, this may take 7899 // an additional register for the computation and we don't want that 7900 // either. 7901 7902 // If the operand is a float, integer, or vector constant, spill to a 7903 // constant pool entry to get its address. 7904 const Value *OpVal = OpInfo.CallOperandVal; 7905 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7906 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7907 OpInfo.CallOperand = DAG.getConstantPool( 7908 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7909 return Chain; 7910 } 7911 7912 // Otherwise, create a stack slot and emit a store to it before the asm. 7913 Type *Ty = OpVal->getType(); 7914 auto &DL = DAG.getDataLayout(); 7915 uint64_t TySize = DL.getTypeAllocSize(Ty); 7916 MachineFunction &MF = DAG.getMachineFunction(); 7917 int SSFI = MF.getFrameInfo().CreateStackObject( 7918 TySize, DL.getPrefTypeAlign(Ty), false); 7919 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7920 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7921 MachinePointerInfo::getFixedStack(MF, SSFI), 7922 TLI.getMemValueType(DL, Ty)); 7923 OpInfo.CallOperand = StackSlot; 7924 7925 return Chain; 7926 } 7927 7928 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7929 /// specified operand. We prefer to assign virtual registers, to allow the 7930 /// register allocator to handle the assignment process. However, if the asm 7931 /// uses features that we can't model on machineinstrs, we have SDISel do the 7932 /// allocation. This produces generally horrible, but correct, code. 7933 /// 7934 /// OpInfo describes the operand 7935 /// RefOpInfo describes the matching operand if any, the operand otherwise 7936 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7937 SDISelAsmOperandInfo &OpInfo, 7938 SDISelAsmOperandInfo &RefOpInfo) { 7939 LLVMContext &Context = *DAG.getContext(); 7940 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7941 7942 MachineFunction &MF = DAG.getMachineFunction(); 7943 SmallVector<unsigned, 4> Regs; 7944 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7945 7946 // No work to do for memory operations. 7947 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7948 return; 7949 7950 // If this is a constraint for a single physreg, or a constraint for a 7951 // register class, find it. 7952 unsigned AssignedReg; 7953 const TargetRegisterClass *RC; 7954 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7955 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7956 // RC is unset only on failure. Return immediately. 7957 if (!RC) 7958 return; 7959 7960 // Get the actual register value type. This is important, because the user 7961 // may have asked for (e.g.) the AX register in i32 type. We need to 7962 // remember that AX is actually i16 to get the right extension. 7963 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7964 7965 if (OpInfo.ConstraintVT != MVT::Other) { 7966 // If this is an FP operand in an integer register (or visa versa), or more 7967 // generally if the operand value disagrees with the register class we plan 7968 // to stick it in, fix the operand type. 7969 // 7970 // If this is an input value, the bitcast to the new type is done now. 7971 // Bitcast for output value is done at the end of visitInlineAsm(). 7972 if ((OpInfo.Type == InlineAsm::isOutput || 7973 OpInfo.Type == InlineAsm::isInput) && 7974 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7975 // Try to convert to the first EVT that the reg class contains. If the 7976 // types are identical size, use a bitcast to convert (e.g. two differing 7977 // vector types). Note: output bitcast is done at the end of 7978 // visitInlineAsm(). 7979 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7980 // Exclude indirect inputs while they are unsupported because the code 7981 // to perform the load is missing and thus OpInfo.CallOperand still 7982 // refers to the input address rather than the pointed-to value. 7983 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7984 OpInfo.CallOperand = 7985 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7986 OpInfo.ConstraintVT = RegVT; 7987 // If the operand is an FP value and we want it in integer registers, 7988 // use the corresponding integer type. This turns an f64 value into 7989 // i64, which can be passed with two i32 values on a 32-bit machine. 7990 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7991 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7992 if (OpInfo.Type == InlineAsm::isInput) 7993 OpInfo.CallOperand = 7994 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7995 OpInfo.ConstraintVT = VT; 7996 } 7997 } 7998 } 7999 8000 // No need to allocate a matching input constraint since the constraint it's 8001 // matching to has already been allocated. 8002 if (OpInfo.isMatchingInputConstraint()) 8003 return; 8004 8005 EVT ValueVT = OpInfo.ConstraintVT; 8006 if (OpInfo.ConstraintVT == MVT::Other) 8007 ValueVT = RegVT; 8008 8009 // Initialize NumRegs. 8010 unsigned NumRegs = 1; 8011 if (OpInfo.ConstraintVT != MVT::Other) 8012 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 8013 8014 // If this is a constraint for a specific physical register, like {r17}, 8015 // assign it now. 8016 8017 // If this associated to a specific register, initialize iterator to correct 8018 // place. If virtual, make sure we have enough registers 8019 8020 // Initialize iterator if necessary 8021 TargetRegisterClass::iterator I = RC->begin(); 8022 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8023 8024 // Do not check for single registers. 8025 if (AssignedReg) { 8026 for (; *I != AssignedReg; ++I) 8027 assert(I != RC->end() && "AssignedReg should be member of RC"); 8028 } 8029 8030 for (; NumRegs; --NumRegs, ++I) { 8031 assert(I != RC->end() && "Ran out of registers to allocate!"); 8032 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8033 Regs.push_back(R); 8034 } 8035 8036 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8037 } 8038 8039 static unsigned 8040 findMatchingInlineAsmOperand(unsigned OperandNo, 8041 const std::vector<SDValue> &AsmNodeOperands) { 8042 // Scan until we find the definition we already emitted of this operand. 8043 unsigned CurOp = InlineAsm::Op_FirstOperand; 8044 for (; OperandNo; --OperandNo) { 8045 // Advance to the next operand. 8046 unsigned OpFlag = 8047 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8048 assert((InlineAsm::isRegDefKind(OpFlag) || 8049 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8050 InlineAsm::isMemKind(OpFlag)) && 8051 "Skipped past definitions?"); 8052 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8053 } 8054 return CurOp; 8055 } 8056 8057 namespace { 8058 8059 class ExtraFlags { 8060 unsigned Flags = 0; 8061 8062 public: 8063 explicit ExtraFlags(const CallBase &Call) { 8064 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8065 if (IA->hasSideEffects()) 8066 Flags |= InlineAsm::Extra_HasSideEffects; 8067 if (IA->isAlignStack()) 8068 Flags |= InlineAsm::Extra_IsAlignStack; 8069 if (Call.isConvergent()) 8070 Flags |= InlineAsm::Extra_IsConvergent; 8071 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8072 } 8073 8074 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8075 // Ideally, we would only check against memory constraints. However, the 8076 // meaning of an Other constraint can be target-specific and we can't easily 8077 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8078 // for Other constraints as well. 8079 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8080 OpInfo.ConstraintType == TargetLowering::C_Other) { 8081 if (OpInfo.Type == InlineAsm::isInput) 8082 Flags |= InlineAsm::Extra_MayLoad; 8083 else if (OpInfo.Type == InlineAsm::isOutput) 8084 Flags |= InlineAsm::Extra_MayStore; 8085 else if (OpInfo.Type == InlineAsm::isClobber) 8086 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8087 } 8088 } 8089 8090 unsigned get() const { return Flags; } 8091 }; 8092 8093 } // end anonymous namespace 8094 8095 /// visitInlineAsm - Handle a call to an InlineAsm object. 8096 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call) { 8097 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8098 8099 /// ConstraintOperands - Information about all of the constraints. 8100 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 8101 8102 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8103 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8104 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8105 8106 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8107 // AsmDialect, MayLoad, MayStore). 8108 bool HasSideEffect = IA->hasSideEffects(); 8109 ExtraFlags ExtraInfo(Call); 8110 8111 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8112 unsigned ResNo = 0; // ResNo - The result number of the next output. 8113 unsigned NumMatchingOps = 0; 8114 for (auto &T : TargetConstraints) { 8115 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8116 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8117 8118 // Compute the value type for each operand. 8119 if (OpInfo.Type == InlineAsm::isInput || 8120 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8121 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 8122 8123 // Process the call argument. BasicBlocks are labels, currently appearing 8124 // only in asm's. 8125 if (isa<CallBrInst>(Call) && 8126 ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() - 8127 cast<CallBrInst>(&Call)->getNumIndirectDests() - 8128 NumMatchingOps) && 8129 (NumMatchingOps == 0 || 8130 ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() - 8131 NumMatchingOps))) { 8132 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8133 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8134 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8135 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8136 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8137 } else { 8138 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8139 } 8140 8141 OpInfo.ConstraintVT = 8142 OpInfo 8143 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 8144 .getSimpleVT(); 8145 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8146 // The return value of the call is this value. As such, there is no 8147 // corresponding argument. 8148 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8149 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 8150 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8151 DAG.getDataLayout(), STy->getElementType(ResNo)); 8152 } else { 8153 assert(ResNo == 0 && "Asm only has one result!"); 8154 OpInfo.ConstraintVT = 8155 TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType()); 8156 } 8157 ++ResNo; 8158 } else { 8159 OpInfo.ConstraintVT = MVT::Other; 8160 } 8161 8162 if (OpInfo.hasMatchingInput()) 8163 ++NumMatchingOps; 8164 8165 if (!HasSideEffect) 8166 HasSideEffect = OpInfo.hasMemory(TLI); 8167 8168 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8169 // FIXME: Could we compute this on OpInfo rather than T? 8170 8171 // Compute the constraint code and ConstraintType to use. 8172 TLI.ComputeConstraintToUse(T, SDValue()); 8173 8174 if (T.ConstraintType == TargetLowering::C_Immediate && 8175 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8176 // We've delayed emitting a diagnostic like the "n" constraint because 8177 // inlining could cause an integer showing up. 8178 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8179 "' expects an integer constant " 8180 "expression"); 8181 8182 ExtraInfo.update(T); 8183 } 8184 8185 8186 // We won't need to flush pending loads if this asm doesn't touch 8187 // memory and is nonvolatile. 8188 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8189 8190 bool IsCallBr = isa<CallBrInst>(Call); 8191 if (IsCallBr) { 8192 // If this is a callbr we need to flush pending exports since inlineasm_br 8193 // is a terminator. We need to do this before nodes are glued to 8194 // the inlineasm_br node. 8195 Chain = getControlRoot(); 8196 } 8197 8198 // Second pass over the constraints: compute which constraint option to use. 8199 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8200 // If this is an output operand with a matching input operand, look up the 8201 // matching input. If their types mismatch, e.g. one is an integer, the 8202 // other is floating point, or their sizes are different, flag it as an 8203 // error. 8204 if (OpInfo.hasMatchingInput()) { 8205 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8206 patchMatchingInput(OpInfo, Input, DAG); 8207 } 8208 8209 // Compute the constraint code and ConstraintType to use. 8210 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8211 8212 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8213 OpInfo.Type == InlineAsm::isClobber) 8214 continue; 8215 8216 // If this is a memory input, and if the operand is not indirect, do what we 8217 // need to provide an address for the memory input. 8218 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8219 !OpInfo.isIndirect) { 8220 assert((OpInfo.isMultipleAlternative || 8221 (OpInfo.Type == InlineAsm::isInput)) && 8222 "Can only indirectify direct input operands!"); 8223 8224 // Memory operands really want the address of the value. 8225 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8226 8227 // There is no longer a Value* corresponding to this operand. 8228 OpInfo.CallOperandVal = nullptr; 8229 8230 // It is now an indirect operand. 8231 OpInfo.isIndirect = true; 8232 } 8233 8234 } 8235 8236 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8237 std::vector<SDValue> AsmNodeOperands; 8238 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8239 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8240 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8241 8242 // If we have a !srcloc metadata node associated with it, we want to attach 8243 // this to the ultimately generated inline asm machineinstr. To do this, we 8244 // pass in the third operand as this (potentially null) inline asm MDNode. 8245 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8246 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8247 8248 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8249 // bits as operand 3. 8250 AsmNodeOperands.push_back(DAG.getTargetConstant( 8251 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8252 8253 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8254 // this, assign virtual and physical registers for inputs and otput. 8255 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8256 // Assign Registers. 8257 SDISelAsmOperandInfo &RefOpInfo = 8258 OpInfo.isMatchingInputConstraint() 8259 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8260 : OpInfo; 8261 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8262 8263 auto DetectWriteToReservedRegister = [&]() { 8264 const MachineFunction &MF = DAG.getMachineFunction(); 8265 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8266 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8267 if (Register::isPhysicalRegister(Reg) && 8268 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8269 const char *RegName = TRI.getName(Reg); 8270 emitInlineAsmError(Call, "write to reserved register '" + 8271 Twine(RegName) + "'"); 8272 return true; 8273 } 8274 } 8275 return false; 8276 }; 8277 8278 switch (OpInfo.Type) { 8279 case InlineAsm::isOutput: 8280 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8281 unsigned ConstraintID = 8282 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8283 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8284 "Failed to convert memory constraint code to constraint id."); 8285 8286 // Add information to the INLINEASM node to know about this output. 8287 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8288 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8289 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8290 MVT::i32)); 8291 AsmNodeOperands.push_back(OpInfo.CallOperand); 8292 } else { 8293 // Otherwise, this outputs to a register (directly for C_Register / 8294 // C_RegisterClass, and a target-defined fashion for 8295 // C_Immediate/C_Other). Find a register that we can use. 8296 if (OpInfo.AssignedRegs.Regs.empty()) { 8297 emitInlineAsmError( 8298 Call, "couldn't allocate output register for constraint '" + 8299 Twine(OpInfo.ConstraintCode) + "'"); 8300 return; 8301 } 8302 8303 if (DetectWriteToReservedRegister()) 8304 return; 8305 8306 // Add information to the INLINEASM node to know that this register is 8307 // set. 8308 OpInfo.AssignedRegs.AddInlineAsmOperands( 8309 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8310 : InlineAsm::Kind_RegDef, 8311 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8312 } 8313 break; 8314 8315 case InlineAsm::isInput: { 8316 SDValue InOperandVal = OpInfo.CallOperand; 8317 8318 if (OpInfo.isMatchingInputConstraint()) { 8319 // If this is required to match an output register we have already set, 8320 // just use its register. 8321 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8322 AsmNodeOperands); 8323 unsigned OpFlag = 8324 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8325 if (InlineAsm::isRegDefKind(OpFlag) || 8326 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8327 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8328 if (OpInfo.isIndirect) { 8329 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8330 emitInlineAsmError(Call, "inline asm not supported yet: " 8331 "don't know how to handle tied " 8332 "indirect register inputs"); 8333 return; 8334 } 8335 8336 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8337 SmallVector<unsigned, 4> Regs; 8338 8339 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8340 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8341 MachineRegisterInfo &RegInfo = 8342 DAG.getMachineFunction().getRegInfo(); 8343 for (unsigned i = 0; i != NumRegs; ++i) 8344 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8345 } else { 8346 emitInlineAsmError(Call, 8347 "inline asm error: This value type register " 8348 "class is not natively supported!"); 8349 return; 8350 } 8351 8352 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8353 8354 SDLoc dl = getCurSDLoc(); 8355 // Use the produced MatchedRegs object to 8356 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 8357 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8358 true, OpInfo.getMatchedOperand(), dl, 8359 DAG, AsmNodeOperands); 8360 break; 8361 } 8362 8363 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8364 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8365 "Unexpected number of operands"); 8366 // Add information to the INLINEASM node to know about this input. 8367 // See InlineAsm.h isUseOperandTiedToDef. 8368 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8369 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8370 OpInfo.getMatchedOperand()); 8371 AsmNodeOperands.push_back(DAG.getTargetConstant( 8372 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8373 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8374 break; 8375 } 8376 8377 // Treat indirect 'X' constraint as memory. 8378 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8379 OpInfo.isIndirect) 8380 OpInfo.ConstraintType = TargetLowering::C_Memory; 8381 8382 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8383 OpInfo.ConstraintType == TargetLowering::C_Other) { 8384 std::vector<SDValue> Ops; 8385 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8386 Ops, DAG); 8387 if (Ops.empty()) { 8388 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8389 if (isa<ConstantSDNode>(InOperandVal)) { 8390 emitInlineAsmError(Call, "value out of range for constraint '" + 8391 Twine(OpInfo.ConstraintCode) + "'"); 8392 return; 8393 } 8394 8395 emitInlineAsmError(Call, 8396 "invalid operand for inline asm constraint '" + 8397 Twine(OpInfo.ConstraintCode) + "'"); 8398 return; 8399 } 8400 8401 // Add information to the INLINEASM node to know about this input. 8402 unsigned ResOpType = 8403 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8404 AsmNodeOperands.push_back(DAG.getTargetConstant( 8405 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8406 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8407 break; 8408 } 8409 8410 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8411 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8412 assert(InOperandVal.getValueType() == 8413 TLI.getPointerTy(DAG.getDataLayout()) && 8414 "Memory operands expect pointer values"); 8415 8416 unsigned ConstraintID = 8417 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8418 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8419 "Failed to convert memory constraint code to constraint id."); 8420 8421 // Add information to the INLINEASM node to know about this input. 8422 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8423 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8424 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8425 getCurSDLoc(), 8426 MVT::i32)); 8427 AsmNodeOperands.push_back(InOperandVal); 8428 break; 8429 } 8430 8431 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8432 OpInfo.ConstraintType == TargetLowering::C_Register) && 8433 "Unknown constraint type!"); 8434 8435 // TODO: Support this. 8436 if (OpInfo.isIndirect) { 8437 emitInlineAsmError( 8438 Call, "Don't know how to handle indirect register inputs yet " 8439 "for constraint '" + 8440 Twine(OpInfo.ConstraintCode) + "'"); 8441 return; 8442 } 8443 8444 // Copy the input into the appropriate registers. 8445 if (OpInfo.AssignedRegs.Regs.empty()) { 8446 emitInlineAsmError(Call, 8447 "couldn't allocate input reg for constraint '" + 8448 Twine(OpInfo.ConstraintCode) + "'"); 8449 return; 8450 } 8451 8452 if (DetectWriteToReservedRegister()) 8453 return; 8454 8455 SDLoc dl = getCurSDLoc(); 8456 8457 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8458 &Call); 8459 8460 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8461 dl, DAG, AsmNodeOperands); 8462 break; 8463 } 8464 case InlineAsm::isClobber: 8465 // Add the clobbered value to the operand list, so that the register 8466 // allocator is aware that the physreg got clobbered. 8467 if (!OpInfo.AssignedRegs.Regs.empty()) 8468 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8469 false, 0, getCurSDLoc(), DAG, 8470 AsmNodeOperands); 8471 break; 8472 } 8473 } 8474 8475 // Finish up input operands. Set the input chain and add the flag last. 8476 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8477 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8478 8479 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8480 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8481 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8482 Flag = Chain.getValue(1); 8483 8484 // Do additional work to generate outputs. 8485 8486 SmallVector<EVT, 1> ResultVTs; 8487 SmallVector<SDValue, 1> ResultValues; 8488 SmallVector<SDValue, 8> OutChains; 8489 8490 llvm::Type *CallResultType = Call.getType(); 8491 ArrayRef<Type *> ResultTypes; 8492 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 8493 ResultTypes = StructResult->elements(); 8494 else if (!CallResultType->isVoidTy()) 8495 ResultTypes = makeArrayRef(CallResultType); 8496 8497 auto CurResultType = ResultTypes.begin(); 8498 auto handleRegAssign = [&](SDValue V) { 8499 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8500 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8501 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8502 ++CurResultType; 8503 // If the type of the inline asm call site return value is different but has 8504 // same size as the type of the asm output bitcast it. One example of this 8505 // is for vectors with different width / number of elements. This can 8506 // happen for register classes that can contain multiple different value 8507 // types. The preg or vreg allocated may not have the same VT as was 8508 // expected. 8509 // 8510 // This can also happen for a return value that disagrees with the register 8511 // class it is put in, eg. a double in a general-purpose register on a 8512 // 32-bit machine. 8513 if (ResultVT != V.getValueType() && 8514 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8515 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8516 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8517 V.getValueType().isInteger()) { 8518 // If a result value was tied to an input value, the computed result 8519 // may have a wider width than the expected result. Extract the 8520 // relevant portion. 8521 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8522 } 8523 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8524 ResultVTs.push_back(ResultVT); 8525 ResultValues.push_back(V); 8526 }; 8527 8528 // Deal with output operands. 8529 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8530 if (OpInfo.Type == InlineAsm::isOutput) { 8531 SDValue Val; 8532 // Skip trivial output operands. 8533 if (OpInfo.AssignedRegs.Regs.empty()) 8534 continue; 8535 8536 switch (OpInfo.ConstraintType) { 8537 case TargetLowering::C_Register: 8538 case TargetLowering::C_RegisterClass: 8539 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 8540 Chain, &Flag, &Call); 8541 break; 8542 case TargetLowering::C_Immediate: 8543 case TargetLowering::C_Other: 8544 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8545 OpInfo, DAG); 8546 break; 8547 case TargetLowering::C_Memory: 8548 break; // Already handled. 8549 case TargetLowering::C_Unknown: 8550 assert(false && "Unexpected unknown constraint"); 8551 } 8552 8553 // Indirect output manifest as stores. Record output chains. 8554 if (OpInfo.isIndirect) { 8555 const Value *Ptr = OpInfo.CallOperandVal; 8556 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8557 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8558 MachinePointerInfo(Ptr)); 8559 OutChains.push_back(Store); 8560 } else { 8561 // generate CopyFromRegs to associated registers. 8562 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8563 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8564 for (const SDValue &V : Val->op_values()) 8565 handleRegAssign(V); 8566 } else 8567 handleRegAssign(Val); 8568 } 8569 } 8570 } 8571 8572 // Set results. 8573 if (!ResultValues.empty()) { 8574 assert(CurResultType == ResultTypes.end() && 8575 "Mismatch in number of ResultTypes"); 8576 assert(ResultValues.size() == ResultTypes.size() && 8577 "Mismatch in number of output operands in asm result"); 8578 8579 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8580 DAG.getVTList(ResultVTs), ResultValues); 8581 setValue(&Call, V); 8582 } 8583 8584 // Collect store chains. 8585 if (!OutChains.empty()) 8586 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8587 8588 // Only Update Root if inline assembly has a memory effect. 8589 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8590 DAG.setRoot(Chain); 8591 } 8592 8593 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 8594 const Twine &Message) { 8595 LLVMContext &Ctx = *DAG.getContext(); 8596 Ctx.emitError(&Call, Message); 8597 8598 // Make sure we leave the DAG in a valid state 8599 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8600 SmallVector<EVT, 1> ValueVTs; 8601 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 8602 8603 if (ValueVTs.empty()) 8604 return; 8605 8606 SmallVector<SDValue, 1> Ops; 8607 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8608 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8609 8610 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 8611 } 8612 8613 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8614 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8615 MVT::Other, getRoot(), 8616 getValue(I.getArgOperand(0)), 8617 DAG.getSrcValue(I.getArgOperand(0)))); 8618 } 8619 8620 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8621 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8622 const DataLayout &DL = DAG.getDataLayout(); 8623 SDValue V = DAG.getVAArg( 8624 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8625 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8626 DL.getABITypeAlign(I.getType()).value()); 8627 DAG.setRoot(V.getValue(1)); 8628 8629 if (I.getType()->isPointerTy()) 8630 V = DAG.getPtrExtOrTrunc( 8631 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8632 setValue(&I, V); 8633 } 8634 8635 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8636 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8637 MVT::Other, getRoot(), 8638 getValue(I.getArgOperand(0)), 8639 DAG.getSrcValue(I.getArgOperand(0)))); 8640 } 8641 8642 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8643 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8644 MVT::Other, getRoot(), 8645 getValue(I.getArgOperand(0)), 8646 getValue(I.getArgOperand(1)), 8647 DAG.getSrcValue(I.getArgOperand(0)), 8648 DAG.getSrcValue(I.getArgOperand(1)))); 8649 } 8650 8651 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8652 const Instruction &I, 8653 SDValue Op) { 8654 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8655 if (!Range) 8656 return Op; 8657 8658 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8659 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8660 return Op; 8661 8662 APInt Lo = CR.getUnsignedMin(); 8663 if (!Lo.isMinValue()) 8664 return Op; 8665 8666 APInt Hi = CR.getUnsignedMax(); 8667 unsigned Bits = std::max(Hi.getActiveBits(), 8668 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8669 8670 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8671 8672 SDLoc SL = getCurSDLoc(); 8673 8674 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8675 DAG.getValueType(SmallVT)); 8676 unsigned NumVals = Op.getNode()->getNumValues(); 8677 if (NumVals == 1) 8678 return ZExt; 8679 8680 SmallVector<SDValue, 4> Ops; 8681 8682 Ops.push_back(ZExt); 8683 for (unsigned I = 1; I != NumVals; ++I) 8684 Ops.push_back(Op.getValue(I)); 8685 8686 return DAG.getMergeValues(Ops, SL); 8687 } 8688 8689 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8690 /// the call being lowered. 8691 /// 8692 /// This is a helper for lowering intrinsics that follow a target calling 8693 /// convention or require stack pointer adjustment. Only a subset of the 8694 /// intrinsic's operands need to participate in the calling convention. 8695 void SelectionDAGBuilder::populateCallLoweringInfo( 8696 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8697 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8698 bool IsPatchPoint) { 8699 TargetLowering::ArgListTy Args; 8700 Args.reserve(NumArgs); 8701 8702 // Populate the argument list. 8703 // Attributes for args start at offset 1, after the return attribute. 8704 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8705 ArgI != ArgE; ++ArgI) { 8706 const Value *V = Call->getOperand(ArgI); 8707 8708 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8709 8710 TargetLowering::ArgListEntry Entry; 8711 Entry.Node = getValue(V); 8712 Entry.Ty = V->getType(); 8713 Entry.setAttributes(Call, ArgI); 8714 Args.push_back(Entry); 8715 } 8716 8717 CLI.setDebugLoc(getCurSDLoc()) 8718 .setChain(getRoot()) 8719 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8720 .setDiscardResult(Call->use_empty()) 8721 .setIsPatchPoint(IsPatchPoint) 8722 .setIsPreallocated( 8723 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 8724 } 8725 8726 /// Add a stack map intrinsic call's live variable operands to a stackmap 8727 /// or patchpoint target node's operand list. 8728 /// 8729 /// Constants are converted to TargetConstants purely as an optimization to 8730 /// avoid constant materialization and register allocation. 8731 /// 8732 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8733 /// generate addess computation nodes, and so FinalizeISel can convert the 8734 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8735 /// address materialization and register allocation, but may also be required 8736 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8737 /// alloca in the entry block, then the runtime may assume that the alloca's 8738 /// StackMap location can be read immediately after compilation and that the 8739 /// location is valid at any point during execution (this is similar to the 8740 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8741 /// only available in a register, then the runtime would need to trap when 8742 /// execution reaches the StackMap in order to read the alloca's location. 8743 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 8744 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8745 SelectionDAGBuilder &Builder) { 8746 for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) { 8747 SDValue OpVal = Builder.getValue(Call.getArgOperand(i)); 8748 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8749 Ops.push_back( 8750 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8751 Ops.push_back( 8752 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8753 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8754 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8755 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8756 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8757 } else 8758 Ops.push_back(OpVal); 8759 } 8760 } 8761 8762 /// Lower llvm.experimental.stackmap directly to its target opcode. 8763 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8764 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8765 // [live variables...]) 8766 8767 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8768 8769 SDValue Chain, InFlag, Callee, NullPtr; 8770 SmallVector<SDValue, 32> Ops; 8771 8772 SDLoc DL = getCurSDLoc(); 8773 Callee = getValue(CI.getCalledOperand()); 8774 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8775 8776 // The stackmap intrinsic only records the live variables (the arguments 8777 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8778 // intrinsic, this won't be lowered to a function call. This means we don't 8779 // have to worry about calling conventions and target specific lowering code. 8780 // Instead we perform the call lowering right here. 8781 // 8782 // chain, flag = CALLSEQ_START(chain, 0, 0) 8783 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8784 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8785 // 8786 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8787 InFlag = Chain.getValue(1); 8788 8789 // Add the <id> and <numBytes> constants. 8790 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8791 Ops.push_back(DAG.getTargetConstant( 8792 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8793 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8794 Ops.push_back(DAG.getTargetConstant( 8795 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8796 MVT::i32)); 8797 8798 // Push live variables for the stack map. 8799 addStackMapLiveVars(CI, 2, DL, Ops, *this); 8800 8801 // We are not pushing any register mask info here on the operands list, 8802 // because the stackmap doesn't clobber anything. 8803 8804 // Push the chain and the glue flag. 8805 Ops.push_back(Chain); 8806 Ops.push_back(InFlag); 8807 8808 // Create the STACKMAP node. 8809 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8810 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8811 Chain = SDValue(SM, 0); 8812 InFlag = Chain.getValue(1); 8813 8814 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8815 8816 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8817 8818 // Set the root to the target-lowered call chain. 8819 DAG.setRoot(Chain); 8820 8821 // Inform the Frame Information that we have a stackmap in this function. 8822 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8823 } 8824 8825 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8826 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 8827 const BasicBlock *EHPadBB) { 8828 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8829 // i32 <numBytes>, 8830 // i8* <target>, 8831 // i32 <numArgs>, 8832 // [Args...], 8833 // [live variables...]) 8834 8835 CallingConv::ID CC = CB.getCallingConv(); 8836 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8837 bool HasDef = !CB.getType()->isVoidTy(); 8838 SDLoc dl = getCurSDLoc(); 8839 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 8840 8841 // Handle immediate and symbolic callees. 8842 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8843 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8844 /*isTarget=*/true); 8845 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8846 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8847 SDLoc(SymbolicCallee), 8848 SymbolicCallee->getValueType(0)); 8849 8850 // Get the real number of arguments participating in the call <numArgs> 8851 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 8852 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8853 8854 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8855 // Intrinsics include all meta-operands up to but not including CC. 8856 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8857 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 8858 "Not enough arguments provided to the patchpoint intrinsic"); 8859 8860 // For AnyRegCC the arguments are lowered later on manually. 8861 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8862 Type *ReturnTy = 8863 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 8864 8865 TargetLowering::CallLoweringInfo CLI(DAG); 8866 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 8867 ReturnTy, true); 8868 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8869 8870 SDNode *CallEnd = Result.second.getNode(); 8871 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8872 CallEnd = CallEnd->getOperand(0).getNode(); 8873 8874 /// Get a call instruction from the call sequence chain. 8875 /// Tail calls are not allowed. 8876 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8877 "Expected a callseq node."); 8878 SDNode *Call = CallEnd->getOperand(0).getNode(); 8879 bool HasGlue = Call->getGluedNode(); 8880 8881 // Replace the target specific call node with the patchable intrinsic. 8882 SmallVector<SDValue, 8> Ops; 8883 8884 // Add the <id> and <numBytes> constants. 8885 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 8886 Ops.push_back(DAG.getTargetConstant( 8887 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8888 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 8889 Ops.push_back(DAG.getTargetConstant( 8890 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8891 MVT::i32)); 8892 8893 // Add the callee. 8894 Ops.push_back(Callee); 8895 8896 // Adjust <numArgs> to account for any arguments that have been passed on the 8897 // stack instead. 8898 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8899 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8900 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8901 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8902 8903 // Add the calling convention 8904 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8905 8906 // Add the arguments we omitted previously. The register allocator should 8907 // place these in any free register. 8908 if (IsAnyRegCC) 8909 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8910 Ops.push_back(getValue(CB.getArgOperand(i))); 8911 8912 // Push the arguments from the call instruction up to the register mask. 8913 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8914 Ops.append(Call->op_begin() + 2, e); 8915 8916 // Push live variables for the stack map. 8917 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 8918 8919 // Push the register mask info. 8920 if (HasGlue) 8921 Ops.push_back(*(Call->op_end()-2)); 8922 else 8923 Ops.push_back(*(Call->op_end()-1)); 8924 8925 // Push the chain (this is originally the first operand of the call, but 8926 // becomes now the last or second to last operand). 8927 Ops.push_back(*(Call->op_begin())); 8928 8929 // Push the glue flag (last operand). 8930 if (HasGlue) 8931 Ops.push_back(*(Call->op_end()-1)); 8932 8933 SDVTList NodeTys; 8934 if (IsAnyRegCC && HasDef) { 8935 // Create the return types based on the intrinsic definition 8936 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8937 SmallVector<EVT, 3> ValueVTs; 8938 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 8939 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8940 8941 // There is always a chain and a glue type at the end 8942 ValueVTs.push_back(MVT::Other); 8943 ValueVTs.push_back(MVT::Glue); 8944 NodeTys = DAG.getVTList(ValueVTs); 8945 } else 8946 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8947 8948 // Replace the target specific call node with a PATCHPOINT node. 8949 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8950 dl, NodeTys, Ops); 8951 8952 // Update the NodeMap. 8953 if (HasDef) { 8954 if (IsAnyRegCC) 8955 setValue(&CB, SDValue(MN, 0)); 8956 else 8957 setValue(&CB, Result.first); 8958 } 8959 8960 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8961 // call sequence. Furthermore the location of the chain and glue can change 8962 // when the AnyReg calling convention is used and the intrinsic returns a 8963 // value. 8964 if (IsAnyRegCC && HasDef) { 8965 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8966 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8967 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8968 } else 8969 DAG.ReplaceAllUsesWith(Call, MN); 8970 DAG.DeleteNode(Call); 8971 8972 // Inform the Frame Information that we have a patchpoint in this function. 8973 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8974 } 8975 8976 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8977 unsigned Intrinsic) { 8978 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8979 SDValue Op1 = getValue(I.getArgOperand(0)); 8980 SDValue Op2; 8981 if (I.getNumArgOperands() > 1) 8982 Op2 = getValue(I.getArgOperand(1)); 8983 SDLoc dl = getCurSDLoc(); 8984 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8985 SDValue Res; 8986 FastMathFlags FMF; 8987 if (isa<FPMathOperator>(I)) 8988 FMF = I.getFastMathFlags(); 8989 8990 switch (Intrinsic) { 8991 case Intrinsic::experimental_vector_reduce_v2_fadd: 8992 if (FMF.allowReassoc()) 8993 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 8994 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2)); 8995 else 8996 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8997 break; 8998 case Intrinsic::experimental_vector_reduce_v2_fmul: 8999 if (FMF.allowReassoc()) 9000 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 9001 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2)); 9002 else 9003 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 9004 break; 9005 case Intrinsic::experimental_vector_reduce_add: 9006 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 9007 break; 9008 case Intrinsic::experimental_vector_reduce_mul: 9009 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 9010 break; 9011 case Intrinsic::experimental_vector_reduce_and: 9012 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 9013 break; 9014 case Intrinsic::experimental_vector_reduce_or: 9015 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 9016 break; 9017 case Intrinsic::experimental_vector_reduce_xor: 9018 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9019 break; 9020 case Intrinsic::experimental_vector_reduce_smax: 9021 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 9022 break; 9023 case Intrinsic::experimental_vector_reduce_smin: 9024 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 9025 break; 9026 case Intrinsic::experimental_vector_reduce_umax: 9027 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 9028 break; 9029 case Intrinsic::experimental_vector_reduce_umin: 9030 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 9031 break; 9032 case Intrinsic::experimental_vector_reduce_fmax: 9033 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 9034 break; 9035 case Intrinsic::experimental_vector_reduce_fmin: 9036 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 9037 break; 9038 default: 9039 llvm_unreachable("Unhandled vector reduce intrinsic"); 9040 } 9041 setValue(&I, Res); 9042 } 9043 9044 /// Returns an AttributeList representing the attributes applied to the return 9045 /// value of the given call. 9046 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9047 SmallVector<Attribute::AttrKind, 2> Attrs; 9048 if (CLI.RetSExt) 9049 Attrs.push_back(Attribute::SExt); 9050 if (CLI.RetZExt) 9051 Attrs.push_back(Attribute::ZExt); 9052 if (CLI.IsInReg) 9053 Attrs.push_back(Attribute::InReg); 9054 9055 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9056 Attrs); 9057 } 9058 9059 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9060 /// implementation, which just calls LowerCall. 9061 /// FIXME: When all targets are 9062 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9063 std::pair<SDValue, SDValue> 9064 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9065 // Handle the incoming return values from the call. 9066 CLI.Ins.clear(); 9067 Type *OrigRetTy = CLI.RetTy; 9068 SmallVector<EVT, 4> RetTys; 9069 SmallVector<uint64_t, 4> Offsets; 9070 auto &DL = CLI.DAG.getDataLayout(); 9071 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9072 9073 if (CLI.IsPostTypeLegalization) { 9074 // If we are lowering a libcall after legalization, split the return type. 9075 SmallVector<EVT, 4> OldRetTys; 9076 SmallVector<uint64_t, 4> OldOffsets; 9077 RetTys.swap(OldRetTys); 9078 Offsets.swap(OldOffsets); 9079 9080 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9081 EVT RetVT = OldRetTys[i]; 9082 uint64_t Offset = OldOffsets[i]; 9083 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9084 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9085 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9086 RetTys.append(NumRegs, RegisterVT); 9087 for (unsigned j = 0; j != NumRegs; ++j) 9088 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9089 } 9090 } 9091 9092 SmallVector<ISD::OutputArg, 4> Outs; 9093 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9094 9095 bool CanLowerReturn = 9096 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9097 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9098 9099 SDValue DemoteStackSlot; 9100 int DemoteStackIdx = -100; 9101 if (!CanLowerReturn) { 9102 // FIXME: equivalent assert? 9103 // assert(!CS.hasInAllocaArgument() && 9104 // "sret demotion is incompatible with inalloca"); 9105 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9106 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9107 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9108 DemoteStackIdx = 9109 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9110 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9111 DL.getAllocaAddrSpace()); 9112 9113 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9114 ArgListEntry Entry; 9115 Entry.Node = DemoteStackSlot; 9116 Entry.Ty = StackSlotPtrType; 9117 Entry.IsSExt = false; 9118 Entry.IsZExt = false; 9119 Entry.IsInReg = false; 9120 Entry.IsSRet = true; 9121 Entry.IsNest = false; 9122 Entry.IsByVal = false; 9123 Entry.IsByRef = false; 9124 Entry.IsReturned = false; 9125 Entry.IsSwiftSelf = false; 9126 Entry.IsSwiftError = false; 9127 Entry.IsCFGuardTarget = false; 9128 Entry.Alignment = Alignment; 9129 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9130 CLI.NumFixedArgs += 1; 9131 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9132 9133 // sret demotion isn't compatible with tail-calls, since the sret argument 9134 // points into the callers stack frame. 9135 CLI.IsTailCall = false; 9136 } else { 9137 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9138 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 9139 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9140 ISD::ArgFlagsTy Flags; 9141 if (NeedsRegBlock) { 9142 Flags.setInConsecutiveRegs(); 9143 if (I == RetTys.size() - 1) 9144 Flags.setInConsecutiveRegsLast(); 9145 } 9146 EVT VT = RetTys[I]; 9147 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9148 CLI.CallConv, VT); 9149 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9150 CLI.CallConv, VT); 9151 for (unsigned i = 0; i != NumRegs; ++i) { 9152 ISD::InputArg MyFlags; 9153 MyFlags.Flags = Flags; 9154 MyFlags.VT = RegisterVT; 9155 MyFlags.ArgVT = VT; 9156 MyFlags.Used = CLI.IsReturnValueUsed; 9157 if (CLI.RetTy->isPointerTy()) { 9158 MyFlags.Flags.setPointer(); 9159 MyFlags.Flags.setPointerAddrSpace( 9160 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9161 } 9162 if (CLI.RetSExt) 9163 MyFlags.Flags.setSExt(); 9164 if (CLI.RetZExt) 9165 MyFlags.Flags.setZExt(); 9166 if (CLI.IsInReg) 9167 MyFlags.Flags.setInReg(); 9168 CLI.Ins.push_back(MyFlags); 9169 } 9170 } 9171 } 9172 9173 // We push in swifterror return as the last element of CLI.Ins. 9174 ArgListTy &Args = CLI.getArgs(); 9175 if (supportSwiftError()) { 9176 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9177 if (Args[i].IsSwiftError) { 9178 ISD::InputArg MyFlags; 9179 MyFlags.VT = getPointerTy(DL); 9180 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9181 MyFlags.Flags.setSwiftError(); 9182 CLI.Ins.push_back(MyFlags); 9183 } 9184 } 9185 } 9186 9187 // Handle all of the outgoing arguments. 9188 CLI.Outs.clear(); 9189 CLI.OutVals.clear(); 9190 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9191 SmallVector<EVT, 4> ValueVTs; 9192 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9193 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9194 Type *FinalType = Args[i].Ty; 9195 if (Args[i].IsByVal) 9196 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9197 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9198 FinalType, CLI.CallConv, CLI.IsVarArg); 9199 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9200 ++Value) { 9201 EVT VT = ValueVTs[Value]; 9202 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9203 SDValue Op = SDValue(Args[i].Node.getNode(), 9204 Args[i].Node.getResNo() + Value); 9205 ISD::ArgFlagsTy Flags; 9206 9207 // Certain targets (such as MIPS), may have a different ABI alignment 9208 // for a type depending on the context. Give the target a chance to 9209 // specify the alignment it wants. 9210 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9211 9212 if (Args[i].Ty->isPointerTy()) { 9213 Flags.setPointer(); 9214 Flags.setPointerAddrSpace( 9215 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9216 } 9217 if (Args[i].IsZExt) 9218 Flags.setZExt(); 9219 if (Args[i].IsSExt) 9220 Flags.setSExt(); 9221 if (Args[i].IsInReg) { 9222 // If we are using vectorcall calling convention, a structure that is 9223 // passed InReg - is surely an HVA 9224 if (CLI.CallConv == CallingConv::X86_VectorCall && 9225 isa<StructType>(FinalType)) { 9226 // The first value of a structure is marked 9227 if (0 == Value) 9228 Flags.setHvaStart(); 9229 Flags.setHva(); 9230 } 9231 // Set InReg Flag 9232 Flags.setInReg(); 9233 } 9234 if (Args[i].IsSRet) 9235 Flags.setSRet(); 9236 if (Args[i].IsSwiftSelf) 9237 Flags.setSwiftSelf(); 9238 if (Args[i].IsSwiftError) 9239 Flags.setSwiftError(); 9240 if (Args[i].IsCFGuardTarget) 9241 Flags.setCFGuardTarget(); 9242 if (Args[i].IsByVal) 9243 Flags.setByVal(); 9244 if (Args[i].IsByRef) 9245 Flags.setByRef(); 9246 if (Args[i].IsPreallocated) { 9247 Flags.setPreallocated(); 9248 // Set the byval flag for CCAssignFn callbacks that don't know about 9249 // preallocated. This way we can know how many bytes we should've 9250 // allocated and how many bytes a callee cleanup function will pop. If 9251 // we port preallocated to more targets, we'll have to add custom 9252 // preallocated handling in the various CC lowering callbacks. 9253 Flags.setByVal(); 9254 } 9255 if (Args[i].IsInAlloca) { 9256 Flags.setInAlloca(); 9257 // Set the byval flag for CCAssignFn callbacks that don't know about 9258 // inalloca. This way we can know how many bytes we should've allocated 9259 // and how many bytes a callee cleanup function will pop. If we port 9260 // inalloca to more targets, we'll have to add custom inalloca handling 9261 // in the various CC lowering callbacks. 9262 Flags.setByVal(); 9263 } 9264 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 9265 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9266 Type *ElementTy = Ty->getElementType(); 9267 9268 unsigned FrameSize = DL.getTypeAllocSize( 9269 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9270 Flags.setByValSize(FrameSize); 9271 9272 // info is not there but there are cases it cannot get right. 9273 Align FrameAlign; 9274 if (auto MA = Args[i].Alignment) 9275 FrameAlign = *MA; 9276 else 9277 FrameAlign = Align(getByValTypeAlignment(ElementTy, DL)); 9278 Flags.setByValAlign(FrameAlign); 9279 } 9280 if (Args[i].IsNest) 9281 Flags.setNest(); 9282 if (NeedsRegBlock) 9283 Flags.setInConsecutiveRegs(); 9284 Flags.setOrigAlign(OriginalAlignment); 9285 9286 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9287 CLI.CallConv, VT); 9288 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9289 CLI.CallConv, VT); 9290 SmallVector<SDValue, 4> Parts(NumParts); 9291 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9292 9293 if (Args[i].IsSExt) 9294 ExtendKind = ISD::SIGN_EXTEND; 9295 else if (Args[i].IsZExt) 9296 ExtendKind = ISD::ZERO_EXTEND; 9297 9298 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9299 // for now. 9300 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9301 CanLowerReturn) { 9302 assert((CLI.RetTy == Args[i].Ty || 9303 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9304 CLI.RetTy->getPointerAddressSpace() == 9305 Args[i].Ty->getPointerAddressSpace())) && 9306 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9307 // Before passing 'returned' to the target lowering code, ensure that 9308 // either the register MVT and the actual EVT are the same size or that 9309 // the return value and argument are extended in the same way; in these 9310 // cases it's safe to pass the argument register value unchanged as the 9311 // return register value (although it's at the target's option whether 9312 // to do so) 9313 // TODO: allow code generation to take advantage of partially preserved 9314 // registers rather than clobbering the entire register when the 9315 // parameter extension method is not compatible with the return 9316 // extension method 9317 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9318 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9319 CLI.RetZExt == Args[i].IsZExt)) 9320 Flags.setReturned(); 9321 } 9322 9323 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 9324 CLI.CallConv, ExtendKind); 9325 9326 for (unsigned j = 0; j != NumParts; ++j) { 9327 // if it isn't first piece, alignment must be 1 9328 // For scalable vectors the scalable part is currently handled 9329 // by individual targets, so we just use the known minimum size here. 9330 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9331 i < CLI.NumFixedArgs, i, 9332 j*Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9333 if (NumParts > 1 && j == 0) 9334 MyFlags.Flags.setSplit(); 9335 else if (j != 0) { 9336 MyFlags.Flags.setOrigAlign(Align(1)); 9337 if (j == NumParts - 1) 9338 MyFlags.Flags.setSplitEnd(); 9339 } 9340 9341 CLI.Outs.push_back(MyFlags); 9342 CLI.OutVals.push_back(Parts[j]); 9343 } 9344 9345 if (NeedsRegBlock && Value == NumValues - 1) 9346 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9347 } 9348 } 9349 9350 SmallVector<SDValue, 4> InVals; 9351 CLI.Chain = LowerCall(CLI, InVals); 9352 9353 // Update CLI.InVals to use outside of this function. 9354 CLI.InVals = InVals; 9355 9356 // Verify that the target's LowerCall behaved as expected. 9357 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9358 "LowerCall didn't return a valid chain!"); 9359 assert((!CLI.IsTailCall || InVals.empty()) && 9360 "LowerCall emitted a return value for a tail call!"); 9361 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9362 "LowerCall didn't emit the correct number of values!"); 9363 9364 // For a tail call, the return value is merely live-out and there aren't 9365 // any nodes in the DAG representing it. Return a special value to 9366 // indicate that a tail call has been emitted and no more Instructions 9367 // should be processed in the current block. 9368 if (CLI.IsTailCall) { 9369 CLI.DAG.setRoot(CLI.Chain); 9370 return std::make_pair(SDValue(), SDValue()); 9371 } 9372 9373 #ifndef NDEBUG 9374 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9375 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9376 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9377 "LowerCall emitted a value with the wrong type!"); 9378 } 9379 #endif 9380 9381 SmallVector<SDValue, 4> ReturnValues; 9382 if (!CanLowerReturn) { 9383 // The instruction result is the result of loading from the 9384 // hidden sret parameter. 9385 SmallVector<EVT, 1> PVTs; 9386 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9387 9388 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9389 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9390 EVT PtrVT = PVTs[0]; 9391 9392 unsigned NumValues = RetTys.size(); 9393 ReturnValues.resize(NumValues); 9394 SmallVector<SDValue, 4> Chains(NumValues); 9395 9396 // An aggregate return value cannot wrap around the address space, so 9397 // offsets to its parts don't wrap either. 9398 SDNodeFlags Flags; 9399 Flags.setNoUnsignedWrap(true); 9400 9401 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9402 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 9403 for (unsigned i = 0; i < NumValues; ++i) { 9404 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9405 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9406 PtrVT), Flags); 9407 SDValue L = CLI.DAG.getLoad( 9408 RetTys[i], CLI.DL, CLI.Chain, Add, 9409 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9410 DemoteStackIdx, Offsets[i]), 9411 HiddenSRetAlign); 9412 ReturnValues[i] = L; 9413 Chains[i] = L.getValue(1); 9414 } 9415 9416 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9417 } else { 9418 // Collect the legal value parts into potentially illegal values 9419 // that correspond to the original function's return values. 9420 Optional<ISD::NodeType> AssertOp; 9421 if (CLI.RetSExt) 9422 AssertOp = ISD::AssertSext; 9423 else if (CLI.RetZExt) 9424 AssertOp = ISD::AssertZext; 9425 unsigned CurReg = 0; 9426 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9427 EVT VT = RetTys[I]; 9428 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9429 CLI.CallConv, VT); 9430 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9431 CLI.CallConv, VT); 9432 9433 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9434 NumRegs, RegisterVT, VT, nullptr, 9435 CLI.CallConv, AssertOp)); 9436 CurReg += NumRegs; 9437 } 9438 9439 // For a function returning void, there is no return value. We can't create 9440 // such a node, so we just return a null return value in that case. In 9441 // that case, nothing will actually look at the value. 9442 if (ReturnValues.empty()) 9443 return std::make_pair(SDValue(), CLI.Chain); 9444 } 9445 9446 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9447 CLI.DAG.getVTList(RetTys), ReturnValues); 9448 return std::make_pair(Res, CLI.Chain); 9449 } 9450 9451 void TargetLowering::LowerOperationWrapper(SDNode *N, 9452 SmallVectorImpl<SDValue> &Results, 9453 SelectionDAG &DAG) const { 9454 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9455 Results.push_back(Res); 9456 } 9457 9458 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9459 llvm_unreachable("LowerOperation not implemented for this target!"); 9460 } 9461 9462 void 9463 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9464 SDValue Op = getNonRegisterValue(V); 9465 assert((Op.getOpcode() != ISD::CopyFromReg || 9466 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9467 "Copy from a reg to the same reg!"); 9468 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9469 9470 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9471 // If this is an InlineAsm we have to match the registers required, not the 9472 // notional registers required by the type. 9473 9474 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9475 None); // This is not an ABI copy. 9476 SDValue Chain = DAG.getEntryNode(); 9477 9478 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9479 FuncInfo.PreferredExtendType.end()) 9480 ? ISD::ANY_EXTEND 9481 : FuncInfo.PreferredExtendType[V]; 9482 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9483 PendingExports.push_back(Chain); 9484 } 9485 9486 #include "llvm/CodeGen/SelectionDAGISel.h" 9487 9488 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9489 /// entry block, return true. This includes arguments used by switches, since 9490 /// the switch may expand into multiple basic blocks. 9491 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9492 // With FastISel active, we may be splitting blocks, so force creation 9493 // of virtual registers for all non-dead arguments. 9494 if (FastISel) 9495 return A->use_empty(); 9496 9497 const BasicBlock &Entry = A->getParent()->front(); 9498 for (const User *U : A->users()) 9499 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9500 return false; // Use not in entry block. 9501 9502 return true; 9503 } 9504 9505 using ArgCopyElisionMapTy = 9506 DenseMap<const Argument *, 9507 std::pair<const AllocaInst *, const StoreInst *>>; 9508 9509 /// Scan the entry block of the function in FuncInfo for arguments that look 9510 /// like copies into a local alloca. Record any copied arguments in 9511 /// ArgCopyElisionCandidates. 9512 static void 9513 findArgumentCopyElisionCandidates(const DataLayout &DL, 9514 FunctionLoweringInfo *FuncInfo, 9515 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9516 // Record the state of every static alloca used in the entry block. Argument 9517 // allocas are all used in the entry block, so we need approximately as many 9518 // entries as we have arguments. 9519 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9520 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9521 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9522 StaticAllocas.reserve(NumArgs * 2); 9523 9524 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9525 if (!V) 9526 return nullptr; 9527 V = V->stripPointerCasts(); 9528 const auto *AI = dyn_cast<AllocaInst>(V); 9529 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9530 return nullptr; 9531 auto Iter = StaticAllocas.insert({AI, Unknown}); 9532 return &Iter.first->second; 9533 }; 9534 9535 // Look for stores of arguments to static allocas. Look through bitcasts and 9536 // GEPs to handle type coercions, as long as the alloca is fully initialized 9537 // by the store. Any non-store use of an alloca escapes it and any subsequent 9538 // unanalyzed store might write it. 9539 // FIXME: Handle structs initialized with multiple stores. 9540 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9541 // Look for stores, and handle non-store uses conservatively. 9542 const auto *SI = dyn_cast<StoreInst>(&I); 9543 if (!SI) { 9544 // We will look through cast uses, so ignore them completely. 9545 if (I.isCast()) 9546 continue; 9547 // Ignore debug info intrinsics, they don't escape or store to allocas. 9548 if (isa<DbgInfoIntrinsic>(I)) 9549 continue; 9550 // This is an unknown instruction. Assume it escapes or writes to all 9551 // static alloca operands. 9552 for (const Use &U : I.operands()) { 9553 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9554 *Info = StaticAllocaInfo::Clobbered; 9555 } 9556 continue; 9557 } 9558 9559 // If the stored value is a static alloca, mark it as escaped. 9560 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9561 *Info = StaticAllocaInfo::Clobbered; 9562 9563 // Check if the destination is a static alloca. 9564 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9565 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9566 if (!Info) 9567 continue; 9568 const AllocaInst *AI = cast<AllocaInst>(Dst); 9569 9570 // Skip allocas that have been initialized or clobbered. 9571 if (*Info != StaticAllocaInfo::Unknown) 9572 continue; 9573 9574 // Check if the stored value is an argument, and that this store fully 9575 // initializes the alloca. Don't elide copies from the same argument twice. 9576 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9577 const auto *Arg = dyn_cast<Argument>(Val); 9578 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 9579 Arg->getType()->isEmptyTy() || 9580 DL.getTypeStoreSize(Arg->getType()) != 9581 DL.getTypeAllocSize(AI->getAllocatedType()) || 9582 ArgCopyElisionCandidates.count(Arg)) { 9583 *Info = StaticAllocaInfo::Clobbered; 9584 continue; 9585 } 9586 9587 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9588 << '\n'); 9589 9590 // Mark this alloca and store for argument copy elision. 9591 *Info = StaticAllocaInfo::Elidable; 9592 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9593 9594 // Stop scanning if we've seen all arguments. This will happen early in -O0 9595 // builds, which is useful, because -O0 builds have large entry blocks and 9596 // many allocas. 9597 if (ArgCopyElisionCandidates.size() == NumArgs) 9598 break; 9599 } 9600 } 9601 9602 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9603 /// ArgVal is a load from a suitable fixed stack object. 9604 static void tryToElideArgumentCopy( 9605 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 9606 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9607 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9608 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9609 SDValue ArgVal, bool &ArgHasUses) { 9610 // Check if this is a load from a fixed stack object. 9611 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9612 if (!LNode) 9613 return; 9614 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9615 if (!FINode) 9616 return; 9617 9618 // Check that the fixed stack object is the right size and alignment. 9619 // Look at the alignment that the user wrote on the alloca instead of looking 9620 // at the stack object. 9621 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9622 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9623 const AllocaInst *AI = ArgCopyIter->second.first; 9624 int FixedIndex = FINode->getIndex(); 9625 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 9626 int OldIndex = AllocaIndex; 9627 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 9628 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9629 LLVM_DEBUG( 9630 dbgs() << " argument copy elision failed due to bad fixed stack " 9631 "object size\n"); 9632 return; 9633 } 9634 Align RequiredAlignment = AI->getAlign(); 9635 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 9636 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9637 "greater than stack argument alignment (" 9638 << DebugStr(RequiredAlignment) << " vs " 9639 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 9640 return; 9641 } 9642 9643 // Perform the elision. Delete the old stack object and replace its only use 9644 // in the variable info map. Mark the stack object as mutable. 9645 LLVM_DEBUG({ 9646 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9647 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9648 << '\n'; 9649 }); 9650 MFI.RemoveStackObject(OldIndex); 9651 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9652 AllocaIndex = FixedIndex; 9653 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9654 Chains.push_back(ArgVal.getValue(1)); 9655 9656 // Avoid emitting code for the store implementing the copy. 9657 const StoreInst *SI = ArgCopyIter->second.second; 9658 ElidedArgCopyInstrs.insert(SI); 9659 9660 // Check for uses of the argument again so that we can avoid exporting ArgVal 9661 // if it is't used by anything other than the store. 9662 for (const Value *U : Arg.users()) { 9663 if (U != SI) { 9664 ArgHasUses = true; 9665 break; 9666 } 9667 } 9668 } 9669 9670 void SelectionDAGISel::LowerArguments(const Function &F) { 9671 SelectionDAG &DAG = SDB->DAG; 9672 SDLoc dl = SDB->getCurSDLoc(); 9673 const DataLayout &DL = DAG.getDataLayout(); 9674 SmallVector<ISD::InputArg, 16> Ins; 9675 9676 // In Naked functions we aren't going to save any registers. 9677 if (F.hasFnAttribute(Attribute::Naked)) 9678 return; 9679 9680 if (!FuncInfo->CanLowerReturn) { 9681 // Put in an sret pointer parameter before all the other parameters. 9682 SmallVector<EVT, 1> ValueVTs; 9683 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9684 F.getReturnType()->getPointerTo( 9685 DAG.getDataLayout().getAllocaAddrSpace()), 9686 ValueVTs); 9687 9688 // NOTE: Assuming that a pointer will never break down to more than one VT 9689 // or one register. 9690 ISD::ArgFlagsTy Flags; 9691 Flags.setSRet(); 9692 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9693 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9694 ISD::InputArg::NoArgIndex, 0); 9695 Ins.push_back(RetArg); 9696 } 9697 9698 // Look for stores of arguments to static allocas. Mark such arguments with a 9699 // flag to ask the target to give us the memory location of that argument if 9700 // available. 9701 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9702 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 9703 ArgCopyElisionCandidates); 9704 9705 // Set up the incoming argument description vector. 9706 for (const Argument &Arg : F.args()) { 9707 unsigned ArgNo = Arg.getArgNo(); 9708 SmallVector<EVT, 4> ValueVTs; 9709 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9710 bool isArgValueUsed = !Arg.use_empty(); 9711 unsigned PartBase = 0; 9712 Type *FinalType = Arg.getType(); 9713 if (Arg.hasAttribute(Attribute::ByVal)) 9714 FinalType = Arg.getParamByValType(); 9715 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9716 FinalType, F.getCallingConv(), F.isVarArg()); 9717 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9718 Value != NumValues; ++Value) { 9719 EVT VT = ValueVTs[Value]; 9720 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9721 ISD::ArgFlagsTy Flags; 9722 9723 // Certain targets (such as MIPS), may have a different ABI alignment 9724 // for a type depending on the context. Give the target a chance to 9725 // specify the alignment it wants. 9726 const Align OriginalAlignment( 9727 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 9728 9729 if (Arg.getType()->isPointerTy()) { 9730 Flags.setPointer(); 9731 Flags.setPointerAddrSpace( 9732 cast<PointerType>(Arg.getType())->getAddressSpace()); 9733 } 9734 if (Arg.hasAttribute(Attribute::ZExt)) 9735 Flags.setZExt(); 9736 if (Arg.hasAttribute(Attribute::SExt)) 9737 Flags.setSExt(); 9738 if (Arg.hasAttribute(Attribute::InReg)) { 9739 // If we are using vectorcall calling convention, a structure that is 9740 // passed InReg - is surely an HVA 9741 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9742 isa<StructType>(Arg.getType())) { 9743 // The first value of a structure is marked 9744 if (0 == Value) 9745 Flags.setHvaStart(); 9746 Flags.setHva(); 9747 } 9748 // Set InReg Flag 9749 Flags.setInReg(); 9750 } 9751 if (Arg.hasAttribute(Attribute::StructRet)) 9752 Flags.setSRet(); 9753 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9754 Flags.setSwiftSelf(); 9755 if (Arg.hasAttribute(Attribute::SwiftError)) 9756 Flags.setSwiftError(); 9757 if (Arg.hasAttribute(Attribute::ByVal)) 9758 Flags.setByVal(); 9759 if (Arg.hasAttribute(Attribute::ByRef)) 9760 Flags.setByRef(); 9761 if (Arg.hasAttribute(Attribute::InAlloca)) { 9762 Flags.setInAlloca(); 9763 // Set the byval flag for CCAssignFn callbacks that don't know about 9764 // inalloca. This way we can know how many bytes we should've allocated 9765 // and how many bytes a callee cleanup function will pop. If we port 9766 // inalloca to more targets, we'll have to add custom inalloca handling 9767 // in the various CC lowering callbacks. 9768 Flags.setByVal(); 9769 } 9770 if (Arg.hasAttribute(Attribute::Preallocated)) { 9771 Flags.setPreallocated(); 9772 // Set the byval flag for CCAssignFn callbacks that don't know about 9773 // preallocated. This way we can know how many bytes we should've 9774 // allocated and how many bytes a callee cleanup function will pop. If 9775 // we port preallocated to more targets, we'll have to add custom 9776 // preallocated handling in the various CC lowering callbacks. 9777 Flags.setByVal(); 9778 } 9779 9780 Type *ArgMemTy = nullptr; 9781 if (F.getCallingConv() == CallingConv::X86_INTR) { 9782 // IA Interrupt passes frame (1st parameter) by value in the stack. 9783 if (ArgNo == 0) { 9784 Flags.setByVal(); 9785 // FIXME: Dependence on pointee element type. See bug 46672. 9786 ArgMemTy = Arg.getType()->getPointerElementType(); 9787 } 9788 } 9789 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 9790 Flags.isByRef()) { 9791 if (!ArgMemTy) 9792 ArgMemTy = Arg.getPointeeInMemoryValueType(); 9793 9794 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 9795 9796 // For in-memory arguments, size and alignment should be passed from FE. 9797 // BE will guess if this info is not there but there are cases it cannot 9798 // get right. 9799 MaybeAlign MemAlign = Arg.getParamAlign(); 9800 if (!MemAlign) 9801 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 9802 9803 if (Flags.isByRef()) { 9804 Flags.setByRefSize(MemSize); 9805 Flags.setByRefAlign(*MemAlign); 9806 } else { 9807 Flags.setByValSize(MemSize); 9808 Flags.setByValAlign(*MemAlign); 9809 } 9810 } 9811 9812 if (Arg.hasAttribute(Attribute::Nest)) 9813 Flags.setNest(); 9814 if (NeedsRegBlock) 9815 Flags.setInConsecutiveRegs(); 9816 Flags.setOrigAlign(OriginalAlignment); 9817 if (ArgCopyElisionCandidates.count(&Arg)) 9818 Flags.setCopyElisionCandidate(); 9819 if (Arg.hasAttribute(Attribute::Returned)) 9820 Flags.setReturned(); 9821 9822 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9823 *CurDAG->getContext(), F.getCallingConv(), VT); 9824 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9825 *CurDAG->getContext(), F.getCallingConv(), VT); 9826 for (unsigned i = 0; i != NumRegs; ++i) { 9827 // For scalable vectors, use the minimum size; individual targets 9828 // are responsible for handling scalable vector arguments and 9829 // return values. 9830 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9831 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 9832 if (NumRegs > 1 && i == 0) 9833 MyFlags.Flags.setSplit(); 9834 // if it isn't first piece, alignment must be 1 9835 else if (i > 0) { 9836 MyFlags.Flags.setOrigAlign(Align(1)); 9837 if (i == NumRegs - 1) 9838 MyFlags.Flags.setSplitEnd(); 9839 } 9840 Ins.push_back(MyFlags); 9841 } 9842 if (NeedsRegBlock && Value == NumValues - 1) 9843 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9844 PartBase += VT.getStoreSize().getKnownMinSize(); 9845 } 9846 } 9847 9848 // Call the target to set up the argument values. 9849 SmallVector<SDValue, 8> InVals; 9850 SDValue NewRoot = TLI->LowerFormalArguments( 9851 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9852 9853 // Verify that the target's LowerFormalArguments behaved as expected. 9854 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9855 "LowerFormalArguments didn't return a valid chain!"); 9856 assert(InVals.size() == Ins.size() && 9857 "LowerFormalArguments didn't emit the correct number of values!"); 9858 LLVM_DEBUG({ 9859 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9860 assert(InVals[i].getNode() && 9861 "LowerFormalArguments emitted a null value!"); 9862 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9863 "LowerFormalArguments emitted a value with the wrong type!"); 9864 } 9865 }); 9866 9867 // Update the DAG with the new chain value resulting from argument lowering. 9868 DAG.setRoot(NewRoot); 9869 9870 // Set up the argument values. 9871 unsigned i = 0; 9872 if (!FuncInfo->CanLowerReturn) { 9873 // Create a virtual register for the sret pointer, and put in a copy 9874 // from the sret argument into it. 9875 SmallVector<EVT, 1> ValueVTs; 9876 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9877 F.getReturnType()->getPointerTo( 9878 DAG.getDataLayout().getAllocaAddrSpace()), 9879 ValueVTs); 9880 MVT VT = ValueVTs[0].getSimpleVT(); 9881 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9882 Optional<ISD::NodeType> AssertOp = None; 9883 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9884 nullptr, F.getCallingConv(), AssertOp); 9885 9886 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9887 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9888 Register SRetReg = 9889 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9890 FuncInfo->DemoteRegister = SRetReg; 9891 NewRoot = 9892 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9893 DAG.setRoot(NewRoot); 9894 9895 // i indexes lowered arguments. Bump it past the hidden sret argument. 9896 ++i; 9897 } 9898 9899 SmallVector<SDValue, 4> Chains; 9900 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9901 for (const Argument &Arg : F.args()) { 9902 SmallVector<SDValue, 4> ArgValues; 9903 SmallVector<EVT, 4> ValueVTs; 9904 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9905 unsigned NumValues = ValueVTs.size(); 9906 if (NumValues == 0) 9907 continue; 9908 9909 bool ArgHasUses = !Arg.use_empty(); 9910 9911 // Elide the copying store if the target loaded this argument from a 9912 // suitable fixed stack object. 9913 if (Ins[i].Flags.isCopyElisionCandidate()) { 9914 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9915 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9916 InVals[i], ArgHasUses); 9917 } 9918 9919 // If this argument is unused then remember its value. It is used to generate 9920 // debugging information. 9921 bool isSwiftErrorArg = 9922 TLI->supportSwiftError() && 9923 Arg.hasAttribute(Attribute::SwiftError); 9924 if (!ArgHasUses && !isSwiftErrorArg) { 9925 SDB->setUnusedArgValue(&Arg, InVals[i]); 9926 9927 // Also remember any frame index for use in FastISel. 9928 if (FrameIndexSDNode *FI = 9929 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9930 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9931 } 9932 9933 for (unsigned Val = 0; Val != NumValues; ++Val) { 9934 EVT VT = ValueVTs[Val]; 9935 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9936 F.getCallingConv(), VT); 9937 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9938 *CurDAG->getContext(), F.getCallingConv(), VT); 9939 9940 // Even an apparent 'unused' swifterror argument needs to be returned. So 9941 // we do generate a copy for it that can be used on return from the 9942 // function. 9943 if (ArgHasUses || isSwiftErrorArg) { 9944 Optional<ISD::NodeType> AssertOp; 9945 if (Arg.hasAttribute(Attribute::SExt)) 9946 AssertOp = ISD::AssertSext; 9947 else if (Arg.hasAttribute(Attribute::ZExt)) 9948 AssertOp = ISD::AssertZext; 9949 9950 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9951 PartVT, VT, nullptr, 9952 F.getCallingConv(), AssertOp)); 9953 } 9954 9955 i += NumParts; 9956 } 9957 9958 // We don't need to do anything else for unused arguments. 9959 if (ArgValues.empty()) 9960 continue; 9961 9962 // Note down frame index. 9963 if (FrameIndexSDNode *FI = 9964 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9965 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9966 9967 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9968 SDB->getCurSDLoc()); 9969 9970 SDB->setValue(&Arg, Res); 9971 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9972 // We want to associate the argument with the frame index, among 9973 // involved operands, that correspond to the lowest address. The 9974 // getCopyFromParts function, called earlier, is swapping the order of 9975 // the operands to BUILD_PAIR depending on endianness. The result of 9976 // that swapping is that the least significant bits of the argument will 9977 // be in the first operand of the BUILD_PAIR node, and the most 9978 // significant bits will be in the second operand. 9979 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9980 if (LoadSDNode *LNode = 9981 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9982 if (FrameIndexSDNode *FI = 9983 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9984 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9985 } 9986 9987 // Analyses past this point are naive and don't expect an assertion. 9988 if (Res.getOpcode() == ISD::AssertZext) 9989 Res = Res.getOperand(0); 9990 9991 // Update the SwiftErrorVRegDefMap. 9992 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9993 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9994 if (Register::isVirtualRegister(Reg)) 9995 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 9996 Reg); 9997 } 9998 9999 // If this argument is live outside of the entry block, insert a copy from 10000 // wherever we got it to the vreg that other BB's will reference it as. 10001 if (Res.getOpcode() == ISD::CopyFromReg) { 10002 // If we can, though, try to skip creating an unnecessary vreg. 10003 // FIXME: This isn't very clean... it would be nice to make this more 10004 // general. 10005 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10006 if (Register::isVirtualRegister(Reg)) { 10007 FuncInfo->ValueMap[&Arg] = Reg; 10008 continue; 10009 } 10010 } 10011 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 10012 FuncInfo->InitializeRegForValue(&Arg); 10013 SDB->CopyToExportRegsIfNeeded(&Arg); 10014 } 10015 } 10016 10017 if (!Chains.empty()) { 10018 Chains.push_back(NewRoot); 10019 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 10020 } 10021 10022 DAG.setRoot(NewRoot); 10023 10024 assert(i == InVals.size() && "Argument register count mismatch!"); 10025 10026 // If any argument copy elisions occurred and we have debug info, update the 10027 // stale frame indices used in the dbg.declare variable info table. 10028 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 10029 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 10030 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 10031 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 10032 if (I != ArgCopyElisionFrameIndexMap.end()) 10033 VI.Slot = I->second; 10034 } 10035 } 10036 10037 // Finally, if the target has anything special to do, allow it to do so. 10038 emitFunctionEntryCode(); 10039 } 10040 10041 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 10042 /// ensure constants are generated when needed. Remember the virtual registers 10043 /// that need to be added to the Machine PHI nodes as input. We cannot just 10044 /// directly add them, because expansion might result in multiple MBB's for one 10045 /// BB. As such, the start of the BB might correspond to a different MBB than 10046 /// the end. 10047 void 10048 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10049 const Instruction *TI = LLVMBB->getTerminator(); 10050 10051 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10052 10053 // Check PHI nodes in successors that expect a value to be available from this 10054 // block. 10055 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 10056 const BasicBlock *SuccBB = TI->getSuccessor(succ); 10057 if (!isa<PHINode>(SuccBB->begin())) continue; 10058 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10059 10060 // If this terminator has multiple identical successors (common for 10061 // switches), only handle each succ once. 10062 if (!SuccsHandled.insert(SuccMBB).second) 10063 continue; 10064 10065 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10066 10067 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10068 // nodes and Machine PHI nodes, but the incoming operands have not been 10069 // emitted yet. 10070 for (const PHINode &PN : SuccBB->phis()) { 10071 // Ignore dead phi's. 10072 if (PN.use_empty()) 10073 continue; 10074 10075 // Skip empty types 10076 if (PN.getType()->isEmptyTy()) 10077 continue; 10078 10079 unsigned Reg; 10080 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10081 10082 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 10083 unsigned &RegOut = ConstantsOut[C]; 10084 if (RegOut == 0) { 10085 RegOut = FuncInfo.CreateRegs(C); 10086 CopyValueToVirtualRegister(C, RegOut); 10087 } 10088 Reg = RegOut; 10089 } else { 10090 DenseMap<const Value *, Register>::iterator I = 10091 FuncInfo.ValueMap.find(PHIOp); 10092 if (I != FuncInfo.ValueMap.end()) 10093 Reg = I->second; 10094 else { 10095 assert(isa<AllocaInst>(PHIOp) && 10096 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10097 "Didn't codegen value into a register!??"); 10098 Reg = FuncInfo.CreateRegs(PHIOp); 10099 CopyValueToVirtualRegister(PHIOp, Reg); 10100 } 10101 } 10102 10103 // Remember that this register needs to added to the machine PHI node as 10104 // the input for this MBB. 10105 SmallVector<EVT, 4> ValueVTs; 10106 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10107 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10108 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10109 EVT VT = ValueVTs[vti]; 10110 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10111 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10112 FuncInfo.PHINodesToUpdate.push_back( 10113 std::make_pair(&*MBBI++, Reg + i)); 10114 Reg += NumRegisters; 10115 } 10116 } 10117 } 10118 10119 ConstantsOut.clear(); 10120 } 10121 10122 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 10123 /// is 0. 10124 MachineBasicBlock * 10125 SelectionDAGBuilder::StackProtectorDescriptor:: 10126 AddSuccessorMBB(const BasicBlock *BB, 10127 MachineBasicBlock *ParentMBB, 10128 bool IsLikely, 10129 MachineBasicBlock *SuccMBB) { 10130 // If SuccBB has not been created yet, create it. 10131 if (!SuccMBB) { 10132 MachineFunction *MF = ParentMBB->getParent(); 10133 MachineFunction::iterator BBI(ParentMBB); 10134 SuccMBB = MF->CreateMachineBasicBlock(BB); 10135 MF->insert(++BBI, SuccMBB); 10136 } 10137 // Add it as a successor of ParentMBB. 10138 ParentMBB->addSuccessor( 10139 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 10140 return SuccMBB; 10141 } 10142 10143 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10144 MachineFunction::iterator I(MBB); 10145 if (++I == FuncInfo.MF->end()) 10146 return nullptr; 10147 return &*I; 10148 } 10149 10150 /// During lowering new call nodes can be created (such as memset, etc.). 10151 /// Those will become new roots of the current DAG, but complications arise 10152 /// when they are tail calls. In such cases, the call lowering will update 10153 /// the root, but the builder still needs to know that a tail call has been 10154 /// lowered in order to avoid generating an additional return. 10155 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10156 // If the node is null, we do have a tail call. 10157 if (MaybeTC.getNode() != nullptr) 10158 DAG.setRoot(MaybeTC); 10159 else 10160 HasTailCall = true; 10161 } 10162 10163 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10164 MachineBasicBlock *SwitchMBB, 10165 MachineBasicBlock *DefaultMBB) { 10166 MachineFunction *CurMF = FuncInfo.MF; 10167 MachineBasicBlock *NextMBB = nullptr; 10168 MachineFunction::iterator BBI(W.MBB); 10169 if (++BBI != FuncInfo.MF->end()) 10170 NextMBB = &*BBI; 10171 10172 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10173 10174 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10175 10176 if (Size == 2 && W.MBB == SwitchMBB) { 10177 // If any two of the cases has the same destination, and if one value 10178 // is the same as the other, but has one bit unset that the other has set, 10179 // use bit manipulation to do two compares at once. For example: 10180 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10181 // TODO: This could be extended to merge any 2 cases in switches with 3 10182 // cases. 10183 // TODO: Handle cases where W.CaseBB != SwitchBB. 10184 CaseCluster &Small = *W.FirstCluster; 10185 CaseCluster &Big = *W.LastCluster; 10186 10187 if (Small.Low == Small.High && Big.Low == Big.High && 10188 Small.MBB == Big.MBB) { 10189 const APInt &SmallValue = Small.Low->getValue(); 10190 const APInt &BigValue = Big.Low->getValue(); 10191 10192 // Check that there is only one bit different. 10193 APInt CommonBit = BigValue ^ SmallValue; 10194 if (CommonBit.isPowerOf2()) { 10195 SDValue CondLHS = getValue(Cond); 10196 EVT VT = CondLHS.getValueType(); 10197 SDLoc DL = getCurSDLoc(); 10198 10199 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10200 DAG.getConstant(CommonBit, DL, VT)); 10201 SDValue Cond = DAG.getSetCC( 10202 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10203 ISD::SETEQ); 10204 10205 // Update successor info. 10206 // Both Small and Big will jump to Small.BB, so we sum up the 10207 // probabilities. 10208 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10209 if (BPI) 10210 addSuccessorWithProb( 10211 SwitchMBB, DefaultMBB, 10212 // The default destination is the first successor in IR. 10213 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10214 else 10215 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10216 10217 // Insert the true branch. 10218 SDValue BrCond = 10219 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10220 DAG.getBasicBlock(Small.MBB)); 10221 // Insert the false branch. 10222 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10223 DAG.getBasicBlock(DefaultMBB)); 10224 10225 DAG.setRoot(BrCond); 10226 return; 10227 } 10228 } 10229 } 10230 10231 if (TM.getOptLevel() != CodeGenOpt::None) { 10232 // Here, we order cases by probability so the most likely case will be 10233 // checked first. However, two clusters can have the same probability in 10234 // which case their relative ordering is non-deterministic. So we use Low 10235 // as a tie-breaker as clusters are guaranteed to never overlap. 10236 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10237 [](const CaseCluster &a, const CaseCluster &b) { 10238 return a.Prob != b.Prob ? 10239 a.Prob > b.Prob : 10240 a.Low->getValue().slt(b.Low->getValue()); 10241 }); 10242 10243 // Rearrange the case blocks so that the last one falls through if possible 10244 // without changing the order of probabilities. 10245 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10246 --I; 10247 if (I->Prob > W.LastCluster->Prob) 10248 break; 10249 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10250 std::swap(*I, *W.LastCluster); 10251 break; 10252 } 10253 } 10254 } 10255 10256 // Compute total probability. 10257 BranchProbability DefaultProb = W.DefaultProb; 10258 BranchProbability UnhandledProbs = DefaultProb; 10259 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10260 UnhandledProbs += I->Prob; 10261 10262 MachineBasicBlock *CurMBB = W.MBB; 10263 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10264 bool FallthroughUnreachable = false; 10265 MachineBasicBlock *Fallthrough; 10266 if (I == W.LastCluster) { 10267 // For the last cluster, fall through to the default destination. 10268 Fallthrough = DefaultMBB; 10269 FallthroughUnreachable = isa<UnreachableInst>( 10270 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10271 } else { 10272 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10273 CurMF->insert(BBI, Fallthrough); 10274 // Put Cond in a virtual register to make it available from the new blocks. 10275 ExportFromCurrentBlock(Cond); 10276 } 10277 UnhandledProbs -= I->Prob; 10278 10279 switch (I->Kind) { 10280 case CC_JumpTable: { 10281 // FIXME: Optimize away range check based on pivot comparisons. 10282 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10283 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10284 10285 // The jump block hasn't been inserted yet; insert it here. 10286 MachineBasicBlock *JumpMBB = JT->MBB; 10287 CurMF->insert(BBI, JumpMBB); 10288 10289 auto JumpProb = I->Prob; 10290 auto FallthroughProb = UnhandledProbs; 10291 10292 // If the default statement is a target of the jump table, we evenly 10293 // distribute the default probability to successors of CurMBB. Also 10294 // update the probability on the edge from JumpMBB to Fallthrough. 10295 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10296 SE = JumpMBB->succ_end(); 10297 SI != SE; ++SI) { 10298 if (*SI == DefaultMBB) { 10299 JumpProb += DefaultProb / 2; 10300 FallthroughProb -= DefaultProb / 2; 10301 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10302 JumpMBB->normalizeSuccProbs(); 10303 break; 10304 } 10305 } 10306 10307 if (FallthroughUnreachable) { 10308 // Skip the range check if the fallthrough block is unreachable. 10309 JTH->OmitRangeCheck = true; 10310 } 10311 10312 if (!JTH->OmitRangeCheck) 10313 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10314 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10315 CurMBB->normalizeSuccProbs(); 10316 10317 // The jump table header will be inserted in our current block, do the 10318 // range check, and fall through to our fallthrough block. 10319 JTH->HeaderBB = CurMBB; 10320 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10321 10322 // If we're in the right place, emit the jump table header right now. 10323 if (CurMBB == SwitchMBB) { 10324 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10325 JTH->Emitted = true; 10326 } 10327 break; 10328 } 10329 case CC_BitTests: { 10330 // FIXME: Optimize away range check based on pivot comparisons. 10331 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10332 10333 // The bit test blocks haven't been inserted yet; insert them here. 10334 for (BitTestCase &BTC : BTB->Cases) 10335 CurMF->insert(BBI, BTC.ThisBB); 10336 10337 // Fill in fields of the BitTestBlock. 10338 BTB->Parent = CurMBB; 10339 BTB->Default = Fallthrough; 10340 10341 BTB->DefaultProb = UnhandledProbs; 10342 // If the cases in bit test don't form a contiguous range, we evenly 10343 // distribute the probability on the edge to Fallthrough to two 10344 // successors of CurMBB. 10345 if (!BTB->ContiguousRange) { 10346 BTB->Prob += DefaultProb / 2; 10347 BTB->DefaultProb -= DefaultProb / 2; 10348 } 10349 10350 if (FallthroughUnreachable) { 10351 // Skip the range check if the fallthrough block is unreachable. 10352 BTB->OmitRangeCheck = true; 10353 } 10354 10355 // If we're in the right place, emit the bit test header right now. 10356 if (CurMBB == SwitchMBB) { 10357 visitBitTestHeader(*BTB, SwitchMBB); 10358 BTB->Emitted = true; 10359 } 10360 break; 10361 } 10362 case CC_Range: { 10363 const Value *RHS, *LHS, *MHS; 10364 ISD::CondCode CC; 10365 if (I->Low == I->High) { 10366 // Check Cond == I->Low. 10367 CC = ISD::SETEQ; 10368 LHS = Cond; 10369 RHS=I->Low; 10370 MHS = nullptr; 10371 } else { 10372 // Check I->Low <= Cond <= I->High. 10373 CC = ISD::SETLE; 10374 LHS = I->Low; 10375 MHS = Cond; 10376 RHS = I->High; 10377 } 10378 10379 // If Fallthrough is unreachable, fold away the comparison. 10380 if (FallthroughUnreachable) 10381 CC = ISD::SETTRUE; 10382 10383 // The false probability is the sum of all unhandled cases. 10384 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10385 getCurSDLoc(), I->Prob, UnhandledProbs); 10386 10387 if (CurMBB == SwitchMBB) 10388 visitSwitchCase(CB, SwitchMBB); 10389 else 10390 SL->SwitchCases.push_back(CB); 10391 10392 break; 10393 } 10394 } 10395 CurMBB = Fallthrough; 10396 } 10397 } 10398 10399 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10400 CaseClusterIt First, 10401 CaseClusterIt Last) { 10402 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10403 if (X.Prob != CC.Prob) 10404 return X.Prob > CC.Prob; 10405 10406 // Ties are broken by comparing the case value. 10407 return X.Low->getValue().slt(CC.Low->getValue()); 10408 }); 10409 } 10410 10411 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10412 const SwitchWorkListItem &W, 10413 Value *Cond, 10414 MachineBasicBlock *SwitchMBB) { 10415 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10416 "Clusters not sorted?"); 10417 10418 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10419 10420 // Balance the tree based on branch probabilities to create a near-optimal (in 10421 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10422 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10423 CaseClusterIt LastLeft = W.FirstCluster; 10424 CaseClusterIt FirstRight = W.LastCluster; 10425 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10426 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10427 10428 // Move LastLeft and FirstRight towards each other from opposite directions to 10429 // find a partitioning of the clusters which balances the probability on both 10430 // sides. If LeftProb and RightProb are equal, alternate which side is 10431 // taken to ensure 0-probability nodes are distributed evenly. 10432 unsigned I = 0; 10433 while (LastLeft + 1 < FirstRight) { 10434 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10435 LeftProb += (++LastLeft)->Prob; 10436 else 10437 RightProb += (--FirstRight)->Prob; 10438 I++; 10439 } 10440 10441 while (true) { 10442 // Our binary search tree differs from a typical BST in that ours can have up 10443 // to three values in each leaf. The pivot selection above doesn't take that 10444 // into account, which means the tree might require more nodes and be less 10445 // efficient. We compensate for this here. 10446 10447 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10448 unsigned NumRight = W.LastCluster - FirstRight + 1; 10449 10450 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10451 // If one side has less than 3 clusters, and the other has more than 3, 10452 // consider taking a cluster from the other side. 10453 10454 if (NumLeft < NumRight) { 10455 // Consider moving the first cluster on the right to the left side. 10456 CaseCluster &CC = *FirstRight; 10457 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10458 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10459 if (LeftSideRank <= RightSideRank) { 10460 // Moving the cluster to the left does not demote it. 10461 ++LastLeft; 10462 ++FirstRight; 10463 continue; 10464 } 10465 } else { 10466 assert(NumRight < NumLeft); 10467 // Consider moving the last element on the left to the right side. 10468 CaseCluster &CC = *LastLeft; 10469 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10470 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10471 if (RightSideRank <= LeftSideRank) { 10472 // Moving the cluster to the right does not demot it. 10473 --LastLeft; 10474 --FirstRight; 10475 continue; 10476 } 10477 } 10478 } 10479 break; 10480 } 10481 10482 assert(LastLeft + 1 == FirstRight); 10483 assert(LastLeft >= W.FirstCluster); 10484 assert(FirstRight <= W.LastCluster); 10485 10486 // Use the first element on the right as pivot since we will make less-than 10487 // comparisons against it. 10488 CaseClusterIt PivotCluster = FirstRight; 10489 assert(PivotCluster > W.FirstCluster); 10490 assert(PivotCluster <= W.LastCluster); 10491 10492 CaseClusterIt FirstLeft = W.FirstCluster; 10493 CaseClusterIt LastRight = W.LastCluster; 10494 10495 const ConstantInt *Pivot = PivotCluster->Low; 10496 10497 // New blocks will be inserted immediately after the current one. 10498 MachineFunction::iterator BBI(W.MBB); 10499 ++BBI; 10500 10501 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10502 // we can branch to its destination directly if it's squeezed exactly in 10503 // between the known lower bound and Pivot - 1. 10504 MachineBasicBlock *LeftMBB; 10505 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10506 FirstLeft->Low == W.GE && 10507 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10508 LeftMBB = FirstLeft->MBB; 10509 } else { 10510 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10511 FuncInfo.MF->insert(BBI, LeftMBB); 10512 WorkList.push_back( 10513 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10514 // Put Cond in a virtual register to make it available from the new blocks. 10515 ExportFromCurrentBlock(Cond); 10516 } 10517 10518 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10519 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10520 // directly if RHS.High equals the current upper bound. 10521 MachineBasicBlock *RightMBB; 10522 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10523 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10524 RightMBB = FirstRight->MBB; 10525 } else { 10526 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10527 FuncInfo.MF->insert(BBI, RightMBB); 10528 WorkList.push_back( 10529 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10530 // Put Cond in a virtual register to make it available from the new blocks. 10531 ExportFromCurrentBlock(Cond); 10532 } 10533 10534 // Create the CaseBlock record that will be used to lower the branch. 10535 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10536 getCurSDLoc(), LeftProb, RightProb); 10537 10538 if (W.MBB == SwitchMBB) 10539 visitSwitchCase(CB, SwitchMBB); 10540 else 10541 SL->SwitchCases.push_back(CB); 10542 } 10543 10544 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10545 // from the swith statement. 10546 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10547 BranchProbability PeeledCaseProb) { 10548 if (PeeledCaseProb == BranchProbability::getOne()) 10549 return BranchProbability::getZero(); 10550 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10551 10552 uint32_t Numerator = CaseProb.getNumerator(); 10553 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10554 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10555 } 10556 10557 // Try to peel the top probability case if it exceeds the threshold. 10558 // Return current MachineBasicBlock for the switch statement if the peeling 10559 // does not occur. 10560 // If the peeling is performed, return the newly created MachineBasicBlock 10561 // for the peeled switch statement. Also update Clusters to remove the peeled 10562 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10563 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10564 const SwitchInst &SI, CaseClusterVector &Clusters, 10565 BranchProbability &PeeledCaseProb) { 10566 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10567 // Don't perform if there is only one cluster or optimizing for size. 10568 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10569 TM.getOptLevel() == CodeGenOpt::None || 10570 SwitchMBB->getParent()->getFunction().hasMinSize()) 10571 return SwitchMBB; 10572 10573 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10574 unsigned PeeledCaseIndex = 0; 10575 bool SwitchPeeled = false; 10576 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10577 CaseCluster &CC = Clusters[Index]; 10578 if (CC.Prob < TopCaseProb) 10579 continue; 10580 TopCaseProb = CC.Prob; 10581 PeeledCaseIndex = Index; 10582 SwitchPeeled = true; 10583 } 10584 if (!SwitchPeeled) 10585 return SwitchMBB; 10586 10587 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10588 << TopCaseProb << "\n"); 10589 10590 // Record the MBB for the peeled switch statement. 10591 MachineFunction::iterator BBI(SwitchMBB); 10592 ++BBI; 10593 MachineBasicBlock *PeeledSwitchMBB = 10594 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10595 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10596 10597 ExportFromCurrentBlock(SI.getCondition()); 10598 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10599 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10600 nullptr, nullptr, TopCaseProb.getCompl()}; 10601 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10602 10603 Clusters.erase(PeeledCaseIt); 10604 for (CaseCluster &CC : Clusters) { 10605 LLVM_DEBUG( 10606 dbgs() << "Scale the probablity for one cluster, before scaling: " 10607 << CC.Prob << "\n"); 10608 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10609 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10610 } 10611 PeeledCaseProb = TopCaseProb; 10612 return PeeledSwitchMBB; 10613 } 10614 10615 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10616 // Extract cases from the switch. 10617 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10618 CaseClusterVector Clusters; 10619 Clusters.reserve(SI.getNumCases()); 10620 for (auto I : SI.cases()) { 10621 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10622 const ConstantInt *CaseVal = I.getCaseValue(); 10623 BranchProbability Prob = 10624 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10625 : BranchProbability(1, SI.getNumCases() + 1); 10626 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10627 } 10628 10629 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10630 10631 // Cluster adjacent cases with the same destination. We do this at all 10632 // optimization levels because it's cheap to do and will make codegen faster 10633 // if there are many clusters. 10634 sortAndRangeify(Clusters); 10635 10636 // The branch probablity of the peeled case. 10637 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10638 MachineBasicBlock *PeeledSwitchMBB = 10639 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10640 10641 // If there is only the default destination, jump there directly. 10642 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10643 if (Clusters.empty()) { 10644 assert(PeeledSwitchMBB == SwitchMBB); 10645 SwitchMBB->addSuccessor(DefaultMBB); 10646 if (DefaultMBB != NextBlock(SwitchMBB)) { 10647 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10648 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10649 } 10650 return; 10651 } 10652 10653 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 10654 SL->findBitTestClusters(Clusters, &SI); 10655 10656 LLVM_DEBUG({ 10657 dbgs() << "Case clusters: "; 10658 for (const CaseCluster &C : Clusters) { 10659 if (C.Kind == CC_JumpTable) 10660 dbgs() << "JT:"; 10661 if (C.Kind == CC_BitTests) 10662 dbgs() << "BT:"; 10663 10664 C.Low->getValue().print(dbgs(), true); 10665 if (C.Low != C.High) { 10666 dbgs() << '-'; 10667 C.High->getValue().print(dbgs(), true); 10668 } 10669 dbgs() << ' '; 10670 } 10671 dbgs() << '\n'; 10672 }); 10673 10674 assert(!Clusters.empty()); 10675 SwitchWorkList WorkList; 10676 CaseClusterIt First = Clusters.begin(); 10677 CaseClusterIt Last = Clusters.end() - 1; 10678 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10679 // Scale the branchprobability for DefaultMBB if the peel occurs and 10680 // DefaultMBB is not replaced. 10681 if (PeeledCaseProb != BranchProbability::getZero() && 10682 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10683 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10684 WorkList.push_back( 10685 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10686 10687 while (!WorkList.empty()) { 10688 SwitchWorkListItem W = WorkList.back(); 10689 WorkList.pop_back(); 10690 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10691 10692 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10693 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10694 // For optimized builds, lower large range as a balanced binary tree. 10695 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10696 continue; 10697 } 10698 10699 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10700 } 10701 } 10702 10703 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 10704 SmallVector<EVT, 4> ValueVTs; 10705 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 10706 ValueVTs); 10707 unsigned NumValues = ValueVTs.size(); 10708 if (NumValues == 0) return; 10709 10710 SmallVector<SDValue, 4> Values(NumValues); 10711 SDValue Op = getValue(I.getOperand(0)); 10712 10713 for (unsigned i = 0; i != NumValues; ++i) 10714 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 10715 SDValue(Op.getNode(), Op.getResNo() + i)); 10716 10717 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 10718 DAG.getVTList(ValueVTs), Values)); 10719 } 10720