xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 28de229bc63489b9346558f4f3a57b024b53962a)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BlockFrequencyInfo.h"
31 #include "llvm/Analysis/BranchProbabilityInfo.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/Loads.h"
35 #include "llvm/Analysis/MemoryLocation.h"
36 #include "llvm/Analysis/ProfileSummaryInfo.h"
37 #include "llvm/Analysis/TargetLibraryInfo.h"
38 #include "llvm/Analysis/ValueTracking.h"
39 #include "llvm/Analysis/VectorUtils.h"
40 #include "llvm/CodeGen/Analysis.h"
41 #include "llvm/CodeGen/FunctionLoweringInfo.h"
42 #include "llvm/CodeGen/GCMetadata.h"
43 #include "llvm/CodeGen/ISDOpcodes.h"
44 #include "llvm/CodeGen/MachineBasicBlock.h"
45 #include "llvm/CodeGen/MachineFrameInfo.h"
46 #include "llvm/CodeGen/MachineFunction.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineInstrBuilder.h"
49 #include "llvm/CodeGen/MachineJumpTableInfo.h"
50 #include "llvm/CodeGen/MachineMemOperand.h"
51 #include "llvm/CodeGen/MachineModuleInfo.h"
52 #include "llvm/CodeGen/MachineOperand.h"
53 #include "llvm/CodeGen/MachineRegisterInfo.h"
54 #include "llvm/CodeGen/RuntimeLibcalls.h"
55 #include "llvm/CodeGen/SelectionDAG.h"
56 #include "llvm/CodeGen/SelectionDAGNodes.h"
57 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
58 #include "llvm/CodeGen/StackMaps.h"
59 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
60 #include "llvm/CodeGen/TargetFrameLowering.h"
61 #include "llvm/CodeGen/TargetInstrInfo.h"
62 #include "llvm/CodeGen/TargetLowering.h"
63 #include "llvm/CodeGen/TargetOpcodes.h"
64 #include "llvm/CodeGen/TargetRegisterInfo.h"
65 #include "llvm/CodeGen/TargetSubtargetInfo.h"
66 #include "llvm/CodeGen/ValueTypes.h"
67 #include "llvm/CodeGen/WinEHFuncInfo.h"
68 #include "llvm/IR/Argument.h"
69 #include "llvm/IR/Attributes.h"
70 #include "llvm/IR/BasicBlock.h"
71 #include "llvm/IR/CFG.h"
72 #include "llvm/IR/CallingConv.h"
73 #include "llvm/IR/Constant.h"
74 #include "llvm/IR/ConstantRange.h"
75 #include "llvm/IR/Constants.h"
76 #include "llvm/IR/DataLayout.h"
77 #include "llvm/IR/DebugInfoMetadata.h"
78 #include "llvm/IR/DebugLoc.h"
79 #include "llvm/IR/DerivedTypes.h"
80 #include "llvm/IR/Function.h"
81 #include "llvm/IR/GetElementPtrTypeIterator.h"
82 #include "llvm/IR/InlineAsm.h"
83 #include "llvm/IR/InstrTypes.h"
84 #include "llvm/IR/Instruction.h"
85 #include "llvm/IR/Instructions.h"
86 #include "llvm/IR/IntrinsicInst.h"
87 #include "llvm/IR/Intrinsics.h"
88 #include "llvm/IR/IntrinsicsAArch64.h"
89 #include "llvm/IR/IntrinsicsWebAssembly.h"
90 #include "llvm/IR/LLVMContext.h"
91 #include "llvm/IR/Metadata.h"
92 #include "llvm/IR/Module.h"
93 #include "llvm/IR/Operator.h"
94 #include "llvm/IR/PatternMatch.h"
95 #include "llvm/IR/Statepoint.h"
96 #include "llvm/IR/Type.h"
97 #include "llvm/IR/User.h"
98 #include "llvm/IR/Value.h"
99 #include "llvm/MC/MCContext.h"
100 #include "llvm/MC/MCSymbol.h"
101 #include "llvm/Support/AtomicOrdering.h"
102 #include "llvm/Support/BranchProbability.h"
103 #include "llvm/Support/Casting.h"
104 #include "llvm/Support/CodeGen.h"
105 #include "llvm/Support/CommandLine.h"
106 #include "llvm/Support/Compiler.h"
107 #include "llvm/Support/Debug.h"
108 #include "llvm/Support/ErrorHandling.h"
109 #include "llvm/Support/MachineValueType.h"
110 #include "llvm/Support/MathExtras.h"
111 #include "llvm/Support/raw_ostream.h"
112 #include "llvm/Target/TargetIntrinsicInfo.h"
113 #include "llvm/Target/TargetMachine.h"
114 #include "llvm/Target/TargetOptions.h"
115 #include "llvm/Transforms/Utils/Local.h"
116 #include <algorithm>
117 #include <cassert>
118 #include <cstddef>
119 #include <cstdint>
120 #include <cstring>
121 #include <iterator>
122 #include <limits>
123 #include <numeric>
124 #include <tuple>
125 #include <utility>
126 #include <vector>
127 
128 using namespace llvm;
129 using namespace PatternMatch;
130 using namespace SwitchCG;
131 
132 #define DEBUG_TYPE "isel"
133 
134 /// LimitFloatPrecision - Generate low-precision inline sequences for
135 /// some float libcalls (6, 8 or 12 bits).
136 static unsigned LimitFloatPrecision;
137 
138 static cl::opt<bool>
139     InsertAssertAlign("insert-assert-align", cl::init(true),
140                       cl::desc("Insert the experimental `assertalign` node."),
141                       cl::ReallyHidden);
142 
143 static cl::opt<unsigned, true>
144     LimitFPPrecision("limit-float-precision",
145                      cl::desc("Generate low-precision inline sequences "
146                               "for some float libcalls"),
147                      cl::location(LimitFloatPrecision), cl::Hidden,
148                      cl::init(0));
149 
150 static cl::opt<unsigned> SwitchPeelThreshold(
151     "switch-peel-threshold", cl::Hidden, cl::init(66),
152     cl::desc("Set the case probability threshold for peeling the case from a "
153              "switch statement. A value greater than 100 will void this "
154              "optimization"));
155 
156 // Limit the width of DAG chains. This is important in general to prevent
157 // DAG-based analysis from blowing up. For example, alias analysis and
158 // load clustering may not complete in reasonable time. It is difficult to
159 // recognize and avoid this situation within each individual analysis, and
160 // future analyses are likely to have the same behavior. Limiting DAG width is
161 // the safe approach and will be especially important with global DAGs.
162 //
163 // MaxParallelChains default is arbitrarily high to avoid affecting
164 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
165 // sequence over this should have been converted to llvm.memcpy by the
166 // frontend. It is easy to induce this behavior with .ll code such as:
167 // %buffer = alloca [4096 x i8]
168 // %data = load [4096 x i8]* %argPtr
169 // store [4096 x i8] %data, [4096 x i8]* %buffer
170 static const unsigned MaxParallelChains = 64;
171 
172 // Return the calling convention if the Value passed requires ABI mangling as it
173 // is a parameter to a function or a return value from a function which is not
174 // an intrinsic.
175 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
176   if (auto *R = dyn_cast<ReturnInst>(V))
177     return R->getParent()->getParent()->getCallingConv();
178 
179   if (auto *CI = dyn_cast<CallInst>(V)) {
180     const bool IsInlineAsm = CI->isInlineAsm();
181     const bool IsIndirectFunctionCall =
182         !IsInlineAsm && !CI->getCalledFunction();
183 
184     // It is possible that the call instruction is an inline asm statement or an
185     // indirect function call in which case the return value of
186     // getCalledFunction() would be nullptr.
187     const bool IsInstrinsicCall =
188         !IsInlineAsm && !IsIndirectFunctionCall &&
189         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
190 
191     if (!IsInlineAsm && !IsInstrinsicCall)
192       return CI->getCallingConv();
193   }
194 
195   return None;
196 }
197 
198 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
199                                       const SDValue *Parts, unsigned NumParts,
200                                       MVT PartVT, EVT ValueVT, const Value *V,
201                                       Optional<CallingConv::ID> CC);
202 
203 /// getCopyFromParts - Create a value that contains the specified legal parts
204 /// combined into the value they represent.  If the parts combine to a type
205 /// larger than ValueVT then AssertOp can be used to specify whether the extra
206 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
207 /// (ISD::AssertSext).
208 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
209                                 const SDValue *Parts, unsigned NumParts,
210                                 MVT PartVT, EVT ValueVT, const Value *V,
211                                 Optional<CallingConv::ID> CC = None,
212                                 Optional<ISD::NodeType> AssertOp = None) {
213   // Let the target assemble the parts if it wants to
214   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
215   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
216                                                    PartVT, ValueVT, CC))
217     return Val;
218 
219   if (ValueVT.isVector())
220     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
221                                   CC);
222 
223   assert(NumParts > 0 && "No parts to assemble!");
224   SDValue Val = Parts[0];
225 
226   if (NumParts > 1) {
227     // Assemble the value from multiple parts.
228     if (ValueVT.isInteger()) {
229       unsigned PartBits = PartVT.getSizeInBits();
230       unsigned ValueBits = ValueVT.getSizeInBits();
231 
232       // Assemble the power of 2 part.
233       unsigned RoundParts =
234           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
235       unsigned RoundBits = PartBits * RoundParts;
236       EVT RoundVT = RoundBits == ValueBits ?
237         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
238       SDValue Lo, Hi;
239 
240       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
241 
242       if (RoundParts > 2) {
243         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
244                               PartVT, HalfVT, V);
245         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
246                               RoundParts / 2, PartVT, HalfVT, V);
247       } else {
248         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
249         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
250       }
251 
252       if (DAG.getDataLayout().isBigEndian())
253         std::swap(Lo, Hi);
254 
255       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
256 
257       if (RoundParts < NumParts) {
258         // Assemble the trailing non-power-of-2 part.
259         unsigned OddParts = NumParts - RoundParts;
260         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
261         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
262                               OddVT, V, CC);
263 
264         // Combine the round and odd parts.
265         Lo = Val;
266         if (DAG.getDataLayout().isBigEndian())
267           std::swap(Lo, Hi);
268         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
269         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
270         Hi =
271             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
272                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
273                                         TLI.getPointerTy(DAG.getDataLayout())));
274         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
275         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
276       }
277     } else if (PartVT.isFloatingPoint()) {
278       // FP split into multiple FP parts (for ppcf128)
279       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
280              "Unexpected split");
281       SDValue Lo, Hi;
282       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
283       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
284       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
285         std::swap(Lo, Hi);
286       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
287     } else {
288       // FP split into integer parts (soft fp)
289       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
290              !PartVT.isVector() && "Unexpected split");
291       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
292       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
293     }
294   }
295 
296   // There is now one part, held in Val.  Correct it to match ValueVT.
297   // PartEVT is the type of the register class that holds the value.
298   // ValueVT is the type of the inline asm operation.
299   EVT PartEVT = Val.getValueType();
300 
301   if (PartEVT == ValueVT)
302     return Val;
303 
304   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
305       ValueVT.bitsLT(PartEVT)) {
306     // For an FP value in an integer part, we need to truncate to the right
307     // width first.
308     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
309     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
310   }
311 
312   // Handle types that have the same size.
313   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
314     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
315 
316   // Handle types with different sizes.
317   if (PartEVT.isInteger() && ValueVT.isInteger()) {
318     if (ValueVT.bitsLT(PartEVT)) {
319       // For a truncate, see if we have any information to
320       // indicate whether the truncated bits will always be
321       // zero or sign-extension.
322       if (AssertOp.hasValue())
323         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
324                           DAG.getValueType(ValueVT));
325       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
326     }
327     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
328   }
329 
330   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
331     // FP_ROUND's are always exact here.
332     if (ValueVT.bitsLT(Val.getValueType()))
333       return DAG.getNode(
334           ISD::FP_ROUND, DL, ValueVT, Val,
335           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
336 
337     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
338   }
339 
340   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
341   // then truncating.
342   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
343       ValueVT.bitsLT(PartEVT)) {
344     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
345     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
346   }
347 
348   report_fatal_error("Unknown mismatch in getCopyFromParts!");
349 }
350 
351 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
352                                               const Twine &ErrMsg) {
353   const Instruction *I = dyn_cast_or_null<Instruction>(V);
354   if (!V)
355     return Ctx.emitError(ErrMsg);
356 
357   const char *AsmError = ", possible invalid constraint for vector type";
358   if (const CallInst *CI = dyn_cast<CallInst>(I))
359     if (CI->isInlineAsm())
360       return Ctx.emitError(I, ErrMsg + AsmError);
361 
362   return Ctx.emitError(I, ErrMsg);
363 }
364 
365 /// getCopyFromPartsVector - Create a value that contains the specified legal
366 /// parts combined into the value they represent.  If the parts combine to a
367 /// type larger than ValueVT then AssertOp can be used to specify whether the
368 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
369 /// ValueVT (ISD::AssertSext).
370 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
371                                       const SDValue *Parts, unsigned NumParts,
372                                       MVT PartVT, EVT ValueVT, const Value *V,
373                                       Optional<CallingConv::ID> CallConv) {
374   assert(ValueVT.isVector() && "Not a vector value");
375   assert(NumParts > 0 && "No parts to assemble!");
376   const bool IsABIRegCopy = CallConv.hasValue();
377 
378   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
379   SDValue Val = Parts[0];
380 
381   // Handle a multi-element vector.
382   if (NumParts > 1) {
383     EVT IntermediateVT;
384     MVT RegisterVT;
385     unsigned NumIntermediates;
386     unsigned NumRegs;
387 
388     if (IsABIRegCopy) {
389       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
390           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
391           NumIntermediates, RegisterVT);
392     } else {
393       NumRegs =
394           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
395                                      NumIntermediates, RegisterVT);
396     }
397 
398     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
399     NumParts = NumRegs; // Silence a compiler warning.
400     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
401     assert(RegisterVT.getSizeInBits() ==
402            Parts[0].getSimpleValueType().getSizeInBits() &&
403            "Part type sizes don't match!");
404 
405     // Assemble the parts into intermediate operands.
406     SmallVector<SDValue, 8> Ops(NumIntermediates);
407     if (NumIntermediates == NumParts) {
408       // If the register was not expanded, truncate or copy the value,
409       // as appropriate.
410       for (unsigned i = 0; i != NumParts; ++i)
411         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
412                                   PartVT, IntermediateVT, V);
413     } else if (NumParts > 0) {
414       // If the intermediate type was expanded, build the intermediate
415       // operands from the parts.
416       assert(NumParts % NumIntermediates == 0 &&
417              "Must expand into a divisible number of parts!");
418       unsigned Factor = NumParts / NumIntermediates;
419       for (unsigned i = 0; i != NumIntermediates; ++i)
420         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
421                                   PartVT, IntermediateVT, V);
422     }
423 
424     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
425     // intermediate operands.
426     EVT BuiltVectorTy =
427         IntermediateVT.isVector()
428             ? EVT::getVectorVT(
429                   *DAG.getContext(), IntermediateVT.getScalarType(),
430                   IntermediateVT.getVectorElementCount() * NumParts)
431             : EVT::getVectorVT(*DAG.getContext(),
432                                IntermediateVT.getScalarType(),
433                                NumIntermediates);
434     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
435                                                 : ISD::BUILD_VECTOR,
436                       DL, BuiltVectorTy, Ops);
437   }
438 
439   // There is now one part, held in Val.  Correct it to match ValueVT.
440   EVT PartEVT = Val.getValueType();
441 
442   if (PartEVT == ValueVT)
443     return Val;
444 
445   if (PartEVT.isVector()) {
446     // If the element type of the source/dest vectors are the same, but the
447     // parts vector has more elements than the value vector, then we have a
448     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
449     // elements we want.
450     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
451       assert((PartEVT.getVectorElementCount().Min >
452               ValueVT.getVectorElementCount().Min) &&
453              (PartEVT.getVectorElementCount().Scalable ==
454               ValueVT.getVectorElementCount().Scalable) &&
455              "Cannot narrow, it would be a lossy transformation");
456       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
457                          DAG.getVectorIdxConstant(0, DL));
458     }
459 
460     // Vector/Vector bitcast.
461     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
462       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
463 
464     assert(PartEVT.getVectorElementCount() == ValueVT.getVectorElementCount() &&
465       "Cannot handle this kind of promotion");
466     // Promoted vector extract
467     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
468 
469   }
470 
471   // Trivial bitcast if the types are the same size and the destination
472   // vector type is legal.
473   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
474       TLI.isTypeLegal(ValueVT))
475     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
476 
477   if (ValueVT.getVectorNumElements() != 1) {
478      // Certain ABIs require that vectors are passed as integers. For vectors
479      // are the same size, this is an obvious bitcast.
480      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
481        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
482      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
483        // Bitcast Val back the original type and extract the corresponding
484        // vector we want.
485        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
486        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
487                                            ValueVT.getVectorElementType(), Elts);
488        Val = DAG.getBitcast(WiderVecType, Val);
489        return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
490                           DAG.getVectorIdxConstant(0, DL));
491      }
492 
493      diagnosePossiblyInvalidConstraint(
494          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
495      return DAG.getUNDEF(ValueVT);
496   }
497 
498   // Handle cases such as i8 -> <1 x i1>
499   EVT ValueSVT = ValueVT.getVectorElementType();
500   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
501     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
502       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
503     else
504       Val = ValueVT.isFloatingPoint()
505                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
506                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
507   }
508 
509   return DAG.getBuildVector(ValueVT, DL, Val);
510 }
511 
512 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
513                                  SDValue Val, SDValue *Parts, unsigned NumParts,
514                                  MVT PartVT, const Value *V,
515                                  Optional<CallingConv::ID> CallConv);
516 
517 /// getCopyToParts - Create a series of nodes that contain the specified value
518 /// split into legal parts.  If the parts contain more bits than Val, then, for
519 /// integers, ExtendKind can be used to specify how to generate the extra bits.
520 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
521                            SDValue *Parts, unsigned NumParts, MVT PartVT,
522                            const Value *V,
523                            Optional<CallingConv::ID> CallConv = None,
524                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
525   // Let the target split the parts if it wants to
526   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
527   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
528                                       CallConv))
529     return;
530   EVT ValueVT = Val.getValueType();
531 
532   // Handle the vector case separately.
533   if (ValueVT.isVector())
534     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
535                                 CallConv);
536 
537   unsigned PartBits = PartVT.getSizeInBits();
538   unsigned OrigNumParts = NumParts;
539   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
540          "Copying to an illegal type!");
541 
542   if (NumParts == 0)
543     return;
544 
545   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
546   EVT PartEVT = PartVT;
547   if (PartEVT == ValueVT) {
548     assert(NumParts == 1 && "No-op copy with multiple parts!");
549     Parts[0] = Val;
550     return;
551   }
552 
553   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
554     // If the parts cover more bits than the value has, promote the value.
555     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
556       assert(NumParts == 1 && "Do not know what to promote to!");
557       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
558     } else {
559       if (ValueVT.isFloatingPoint()) {
560         // FP values need to be bitcast, then extended if they are being put
561         // into a larger container.
562         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
563         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
564       }
565       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
566              ValueVT.isInteger() &&
567              "Unknown mismatch!");
568       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
569       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
570       if (PartVT == MVT::x86mmx)
571         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
572     }
573   } else if (PartBits == ValueVT.getSizeInBits()) {
574     // Different types of the same size.
575     assert(NumParts == 1 && PartEVT != ValueVT);
576     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
577   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
578     // If the parts cover less bits than value has, truncate the value.
579     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
580            ValueVT.isInteger() &&
581            "Unknown mismatch!");
582     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
583     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
584     if (PartVT == MVT::x86mmx)
585       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
586   }
587 
588   // The value may have changed - recompute ValueVT.
589   ValueVT = Val.getValueType();
590   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
591          "Failed to tile the value with PartVT!");
592 
593   if (NumParts == 1) {
594     if (PartEVT != ValueVT) {
595       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
596                                         "scalar-to-vector conversion failed");
597       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
598     }
599 
600     Parts[0] = Val;
601     return;
602   }
603 
604   // Expand the value into multiple parts.
605   if (NumParts & (NumParts - 1)) {
606     // The number of parts is not a power of 2.  Split off and copy the tail.
607     assert(PartVT.isInteger() && ValueVT.isInteger() &&
608            "Do not know what to expand to!");
609     unsigned RoundParts = 1 << Log2_32(NumParts);
610     unsigned RoundBits = RoundParts * PartBits;
611     unsigned OddParts = NumParts - RoundParts;
612     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
613       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
614 
615     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
616                    CallConv);
617 
618     if (DAG.getDataLayout().isBigEndian())
619       // The odd parts were reversed by getCopyToParts - unreverse them.
620       std::reverse(Parts + RoundParts, Parts + NumParts);
621 
622     NumParts = RoundParts;
623     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
624     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
625   }
626 
627   // The number of parts is a power of 2.  Repeatedly bisect the value using
628   // EXTRACT_ELEMENT.
629   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
630                          EVT::getIntegerVT(*DAG.getContext(),
631                                            ValueVT.getSizeInBits()),
632                          Val);
633 
634   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
635     for (unsigned i = 0; i < NumParts; i += StepSize) {
636       unsigned ThisBits = StepSize * PartBits / 2;
637       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
638       SDValue &Part0 = Parts[i];
639       SDValue &Part1 = Parts[i+StepSize/2];
640 
641       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
642                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
643       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
644                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
645 
646       if (ThisBits == PartBits && ThisVT != PartVT) {
647         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
648         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
649       }
650     }
651   }
652 
653   if (DAG.getDataLayout().isBigEndian())
654     std::reverse(Parts, Parts + OrigNumParts);
655 }
656 
657 static SDValue widenVectorToPartType(SelectionDAG &DAG,
658                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
659   if (!PartVT.isVector())
660     return SDValue();
661 
662   EVT ValueVT = Val.getValueType();
663   unsigned PartNumElts = PartVT.getVectorNumElements();
664   unsigned ValueNumElts = ValueVT.getVectorNumElements();
665   if (PartNumElts > ValueNumElts &&
666       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
667     EVT ElementVT = PartVT.getVectorElementType();
668     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
669     // undef elements.
670     SmallVector<SDValue, 16> Ops;
671     DAG.ExtractVectorElements(Val, Ops);
672     SDValue EltUndef = DAG.getUNDEF(ElementVT);
673     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
674       Ops.push_back(EltUndef);
675 
676     // FIXME: Use CONCAT for 2x -> 4x.
677     return DAG.getBuildVector(PartVT, DL, Ops);
678   }
679 
680   return SDValue();
681 }
682 
683 /// getCopyToPartsVector - Create a series of nodes that contain the specified
684 /// value split into legal parts.
685 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
686                                  SDValue Val, SDValue *Parts, unsigned NumParts,
687                                  MVT PartVT, const Value *V,
688                                  Optional<CallingConv::ID> CallConv) {
689   EVT ValueVT = Val.getValueType();
690   assert(ValueVT.isVector() && "Not a vector");
691   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
692   const bool IsABIRegCopy = CallConv.hasValue();
693 
694   if (NumParts == 1) {
695     EVT PartEVT = PartVT;
696     if (PartEVT == ValueVT) {
697       // Nothing to do.
698     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
699       // Bitconvert vector->vector case.
700       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
701     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
702       Val = Widened;
703     } else if (PartVT.isVector() &&
704                PartEVT.getVectorElementType().bitsGE(
705                  ValueVT.getVectorElementType()) &&
706                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
707 
708       // Promoted vector extract
709       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
710     } else {
711       if (ValueVT.getVectorNumElements() == 1) {
712         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
713                           DAG.getVectorIdxConstant(0, DL));
714       } else {
715         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
716                "lossy conversion of vector to scalar type");
717         EVT IntermediateType =
718             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
719         Val = DAG.getBitcast(IntermediateType, Val);
720         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
721       }
722     }
723 
724     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
725     Parts[0] = Val;
726     return;
727   }
728 
729   // Handle a multi-element vector.
730   EVT IntermediateVT;
731   MVT RegisterVT;
732   unsigned NumIntermediates;
733   unsigned NumRegs;
734   if (IsABIRegCopy) {
735     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
736         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
737         NumIntermediates, RegisterVT);
738   } else {
739     NumRegs =
740         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
741                                    NumIntermediates, RegisterVT);
742   }
743 
744   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
745   NumParts = NumRegs; // Silence a compiler warning.
746   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
747 
748   unsigned IntermediateNumElts = IntermediateVT.isVector() ?
749     IntermediateVT.getVectorNumElements() : 1;
750 
751   // Convert the vector to the appropriate type if necessary.
752   auto DestEltCnt = ElementCount(NumIntermediates * IntermediateNumElts,
753                                  ValueVT.isScalableVector());
754   EVT BuiltVectorTy = EVT::getVectorVT(
755       *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt);
756   if (ValueVT != BuiltVectorTy) {
757     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
758       Val = Widened;
759 
760     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
761   }
762 
763   // Split the vector into intermediate operands.
764   SmallVector<SDValue, 8> Ops(NumIntermediates);
765   for (unsigned i = 0; i != NumIntermediates; ++i) {
766     if (IntermediateVT.isVector()) {
767       Ops[i] =
768           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
769                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
770     } else {
771       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
772                            DAG.getVectorIdxConstant(i, DL));
773     }
774   }
775 
776   // Split the intermediate operands into legal parts.
777   if (NumParts == NumIntermediates) {
778     // If the register was not expanded, promote or copy the value,
779     // as appropriate.
780     for (unsigned i = 0; i != NumParts; ++i)
781       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
782   } else if (NumParts > 0) {
783     // If the intermediate type was expanded, split each the value into
784     // legal parts.
785     assert(NumIntermediates != 0 && "division by zero");
786     assert(NumParts % NumIntermediates == 0 &&
787            "Must expand into a divisible number of parts!");
788     unsigned Factor = NumParts / NumIntermediates;
789     for (unsigned i = 0; i != NumIntermediates; ++i)
790       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
791                      CallConv);
792   }
793 }
794 
795 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
796                            EVT valuevt, Optional<CallingConv::ID> CC)
797     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
798       RegCount(1, regs.size()), CallConv(CC) {}
799 
800 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
801                            const DataLayout &DL, unsigned Reg, Type *Ty,
802                            Optional<CallingConv::ID> CC) {
803   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
804 
805   CallConv = CC;
806 
807   for (EVT ValueVT : ValueVTs) {
808     unsigned NumRegs =
809         isABIMangled()
810             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
811             : TLI.getNumRegisters(Context, ValueVT);
812     MVT RegisterVT =
813         isABIMangled()
814             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
815             : TLI.getRegisterType(Context, ValueVT);
816     for (unsigned i = 0; i != NumRegs; ++i)
817       Regs.push_back(Reg + i);
818     RegVTs.push_back(RegisterVT);
819     RegCount.push_back(NumRegs);
820     Reg += NumRegs;
821   }
822 }
823 
824 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
825                                       FunctionLoweringInfo &FuncInfo,
826                                       const SDLoc &dl, SDValue &Chain,
827                                       SDValue *Flag, const Value *V) const {
828   // A Value with type {} or [0 x %t] needs no registers.
829   if (ValueVTs.empty())
830     return SDValue();
831 
832   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
833 
834   // Assemble the legal parts into the final values.
835   SmallVector<SDValue, 4> Values(ValueVTs.size());
836   SmallVector<SDValue, 8> Parts;
837   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
838     // Copy the legal parts from the registers.
839     EVT ValueVT = ValueVTs[Value];
840     unsigned NumRegs = RegCount[Value];
841     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
842                                           *DAG.getContext(),
843                                           CallConv.getValue(), RegVTs[Value])
844                                     : RegVTs[Value];
845 
846     Parts.resize(NumRegs);
847     for (unsigned i = 0; i != NumRegs; ++i) {
848       SDValue P;
849       if (!Flag) {
850         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
851       } else {
852         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
853         *Flag = P.getValue(2);
854       }
855 
856       Chain = P.getValue(1);
857       Parts[i] = P;
858 
859       // If the source register was virtual and if we know something about it,
860       // add an assert node.
861       if (!Register::isVirtualRegister(Regs[Part + i]) ||
862           !RegisterVT.isInteger())
863         continue;
864 
865       const FunctionLoweringInfo::LiveOutInfo *LOI =
866         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
867       if (!LOI)
868         continue;
869 
870       unsigned RegSize = RegisterVT.getScalarSizeInBits();
871       unsigned NumSignBits = LOI->NumSignBits;
872       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
873 
874       if (NumZeroBits == RegSize) {
875         // The current value is a zero.
876         // Explicitly express that as it would be easier for
877         // optimizations to kick in.
878         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
879         continue;
880       }
881 
882       // FIXME: We capture more information than the dag can represent.  For
883       // now, just use the tightest assertzext/assertsext possible.
884       bool isSExt;
885       EVT FromVT(MVT::Other);
886       if (NumZeroBits) {
887         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
888         isSExt = false;
889       } else if (NumSignBits > 1) {
890         FromVT =
891             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
892         isSExt = true;
893       } else {
894         continue;
895       }
896       // Add an assertion node.
897       assert(FromVT != MVT::Other);
898       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
899                              RegisterVT, P, DAG.getValueType(FromVT));
900     }
901 
902     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
903                                      RegisterVT, ValueVT, V, CallConv);
904     Part += NumRegs;
905     Parts.clear();
906   }
907 
908   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
909 }
910 
911 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
912                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
913                                  const Value *V,
914                                  ISD::NodeType PreferredExtendType) const {
915   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
916   ISD::NodeType ExtendKind = PreferredExtendType;
917 
918   // Get the list of the values's legal parts.
919   unsigned NumRegs = Regs.size();
920   SmallVector<SDValue, 8> Parts(NumRegs);
921   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
922     unsigned NumParts = RegCount[Value];
923 
924     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
925                                           *DAG.getContext(),
926                                           CallConv.getValue(), RegVTs[Value])
927                                     : RegVTs[Value];
928 
929     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
930       ExtendKind = ISD::ZERO_EXTEND;
931 
932     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
933                    NumParts, RegisterVT, V, CallConv, ExtendKind);
934     Part += NumParts;
935   }
936 
937   // Copy the parts into the registers.
938   SmallVector<SDValue, 8> Chains(NumRegs);
939   for (unsigned i = 0; i != NumRegs; ++i) {
940     SDValue Part;
941     if (!Flag) {
942       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
943     } else {
944       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
945       *Flag = Part.getValue(1);
946     }
947 
948     Chains[i] = Part.getValue(0);
949   }
950 
951   if (NumRegs == 1 || Flag)
952     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
953     // flagged to it. That is the CopyToReg nodes and the user are considered
954     // a single scheduling unit. If we create a TokenFactor and return it as
955     // chain, then the TokenFactor is both a predecessor (operand) of the
956     // user as well as a successor (the TF operands are flagged to the user).
957     // c1, f1 = CopyToReg
958     // c2, f2 = CopyToReg
959     // c3     = TokenFactor c1, c2
960     // ...
961     //        = op c3, ..., f2
962     Chain = Chains[NumRegs-1];
963   else
964     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
965 }
966 
967 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
968                                         unsigned MatchingIdx, const SDLoc &dl,
969                                         SelectionDAG &DAG,
970                                         std::vector<SDValue> &Ops) const {
971   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
972 
973   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
974   if (HasMatching)
975     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
976   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
977     // Put the register class of the virtual registers in the flag word.  That
978     // way, later passes can recompute register class constraints for inline
979     // assembly as well as normal instructions.
980     // Don't do this for tied operands that can use the regclass information
981     // from the def.
982     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
983     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
984     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
985   }
986 
987   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
988   Ops.push_back(Res);
989 
990   if (Code == InlineAsm::Kind_Clobber) {
991     // Clobbers should always have a 1:1 mapping with registers, and may
992     // reference registers that have illegal (e.g. vector) types. Hence, we
993     // shouldn't try to apply any sort of splitting logic to them.
994     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
995            "No 1:1 mapping from clobbers to regs?");
996     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
997     (void)SP;
998     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
999       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1000       assert(
1001           (Regs[I] != SP ||
1002            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1003           "If we clobbered the stack pointer, MFI should know about it.");
1004     }
1005     return;
1006   }
1007 
1008   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1009     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
1010     MVT RegisterVT = RegVTs[Value];
1011     for (unsigned i = 0; i != NumRegs; ++i) {
1012       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1013       unsigned TheReg = Regs[Reg++];
1014       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1015     }
1016   }
1017 }
1018 
1019 SmallVector<std::pair<unsigned, unsigned>, 4>
1020 RegsForValue::getRegsAndSizes() const {
1021   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
1022   unsigned I = 0;
1023   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1024     unsigned RegCount = std::get<0>(CountAndVT);
1025     MVT RegisterVT = std::get<1>(CountAndVT);
1026     unsigned RegisterSize = RegisterVT.getSizeInBits();
1027     for (unsigned E = I + RegCount; I != E; ++I)
1028       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1029   }
1030   return OutVec;
1031 }
1032 
1033 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1034                                const TargetLibraryInfo *li) {
1035   AA = aa;
1036   GFI = gfi;
1037   LibInfo = li;
1038   DL = &DAG.getDataLayout();
1039   Context = DAG.getContext();
1040   LPadToCallSiteMap.clear();
1041   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1042 }
1043 
1044 void SelectionDAGBuilder::clear() {
1045   NodeMap.clear();
1046   UnusedArgNodeMap.clear();
1047   PendingLoads.clear();
1048   PendingExports.clear();
1049   PendingConstrainedFP.clear();
1050   PendingConstrainedFPStrict.clear();
1051   CurInst = nullptr;
1052   HasTailCall = false;
1053   SDNodeOrder = LowestSDNodeOrder;
1054   StatepointLowering.clear();
1055 }
1056 
1057 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1058   DanglingDebugInfoMap.clear();
1059 }
1060 
1061 // Update DAG root to include dependencies on Pending chains.
1062 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1063   SDValue Root = DAG.getRoot();
1064 
1065   if (Pending.empty())
1066     return Root;
1067 
1068   // Add current root to PendingChains, unless we already indirectly
1069   // depend on it.
1070   if (Root.getOpcode() != ISD::EntryToken) {
1071     unsigned i = 0, e = Pending.size();
1072     for (; i != e; ++i) {
1073       assert(Pending[i].getNode()->getNumOperands() > 1);
1074       if (Pending[i].getNode()->getOperand(0) == Root)
1075         break;  // Don't add the root if we already indirectly depend on it.
1076     }
1077 
1078     if (i == e)
1079       Pending.push_back(Root);
1080   }
1081 
1082   if (Pending.size() == 1)
1083     Root = Pending[0];
1084   else
1085     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1086 
1087   DAG.setRoot(Root);
1088   Pending.clear();
1089   return Root;
1090 }
1091 
1092 SDValue SelectionDAGBuilder::getMemoryRoot() {
1093   return updateRoot(PendingLoads);
1094 }
1095 
1096 SDValue SelectionDAGBuilder::getRoot() {
1097   // Chain up all pending constrained intrinsics together with all
1098   // pending loads, by simply appending them to PendingLoads and
1099   // then calling getMemoryRoot().
1100   PendingLoads.reserve(PendingLoads.size() +
1101                        PendingConstrainedFP.size() +
1102                        PendingConstrainedFPStrict.size());
1103   PendingLoads.append(PendingConstrainedFP.begin(),
1104                       PendingConstrainedFP.end());
1105   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1106                       PendingConstrainedFPStrict.end());
1107   PendingConstrainedFP.clear();
1108   PendingConstrainedFPStrict.clear();
1109   return getMemoryRoot();
1110 }
1111 
1112 SDValue SelectionDAGBuilder::getControlRoot() {
1113   // We need to emit pending fpexcept.strict constrained intrinsics,
1114   // so append them to the PendingExports list.
1115   PendingExports.append(PendingConstrainedFPStrict.begin(),
1116                         PendingConstrainedFPStrict.end());
1117   PendingConstrainedFPStrict.clear();
1118   return updateRoot(PendingExports);
1119 }
1120 
1121 void SelectionDAGBuilder::visit(const Instruction &I) {
1122   // Set up outgoing PHI node register values before emitting the terminator.
1123   if (I.isTerminator()) {
1124     HandlePHINodesInSuccessorBlocks(I.getParent());
1125   }
1126 
1127   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1128   if (!isa<DbgInfoIntrinsic>(I))
1129     ++SDNodeOrder;
1130 
1131   CurInst = &I;
1132 
1133   visit(I.getOpcode(), I);
1134 
1135   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1136     // ConstrainedFPIntrinsics handle their own FMF.
1137     if (!isa<ConstrainedFPIntrinsic>(&I)) {
1138       // Propagate the fast-math-flags of this IR instruction to the DAG node that
1139       // maps to this instruction.
1140       // TODO: We could handle all flags (nsw, etc) here.
1141       // TODO: If an IR instruction maps to >1 node, only the final node will have
1142       //       flags set.
1143       if (SDNode *Node = getNodeForIRValue(&I)) {
1144         SDNodeFlags IncomingFlags;
1145         IncomingFlags.copyFMF(*FPMO);
1146         if (!Node->getFlags().isDefined())
1147           Node->setFlags(IncomingFlags);
1148         else
1149           Node->intersectFlagsWith(IncomingFlags);
1150       }
1151     }
1152   }
1153 
1154   if (!I.isTerminator() && !HasTailCall &&
1155       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1156     CopyToExportRegsIfNeeded(&I);
1157 
1158   CurInst = nullptr;
1159 }
1160 
1161 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1162   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1163 }
1164 
1165 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1166   // Note: this doesn't use InstVisitor, because it has to work with
1167   // ConstantExpr's in addition to instructions.
1168   switch (Opcode) {
1169   default: llvm_unreachable("Unknown instruction type encountered!");
1170     // Build the switch statement using the Instruction.def file.
1171 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1172     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1173 #include "llvm/IR/Instruction.def"
1174   }
1175 }
1176 
1177 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1178                                                 const DIExpression *Expr) {
1179   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1180     const DbgValueInst *DI = DDI.getDI();
1181     DIVariable *DanglingVariable = DI->getVariable();
1182     DIExpression *DanglingExpr = DI->getExpression();
1183     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1184       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1185       return true;
1186     }
1187     return false;
1188   };
1189 
1190   for (auto &DDIMI : DanglingDebugInfoMap) {
1191     DanglingDebugInfoVector &DDIV = DDIMI.second;
1192 
1193     // If debug info is to be dropped, run it through final checks to see
1194     // whether it can be salvaged.
1195     for (auto &DDI : DDIV)
1196       if (isMatchingDbgValue(DDI))
1197         salvageUnresolvedDbgValue(DDI);
1198 
1199     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1200   }
1201 }
1202 
1203 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1204 // generate the debug data structures now that we've seen its definition.
1205 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1206                                                    SDValue Val) {
1207   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1208   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1209     return;
1210 
1211   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1212   for (auto &DDI : DDIV) {
1213     const DbgValueInst *DI = DDI.getDI();
1214     assert(DI && "Ill-formed DanglingDebugInfo");
1215     DebugLoc dl = DDI.getdl();
1216     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1217     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1218     DILocalVariable *Variable = DI->getVariable();
1219     DIExpression *Expr = DI->getExpression();
1220     assert(Variable->isValidLocationForIntrinsic(dl) &&
1221            "Expected inlined-at fields to agree");
1222     SDDbgValue *SDV;
1223     if (Val.getNode()) {
1224       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1225       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1226       // we couldn't resolve it directly when examining the DbgValue intrinsic
1227       // in the first place we should not be more successful here). Unless we
1228       // have some test case that prove this to be correct we should avoid
1229       // calling EmitFuncArgumentDbgValue here.
1230       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1231         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1232                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1233         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1234         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1235         // inserted after the definition of Val when emitting the instructions
1236         // after ISel. An alternative could be to teach
1237         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1238         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1239                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1240                    << ValSDNodeOrder << "\n");
1241         SDV = getDbgValue(Val, Variable, Expr, dl,
1242                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1243         DAG.AddDbgValue(SDV, Val.getNode(), false);
1244       } else
1245         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1246                           << "in EmitFuncArgumentDbgValue\n");
1247     } else {
1248       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1249       auto Undef =
1250           UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1251       auto SDV =
1252           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1253       DAG.AddDbgValue(SDV, nullptr, false);
1254     }
1255   }
1256   DDIV.clear();
1257 }
1258 
1259 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1260   Value *V = DDI.getDI()->getValue();
1261   DILocalVariable *Var = DDI.getDI()->getVariable();
1262   DIExpression *Expr = DDI.getDI()->getExpression();
1263   DebugLoc DL = DDI.getdl();
1264   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1265   unsigned SDOrder = DDI.getSDNodeOrder();
1266 
1267   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1268   // that DW_OP_stack_value is desired.
1269   assert(isa<DbgValueInst>(DDI.getDI()));
1270   bool StackValue = true;
1271 
1272   // Can this Value can be encoded without any further work?
1273   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1274     return;
1275 
1276   // Attempt to salvage back through as many instructions as possible. Bail if
1277   // a non-instruction is seen, such as a constant expression or global
1278   // variable. FIXME: Further work could recover those too.
1279   while (isa<Instruction>(V)) {
1280     Instruction &VAsInst = *cast<Instruction>(V);
1281     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1282 
1283     // If we cannot salvage any further, and haven't yet found a suitable debug
1284     // expression, bail out.
1285     if (!NewExpr)
1286       break;
1287 
1288     // New value and expr now represent this debuginfo.
1289     V = VAsInst.getOperand(0);
1290     Expr = NewExpr;
1291 
1292     // Some kind of simplification occurred: check whether the operand of the
1293     // salvaged debug expression can be encoded in this DAG.
1294     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1295       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1296                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1297       return;
1298     }
1299   }
1300 
1301   // This was the final opportunity to salvage this debug information, and it
1302   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1303   // any earlier variable location.
1304   auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1305   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1306   DAG.AddDbgValue(SDV, nullptr, false);
1307 
1308   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1309                     << "\n");
1310   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1311                     << "\n");
1312 }
1313 
1314 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1315                                            DIExpression *Expr, DebugLoc dl,
1316                                            DebugLoc InstDL, unsigned Order) {
1317   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1318   SDDbgValue *SDV;
1319   if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1320       isa<ConstantPointerNull>(V)) {
1321     SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1322     DAG.AddDbgValue(SDV, nullptr, false);
1323     return true;
1324   }
1325 
1326   // If the Value is a frame index, we can create a FrameIndex debug value
1327   // without relying on the DAG at all.
1328   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1329     auto SI = FuncInfo.StaticAllocaMap.find(AI);
1330     if (SI != FuncInfo.StaticAllocaMap.end()) {
1331       auto SDV =
1332           DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1333                                     /*IsIndirect*/ false, dl, SDNodeOrder);
1334       // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1335       // is still available even if the SDNode gets optimized out.
1336       DAG.AddDbgValue(SDV, nullptr, false);
1337       return true;
1338     }
1339   }
1340 
1341   // Do not use getValue() in here; we don't want to generate code at
1342   // this point if it hasn't been done yet.
1343   SDValue N = NodeMap[V];
1344   if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1345     N = UnusedArgNodeMap[V];
1346   if (N.getNode()) {
1347     if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1348       return true;
1349     SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1350     DAG.AddDbgValue(SDV, N.getNode(), false);
1351     return true;
1352   }
1353 
1354   // Special rules apply for the first dbg.values of parameter variables in a
1355   // function. Identify them by the fact they reference Argument Values, that
1356   // they're parameters, and they are parameters of the current function. We
1357   // need to let them dangle until they get an SDNode.
1358   bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1359                        !InstDL.getInlinedAt();
1360   if (!IsParamOfFunc) {
1361     // The value is not used in this block yet (or it would have an SDNode).
1362     // We still want the value to appear for the user if possible -- if it has
1363     // an associated VReg, we can refer to that instead.
1364     auto VMI = FuncInfo.ValueMap.find(V);
1365     if (VMI != FuncInfo.ValueMap.end()) {
1366       unsigned Reg = VMI->second;
1367       // If this is a PHI node, it may be split up into several MI PHI nodes
1368       // (in FunctionLoweringInfo::set).
1369       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1370                        V->getType(), None);
1371       if (RFV.occupiesMultipleRegs()) {
1372         unsigned Offset = 0;
1373         unsigned BitsToDescribe = 0;
1374         if (auto VarSize = Var->getSizeInBits())
1375           BitsToDescribe = *VarSize;
1376         if (auto Fragment = Expr->getFragmentInfo())
1377           BitsToDescribe = Fragment->SizeInBits;
1378         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1379           unsigned RegisterSize = RegAndSize.second;
1380           // Bail out if all bits are described already.
1381           if (Offset >= BitsToDescribe)
1382             break;
1383           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1384               ? BitsToDescribe - Offset
1385               : RegisterSize;
1386           auto FragmentExpr = DIExpression::createFragmentExpression(
1387               Expr, Offset, FragmentSize);
1388           if (!FragmentExpr)
1389               continue;
1390           SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1391                                     false, dl, SDNodeOrder);
1392           DAG.AddDbgValue(SDV, nullptr, false);
1393           Offset += RegisterSize;
1394         }
1395       } else {
1396         SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1397         DAG.AddDbgValue(SDV, nullptr, false);
1398       }
1399       return true;
1400     }
1401   }
1402 
1403   return false;
1404 }
1405 
1406 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1407   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1408   for (auto &Pair : DanglingDebugInfoMap)
1409     for (auto &DDI : Pair.second)
1410       salvageUnresolvedDbgValue(DDI);
1411   clearDanglingDebugInfo();
1412 }
1413 
1414 /// getCopyFromRegs - If there was virtual register allocated for the value V
1415 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1416 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1417   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1418   SDValue Result;
1419 
1420   if (It != FuncInfo.ValueMap.end()) {
1421     Register InReg = It->second;
1422 
1423     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1424                      DAG.getDataLayout(), InReg, Ty,
1425                      None); // This is not an ABI copy.
1426     SDValue Chain = DAG.getEntryNode();
1427     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1428                                  V);
1429     resolveDanglingDebugInfo(V, Result);
1430   }
1431 
1432   return Result;
1433 }
1434 
1435 /// getValue - Return an SDValue for the given Value.
1436 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1437   // If we already have an SDValue for this value, use it. It's important
1438   // to do this first, so that we don't create a CopyFromReg if we already
1439   // have a regular SDValue.
1440   SDValue &N = NodeMap[V];
1441   if (N.getNode()) return N;
1442 
1443   // If there's a virtual register allocated and initialized for this
1444   // value, use it.
1445   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1446     return copyFromReg;
1447 
1448   // Otherwise create a new SDValue and remember it.
1449   SDValue Val = getValueImpl(V);
1450   NodeMap[V] = Val;
1451   resolveDanglingDebugInfo(V, Val);
1452   return Val;
1453 }
1454 
1455 /// getNonRegisterValue - Return an SDValue for the given Value, but
1456 /// don't look in FuncInfo.ValueMap for a virtual register.
1457 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1458   // If we already have an SDValue for this value, use it.
1459   SDValue &N = NodeMap[V];
1460   if (N.getNode()) {
1461     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1462       // Remove the debug location from the node as the node is about to be used
1463       // in a location which may differ from the original debug location.  This
1464       // is relevant to Constant and ConstantFP nodes because they can appear
1465       // as constant expressions inside PHI nodes.
1466       N->setDebugLoc(DebugLoc());
1467     }
1468     return N;
1469   }
1470 
1471   // Otherwise create a new SDValue and remember it.
1472   SDValue Val = getValueImpl(V);
1473   NodeMap[V] = Val;
1474   resolveDanglingDebugInfo(V, Val);
1475   return Val;
1476 }
1477 
1478 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1479 /// Create an SDValue for the given value.
1480 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1481   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1482 
1483   if (const Constant *C = dyn_cast<Constant>(V)) {
1484     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1485 
1486     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1487       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1488 
1489     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1490       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1491 
1492     if (isa<ConstantPointerNull>(C)) {
1493       unsigned AS = V->getType()->getPointerAddressSpace();
1494       return DAG.getConstant(0, getCurSDLoc(),
1495                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1496     }
1497 
1498     if (match(C, m_VScale(DAG.getDataLayout())))
1499       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1500 
1501     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1502       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1503 
1504     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1505       return DAG.getUNDEF(VT);
1506 
1507     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1508       visit(CE->getOpcode(), *CE);
1509       SDValue N1 = NodeMap[V];
1510       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1511       return N1;
1512     }
1513 
1514     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1515       SmallVector<SDValue, 4> Constants;
1516       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1517            OI != OE; ++OI) {
1518         SDNode *Val = getValue(*OI).getNode();
1519         // If the operand is an empty aggregate, there are no values.
1520         if (!Val) continue;
1521         // Add each leaf value from the operand to the Constants list
1522         // to form a flattened list of all the values.
1523         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1524           Constants.push_back(SDValue(Val, i));
1525       }
1526 
1527       return DAG.getMergeValues(Constants, getCurSDLoc());
1528     }
1529 
1530     if (const ConstantDataSequential *CDS =
1531           dyn_cast<ConstantDataSequential>(C)) {
1532       SmallVector<SDValue, 4> Ops;
1533       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1534         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1535         // Add each leaf value from the operand to the Constants list
1536         // to form a flattened list of all the values.
1537         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1538           Ops.push_back(SDValue(Val, i));
1539       }
1540 
1541       if (isa<ArrayType>(CDS->getType()))
1542         return DAG.getMergeValues(Ops, getCurSDLoc());
1543       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1544     }
1545 
1546     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1547       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1548              "Unknown struct or array constant!");
1549 
1550       SmallVector<EVT, 4> ValueVTs;
1551       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1552       unsigned NumElts = ValueVTs.size();
1553       if (NumElts == 0)
1554         return SDValue(); // empty struct
1555       SmallVector<SDValue, 4> Constants(NumElts);
1556       for (unsigned i = 0; i != NumElts; ++i) {
1557         EVT EltVT = ValueVTs[i];
1558         if (isa<UndefValue>(C))
1559           Constants[i] = DAG.getUNDEF(EltVT);
1560         else if (EltVT.isFloatingPoint())
1561           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1562         else
1563           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1564       }
1565 
1566       return DAG.getMergeValues(Constants, getCurSDLoc());
1567     }
1568 
1569     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1570       return DAG.getBlockAddress(BA, VT);
1571 
1572     VectorType *VecTy = cast<VectorType>(V->getType());
1573 
1574     // Now that we know the number and type of the elements, get that number of
1575     // elements into the Ops array based on what kind of constant it is.
1576     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1577       SmallVector<SDValue, 16> Ops;
1578       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1579       for (unsigned i = 0; i != NumElements; ++i)
1580         Ops.push_back(getValue(CV->getOperand(i)));
1581 
1582       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1583     } else if (isa<ConstantAggregateZero>(C)) {
1584       EVT EltVT =
1585           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1586 
1587       SDValue Op;
1588       if (EltVT.isFloatingPoint())
1589         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1590       else
1591         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1592 
1593       if (isa<ScalableVectorType>(VecTy))
1594         return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op);
1595       else {
1596         SmallVector<SDValue, 16> Ops;
1597         Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op);
1598         return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1599       }
1600     }
1601     llvm_unreachable("Unknown vector constant");
1602   }
1603 
1604   // If this is a static alloca, generate it as the frameindex instead of
1605   // computation.
1606   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1607     DenseMap<const AllocaInst*, int>::iterator SI =
1608       FuncInfo.StaticAllocaMap.find(AI);
1609     if (SI != FuncInfo.StaticAllocaMap.end())
1610       return DAG.getFrameIndex(SI->second,
1611                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1612   }
1613 
1614   // If this is an instruction which fast-isel has deferred, select it now.
1615   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1616     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1617 
1618     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1619                      Inst->getType(), getABIRegCopyCC(V));
1620     SDValue Chain = DAG.getEntryNode();
1621     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1622   }
1623 
1624   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) {
1625     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1626   }
1627   llvm_unreachable("Can't get register for value!");
1628 }
1629 
1630 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1631   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1632   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1633   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1634   bool IsSEH = isAsynchronousEHPersonality(Pers);
1635   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1636   if (!IsSEH)
1637     CatchPadMBB->setIsEHScopeEntry();
1638   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1639   if (IsMSVCCXX || IsCoreCLR)
1640     CatchPadMBB->setIsEHFuncletEntry();
1641 }
1642 
1643 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1644   // Update machine-CFG edge.
1645   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1646   FuncInfo.MBB->addSuccessor(TargetMBB);
1647 
1648   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1649   bool IsSEH = isAsynchronousEHPersonality(Pers);
1650   if (IsSEH) {
1651     // If this is not a fall-through branch or optimizations are switched off,
1652     // emit the branch.
1653     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1654         TM.getOptLevel() == CodeGenOpt::None)
1655       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1656                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1657     return;
1658   }
1659 
1660   // Figure out the funclet membership for the catchret's successor.
1661   // This will be used by the FuncletLayout pass to determine how to order the
1662   // BB's.
1663   // A 'catchret' returns to the outer scope's color.
1664   Value *ParentPad = I.getCatchSwitchParentPad();
1665   const BasicBlock *SuccessorColor;
1666   if (isa<ConstantTokenNone>(ParentPad))
1667     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1668   else
1669     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1670   assert(SuccessorColor && "No parent funclet for catchret!");
1671   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1672   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1673 
1674   // Create the terminator node.
1675   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1676                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1677                             DAG.getBasicBlock(SuccessorColorMBB));
1678   DAG.setRoot(Ret);
1679 }
1680 
1681 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1682   // Don't emit any special code for the cleanuppad instruction. It just marks
1683   // the start of an EH scope/funclet.
1684   FuncInfo.MBB->setIsEHScopeEntry();
1685   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1686   if (Pers != EHPersonality::Wasm_CXX) {
1687     FuncInfo.MBB->setIsEHFuncletEntry();
1688     FuncInfo.MBB->setIsCleanupFuncletEntry();
1689   }
1690 }
1691 
1692 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1693 // the control flow always stops at the single catch pad, as it does for a
1694 // cleanup pad. In case the exception caught is not of the types the catch pad
1695 // catches, it will be rethrown by a rethrow.
1696 static void findWasmUnwindDestinations(
1697     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1698     BranchProbability Prob,
1699     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1700         &UnwindDests) {
1701   while (EHPadBB) {
1702     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1703     if (isa<CleanupPadInst>(Pad)) {
1704       // Stop on cleanup pads.
1705       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1706       UnwindDests.back().first->setIsEHScopeEntry();
1707       break;
1708     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1709       // Add the catchpad handlers to the possible destinations. We don't
1710       // continue to the unwind destination of the catchswitch for wasm.
1711       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1712         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1713         UnwindDests.back().first->setIsEHScopeEntry();
1714       }
1715       break;
1716     } else {
1717       continue;
1718     }
1719   }
1720 }
1721 
1722 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1723 /// many places it could ultimately go. In the IR, we have a single unwind
1724 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1725 /// This function skips over imaginary basic blocks that hold catchswitch
1726 /// instructions, and finds all the "real" machine
1727 /// basic block destinations. As those destinations may not be successors of
1728 /// EHPadBB, here we also calculate the edge probability to those destinations.
1729 /// The passed-in Prob is the edge probability to EHPadBB.
1730 static void findUnwindDestinations(
1731     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1732     BranchProbability Prob,
1733     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1734         &UnwindDests) {
1735   EHPersonality Personality =
1736     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1737   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1738   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1739   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1740   bool IsSEH = isAsynchronousEHPersonality(Personality);
1741 
1742   if (IsWasmCXX) {
1743     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1744     assert(UnwindDests.size() <= 1 &&
1745            "There should be at most one unwind destination for wasm");
1746     return;
1747   }
1748 
1749   while (EHPadBB) {
1750     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1751     BasicBlock *NewEHPadBB = nullptr;
1752     if (isa<LandingPadInst>(Pad)) {
1753       // Stop on landingpads. They are not funclets.
1754       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1755       break;
1756     } else if (isa<CleanupPadInst>(Pad)) {
1757       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1758       // personalities.
1759       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1760       UnwindDests.back().first->setIsEHScopeEntry();
1761       UnwindDests.back().first->setIsEHFuncletEntry();
1762       break;
1763     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1764       // Add the catchpad handlers to the possible destinations.
1765       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1766         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1767         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1768         if (IsMSVCCXX || IsCoreCLR)
1769           UnwindDests.back().first->setIsEHFuncletEntry();
1770         if (!IsSEH)
1771           UnwindDests.back().first->setIsEHScopeEntry();
1772       }
1773       NewEHPadBB = CatchSwitch->getUnwindDest();
1774     } else {
1775       continue;
1776     }
1777 
1778     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1779     if (BPI && NewEHPadBB)
1780       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1781     EHPadBB = NewEHPadBB;
1782   }
1783 }
1784 
1785 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1786   // Update successor info.
1787   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1788   auto UnwindDest = I.getUnwindDest();
1789   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1790   BranchProbability UnwindDestProb =
1791       (BPI && UnwindDest)
1792           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1793           : BranchProbability::getZero();
1794   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1795   for (auto &UnwindDest : UnwindDests) {
1796     UnwindDest.first->setIsEHPad();
1797     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1798   }
1799   FuncInfo.MBB->normalizeSuccProbs();
1800 
1801   // Create the terminator node.
1802   SDValue Ret =
1803       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1804   DAG.setRoot(Ret);
1805 }
1806 
1807 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1808   report_fatal_error("visitCatchSwitch not yet implemented!");
1809 }
1810 
1811 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1812   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1813   auto &DL = DAG.getDataLayout();
1814   SDValue Chain = getControlRoot();
1815   SmallVector<ISD::OutputArg, 8> Outs;
1816   SmallVector<SDValue, 8> OutVals;
1817 
1818   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1819   // lower
1820   //
1821   //   %val = call <ty> @llvm.experimental.deoptimize()
1822   //   ret <ty> %val
1823   //
1824   // differently.
1825   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1826     LowerDeoptimizingReturn();
1827     return;
1828   }
1829 
1830   if (!FuncInfo.CanLowerReturn) {
1831     unsigned DemoteReg = FuncInfo.DemoteRegister;
1832     const Function *F = I.getParent()->getParent();
1833 
1834     // Emit a store of the return value through the virtual register.
1835     // Leave Outs empty so that LowerReturn won't try to load return
1836     // registers the usual way.
1837     SmallVector<EVT, 1> PtrValueVTs;
1838     ComputeValueVTs(TLI, DL,
1839                     F->getReturnType()->getPointerTo(
1840                         DAG.getDataLayout().getAllocaAddrSpace()),
1841                     PtrValueVTs);
1842 
1843     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1844                                         DemoteReg, PtrValueVTs[0]);
1845     SDValue RetOp = getValue(I.getOperand(0));
1846 
1847     SmallVector<EVT, 4> ValueVTs, MemVTs;
1848     SmallVector<uint64_t, 4> Offsets;
1849     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1850                     &Offsets);
1851     unsigned NumValues = ValueVTs.size();
1852 
1853     SmallVector<SDValue, 4> Chains(NumValues);
1854     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1855     for (unsigned i = 0; i != NumValues; ++i) {
1856       // An aggregate return value cannot wrap around the address space, so
1857       // offsets to its parts don't wrap either.
1858       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1859 
1860       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1861       if (MemVTs[i] != ValueVTs[i])
1862         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1863       Chains[i] = DAG.getStore(
1864           Chain, getCurSDLoc(), Val,
1865           // FIXME: better loc info would be nice.
1866           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
1867           commonAlignment(BaseAlign, Offsets[i]));
1868     }
1869 
1870     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1871                         MVT::Other, Chains);
1872   } else if (I.getNumOperands() != 0) {
1873     SmallVector<EVT, 4> ValueVTs;
1874     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1875     unsigned NumValues = ValueVTs.size();
1876     if (NumValues) {
1877       SDValue RetOp = getValue(I.getOperand(0));
1878 
1879       const Function *F = I.getParent()->getParent();
1880 
1881       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1882           I.getOperand(0)->getType(), F->getCallingConv(),
1883           /*IsVarArg*/ false);
1884 
1885       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1886       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1887                                           Attribute::SExt))
1888         ExtendKind = ISD::SIGN_EXTEND;
1889       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1890                                                Attribute::ZExt))
1891         ExtendKind = ISD::ZERO_EXTEND;
1892 
1893       LLVMContext &Context = F->getContext();
1894       bool RetInReg = F->getAttributes().hasAttribute(
1895           AttributeList::ReturnIndex, Attribute::InReg);
1896 
1897       for (unsigned j = 0; j != NumValues; ++j) {
1898         EVT VT = ValueVTs[j];
1899 
1900         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1901           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1902 
1903         CallingConv::ID CC = F->getCallingConv();
1904 
1905         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1906         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1907         SmallVector<SDValue, 4> Parts(NumParts);
1908         getCopyToParts(DAG, getCurSDLoc(),
1909                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1910                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1911 
1912         // 'inreg' on function refers to return value
1913         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1914         if (RetInReg)
1915           Flags.setInReg();
1916 
1917         if (I.getOperand(0)->getType()->isPointerTy()) {
1918           Flags.setPointer();
1919           Flags.setPointerAddrSpace(
1920               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1921         }
1922 
1923         if (NeedsRegBlock) {
1924           Flags.setInConsecutiveRegs();
1925           if (j == NumValues - 1)
1926             Flags.setInConsecutiveRegsLast();
1927         }
1928 
1929         // Propagate extension type if any
1930         if (ExtendKind == ISD::SIGN_EXTEND)
1931           Flags.setSExt();
1932         else if (ExtendKind == ISD::ZERO_EXTEND)
1933           Flags.setZExt();
1934 
1935         for (unsigned i = 0; i < NumParts; ++i) {
1936           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1937                                         VT, /*isfixed=*/true, 0, 0));
1938           OutVals.push_back(Parts[i]);
1939         }
1940       }
1941     }
1942   }
1943 
1944   // Push in swifterror virtual register as the last element of Outs. This makes
1945   // sure swifterror virtual register will be returned in the swifterror
1946   // physical register.
1947   const Function *F = I.getParent()->getParent();
1948   if (TLI.supportSwiftError() &&
1949       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1950     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
1951     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1952     Flags.setSwiftError();
1953     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1954                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1955                                   true /*isfixed*/, 1 /*origidx*/,
1956                                   0 /*partOffs*/));
1957     // Create SDNode for the swifterror virtual register.
1958     OutVals.push_back(
1959         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
1960                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
1961                         EVT(TLI.getPointerTy(DL))));
1962   }
1963 
1964   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1965   CallingConv::ID CallConv =
1966     DAG.getMachineFunction().getFunction().getCallingConv();
1967   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1968       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1969 
1970   // Verify that the target's LowerReturn behaved as expected.
1971   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1972          "LowerReturn didn't return a valid chain!");
1973 
1974   // Update the DAG with the new chain value resulting from return lowering.
1975   DAG.setRoot(Chain);
1976 }
1977 
1978 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1979 /// created for it, emit nodes to copy the value into the virtual
1980 /// registers.
1981 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1982   // Skip empty types
1983   if (V->getType()->isEmptyTy())
1984     return;
1985 
1986   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
1987   if (VMI != FuncInfo.ValueMap.end()) {
1988     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1989     CopyValueToVirtualRegister(V, VMI->second);
1990   }
1991 }
1992 
1993 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1994 /// the current basic block, add it to ValueMap now so that we'll get a
1995 /// CopyTo/FromReg.
1996 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1997   // No need to export constants.
1998   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1999 
2000   // Already exported?
2001   if (FuncInfo.isExportedInst(V)) return;
2002 
2003   unsigned Reg = FuncInfo.InitializeRegForValue(V);
2004   CopyValueToVirtualRegister(V, Reg);
2005 }
2006 
2007 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2008                                                      const BasicBlock *FromBB) {
2009   // The operands of the setcc have to be in this block.  We don't know
2010   // how to export them from some other block.
2011   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2012     // Can export from current BB.
2013     if (VI->getParent() == FromBB)
2014       return true;
2015 
2016     // Is already exported, noop.
2017     return FuncInfo.isExportedInst(V);
2018   }
2019 
2020   // If this is an argument, we can export it if the BB is the entry block or
2021   // if it is already exported.
2022   if (isa<Argument>(V)) {
2023     if (FromBB == &FromBB->getParent()->getEntryBlock())
2024       return true;
2025 
2026     // Otherwise, can only export this if it is already exported.
2027     return FuncInfo.isExportedInst(V);
2028   }
2029 
2030   // Otherwise, constants can always be exported.
2031   return true;
2032 }
2033 
2034 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2035 BranchProbability
2036 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2037                                         const MachineBasicBlock *Dst) const {
2038   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2039   const BasicBlock *SrcBB = Src->getBasicBlock();
2040   const BasicBlock *DstBB = Dst->getBasicBlock();
2041   if (!BPI) {
2042     // If BPI is not available, set the default probability as 1 / N, where N is
2043     // the number of successors.
2044     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2045     return BranchProbability(1, SuccSize);
2046   }
2047   return BPI->getEdgeProbability(SrcBB, DstBB);
2048 }
2049 
2050 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2051                                                MachineBasicBlock *Dst,
2052                                                BranchProbability Prob) {
2053   if (!FuncInfo.BPI)
2054     Src->addSuccessorWithoutProb(Dst);
2055   else {
2056     if (Prob.isUnknown())
2057       Prob = getEdgeProbability(Src, Dst);
2058     Src->addSuccessor(Dst, Prob);
2059   }
2060 }
2061 
2062 static bool InBlock(const Value *V, const BasicBlock *BB) {
2063   if (const Instruction *I = dyn_cast<Instruction>(V))
2064     return I->getParent() == BB;
2065   return true;
2066 }
2067 
2068 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2069 /// This function emits a branch and is used at the leaves of an OR or an
2070 /// AND operator tree.
2071 void
2072 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2073                                                   MachineBasicBlock *TBB,
2074                                                   MachineBasicBlock *FBB,
2075                                                   MachineBasicBlock *CurBB,
2076                                                   MachineBasicBlock *SwitchBB,
2077                                                   BranchProbability TProb,
2078                                                   BranchProbability FProb,
2079                                                   bool InvertCond) {
2080   const BasicBlock *BB = CurBB->getBasicBlock();
2081 
2082   // If the leaf of the tree is a comparison, merge the condition into
2083   // the caseblock.
2084   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2085     // The operands of the cmp have to be in this block.  We don't know
2086     // how to export them from some other block.  If this is the first block
2087     // of the sequence, no exporting is needed.
2088     if (CurBB == SwitchBB ||
2089         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2090          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2091       ISD::CondCode Condition;
2092       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2093         ICmpInst::Predicate Pred =
2094             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2095         Condition = getICmpCondCode(Pred);
2096       } else {
2097         const FCmpInst *FC = cast<FCmpInst>(Cond);
2098         FCmpInst::Predicate Pred =
2099             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2100         Condition = getFCmpCondCode(Pred);
2101         if (TM.Options.NoNaNsFPMath)
2102           Condition = getFCmpCodeWithoutNaN(Condition);
2103       }
2104 
2105       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2106                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2107       SL->SwitchCases.push_back(CB);
2108       return;
2109     }
2110   }
2111 
2112   // Create a CaseBlock record representing this branch.
2113   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2114   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2115                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2116   SL->SwitchCases.push_back(CB);
2117 }
2118 
2119 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2120                                                MachineBasicBlock *TBB,
2121                                                MachineBasicBlock *FBB,
2122                                                MachineBasicBlock *CurBB,
2123                                                MachineBasicBlock *SwitchBB,
2124                                                Instruction::BinaryOps Opc,
2125                                                BranchProbability TProb,
2126                                                BranchProbability FProb,
2127                                                bool InvertCond) {
2128   // Skip over not part of the tree and remember to invert op and operands at
2129   // next level.
2130   Value *NotCond;
2131   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2132       InBlock(NotCond, CurBB->getBasicBlock())) {
2133     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2134                          !InvertCond);
2135     return;
2136   }
2137 
2138   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2139   // Compute the effective opcode for Cond, taking into account whether it needs
2140   // to be inverted, e.g.
2141   //   and (not (or A, B)), C
2142   // gets lowered as
2143   //   and (and (not A, not B), C)
2144   unsigned BOpc = 0;
2145   if (BOp) {
2146     BOpc = BOp->getOpcode();
2147     if (InvertCond) {
2148       if (BOpc == Instruction::And)
2149         BOpc = Instruction::Or;
2150       else if (BOpc == Instruction::Or)
2151         BOpc = Instruction::And;
2152     }
2153   }
2154 
2155   // If this node is not part of the or/and tree, emit it as a branch.
2156   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2157       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2158       BOp->getParent() != CurBB->getBasicBlock() ||
2159       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2160       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2161     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2162                                  TProb, FProb, InvertCond);
2163     return;
2164   }
2165 
2166   //  Create TmpBB after CurBB.
2167   MachineFunction::iterator BBI(CurBB);
2168   MachineFunction &MF = DAG.getMachineFunction();
2169   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2170   CurBB->getParent()->insert(++BBI, TmpBB);
2171 
2172   if (Opc == Instruction::Or) {
2173     // Codegen X | Y as:
2174     // BB1:
2175     //   jmp_if_X TBB
2176     //   jmp TmpBB
2177     // TmpBB:
2178     //   jmp_if_Y TBB
2179     //   jmp FBB
2180     //
2181 
2182     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2183     // The requirement is that
2184     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2185     //     = TrueProb for original BB.
2186     // Assuming the original probabilities are A and B, one choice is to set
2187     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2188     // A/(1+B) and 2B/(1+B). This choice assumes that
2189     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2190     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2191     // TmpBB, but the math is more complicated.
2192 
2193     auto NewTrueProb = TProb / 2;
2194     auto NewFalseProb = TProb / 2 + FProb;
2195     // Emit the LHS condition.
2196     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2197                          NewTrueProb, NewFalseProb, InvertCond);
2198 
2199     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2200     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2201     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2202     // Emit the RHS condition into TmpBB.
2203     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2204                          Probs[0], Probs[1], InvertCond);
2205   } else {
2206     assert(Opc == Instruction::And && "Unknown merge op!");
2207     // Codegen X & Y as:
2208     // BB1:
2209     //   jmp_if_X TmpBB
2210     //   jmp FBB
2211     // TmpBB:
2212     //   jmp_if_Y TBB
2213     //   jmp FBB
2214     //
2215     //  This requires creation of TmpBB after CurBB.
2216 
2217     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2218     // The requirement is that
2219     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2220     //     = FalseProb for original BB.
2221     // Assuming the original probabilities are A and B, one choice is to set
2222     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2223     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2224     // TrueProb for BB1 * FalseProb for TmpBB.
2225 
2226     auto NewTrueProb = TProb + FProb / 2;
2227     auto NewFalseProb = FProb / 2;
2228     // Emit the LHS condition.
2229     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2230                          NewTrueProb, NewFalseProb, InvertCond);
2231 
2232     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2233     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2234     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2235     // Emit the RHS condition into TmpBB.
2236     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2237                          Probs[0], Probs[1], InvertCond);
2238   }
2239 }
2240 
2241 /// If the set of cases should be emitted as a series of branches, return true.
2242 /// If we should emit this as a bunch of and/or'd together conditions, return
2243 /// false.
2244 bool
2245 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2246   if (Cases.size() != 2) return true;
2247 
2248   // If this is two comparisons of the same values or'd or and'd together, they
2249   // will get folded into a single comparison, so don't emit two blocks.
2250   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2251        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2252       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2253        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2254     return false;
2255   }
2256 
2257   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2258   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2259   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2260       Cases[0].CC == Cases[1].CC &&
2261       isa<Constant>(Cases[0].CmpRHS) &&
2262       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2263     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2264       return false;
2265     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2266       return false;
2267   }
2268 
2269   return true;
2270 }
2271 
2272 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2273   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2274 
2275   // Update machine-CFG edges.
2276   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2277 
2278   if (I.isUnconditional()) {
2279     // Update machine-CFG edges.
2280     BrMBB->addSuccessor(Succ0MBB);
2281 
2282     // If this is not a fall-through branch or optimizations are switched off,
2283     // emit the branch.
2284     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2285       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2286                               MVT::Other, getControlRoot(),
2287                               DAG.getBasicBlock(Succ0MBB)));
2288 
2289     return;
2290   }
2291 
2292   // If this condition is one of the special cases we handle, do special stuff
2293   // now.
2294   const Value *CondVal = I.getCondition();
2295   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2296 
2297   // If this is a series of conditions that are or'd or and'd together, emit
2298   // this as a sequence of branches instead of setcc's with and/or operations.
2299   // As long as jumps are not expensive, this should improve performance.
2300   // For example, instead of something like:
2301   //     cmp A, B
2302   //     C = seteq
2303   //     cmp D, E
2304   //     F = setle
2305   //     or C, F
2306   //     jnz foo
2307   // Emit:
2308   //     cmp A, B
2309   //     je foo
2310   //     cmp D, E
2311   //     jle foo
2312   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2313     Instruction::BinaryOps Opcode = BOp->getOpcode();
2314     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2315         !I.hasMetadata(LLVMContext::MD_unpredictable) &&
2316         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2317       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2318                            Opcode,
2319                            getEdgeProbability(BrMBB, Succ0MBB),
2320                            getEdgeProbability(BrMBB, Succ1MBB),
2321                            /*InvertCond=*/false);
2322       // If the compares in later blocks need to use values not currently
2323       // exported from this block, export them now.  This block should always
2324       // be the first entry.
2325       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2326 
2327       // Allow some cases to be rejected.
2328       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2329         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2330           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2331           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2332         }
2333 
2334         // Emit the branch for this block.
2335         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2336         SL->SwitchCases.erase(SL->SwitchCases.begin());
2337         return;
2338       }
2339 
2340       // Okay, we decided not to do this, remove any inserted MBB's and clear
2341       // SwitchCases.
2342       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2343         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2344 
2345       SL->SwitchCases.clear();
2346     }
2347   }
2348 
2349   // Create a CaseBlock record representing this branch.
2350   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2351                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2352 
2353   // Use visitSwitchCase to actually insert the fast branch sequence for this
2354   // cond branch.
2355   visitSwitchCase(CB, BrMBB);
2356 }
2357 
2358 /// visitSwitchCase - Emits the necessary code to represent a single node in
2359 /// the binary search tree resulting from lowering a switch instruction.
2360 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2361                                           MachineBasicBlock *SwitchBB) {
2362   SDValue Cond;
2363   SDValue CondLHS = getValue(CB.CmpLHS);
2364   SDLoc dl = CB.DL;
2365 
2366   if (CB.CC == ISD::SETTRUE) {
2367     // Branch or fall through to TrueBB.
2368     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2369     SwitchBB->normalizeSuccProbs();
2370     if (CB.TrueBB != NextBlock(SwitchBB)) {
2371       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2372                               DAG.getBasicBlock(CB.TrueBB)));
2373     }
2374     return;
2375   }
2376 
2377   auto &TLI = DAG.getTargetLoweringInfo();
2378   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2379 
2380   // Build the setcc now.
2381   if (!CB.CmpMHS) {
2382     // Fold "(X == true)" to X and "(X == false)" to !X to
2383     // handle common cases produced by branch lowering.
2384     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2385         CB.CC == ISD::SETEQ)
2386       Cond = CondLHS;
2387     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2388              CB.CC == ISD::SETEQ) {
2389       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2390       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2391     } else {
2392       SDValue CondRHS = getValue(CB.CmpRHS);
2393 
2394       // If a pointer's DAG type is larger than its memory type then the DAG
2395       // values are zero-extended. This breaks signed comparisons so truncate
2396       // back to the underlying type before doing the compare.
2397       if (CondLHS.getValueType() != MemVT) {
2398         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2399         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2400       }
2401       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2402     }
2403   } else {
2404     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2405 
2406     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2407     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2408 
2409     SDValue CmpOp = getValue(CB.CmpMHS);
2410     EVT VT = CmpOp.getValueType();
2411 
2412     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2413       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2414                           ISD::SETLE);
2415     } else {
2416       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2417                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2418       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2419                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2420     }
2421   }
2422 
2423   // Update successor info
2424   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2425   // TrueBB and FalseBB are always different unless the incoming IR is
2426   // degenerate. This only happens when running llc on weird IR.
2427   if (CB.TrueBB != CB.FalseBB)
2428     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2429   SwitchBB->normalizeSuccProbs();
2430 
2431   // If the lhs block is the next block, invert the condition so that we can
2432   // fall through to the lhs instead of the rhs block.
2433   if (CB.TrueBB == NextBlock(SwitchBB)) {
2434     std::swap(CB.TrueBB, CB.FalseBB);
2435     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2436     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2437   }
2438 
2439   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2440                                MVT::Other, getControlRoot(), Cond,
2441                                DAG.getBasicBlock(CB.TrueBB));
2442 
2443   // Insert the false branch. Do this even if it's a fall through branch,
2444   // this makes it easier to do DAG optimizations which require inverting
2445   // the branch condition.
2446   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2447                        DAG.getBasicBlock(CB.FalseBB));
2448 
2449   DAG.setRoot(BrCond);
2450 }
2451 
2452 /// visitJumpTable - Emit JumpTable node in the current MBB
2453 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2454   // Emit the code for the jump table
2455   assert(JT.Reg != -1U && "Should lower JT Header first!");
2456   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2457   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2458                                      JT.Reg, PTy);
2459   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2460   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2461                                     MVT::Other, Index.getValue(1),
2462                                     Table, Index);
2463   DAG.setRoot(BrJumpTable);
2464 }
2465 
2466 /// visitJumpTableHeader - This function emits necessary code to produce index
2467 /// in the JumpTable from switch case.
2468 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2469                                                JumpTableHeader &JTH,
2470                                                MachineBasicBlock *SwitchBB) {
2471   SDLoc dl = getCurSDLoc();
2472 
2473   // Subtract the lowest switch case value from the value being switched on.
2474   SDValue SwitchOp = getValue(JTH.SValue);
2475   EVT VT = SwitchOp.getValueType();
2476   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2477                             DAG.getConstant(JTH.First, dl, VT));
2478 
2479   // The SDNode we just created, which holds the value being switched on minus
2480   // the smallest case value, needs to be copied to a virtual register so it
2481   // can be used as an index into the jump table in a subsequent basic block.
2482   // This value may be smaller or larger than the target's pointer type, and
2483   // therefore require extension or truncating.
2484   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2485   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2486 
2487   unsigned JumpTableReg =
2488       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2489   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2490                                     JumpTableReg, SwitchOp);
2491   JT.Reg = JumpTableReg;
2492 
2493   if (!JTH.OmitRangeCheck) {
2494     // Emit the range check for the jump table, and branch to the default block
2495     // for the switch statement if the value being switched on exceeds the
2496     // largest case in the switch.
2497     SDValue CMP = DAG.getSetCC(
2498         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2499                                    Sub.getValueType()),
2500         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2501 
2502     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2503                                  MVT::Other, CopyTo, CMP,
2504                                  DAG.getBasicBlock(JT.Default));
2505 
2506     // Avoid emitting unnecessary branches to the next block.
2507     if (JT.MBB != NextBlock(SwitchBB))
2508       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2509                            DAG.getBasicBlock(JT.MBB));
2510 
2511     DAG.setRoot(BrCond);
2512   } else {
2513     // Avoid emitting unnecessary branches to the next block.
2514     if (JT.MBB != NextBlock(SwitchBB))
2515       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2516                               DAG.getBasicBlock(JT.MBB)));
2517     else
2518       DAG.setRoot(CopyTo);
2519   }
2520 }
2521 
2522 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2523 /// variable if there exists one.
2524 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2525                                  SDValue &Chain) {
2526   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2527   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2528   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2529   MachineFunction &MF = DAG.getMachineFunction();
2530   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2531   MachineSDNode *Node =
2532       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2533   if (Global) {
2534     MachinePointerInfo MPInfo(Global);
2535     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2536                  MachineMemOperand::MODereferenceable;
2537     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2538         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2539     DAG.setNodeMemRefs(Node, {MemRef});
2540   }
2541   if (PtrTy != PtrMemTy)
2542     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2543   return SDValue(Node, 0);
2544 }
2545 
2546 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2547 /// tail spliced into a stack protector check success bb.
2548 ///
2549 /// For a high level explanation of how this fits into the stack protector
2550 /// generation see the comment on the declaration of class
2551 /// StackProtectorDescriptor.
2552 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2553                                                   MachineBasicBlock *ParentBB) {
2554 
2555   // First create the loads to the guard/stack slot for the comparison.
2556   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2557   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2558   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2559 
2560   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2561   int FI = MFI.getStackProtectorIndex();
2562 
2563   SDValue Guard;
2564   SDLoc dl = getCurSDLoc();
2565   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2566   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2567   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2568 
2569   // Generate code to load the content of the guard slot.
2570   SDValue GuardVal = DAG.getLoad(
2571       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2572       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2573       MachineMemOperand::MOVolatile);
2574 
2575   if (TLI.useStackGuardXorFP())
2576     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2577 
2578   // Retrieve guard check function, nullptr if instrumentation is inlined.
2579   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2580     // The target provides a guard check function to validate the guard value.
2581     // Generate a call to that function with the content of the guard slot as
2582     // argument.
2583     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2584     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2585 
2586     TargetLowering::ArgListTy Args;
2587     TargetLowering::ArgListEntry Entry;
2588     Entry.Node = GuardVal;
2589     Entry.Ty = FnTy->getParamType(0);
2590     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2591       Entry.IsInReg = true;
2592     Args.push_back(Entry);
2593 
2594     TargetLowering::CallLoweringInfo CLI(DAG);
2595     CLI.setDebugLoc(getCurSDLoc())
2596         .setChain(DAG.getEntryNode())
2597         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2598                    getValue(GuardCheckFn), std::move(Args));
2599 
2600     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2601     DAG.setRoot(Result.second);
2602     return;
2603   }
2604 
2605   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2606   // Otherwise, emit a volatile load to retrieve the stack guard value.
2607   SDValue Chain = DAG.getEntryNode();
2608   if (TLI.useLoadStackGuardNode()) {
2609     Guard = getLoadStackGuard(DAG, dl, Chain);
2610   } else {
2611     const Value *IRGuard = TLI.getSDagStackGuard(M);
2612     SDValue GuardPtr = getValue(IRGuard);
2613 
2614     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2615                         MachinePointerInfo(IRGuard, 0), Align,
2616                         MachineMemOperand::MOVolatile);
2617   }
2618 
2619   // Perform the comparison via a getsetcc.
2620   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2621                                                         *DAG.getContext(),
2622                                                         Guard.getValueType()),
2623                              Guard, GuardVal, ISD::SETNE);
2624 
2625   // If the guard/stackslot do not equal, branch to failure MBB.
2626   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2627                                MVT::Other, GuardVal.getOperand(0),
2628                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2629   // Otherwise branch to success MBB.
2630   SDValue Br = DAG.getNode(ISD::BR, dl,
2631                            MVT::Other, BrCond,
2632                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2633 
2634   DAG.setRoot(Br);
2635 }
2636 
2637 /// Codegen the failure basic block for a stack protector check.
2638 ///
2639 /// A failure stack protector machine basic block consists simply of a call to
2640 /// __stack_chk_fail().
2641 ///
2642 /// For a high level explanation of how this fits into the stack protector
2643 /// generation see the comment on the declaration of class
2644 /// StackProtectorDescriptor.
2645 void
2646 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2647   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2648   TargetLowering::MakeLibCallOptions CallOptions;
2649   CallOptions.setDiscardResult(true);
2650   SDValue Chain =
2651       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2652                       None, CallOptions, getCurSDLoc()).second;
2653   // On PS4, the "return address" must still be within the calling function,
2654   // even if it's at the very end, so emit an explicit TRAP here.
2655   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2656   if (TM.getTargetTriple().isPS4CPU())
2657     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2658 
2659   DAG.setRoot(Chain);
2660 }
2661 
2662 /// visitBitTestHeader - This function emits necessary code to produce value
2663 /// suitable for "bit tests"
2664 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2665                                              MachineBasicBlock *SwitchBB) {
2666   SDLoc dl = getCurSDLoc();
2667 
2668   // Subtract the minimum value.
2669   SDValue SwitchOp = getValue(B.SValue);
2670   EVT VT = SwitchOp.getValueType();
2671   SDValue RangeSub =
2672       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2673 
2674   // Determine the type of the test operands.
2675   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2676   bool UsePtrType = false;
2677   if (!TLI.isTypeLegal(VT)) {
2678     UsePtrType = true;
2679   } else {
2680     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2681       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2682         // Switch table case range are encoded into series of masks.
2683         // Just use pointer type, it's guaranteed to fit.
2684         UsePtrType = true;
2685         break;
2686       }
2687   }
2688   SDValue Sub = RangeSub;
2689   if (UsePtrType) {
2690     VT = TLI.getPointerTy(DAG.getDataLayout());
2691     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2692   }
2693 
2694   B.RegVT = VT.getSimpleVT();
2695   B.Reg = FuncInfo.CreateReg(B.RegVT);
2696   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2697 
2698   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2699 
2700   if (!B.OmitRangeCheck)
2701     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2702   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2703   SwitchBB->normalizeSuccProbs();
2704 
2705   SDValue Root = CopyTo;
2706   if (!B.OmitRangeCheck) {
2707     // Conditional branch to the default block.
2708     SDValue RangeCmp = DAG.getSetCC(dl,
2709         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2710                                RangeSub.getValueType()),
2711         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2712         ISD::SETUGT);
2713 
2714     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2715                        DAG.getBasicBlock(B.Default));
2716   }
2717 
2718   // Avoid emitting unnecessary branches to the next block.
2719   if (MBB != NextBlock(SwitchBB))
2720     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2721 
2722   DAG.setRoot(Root);
2723 }
2724 
2725 /// visitBitTestCase - this function produces one "bit test"
2726 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2727                                            MachineBasicBlock* NextMBB,
2728                                            BranchProbability BranchProbToNext,
2729                                            unsigned Reg,
2730                                            BitTestCase &B,
2731                                            MachineBasicBlock *SwitchBB) {
2732   SDLoc dl = getCurSDLoc();
2733   MVT VT = BB.RegVT;
2734   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2735   SDValue Cmp;
2736   unsigned PopCount = countPopulation(B.Mask);
2737   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2738   if (PopCount == 1) {
2739     // Testing for a single bit; just compare the shift count with what it
2740     // would need to be to shift a 1 bit in that position.
2741     Cmp = DAG.getSetCC(
2742         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2743         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2744         ISD::SETEQ);
2745   } else if (PopCount == BB.Range) {
2746     // There is only one zero bit in the range, test for it directly.
2747     Cmp = DAG.getSetCC(
2748         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2749         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2750         ISD::SETNE);
2751   } else {
2752     // Make desired shift
2753     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2754                                     DAG.getConstant(1, dl, VT), ShiftOp);
2755 
2756     // Emit bit tests and jumps
2757     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2758                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2759     Cmp = DAG.getSetCC(
2760         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2761         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2762   }
2763 
2764   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2765   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2766   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2767   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2768   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2769   // one as they are relative probabilities (and thus work more like weights),
2770   // and hence we need to normalize them to let the sum of them become one.
2771   SwitchBB->normalizeSuccProbs();
2772 
2773   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2774                               MVT::Other, getControlRoot(),
2775                               Cmp, DAG.getBasicBlock(B.TargetBB));
2776 
2777   // Avoid emitting unnecessary branches to the next block.
2778   if (NextMBB != NextBlock(SwitchBB))
2779     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2780                         DAG.getBasicBlock(NextMBB));
2781 
2782   DAG.setRoot(BrAnd);
2783 }
2784 
2785 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2786   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2787 
2788   // Retrieve successors. Look through artificial IR level blocks like
2789   // catchswitch for successors.
2790   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2791   const BasicBlock *EHPadBB = I.getSuccessor(1);
2792 
2793   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2794   // have to do anything here to lower funclet bundles.
2795   assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt,
2796                                         LLVMContext::OB_gc_transition,
2797                                         LLVMContext::OB_gc_live,
2798                                         LLVMContext::OB_funclet,
2799                                         LLVMContext::OB_cfguardtarget}) &&
2800          "Cannot lower invokes with arbitrary operand bundles yet!");
2801 
2802   const Value *Callee(I.getCalledOperand());
2803   const Function *Fn = dyn_cast<Function>(Callee);
2804   if (isa<InlineAsm>(Callee))
2805     visitInlineAsm(I);
2806   else if (Fn && Fn->isIntrinsic()) {
2807     switch (Fn->getIntrinsicID()) {
2808     default:
2809       llvm_unreachable("Cannot invoke this intrinsic");
2810     case Intrinsic::donothing:
2811       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2812       break;
2813     case Intrinsic::experimental_patchpoint_void:
2814     case Intrinsic::experimental_patchpoint_i64:
2815       visitPatchpoint(I, EHPadBB);
2816       break;
2817     case Intrinsic::experimental_gc_statepoint:
2818       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2819       break;
2820     case Intrinsic::wasm_rethrow_in_catch: {
2821       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2822       // special because it can be invoked, so we manually lower it to a DAG
2823       // node here.
2824       SmallVector<SDValue, 8> Ops;
2825       Ops.push_back(getRoot()); // inchain
2826       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2827       Ops.push_back(
2828           DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(),
2829                                 TLI.getPointerTy(DAG.getDataLayout())));
2830       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2831       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2832       break;
2833     }
2834     }
2835   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2836     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2837     // Eventually we will support lowering the @llvm.experimental.deoptimize
2838     // intrinsic, and right now there are no plans to support other intrinsics
2839     // with deopt state.
2840     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2841   } else {
2842     LowerCallTo(I, getValue(Callee), false, EHPadBB);
2843   }
2844 
2845   // If the value of the invoke is used outside of its defining block, make it
2846   // available as a virtual register.
2847   // We already took care of the exported value for the statepoint instruction
2848   // during call to the LowerStatepoint.
2849   if (!isa<GCStatepointInst>(I)) {
2850     CopyToExportRegsIfNeeded(&I);
2851   }
2852 
2853   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2854   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2855   BranchProbability EHPadBBProb =
2856       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2857           : BranchProbability::getZero();
2858   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2859 
2860   // Update successor info.
2861   addSuccessorWithProb(InvokeMBB, Return);
2862   for (auto &UnwindDest : UnwindDests) {
2863     UnwindDest.first->setIsEHPad();
2864     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2865   }
2866   InvokeMBB->normalizeSuccProbs();
2867 
2868   // Drop into normal successor.
2869   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2870                           DAG.getBasicBlock(Return)));
2871 }
2872 
2873 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2874   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2875 
2876   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2877   // have to do anything here to lower funclet bundles.
2878   assert(!I.hasOperandBundlesOtherThan(
2879              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2880          "Cannot lower callbrs with arbitrary operand bundles yet!");
2881 
2882   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
2883   visitInlineAsm(I);
2884   CopyToExportRegsIfNeeded(&I);
2885 
2886   // Retrieve successors.
2887   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2888   Return->setInlineAsmBrDefaultTarget();
2889 
2890   // Update successor info.
2891   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
2892   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2893     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2894     addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
2895     CallBrMBB->addInlineAsmBrIndirectTarget(Target);
2896   }
2897   CallBrMBB->normalizeSuccProbs();
2898 
2899   // Drop into default successor.
2900   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2901                           MVT::Other, getControlRoot(),
2902                           DAG.getBasicBlock(Return)));
2903 }
2904 
2905 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2906   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2907 }
2908 
2909 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2910   assert(FuncInfo.MBB->isEHPad() &&
2911          "Call to landingpad not in landing pad!");
2912 
2913   // If there aren't registers to copy the values into (e.g., during SjLj
2914   // exceptions), then don't bother to create these DAG nodes.
2915   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2916   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2917   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2918       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2919     return;
2920 
2921   // If landingpad's return type is token type, we don't create DAG nodes
2922   // for its exception pointer and selector value. The extraction of exception
2923   // pointer or selector value from token type landingpads is not currently
2924   // supported.
2925   if (LP.getType()->isTokenTy())
2926     return;
2927 
2928   SmallVector<EVT, 2> ValueVTs;
2929   SDLoc dl = getCurSDLoc();
2930   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2931   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2932 
2933   // Get the two live-in registers as SDValues. The physregs have already been
2934   // copied into virtual registers.
2935   SDValue Ops[2];
2936   if (FuncInfo.ExceptionPointerVirtReg) {
2937     Ops[0] = DAG.getZExtOrTrunc(
2938         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2939                            FuncInfo.ExceptionPointerVirtReg,
2940                            TLI.getPointerTy(DAG.getDataLayout())),
2941         dl, ValueVTs[0]);
2942   } else {
2943     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2944   }
2945   Ops[1] = DAG.getZExtOrTrunc(
2946       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2947                          FuncInfo.ExceptionSelectorVirtReg,
2948                          TLI.getPointerTy(DAG.getDataLayout())),
2949       dl, ValueVTs[1]);
2950 
2951   // Merge into one.
2952   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2953                             DAG.getVTList(ValueVTs), Ops);
2954   setValue(&LP, Res);
2955 }
2956 
2957 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2958                                            MachineBasicBlock *Last) {
2959   // Update JTCases.
2960   for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
2961     if (SL->JTCases[i].first.HeaderBB == First)
2962       SL->JTCases[i].first.HeaderBB = Last;
2963 
2964   // Update BitTestCases.
2965   for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
2966     if (SL->BitTestCases[i].Parent == First)
2967       SL->BitTestCases[i].Parent = Last;
2968 
2969   // SelectionDAGISel::FinishBasicBlock will add PHI operands for the
2970   // successors of the fallthrough block. Here, we add PHI operands for the
2971   // successors of the INLINEASM_BR block itself.
2972   if (First->getFirstTerminator()->getOpcode() == TargetOpcode::INLINEASM_BR)
2973     for (std::pair<MachineInstr *, unsigned> &pair : FuncInfo.PHINodesToUpdate)
2974       if (First->isSuccessor(pair.first->getParent()))
2975         MachineInstrBuilder(*First->getParent(), pair.first)
2976             .addReg(pair.second)
2977             .addMBB(First);
2978 }
2979 
2980 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2981   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2982 
2983   // Update machine-CFG edges with unique successors.
2984   SmallSet<BasicBlock*, 32> Done;
2985   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2986     BasicBlock *BB = I.getSuccessor(i);
2987     bool Inserted = Done.insert(BB).second;
2988     if (!Inserted)
2989         continue;
2990 
2991     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2992     addSuccessorWithProb(IndirectBrMBB, Succ);
2993   }
2994   IndirectBrMBB->normalizeSuccProbs();
2995 
2996   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2997                           MVT::Other, getControlRoot(),
2998                           getValue(I.getAddress())));
2999 }
3000 
3001 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3002   if (!DAG.getTarget().Options.TrapUnreachable)
3003     return;
3004 
3005   // We may be able to ignore unreachable behind a noreturn call.
3006   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3007     const BasicBlock &BB = *I.getParent();
3008     if (&I != &BB.front()) {
3009       BasicBlock::const_iterator PredI =
3010         std::prev(BasicBlock::const_iterator(&I));
3011       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3012         if (Call->doesNotReturn())
3013           return;
3014       }
3015     }
3016   }
3017 
3018   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3019 }
3020 
3021 void SelectionDAGBuilder::visitFSub(const User &I) {
3022   // -0.0 - X --> fneg
3023   Type *Ty = I.getType();
3024   if (isa<Constant>(I.getOperand(0)) &&
3025       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
3026     SDValue Op2 = getValue(I.getOperand(1));
3027     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
3028                              Op2.getValueType(), Op2));
3029     return;
3030   }
3031 
3032   visitBinary(I, ISD::FSUB);
3033 }
3034 
3035 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3036   SDNodeFlags Flags;
3037 
3038   SDValue Op = getValue(I.getOperand(0));
3039   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3040                                     Op, Flags);
3041   setValue(&I, UnNodeValue);
3042 }
3043 
3044 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3045   SDNodeFlags Flags;
3046   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3047     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3048     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3049   }
3050   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
3051     Flags.setExact(ExactOp->isExact());
3052   }
3053 
3054   SDValue Op1 = getValue(I.getOperand(0));
3055   SDValue Op2 = getValue(I.getOperand(1));
3056   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3057                                      Op1, Op2, Flags);
3058   setValue(&I, BinNodeValue);
3059 }
3060 
3061 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3062   SDValue Op1 = getValue(I.getOperand(0));
3063   SDValue Op2 = getValue(I.getOperand(1));
3064 
3065   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3066       Op1.getValueType(), DAG.getDataLayout());
3067 
3068   // Coerce the shift amount to the right type if we can.
3069   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3070     unsigned ShiftSize = ShiftTy.getSizeInBits();
3071     unsigned Op2Size = Op2.getValueSizeInBits();
3072     SDLoc DL = getCurSDLoc();
3073 
3074     // If the operand is smaller than the shift count type, promote it.
3075     if (ShiftSize > Op2Size)
3076       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3077 
3078     // If the operand is larger than the shift count type but the shift
3079     // count type has enough bits to represent any shift value, truncate
3080     // it now. This is a common case and it exposes the truncate to
3081     // optimization early.
3082     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3083       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3084     // Otherwise we'll need to temporarily settle for some other convenient
3085     // type.  Type legalization will make adjustments once the shiftee is split.
3086     else
3087       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3088   }
3089 
3090   bool nuw = false;
3091   bool nsw = false;
3092   bool exact = false;
3093 
3094   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3095 
3096     if (const OverflowingBinaryOperator *OFBinOp =
3097             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3098       nuw = OFBinOp->hasNoUnsignedWrap();
3099       nsw = OFBinOp->hasNoSignedWrap();
3100     }
3101     if (const PossiblyExactOperator *ExactOp =
3102             dyn_cast<const PossiblyExactOperator>(&I))
3103       exact = ExactOp->isExact();
3104   }
3105   SDNodeFlags Flags;
3106   Flags.setExact(exact);
3107   Flags.setNoSignedWrap(nsw);
3108   Flags.setNoUnsignedWrap(nuw);
3109   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3110                             Flags);
3111   setValue(&I, Res);
3112 }
3113 
3114 void SelectionDAGBuilder::visitSDiv(const User &I) {
3115   SDValue Op1 = getValue(I.getOperand(0));
3116   SDValue Op2 = getValue(I.getOperand(1));
3117 
3118   SDNodeFlags Flags;
3119   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3120                  cast<PossiblyExactOperator>(&I)->isExact());
3121   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3122                            Op2, Flags));
3123 }
3124 
3125 void SelectionDAGBuilder::visitICmp(const User &I) {
3126   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3127   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3128     predicate = IC->getPredicate();
3129   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3130     predicate = ICmpInst::Predicate(IC->getPredicate());
3131   SDValue Op1 = getValue(I.getOperand(0));
3132   SDValue Op2 = getValue(I.getOperand(1));
3133   ISD::CondCode Opcode = getICmpCondCode(predicate);
3134 
3135   auto &TLI = DAG.getTargetLoweringInfo();
3136   EVT MemVT =
3137       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3138 
3139   // If a pointer's DAG type is larger than its memory type then the DAG values
3140   // are zero-extended. This breaks signed comparisons so truncate back to the
3141   // underlying type before doing the compare.
3142   if (Op1.getValueType() != MemVT) {
3143     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3144     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3145   }
3146 
3147   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3148                                                         I.getType());
3149   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3150 }
3151 
3152 void SelectionDAGBuilder::visitFCmp(const User &I) {
3153   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3154   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3155     predicate = FC->getPredicate();
3156   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3157     predicate = FCmpInst::Predicate(FC->getPredicate());
3158   SDValue Op1 = getValue(I.getOperand(0));
3159   SDValue Op2 = getValue(I.getOperand(1));
3160 
3161   ISD::CondCode Condition = getFCmpCondCode(predicate);
3162   auto *FPMO = dyn_cast<FPMathOperator>(&I);
3163   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
3164     Condition = getFCmpCodeWithoutNaN(Condition);
3165 
3166   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3167                                                         I.getType());
3168   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3169 }
3170 
3171 // Check if the condition of the select has one use or two users that are both
3172 // selects with the same condition.
3173 static bool hasOnlySelectUsers(const Value *Cond) {
3174   return llvm::all_of(Cond->users(), [](const Value *V) {
3175     return isa<SelectInst>(V);
3176   });
3177 }
3178 
3179 void SelectionDAGBuilder::visitSelect(const User &I) {
3180   SmallVector<EVT, 4> ValueVTs;
3181   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3182                   ValueVTs);
3183   unsigned NumValues = ValueVTs.size();
3184   if (NumValues == 0) return;
3185 
3186   SmallVector<SDValue, 4> Values(NumValues);
3187   SDValue Cond     = getValue(I.getOperand(0));
3188   SDValue LHSVal   = getValue(I.getOperand(1));
3189   SDValue RHSVal   = getValue(I.getOperand(2));
3190   SmallVector<SDValue, 1> BaseOps(1, Cond);
3191   ISD::NodeType OpCode =
3192       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3193 
3194   bool IsUnaryAbs = false;
3195 
3196   // Min/max matching is only viable if all output VTs are the same.
3197   if (is_splat(ValueVTs)) {
3198     EVT VT = ValueVTs[0];
3199     LLVMContext &Ctx = *DAG.getContext();
3200     auto &TLI = DAG.getTargetLoweringInfo();
3201 
3202     // We care about the legality of the operation after it has been type
3203     // legalized.
3204     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3205       VT = TLI.getTypeToTransformTo(Ctx, VT);
3206 
3207     // If the vselect is legal, assume we want to leave this as a vector setcc +
3208     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3209     // min/max is legal on the scalar type.
3210     bool UseScalarMinMax = VT.isVector() &&
3211       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3212 
3213     Value *LHS, *RHS;
3214     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3215     ISD::NodeType Opc = ISD::DELETED_NODE;
3216     switch (SPR.Flavor) {
3217     case SPF_UMAX:    Opc = ISD::UMAX; break;
3218     case SPF_UMIN:    Opc = ISD::UMIN; break;
3219     case SPF_SMAX:    Opc = ISD::SMAX; break;
3220     case SPF_SMIN:    Opc = ISD::SMIN; break;
3221     case SPF_FMINNUM:
3222       switch (SPR.NaNBehavior) {
3223       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3224       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3225       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3226       case SPNB_RETURNS_ANY: {
3227         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3228           Opc = ISD::FMINNUM;
3229         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3230           Opc = ISD::FMINIMUM;
3231         else if (UseScalarMinMax)
3232           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3233             ISD::FMINNUM : ISD::FMINIMUM;
3234         break;
3235       }
3236       }
3237       break;
3238     case SPF_FMAXNUM:
3239       switch (SPR.NaNBehavior) {
3240       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3241       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3242       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3243       case SPNB_RETURNS_ANY:
3244 
3245         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3246           Opc = ISD::FMAXNUM;
3247         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3248           Opc = ISD::FMAXIMUM;
3249         else if (UseScalarMinMax)
3250           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3251             ISD::FMAXNUM : ISD::FMAXIMUM;
3252         break;
3253       }
3254       break;
3255     case SPF_ABS:
3256       IsUnaryAbs = true;
3257       Opc = ISD::ABS;
3258       break;
3259     case SPF_NABS:
3260       // TODO: we need to produce sub(0, abs(X)).
3261     default: break;
3262     }
3263 
3264     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3265         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3266          (UseScalarMinMax &&
3267           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3268         // If the underlying comparison instruction is used by any other
3269         // instruction, the consumed instructions won't be destroyed, so it is
3270         // not profitable to convert to a min/max.
3271         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3272       OpCode = Opc;
3273       LHSVal = getValue(LHS);
3274       RHSVal = getValue(RHS);
3275       BaseOps.clear();
3276     }
3277 
3278     if (IsUnaryAbs) {
3279       OpCode = Opc;
3280       LHSVal = getValue(LHS);
3281       BaseOps.clear();
3282     }
3283   }
3284 
3285   if (IsUnaryAbs) {
3286     for (unsigned i = 0; i != NumValues; ++i) {
3287       Values[i] =
3288           DAG.getNode(OpCode, getCurSDLoc(),
3289                       LHSVal.getNode()->getValueType(LHSVal.getResNo() + i),
3290                       SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3291     }
3292   } else {
3293     for (unsigned i = 0; i != NumValues; ++i) {
3294       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3295       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3296       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3297       Values[i] = DAG.getNode(
3298           OpCode, getCurSDLoc(),
3299           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops);
3300     }
3301   }
3302 
3303   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3304                            DAG.getVTList(ValueVTs), Values));
3305 }
3306 
3307 void SelectionDAGBuilder::visitTrunc(const User &I) {
3308   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3309   SDValue N = getValue(I.getOperand(0));
3310   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3311                                                         I.getType());
3312   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3313 }
3314 
3315 void SelectionDAGBuilder::visitZExt(const User &I) {
3316   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3317   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3318   SDValue N = getValue(I.getOperand(0));
3319   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3320                                                         I.getType());
3321   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3322 }
3323 
3324 void SelectionDAGBuilder::visitSExt(const User &I) {
3325   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3326   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3327   SDValue N = getValue(I.getOperand(0));
3328   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3329                                                         I.getType());
3330   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3331 }
3332 
3333 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3334   // FPTrunc is never a no-op cast, no need to check
3335   SDValue N = getValue(I.getOperand(0));
3336   SDLoc dl = getCurSDLoc();
3337   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3338   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3339   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3340                            DAG.getTargetConstant(
3341                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3342 }
3343 
3344 void SelectionDAGBuilder::visitFPExt(const User &I) {
3345   // FPExt is never a no-op cast, no need to check
3346   SDValue N = getValue(I.getOperand(0));
3347   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3348                                                         I.getType());
3349   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3350 }
3351 
3352 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3353   // FPToUI is never a no-op cast, no need to check
3354   SDValue N = getValue(I.getOperand(0));
3355   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3356                                                         I.getType());
3357   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3358 }
3359 
3360 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3361   // FPToSI is never a no-op cast, no need to check
3362   SDValue N = getValue(I.getOperand(0));
3363   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3364                                                         I.getType());
3365   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3366 }
3367 
3368 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3369   // UIToFP is never a no-op cast, no need to check
3370   SDValue N = getValue(I.getOperand(0));
3371   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3372                                                         I.getType());
3373   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3374 }
3375 
3376 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3377   // SIToFP is never a no-op cast, no need to check
3378   SDValue N = getValue(I.getOperand(0));
3379   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3380                                                         I.getType());
3381   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3382 }
3383 
3384 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3385   // What to do depends on the size of the integer and the size of the pointer.
3386   // We can either truncate, zero extend, or no-op, accordingly.
3387   SDValue N = getValue(I.getOperand(0));
3388   auto &TLI = DAG.getTargetLoweringInfo();
3389   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3390                                                         I.getType());
3391   EVT PtrMemVT =
3392       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3393   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3394   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3395   setValue(&I, N);
3396 }
3397 
3398 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3399   // What to do depends on the size of the integer and the size of the pointer.
3400   // We can either truncate, zero extend, or no-op, accordingly.
3401   SDValue N = getValue(I.getOperand(0));
3402   auto &TLI = DAG.getTargetLoweringInfo();
3403   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3404   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3405   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3406   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3407   setValue(&I, N);
3408 }
3409 
3410 void SelectionDAGBuilder::visitBitCast(const User &I) {
3411   SDValue N = getValue(I.getOperand(0));
3412   SDLoc dl = getCurSDLoc();
3413   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3414                                                         I.getType());
3415 
3416   // BitCast assures us that source and destination are the same size so this is
3417   // either a BITCAST or a no-op.
3418   if (DestVT != N.getValueType())
3419     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3420                              DestVT, N)); // convert types.
3421   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3422   // might fold any kind of constant expression to an integer constant and that
3423   // is not what we are looking for. Only recognize a bitcast of a genuine
3424   // constant integer as an opaque constant.
3425   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3426     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3427                                  /*isOpaque*/true));
3428   else
3429     setValue(&I, N);            // noop cast.
3430 }
3431 
3432 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3433   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3434   const Value *SV = I.getOperand(0);
3435   SDValue N = getValue(SV);
3436   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3437 
3438   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3439   unsigned DestAS = I.getType()->getPointerAddressSpace();
3440 
3441   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3442     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3443 
3444   setValue(&I, N);
3445 }
3446 
3447 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3448   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3449   SDValue InVec = getValue(I.getOperand(0));
3450   SDValue InVal = getValue(I.getOperand(1));
3451   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3452                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3453   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3454                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3455                            InVec, InVal, InIdx));
3456 }
3457 
3458 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3459   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3460   SDValue InVec = getValue(I.getOperand(0));
3461   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3462                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3463   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3464                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3465                            InVec, InIdx));
3466 }
3467 
3468 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3469   SDValue Src1 = getValue(I.getOperand(0));
3470   SDValue Src2 = getValue(I.getOperand(1));
3471   ArrayRef<int> Mask;
3472   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3473     Mask = SVI->getShuffleMask();
3474   else
3475     Mask = cast<ConstantExpr>(I).getShuffleMask();
3476   SDLoc DL = getCurSDLoc();
3477   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3478   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3479   EVT SrcVT = Src1.getValueType();
3480 
3481   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3482       VT.isScalableVector()) {
3483     // Canonical splat form of first element of first input vector.
3484     SDValue FirstElt =
3485         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3486                     DAG.getVectorIdxConstant(0, DL));
3487     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3488     return;
3489   }
3490 
3491   // For now, we only handle splats for scalable vectors.
3492   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3493   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3494   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3495 
3496   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3497   unsigned MaskNumElts = Mask.size();
3498 
3499   if (SrcNumElts == MaskNumElts) {
3500     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3501     return;
3502   }
3503 
3504   // Normalize the shuffle vector since mask and vector length don't match.
3505   if (SrcNumElts < MaskNumElts) {
3506     // Mask is longer than the source vectors. We can use concatenate vector to
3507     // make the mask and vectors lengths match.
3508 
3509     if (MaskNumElts % SrcNumElts == 0) {
3510       // Mask length is a multiple of the source vector length.
3511       // Check if the shuffle is some kind of concatenation of the input
3512       // vectors.
3513       unsigned NumConcat = MaskNumElts / SrcNumElts;
3514       bool IsConcat = true;
3515       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3516       for (unsigned i = 0; i != MaskNumElts; ++i) {
3517         int Idx = Mask[i];
3518         if (Idx < 0)
3519           continue;
3520         // Ensure the indices in each SrcVT sized piece are sequential and that
3521         // the same source is used for the whole piece.
3522         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3523             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3524              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3525           IsConcat = false;
3526           break;
3527         }
3528         // Remember which source this index came from.
3529         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3530       }
3531 
3532       // The shuffle is concatenating multiple vectors together. Just emit
3533       // a CONCAT_VECTORS operation.
3534       if (IsConcat) {
3535         SmallVector<SDValue, 8> ConcatOps;
3536         for (auto Src : ConcatSrcs) {
3537           if (Src < 0)
3538             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3539           else if (Src == 0)
3540             ConcatOps.push_back(Src1);
3541           else
3542             ConcatOps.push_back(Src2);
3543         }
3544         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3545         return;
3546       }
3547     }
3548 
3549     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3550     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3551     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3552                                     PaddedMaskNumElts);
3553 
3554     // Pad both vectors with undefs to make them the same length as the mask.
3555     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3556 
3557     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3558     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3559     MOps1[0] = Src1;
3560     MOps2[0] = Src2;
3561 
3562     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3563     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3564 
3565     // Readjust mask for new input vector length.
3566     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3567     for (unsigned i = 0; i != MaskNumElts; ++i) {
3568       int Idx = Mask[i];
3569       if (Idx >= (int)SrcNumElts)
3570         Idx -= SrcNumElts - PaddedMaskNumElts;
3571       MappedOps[i] = Idx;
3572     }
3573 
3574     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3575 
3576     // If the concatenated vector was padded, extract a subvector with the
3577     // correct number of elements.
3578     if (MaskNumElts != PaddedMaskNumElts)
3579       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3580                            DAG.getVectorIdxConstant(0, DL));
3581 
3582     setValue(&I, Result);
3583     return;
3584   }
3585 
3586   if (SrcNumElts > MaskNumElts) {
3587     // Analyze the access pattern of the vector to see if we can extract
3588     // two subvectors and do the shuffle.
3589     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3590     bool CanExtract = true;
3591     for (int Idx : Mask) {
3592       unsigned Input = 0;
3593       if (Idx < 0)
3594         continue;
3595 
3596       if (Idx >= (int)SrcNumElts) {
3597         Input = 1;
3598         Idx -= SrcNumElts;
3599       }
3600 
3601       // If all the indices come from the same MaskNumElts sized portion of
3602       // the sources we can use extract. Also make sure the extract wouldn't
3603       // extract past the end of the source.
3604       int NewStartIdx = alignDown(Idx, MaskNumElts);
3605       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3606           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3607         CanExtract = false;
3608       // Make sure we always update StartIdx as we use it to track if all
3609       // elements are undef.
3610       StartIdx[Input] = NewStartIdx;
3611     }
3612 
3613     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3614       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3615       return;
3616     }
3617     if (CanExtract) {
3618       // Extract appropriate subvector and generate a vector shuffle
3619       for (unsigned Input = 0; Input < 2; ++Input) {
3620         SDValue &Src = Input == 0 ? Src1 : Src2;
3621         if (StartIdx[Input] < 0)
3622           Src = DAG.getUNDEF(VT);
3623         else {
3624           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3625                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3626         }
3627       }
3628 
3629       // Calculate new mask.
3630       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3631       for (int &Idx : MappedOps) {
3632         if (Idx >= (int)SrcNumElts)
3633           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3634         else if (Idx >= 0)
3635           Idx -= StartIdx[0];
3636       }
3637 
3638       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3639       return;
3640     }
3641   }
3642 
3643   // We can't use either concat vectors or extract subvectors so fall back to
3644   // replacing the shuffle with extract and build vector.
3645   // to insert and build vector.
3646   EVT EltVT = VT.getVectorElementType();
3647   SmallVector<SDValue,8> Ops;
3648   for (int Idx : Mask) {
3649     SDValue Res;
3650 
3651     if (Idx < 0) {
3652       Res = DAG.getUNDEF(EltVT);
3653     } else {
3654       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3655       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3656 
3657       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3658                         DAG.getVectorIdxConstant(Idx, DL));
3659     }
3660 
3661     Ops.push_back(Res);
3662   }
3663 
3664   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3665 }
3666 
3667 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3668   ArrayRef<unsigned> Indices;
3669   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3670     Indices = IV->getIndices();
3671   else
3672     Indices = cast<ConstantExpr>(&I)->getIndices();
3673 
3674   const Value *Op0 = I.getOperand(0);
3675   const Value *Op1 = I.getOperand(1);
3676   Type *AggTy = I.getType();
3677   Type *ValTy = Op1->getType();
3678   bool IntoUndef = isa<UndefValue>(Op0);
3679   bool FromUndef = isa<UndefValue>(Op1);
3680 
3681   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3682 
3683   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3684   SmallVector<EVT, 4> AggValueVTs;
3685   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3686   SmallVector<EVT, 4> ValValueVTs;
3687   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3688 
3689   unsigned NumAggValues = AggValueVTs.size();
3690   unsigned NumValValues = ValValueVTs.size();
3691   SmallVector<SDValue, 4> Values(NumAggValues);
3692 
3693   // Ignore an insertvalue that produces an empty object
3694   if (!NumAggValues) {
3695     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3696     return;
3697   }
3698 
3699   SDValue Agg = getValue(Op0);
3700   unsigned i = 0;
3701   // Copy the beginning value(s) from the original aggregate.
3702   for (; i != LinearIndex; ++i)
3703     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3704                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3705   // Copy values from the inserted value(s).
3706   if (NumValValues) {
3707     SDValue Val = getValue(Op1);
3708     for (; i != LinearIndex + NumValValues; ++i)
3709       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3710                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3711   }
3712   // Copy remaining value(s) from the original aggregate.
3713   for (; i != NumAggValues; ++i)
3714     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3715                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3716 
3717   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3718                            DAG.getVTList(AggValueVTs), Values));
3719 }
3720 
3721 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3722   ArrayRef<unsigned> Indices;
3723   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3724     Indices = EV->getIndices();
3725   else
3726     Indices = cast<ConstantExpr>(&I)->getIndices();
3727 
3728   const Value *Op0 = I.getOperand(0);
3729   Type *AggTy = Op0->getType();
3730   Type *ValTy = I.getType();
3731   bool OutOfUndef = isa<UndefValue>(Op0);
3732 
3733   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3734 
3735   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3736   SmallVector<EVT, 4> ValValueVTs;
3737   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3738 
3739   unsigned NumValValues = ValValueVTs.size();
3740 
3741   // Ignore a extractvalue that produces an empty object
3742   if (!NumValValues) {
3743     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3744     return;
3745   }
3746 
3747   SmallVector<SDValue, 4> Values(NumValValues);
3748 
3749   SDValue Agg = getValue(Op0);
3750   // Copy out the selected value(s).
3751   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3752     Values[i - LinearIndex] =
3753       OutOfUndef ?
3754         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3755         SDValue(Agg.getNode(), Agg.getResNo() + i);
3756 
3757   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3758                            DAG.getVTList(ValValueVTs), Values));
3759 }
3760 
3761 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3762   Value *Op0 = I.getOperand(0);
3763   // Note that the pointer operand may be a vector of pointers. Take the scalar
3764   // element which holds a pointer.
3765   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3766   SDValue N = getValue(Op0);
3767   SDLoc dl = getCurSDLoc();
3768   auto &TLI = DAG.getTargetLoweringInfo();
3769   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3770   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3771 
3772   // Normalize Vector GEP - all scalar operands should be converted to the
3773   // splat vector.
3774   bool IsVectorGEP = I.getType()->isVectorTy();
3775   ElementCount VectorElementCount =
3776       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3777                   : ElementCount(0, false);
3778 
3779   if (IsVectorGEP && !N.getValueType().isVector()) {
3780     LLVMContext &Context = *DAG.getContext();
3781     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3782     if (VectorElementCount.Scalable)
3783       N = DAG.getSplatVector(VT, dl, N);
3784     else
3785       N = DAG.getSplatBuildVector(VT, dl, N);
3786   }
3787 
3788   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3789        GTI != E; ++GTI) {
3790     const Value *Idx = GTI.getOperand();
3791     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3792       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3793       if (Field) {
3794         // N = N + Offset
3795         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3796 
3797         // In an inbounds GEP with an offset that is nonnegative even when
3798         // interpreted as signed, assume there is no unsigned overflow.
3799         SDNodeFlags Flags;
3800         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3801           Flags.setNoUnsignedWrap(true);
3802 
3803         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3804                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3805       }
3806     } else {
3807       // IdxSize is the width of the arithmetic according to IR semantics.
3808       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3809       // (and fix up the result later).
3810       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3811       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3812       TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
3813       // We intentionally mask away the high bits here; ElementSize may not
3814       // fit in IdxTy.
3815       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3816       bool ElementScalable = ElementSize.isScalable();
3817 
3818       // If this is a scalar constant or a splat vector of constants,
3819       // handle it quickly.
3820       const auto *C = dyn_cast<Constant>(Idx);
3821       if (C && isa<VectorType>(C->getType()))
3822         C = C->getSplatValue();
3823 
3824       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3825       if (CI && CI->isZero())
3826         continue;
3827       if (CI && !ElementScalable) {
3828         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3829         LLVMContext &Context = *DAG.getContext();
3830         SDValue OffsVal;
3831         if (IsVectorGEP)
3832           OffsVal = DAG.getConstant(
3833               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3834         else
3835           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3836 
3837         // In an inbounds GEP with an offset that is nonnegative even when
3838         // interpreted as signed, assume there is no unsigned overflow.
3839         SDNodeFlags Flags;
3840         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3841           Flags.setNoUnsignedWrap(true);
3842 
3843         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3844 
3845         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3846         continue;
3847       }
3848 
3849       // N = N + Idx * ElementMul;
3850       SDValue IdxN = getValue(Idx);
3851 
3852       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3853         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3854                                   VectorElementCount);
3855         if (VectorElementCount.Scalable)
3856           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3857         else
3858           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3859       }
3860 
3861       // If the index is smaller or larger than intptr_t, truncate or extend
3862       // it.
3863       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3864 
3865       if (ElementScalable) {
3866         EVT VScaleTy = N.getValueType().getScalarType();
3867         SDValue VScale = DAG.getNode(
3868             ISD::VSCALE, dl, VScaleTy,
3869             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3870         if (IsVectorGEP)
3871           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3872         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3873       } else {
3874         // If this is a multiply by a power of two, turn it into a shl
3875         // immediately.  This is a very common case.
3876         if (ElementMul != 1) {
3877           if (ElementMul.isPowerOf2()) {
3878             unsigned Amt = ElementMul.logBase2();
3879             IdxN = DAG.getNode(ISD::SHL, dl,
3880                                N.getValueType(), IdxN,
3881                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3882           } else {
3883             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3884                                             IdxN.getValueType());
3885             IdxN = DAG.getNode(ISD::MUL, dl,
3886                                N.getValueType(), IdxN, Scale);
3887           }
3888         }
3889       }
3890 
3891       N = DAG.getNode(ISD::ADD, dl,
3892                       N.getValueType(), N, IdxN);
3893     }
3894   }
3895 
3896   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3897     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3898 
3899   setValue(&I, N);
3900 }
3901 
3902 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3903   // If this is a fixed sized alloca in the entry block of the function,
3904   // allocate it statically on the stack.
3905   if (FuncInfo.StaticAllocaMap.count(&I))
3906     return;   // getValue will auto-populate this.
3907 
3908   SDLoc dl = getCurSDLoc();
3909   Type *Ty = I.getAllocatedType();
3910   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3911   auto &DL = DAG.getDataLayout();
3912   uint64_t TySize = DL.getTypeAllocSize(Ty);
3913   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
3914 
3915   SDValue AllocSize = getValue(I.getArraySize());
3916 
3917   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3918   if (AllocSize.getValueType() != IntPtr)
3919     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3920 
3921   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3922                           AllocSize,
3923                           DAG.getConstant(TySize, dl, IntPtr));
3924 
3925   // Handle alignment.  If the requested alignment is less than or equal to
3926   // the stack alignment, ignore it.  If the size is greater than or equal to
3927   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3928   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
3929   if (*Alignment <= StackAlign)
3930     Alignment = None;
3931 
3932   const uint64_t StackAlignMask = StackAlign.value() - 1U;
3933   // Round the size of the allocation up to the stack alignment size
3934   // by add SA-1 to the size. This doesn't overflow because we're computing
3935   // an address inside an alloca.
3936   SDNodeFlags Flags;
3937   Flags.setNoUnsignedWrap(true);
3938   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3939                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
3940 
3941   // Mask out the low bits for alignment purposes.
3942   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3943                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
3944 
3945   SDValue Ops[] = {
3946       getRoot(), AllocSize,
3947       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
3948   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3949   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3950   setValue(&I, DSA);
3951   DAG.setRoot(DSA.getValue(1));
3952 
3953   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3954 }
3955 
3956 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3957   if (I.isAtomic())
3958     return visitAtomicLoad(I);
3959 
3960   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3961   const Value *SV = I.getOperand(0);
3962   if (TLI.supportSwiftError()) {
3963     // Swifterror values can come from either a function parameter with
3964     // swifterror attribute or an alloca with swifterror attribute.
3965     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3966       if (Arg->hasSwiftErrorAttr())
3967         return visitLoadFromSwiftError(I);
3968     }
3969 
3970     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3971       if (Alloca->isSwiftError())
3972         return visitLoadFromSwiftError(I);
3973     }
3974   }
3975 
3976   SDValue Ptr = getValue(SV);
3977 
3978   Type *Ty = I.getType();
3979   Align Alignment = I.getAlign();
3980 
3981   AAMDNodes AAInfo;
3982   I.getAAMetadata(AAInfo);
3983   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3984 
3985   SmallVector<EVT, 4> ValueVTs, MemVTs;
3986   SmallVector<uint64_t, 4> Offsets;
3987   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
3988   unsigned NumValues = ValueVTs.size();
3989   if (NumValues == 0)
3990     return;
3991 
3992   bool isVolatile = I.isVolatile();
3993 
3994   SDValue Root;
3995   bool ConstantMemory = false;
3996   if (isVolatile)
3997     // Serialize volatile loads with other side effects.
3998     Root = getRoot();
3999   else if (NumValues > MaxParallelChains)
4000     Root = getMemoryRoot();
4001   else if (AA &&
4002            AA->pointsToConstantMemory(MemoryLocation(
4003                SV,
4004                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4005                AAInfo))) {
4006     // Do not serialize (non-volatile) loads of constant memory with anything.
4007     Root = DAG.getEntryNode();
4008     ConstantMemory = true;
4009   } else {
4010     // Do not serialize non-volatile loads against each other.
4011     Root = DAG.getRoot();
4012   }
4013 
4014   SDLoc dl = getCurSDLoc();
4015 
4016   if (isVolatile)
4017     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4018 
4019   // An aggregate load cannot wrap around the address space, so offsets to its
4020   // parts don't wrap either.
4021   SDNodeFlags Flags;
4022   Flags.setNoUnsignedWrap(true);
4023 
4024   SmallVector<SDValue, 4> Values(NumValues);
4025   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4026   EVT PtrVT = Ptr.getValueType();
4027 
4028   MachineMemOperand::Flags MMOFlags
4029     = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4030 
4031   unsigned ChainI = 0;
4032   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4033     // Serializing loads here may result in excessive register pressure, and
4034     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4035     // could recover a bit by hoisting nodes upward in the chain by recognizing
4036     // they are side-effect free or do not alias. The optimizer should really
4037     // avoid this case by converting large object/array copies to llvm.memcpy
4038     // (MaxParallelChains should always remain as failsafe).
4039     if (ChainI == MaxParallelChains) {
4040       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4041       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4042                                   makeArrayRef(Chains.data(), ChainI));
4043       Root = Chain;
4044       ChainI = 0;
4045     }
4046     SDValue A = DAG.getNode(ISD::ADD, dl,
4047                             PtrVT, Ptr,
4048                             DAG.getConstant(Offsets[i], dl, PtrVT),
4049                             Flags);
4050 
4051     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4052                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4053                             MMOFlags, AAInfo, Ranges);
4054     Chains[ChainI] = L.getValue(1);
4055 
4056     if (MemVTs[i] != ValueVTs[i])
4057       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4058 
4059     Values[i] = L;
4060   }
4061 
4062   if (!ConstantMemory) {
4063     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4064                                 makeArrayRef(Chains.data(), ChainI));
4065     if (isVolatile)
4066       DAG.setRoot(Chain);
4067     else
4068       PendingLoads.push_back(Chain);
4069   }
4070 
4071   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4072                            DAG.getVTList(ValueVTs), Values));
4073 }
4074 
4075 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4076   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4077          "call visitStoreToSwiftError when backend supports swifterror");
4078 
4079   SmallVector<EVT, 4> ValueVTs;
4080   SmallVector<uint64_t, 4> Offsets;
4081   const Value *SrcV = I.getOperand(0);
4082   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4083                   SrcV->getType(), ValueVTs, &Offsets);
4084   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4085          "expect a single EVT for swifterror");
4086 
4087   SDValue Src = getValue(SrcV);
4088   // Create a virtual register, then update the virtual register.
4089   Register VReg =
4090       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4091   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4092   // Chain can be getRoot or getControlRoot.
4093   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4094                                       SDValue(Src.getNode(), Src.getResNo()));
4095   DAG.setRoot(CopyNode);
4096 }
4097 
4098 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4099   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4100          "call visitLoadFromSwiftError when backend supports swifterror");
4101 
4102   assert(!I.isVolatile() &&
4103          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4104          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4105          "Support volatile, non temporal, invariant for load_from_swift_error");
4106 
4107   const Value *SV = I.getOperand(0);
4108   Type *Ty = I.getType();
4109   AAMDNodes AAInfo;
4110   I.getAAMetadata(AAInfo);
4111   assert(
4112       (!AA ||
4113        !AA->pointsToConstantMemory(MemoryLocation(
4114            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4115            AAInfo))) &&
4116       "load_from_swift_error should not be constant memory");
4117 
4118   SmallVector<EVT, 4> ValueVTs;
4119   SmallVector<uint64_t, 4> Offsets;
4120   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4121                   ValueVTs, &Offsets);
4122   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4123          "expect a single EVT for swifterror");
4124 
4125   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4126   SDValue L = DAG.getCopyFromReg(
4127       getRoot(), getCurSDLoc(),
4128       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4129 
4130   setValue(&I, L);
4131 }
4132 
4133 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4134   if (I.isAtomic())
4135     return visitAtomicStore(I);
4136 
4137   const Value *SrcV = I.getOperand(0);
4138   const Value *PtrV = I.getOperand(1);
4139 
4140   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4141   if (TLI.supportSwiftError()) {
4142     // Swifterror values can come from either a function parameter with
4143     // swifterror attribute or an alloca with swifterror attribute.
4144     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4145       if (Arg->hasSwiftErrorAttr())
4146         return visitStoreToSwiftError(I);
4147     }
4148 
4149     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4150       if (Alloca->isSwiftError())
4151         return visitStoreToSwiftError(I);
4152     }
4153   }
4154 
4155   SmallVector<EVT, 4> ValueVTs, MemVTs;
4156   SmallVector<uint64_t, 4> Offsets;
4157   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4158                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4159   unsigned NumValues = ValueVTs.size();
4160   if (NumValues == 0)
4161     return;
4162 
4163   // Get the lowered operands. Note that we do this after
4164   // checking if NumResults is zero, because with zero results
4165   // the operands won't have values in the map.
4166   SDValue Src = getValue(SrcV);
4167   SDValue Ptr = getValue(PtrV);
4168 
4169   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4170   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4171   SDLoc dl = getCurSDLoc();
4172   Align Alignment = I.getAlign();
4173   AAMDNodes AAInfo;
4174   I.getAAMetadata(AAInfo);
4175 
4176   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4177 
4178   // An aggregate load cannot wrap around the address space, so offsets to its
4179   // parts don't wrap either.
4180   SDNodeFlags Flags;
4181   Flags.setNoUnsignedWrap(true);
4182 
4183   unsigned ChainI = 0;
4184   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4185     // See visitLoad comments.
4186     if (ChainI == MaxParallelChains) {
4187       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4188                                   makeArrayRef(Chains.data(), ChainI));
4189       Root = Chain;
4190       ChainI = 0;
4191     }
4192     SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags);
4193     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4194     if (MemVTs[i] != ValueVTs[i])
4195       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4196     SDValue St =
4197         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4198                      Alignment, MMOFlags, AAInfo);
4199     Chains[ChainI] = St;
4200   }
4201 
4202   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4203                                   makeArrayRef(Chains.data(), ChainI));
4204   DAG.setRoot(StoreNode);
4205 }
4206 
4207 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4208                                            bool IsCompressing) {
4209   SDLoc sdl = getCurSDLoc();
4210 
4211   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4212                                MaybeAlign &Alignment) {
4213     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4214     Src0 = I.getArgOperand(0);
4215     Ptr = I.getArgOperand(1);
4216     Alignment =
4217         MaybeAlign(cast<ConstantInt>(I.getArgOperand(2))->getZExtValue());
4218     Mask = I.getArgOperand(3);
4219   };
4220   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4221                                     MaybeAlign &Alignment) {
4222     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4223     Src0 = I.getArgOperand(0);
4224     Ptr = I.getArgOperand(1);
4225     Mask = I.getArgOperand(2);
4226     Alignment = None;
4227   };
4228 
4229   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4230   MaybeAlign Alignment;
4231   if (IsCompressing)
4232     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4233   else
4234     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4235 
4236   SDValue Ptr = getValue(PtrOperand);
4237   SDValue Src0 = getValue(Src0Operand);
4238   SDValue Mask = getValue(MaskOperand);
4239   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4240 
4241   EVT VT = Src0.getValueType();
4242   if (!Alignment)
4243     Alignment = DAG.getEVTAlign(VT);
4244 
4245   AAMDNodes AAInfo;
4246   I.getAAMetadata(AAInfo);
4247 
4248   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4249       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4250       // TODO: Make MachineMemOperands aware of scalable
4251       // vectors.
4252       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo);
4253   SDValue StoreNode =
4254       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4255                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4256   DAG.setRoot(StoreNode);
4257   setValue(&I, StoreNode);
4258 }
4259 
4260 // Get a uniform base for the Gather/Scatter intrinsic.
4261 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4262 // We try to represent it as a base pointer + vector of indices.
4263 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4264 // The first operand of the GEP may be a single pointer or a vector of pointers
4265 // Example:
4266 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4267 //  or
4268 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4269 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4270 //
4271 // When the first GEP operand is a single pointer - it is the uniform base we
4272 // are looking for. If first operand of the GEP is a splat vector - we
4273 // extract the splat value and use it as a uniform base.
4274 // In all other cases the function returns 'false'.
4275 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4276                            ISD::MemIndexType &IndexType, SDValue &Scale,
4277                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB) {
4278   SelectionDAG& DAG = SDB->DAG;
4279   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4280   const DataLayout &DL = DAG.getDataLayout();
4281 
4282   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4283 
4284   // Handle splat constant pointer.
4285   if (auto *C = dyn_cast<Constant>(Ptr)) {
4286     C = C->getSplatValue();
4287     if (!C)
4288       return false;
4289 
4290     Base = SDB->getValue(C);
4291 
4292     unsigned NumElts = cast<VectorType>(Ptr->getType())->getNumElements();
4293     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4294     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4295     IndexType = ISD::SIGNED_SCALED;
4296     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4297     return true;
4298   }
4299 
4300   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4301   if (!GEP || GEP->getParent() != CurBB)
4302     return false;
4303 
4304   if (GEP->getNumOperands() != 2)
4305     return false;
4306 
4307   const Value *BasePtr = GEP->getPointerOperand();
4308   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4309 
4310   // Make sure the base is scalar and the index is a vector.
4311   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4312     return false;
4313 
4314   Base = SDB->getValue(BasePtr);
4315   Index = SDB->getValue(IndexVal);
4316   IndexType = ISD::SIGNED_SCALED;
4317   Scale = DAG.getTargetConstant(
4318               DL.getTypeAllocSize(GEP->getResultElementType()),
4319               SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4320   return true;
4321 }
4322 
4323 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4324   SDLoc sdl = getCurSDLoc();
4325 
4326   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4327   const Value *Ptr = I.getArgOperand(1);
4328   SDValue Src0 = getValue(I.getArgOperand(0));
4329   SDValue Mask = getValue(I.getArgOperand(3));
4330   EVT VT = Src0.getValueType();
4331   MaybeAlign Alignment(cast<ConstantInt>(I.getArgOperand(2))->getZExtValue());
4332   if (!Alignment)
4333     Alignment = DAG.getEVTAlign(VT);
4334   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4335 
4336   AAMDNodes AAInfo;
4337   I.getAAMetadata(AAInfo);
4338 
4339   SDValue Base;
4340   SDValue Index;
4341   ISD::MemIndexType IndexType;
4342   SDValue Scale;
4343   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4344                                     I.getParent());
4345 
4346   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4347   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4348       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4349       // TODO: Make MachineMemOperands aware of scalable
4350       // vectors.
4351       MemoryLocation::UnknownSize, *Alignment, AAInfo);
4352   if (!UniformBase) {
4353     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4354     Index = getValue(Ptr);
4355     IndexType = ISD::SIGNED_SCALED;
4356     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4357   }
4358   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4359   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4360                                          Ops, MMO, IndexType);
4361   DAG.setRoot(Scatter);
4362   setValue(&I, Scatter);
4363 }
4364 
4365 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4366   SDLoc sdl = getCurSDLoc();
4367 
4368   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4369                               MaybeAlign &Alignment) {
4370     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4371     Ptr = I.getArgOperand(0);
4372     Alignment =
4373         MaybeAlign(cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
4374     Mask = I.getArgOperand(2);
4375     Src0 = I.getArgOperand(3);
4376   };
4377   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4378                                  MaybeAlign &Alignment) {
4379     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4380     Ptr = I.getArgOperand(0);
4381     Alignment = None;
4382     Mask = I.getArgOperand(1);
4383     Src0 = I.getArgOperand(2);
4384   };
4385 
4386   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4387   MaybeAlign Alignment;
4388   if (IsExpanding)
4389     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4390   else
4391     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4392 
4393   SDValue Ptr = getValue(PtrOperand);
4394   SDValue Src0 = getValue(Src0Operand);
4395   SDValue Mask = getValue(MaskOperand);
4396   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4397 
4398   EVT VT = Src0.getValueType();
4399   if (!Alignment)
4400     Alignment = DAG.getEVTAlign(VT);
4401 
4402   AAMDNodes AAInfo;
4403   I.getAAMetadata(AAInfo);
4404   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4405 
4406   // Do not serialize masked loads of constant memory with anything.
4407   MemoryLocation ML;
4408   if (VT.isScalableVector())
4409     ML = MemoryLocation(PtrOperand);
4410   else
4411     ML = MemoryLocation(PtrOperand, LocationSize::precise(
4412                            DAG.getDataLayout().getTypeStoreSize(I.getType())),
4413                            AAInfo);
4414   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4415 
4416   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4417 
4418   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4419       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4420       // TODO: Make MachineMemOperands aware of scalable
4421       // vectors.
4422       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges);
4423 
4424   SDValue Load =
4425       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4426                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4427   if (AddToChain)
4428     PendingLoads.push_back(Load.getValue(1));
4429   setValue(&I, Load);
4430 }
4431 
4432 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4433   SDLoc sdl = getCurSDLoc();
4434 
4435   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4436   const Value *Ptr = I.getArgOperand(0);
4437   SDValue Src0 = getValue(I.getArgOperand(3));
4438   SDValue Mask = getValue(I.getArgOperand(2));
4439 
4440   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4441   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4442   MaybeAlign Alignment(cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
4443   if (!Alignment)
4444     Alignment = DAG.getEVTAlign(VT);
4445 
4446   AAMDNodes AAInfo;
4447   I.getAAMetadata(AAInfo);
4448   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4449 
4450   SDValue Root = DAG.getRoot();
4451   SDValue Base;
4452   SDValue Index;
4453   ISD::MemIndexType IndexType;
4454   SDValue Scale;
4455   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4456                                     I.getParent());
4457   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4458   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4459       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4460       // TODO: Make MachineMemOperands aware of scalable
4461       // vectors.
4462       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
4463 
4464   if (!UniformBase) {
4465     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4466     Index = getValue(Ptr);
4467     IndexType = ISD::SIGNED_SCALED;
4468     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4469   }
4470   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4471   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4472                                        Ops, MMO, IndexType);
4473 
4474   PendingLoads.push_back(Gather.getValue(1));
4475   setValue(&I, Gather);
4476 }
4477 
4478 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4479   SDLoc dl = getCurSDLoc();
4480   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4481   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4482   SyncScope::ID SSID = I.getSyncScopeID();
4483 
4484   SDValue InChain = getRoot();
4485 
4486   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4487   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4488 
4489   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4490   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4491 
4492   MachineFunction &MF = DAG.getMachineFunction();
4493   MachineMemOperand *MMO = MF.getMachineMemOperand(
4494       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4495       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4496       FailureOrdering);
4497 
4498   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4499                                    dl, MemVT, VTs, InChain,
4500                                    getValue(I.getPointerOperand()),
4501                                    getValue(I.getCompareOperand()),
4502                                    getValue(I.getNewValOperand()), MMO);
4503 
4504   SDValue OutChain = L.getValue(2);
4505 
4506   setValue(&I, L);
4507   DAG.setRoot(OutChain);
4508 }
4509 
4510 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4511   SDLoc dl = getCurSDLoc();
4512   ISD::NodeType NT;
4513   switch (I.getOperation()) {
4514   default: llvm_unreachable("Unknown atomicrmw operation");
4515   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4516   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4517   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4518   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4519   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4520   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4521   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4522   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4523   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4524   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4525   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4526   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4527   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4528   }
4529   AtomicOrdering Ordering = I.getOrdering();
4530   SyncScope::ID SSID = I.getSyncScopeID();
4531 
4532   SDValue InChain = getRoot();
4533 
4534   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4535   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4536   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4537 
4538   MachineFunction &MF = DAG.getMachineFunction();
4539   MachineMemOperand *MMO = MF.getMachineMemOperand(
4540       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4541       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4542 
4543   SDValue L =
4544     DAG.getAtomic(NT, dl, MemVT, InChain,
4545                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4546                   MMO);
4547 
4548   SDValue OutChain = L.getValue(1);
4549 
4550   setValue(&I, L);
4551   DAG.setRoot(OutChain);
4552 }
4553 
4554 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4555   SDLoc dl = getCurSDLoc();
4556   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4557   SDValue Ops[3];
4558   Ops[0] = getRoot();
4559   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4560                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4561   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4562                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4563   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4564 }
4565 
4566 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4567   SDLoc dl = getCurSDLoc();
4568   AtomicOrdering Order = I.getOrdering();
4569   SyncScope::ID SSID = I.getSyncScopeID();
4570 
4571   SDValue InChain = getRoot();
4572 
4573   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4574   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4575   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4576 
4577   if (!TLI.supportsUnalignedAtomics() &&
4578       I.getAlignment() < MemVT.getSizeInBits() / 8)
4579     report_fatal_error("Cannot generate unaligned atomic load");
4580 
4581   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4582 
4583   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4584       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4585       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4586 
4587   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4588 
4589   SDValue Ptr = getValue(I.getPointerOperand());
4590 
4591   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4592     // TODO: Once this is better exercised by tests, it should be merged with
4593     // the normal path for loads to prevent future divergence.
4594     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4595     if (MemVT != VT)
4596       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4597 
4598     setValue(&I, L);
4599     SDValue OutChain = L.getValue(1);
4600     if (!I.isUnordered())
4601       DAG.setRoot(OutChain);
4602     else
4603       PendingLoads.push_back(OutChain);
4604     return;
4605   }
4606 
4607   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4608                             Ptr, MMO);
4609 
4610   SDValue OutChain = L.getValue(1);
4611   if (MemVT != VT)
4612     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4613 
4614   setValue(&I, L);
4615   DAG.setRoot(OutChain);
4616 }
4617 
4618 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4619   SDLoc dl = getCurSDLoc();
4620 
4621   AtomicOrdering Ordering = I.getOrdering();
4622   SyncScope::ID SSID = I.getSyncScopeID();
4623 
4624   SDValue InChain = getRoot();
4625 
4626   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4627   EVT MemVT =
4628       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4629 
4630   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4631     report_fatal_error("Cannot generate unaligned atomic store");
4632 
4633   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4634 
4635   MachineFunction &MF = DAG.getMachineFunction();
4636   MachineMemOperand *MMO = MF.getMachineMemOperand(
4637       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4638       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4639 
4640   SDValue Val = getValue(I.getValueOperand());
4641   if (Val.getValueType() != MemVT)
4642     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4643   SDValue Ptr = getValue(I.getPointerOperand());
4644 
4645   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4646     // TODO: Once this is better exercised by tests, it should be merged with
4647     // the normal path for stores to prevent future divergence.
4648     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4649     DAG.setRoot(S);
4650     return;
4651   }
4652   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4653                                    Ptr, Val, MMO);
4654 
4655 
4656   DAG.setRoot(OutChain);
4657 }
4658 
4659 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4660 /// node.
4661 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4662                                                unsigned Intrinsic) {
4663   // Ignore the callsite's attributes. A specific call site may be marked with
4664   // readnone, but the lowering code will expect the chain based on the
4665   // definition.
4666   const Function *F = I.getCalledFunction();
4667   bool HasChain = !F->doesNotAccessMemory();
4668   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4669 
4670   // Build the operand list.
4671   SmallVector<SDValue, 8> Ops;
4672   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4673     if (OnlyLoad) {
4674       // We don't need to serialize loads against other loads.
4675       Ops.push_back(DAG.getRoot());
4676     } else {
4677       Ops.push_back(getRoot());
4678     }
4679   }
4680 
4681   // Info is set by getTgtMemInstrinsic
4682   TargetLowering::IntrinsicInfo Info;
4683   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4684   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4685                                                DAG.getMachineFunction(),
4686                                                Intrinsic);
4687 
4688   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4689   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4690       Info.opc == ISD::INTRINSIC_W_CHAIN)
4691     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4692                                         TLI.getPointerTy(DAG.getDataLayout())));
4693 
4694   // Add all operands of the call to the operand list.
4695   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4696     const Value *Arg = I.getArgOperand(i);
4697     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4698       Ops.push_back(getValue(Arg));
4699       continue;
4700     }
4701 
4702     // Use TargetConstant instead of a regular constant for immarg.
4703     EVT VT = TLI.getValueType(*DL, Arg->getType(), true);
4704     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4705       assert(CI->getBitWidth() <= 64 &&
4706              "large intrinsic immediates not handled");
4707       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4708     } else {
4709       Ops.push_back(
4710           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4711     }
4712   }
4713 
4714   SmallVector<EVT, 4> ValueVTs;
4715   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4716 
4717   if (HasChain)
4718     ValueVTs.push_back(MVT::Other);
4719 
4720   SDVTList VTs = DAG.getVTList(ValueVTs);
4721 
4722   // Create the node.
4723   SDValue Result;
4724   if (IsTgtIntrinsic) {
4725     // This is target intrinsic that touches memory
4726     AAMDNodes AAInfo;
4727     I.getAAMetadata(AAInfo);
4728     Result =
4729         DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4730                                 MachinePointerInfo(Info.ptrVal, Info.offset),
4731                                 Info.align, Info.flags, Info.size, AAInfo);
4732   } else if (!HasChain) {
4733     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4734   } else if (!I.getType()->isVoidTy()) {
4735     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4736   } else {
4737     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4738   }
4739 
4740   if (HasChain) {
4741     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4742     if (OnlyLoad)
4743       PendingLoads.push_back(Chain);
4744     else
4745       DAG.setRoot(Chain);
4746   }
4747 
4748   if (!I.getType()->isVoidTy()) {
4749     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4750       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4751       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4752     } else
4753       Result = lowerRangeToAssertZExt(DAG, I, Result);
4754 
4755     MaybeAlign Alignment = I.getRetAlign();
4756     if (!Alignment)
4757       Alignment = F->getAttributes().getRetAlignment();
4758     // Insert `assertalign` node if there's an alignment.
4759     if (InsertAssertAlign && Alignment) {
4760       Result =
4761           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4762     }
4763 
4764     setValue(&I, Result);
4765   }
4766 }
4767 
4768 /// GetSignificand - Get the significand and build it into a floating-point
4769 /// number with exponent of 1:
4770 ///
4771 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4772 ///
4773 /// where Op is the hexadecimal representation of floating point value.
4774 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4775   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4776                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4777   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4778                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4779   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4780 }
4781 
4782 /// GetExponent - Get the exponent:
4783 ///
4784 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4785 ///
4786 /// where Op is the hexadecimal representation of floating point value.
4787 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4788                            const TargetLowering &TLI, const SDLoc &dl) {
4789   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4790                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4791   SDValue t1 = DAG.getNode(
4792       ISD::SRL, dl, MVT::i32, t0,
4793       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4794   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4795                            DAG.getConstant(127, dl, MVT::i32));
4796   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4797 }
4798 
4799 /// getF32Constant - Get 32-bit floating point constant.
4800 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4801                               const SDLoc &dl) {
4802   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4803                            MVT::f32);
4804 }
4805 
4806 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4807                                        SelectionDAG &DAG) {
4808   // TODO: What fast-math-flags should be set on the floating-point nodes?
4809 
4810   //   IntegerPartOfX = ((int32_t)(t0);
4811   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4812 
4813   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4814   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4815   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4816 
4817   //   IntegerPartOfX <<= 23;
4818   IntegerPartOfX = DAG.getNode(
4819       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4820       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4821                                   DAG.getDataLayout())));
4822 
4823   SDValue TwoToFractionalPartOfX;
4824   if (LimitFloatPrecision <= 6) {
4825     // For floating-point precision of 6:
4826     //
4827     //   TwoToFractionalPartOfX =
4828     //     0.997535578f +
4829     //       (0.735607626f + 0.252464424f * x) * x;
4830     //
4831     // error 0.0144103317, which is 6 bits
4832     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4833                              getF32Constant(DAG, 0x3e814304, dl));
4834     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4835                              getF32Constant(DAG, 0x3f3c50c8, dl));
4836     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4837     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4838                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4839   } else if (LimitFloatPrecision <= 12) {
4840     // For floating-point precision of 12:
4841     //
4842     //   TwoToFractionalPartOfX =
4843     //     0.999892986f +
4844     //       (0.696457318f +
4845     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4846     //
4847     // error 0.000107046256, which is 13 to 14 bits
4848     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4849                              getF32Constant(DAG, 0x3da235e3, dl));
4850     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4851                              getF32Constant(DAG, 0x3e65b8f3, dl));
4852     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4853     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4854                              getF32Constant(DAG, 0x3f324b07, dl));
4855     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4856     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4857                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4858   } else { // LimitFloatPrecision <= 18
4859     // For floating-point precision of 18:
4860     //
4861     //   TwoToFractionalPartOfX =
4862     //     0.999999982f +
4863     //       (0.693148872f +
4864     //         (0.240227044f +
4865     //           (0.554906021e-1f +
4866     //             (0.961591928e-2f +
4867     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4868     // error 2.47208000*10^(-7), which is better than 18 bits
4869     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4870                              getF32Constant(DAG, 0x3924b03e, dl));
4871     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4872                              getF32Constant(DAG, 0x3ab24b87, dl));
4873     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4874     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4875                              getF32Constant(DAG, 0x3c1d8c17, dl));
4876     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4877     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4878                              getF32Constant(DAG, 0x3d634a1d, dl));
4879     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4880     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4881                              getF32Constant(DAG, 0x3e75fe14, dl));
4882     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4883     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4884                               getF32Constant(DAG, 0x3f317234, dl));
4885     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4886     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4887                                          getF32Constant(DAG, 0x3f800000, dl));
4888   }
4889 
4890   // Add the exponent into the result in integer domain.
4891   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4892   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4893                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4894 }
4895 
4896 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4897 /// limited-precision mode.
4898 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4899                          const TargetLowering &TLI) {
4900   if (Op.getValueType() == MVT::f32 &&
4901       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4902 
4903     // Put the exponent in the right bit position for later addition to the
4904     // final result:
4905     //
4906     // t0 = Op * log2(e)
4907 
4908     // TODO: What fast-math-flags should be set here?
4909     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4910                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
4911     return getLimitedPrecisionExp2(t0, dl, DAG);
4912   }
4913 
4914   // No special expansion.
4915   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4916 }
4917 
4918 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4919 /// limited-precision mode.
4920 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4921                          const TargetLowering &TLI) {
4922   // TODO: What fast-math-flags should be set on the floating-point nodes?
4923 
4924   if (Op.getValueType() == MVT::f32 &&
4925       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4926     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4927 
4928     // Scale the exponent by log(2).
4929     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4930     SDValue LogOfExponent =
4931         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4932                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
4933 
4934     // Get the significand and build it into a floating-point number with
4935     // exponent of 1.
4936     SDValue X = GetSignificand(DAG, Op1, dl);
4937 
4938     SDValue LogOfMantissa;
4939     if (LimitFloatPrecision <= 6) {
4940       // For floating-point precision of 6:
4941       //
4942       //   LogofMantissa =
4943       //     -1.1609546f +
4944       //       (1.4034025f - 0.23903021f * x) * x;
4945       //
4946       // error 0.0034276066, which is better than 8 bits
4947       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4948                                getF32Constant(DAG, 0xbe74c456, dl));
4949       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4950                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4951       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4952       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4953                                   getF32Constant(DAG, 0x3f949a29, dl));
4954     } else if (LimitFloatPrecision <= 12) {
4955       // For floating-point precision of 12:
4956       //
4957       //   LogOfMantissa =
4958       //     -1.7417939f +
4959       //       (2.8212026f +
4960       //         (-1.4699568f +
4961       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4962       //
4963       // error 0.000061011436, which is 14 bits
4964       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4965                                getF32Constant(DAG, 0xbd67b6d6, dl));
4966       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4967                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4968       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4969       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4970                                getF32Constant(DAG, 0x3fbc278b, dl));
4971       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4972       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4973                                getF32Constant(DAG, 0x40348e95, dl));
4974       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4975       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4976                                   getF32Constant(DAG, 0x3fdef31a, dl));
4977     } else { // LimitFloatPrecision <= 18
4978       // For floating-point precision of 18:
4979       //
4980       //   LogOfMantissa =
4981       //     -2.1072184f +
4982       //       (4.2372794f +
4983       //         (-3.7029485f +
4984       //           (2.2781945f +
4985       //             (-0.87823314f +
4986       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4987       //
4988       // error 0.0000023660568, which is better than 18 bits
4989       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4990                                getF32Constant(DAG, 0xbc91e5ac, dl));
4991       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4992                                getF32Constant(DAG, 0x3e4350aa, dl));
4993       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4994       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4995                                getF32Constant(DAG, 0x3f60d3e3, dl));
4996       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4997       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4998                                getF32Constant(DAG, 0x4011cdf0, dl));
4999       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5000       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5001                                getF32Constant(DAG, 0x406cfd1c, dl));
5002       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5003       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5004                                getF32Constant(DAG, 0x408797cb, dl));
5005       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5006       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5007                                   getF32Constant(DAG, 0x4006dcab, dl));
5008     }
5009 
5010     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5011   }
5012 
5013   // No special expansion.
5014   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
5015 }
5016 
5017 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5018 /// limited-precision mode.
5019 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5020                           const TargetLowering &TLI) {
5021   // TODO: What fast-math-flags should be set on the floating-point nodes?
5022 
5023   if (Op.getValueType() == MVT::f32 &&
5024       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5025     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5026 
5027     // Get the exponent.
5028     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5029 
5030     // Get the significand and build it into a floating-point number with
5031     // exponent of 1.
5032     SDValue X = GetSignificand(DAG, Op1, dl);
5033 
5034     // Different possible minimax approximations of significand in
5035     // floating-point for various degrees of accuracy over [1,2].
5036     SDValue Log2ofMantissa;
5037     if (LimitFloatPrecision <= 6) {
5038       // For floating-point precision of 6:
5039       //
5040       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5041       //
5042       // error 0.0049451742, which is more than 7 bits
5043       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5044                                getF32Constant(DAG, 0xbeb08fe0, dl));
5045       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5046                                getF32Constant(DAG, 0x40019463, dl));
5047       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5048       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5049                                    getF32Constant(DAG, 0x3fd6633d, dl));
5050     } else if (LimitFloatPrecision <= 12) {
5051       // For floating-point precision of 12:
5052       //
5053       //   Log2ofMantissa =
5054       //     -2.51285454f +
5055       //       (4.07009056f +
5056       //         (-2.12067489f +
5057       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5058       //
5059       // error 0.0000876136000, which is better than 13 bits
5060       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5061                                getF32Constant(DAG, 0xbda7262e, dl));
5062       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5063                                getF32Constant(DAG, 0x3f25280b, dl));
5064       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5065       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5066                                getF32Constant(DAG, 0x4007b923, dl));
5067       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5068       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5069                                getF32Constant(DAG, 0x40823e2f, dl));
5070       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5071       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5072                                    getF32Constant(DAG, 0x4020d29c, dl));
5073     } else { // LimitFloatPrecision <= 18
5074       // For floating-point precision of 18:
5075       //
5076       //   Log2ofMantissa =
5077       //     -3.0400495f +
5078       //       (6.1129976f +
5079       //         (-5.3420409f +
5080       //           (3.2865683f +
5081       //             (-1.2669343f +
5082       //               (0.27515199f -
5083       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5084       //
5085       // error 0.0000018516, which is better than 18 bits
5086       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5087                                getF32Constant(DAG, 0xbcd2769e, dl));
5088       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5089                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5090       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5091       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5092                                getF32Constant(DAG, 0x3fa22ae7, dl));
5093       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5094       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5095                                getF32Constant(DAG, 0x40525723, dl));
5096       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5097       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5098                                getF32Constant(DAG, 0x40aaf200, dl));
5099       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5100       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5101                                getF32Constant(DAG, 0x40c39dad, dl));
5102       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5103       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5104                                    getF32Constant(DAG, 0x4042902c, dl));
5105     }
5106 
5107     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5108   }
5109 
5110   // No special expansion.
5111   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
5112 }
5113 
5114 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5115 /// limited-precision mode.
5116 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5117                            const TargetLowering &TLI) {
5118   // TODO: What fast-math-flags should be set on the floating-point nodes?
5119 
5120   if (Op.getValueType() == MVT::f32 &&
5121       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5122     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5123 
5124     // Scale the exponent by log10(2) [0.30102999f].
5125     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5126     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5127                                         getF32Constant(DAG, 0x3e9a209a, dl));
5128 
5129     // Get the significand and build it into a floating-point number with
5130     // exponent of 1.
5131     SDValue X = GetSignificand(DAG, Op1, dl);
5132 
5133     SDValue Log10ofMantissa;
5134     if (LimitFloatPrecision <= 6) {
5135       // For floating-point precision of 6:
5136       //
5137       //   Log10ofMantissa =
5138       //     -0.50419619f +
5139       //       (0.60948995f - 0.10380950f * x) * x;
5140       //
5141       // error 0.0014886165, which is 6 bits
5142       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5143                                getF32Constant(DAG, 0xbdd49a13, dl));
5144       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5145                                getF32Constant(DAG, 0x3f1c0789, dl));
5146       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5147       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5148                                     getF32Constant(DAG, 0x3f011300, dl));
5149     } else if (LimitFloatPrecision <= 12) {
5150       // For floating-point precision of 12:
5151       //
5152       //   Log10ofMantissa =
5153       //     -0.64831180f +
5154       //       (0.91751397f +
5155       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5156       //
5157       // error 0.00019228036, which is better than 12 bits
5158       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5159                                getF32Constant(DAG, 0x3d431f31, dl));
5160       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5161                                getF32Constant(DAG, 0x3ea21fb2, dl));
5162       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5163       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5164                                getF32Constant(DAG, 0x3f6ae232, dl));
5165       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5166       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5167                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5168     } else { // LimitFloatPrecision <= 18
5169       // For floating-point precision of 18:
5170       //
5171       //   Log10ofMantissa =
5172       //     -0.84299375f +
5173       //       (1.5327582f +
5174       //         (-1.0688956f +
5175       //           (0.49102474f +
5176       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5177       //
5178       // error 0.0000037995730, which is better than 18 bits
5179       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5180                                getF32Constant(DAG, 0x3c5d51ce, dl));
5181       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5182                                getF32Constant(DAG, 0x3e00685a, dl));
5183       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5184       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5185                                getF32Constant(DAG, 0x3efb6798, dl));
5186       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5187       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5188                                getF32Constant(DAG, 0x3f88d192, dl));
5189       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5190       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5191                                getF32Constant(DAG, 0x3fc4316c, dl));
5192       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5193       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5194                                     getF32Constant(DAG, 0x3f57ce70, dl));
5195     }
5196 
5197     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5198   }
5199 
5200   // No special expansion.
5201   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
5202 }
5203 
5204 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5205 /// limited-precision mode.
5206 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5207                           const TargetLowering &TLI) {
5208   if (Op.getValueType() == MVT::f32 &&
5209       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5210     return getLimitedPrecisionExp2(Op, dl, DAG);
5211 
5212   // No special expansion.
5213   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
5214 }
5215 
5216 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5217 /// limited-precision mode with x == 10.0f.
5218 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5219                          SelectionDAG &DAG, const TargetLowering &TLI) {
5220   bool IsExp10 = false;
5221   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5222       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5223     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5224       APFloat Ten(10.0f);
5225       IsExp10 = LHSC->isExactlyValue(Ten);
5226     }
5227   }
5228 
5229   // TODO: What fast-math-flags should be set on the FMUL node?
5230   if (IsExp10) {
5231     // Put the exponent in the right bit position for later addition to the
5232     // final result:
5233     //
5234     //   #define LOG2OF10 3.3219281f
5235     //   t0 = Op * LOG2OF10;
5236     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5237                              getF32Constant(DAG, 0x40549a78, dl));
5238     return getLimitedPrecisionExp2(t0, dl, DAG);
5239   }
5240 
5241   // No special expansion.
5242   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
5243 }
5244 
5245 /// ExpandPowI - Expand a llvm.powi intrinsic.
5246 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5247                           SelectionDAG &DAG) {
5248   // If RHS is a constant, we can expand this out to a multiplication tree,
5249   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5250   // optimizing for size, we only want to do this if the expansion would produce
5251   // a small number of multiplies, otherwise we do the full expansion.
5252   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5253     // Get the exponent as a positive value.
5254     unsigned Val = RHSC->getSExtValue();
5255     if ((int)Val < 0) Val = -Val;
5256 
5257     // powi(x, 0) -> 1.0
5258     if (Val == 0)
5259       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5260 
5261     bool OptForSize = DAG.shouldOptForSize();
5262     if (!OptForSize ||
5263         // If optimizing for size, don't insert too many multiplies.
5264         // This inserts up to 5 multiplies.
5265         countPopulation(Val) + Log2_32(Val) < 7) {
5266       // We use the simple binary decomposition method to generate the multiply
5267       // sequence.  There are more optimal ways to do this (for example,
5268       // powi(x,15) generates one more multiply than it should), but this has
5269       // the benefit of being both really simple and much better than a libcall.
5270       SDValue Res;  // Logically starts equal to 1.0
5271       SDValue CurSquare = LHS;
5272       // TODO: Intrinsics should have fast-math-flags that propagate to these
5273       // nodes.
5274       while (Val) {
5275         if (Val & 1) {
5276           if (Res.getNode())
5277             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5278           else
5279             Res = CurSquare;  // 1.0*CurSquare.
5280         }
5281 
5282         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5283                                 CurSquare, CurSquare);
5284         Val >>= 1;
5285       }
5286 
5287       // If the original was negative, invert the result, producing 1/(x*x*x).
5288       if (RHSC->getSExtValue() < 0)
5289         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5290                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5291       return Res;
5292     }
5293   }
5294 
5295   // Otherwise, expand to a libcall.
5296   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5297 }
5298 
5299 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5300                             SDValue LHS, SDValue RHS, SDValue Scale,
5301                             SelectionDAG &DAG, const TargetLowering &TLI) {
5302   EVT VT = LHS.getValueType();
5303   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5304   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5305   LLVMContext &Ctx = *DAG.getContext();
5306 
5307   // If the type is legal but the operation isn't, this node might survive all
5308   // the way to operation legalization. If we end up there and we do not have
5309   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5310   // node.
5311 
5312   // Coax the legalizer into expanding the node during type legalization instead
5313   // by bumping the size by one bit. This will force it to Promote, enabling the
5314   // early expansion and avoiding the need to expand later.
5315 
5316   // We don't have to do this if Scale is 0; that can always be expanded, unless
5317   // it's a saturating signed operation. Those can experience true integer
5318   // division overflow, a case which we must avoid.
5319 
5320   // FIXME: We wouldn't have to do this (or any of the early
5321   // expansion/promotion) if it was possible to expand a libcall of an
5322   // illegal type during operation legalization. But it's not, so things
5323   // get a bit hacky.
5324   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5325   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5326       (TLI.isTypeLegal(VT) ||
5327        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5328     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5329         Opcode, VT, ScaleInt);
5330     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5331       EVT PromVT;
5332       if (VT.isScalarInteger())
5333         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5334       else if (VT.isVector()) {
5335         PromVT = VT.getVectorElementType();
5336         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5337         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5338       } else
5339         llvm_unreachable("Wrong VT for DIVFIX?");
5340       if (Signed) {
5341         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5342         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5343       } else {
5344         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5345         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5346       }
5347       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5348       // For saturating operations, we need to shift up the LHS to get the
5349       // proper saturation width, and then shift down again afterwards.
5350       if (Saturating)
5351         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5352                           DAG.getConstant(1, DL, ShiftTy));
5353       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5354       if (Saturating)
5355         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5356                           DAG.getConstant(1, DL, ShiftTy));
5357       return DAG.getZExtOrTrunc(Res, DL, VT);
5358     }
5359   }
5360 
5361   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5362 }
5363 
5364 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5365 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5366 static void
5367 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
5368                      const SDValue &N) {
5369   switch (N.getOpcode()) {
5370   case ISD::CopyFromReg: {
5371     SDValue Op = N.getOperand(1);
5372     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5373                       Op.getValueType().getSizeInBits());
5374     return;
5375   }
5376   case ISD::BITCAST:
5377   case ISD::AssertZext:
5378   case ISD::AssertSext:
5379   case ISD::TRUNCATE:
5380     getUnderlyingArgRegs(Regs, N.getOperand(0));
5381     return;
5382   case ISD::BUILD_PAIR:
5383   case ISD::BUILD_VECTOR:
5384   case ISD::CONCAT_VECTORS:
5385     for (SDValue Op : N->op_values())
5386       getUnderlyingArgRegs(Regs, Op);
5387     return;
5388   default:
5389     return;
5390   }
5391 }
5392 
5393 /// If the DbgValueInst is a dbg_value of a function argument, create the
5394 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5395 /// instruction selection, they will be inserted to the entry BB.
5396 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5397     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5398     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5399   const Argument *Arg = dyn_cast<Argument>(V);
5400   if (!Arg)
5401     return false;
5402 
5403   if (!IsDbgDeclare) {
5404     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5405     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5406     // the entry block.
5407     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5408     if (!IsInEntryBlock)
5409       return false;
5410 
5411     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5412     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5413     // variable that also is a param.
5414     //
5415     // Although, if we are at the top of the entry block already, we can still
5416     // emit using ArgDbgValue. This might catch some situations when the
5417     // dbg.value refers to an argument that isn't used in the entry block, so
5418     // any CopyToReg node would be optimized out and the only way to express
5419     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5420     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5421     // we should only emit as ArgDbgValue if the Variable is an argument to the
5422     // current function, and the dbg.value intrinsic is found in the entry
5423     // block.
5424     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5425         !DL->getInlinedAt();
5426     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5427     if (!IsInPrologue && !VariableIsFunctionInputArg)
5428       return false;
5429 
5430     // Here we assume that a function argument on IR level only can be used to
5431     // describe one input parameter on source level. If we for example have
5432     // source code like this
5433     //
5434     //    struct A { long x, y; };
5435     //    void foo(struct A a, long b) {
5436     //      ...
5437     //      b = a.x;
5438     //      ...
5439     //    }
5440     //
5441     // and IR like this
5442     //
5443     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5444     //  entry:
5445     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5446     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5447     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5448     //    ...
5449     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5450     //    ...
5451     //
5452     // then the last dbg.value is describing a parameter "b" using a value that
5453     // is an argument. But since we already has used %a1 to describe a parameter
5454     // we should not handle that last dbg.value here (that would result in an
5455     // incorrect hoisting of the DBG_VALUE to the function entry).
5456     // Notice that we allow one dbg.value per IR level argument, to accommodate
5457     // for the situation with fragments above.
5458     if (VariableIsFunctionInputArg) {
5459       unsigned ArgNo = Arg->getArgNo();
5460       if (ArgNo >= FuncInfo.DescribedArgs.size())
5461         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5462       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5463         return false;
5464       FuncInfo.DescribedArgs.set(ArgNo);
5465     }
5466   }
5467 
5468   MachineFunction &MF = DAG.getMachineFunction();
5469   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5470 
5471   bool IsIndirect = false;
5472   Optional<MachineOperand> Op;
5473   // Some arguments' frame index is recorded during argument lowering.
5474   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5475   if (FI != std::numeric_limits<int>::max())
5476     Op = MachineOperand::CreateFI(FI);
5477 
5478   SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes;
5479   if (!Op && N.getNode()) {
5480     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5481     Register Reg;
5482     if (ArgRegsAndSizes.size() == 1)
5483       Reg = ArgRegsAndSizes.front().first;
5484 
5485     if (Reg && Reg.isVirtual()) {
5486       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5487       Register PR = RegInfo.getLiveInPhysReg(Reg);
5488       if (PR)
5489         Reg = PR;
5490     }
5491     if (Reg) {
5492       Op = MachineOperand::CreateReg(Reg, false);
5493       IsIndirect = IsDbgDeclare;
5494     }
5495   }
5496 
5497   if (!Op && N.getNode()) {
5498     // Check if frame index is available.
5499     SDValue LCandidate = peekThroughBitcasts(N);
5500     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5501       if (FrameIndexSDNode *FINode =
5502           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5503         Op = MachineOperand::CreateFI(FINode->getIndex());
5504   }
5505 
5506   if (!Op) {
5507     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5508     auto splitMultiRegDbgValue
5509       = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) {
5510       unsigned Offset = 0;
5511       for (auto RegAndSize : SplitRegs) {
5512         // If the expression is already a fragment, the current register
5513         // offset+size might extend beyond the fragment. In this case, only
5514         // the register bits that are inside the fragment are relevant.
5515         int RegFragmentSizeInBits = RegAndSize.second;
5516         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5517           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5518           // The register is entirely outside the expression fragment,
5519           // so is irrelevant for debug info.
5520           if (Offset >= ExprFragmentSizeInBits)
5521             break;
5522           // The register is partially outside the expression fragment, only
5523           // the low bits within the fragment are relevant for debug info.
5524           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5525             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5526           }
5527         }
5528 
5529         auto FragmentExpr = DIExpression::createFragmentExpression(
5530             Expr, Offset, RegFragmentSizeInBits);
5531         Offset += RegAndSize.second;
5532         // If a valid fragment expression cannot be created, the variable's
5533         // correct value cannot be determined and so it is set as Undef.
5534         if (!FragmentExpr) {
5535           SDDbgValue *SDV = DAG.getConstantDbgValue(
5536               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5537           DAG.AddDbgValue(SDV, nullptr, false);
5538           continue;
5539         }
5540         assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?");
5541         FuncInfo.ArgDbgValues.push_back(
5542           BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5543                   RegAndSize.first, Variable, *FragmentExpr));
5544       }
5545     };
5546 
5547     // Check if ValueMap has reg number.
5548     DenseMap<const Value *, Register>::const_iterator
5549       VMI = FuncInfo.ValueMap.find(V);
5550     if (VMI != FuncInfo.ValueMap.end()) {
5551       const auto &TLI = DAG.getTargetLoweringInfo();
5552       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5553                        V->getType(), getABIRegCopyCC(V));
5554       if (RFV.occupiesMultipleRegs()) {
5555         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5556         return true;
5557       }
5558 
5559       Op = MachineOperand::CreateReg(VMI->second, false);
5560       IsIndirect = IsDbgDeclare;
5561     } else if (ArgRegsAndSizes.size() > 1) {
5562       // This was split due to the calling convention, and no virtual register
5563       // mapping exists for the value.
5564       splitMultiRegDbgValue(ArgRegsAndSizes);
5565       return true;
5566     }
5567   }
5568 
5569   if (!Op)
5570     return false;
5571 
5572   assert(Variable->isValidLocationForIntrinsic(DL) &&
5573          "Expected inlined-at fields to agree");
5574   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5575   FuncInfo.ArgDbgValues.push_back(
5576       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5577               *Op, Variable, Expr));
5578 
5579   return true;
5580 }
5581 
5582 /// Return the appropriate SDDbgValue based on N.
5583 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5584                                              DILocalVariable *Variable,
5585                                              DIExpression *Expr,
5586                                              const DebugLoc &dl,
5587                                              unsigned DbgSDNodeOrder) {
5588   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5589     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5590     // stack slot locations.
5591     //
5592     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5593     // debug values here after optimization:
5594     //
5595     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5596     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5597     //
5598     // Both describe the direct values of their associated variables.
5599     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5600                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5601   }
5602   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5603                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5604 }
5605 
5606 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5607   switch (Intrinsic) {
5608   case Intrinsic::smul_fix:
5609     return ISD::SMULFIX;
5610   case Intrinsic::umul_fix:
5611     return ISD::UMULFIX;
5612   case Intrinsic::smul_fix_sat:
5613     return ISD::SMULFIXSAT;
5614   case Intrinsic::umul_fix_sat:
5615     return ISD::UMULFIXSAT;
5616   case Intrinsic::sdiv_fix:
5617     return ISD::SDIVFIX;
5618   case Intrinsic::udiv_fix:
5619     return ISD::UDIVFIX;
5620   case Intrinsic::sdiv_fix_sat:
5621     return ISD::SDIVFIXSAT;
5622   case Intrinsic::udiv_fix_sat:
5623     return ISD::UDIVFIXSAT;
5624   default:
5625     llvm_unreachable("Unhandled fixed point intrinsic");
5626   }
5627 }
5628 
5629 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5630                                            const char *FunctionName) {
5631   assert(FunctionName && "FunctionName must not be nullptr");
5632   SDValue Callee = DAG.getExternalSymbol(
5633       FunctionName,
5634       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5635   LowerCallTo(I, Callee, I.isTailCall());
5636 }
5637 
5638 /// Given a @llvm.call.preallocated.setup, return the corresponding
5639 /// preallocated call.
5640 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5641   assert(cast<CallBase>(PreallocatedSetup)
5642                  ->getCalledFunction()
5643                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5644          "expected call_preallocated_setup Value");
5645   for (auto *U : PreallocatedSetup->users()) {
5646     auto *UseCall = cast<CallBase>(U);
5647     const Function *Fn = UseCall->getCalledFunction();
5648     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5649       return UseCall;
5650     }
5651   }
5652   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5653 }
5654 
5655 /// Lower the call to the specified intrinsic function.
5656 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5657                                              unsigned Intrinsic) {
5658   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5659   SDLoc sdl = getCurSDLoc();
5660   DebugLoc dl = getCurDebugLoc();
5661   SDValue Res;
5662 
5663   switch (Intrinsic) {
5664   default:
5665     // By default, turn this into a target intrinsic node.
5666     visitTargetIntrinsic(I, Intrinsic);
5667     return;
5668   case Intrinsic::vscale: {
5669     match(&I, m_VScale(DAG.getDataLayout()));
5670     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5671     setValue(&I,
5672              DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)));
5673     return;
5674   }
5675   case Intrinsic::vastart:  visitVAStart(I); return;
5676   case Intrinsic::vaend:    visitVAEnd(I); return;
5677   case Intrinsic::vacopy:   visitVACopy(I); return;
5678   case Intrinsic::returnaddress:
5679     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5680                              TLI.getPointerTy(DAG.getDataLayout()),
5681                              getValue(I.getArgOperand(0))));
5682     return;
5683   case Intrinsic::addressofreturnaddress:
5684     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5685                              TLI.getPointerTy(DAG.getDataLayout())));
5686     return;
5687   case Intrinsic::sponentry:
5688     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5689                              TLI.getFrameIndexTy(DAG.getDataLayout())));
5690     return;
5691   case Intrinsic::frameaddress:
5692     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5693                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5694                              getValue(I.getArgOperand(0))));
5695     return;
5696   case Intrinsic::read_register: {
5697     Value *Reg = I.getArgOperand(0);
5698     SDValue Chain = getRoot();
5699     SDValue RegName =
5700         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5701     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5702     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5703       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5704     setValue(&I, Res);
5705     DAG.setRoot(Res.getValue(1));
5706     return;
5707   }
5708   case Intrinsic::write_register: {
5709     Value *Reg = I.getArgOperand(0);
5710     Value *RegValue = I.getArgOperand(1);
5711     SDValue Chain = getRoot();
5712     SDValue RegName =
5713         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5714     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5715                             RegName, getValue(RegValue)));
5716     return;
5717   }
5718   case Intrinsic::memcpy: {
5719     const auto &MCI = cast<MemCpyInst>(I);
5720     SDValue Op1 = getValue(I.getArgOperand(0));
5721     SDValue Op2 = getValue(I.getArgOperand(1));
5722     SDValue Op3 = getValue(I.getArgOperand(2));
5723     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5724     Align DstAlign = MCI.getDestAlign().valueOrOne();
5725     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5726     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5727     bool isVol = MCI.isVolatile();
5728     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5729     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5730     // node.
5731     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5732     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5733                                /* AlwaysInline */ false, isTC,
5734                                MachinePointerInfo(I.getArgOperand(0)),
5735                                MachinePointerInfo(I.getArgOperand(1)));
5736     updateDAGForMaybeTailCall(MC);
5737     return;
5738   }
5739   case Intrinsic::memcpy_inline: {
5740     const auto &MCI = cast<MemCpyInlineInst>(I);
5741     SDValue Dst = getValue(I.getArgOperand(0));
5742     SDValue Src = getValue(I.getArgOperand(1));
5743     SDValue Size = getValue(I.getArgOperand(2));
5744     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5745     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5746     Align DstAlign = MCI.getDestAlign().valueOrOne();
5747     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5748     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5749     bool isVol = MCI.isVolatile();
5750     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5751     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5752     // node.
5753     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5754                                /* AlwaysInline */ true, isTC,
5755                                MachinePointerInfo(I.getArgOperand(0)),
5756                                MachinePointerInfo(I.getArgOperand(1)));
5757     updateDAGForMaybeTailCall(MC);
5758     return;
5759   }
5760   case Intrinsic::memset: {
5761     const auto &MSI = cast<MemSetInst>(I);
5762     SDValue Op1 = getValue(I.getArgOperand(0));
5763     SDValue Op2 = getValue(I.getArgOperand(1));
5764     SDValue Op3 = getValue(I.getArgOperand(2));
5765     // @llvm.memset defines 0 and 1 to both mean no alignment.
5766     Align Alignment = MSI.getDestAlign().valueOrOne();
5767     bool isVol = MSI.isVolatile();
5768     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5769     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5770     SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC,
5771                                MachinePointerInfo(I.getArgOperand(0)));
5772     updateDAGForMaybeTailCall(MS);
5773     return;
5774   }
5775   case Intrinsic::memmove: {
5776     const auto &MMI = cast<MemMoveInst>(I);
5777     SDValue Op1 = getValue(I.getArgOperand(0));
5778     SDValue Op2 = getValue(I.getArgOperand(1));
5779     SDValue Op3 = getValue(I.getArgOperand(2));
5780     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5781     Align DstAlign = MMI.getDestAlign().valueOrOne();
5782     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5783     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5784     bool isVol = MMI.isVolatile();
5785     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5786     // FIXME: Support passing different dest/src alignments to the memmove DAG
5787     // node.
5788     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5789     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5790                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5791                                 MachinePointerInfo(I.getArgOperand(1)));
5792     updateDAGForMaybeTailCall(MM);
5793     return;
5794   }
5795   case Intrinsic::memcpy_element_unordered_atomic: {
5796     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5797     SDValue Dst = getValue(MI.getRawDest());
5798     SDValue Src = getValue(MI.getRawSource());
5799     SDValue Length = getValue(MI.getLength());
5800 
5801     unsigned DstAlign = MI.getDestAlignment();
5802     unsigned SrcAlign = MI.getSourceAlignment();
5803     Type *LengthTy = MI.getLength()->getType();
5804     unsigned ElemSz = MI.getElementSizeInBytes();
5805     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5806     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5807                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5808                                      MachinePointerInfo(MI.getRawDest()),
5809                                      MachinePointerInfo(MI.getRawSource()));
5810     updateDAGForMaybeTailCall(MC);
5811     return;
5812   }
5813   case Intrinsic::memmove_element_unordered_atomic: {
5814     auto &MI = cast<AtomicMemMoveInst>(I);
5815     SDValue Dst = getValue(MI.getRawDest());
5816     SDValue Src = getValue(MI.getRawSource());
5817     SDValue Length = getValue(MI.getLength());
5818 
5819     unsigned DstAlign = MI.getDestAlignment();
5820     unsigned SrcAlign = MI.getSourceAlignment();
5821     Type *LengthTy = MI.getLength()->getType();
5822     unsigned ElemSz = MI.getElementSizeInBytes();
5823     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5824     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5825                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5826                                       MachinePointerInfo(MI.getRawDest()),
5827                                       MachinePointerInfo(MI.getRawSource()));
5828     updateDAGForMaybeTailCall(MC);
5829     return;
5830   }
5831   case Intrinsic::memset_element_unordered_atomic: {
5832     auto &MI = cast<AtomicMemSetInst>(I);
5833     SDValue Dst = getValue(MI.getRawDest());
5834     SDValue Val = getValue(MI.getValue());
5835     SDValue Length = getValue(MI.getLength());
5836 
5837     unsigned DstAlign = MI.getDestAlignment();
5838     Type *LengthTy = MI.getLength()->getType();
5839     unsigned ElemSz = MI.getElementSizeInBytes();
5840     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5841     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5842                                      LengthTy, ElemSz, isTC,
5843                                      MachinePointerInfo(MI.getRawDest()));
5844     updateDAGForMaybeTailCall(MC);
5845     return;
5846   }
5847   case Intrinsic::call_preallocated_setup: {
5848     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
5849     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5850     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
5851                               getRoot(), SrcValue);
5852     setValue(&I, Res);
5853     DAG.setRoot(Res);
5854     return;
5855   }
5856   case Intrinsic::call_preallocated_arg: {
5857     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
5858     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5859     SDValue Ops[3];
5860     Ops[0] = getRoot();
5861     Ops[1] = SrcValue;
5862     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
5863                                    MVT::i32); // arg index
5864     SDValue Res = DAG.getNode(
5865         ISD::PREALLOCATED_ARG, sdl,
5866         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
5867     setValue(&I, Res);
5868     DAG.setRoot(Res.getValue(1));
5869     return;
5870   }
5871   case Intrinsic::dbg_addr:
5872   case Intrinsic::dbg_declare: {
5873     const auto &DI = cast<DbgVariableIntrinsic>(I);
5874     DILocalVariable *Variable = DI.getVariable();
5875     DIExpression *Expression = DI.getExpression();
5876     dropDanglingDebugInfo(Variable, Expression);
5877     assert(Variable && "Missing variable");
5878     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
5879                       << "\n");
5880     // Check if address has undef value.
5881     const Value *Address = DI.getVariableLocation();
5882     if (!Address || isa<UndefValue>(Address) ||
5883         (Address->use_empty() && !isa<Argument>(Address))) {
5884       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5885                         << " (bad/undef/unused-arg address)\n");
5886       return;
5887     }
5888 
5889     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5890 
5891     // Check if this variable can be described by a frame index, typically
5892     // either as a static alloca or a byval parameter.
5893     int FI = std::numeric_limits<int>::max();
5894     if (const auto *AI =
5895             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5896       if (AI->isStaticAlloca()) {
5897         auto I = FuncInfo.StaticAllocaMap.find(AI);
5898         if (I != FuncInfo.StaticAllocaMap.end())
5899           FI = I->second;
5900       }
5901     } else if (const auto *Arg = dyn_cast<Argument>(
5902                    Address->stripInBoundsConstantOffsets())) {
5903       FI = FuncInfo.getArgumentFrameIndex(Arg);
5904     }
5905 
5906     // llvm.dbg.addr is control dependent and always generates indirect
5907     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5908     // the MachineFunction variable table.
5909     if (FI != std::numeric_limits<int>::max()) {
5910       if (Intrinsic == Intrinsic::dbg_addr) {
5911         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5912             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5913         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5914       } else {
5915         LLVM_DEBUG(dbgs() << "Skipping " << DI
5916                           << " (variable info stashed in MF side table)\n");
5917       }
5918       return;
5919     }
5920 
5921     SDValue &N = NodeMap[Address];
5922     if (!N.getNode() && isa<Argument>(Address))
5923       // Check unused arguments map.
5924       N = UnusedArgNodeMap[Address];
5925     SDDbgValue *SDV;
5926     if (N.getNode()) {
5927       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5928         Address = BCI->getOperand(0);
5929       // Parameters are handled specially.
5930       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5931       if (isParameter && FINode) {
5932         // Byval parameter. We have a frame index at this point.
5933         SDV =
5934             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5935                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5936       } else if (isa<Argument>(Address)) {
5937         // Address is an argument, so try to emit its dbg value using
5938         // virtual register info from the FuncInfo.ValueMap.
5939         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5940         return;
5941       } else {
5942         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5943                               true, dl, SDNodeOrder);
5944       }
5945       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5946     } else {
5947       // If Address is an argument then try to emit its dbg value using
5948       // virtual register info from the FuncInfo.ValueMap.
5949       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5950                                     N)) {
5951         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5952                           << " (could not emit func-arg dbg_value)\n");
5953       }
5954     }
5955     return;
5956   }
5957   case Intrinsic::dbg_label: {
5958     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5959     DILabel *Label = DI.getLabel();
5960     assert(Label && "Missing label");
5961 
5962     SDDbgLabel *SDV;
5963     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5964     DAG.AddDbgLabel(SDV);
5965     return;
5966   }
5967   case Intrinsic::dbg_value: {
5968     const DbgValueInst &DI = cast<DbgValueInst>(I);
5969     assert(DI.getVariable() && "Missing variable");
5970 
5971     DILocalVariable *Variable = DI.getVariable();
5972     DIExpression *Expression = DI.getExpression();
5973     dropDanglingDebugInfo(Variable, Expression);
5974     const Value *V = DI.getValue();
5975     if (!V)
5976       return;
5977 
5978     if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
5979         SDNodeOrder))
5980       return;
5981 
5982     // TODO: Dangling debug info will eventually either be resolved or produce
5983     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5984     // between the original dbg.value location and its resolved DBG_VALUE, which
5985     // we should ideally fill with an extra Undef DBG_VALUE.
5986 
5987     DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5988     return;
5989   }
5990 
5991   case Intrinsic::eh_typeid_for: {
5992     // Find the type id for the given typeinfo.
5993     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5994     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5995     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5996     setValue(&I, Res);
5997     return;
5998   }
5999 
6000   case Intrinsic::eh_return_i32:
6001   case Intrinsic::eh_return_i64:
6002     DAG.getMachineFunction().setCallsEHReturn(true);
6003     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6004                             MVT::Other,
6005                             getControlRoot(),
6006                             getValue(I.getArgOperand(0)),
6007                             getValue(I.getArgOperand(1))));
6008     return;
6009   case Intrinsic::eh_unwind_init:
6010     DAG.getMachineFunction().setCallsUnwindInit(true);
6011     return;
6012   case Intrinsic::eh_dwarf_cfa:
6013     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6014                              TLI.getPointerTy(DAG.getDataLayout()),
6015                              getValue(I.getArgOperand(0))));
6016     return;
6017   case Intrinsic::eh_sjlj_callsite: {
6018     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6019     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
6020     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
6021     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6022 
6023     MMI.setCurrentCallSite(CI->getZExtValue());
6024     return;
6025   }
6026   case Intrinsic::eh_sjlj_functioncontext: {
6027     // Get and store the index of the function context.
6028     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6029     AllocaInst *FnCtx =
6030       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6031     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6032     MFI.setFunctionContextIndex(FI);
6033     return;
6034   }
6035   case Intrinsic::eh_sjlj_setjmp: {
6036     SDValue Ops[2];
6037     Ops[0] = getRoot();
6038     Ops[1] = getValue(I.getArgOperand(0));
6039     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6040                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6041     setValue(&I, Op.getValue(0));
6042     DAG.setRoot(Op.getValue(1));
6043     return;
6044   }
6045   case Intrinsic::eh_sjlj_longjmp:
6046     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6047                             getRoot(), getValue(I.getArgOperand(0))));
6048     return;
6049   case Intrinsic::eh_sjlj_setup_dispatch:
6050     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6051                             getRoot()));
6052     return;
6053   case Intrinsic::masked_gather:
6054     visitMaskedGather(I);
6055     return;
6056   case Intrinsic::masked_load:
6057     visitMaskedLoad(I);
6058     return;
6059   case Intrinsic::masked_scatter:
6060     visitMaskedScatter(I);
6061     return;
6062   case Intrinsic::masked_store:
6063     visitMaskedStore(I);
6064     return;
6065   case Intrinsic::masked_expandload:
6066     visitMaskedLoad(I, true /* IsExpanding */);
6067     return;
6068   case Intrinsic::masked_compressstore:
6069     visitMaskedStore(I, true /* IsCompressing */);
6070     return;
6071   case Intrinsic::powi:
6072     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6073                             getValue(I.getArgOperand(1)), DAG));
6074     return;
6075   case Intrinsic::log:
6076     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6077     return;
6078   case Intrinsic::log2:
6079     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6080     return;
6081   case Intrinsic::log10:
6082     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6083     return;
6084   case Intrinsic::exp:
6085     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6086     return;
6087   case Intrinsic::exp2:
6088     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6089     return;
6090   case Intrinsic::pow:
6091     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6092                            getValue(I.getArgOperand(1)), DAG, TLI));
6093     return;
6094   case Intrinsic::sqrt:
6095   case Intrinsic::fabs:
6096   case Intrinsic::sin:
6097   case Intrinsic::cos:
6098   case Intrinsic::floor:
6099   case Intrinsic::ceil:
6100   case Intrinsic::trunc:
6101   case Intrinsic::rint:
6102   case Intrinsic::nearbyint:
6103   case Intrinsic::round:
6104   case Intrinsic::roundeven:
6105   case Intrinsic::canonicalize: {
6106     unsigned Opcode;
6107     switch (Intrinsic) {
6108     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6109     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6110     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6111     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6112     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6113     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6114     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6115     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6116     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6117     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6118     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6119     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6120     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6121     }
6122 
6123     setValue(&I, DAG.getNode(Opcode, sdl,
6124                              getValue(I.getArgOperand(0)).getValueType(),
6125                              getValue(I.getArgOperand(0))));
6126     return;
6127   }
6128   case Intrinsic::lround:
6129   case Intrinsic::llround:
6130   case Intrinsic::lrint:
6131   case Intrinsic::llrint: {
6132     unsigned Opcode;
6133     switch (Intrinsic) {
6134     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6135     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6136     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6137     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6138     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6139     }
6140 
6141     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6142     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6143                              getValue(I.getArgOperand(0))));
6144     return;
6145   }
6146   case Intrinsic::minnum:
6147     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6148                              getValue(I.getArgOperand(0)).getValueType(),
6149                              getValue(I.getArgOperand(0)),
6150                              getValue(I.getArgOperand(1))));
6151     return;
6152   case Intrinsic::maxnum:
6153     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6154                              getValue(I.getArgOperand(0)).getValueType(),
6155                              getValue(I.getArgOperand(0)),
6156                              getValue(I.getArgOperand(1))));
6157     return;
6158   case Intrinsic::minimum:
6159     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6160                              getValue(I.getArgOperand(0)).getValueType(),
6161                              getValue(I.getArgOperand(0)),
6162                              getValue(I.getArgOperand(1))));
6163     return;
6164   case Intrinsic::maximum:
6165     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6166                              getValue(I.getArgOperand(0)).getValueType(),
6167                              getValue(I.getArgOperand(0)),
6168                              getValue(I.getArgOperand(1))));
6169     return;
6170   case Intrinsic::copysign:
6171     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6172                              getValue(I.getArgOperand(0)).getValueType(),
6173                              getValue(I.getArgOperand(0)),
6174                              getValue(I.getArgOperand(1))));
6175     return;
6176   case Intrinsic::fma:
6177     setValue(&I, DAG.getNode(ISD::FMA, sdl,
6178                              getValue(I.getArgOperand(0)).getValueType(),
6179                              getValue(I.getArgOperand(0)),
6180                              getValue(I.getArgOperand(1)),
6181                              getValue(I.getArgOperand(2))));
6182     return;
6183 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6184   case Intrinsic::INTRINSIC:
6185 #include "llvm/IR/ConstrainedOps.def"
6186     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6187     return;
6188   case Intrinsic::fmuladd: {
6189     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6190     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6191         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6192       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6193                                getValue(I.getArgOperand(0)).getValueType(),
6194                                getValue(I.getArgOperand(0)),
6195                                getValue(I.getArgOperand(1)),
6196                                getValue(I.getArgOperand(2))));
6197     } else {
6198       // TODO: Intrinsic calls should have fast-math-flags.
6199       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
6200                                 getValue(I.getArgOperand(0)).getValueType(),
6201                                 getValue(I.getArgOperand(0)),
6202                                 getValue(I.getArgOperand(1)));
6203       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6204                                 getValue(I.getArgOperand(0)).getValueType(),
6205                                 Mul,
6206                                 getValue(I.getArgOperand(2)));
6207       setValue(&I, Add);
6208     }
6209     return;
6210   }
6211   case Intrinsic::convert_to_fp16:
6212     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6213                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6214                                          getValue(I.getArgOperand(0)),
6215                                          DAG.getTargetConstant(0, sdl,
6216                                                                MVT::i32))));
6217     return;
6218   case Intrinsic::convert_from_fp16:
6219     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6220                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6221                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6222                                          getValue(I.getArgOperand(0)))));
6223     return;
6224   case Intrinsic::pcmarker: {
6225     SDValue Tmp = getValue(I.getArgOperand(0));
6226     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6227     return;
6228   }
6229   case Intrinsic::readcyclecounter: {
6230     SDValue Op = getRoot();
6231     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6232                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6233     setValue(&I, Res);
6234     DAG.setRoot(Res.getValue(1));
6235     return;
6236   }
6237   case Intrinsic::bitreverse:
6238     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6239                              getValue(I.getArgOperand(0)).getValueType(),
6240                              getValue(I.getArgOperand(0))));
6241     return;
6242   case Intrinsic::bswap:
6243     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6244                              getValue(I.getArgOperand(0)).getValueType(),
6245                              getValue(I.getArgOperand(0))));
6246     return;
6247   case Intrinsic::cttz: {
6248     SDValue Arg = getValue(I.getArgOperand(0));
6249     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6250     EVT Ty = Arg.getValueType();
6251     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6252                              sdl, Ty, Arg));
6253     return;
6254   }
6255   case Intrinsic::ctlz: {
6256     SDValue Arg = getValue(I.getArgOperand(0));
6257     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6258     EVT Ty = Arg.getValueType();
6259     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6260                              sdl, Ty, Arg));
6261     return;
6262   }
6263   case Intrinsic::ctpop: {
6264     SDValue Arg = getValue(I.getArgOperand(0));
6265     EVT Ty = Arg.getValueType();
6266     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6267     return;
6268   }
6269   case Intrinsic::fshl:
6270   case Intrinsic::fshr: {
6271     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6272     SDValue X = getValue(I.getArgOperand(0));
6273     SDValue Y = getValue(I.getArgOperand(1));
6274     SDValue Z = getValue(I.getArgOperand(2));
6275     EVT VT = X.getValueType();
6276     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
6277     SDValue Zero = DAG.getConstant(0, sdl, VT);
6278     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
6279 
6280     auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6281     if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
6282       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6283       return;
6284     }
6285 
6286     // When X == Y, this is rotate. If the data type has a power-of-2 size, we
6287     // avoid the select that is necessary in the general case to filter out
6288     // the 0-shift possibility that leads to UB.
6289     if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
6290       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6291       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6292         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6293         return;
6294       }
6295 
6296       // Some targets only rotate one way. Try the opposite direction.
6297       RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
6298       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6299         // Negate the shift amount because it is safe to ignore the high bits.
6300         SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6301         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
6302         return;
6303       }
6304 
6305       // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
6306       // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
6307       SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6308       SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
6309       SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
6310       SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
6311       setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
6312       return;
6313     }
6314 
6315     // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6316     // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6317     SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
6318     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
6319     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6320     SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
6321 
6322     // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6323     // and that is undefined. We must compare and select to avoid UB.
6324     EVT CCVT = MVT::i1;
6325     if (VT.isVector())
6326       CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
6327 
6328     // For fshl, 0-shift returns the 1st arg (X).
6329     // For fshr, 0-shift returns the 2nd arg (Y).
6330     SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
6331     setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
6332     return;
6333   }
6334   case Intrinsic::sadd_sat: {
6335     SDValue Op1 = getValue(I.getArgOperand(0));
6336     SDValue Op2 = getValue(I.getArgOperand(1));
6337     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6338     return;
6339   }
6340   case Intrinsic::uadd_sat: {
6341     SDValue Op1 = getValue(I.getArgOperand(0));
6342     SDValue Op2 = getValue(I.getArgOperand(1));
6343     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6344     return;
6345   }
6346   case Intrinsic::ssub_sat: {
6347     SDValue Op1 = getValue(I.getArgOperand(0));
6348     SDValue Op2 = getValue(I.getArgOperand(1));
6349     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6350     return;
6351   }
6352   case Intrinsic::usub_sat: {
6353     SDValue Op1 = getValue(I.getArgOperand(0));
6354     SDValue Op2 = getValue(I.getArgOperand(1));
6355     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6356     return;
6357   }
6358   case Intrinsic::smul_fix:
6359   case Intrinsic::umul_fix:
6360   case Intrinsic::smul_fix_sat:
6361   case Intrinsic::umul_fix_sat: {
6362     SDValue Op1 = getValue(I.getArgOperand(0));
6363     SDValue Op2 = getValue(I.getArgOperand(1));
6364     SDValue Op3 = getValue(I.getArgOperand(2));
6365     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6366                              Op1.getValueType(), Op1, Op2, Op3));
6367     return;
6368   }
6369   case Intrinsic::sdiv_fix:
6370   case Intrinsic::udiv_fix:
6371   case Intrinsic::sdiv_fix_sat:
6372   case Intrinsic::udiv_fix_sat: {
6373     SDValue Op1 = getValue(I.getArgOperand(0));
6374     SDValue Op2 = getValue(I.getArgOperand(1));
6375     SDValue Op3 = getValue(I.getArgOperand(2));
6376     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6377                               Op1, Op2, Op3, DAG, TLI));
6378     return;
6379   }
6380   case Intrinsic::stacksave: {
6381     SDValue Op = getRoot();
6382     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6383     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6384     setValue(&I, Res);
6385     DAG.setRoot(Res.getValue(1));
6386     return;
6387   }
6388   case Intrinsic::stackrestore:
6389     Res = getValue(I.getArgOperand(0));
6390     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6391     return;
6392   case Intrinsic::get_dynamic_area_offset: {
6393     SDValue Op = getRoot();
6394     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6395     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6396     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6397     // target.
6398     if (PtrTy.getSizeInBits() < ResTy.getSizeInBits())
6399       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6400                          " intrinsic!");
6401     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6402                       Op);
6403     DAG.setRoot(Op);
6404     setValue(&I, Res);
6405     return;
6406   }
6407   case Intrinsic::stackguard: {
6408     MachineFunction &MF = DAG.getMachineFunction();
6409     const Module &M = *MF.getFunction().getParent();
6410     SDValue Chain = getRoot();
6411     if (TLI.useLoadStackGuardNode()) {
6412       Res = getLoadStackGuard(DAG, sdl, Chain);
6413     } else {
6414       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6415       const Value *Global = TLI.getSDagStackGuard(M);
6416       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
6417       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6418                         MachinePointerInfo(Global, 0), Align,
6419                         MachineMemOperand::MOVolatile);
6420     }
6421     if (TLI.useStackGuardXorFP())
6422       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6423     DAG.setRoot(Chain);
6424     setValue(&I, Res);
6425     return;
6426   }
6427   case Intrinsic::stackprotector: {
6428     // Emit code into the DAG to store the stack guard onto the stack.
6429     MachineFunction &MF = DAG.getMachineFunction();
6430     MachineFrameInfo &MFI = MF.getFrameInfo();
6431     SDValue Src, Chain = getRoot();
6432 
6433     if (TLI.useLoadStackGuardNode())
6434       Src = getLoadStackGuard(DAG, sdl, Chain);
6435     else
6436       Src = getValue(I.getArgOperand(0));   // The guard's value.
6437 
6438     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6439 
6440     int FI = FuncInfo.StaticAllocaMap[Slot];
6441     MFI.setStackProtectorIndex(FI);
6442     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6443 
6444     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6445 
6446     // Store the stack protector onto the stack.
6447     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
6448                                                  DAG.getMachineFunction(), FI),
6449                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
6450     setValue(&I, Res);
6451     DAG.setRoot(Res);
6452     return;
6453   }
6454   case Intrinsic::objectsize:
6455     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6456 
6457   case Intrinsic::is_constant:
6458     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6459 
6460   case Intrinsic::annotation:
6461   case Intrinsic::ptr_annotation:
6462   case Intrinsic::launder_invariant_group:
6463   case Intrinsic::strip_invariant_group:
6464     // Drop the intrinsic, but forward the value
6465     setValue(&I, getValue(I.getOperand(0)));
6466     return;
6467   case Intrinsic::assume:
6468   case Intrinsic::var_annotation:
6469   case Intrinsic::sideeffect:
6470     // Discard annotate attributes, assumptions, and artificial side-effects.
6471     return;
6472 
6473   case Intrinsic::codeview_annotation: {
6474     // Emit a label associated with this metadata.
6475     MachineFunction &MF = DAG.getMachineFunction();
6476     MCSymbol *Label =
6477         MF.getMMI().getContext().createTempSymbol("annotation", true);
6478     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6479     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6480     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6481     DAG.setRoot(Res);
6482     return;
6483   }
6484 
6485   case Intrinsic::init_trampoline: {
6486     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6487 
6488     SDValue Ops[6];
6489     Ops[0] = getRoot();
6490     Ops[1] = getValue(I.getArgOperand(0));
6491     Ops[2] = getValue(I.getArgOperand(1));
6492     Ops[3] = getValue(I.getArgOperand(2));
6493     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6494     Ops[5] = DAG.getSrcValue(F);
6495 
6496     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6497 
6498     DAG.setRoot(Res);
6499     return;
6500   }
6501   case Intrinsic::adjust_trampoline:
6502     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6503                              TLI.getPointerTy(DAG.getDataLayout()),
6504                              getValue(I.getArgOperand(0))));
6505     return;
6506   case Intrinsic::gcroot: {
6507     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6508            "only valid in functions with gc specified, enforced by Verifier");
6509     assert(GFI && "implied by previous");
6510     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6511     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6512 
6513     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6514     GFI->addStackRoot(FI->getIndex(), TypeMap);
6515     return;
6516   }
6517   case Intrinsic::gcread:
6518   case Intrinsic::gcwrite:
6519     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6520   case Intrinsic::flt_rounds:
6521     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6522     setValue(&I, Res);
6523     DAG.setRoot(Res.getValue(1));
6524     return;
6525 
6526   case Intrinsic::expect:
6527     // Just replace __builtin_expect(exp, c) with EXP.
6528     setValue(&I, getValue(I.getArgOperand(0)));
6529     return;
6530 
6531   case Intrinsic::debugtrap:
6532   case Intrinsic::trap: {
6533     StringRef TrapFuncName =
6534         I.getAttributes()
6535             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6536             .getValueAsString();
6537     if (TrapFuncName.empty()) {
6538       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6539         ISD::TRAP : ISD::DEBUGTRAP;
6540       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6541       return;
6542     }
6543     TargetLowering::ArgListTy Args;
6544 
6545     TargetLowering::CallLoweringInfo CLI(DAG);
6546     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6547         CallingConv::C, I.getType(),
6548         DAG.getExternalSymbol(TrapFuncName.data(),
6549                               TLI.getPointerTy(DAG.getDataLayout())),
6550         std::move(Args));
6551 
6552     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6553     DAG.setRoot(Result.second);
6554     return;
6555   }
6556 
6557   case Intrinsic::uadd_with_overflow:
6558   case Intrinsic::sadd_with_overflow:
6559   case Intrinsic::usub_with_overflow:
6560   case Intrinsic::ssub_with_overflow:
6561   case Intrinsic::umul_with_overflow:
6562   case Intrinsic::smul_with_overflow: {
6563     ISD::NodeType Op;
6564     switch (Intrinsic) {
6565     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6566     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6567     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6568     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6569     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6570     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6571     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6572     }
6573     SDValue Op1 = getValue(I.getArgOperand(0));
6574     SDValue Op2 = getValue(I.getArgOperand(1));
6575 
6576     EVT ResultVT = Op1.getValueType();
6577     EVT OverflowVT = MVT::i1;
6578     if (ResultVT.isVector())
6579       OverflowVT = EVT::getVectorVT(
6580           *Context, OverflowVT, ResultVT.getVectorNumElements());
6581 
6582     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6583     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6584     return;
6585   }
6586   case Intrinsic::prefetch: {
6587     SDValue Ops[5];
6588     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6589     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6590     Ops[0] = DAG.getRoot();
6591     Ops[1] = getValue(I.getArgOperand(0));
6592     Ops[2] = getValue(I.getArgOperand(1));
6593     Ops[3] = getValue(I.getArgOperand(2));
6594     Ops[4] = getValue(I.getArgOperand(3));
6595     SDValue Result = DAG.getMemIntrinsicNode(
6596         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6597         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6598         /* align */ None, Flags);
6599 
6600     // Chain the prefetch in parallell with any pending loads, to stay out of
6601     // the way of later optimizations.
6602     PendingLoads.push_back(Result);
6603     Result = getRoot();
6604     DAG.setRoot(Result);
6605     return;
6606   }
6607   case Intrinsic::lifetime_start:
6608   case Intrinsic::lifetime_end: {
6609     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6610     // Stack coloring is not enabled in O0, discard region information.
6611     if (TM.getOptLevel() == CodeGenOpt::None)
6612       return;
6613 
6614     const int64_t ObjectSize =
6615         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6616     Value *const ObjectPtr = I.getArgOperand(1);
6617     SmallVector<const Value *, 4> Allocas;
6618     GetUnderlyingObjects(ObjectPtr, Allocas, *DL);
6619 
6620     for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(),
6621            E = Allocas.end(); Object != E; ++Object) {
6622       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6623 
6624       // Could not find an Alloca.
6625       if (!LifetimeObject)
6626         continue;
6627 
6628       // First check that the Alloca is static, otherwise it won't have a
6629       // valid frame index.
6630       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6631       if (SI == FuncInfo.StaticAllocaMap.end())
6632         return;
6633 
6634       const int FrameIndex = SI->second;
6635       int64_t Offset;
6636       if (GetPointerBaseWithConstantOffset(
6637               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6638         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6639       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6640                                 Offset);
6641       DAG.setRoot(Res);
6642     }
6643     return;
6644   }
6645   case Intrinsic::invariant_start:
6646     // Discard region information.
6647     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6648     return;
6649   case Intrinsic::invariant_end:
6650     // Discard region information.
6651     return;
6652   case Intrinsic::clear_cache:
6653     /// FunctionName may be null.
6654     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6655       lowerCallToExternalSymbol(I, FunctionName);
6656     return;
6657   case Intrinsic::donothing:
6658     // ignore
6659     return;
6660   case Intrinsic::experimental_stackmap:
6661     visitStackmap(I);
6662     return;
6663   case Intrinsic::experimental_patchpoint_void:
6664   case Intrinsic::experimental_patchpoint_i64:
6665     visitPatchpoint(I);
6666     return;
6667   case Intrinsic::experimental_gc_statepoint:
6668     LowerStatepoint(cast<GCStatepointInst>(I));
6669     return;
6670   case Intrinsic::experimental_gc_result:
6671     visitGCResult(cast<GCResultInst>(I));
6672     return;
6673   case Intrinsic::experimental_gc_relocate:
6674     visitGCRelocate(cast<GCRelocateInst>(I));
6675     return;
6676   case Intrinsic::instrprof_increment:
6677     llvm_unreachable("instrprof failed to lower an increment");
6678   case Intrinsic::instrprof_value_profile:
6679     llvm_unreachable("instrprof failed to lower a value profiling call");
6680   case Intrinsic::localescape: {
6681     MachineFunction &MF = DAG.getMachineFunction();
6682     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6683 
6684     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6685     // is the same on all targets.
6686     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6687       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6688       if (isa<ConstantPointerNull>(Arg))
6689         continue; // Skip null pointers. They represent a hole in index space.
6690       AllocaInst *Slot = cast<AllocaInst>(Arg);
6691       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6692              "can only escape static allocas");
6693       int FI = FuncInfo.StaticAllocaMap[Slot];
6694       MCSymbol *FrameAllocSym =
6695           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6696               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6697       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6698               TII->get(TargetOpcode::LOCAL_ESCAPE))
6699           .addSym(FrameAllocSym)
6700           .addFrameIndex(FI);
6701     }
6702 
6703     return;
6704   }
6705 
6706   case Intrinsic::localrecover: {
6707     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6708     MachineFunction &MF = DAG.getMachineFunction();
6709 
6710     // Get the symbol that defines the frame offset.
6711     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6712     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6713     unsigned IdxVal =
6714         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6715     MCSymbol *FrameAllocSym =
6716         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6717             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6718 
6719     Value *FP = I.getArgOperand(1);
6720     SDValue FPVal = getValue(FP);
6721     EVT PtrVT = FPVal.getValueType();
6722 
6723     // Create a MCSymbol for the label to avoid any target lowering
6724     // that would make this PC relative.
6725     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6726     SDValue OffsetVal =
6727         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6728 
6729     // Add the offset to the FP.
6730     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6731     setValue(&I, Add);
6732 
6733     return;
6734   }
6735 
6736   case Intrinsic::eh_exceptionpointer:
6737   case Intrinsic::eh_exceptioncode: {
6738     // Get the exception pointer vreg, copy from it, and resize it to fit.
6739     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6740     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6741     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6742     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6743     SDValue N =
6744         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6745     if (Intrinsic == Intrinsic::eh_exceptioncode)
6746       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6747     setValue(&I, N);
6748     return;
6749   }
6750   case Intrinsic::xray_customevent: {
6751     // Here we want to make sure that the intrinsic behaves as if it has a
6752     // specific calling convention, and only for x86_64.
6753     // FIXME: Support other platforms later.
6754     const auto &Triple = DAG.getTarget().getTargetTriple();
6755     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6756       return;
6757 
6758     SDLoc DL = getCurSDLoc();
6759     SmallVector<SDValue, 8> Ops;
6760 
6761     // We want to say that we always want the arguments in registers.
6762     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6763     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6764     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6765     SDValue Chain = getRoot();
6766     Ops.push_back(LogEntryVal);
6767     Ops.push_back(StrSizeVal);
6768     Ops.push_back(Chain);
6769 
6770     // We need to enforce the calling convention for the callsite, so that
6771     // argument ordering is enforced correctly, and that register allocation can
6772     // see that some registers may be assumed clobbered and have to preserve
6773     // them across calls to the intrinsic.
6774     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6775                                            DL, NodeTys, Ops);
6776     SDValue patchableNode = SDValue(MN, 0);
6777     DAG.setRoot(patchableNode);
6778     setValue(&I, patchableNode);
6779     return;
6780   }
6781   case Intrinsic::xray_typedevent: {
6782     // Here we want to make sure that the intrinsic behaves as if it has a
6783     // specific calling convention, and only for x86_64.
6784     // FIXME: Support other platforms later.
6785     const auto &Triple = DAG.getTarget().getTargetTriple();
6786     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6787       return;
6788 
6789     SDLoc DL = getCurSDLoc();
6790     SmallVector<SDValue, 8> Ops;
6791 
6792     // We want to say that we always want the arguments in registers.
6793     // It's unclear to me how manipulating the selection DAG here forces callers
6794     // to provide arguments in registers instead of on the stack.
6795     SDValue LogTypeId = getValue(I.getArgOperand(0));
6796     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6797     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6798     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6799     SDValue Chain = getRoot();
6800     Ops.push_back(LogTypeId);
6801     Ops.push_back(LogEntryVal);
6802     Ops.push_back(StrSizeVal);
6803     Ops.push_back(Chain);
6804 
6805     // We need to enforce the calling convention for the callsite, so that
6806     // argument ordering is enforced correctly, and that register allocation can
6807     // see that some registers may be assumed clobbered and have to preserve
6808     // them across calls to the intrinsic.
6809     MachineSDNode *MN = DAG.getMachineNode(
6810         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6811     SDValue patchableNode = SDValue(MN, 0);
6812     DAG.setRoot(patchableNode);
6813     setValue(&I, patchableNode);
6814     return;
6815   }
6816   case Intrinsic::experimental_deoptimize:
6817     LowerDeoptimizeCall(&I);
6818     return;
6819 
6820   case Intrinsic::experimental_vector_reduce_v2_fadd:
6821   case Intrinsic::experimental_vector_reduce_v2_fmul:
6822   case Intrinsic::experimental_vector_reduce_add:
6823   case Intrinsic::experimental_vector_reduce_mul:
6824   case Intrinsic::experimental_vector_reduce_and:
6825   case Intrinsic::experimental_vector_reduce_or:
6826   case Intrinsic::experimental_vector_reduce_xor:
6827   case Intrinsic::experimental_vector_reduce_smax:
6828   case Intrinsic::experimental_vector_reduce_smin:
6829   case Intrinsic::experimental_vector_reduce_umax:
6830   case Intrinsic::experimental_vector_reduce_umin:
6831   case Intrinsic::experimental_vector_reduce_fmax:
6832   case Intrinsic::experimental_vector_reduce_fmin:
6833     visitVectorReduce(I, Intrinsic);
6834     return;
6835 
6836   case Intrinsic::icall_branch_funnel: {
6837     SmallVector<SDValue, 16> Ops;
6838     Ops.push_back(getValue(I.getArgOperand(0)));
6839 
6840     int64_t Offset;
6841     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6842         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6843     if (!Base)
6844       report_fatal_error(
6845           "llvm.icall.branch.funnel operand must be a GlobalValue");
6846     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6847 
6848     struct BranchFunnelTarget {
6849       int64_t Offset;
6850       SDValue Target;
6851     };
6852     SmallVector<BranchFunnelTarget, 8> Targets;
6853 
6854     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6855       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6856           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6857       if (ElemBase != Base)
6858         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6859                            "to the same GlobalValue");
6860 
6861       SDValue Val = getValue(I.getArgOperand(Op + 1));
6862       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6863       if (!GA)
6864         report_fatal_error(
6865             "llvm.icall.branch.funnel operand must be a GlobalValue");
6866       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6867                                      GA->getGlobal(), getCurSDLoc(),
6868                                      Val.getValueType(), GA->getOffset())});
6869     }
6870     llvm::sort(Targets,
6871                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6872                  return T1.Offset < T2.Offset;
6873                });
6874 
6875     for (auto &T : Targets) {
6876       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6877       Ops.push_back(T.Target);
6878     }
6879 
6880     Ops.push_back(DAG.getRoot()); // Chain
6881     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6882                                  getCurSDLoc(), MVT::Other, Ops),
6883               0);
6884     DAG.setRoot(N);
6885     setValue(&I, N);
6886     HasTailCall = true;
6887     return;
6888   }
6889 
6890   case Intrinsic::wasm_landingpad_index:
6891     // Information this intrinsic contained has been transferred to
6892     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6893     // delete it now.
6894     return;
6895 
6896   case Intrinsic::aarch64_settag:
6897   case Intrinsic::aarch64_settag_zero: {
6898     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6899     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
6900     SDValue Val = TSI.EmitTargetCodeForSetTag(
6901         DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
6902         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
6903         ZeroMemory);
6904     DAG.setRoot(Val);
6905     setValue(&I, Val);
6906     return;
6907   }
6908   case Intrinsic::ptrmask: {
6909     SDValue Ptr = getValue(I.getOperand(0));
6910     SDValue Const = getValue(I.getOperand(1));
6911 
6912     EVT PtrVT = Ptr.getValueType();
6913     setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr,
6914                              DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT)));
6915     return;
6916   }
6917   case Intrinsic::get_active_lane_mask: {
6918     auto DL = getCurSDLoc();
6919     SDValue Index = getValue(I.getOperand(0));
6920     SDValue BTC = getValue(I.getOperand(1));
6921     Type *ElementTy = I.getOperand(0)->getType();
6922     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6923     unsigned VecWidth = VT.getVectorNumElements();
6924 
6925     SmallVector<SDValue, 16> OpsBTC;
6926     SmallVector<SDValue, 16> OpsIndex;
6927     SmallVector<SDValue, 16> OpsStepConstants;
6928     for (unsigned i = 0; i < VecWidth; i++) {
6929       OpsBTC.push_back(BTC);
6930       OpsIndex.push_back(Index);
6931       OpsStepConstants.push_back(DAG.getConstant(i, DL, MVT::getVT(ElementTy)));
6932     }
6933 
6934     EVT CCVT = MVT::i1;
6935     CCVT = EVT::getVectorVT(I.getContext(), CCVT, VecWidth);
6936 
6937     auto VecTy = MVT::getVT(FixedVectorType::get(ElementTy, VecWidth));
6938     SDValue VectorIndex = DAG.getBuildVector(VecTy, DL, OpsIndex);
6939     SDValue VectorStep = DAG.getBuildVector(VecTy, DL, OpsStepConstants);
6940     SDValue VectorInduction = DAG.getNode(
6941        ISD::UADDO, DL, DAG.getVTList(VecTy, CCVT), VectorIndex, VectorStep);
6942     SDValue VectorBTC = DAG.getBuildVector(VecTy, DL, OpsBTC);
6943     SDValue SetCC = DAG.getSetCC(DL, CCVT, VectorInduction.getValue(0),
6944                                  VectorBTC, ISD::CondCode::SETULE);
6945     setValue(&I, DAG.getNode(ISD::AND, DL, CCVT,
6946                              DAG.getNOT(DL, VectorInduction.getValue(1), CCVT),
6947                              SetCC));
6948     return;
6949   }
6950   }
6951 }
6952 
6953 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6954     const ConstrainedFPIntrinsic &FPI) {
6955   SDLoc sdl = getCurSDLoc();
6956 
6957   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6958   SmallVector<EVT, 4> ValueVTs;
6959   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6960   ValueVTs.push_back(MVT::Other); // Out chain
6961 
6962   // We do not need to serialize constrained FP intrinsics against
6963   // each other or against (nonvolatile) loads, so they can be
6964   // chained like loads.
6965   SDValue Chain = DAG.getRoot();
6966   SmallVector<SDValue, 4> Opers;
6967   Opers.push_back(Chain);
6968   if (FPI.isUnaryOp()) {
6969     Opers.push_back(getValue(FPI.getArgOperand(0)));
6970   } else if (FPI.isTernaryOp()) {
6971     Opers.push_back(getValue(FPI.getArgOperand(0)));
6972     Opers.push_back(getValue(FPI.getArgOperand(1)));
6973     Opers.push_back(getValue(FPI.getArgOperand(2)));
6974   } else {
6975     Opers.push_back(getValue(FPI.getArgOperand(0)));
6976     Opers.push_back(getValue(FPI.getArgOperand(1)));
6977   }
6978 
6979   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
6980     assert(Result.getNode()->getNumValues() == 2);
6981 
6982     // Push node to the appropriate list so that future instructions can be
6983     // chained up correctly.
6984     SDValue OutChain = Result.getValue(1);
6985     switch (EB) {
6986     case fp::ExceptionBehavior::ebIgnore:
6987       // The only reason why ebIgnore nodes still need to be chained is that
6988       // they might depend on the current rounding mode, and therefore must
6989       // not be moved across instruction that may change that mode.
6990       LLVM_FALLTHROUGH;
6991     case fp::ExceptionBehavior::ebMayTrap:
6992       // These must not be moved across calls or instructions that may change
6993       // floating-point exception masks.
6994       PendingConstrainedFP.push_back(OutChain);
6995       break;
6996     case fp::ExceptionBehavior::ebStrict:
6997       // These must not be moved across calls or instructions that may change
6998       // floating-point exception masks or read floating-point exception flags.
6999       // In addition, they cannot be optimized out even if unused.
7000       PendingConstrainedFPStrict.push_back(OutChain);
7001       break;
7002     }
7003   };
7004 
7005   SDVTList VTs = DAG.getVTList(ValueVTs);
7006   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
7007 
7008   SDNodeFlags Flags;
7009   if (EB == fp::ExceptionBehavior::ebIgnore)
7010     Flags.setNoFPExcept(true);
7011 
7012   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7013     Flags.copyFMF(*FPOp);
7014 
7015   unsigned Opcode;
7016   switch (FPI.getIntrinsicID()) {
7017   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7018 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7019   case Intrinsic::INTRINSIC:                                                   \
7020     Opcode = ISD::STRICT_##DAGN;                                               \
7021     break;
7022 #include "llvm/IR/ConstrainedOps.def"
7023   case Intrinsic::experimental_constrained_fmuladd: {
7024     Opcode = ISD::STRICT_FMA;
7025     // Break fmuladd into fmul and fadd.
7026     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7027         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
7028                                         ValueVTs[0])) {
7029       Opers.pop_back();
7030       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7031       pushOutChain(Mul, EB);
7032       Opcode = ISD::STRICT_FADD;
7033       Opers.clear();
7034       Opers.push_back(Mul.getValue(1));
7035       Opers.push_back(Mul.getValue(0));
7036       Opers.push_back(getValue(FPI.getArgOperand(2)));
7037     }
7038     break;
7039   }
7040   }
7041 
7042   // A few strict DAG nodes carry additional operands that are not
7043   // set up by the default code above.
7044   switch (Opcode) {
7045   default: break;
7046   case ISD::STRICT_FP_ROUND:
7047     Opers.push_back(
7048         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7049     break;
7050   case ISD::STRICT_FSETCC:
7051   case ISD::STRICT_FSETCCS: {
7052     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7053     Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate())));
7054     break;
7055   }
7056   }
7057 
7058   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7059   pushOutChain(Result, EB);
7060 
7061   SDValue FPResult = Result.getValue(0);
7062   setValue(&FPI, FPResult);
7063 }
7064 
7065 std::pair<SDValue, SDValue>
7066 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7067                                     const BasicBlock *EHPadBB) {
7068   MachineFunction &MF = DAG.getMachineFunction();
7069   MachineModuleInfo &MMI = MF.getMMI();
7070   MCSymbol *BeginLabel = nullptr;
7071 
7072   if (EHPadBB) {
7073     // Insert a label before the invoke call to mark the try range.  This can be
7074     // used to detect deletion of the invoke via the MachineModuleInfo.
7075     BeginLabel = MMI.getContext().createTempSymbol();
7076 
7077     // For SjLj, keep track of which landing pads go with which invokes
7078     // so as to maintain the ordering of pads in the LSDA.
7079     unsigned CallSiteIndex = MMI.getCurrentCallSite();
7080     if (CallSiteIndex) {
7081       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7082       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7083 
7084       // Now that the call site is handled, stop tracking it.
7085       MMI.setCurrentCallSite(0);
7086     }
7087 
7088     // Both PendingLoads and PendingExports must be flushed here;
7089     // this call might not return.
7090     (void)getRoot();
7091     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
7092 
7093     CLI.setChain(getRoot());
7094   }
7095   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7096   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7097 
7098   assert((CLI.IsTailCall || Result.second.getNode()) &&
7099          "Non-null chain expected with non-tail call!");
7100   assert((Result.second.getNode() || !Result.first.getNode()) &&
7101          "Null value expected with tail call!");
7102 
7103   if (!Result.second.getNode()) {
7104     // As a special case, a null chain means that a tail call has been emitted
7105     // and the DAG root is already updated.
7106     HasTailCall = true;
7107 
7108     // Since there's no actual continuation from this block, nothing can be
7109     // relying on us setting vregs for them.
7110     PendingExports.clear();
7111   } else {
7112     DAG.setRoot(Result.second);
7113   }
7114 
7115   if (EHPadBB) {
7116     // Insert a label at the end of the invoke call to mark the try range.  This
7117     // can be used to detect deletion of the invoke via the MachineModuleInfo.
7118     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7119     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
7120 
7121     // Inform MachineModuleInfo of range.
7122     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7123     // There is a platform (e.g. wasm) that uses funclet style IR but does not
7124     // actually use outlined funclets and their LSDA info style.
7125     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7126       assert(CLI.CB);
7127       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
7128       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CB), BeginLabel, EndLabel);
7129     } else if (!isScopedEHPersonality(Pers)) {
7130       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7131     }
7132   }
7133 
7134   return Result;
7135 }
7136 
7137 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7138                                       bool isTailCall,
7139                                       const BasicBlock *EHPadBB) {
7140   auto &DL = DAG.getDataLayout();
7141   FunctionType *FTy = CB.getFunctionType();
7142   Type *RetTy = CB.getType();
7143 
7144   TargetLowering::ArgListTy Args;
7145   Args.reserve(CB.arg_size());
7146 
7147   const Value *SwiftErrorVal = nullptr;
7148   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7149 
7150   if (isTailCall) {
7151     // Avoid emitting tail calls in functions with the disable-tail-calls
7152     // attribute.
7153     auto *Caller = CB.getParent()->getParent();
7154     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7155         "true")
7156       isTailCall = false;
7157 
7158     // We can't tail call inside a function with a swifterror argument. Lowering
7159     // does not support this yet. It would have to move into the swifterror
7160     // register before the call.
7161     if (TLI.supportSwiftError() &&
7162         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7163       isTailCall = false;
7164   }
7165 
7166   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7167     TargetLowering::ArgListEntry Entry;
7168     const Value *V = *I;
7169 
7170     // Skip empty types
7171     if (V->getType()->isEmptyTy())
7172       continue;
7173 
7174     SDValue ArgNode = getValue(V);
7175     Entry.Node = ArgNode; Entry.Ty = V->getType();
7176 
7177     Entry.setAttributes(&CB, I - CB.arg_begin());
7178 
7179     // Use swifterror virtual register as input to the call.
7180     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7181       SwiftErrorVal = V;
7182       // We find the virtual register for the actual swifterror argument.
7183       // Instead of using the Value, we use the virtual register instead.
7184       Entry.Node =
7185           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7186                           EVT(TLI.getPointerTy(DL)));
7187     }
7188 
7189     Args.push_back(Entry);
7190 
7191     // If we have an explicit sret argument that is an Instruction, (i.e., it
7192     // might point to function-local memory), we can't meaningfully tail-call.
7193     if (Entry.IsSRet && isa<Instruction>(V))
7194       isTailCall = false;
7195   }
7196 
7197   // If call site has a cfguardtarget operand bundle, create and add an
7198   // additional ArgListEntry.
7199   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7200     TargetLowering::ArgListEntry Entry;
7201     Value *V = Bundle->Inputs[0];
7202     SDValue ArgNode = getValue(V);
7203     Entry.Node = ArgNode;
7204     Entry.Ty = V->getType();
7205     Entry.IsCFGuardTarget = true;
7206     Args.push_back(Entry);
7207   }
7208 
7209   // Check if target-independent constraints permit a tail call here.
7210   // Target-dependent constraints are checked within TLI->LowerCallTo.
7211   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7212     isTailCall = false;
7213 
7214   // Disable tail calls if there is an swifterror argument. Targets have not
7215   // been updated to support tail calls.
7216   if (TLI.supportSwiftError() && SwiftErrorVal)
7217     isTailCall = false;
7218 
7219   TargetLowering::CallLoweringInfo CLI(DAG);
7220   CLI.setDebugLoc(getCurSDLoc())
7221       .setChain(getRoot())
7222       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7223       .setTailCall(isTailCall)
7224       .setConvergent(CB.isConvergent())
7225       .setIsPreallocated(
7226           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
7227   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7228 
7229   if (Result.first.getNode()) {
7230     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7231     setValue(&CB, Result.first);
7232   }
7233 
7234   // The last element of CLI.InVals has the SDValue for swifterror return.
7235   // Here we copy it to a virtual register and update SwiftErrorMap for
7236   // book-keeping.
7237   if (SwiftErrorVal && TLI.supportSwiftError()) {
7238     // Get the last element of InVals.
7239     SDValue Src = CLI.InVals.back();
7240     Register VReg =
7241         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
7242     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7243     DAG.setRoot(CopyNode);
7244   }
7245 }
7246 
7247 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7248                              SelectionDAGBuilder &Builder) {
7249   // Check to see if this load can be trivially constant folded, e.g. if the
7250   // input is from a string literal.
7251   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7252     // Cast pointer to the type we really want to load.
7253     Type *LoadTy =
7254         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7255     if (LoadVT.isVector())
7256       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
7257 
7258     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7259                                          PointerType::getUnqual(LoadTy));
7260 
7261     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7262             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7263       return Builder.getValue(LoadCst);
7264   }
7265 
7266   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7267   // still constant memory, the input chain can be the entry node.
7268   SDValue Root;
7269   bool ConstantMemory = false;
7270 
7271   // Do not serialize (non-volatile) loads of constant memory with anything.
7272   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7273     Root = Builder.DAG.getEntryNode();
7274     ConstantMemory = true;
7275   } else {
7276     // Do not serialize non-volatile loads against each other.
7277     Root = Builder.DAG.getRoot();
7278   }
7279 
7280   SDValue Ptr = Builder.getValue(PtrVal);
7281   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
7282                                         Ptr, MachinePointerInfo(PtrVal),
7283                                         /* Alignment = */ 1);
7284 
7285   if (!ConstantMemory)
7286     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7287   return LoadVal;
7288 }
7289 
7290 /// Record the value for an instruction that produces an integer result,
7291 /// converting the type where necessary.
7292 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7293                                                   SDValue Value,
7294                                                   bool IsSigned) {
7295   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7296                                                     I.getType(), true);
7297   if (IsSigned)
7298     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7299   else
7300     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7301   setValue(&I, Value);
7302 }
7303 
7304 /// See if we can lower a memcmp call into an optimized form. If so, return
7305 /// true and lower it. Otherwise return false, and it will be lowered like a
7306 /// normal call.
7307 /// The caller already checked that \p I calls the appropriate LibFunc with a
7308 /// correct prototype.
7309 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
7310   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7311   const Value *Size = I.getArgOperand(2);
7312   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7313   if (CSize && CSize->getZExtValue() == 0) {
7314     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7315                                                           I.getType(), true);
7316     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7317     return true;
7318   }
7319 
7320   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7321   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7322       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7323       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7324   if (Res.first.getNode()) {
7325     processIntegerCallValue(I, Res.first, true);
7326     PendingLoads.push_back(Res.second);
7327     return true;
7328   }
7329 
7330   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7331   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7332   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7333     return false;
7334 
7335   // If the target has a fast compare for the given size, it will return a
7336   // preferred load type for that size. Require that the load VT is legal and
7337   // that the target supports unaligned loads of that type. Otherwise, return
7338   // INVALID.
7339   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7340     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7341     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7342     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7343       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7344       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7345       // TODO: Check alignment of src and dest ptrs.
7346       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7347       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7348       if (!TLI.isTypeLegal(LVT) ||
7349           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7350           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7351         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7352     }
7353 
7354     return LVT;
7355   };
7356 
7357   // This turns into unaligned loads. We only do this if the target natively
7358   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7359   // we'll only produce a small number of byte loads.
7360   MVT LoadVT;
7361   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7362   switch (NumBitsToCompare) {
7363   default:
7364     return false;
7365   case 16:
7366     LoadVT = MVT::i16;
7367     break;
7368   case 32:
7369     LoadVT = MVT::i32;
7370     break;
7371   case 64:
7372   case 128:
7373   case 256:
7374     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7375     break;
7376   }
7377 
7378   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7379     return false;
7380 
7381   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7382   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7383 
7384   // Bitcast to a wide integer type if the loads are vectors.
7385   if (LoadVT.isVector()) {
7386     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7387     LoadL = DAG.getBitcast(CmpVT, LoadL);
7388     LoadR = DAG.getBitcast(CmpVT, LoadR);
7389   }
7390 
7391   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7392   processIntegerCallValue(I, Cmp, false);
7393   return true;
7394 }
7395 
7396 /// See if we can lower a memchr call into an optimized form. If so, return
7397 /// true and lower it. Otherwise return false, and it will be lowered like a
7398 /// normal call.
7399 /// The caller already checked that \p I calls the appropriate LibFunc with a
7400 /// correct prototype.
7401 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7402   const Value *Src = I.getArgOperand(0);
7403   const Value *Char = I.getArgOperand(1);
7404   const Value *Length = I.getArgOperand(2);
7405 
7406   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7407   std::pair<SDValue, SDValue> Res =
7408     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7409                                 getValue(Src), getValue(Char), getValue(Length),
7410                                 MachinePointerInfo(Src));
7411   if (Res.first.getNode()) {
7412     setValue(&I, Res.first);
7413     PendingLoads.push_back(Res.second);
7414     return true;
7415   }
7416 
7417   return false;
7418 }
7419 
7420 /// See if we can lower a mempcpy call into an optimized form. If so, return
7421 /// true and lower it. Otherwise return false, and it will be lowered like a
7422 /// normal call.
7423 /// The caller already checked that \p I calls the appropriate LibFunc with a
7424 /// correct prototype.
7425 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7426   SDValue Dst = getValue(I.getArgOperand(0));
7427   SDValue Src = getValue(I.getArgOperand(1));
7428   SDValue Size = getValue(I.getArgOperand(2));
7429 
7430   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
7431   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
7432   // DAG::getMemcpy needs Alignment to be defined.
7433   Align Alignment = std::min(DstAlign, SrcAlign);
7434 
7435   bool isVol = false;
7436   SDLoc sdl = getCurSDLoc();
7437 
7438   // In the mempcpy context we need to pass in a false value for isTailCall
7439   // because the return pointer needs to be adjusted by the size of
7440   // the copied memory.
7441   SDValue Root = isVol ? getRoot() : getMemoryRoot();
7442   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
7443                              /*isTailCall=*/false,
7444                              MachinePointerInfo(I.getArgOperand(0)),
7445                              MachinePointerInfo(I.getArgOperand(1)));
7446   assert(MC.getNode() != nullptr &&
7447          "** memcpy should not be lowered as TailCall in mempcpy context **");
7448   DAG.setRoot(MC);
7449 
7450   // Check if Size needs to be truncated or extended.
7451   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7452 
7453   // Adjust return pointer to point just past the last dst byte.
7454   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7455                                     Dst, Size);
7456   setValue(&I, DstPlusSize);
7457   return true;
7458 }
7459 
7460 /// See if we can lower a strcpy call into an optimized form.  If so, return
7461 /// true and lower it, otherwise return false and it will be lowered like a
7462 /// normal call.
7463 /// The caller already checked that \p I calls the appropriate LibFunc with a
7464 /// correct prototype.
7465 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7466   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7467 
7468   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7469   std::pair<SDValue, SDValue> Res =
7470     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7471                                 getValue(Arg0), getValue(Arg1),
7472                                 MachinePointerInfo(Arg0),
7473                                 MachinePointerInfo(Arg1), isStpcpy);
7474   if (Res.first.getNode()) {
7475     setValue(&I, Res.first);
7476     DAG.setRoot(Res.second);
7477     return true;
7478   }
7479 
7480   return false;
7481 }
7482 
7483 /// See if we can lower a strcmp call into an optimized form.  If so, return
7484 /// true and lower it, otherwise return false and it will be lowered like a
7485 /// normal call.
7486 /// The caller already checked that \p I calls the appropriate LibFunc with a
7487 /// correct prototype.
7488 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7489   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7490 
7491   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7492   std::pair<SDValue, SDValue> Res =
7493     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7494                                 getValue(Arg0), getValue(Arg1),
7495                                 MachinePointerInfo(Arg0),
7496                                 MachinePointerInfo(Arg1));
7497   if (Res.first.getNode()) {
7498     processIntegerCallValue(I, Res.first, true);
7499     PendingLoads.push_back(Res.second);
7500     return true;
7501   }
7502 
7503   return false;
7504 }
7505 
7506 /// See if we can lower a strlen call into an optimized form.  If so, return
7507 /// true and lower it, otherwise return false and it will be lowered like a
7508 /// normal call.
7509 /// The caller already checked that \p I calls the appropriate LibFunc with a
7510 /// correct prototype.
7511 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7512   const Value *Arg0 = I.getArgOperand(0);
7513 
7514   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7515   std::pair<SDValue, SDValue> Res =
7516     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7517                                 getValue(Arg0), MachinePointerInfo(Arg0));
7518   if (Res.first.getNode()) {
7519     processIntegerCallValue(I, Res.first, false);
7520     PendingLoads.push_back(Res.second);
7521     return true;
7522   }
7523 
7524   return false;
7525 }
7526 
7527 /// See if we can lower a strnlen call into an optimized form.  If so, return
7528 /// true and lower it, otherwise return false and it will be lowered like a
7529 /// normal call.
7530 /// The caller already checked that \p I calls the appropriate LibFunc with a
7531 /// correct prototype.
7532 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7533   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7534 
7535   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7536   std::pair<SDValue, SDValue> Res =
7537     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7538                                  getValue(Arg0), getValue(Arg1),
7539                                  MachinePointerInfo(Arg0));
7540   if (Res.first.getNode()) {
7541     processIntegerCallValue(I, Res.first, false);
7542     PendingLoads.push_back(Res.second);
7543     return true;
7544   }
7545 
7546   return false;
7547 }
7548 
7549 /// See if we can lower a unary floating-point operation into an SDNode with
7550 /// the specified Opcode.  If so, return true and lower it, otherwise return
7551 /// false and it will be lowered like a normal call.
7552 /// The caller already checked that \p I calls the appropriate LibFunc with a
7553 /// correct prototype.
7554 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7555                                               unsigned Opcode) {
7556   // We already checked this call's prototype; verify it doesn't modify errno.
7557   if (!I.onlyReadsMemory())
7558     return false;
7559 
7560   SDValue Tmp = getValue(I.getArgOperand(0));
7561   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
7562   return true;
7563 }
7564 
7565 /// See if we can lower a binary floating-point operation into an SDNode with
7566 /// the specified Opcode. If so, return true and lower it. Otherwise return
7567 /// false, and it will be lowered like a normal call.
7568 /// The caller already checked that \p I calls the appropriate LibFunc with a
7569 /// correct prototype.
7570 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7571                                                unsigned Opcode) {
7572   // We already checked this call's prototype; verify it doesn't modify errno.
7573   if (!I.onlyReadsMemory())
7574     return false;
7575 
7576   SDValue Tmp0 = getValue(I.getArgOperand(0));
7577   SDValue Tmp1 = getValue(I.getArgOperand(1));
7578   EVT VT = Tmp0.getValueType();
7579   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
7580   return true;
7581 }
7582 
7583 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7584   // Handle inline assembly differently.
7585   if (I.isInlineAsm()) {
7586     visitInlineAsm(I);
7587     return;
7588   }
7589 
7590   if (Function *F = I.getCalledFunction()) {
7591     if (F->isDeclaration()) {
7592       // Is this an LLVM intrinsic or a target-specific intrinsic?
7593       unsigned IID = F->getIntrinsicID();
7594       if (!IID)
7595         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7596           IID = II->getIntrinsicID(F);
7597 
7598       if (IID) {
7599         visitIntrinsicCall(I, IID);
7600         return;
7601       }
7602     }
7603 
7604     // Check for well-known libc/libm calls.  If the function is internal, it
7605     // can't be a library call.  Don't do the check if marked as nobuiltin for
7606     // some reason or the call site requires strict floating point semantics.
7607     LibFunc Func;
7608     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7609         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7610         LibInfo->hasOptimizedCodeGen(Func)) {
7611       switch (Func) {
7612       default: break;
7613       case LibFunc_copysign:
7614       case LibFunc_copysignf:
7615       case LibFunc_copysignl:
7616         // We already checked this call's prototype; verify it doesn't modify
7617         // errno.
7618         if (I.onlyReadsMemory()) {
7619           SDValue LHS = getValue(I.getArgOperand(0));
7620           SDValue RHS = getValue(I.getArgOperand(1));
7621           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7622                                    LHS.getValueType(), LHS, RHS));
7623           return;
7624         }
7625         break;
7626       case LibFunc_fabs:
7627       case LibFunc_fabsf:
7628       case LibFunc_fabsl:
7629         if (visitUnaryFloatCall(I, ISD::FABS))
7630           return;
7631         break;
7632       case LibFunc_fmin:
7633       case LibFunc_fminf:
7634       case LibFunc_fminl:
7635         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7636           return;
7637         break;
7638       case LibFunc_fmax:
7639       case LibFunc_fmaxf:
7640       case LibFunc_fmaxl:
7641         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7642           return;
7643         break;
7644       case LibFunc_sin:
7645       case LibFunc_sinf:
7646       case LibFunc_sinl:
7647         if (visitUnaryFloatCall(I, ISD::FSIN))
7648           return;
7649         break;
7650       case LibFunc_cos:
7651       case LibFunc_cosf:
7652       case LibFunc_cosl:
7653         if (visitUnaryFloatCall(I, ISD::FCOS))
7654           return;
7655         break;
7656       case LibFunc_sqrt:
7657       case LibFunc_sqrtf:
7658       case LibFunc_sqrtl:
7659       case LibFunc_sqrt_finite:
7660       case LibFunc_sqrtf_finite:
7661       case LibFunc_sqrtl_finite:
7662         if (visitUnaryFloatCall(I, ISD::FSQRT))
7663           return;
7664         break;
7665       case LibFunc_floor:
7666       case LibFunc_floorf:
7667       case LibFunc_floorl:
7668         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7669           return;
7670         break;
7671       case LibFunc_nearbyint:
7672       case LibFunc_nearbyintf:
7673       case LibFunc_nearbyintl:
7674         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7675           return;
7676         break;
7677       case LibFunc_ceil:
7678       case LibFunc_ceilf:
7679       case LibFunc_ceill:
7680         if (visitUnaryFloatCall(I, ISD::FCEIL))
7681           return;
7682         break;
7683       case LibFunc_rint:
7684       case LibFunc_rintf:
7685       case LibFunc_rintl:
7686         if (visitUnaryFloatCall(I, ISD::FRINT))
7687           return;
7688         break;
7689       case LibFunc_round:
7690       case LibFunc_roundf:
7691       case LibFunc_roundl:
7692         if (visitUnaryFloatCall(I, ISD::FROUND))
7693           return;
7694         break;
7695       case LibFunc_trunc:
7696       case LibFunc_truncf:
7697       case LibFunc_truncl:
7698         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7699           return;
7700         break;
7701       case LibFunc_log2:
7702       case LibFunc_log2f:
7703       case LibFunc_log2l:
7704         if (visitUnaryFloatCall(I, ISD::FLOG2))
7705           return;
7706         break;
7707       case LibFunc_exp2:
7708       case LibFunc_exp2f:
7709       case LibFunc_exp2l:
7710         if (visitUnaryFloatCall(I, ISD::FEXP2))
7711           return;
7712         break;
7713       case LibFunc_memcmp:
7714         if (visitMemCmpCall(I))
7715           return;
7716         break;
7717       case LibFunc_mempcpy:
7718         if (visitMemPCpyCall(I))
7719           return;
7720         break;
7721       case LibFunc_memchr:
7722         if (visitMemChrCall(I))
7723           return;
7724         break;
7725       case LibFunc_strcpy:
7726         if (visitStrCpyCall(I, false))
7727           return;
7728         break;
7729       case LibFunc_stpcpy:
7730         if (visitStrCpyCall(I, true))
7731           return;
7732         break;
7733       case LibFunc_strcmp:
7734         if (visitStrCmpCall(I))
7735           return;
7736         break;
7737       case LibFunc_strlen:
7738         if (visitStrLenCall(I))
7739           return;
7740         break;
7741       case LibFunc_strnlen:
7742         if (visitStrNLenCall(I))
7743           return;
7744         break;
7745       }
7746     }
7747   }
7748 
7749   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7750   // have to do anything here to lower funclet bundles.
7751   // CFGuardTarget bundles are lowered in LowerCallTo.
7752   assert(!I.hasOperandBundlesOtherThan(
7753              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
7754               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated}) &&
7755          "Cannot lower calls with arbitrary operand bundles!");
7756 
7757   SDValue Callee = getValue(I.getCalledOperand());
7758 
7759   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7760     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7761   else
7762     // Check if we can potentially perform a tail call. More detailed checking
7763     // is be done within LowerCallTo, after more information about the call is
7764     // known.
7765     LowerCallTo(I, Callee, I.isTailCall());
7766 }
7767 
7768 namespace {
7769 
7770 /// AsmOperandInfo - This contains information for each constraint that we are
7771 /// lowering.
7772 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7773 public:
7774   /// CallOperand - If this is the result output operand or a clobber
7775   /// this is null, otherwise it is the incoming operand to the CallInst.
7776   /// This gets modified as the asm is processed.
7777   SDValue CallOperand;
7778 
7779   /// AssignedRegs - If this is a register or register class operand, this
7780   /// contains the set of register corresponding to the operand.
7781   RegsForValue AssignedRegs;
7782 
7783   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7784     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7785   }
7786 
7787   /// Whether or not this operand accesses memory
7788   bool hasMemory(const TargetLowering &TLI) const {
7789     // Indirect operand accesses access memory.
7790     if (isIndirect)
7791       return true;
7792 
7793     for (const auto &Code : Codes)
7794       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7795         return true;
7796 
7797     return false;
7798   }
7799 
7800   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7801   /// corresponds to.  If there is no Value* for this operand, it returns
7802   /// MVT::Other.
7803   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7804                            const DataLayout &DL) const {
7805     if (!CallOperandVal) return MVT::Other;
7806 
7807     if (isa<BasicBlock>(CallOperandVal))
7808       return TLI.getProgramPointerTy(DL);
7809 
7810     llvm::Type *OpTy = CallOperandVal->getType();
7811 
7812     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7813     // If this is an indirect operand, the operand is a pointer to the
7814     // accessed type.
7815     if (isIndirect) {
7816       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7817       if (!PtrTy)
7818         report_fatal_error("Indirect operand for inline asm not a pointer!");
7819       OpTy = PtrTy->getElementType();
7820     }
7821 
7822     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7823     if (StructType *STy = dyn_cast<StructType>(OpTy))
7824       if (STy->getNumElements() == 1)
7825         OpTy = STy->getElementType(0);
7826 
7827     // If OpTy is not a single value, it may be a struct/union that we
7828     // can tile with integers.
7829     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7830       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7831       switch (BitSize) {
7832       default: break;
7833       case 1:
7834       case 8:
7835       case 16:
7836       case 32:
7837       case 64:
7838       case 128:
7839         OpTy = IntegerType::get(Context, BitSize);
7840         break;
7841       }
7842     }
7843 
7844     return TLI.getValueType(DL, OpTy, true);
7845   }
7846 };
7847 
7848 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7849 
7850 } // end anonymous namespace
7851 
7852 /// Make sure that the output operand \p OpInfo and its corresponding input
7853 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7854 /// out).
7855 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7856                                SDISelAsmOperandInfo &MatchingOpInfo,
7857                                SelectionDAG &DAG) {
7858   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7859     return;
7860 
7861   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7862   const auto &TLI = DAG.getTargetLoweringInfo();
7863 
7864   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7865       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7866                                        OpInfo.ConstraintVT);
7867   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7868       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7869                                        MatchingOpInfo.ConstraintVT);
7870   if ((OpInfo.ConstraintVT.isInteger() !=
7871        MatchingOpInfo.ConstraintVT.isInteger()) ||
7872       (MatchRC.second != InputRC.second)) {
7873     // FIXME: error out in a more elegant fashion
7874     report_fatal_error("Unsupported asm: input constraint"
7875                        " with a matching output constraint of"
7876                        " incompatible type!");
7877   }
7878   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7879 }
7880 
7881 /// Get a direct memory input to behave well as an indirect operand.
7882 /// This may introduce stores, hence the need for a \p Chain.
7883 /// \return The (possibly updated) chain.
7884 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7885                                         SDISelAsmOperandInfo &OpInfo,
7886                                         SelectionDAG &DAG) {
7887   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7888 
7889   // If we don't have an indirect input, put it in the constpool if we can,
7890   // otherwise spill it to a stack slot.
7891   // TODO: This isn't quite right. We need to handle these according to
7892   // the addressing mode that the constraint wants. Also, this may take
7893   // an additional register for the computation and we don't want that
7894   // either.
7895 
7896   // If the operand is a float, integer, or vector constant, spill to a
7897   // constant pool entry to get its address.
7898   const Value *OpVal = OpInfo.CallOperandVal;
7899   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7900       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7901     OpInfo.CallOperand = DAG.getConstantPool(
7902         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7903     return Chain;
7904   }
7905 
7906   // Otherwise, create a stack slot and emit a store to it before the asm.
7907   Type *Ty = OpVal->getType();
7908   auto &DL = DAG.getDataLayout();
7909   uint64_t TySize = DL.getTypeAllocSize(Ty);
7910   MachineFunction &MF = DAG.getMachineFunction();
7911   int SSFI = MF.getFrameInfo().CreateStackObject(
7912       TySize, DL.getPrefTypeAlign(Ty), false);
7913   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7914   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7915                             MachinePointerInfo::getFixedStack(MF, SSFI),
7916                             TLI.getMemValueType(DL, Ty));
7917   OpInfo.CallOperand = StackSlot;
7918 
7919   return Chain;
7920 }
7921 
7922 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7923 /// specified operand.  We prefer to assign virtual registers, to allow the
7924 /// register allocator to handle the assignment process.  However, if the asm
7925 /// uses features that we can't model on machineinstrs, we have SDISel do the
7926 /// allocation.  This produces generally horrible, but correct, code.
7927 ///
7928 ///   OpInfo describes the operand
7929 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7930 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7931                                  SDISelAsmOperandInfo &OpInfo,
7932                                  SDISelAsmOperandInfo &RefOpInfo) {
7933   LLVMContext &Context = *DAG.getContext();
7934   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7935 
7936   MachineFunction &MF = DAG.getMachineFunction();
7937   SmallVector<unsigned, 4> Regs;
7938   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7939 
7940   // No work to do for memory operations.
7941   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7942     return;
7943 
7944   // If this is a constraint for a single physreg, or a constraint for a
7945   // register class, find it.
7946   unsigned AssignedReg;
7947   const TargetRegisterClass *RC;
7948   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7949       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7950   // RC is unset only on failure. Return immediately.
7951   if (!RC)
7952     return;
7953 
7954   // Get the actual register value type.  This is important, because the user
7955   // may have asked for (e.g.) the AX register in i32 type.  We need to
7956   // remember that AX is actually i16 to get the right extension.
7957   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7958 
7959   if (OpInfo.ConstraintVT != MVT::Other) {
7960     // If this is an FP operand in an integer register (or visa versa), or more
7961     // generally if the operand value disagrees with the register class we plan
7962     // to stick it in, fix the operand type.
7963     //
7964     // If this is an input value, the bitcast to the new type is done now.
7965     // Bitcast for output value is done at the end of visitInlineAsm().
7966     if ((OpInfo.Type == InlineAsm::isOutput ||
7967          OpInfo.Type == InlineAsm::isInput) &&
7968         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7969       // Try to convert to the first EVT that the reg class contains.  If the
7970       // types are identical size, use a bitcast to convert (e.g. two differing
7971       // vector types).  Note: output bitcast is done at the end of
7972       // visitInlineAsm().
7973       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7974         // Exclude indirect inputs while they are unsupported because the code
7975         // to perform the load is missing and thus OpInfo.CallOperand still
7976         // refers to the input address rather than the pointed-to value.
7977         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7978           OpInfo.CallOperand =
7979               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7980         OpInfo.ConstraintVT = RegVT;
7981         // If the operand is an FP value and we want it in integer registers,
7982         // use the corresponding integer type. This turns an f64 value into
7983         // i64, which can be passed with two i32 values on a 32-bit machine.
7984       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7985         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7986         if (OpInfo.Type == InlineAsm::isInput)
7987           OpInfo.CallOperand =
7988               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
7989         OpInfo.ConstraintVT = VT;
7990       }
7991     }
7992   }
7993 
7994   // No need to allocate a matching input constraint since the constraint it's
7995   // matching to has already been allocated.
7996   if (OpInfo.isMatchingInputConstraint())
7997     return;
7998 
7999   EVT ValueVT = OpInfo.ConstraintVT;
8000   if (OpInfo.ConstraintVT == MVT::Other)
8001     ValueVT = RegVT;
8002 
8003   // Initialize NumRegs.
8004   unsigned NumRegs = 1;
8005   if (OpInfo.ConstraintVT != MVT::Other)
8006     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
8007 
8008   // If this is a constraint for a specific physical register, like {r17},
8009   // assign it now.
8010 
8011   // If this associated to a specific register, initialize iterator to correct
8012   // place. If virtual, make sure we have enough registers
8013 
8014   // Initialize iterator if necessary
8015   TargetRegisterClass::iterator I = RC->begin();
8016   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8017 
8018   // Do not check for single registers.
8019   if (AssignedReg) {
8020       for (; *I != AssignedReg; ++I)
8021         assert(I != RC->end() && "AssignedReg should be member of RC");
8022   }
8023 
8024   for (; NumRegs; --NumRegs, ++I) {
8025     assert(I != RC->end() && "Ran out of registers to allocate!");
8026     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8027     Regs.push_back(R);
8028   }
8029 
8030   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8031 }
8032 
8033 static unsigned
8034 findMatchingInlineAsmOperand(unsigned OperandNo,
8035                              const std::vector<SDValue> &AsmNodeOperands) {
8036   // Scan until we find the definition we already emitted of this operand.
8037   unsigned CurOp = InlineAsm::Op_FirstOperand;
8038   for (; OperandNo; --OperandNo) {
8039     // Advance to the next operand.
8040     unsigned OpFlag =
8041         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8042     assert((InlineAsm::isRegDefKind(OpFlag) ||
8043             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8044             InlineAsm::isMemKind(OpFlag)) &&
8045            "Skipped past definitions?");
8046     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8047   }
8048   return CurOp;
8049 }
8050 
8051 namespace {
8052 
8053 class ExtraFlags {
8054   unsigned Flags = 0;
8055 
8056 public:
8057   explicit ExtraFlags(const CallBase &Call) {
8058     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8059     if (IA->hasSideEffects())
8060       Flags |= InlineAsm::Extra_HasSideEffects;
8061     if (IA->isAlignStack())
8062       Flags |= InlineAsm::Extra_IsAlignStack;
8063     if (Call.isConvergent())
8064       Flags |= InlineAsm::Extra_IsConvergent;
8065     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8066   }
8067 
8068   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8069     // Ideally, we would only check against memory constraints.  However, the
8070     // meaning of an Other constraint can be target-specific and we can't easily
8071     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8072     // for Other constraints as well.
8073     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8074         OpInfo.ConstraintType == TargetLowering::C_Other) {
8075       if (OpInfo.Type == InlineAsm::isInput)
8076         Flags |= InlineAsm::Extra_MayLoad;
8077       else if (OpInfo.Type == InlineAsm::isOutput)
8078         Flags |= InlineAsm::Extra_MayStore;
8079       else if (OpInfo.Type == InlineAsm::isClobber)
8080         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8081     }
8082   }
8083 
8084   unsigned get() const { return Flags; }
8085 };
8086 
8087 } // end anonymous namespace
8088 
8089 /// visitInlineAsm - Handle a call to an InlineAsm object.
8090 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call) {
8091   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8092 
8093   /// ConstraintOperands - Information about all of the constraints.
8094   SDISelAsmOperandInfoVector ConstraintOperands;
8095 
8096   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8097   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8098       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8099 
8100   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8101   // AsmDialect, MayLoad, MayStore).
8102   bool HasSideEffect = IA->hasSideEffects();
8103   ExtraFlags ExtraInfo(Call);
8104 
8105   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8106   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8107   unsigned NumMatchingOps = 0;
8108   for (auto &T : TargetConstraints) {
8109     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8110     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8111 
8112     // Compute the value type for each operand.
8113     if (OpInfo.Type == InlineAsm::isInput ||
8114         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8115       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
8116 
8117       // Process the call argument. BasicBlocks are labels, currently appearing
8118       // only in asm's.
8119       if (isa<CallBrInst>(Call) &&
8120           ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() -
8121                         cast<CallBrInst>(&Call)->getNumIndirectDests() -
8122                         NumMatchingOps) &&
8123           (NumMatchingOps == 0 ||
8124            ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() -
8125                         NumMatchingOps))) {
8126         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8127         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8128         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8129       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8130         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8131       } else {
8132         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8133       }
8134 
8135       OpInfo.ConstraintVT =
8136           OpInfo
8137               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
8138               .getSimpleVT();
8139     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8140       // The return value of the call is this value.  As such, there is no
8141       // corresponding argument.
8142       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8143       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
8144         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8145             DAG.getDataLayout(), STy->getElementType(ResNo));
8146       } else {
8147         assert(ResNo == 0 && "Asm only has one result!");
8148         OpInfo.ConstraintVT =
8149             TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType());
8150       }
8151       ++ResNo;
8152     } else {
8153       OpInfo.ConstraintVT = MVT::Other;
8154     }
8155 
8156     if (OpInfo.hasMatchingInput())
8157       ++NumMatchingOps;
8158 
8159     if (!HasSideEffect)
8160       HasSideEffect = OpInfo.hasMemory(TLI);
8161 
8162     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8163     // FIXME: Could we compute this on OpInfo rather than T?
8164 
8165     // Compute the constraint code and ConstraintType to use.
8166     TLI.ComputeConstraintToUse(T, SDValue());
8167 
8168     if (T.ConstraintType == TargetLowering::C_Immediate &&
8169         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8170       // We've delayed emitting a diagnostic like the "n" constraint because
8171       // inlining could cause an integer showing up.
8172       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8173                                           "' expects an integer constant "
8174                                           "expression");
8175 
8176     ExtraInfo.update(T);
8177   }
8178 
8179 
8180   // We won't need to flush pending loads if this asm doesn't touch
8181   // memory and is nonvolatile.
8182   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8183 
8184   bool IsCallBr = isa<CallBrInst>(Call);
8185   if (IsCallBr) {
8186     // If this is a callbr we need to flush pending exports since inlineasm_br
8187     // is a terminator. We need to do this before nodes are glued to
8188     // the inlineasm_br node.
8189     Chain = getControlRoot();
8190   }
8191 
8192   // Second pass over the constraints: compute which constraint option to use.
8193   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8194     // If this is an output operand with a matching input operand, look up the
8195     // matching input. If their types mismatch, e.g. one is an integer, the
8196     // other is floating point, or their sizes are different, flag it as an
8197     // error.
8198     if (OpInfo.hasMatchingInput()) {
8199       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8200       patchMatchingInput(OpInfo, Input, DAG);
8201     }
8202 
8203     // Compute the constraint code and ConstraintType to use.
8204     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8205 
8206     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8207         OpInfo.Type == InlineAsm::isClobber)
8208       continue;
8209 
8210     // If this is a memory input, and if the operand is not indirect, do what we
8211     // need to provide an address for the memory input.
8212     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8213         !OpInfo.isIndirect) {
8214       assert((OpInfo.isMultipleAlternative ||
8215               (OpInfo.Type == InlineAsm::isInput)) &&
8216              "Can only indirectify direct input operands!");
8217 
8218       // Memory operands really want the address of the value.
8219       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8220 
8221       // There is no longer a Value* corresponding to this operand.
8222       OpInfo.CallOperandVal = nullptr;
8223 
8224       // It is now an indirect operand.
8225       OpInfo.isIndirect = true;
8226     }
8227 
8228   }
8229 
8230   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8231   std::vector<SDValue> AsmNodeOperands;
8232   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8233   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8234       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8235 
8236   // If we have a !srcloc metadata node associated with it, we want to attach
8237   // this to the ultimately generated inline asm machineinstr.  To do this, we
8238   // pass in the third operand as this (potentially null) inline asm MDNode.
8239   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8240   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8241 
8242   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8243   // bits as operand 3.
8244   AsmNodeOperands.push_back(DAG.getTargetConstant(
8245       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8246 
8247   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8248   // this, assign virtual and physical registers for inputs and otput.
8249   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8250     // Assign Registers.
8251     SDISelAsmOperandInfo &RefOpInfo =
8252         OpInfo.isMatchingInputConstraint()
8253             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8254             : OpInfo;
8255     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8256 
8257     auto DetectWriteToReservedRegister = [&]() {
8258       const MachineFunction &MF = DAG.getMachineFunction();
8259       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8260       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
8261         if (Register::isPhysicalRegister(Reg) &&
8262             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
8263           const char *RegName = TRI.getName(Reg);
8264           emitInlineAsmError(Call, "write to reserved register '" +
8265                                        Twine(RegName) + "'");
8266           return true;
8267         }
8268       }
8269       return false;
8270     };
8271 
8272     switch (OpInfo.Type) {
8273     case InlineAsm::isOutput:
8274       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8275         unsigned ConstraintID =
8276             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8277         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8278                "Failed to convert memory constraint code to constraint id.");
8279 
8280         // Add information to the INLINEASM node to know about this output.
8281         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8282         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8283         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8284                                                         MVT::i32));
8285         AsmNodeOperands.push_back(OpInfo.CallOperand);
8286       } else {
8287         // Otherwise, this outputs to a register (directly for C_Register /
8288         // C_RegisterClass, and a target-defined fashion for
8289         // C_Immediate/C_Other). Find a register that we can use.
8290         if (OpInfo.AssignedRegs.Regs.empty()) {
8291           emitInlineAsmError(
8292               Call, "couldn't allocate output register for constraint '" +
8293                         Twine(OpInfo.ConstraintCode) + "'");
8294           return;
8295         }
8296 
8297         if (DetectWriteToReservedRegister())
8298           return;
8299 
8300         // Add information to the INLINEASM node to know that this register is
8301         // set.
8302         OpInfo.AssignedRegs.AddInlineAsmOperands(
8303             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8304                                   : InlineAsm::Kind_RegDef,
8305             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8306       }
8307       break;
8308 
8309     case InlineAsm::isInput: {
8310       SDValue InOperandVal = OpInfo.CallOperand;
8311 
8312       if (OpInfo.isMatchingInputConstraint()) {
8313         // If this is required to match an output register we have already set,
8314         // just use its register.
8315         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8316                                                   AsmNodeOperands);
8317         unsigned OpFlag =
8318           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8319         if (InlineAsm::isRegDefKind(OpFlag) ||
8320             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8321           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8322           if (OpInfo.isIndirect) {
8323             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8324             emitInlineAsmError(Call, "inline asm not supported yet: "
8325                                      "don't know how to handle tied "
8326                                      "indirect register inputs");
8327             return;
8328           }
8329 
8330           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8331           SmallVector<unsigned, 4> Regs;
8332 
8333           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8334             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8335             MachineRegisterInfo &RegInfo =
8336                 DAG.getMachineFunction().getRegInfo();
8337             for (unsigned i = 0; i != NumRegs; ++i)
8338               Regs.push_back(RegInfo.createVirtualRegister(RC));
8339           } else {
8340             emitInlineAsmError(Call,
8341                                "inline asm error: This value type register "
8342                                "class is not natively supported!");
8343             return;
8344           }
8345 
8346           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8347 
8348           SDLoc dl = getCurSDLoc();
8349           // Use the produced MatchedRegs object to
8350           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
8351           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8352                                            true, OpInfo.getMatchedOperand(), dl,
8353                                            DAG, AsmNodeOperands);
8354           break;
8355         }
8356 
8357         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8358         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8359                "Unexpected number of operands");
8360         // Add information to the INLINEASM node to know about this input.
8361         // See InlineAsm.h isUseOperandTiedToDef.
8362         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8363         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8364                                                     OpInfo.getMatchedOperand());
8365         AsmNodeOperands.push_back(DAG.getTargetConstant(
8366             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8367         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8368         break;
8369       }
8370 
8371       // Treat indirect 'X' constraint as memory.
8372       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8373           OpInfo.isIndirect)
8374         OpInfo.ConstraintType = TargetLowering::C_Memory;
8375 
8376       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8377           OpInfo.ConstraintType == TargetLowering::C_Other) {
8378         std::vector<SDValue> Ops;
8379         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8380                                           Ops, DAG);
8381         if (Ops.empty()) {
8382           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8383             if (isa<ConstantSDNode>(InOperandVal)) {
8384               emitInlineAsmError(Call, "value out of range for constraint '" +
8385                                            Twine(OpInfo.ConstraintCode) + "'");
8386               return;
8387             }
8388 
8389           emitInlineAsmError(Call,
8390                              "invalid operand for inline asm constraint '" +
8391                                  Twine(OpInfo.ConstraintCode) + "'");
8392           return;
8393         }
8394 
8395         // Add information to the INLINEASM node to know about this input.
8396         unsigned ResOpType =
8397           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8398         AsmNodeOperands.push_back(DAG.getTargetConstant(
8399             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8400         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8401         break;
8402       }
8403 
8404       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8405         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8406         assert(InOperandVal.getValueType() ==
8407                    TLI.getPointerTy(DAG.getDataLayout()) &&
8408                "Memory operands expect pointer values");
8409 
8410         unsigned ConstraintID =
8411             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8412         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8413                "Failed to convert memory constraint code to constraint id.");
8414 
8415         // Add information to the INLINEASM node to know about this input.
8416         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8417         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8418         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8419                                                         getCurSDLoc(),
8420                                                         MVT::i32));
8421         AsmNodeOperands.push_back(InOperandVal);
8422         break;
8423       }
8424 
8425       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8426               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8427              "Unknown constraint type!");
8428 
8429       // TODO: Support this.
8430       if (OpInfo.isIndirect) {
8431         emitInlineAsmError(
8432             Call, "Don't know how to handle indirect register inputs yet "
8433                   "for constraint '" +
8434                       Twine(OpInfo.ConstraintCode) + "'");
8435         return;
8436       }
8437 
8438       // Copy the input into the appropriate registers.
8439       if (OpInfo.AssignedRegs.Regs.empty()) {
8440         emitInlineAsmError(Call,
8441                            "couldn't allocate input reg for constraint '" +
8442                                Twine(OpInfo.ConstraintCode) + "'");
8443         return;
8444       }
8445 
8446       if (DetectWriteToReservedRegister())
8447         return;
8448 
8449       SDLoc dl = getCurSDLoc();
8450 
8451       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8452                                         &Call);
8453 
8454       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8455                                                dl, DAG, AsmNodeOperands);
8456       break;
8457     }
8458     case InlineAsm::isClobber:
8459       // Add the clobbered value to the operand list, so that the register
8460       // allocator is aware that the physreg got clobbered.
8461       if (!OpInfo.AssignedRegs.Regs.empty())
8462         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8463                                                  false, 0, getCurSDLoc(), DAG,
8464                                                  AsmNodeOperands);
8465       break;
8466     }
8467   }
8468 
8469   // Finish up input operands.  Set the input chain and add the flag last.
8470   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8471   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8472 
8473   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8474   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8475                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8476   Flag = Chain.getValue(1);
8477 
8478   // Do additional work to generate outputs.
8479 
8480   SmallVector<EVT, 1> ResultVTs;
8481   SmallVector<SDValue, 1> ResultValues;
8482   SmallVector<SDValue, 8> OutChains;
8483 
8484   llvm::Type *CallResultType = Call.getType();
8485   ArrayRef<Type *> ResultTypes;
8486   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
8487     ResultTypes = StructResult->elements();
8488   else if (!CallResultType->isVoidTy())
8489     ResultTypes = makeArrayRef(CallResultType);
8490 
8491   auto CurResultType = ResultTypes.begin();
8492   auto handleRegAssign = [&](SDValue V) {
8493     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8494     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8495     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8496     ++CurResultType;
8497     // If the type of the inline asm call site return value is different but has
8498     // same size as the type of the asm output bitcast it.  One example of this
8499     // is for vectors with different width / number of elements.  This can
8500     // happen for register classes that can contain multiple different value
8501     // types.  The preg or vreg allocated may not have the same VT as was
8502     // expected.
8503     //
8504     // This can also happen for a return value that disagrees with the register
8505     // class it is put in, eg. a double in a general-purpose register on a
8506     // 32-bit machine.
8507     if (ResultVT != V.getValueType() &&
8508         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8509       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8510     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8511              V.getValueType().isInteger()) {
8512       // If a result value was tied to an input value, the computed result
8513       // may have a wider width than the expected result.  Extract the
8514       // relevant portion.
8515       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8516     }
8517     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8518     ResultVTs.push_back(ResultVT);
8519     ResultValues.push_back(V);
8520   };
8521 
8522   // Deal with output operands.
8523   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8524     if (OpInfo.Type == InlineAsm::isOutput) {
8525       SDValue Val;
8526       // Skip trivial output operands.
8527       if (OpInfo.AssignedRegs.Regs.empty())
8528         continue;
8529 
8530       switch (OpInfo.ConstraintType) {
8531       case TargetLowering::C_Register:
8532       case TargetLowering::C_RegisterClass:
8533         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
8534                                                   Chain, &Flag, &Call);
8535         break;
8536       case TargetLowering::C_Immediate:
8537       case TargetLowering::C_Other:
8538         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8539                                               OpInfo, DAG);
8540         break;
8541       case TargetLowering::C_Memory:
8542         break; // Already handled.
8543       case TargetLowering::C_Unknown:
8544         assert(false && "Unexpected unknown constraint");
8545       }
8546 
8547       // Indirect output manifest as stores. Record output chains.
8548       if (OpInfo.isIndirect) {
8549         const Value *Ptr = OpInfo.CallOperandVal;
8550         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8551         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8552                                      MachinePointerInfo(Ptr));
8553         OutChains.push_back(Store);
8554       } else {
8555         // generate CopyFromRegs to associated registers.
8556         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8557         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8558           for (const SDValue &V : Val->op_values())
8559             handleRegAssign(V);
8560         } else
8561           handleRegAssign(Val);
8562       }
8563     }
8564   }
8565 
8566   // Set results.
8567   if (!ResultValues.empty()) {
8568     assert(CurResultType == ResultTypes.end() &&
8569            "Mismatch in number of ResultTypes");
8570     assert(ResultValues.size() == ResultTypes.size() &&
8571            "Mismatch in number of output operands in asm result");
8572 
8573     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8574                             DAG.getVTList(ResultVTs), ResultValues);
8575     setValue(&Call, V);
8576   }
8577 
8578   // Collect store chains.
8579   if (!OutChains.empty())
8580     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8581 
8582   // Only Update Root if inline assembly has a memory effect.
8583   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr)
8584     DAG.setRoot(Chain);
8585 }
8586 
8587 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
8588                                              const Twine &Message) {
8589   LLVMContext &Ctx = *DAG.getContext();
8590   Ctx.emitError(&Call, Message);
8591 
8592   // Make sure we leave the DAG in a valid state
8593   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8594   SmallVector<EVT, 1> ValueVTs;
8595   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
8596 
8597   if (ValueVTs.empty())
8598     return;
8599 
8600   SmallVector<SDValue, 1> Ops;
8601   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8602     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8603 
8604   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
8605 }
8606 
8607 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8608   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8609                           MVT::Other, getRoot(),
8610                           getValue(I.getArgOperand(0)),
8611                           DAG.getSrcValue(I.getArgOperand(0))));
8612 }
8613 
8614 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8615   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8616   const DataLayout &DL = DAG.getDataLayout();
8617   SDValue V = DAG.getVAArg(
8618       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8619       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8620       DL.getABITypeAlignment(I.getType()));
8621   DAG.setRoot(V.getValue(1));
8622 
8623   if (I.getType()->isPointerTy())
8624     V = DAG.getPtrExtOrTrunc(
8625         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8626   setValue(&I, V);
8627 }
8628 
8629 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8630   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8631                           MVT::Other, getRoot(),
8632                           getValue(I.getArgOperand(0)),
8633                           DAG.getSrcValue(I.getArgOperand(0))));
8634 }
8635 
8636 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8637   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8638                           MVT::Other, getRoot(),
8639                           getValue(I.getArgOperand(0)),
8640                           getValue(I.getArgOperand(1)),
8641                           DAG.getSrcValue(I.getArgOperand(0)),
8642                           DAG.getSrcValue(I.getArgOperand(1))));
8643 }
8644 
8645 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8646                                                     const Instruction &I,
8647                                                     SDValue Op) {
8648   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8649   if (!Range)
8650     return Op;
8651 
8652   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8653   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8654     return Op;
8655 
8656   APInt Lo = CR.getUnsignedMin();
8657   if (!Lo.isMinValue())
8658     return Op;
8659 
8660   APInt Hi = CR.getUnsignedMax();
8661   unsigned Bits = std::max(Hi.getActiveBits(),
8662                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8663 
8664   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8665 
8666   SDLoc SL = getCurSDLoc();
8667 
8668   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8669                              DAG.getValueType(SmallVT));
8670   unsigned NumVals = Op.getNode()->getNumValues();
8671   if (NumVals == 1)
8672     return ZExt;
8673 
8674   SmallVector<SDValue, 4> Ops;
8675 
8676   Ops.push_back(ZExt);
8677   for (unsigned I = 1; I != NumVals; ++I)
8678     Ops.push_back(Op.getValue(I));
8679 
8680   return DAG.getMergeValues(Ops, SL);
8681 }
8682 
8683 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8684 /// the call being lowered.
8685 ///
8686 /// This is a helper for lowering intrinsics that follow a target calling
8687 /// convention or require stack pointer adjustment. Only a subset of the
8688 /// intrinsic's operands need to participate in the calling convention.
8689 void SelectionDAGBuilder::populateCallLoweringInfo(
8690     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8691     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8692     bool IsPatchPoint) {
8693   TargetLowering::ArgListTy Args;
8694   Args.reserve(NumArgs);
8695 
8696   // Populate the argument list.
8697   // Attributes for args start at offset 1, after the return attribute.
8698   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8699        ArgI != ArgE; ++ArgI) {
8700     const Value *V = Call->getOperand(ArgI);
8701 
8702     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8703 
8704     TargetLowering::ArgListEntry Entry;
8705     Entry.Node = getValue(V);
8706     Entry.Ty = V->getType();
8707     Entry.setAttributes(Call, ArgI);
8708     Args.push_back(Entry);
8709   }
8710 
8711   CLI.setDebugLoc(getCurSDLoc())
8712       .setChain(getRoot())
8713       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8714       .setDiscardResult(Call->use_empty())
8715       .setIsPatchPoint(IsPatchPoint)
8716       .setIsPreallocated(
8717           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
8718 }
8719 
8720 /// Add a stack map intrinsic call's live variable operands to a stackmap
8721 /// or patchpoint target node's operand list.
8722 ///
8723 /// Constants are converted to TargetConstants purely as an optimization to
8724 /// avoid constant materialization and register allocation.
8725 ///
8726 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8727 /// generate addess computation nodes, and so FinalizeISel can convert the
8728 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8729 /// address materialization and register allocation, but may also be required
8730 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8731 /// alloca in the entry block, then the runtime may assume that the alloca's
8732 /// StackMap location can be read immediately after compilation and that the
8733 /// location is valid at any point during execution (this is similar to the
8734 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8735 /// only available in a register, then the runtime would need to trap when
8736 /// execution reaches the StackMap in order to read the alloca's location.
8737 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
8738                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8739                                 SelectionDAGBuilder &Builder) {
8740   for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) {
8741     SDValue OpVal = Builder.getValue(Call.getArgOperand(i));
8742     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8743       Ops.push_back(
8744         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8745       Ops.push_back(
8746         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8747     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8748       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8749       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8750           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8751     } else
8752       Ops.push_back(OpVal);
8753   }
8754 }
8755 
8756 /// Lower llvm.experimental.stackmap directly to its target opcode.
8757 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8758   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8759   //                                  [live variables...])
8760 
8761   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8762 
8763   SDValue Chain, InFlag, Callee, NullPtr;
8764   SmallVector<SDValue, 32> Ops;
8765 
8766   SDLoc DL = getCurSDLoc();
8767   Callee = getValue(CI.getCalledOperand());
8768   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8769 
8770   // The stackmap intrinsic only records the live variables (the arguments
8771   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8772   // intrinsic, this won't be lowered to a function call. This means we don't
8773   // have to worry about calling conventions and target specific lowering code.
8774   // Instead we perform the call lowering right here.
8775   //
8776   // chain, flag = CALLSEQ_START(chain, 0, 0)
8777   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8778   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8779   //
8780   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8781   InFlag = Chain.getValue(1);
8782 
8783   // Add the <id> and <numBytes> constants.
8784   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8785   Ops.push_back(DAG.getTargetConstant(
8786                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8787   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8788   Ops.push_back(DAG.getTargetConstant(
8789                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8790                   MVT::i32));
8791 
8792   // Push live variables for the stack map.
8793   addStackMapLiveVars(CI, 2, DL, Ops, *this);
8794 
8795   // We are not pushing any register mask info here on the operands list,
8796   // because the stackmap doesn't clobber anything.
8797 
8798   // Push the chain and the glue flag.
8799   Ops.push_back(Chain);
8800   Ops.push_back(InFlag);
8801 
8802   // Create the STACKMAP node.
8803   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8804   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8805   Chain = SDValue(SM, 0);
8806   InFlag = Chain.getValue(1);
8807 
8808   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8809 
8810   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8811 
8812   // Set the root to the target-lowered call chain.
8813   DAG.setRoot(Chain);
8814 
8815   // Inform the Frame Information that we have a stackmap in this function.
8816   FuncInfo.MF->getFrameInfo().setHasStackMap();
8817 }
8818 
8819 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8820 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
8821                                           const BasicBlock *EHPadBB) {
8822   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8823   //                                                 i32 <numBytes>,
8824   //                                                 i8* <target>,
8825   //                                                 i32 <numArgs>,
8826   //                                                 [Args...],
8827   //                                                 [live variables...])
8828 
8829   CallingConv::ID CC = CB.getCallingConv();
8830   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8831   bool HasDef = !CB.getType()->isVoidTy();
8832   SDLoc dl = getCurSDLoc();
8833   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
8834 
8835   // Handle immediate and symbolic callees.
8836   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8837     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8838                                    /*isTarget=*/true);
8839   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8840     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8841                                          SDLoc(SymbolicCallee),
8842                                          SymbolicCallee->getValueType(0));
8843 
8844   // Get the real number of arguments participating in the call <numArgs>
8845   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
8846   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8847 
8848   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8849   // Intrinsics include all meta-operands up to but not including CC.
8850   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8851   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
8852          "Not enough arguments provided to the patchpoint intrinsic");
8853 
8854   // For AnyRegCC the arguments are lowered later on manually.
8855   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8856   Type *ReturnTy =
8857       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
8858 
8859   TargetLowering::CallLoweringInfo CLI(DAG);
8860   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
8861                            ReturnTy, true);
8862   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8863 
8864   SDNode *CallEnd = Result.second.getNode();
8865   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8866     CallEnd = CallEnd->getOperand(0).getNode();
8867 
8868   /// Get a call instruction from the call sequence chain.
8869   /// Tail calls are not allowed.
8870   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8871          "Expected a callseq node.");
8872   SDNode *Call = CallEnd->getOperand(0).getNode();
8873   bool HasGlue = Call->getGluedNode();
8874 
8875   // Replace the target specific call node with the patchable intrinsic.
8876   SmallVector<SDValue, 8> Ops;
8877 
8878   // Add the <id> and <numBytes> constants.
8879   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
8880   Ops.push_back(DAG.getTargetConstant(
8881                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8882   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
8883   Ops.push_back(DAG.getTargetConstant(
8884                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8885                   MVT::i32));
8886 
8887   // Add the callee.
8888   Ops.push_back(Callee);
8889 
8890   // Adjust <numArgs> to account for any arguments that have been passed on the
8891   // stack instead.
8892   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8893   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8894   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8895   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8896 
8897   // Add the calling convention
8898   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8899 
8900   // Add the arguments we omitted previously. The register allocator should
8901   // place these in any free register.
8902   if (IsAnyRegCC)
8903     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8904       Ops.push_back(getValue(CB.getArgOperand(i)));
8905 
8906   // Push the arguments from the call instruction up to the register mask.
8907   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8908   Ops.append(Call->op_begin() + 2, e);
8909 
8910   // Push live variables for the stack map.
8911   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
8912 
8913   // Push the register mask info.
8914   if (HasGlue)
8915     Ops.push_back(*(Call->op_end()-2));
8916   else
8917     Ops.push_back(*(Call->op_end()-1));
8918 
8919   // Push the chain (this is originally the first operand of the call, but
8920   // becomes now the last or second to last operand).
8921   Ops.push_back(*(Call->op_begin()));
8922 
8923   // Push the glue flag (last operand).
8924   if (HasGlue)
8925     Ops.push_back(*(Call->op_end()-1));
8926 
8927   SDVTList NodeTys;
8928   if (IsAnyRegCC && HasDef) {
8929     // Create the return types based on the intrinsic definition
8930     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8931     SmallVector<EVT, 3> ValueVTs;
8932     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
8933     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8934 
8935     // There is always a chain and a glue type at the end
8936     ValueVTs.push_back(MVT::Other);
8937     ValueVTs.push_back(MVT::Glue);
8938     NodeTys = DAG.getVTList(ValueVTs);
8939   } else
8940     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8941 
8942   // Replace the target specific call node with a PATCHPOINT node.
8943   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8944                                          dl, NodeTys, Ops);
8945 
8946   // Update the NodeMap.
8947   if (HasDef) {
8948     if (IsAnyRegCC)
8949       setValue(&CB, SDValue(MN, 0));
8950     else
8951       setValue(&CB, Result.first);
8952   }
8953 
8954   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8955   // call sequence. Furthermore the location of the chain and glue can change
8956   // when the AnyReg calling convention is used and the intrinsic returns a
8957   // value.
8958   if (IsAnyRegCC && HasDef) {
8959     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8960     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8961     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8962   } else
8963     DAG.ReplaceAllUsesWith(Call, MN);
8964   DAG.DeleteNode(Call);
8965 
8966   // Inform the Frame Information that we have a patchpoint in this function.
8967   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8968 }
8969 
8970 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8971                                             unsigned Intrinsic) {
8972   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8973   SDValue Op1 = getValue(I.getArgOperand(0));
8974   SDValue Op2;
8975   if (I.getNumArgOperands() > 1)
8976     Op2 = getValue(I.getArgOperand(1));
8977   SDLoc dl = getCurSDLoc();
8978   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8979   SDValue Res;
8980   FastMathFlags FMF;
8981   if (isa<FPMathOperator>(I))
8982     FMF = I.getFastMathFlags();
8983 
8984   switch (Intrinsic) {
8985   case Intrinsic::experimental_vector_reduce_v2_fadd:
8986     if (FMF.allowReassoc())
8987       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
8988                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2));
8989     else
8990       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8991     break;
8992   case Intrinsic::experimental_vector_reduce_v2_fmul:
8993     if (FMF.allowReassoc())
8994       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
8995                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2));
8996     else
8997       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8998     break;
8999   case Intrinsic::experimental_vector_reduce_add:
9000     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9001     break;
9002   case Intrinsic::experimental_vector_reduce_mul:
9003     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9004     break;
9005   case Intrinsic::experimental_vector_reduce_and:
9006     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9007     break;
9008   case Intrinsic::experimental_vector_reduce_or:
9009     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9010     break;
9011   case Intrinsic::experimental_vector_reduce_xor:
9012     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9013     break;
9014   case Intrinsic::experimental_vector_reduce_smax:
9015     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9016     break;
9017   case Intrinsic::experimental_vector_reduce_smin:
9018     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9019     break;
9020   case Intrinsic::experimental_vector_reduce_umax:
9021     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9022     break;
9023   case Intrinsic::experimental_vector_reduce_umin:
9024     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9025     break;
9026   case Intrinsic::experimental_vector_reduce_fmax:
9027     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
9028     break;
9029   case Intrinsic::experimental_vector_reduce_fmin:
9030     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
9031     break;
9032   default:
9033     llvm_unreachable("Unhandled vector reduce intrinsic");
9034   }
9035   setValue(&I, Res);
9036 }
9037 
9038 /// Returns an AttributeList representing the attributes applied to the return
9039 /// value of the given call.
9040 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9041   SmallVector<Attribute::AttrKind, 2> Attrs;
9042   if (CLI.RetSExt)
9043     Attrs.push_back(Attribute::SExt);
9044   if (CLI.RetZExt)
9045     Attrs.push_back(Attribute::ZExt);
9046   if (CLI.IsInReg)
9047     Attrs.push_back(Attribute::InReg);
9048 
9049   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9050                             Attrs);
9051 }
9052 
9053 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9054 /// implementation, which just calls LowerCall.
9055 /// FIXME: When all targets are
9056 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9057 std::pair<SDValue, SDValue>
9058 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9059   // Handle the incoming return values from the call.
9060   CLI.Ins.clear();
9061   Type *OrigRetTy = CLI.RetTy;
9062   SmallVector<EVT, 4> RetTys;
9063   SmallVector<uint64_t, 4> Offsets;
9064   auto &DL = CLI.DAG.getDataLayout();
9065   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9066 
9067   if (CLI.IsPostTypeLegalization) {
9068     // If we are lowering a libcall after legalization, split the return type.
9069     SmallVector<EVT, 4> OldRetTys;
9070     SmallVector<uint64_t, 4> OldOffsets;
9071     RetTys.swap(OldRetTys);
9072     Offsets.swap(OldOffsets);
9073 
9074     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9075       EVT RetVT = OldRetTys[i];
9076       uint64_t Offset = OldOffsets[i];
9077       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9078       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9079       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9080       RetTys.append(NumRegs, RegisterVT);
9081       for (unsigned j = 0; j != NumRegs; ++j)
9082         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9083     }
9084   }
9085 
9086   SmallVector<ISD::OutputArg, 4> Outs;
9087   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9088 
9089   bool CanLowerReturn =
9090       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9091                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9092 
9093   SDValue DemoteStackSlot;
9094   int DemoteStackIdx = -100;
9095   if (!CanLowerReturn) {
9096     // FIXME: equivalent assert?
9097     // assert(!CS.hasInAllocaArgument() &&
9098     //        "sret demotion is incompatible with inalloca");
9099     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9100     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9101     MachineFunction &MF = CLI.DAG.getMachineFunction();
9102     DemoteStackIdx =
9103         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9104     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9105                                               DL.getAllocaAddrSpace());
9106 
9107     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9108     ArgListEntry Entry;
9109     Entry.Node = DemoteStackSlot;
9110     Entry.Ty = StackSlotPtrType;
9111     Entry.IsSExt = false;
9112     Entry.IsZExt = false;
9113     Entry.IsInReg = false;
9114     Entry.IsSRet = true;
9115     Entry.IsNest = false;
9116     Entry.IsByVal = false;
9117     Entry.IsReturned = false;
9118     Entry.IsSwiftSelf = false;
9119     Entry.IsSwiftError = false;
9120     Entry.IsCFGuardTarget = false;
9121     Entry.Alignment = Alignment;
9122     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9123     CLI.NumFixedArgs += 1;
9124     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9125 
9126     // sret demotion isn't compatible with tail-calls, since the sret argument
9127     // points into the callers stack frame.
9128     CLI.IsTailCall = false;
9129   } else {
9130     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9131         CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
9132     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9133       ISD::ArgFlagsTy Flags;
9134       if (NeedsRegBlock) {
9135         Flags.setInConsecutiveRegs();
9136         if (I == RetTys.size() - 1)
9137           Flags.setInConsecutiveRegsLast();
9138       }
9139       EVT VT = RetTys[I];
9140       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9141                                                      CLI.CallConv, VT);
9142       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9143                                                        CLI.CallConv, VT);
9144       for (unsigned i = 0; i != NumRegs; ++i) {
9145         ISD::InputArg MyFlags;
9146         MyFlags.Flags = Flags;
9147         MyFlags.VT = RegisterVT;
9148         MyFlags.ArgVT = VT;
9149         MyFlags.Used = CLI.IsReturnValueUsed;
9150         if (CLI.RetTy->isPointerTy()) {
9151           MyFlags.Flags.setPointer();
9152           MyFlags.Flags.setPointerAddrSpace(
9153               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9154         }
9155         if (CLI.RetSExt)
9156           MyFlags.Flags.setSExt();
9157         if (CLI.RetZExt)
9158           MyFlags.Flags.setZExt();
9159         if (CLI.IsInReg)
9160           MyFlags.Flags.setInReg();
9161         CLI.Ins.push_back(MyFlags);
9162       }
9163     }
9164   }
9165 
9166   // We push in swifterror return as the last element of CLI.Ins.
9167   ArgListTy &Args = CLI.getArgs();
9168   if (supportSwiftError()) {
9169     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9170       if (Args[i].IsSwiftError) {
9171         ISD::InputArg MyFlags;
9172         MyFlags.VT = getPointerTy(DL);
9173         MyFlags.ArgVT = EVT(getPointerTy(DL));
9174         MyFlags.Flags.setSwiftError();
9175         CLI.Ins.push_back(MyFlags);
9176       }
9177     }
9178   }
9179 
9180   // Handle all of the outgoing arguments.
9181   CLI.Outs.clear();
9182   CLI.OutVals.clear();
9183   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9184     SmallVector<EVT, 4> ValueVTs;
9185     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9186     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9187     Type *FinalType = Args[i].Ty;
9188     if (Args[i].IsByVal)
9189       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
9190     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9191         FinalType, CLI.CallConv, CLI.IsVarArg);
9192     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9193          ++Value) {
9194       EVT VT = ValueVTs[Value];
9195       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9196       SDValue Op = SDValue(Args[i].Node.getNode(),
9197                            Args[i].Node.getResNo() + Value);
9198       ISD::ArgFlagsTy Flags;
9199 
9200       // Certain targets (such as MIPS), may have a different ABI alignment
9201       // for a type depending on the context. Give the target a chance to
9202       // specify the alignment it wants.
9203       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9204 
9205       if (Args[i].Ty->isPointerTy()) {
9206         Flags.setPointer();
9207         Flags.setPointerAddrSpace(
9208             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9209       }
9210       if (Args[i].IsZExt)
9211         Flags.setZExt();
9212       if (Args[i].IsSExt)
9213         Flags.setSExt();
9214       if (Args[i].IsInReg) {
9215         // If we are using vectorcall calling convention, a structure that is
9216         // passed InReg - is surely an HVA
9217         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9218             isa<StructType>(FinalType)) {
9219           // The first value of a structure is marked
9220           if (0 == Value)
9221             Flags.setHvaStart();
9222           Flags.setHva();
9223         }
9224         // Set InReg Flag
9225         Flags.setInReg();
9226       }
9227       if (Args[i].IsSRet)
9228         Flags.setSRet();
9229       if (Args[i].IsSwiftSelf)
9230         Flags.setSwiftSelf();
9231       if (Args[i].IsSwiftError)
9232         Flags.setSwiftError();
9233       if (Args[i].IsCFGuardTarget)
9234         Flags.setCFGuardTarget();
9235       if (Args[i].IsByVal)
9236         Flags.setByVal();
9237       if (Args[i].IsPreallocated) {
9238         Flags.setPreallocated();
9239         // Set the byval flag for CCAssignFn callbacks that don't know about
9240         // preallocated.  This way we can know how many bytes we should've
9241         // allocated and how many bytes a callee cleanup function will pop.  If
9242         // we port preallocated to more targets, we'll have to add custom
9243         // preallocated handling in the various CC lowering callbacks.
9244         Flags.setByVal();
9245       }
9246       if (Args[i].IsInAlloca) {
9247         Flags.setInAlloca();
9248         // Set the byval flag for CCAssignFn callbacks that don't know about
9249         // inalloca.  This way we can know how many bytes we should've allocated
9250         // and how many bytes a callee cleanup function will pop.  If we port
9251         // inalloca to more targets, we'll have to add custom inalloca handling
9252         // in the various CC lowering callbacks.
9253         Flags.setByVal();
9254       }
9255       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
9256         PointerType *Ty = cast<PointerType>(Args[i].Ty);
9257         Type *ElementTy = Ty->getElementType();
9258 
9259         unsigned FrameSize = DL.getTypeAllocSize(
9260             Args[i].ByValType ? Args[i].ByValType : ElementTy);
9261         Flags.setByValSize(FrameSize);
9262 
9263         // info is not there but there are cases it cannot get right.
9264         Align FrameAlign;
9265         if (auto MA = Args[i].Alignment)
9266           FrameAlign = *MA;
9267         else
9268           FrameAlign = Align(getByValTypeAlignment(ElementTy, DL));
9269         Flags.setByValAlign(FrameAlign);
9270       }
9271       if (Args[i].IsNest)
9272         Flags.setNest();
9273       if (NeedsRegBlock)
9274         Flags.setInConsecutiveRegs();
9275       Flags.setOrigAlign(OriginalAlignment);
9276 
9277       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9278                                                  CLI.CallConv, VT);
9279       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9280                                                         CLI.CallConv, VT);
9281       SmallVector<SDValue, 4> Parts(NumParts);
9282       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9283 
9284       if (Args[i].IsSExt)
9285         ExtendKind = ISD::SIGN_EXTEND;
9286       else if (Args[i].IsZExt)
9287         ExtendKind = ISD::ZERO_EXTEND;
9288 
9289       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9290       // for now.
9291       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9292           CanLowerReturn) {
9293         assert((CLI.RetTy == Args[i].Ty ||
9294                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9295                  CLI.RetTy->getPointerAddressSpace() ==
9296                      Args[i].Ty->getPointerAddressSpace())) &&
9297                RetTys.size() == NumValues && "unexpected use of 'returned'");
9298         // Before passing 'returned' to the target lowering code, ensure that
9299         // either the register MVT and the actual EVT are the same size or that
9300         // the return value and argument are extended in the same way; in these
9301         // cases it's safe to pass the argument register value unchanged as the
9302         // return register value (although it's at the target's option whether
9303         // to do so)
9304         // TODO: allow code generation to take advantage of partially preserved
9305         // registers rather than clobbering the entire register when the
9306         // parameter extension method is not compatible with the return
9307         // extension method
9308         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9309             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9310              CLI.RetZExt == Args[i].IsZExt))
9311           Flags.setReturned();
9312       }
9313 
9314       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
9315                      CLI.CallConv, ExtendKind);
9316 
9317       for (unsigned j = 0; j != NumParts; ++j) {
9318         // if it isn't first piece, alignment must be 1
9319         // For scalable vectors the scalable part is currently handled
9320         // by individual targets, so we just use the known minimum size here.
9321         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9322                     i < CLI.NumFixedArgs, i,
9323                     j*Parts[j].getValueType().getStoreSize().getKnownMinSize());
9324         if (NumParts > 1 && j == 0)
9325           MyFlags.Flags.setSplit();
9326         else if (j != 0) {
9327           MyFlags.Flags.setOrigAlign(Align(1));
9328           if (j == NumParts - 1)
9329             MyFlags.Flags.setSplitEnd();
9330         }
9331 
9332         CLI.Outs.push_back(MyFlags);
9333         CLI.OutVals.push_back(Parts[j]);
9334       }
9335 
9336       if (NeedsRegBlock && Value == NumValues - 1)
9337         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9338     }
9339   }
9340 
9341   SmallVector<SDValue, 4> InVals;
9342   CLI.Chain = LowerCall(CLI, InVals);
9343 
9344   // Update CLI.InVals to use outside of this function.
9345   CLI.InVals = InVals;
9346 
9347   // Verify that the target's LowerCall behaved as expected.
9348   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9349          "LowerCall didn't return a valid chain!");
9350   assert((!CLI.IsTailCall || InVals.empty()) &&
9351          "LowerCall emitted a return value for a tail call!");
9352   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9353          "LowerCall didn't emit the correct number of values!");
9354 
9355   // For a tail call, the return value is merely live-out and there aren't
9356   // any nodes in the DAG representing it. Return a special value to
9357   // indicate that a tail call has been emitted and no more Instructions
9358   // should be processed in the current block.
9359   if (CLI.IsTailCall) {
9360     CLI.DAG.setRoot(CLI.Chain);
9361     return std::make_pair(SDValue(), SDValue());
9362   }
9363 
9364 #ifndef NDEBUG
9365   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9366     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9367     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9368            "LowerCall emitted a value with the wrong type!");
9369   }
9370 #endif
9371 
9372   SmallVector<SDValue, 4> ReturnValues;
9373   if (!CanLowerReturn) {
9374     // The instruction result is the result of loading from the
9375     // hidden sret parameter.
9376     SmallVector<EVT, 1> PVTs;
9377     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9378 
9379     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9380     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9381     EVT PtrVT = PVTs[0];
9382 
9383     unsigned NumValues = RetTys.size();
9384     ReturnValues.resize(NumValues);
9385     SmallVector<SDValue, 4> Chains(NumValues);
9386 
9387     // An aggregate return value cannot wrap around the address space, so
9388     // offsets to its parts don't wrap either.
9389     SDNodeFlags Flags;
9390     Flags.setNoUnsignedWrap(true);
9391 
9392     MachineFunction &MF = CLI.DAG.getMachineFunction();
9393     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
9394     for (unsigned i = 0; i < NumValues; ++i) {
9395       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9396                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9397                                                         PtrVT), Flags);
9398       SDValue L = CLI.DAG.getLoad(
9399           RetTys[i], CLI.DL, CLI.Chain, Add,
9400           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9401                                             DemoteStackIdx, Offsets[i]),
9402           HiddenSRetAlign);
9403       ReturnValues[i] = L;
9404       Chains[i] = L.getValue(1);
9405     }
9406 
9407     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9408   } else {
9409     // Collect the legal value parts into potentially illegal values
9410     // that correspond to the original function's return values.
9411     Optional<ISD::NodeType> AssertOp;
9412     if (CLI.RetSExt)
9413       AssertOp = ISD::AssertSext;
9414     else if (CLI.RetZExt)
9415       AssertOp = ISD::AssertZext;
9416     unsigned CurReg = 0;
9417     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9418       EVT VT = RetTys[I];
9419       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9420                                                      CLI.CallConv, VT);
9421       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9422                                                        CLI.CallConv, VT);
9423 
9424       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9425                                               NumRegs, RegisterVT, VT, nullptr,
9426                                               CLI.CallConv, AssertOp));
9427       CurReg += NumRegs;
9428     }
9429 
9430     // For a function returning void, there is no return value. We can't create
9431     // such a node, so we just return a null return value in that case. In
9432     // that case, nothing will actually look at the value.
9433     if (ReturnValues.empty())
9434       return std::make_pair(SDValue(), CLI.Chain);
9435   }
9436 
9437   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9438                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9439   return std::make_pair(Res, CLI.Chain);
9440 }
9441 
9442 void TargetLowering::LowerOperationWrapper(SDNode *N,
9443                                            SmallVectorImpl<SDValue> &Results,
9444                                            SelectionDAG &DAG) const {
9445   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
9446     Results.push_back(Res);
9447 }
9448 
9449 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9450   llvm_unreachable("LowerOperation not implemented for this target!");
9451 }
9452 
9453 void
9454 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9455   SDValue Op = getNonRegisterValue(V);
9456   assert((Op.getOpcode() != ISD::CopyFromReg ||
9457           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9458          "Copy from a reg to the same reg!");
9459   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9460 
9461   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9462   // If this is an InlineAsm we have to match the registers required, not the
9463   // notional registers required by the type.
9464 
9465   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9466                    None); // This is not an ABI copy.
9467   SDValue Chain = DAG.getEntryNode();
9468 
9469   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9470                               FuncInfo.PreferredExtendType.end())
9471                                  ? ISD::ANY_EXTEND
9472                                  : FuncInfo.PreferredExtendType[V];
9473   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9474   PendingExports.push_back(Chain);
9475 }
9476 
9477 #include "llvm/CodeGen/SelectionDAGISel.h"
9478 
9479 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9480 /// entry block, return true.  This includes arguments used by switches, since
9481 /// the switch may expand into multiple basic blocks.
9482 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9483   // With FastISel active, we may be splitting blocks, so force creation
9484   // of virtual registers for all non-dead arguments.
9485   if (FastISel)
9486     return A->use_empty();
9487 
9488   const BasicBlock &Entry = A->getParent()->front();
9489   for (const User *U : A->users())
9490     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9491       return false;  // Use not in entry block.
9492 
9493   return true;
9494 }
9495 
9496 using ArgCopyElisionMapTy =
9497     DenseMap<const Argument *,
9498              std::pair<const AllocaInst *, const StoreInst *>>;
9499 
9500 /// Scan the entry block of the function in FuncInfo for arguments that look
9501 /// like copies into a local alloca. Record any copied arguments in
9502 /// ArgCopyElisionCandidates.
9503 static void
9504 findArgumentCopyElisionCandidates(const DataLayout &DL,
9505                                   FunctionLoweringInfo *FuncInfo,
9506                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9507   // Record the state of every static alloca used in the entry block. Argument
9508   // allocas are all used in the entry block, so we need approximately as many
9509   // entries as we have arguments.
9510   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9511   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9512   unsigned NumArgs = FuncInfo->Fn->arg_size();
9513   StaticAllocas.reserve(NumArgs * 2);
9514 
9515   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9516     if (!V)
9517       return nullptr;
9518     V = V->stripPointerCasts();
9519     const auto *AI = dyn_cast<AllocaInst>(V);
9520     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9521       return nullptr;
9522     auto Iter = StaticAllocas.insert({AI, Unknown});
9523     return &Iter.first->second;
9524   };
9525 
9526   // Look for stores of arguments to static allocas. Look through bitcasts and
9527   // GEPs to handle type coercions, as long as the alloca is fully initialized
9528   // by the store. Any non-store use of an alloca escapes it and any subsequent
9529   // unanalyzed store might write it.
9530   // FIXME: Handle structs initialized with multiple stores.
9531   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9532     // Look for stores, and handle non-store uses conservatively.
9533     const auto *SI = dyn_cast<StoreInst>(&I);
9534     if (!SI) {
9535       // We will look through cast uses, so ignore them completely.
9536       if (I.isCast())
9537         continue;
9538       // Ignore debug info intrinsics, they don't escape or store to allocas.
9539       if (isa<DbgInfoIntrinsic>(I))
9540         continue;
9541       // This is an unknown instruction. Assume it escapes or writes to all
9542       // static alloca operands.
9543       for (const Use &U : I.operands()) {
9544         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9545           *Info = StaticAllocaInfo::Clobbered;
9546       }
9547       continue;
9548     }
9549 
9550     // If the stored value is a static alloca, mark it as escaped.
9551     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9552       *Info = StaticAllocaInfo::Clobbered;
9553 
9554     // Check if the destination is a static alloca.
9555     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9556     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9557     if (!Info)
9558       continue;
9559     const AllocaInst *AI = cast<AllocaInst>(Dst);
9560 
9561     // Skip allocas that have been initialized or clobbered.
9562     if (*Info != StaticAllocaInfo::Unknown)
9563       continue;
9564 
9565     // Check if the stored value is an argument, and that this store fully
9566     // initializes the alloca. Don't elide copies from the same argument twice.
9567     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9568     const auto *Arg = dyn_cast<Argument>(Val);
9569     if (!Arg || Arg->hasPassPointeeByValueAttr() ||
9570         Arg->getType()->isEmptyTy() ||
9571         DL.getTypeStoreSize(Arg->getType()) !=
9572             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9573         ArgCopyElisionCandidates.count(Arg)) {
9574       *Info = StaticAllocaInfo::Clobbered;
9575       continue;
9576     }
9577 
9578     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9579                       << '\n');
9580 
9581     // Mark this alloca and store for argument copy elision.
9582     *Info = StaticAllocaInfo::Elidable;
9583     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9584 
9585     // Stop scanning if we've seen all arguments. This will happen early in -O0
9586     // builds, which is useful, because -O0 builds have large entry blocks and
9587     // many allocas.
9588     if (ArgCopyElisionCandidates.size() == NumArgs)
9589       break;
9590   }
9591 }
9592 
9593 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9594 /// ArgVal is a load from a suitable fixed stack object.
9595 static void tryToElideArgumentCopy(
9596     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
9597     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9598     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9599     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9600     SDValue ArgVal, bool &ArgHasUses) {
9601   // Check if this is a load from a fixed stack object.
9602   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9603   if (!LNode)
9604     return;
9605   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9606   if (!FINode)
9607     return;
9608 
9609   // Check that the fixed stack object is the right size and alignment.
9610   // Look at the alignment that the user wrote on the alloca instead of looking
9611   // at the stack object.
9612   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9613   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9614   const AllocaInst *AI = ArgCopyIter->second.first;
9615   int FixedIndex = FINode->getIndex();
9616   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
9617   int OldIndex = AllocaIndex;
9618   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
9619   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9620     LLVM_DEBUG(
9621         dbgs() << "  argument copy elision failed due to bad fixed stack "
9622                   "object size\n");
9623     return;
9624   }
9625   Align RequiredAlignment = AI->getAlign();
9626   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
9627     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9628                          "greater than stack argument alignment ("
9629                       << DebugStr(RequiredAlignment) << " vs "
9630                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
9631     return;
9632   }
9633 
9634   // Perform the elision. Delete the old stack object and replace its only use
9635   // in the variable info map. Mark the stack object as mutable.
9636   LLVM_DEBUG({
9637     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9638            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9639            << '\n';
9640   });
9641   MFI.RemoveStackObject(OldIndex);
9642   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9643   AllocaIndex = FixedIndex;
9644   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9645   Chains.push_back(ArgVal.getValue(1));
9646 
9647   // Avoid emitting code for the store implementing the copy.
9648   const StoreInst *SI = ArgCopyIter->second.second;
9649   ElidedArgCopyInstrs.insert(SI);
9650 
9651   // Check for uses of the argument again so that we can avoid exporting ArgVal
9652   // if it is't used by anything other than the store.
9653   for (const Value *U : Arg.users()) {
9654     if (U != SI) {
9655       ArgHasUses = true;
9656       break;
9657     }
9658   }
9659 }
9660 
9661 void SelectionDAGISel::LowerArguments(const Function &F) {
9662   SelectionDAG &DAG = SDB->DAG;
9663   SDLoc dl = SDB->getCurSDLoc();
9664   const DataLayout &DL = DAG.getDataLayout();
9665   SmallVector<ISD::InputArg, 16> Ins;
9666 
9667   // In Naked functions we aren't going to save any registers.
9668   if (F.hasFnAttribute(Attribute::Naked))
9669     return;
9670 
9671   if (!FuncInfo->CanLowerReturn) {
9672     // Put in an sret pointer parameter before all the other parameters.
9673     SmallVector<EVT, 1> ValueVTs;
9674     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9675                     F.getReturnType()->getPointerTo(
9676                         DAG.getDataLayout().getAllocaAddrSpace()),
9677                     ValueVTs);
9678 
9679     // NOTE: Assuming that a pointer will never break down to more than one VT
9680     // or one register.
9681     ISD::ArgFlagsTy Flags;
9682     Flags.setSRet();
9683     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9684     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9685                          ISD::InputArg::NoArgIndex, 0);
9686     Ins.push_back(RetArg);
9687   }
9688 
9689   // Look for stores of arguments to static allocas. Mark such arguments with a
9690   // flag to ask the target to give us the memory location of that argument if
9691   // available.
9692   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9693   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
9694                                     ArgCopyElisionCandidates);
9695 
9696   // Set up the incoming argument description vector.
9697   for (const Argument &Arg : F.args()) {
9698     unsigned ArgNo = Arg.getArgNo();
9699     SmallVector<EVT, 4> ValueVTs;
9700     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9701     bool isArgValueUsed = !Arg.use_empty();
9702     unsigned PartBase = 0;
9703     Type *FinalType = Arg.getType();
9704     if (Arg.hasAttribute(Attribute::ByVal))
9705       FinalType = Arg.getParamByValType();
9706     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9707         FinalType, F.getCallingConv(), F.isVarArg());
9708     for (unsigned Value = 0, NumValues = ValueVTs.size();
9709          Value != NumValues; ++Value) {
9710       EVT VT = ValueVTs[Value];
9711       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9712       ISD::ArgFlagsTy Flags;
9713 
9714       // Certain targets (such as MIPS), may have a different ABI alignment
9715       // for a type depending on the context. Give the target a chance to
9716       // specify the alignment it wants.
9717       const Align OriginalAlignment(
9718           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
9719 
9720       if (Arg.getType()->isPointerTy()) {
9721         Flags.setPointer();
9722         Flags.setPointerAddrSpace(
9723             cast<PointerType>(Arg.getType())->getAddressSpace());
9724       }
9725       if (Arg.hasAttribute(Attribute::ZExt))
9726         Flags.setZExt();
9727       if (Arg.hasAttribute(Attribute::SExt))
9728         Flags.setSExt();
9729       if (Arg.hasAttribute(Attribute::InReg)) {
9730         // If we are using vectorcall calling convention, a structure that is
9731         // passed InReg - is surely an HVA
9732         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9733             isa<StructType>(Arg.getType())) {
9734           // The first value of a structure is marked
9735           if (0 == Value)
9736             Flags.setHvaStart();
9737           Flags.setHva();
9738         }
9739         // Set InReg Flag
9740         Flags.setInReg();
9741       }
9742       if (Arg.hasAttribute(Attribute::StructRet))
9743         Flags.setSRet();
9744       if (Arg.hasAttribute(Attribute::SwiftSelf))
9745         Flags.setSwiftSelf();
9746       if (Arg.hasAttribute(Attribute::SwiftError))
9747         Flags.setSwiftError();
9748       if (Arg.hasAttribute(Attribute::ByVal))
9749         Flags.setByVal();
9750       if (Arg.hasAttribute(Attribute::InAlloca)) {
9751         Flags.setInAlloca();
9752         // Set the byval flag for CCAssignFn callbacks that don't know about
9753         // inalloca.  This way we can know how many bytes we should've allocated
9754         // and how many bytes a callee cleanup function will pop.  If we port
9755         // inalloca to more targets, we'll have to add custom inalloca handling
9756         // in the various CC lowering callbacks.
9757         Flags.setByVal();
9758       }
9759       if (Arg.hasAttribute(Attribute::Preallocated)) {
9760         Flags.setPreallocated();
9761         // Set the byval flag for CCAssignFn callbacks that don't know about
9762         // preallocated.  This way we can know how many bytes we should've
9763         // allocated and how many bytes a callee cleanup function will pop.  If
9764         // we port preallocated to more targets, we'll have to add custom
9765         // preallocated handling in the various CC lowering callbacks.
9766         Flags.setByVal();
9767       }
9768       if (F.getCallingConv() == CallingConv::X86_INTR) {
9769         // IA Interrupt passes frame (1st parameter) by value in the stack.
9770         if (ArgNo == 0)
9771           Flags.setByVal();
9772       }
9773       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
9774         Type *ElementTy = Arg.getParamByValType();
9775 
9776         // For ByVal, size and alignment should be passed from FE.  BE will
9777         // guess if this info is not there but there are cases it cannot get
9778         // right.
9779         unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType());
9780         Flags.setByValSize(FrameSize);
9781 
9782         unsigned FrameAlign;
9783         if (Arg.getParamAlignment())
9784           FrameAlign = Arg.getParamAlignment();
9785         else
9786           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9787         Flags.setByValAlign(Align(FrameAlign));
9788       }
9789       if (Arg.hasAttribute(Attribute::Nest))
9790         Flags.setNest();
9791       if (NeedsRegBlock)
9792         Flags.setInConsecutiveRegs();
9793       Flags.setOrigAlign(OriginalAlignment);
9794       if (ArgCopyElisionCandidates.count(&Arg))
9795         Flags.setCopyElisionCandidate();
9796       if (Arg.hasAttribute(Attribute::Returned))
9797         Flags.setReturned();
9798 
9799       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9800           *CurDAG->getContext(), F.getCallingConv(), VT);
9801       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9802           *CurDAG->getContext(), F.getCallingConv(), VT);
9803       for (unsigned i = 0; i != NumRegs; ++i) {
9804         // For scalable vectors, use the minimum size; individual targets
9805         // are responsible for handling scalable vector arguments and
9806         // return values.
9807         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9808                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
9809         if (NumRegs > 1 && i == 0)
9810           MyFlags.Flags.setSplit();
9811         // if it isn't first piece, alignment must be 1
9812         else if (i > 0) {
9813           MyFlags.Flags.setOrigAlign(Align(1));
9814           if (i == NumRegs - 1)
9815             MyFlags.Flags.setSplitEnd();
9816         }
9817         Ins.push_back(MyFlags);
9818       }
9819       if (NeedsRegBlock && Value == NumValues - 1)
9820         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9821       PartBase += VT.getStoreSize().getKnownMinSize();
9822     }
9823   }
9824 
9825   // Call the target to set up the argument values.
9826   SmallVector<SDValue, 8> InVals;
9827   SDValue NewRoot = TLI->LowerFormalArguments(
9828       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9829 
9830   // Verify that the target's LowerFormalArguments behaved as expected.
9831   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9832          "LowerFormalArguments didn't return a valid chain!");
9833   assert(InVals.size() == Ins.size() &&
9834          "LowerFormalArguments didn't emit the correct number of values!");
9835   LLVM_DEBUG({
9836     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9837       assert(InVals[i].getNode() &&
9838              "LowerFormalArguments emitted a null value!");
9839       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9840              "LowerFormalArguments emitted a value with the wrong type!");
9841     }
9842   });
9843 
9844   // Update the DAG with the new chain value resulting from argument lowering.
9845   DAG.setRoot(NewRoot);
9846 
9847   // Set up the argument values.
9848   unsigned i = 0;
9849   if (!FuncInfo->CanLowerReturn) {
9850     // Create a virtual register for the sret pointer, and put in a copy
9851     // from the sret argument into it.
9852     SmallVector<EVT, 1> ValueVTs;
9853     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9854                     F.getReturnType()->getPointerTo(
9855                         DAG.getDataLayout().getAllocaAddrSpace()),
9856                     ValueVTs);
9857     MVT VT = ValueVTs[0].getSimpleVT();
9858     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9859     Optional<ISD::NodeType> AssertOp = None;
9860     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9861                                         nullptr, F.getCallingConv(), AssertOp);
9862 
9863     MachineFunction& MF = SDB->DAG.getMachineFunction();
9864     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9865     Register SRetReg =
9866         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9867     FuncInfo->DemoteRegister = SRetReg;
9868     NewRoot =
9869         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9870     DAG.setRoot(NewRoot);
9871 
9872     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9873     ++i;
9874   }
9875 
9876   SmallVector<SDValue, 4> Chains;
9877   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9878   for (const Argument &Arg : F.args()) {
9879     SmallVector<SDValue, 4> ArgValues;
9880     SmallVector<EVT, 4> ValueVTs;
9881     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9882     unsigned NumValues = ValueVTs.size();
9883     if (NumValues == 0)
9884       continue;
9885 
9886     bool ArgHasUses = !Arg.use_empty();
9887 
9888     // Elide the copying store if the target loaded this argument from a
9889     // suitable fixed stack object.
9890     if (Ins[i].Flags.isCopyElisionCandidate()) {
9891       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9892                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9893                              InVals[i], ArgHasUses);
9894     }
9895 
9896     // If this argument is unused then remember its value. It is used to generate
9897     // debugging information.
9898     bool isSwiftErrorArg =
9899         TLI->supportSwiftError() &&
9900         Arg.hasAttribute(Attribute::SwiftError);
9901     if (!ArgHasUses && !isSwiftErrorArg) {
9902       SDB->setUnusedArgValue(&Arg, InVals[i]);
9903 
9904       // Also remember any frame index for use in FastISel.
9905       if (FrameIndexSDNode *FI =
9906           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9907         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9908     }
9909 
9910     for (unsigned Val = 0; Val != NumValues; ++Val) {
9911       EVT VT = ValueVTs[Val];
9912       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9913                                                       F.getCallingConv(), VT);
9914       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9915           *CurDAG->getContext(), F.getCallingConv(), VT);
9916 
9917       // Even an apparent 'unused' swifterror argument needs to be returned. So
9918       // we do generate a copy for it that can be used on return from the
9919       // function.
9920       if (ArgHasUses || isSwiftErrorArg) {
9921         Optional<ISD::NodeType> AssertOp;
9922         if (Arg.hasAttribute(Attribute::SExt))
9923           AssertOp = ISD::AssertSext;
9924         else if (Arg.hasAttribute(Attribute::ZExt))
9925           AssertOp = ISD::AssertZext;
9926 
9927         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9928                                              PartVT, VT, nullptr,
9929                                              F.getCallingConv(), AssertOp));
9930       }
9931 
9932       i += NumParts;
9933     }
9934 
9935     // We don't need to do anything else for unused arguments.
9936     if (ArgValues.empty())
9937       continue;
9938 
9939     // Note down frame index.
9940     if (FrameIndexSDNode *FI =
9941         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9942       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9943 
9944     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9945                                      SDB->getCurSDLoc());
9946 
9947     SDB->setValue(&Arg, Res);
9948     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9949       // We want to associate the argument with the frame index, among
9950       // involved operands, that correspond to the lowest address. The
9951       // getCopyFromParts function, called earlier, is swapping the order of
9952       // the operands to BUILD_PAIR depending on endianness. The result of
9953       // that swapping is that the least significant bits of the argument will
9954       // be in the first operand of the BUILD_PAIR node, and the most
9955       // significant bits will be in the second operand.
9956       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9957       if (LoadSDNode *LNode =
9958           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9959         if (FrameIndexSDNode *FI =
9960             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9961           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9962     }
9963 
9964     // Analyses past this point are naive and don't expect an assertion.
9965     if (Res.getOpcode() == ISD::AssertZext)
9966       Res = Res.getOperand(0);
9967 
9968     // Update the SwiftErrorVRegDefMap.
9969     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9970       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9971       if (Register::isVirtualRegister(Reg))
9972         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
9973                                    Reg);
9974     }
9975 
9976     // If this argument is live outside of the entry block, insert a copy from
9977     // wherever we got it to the vreg that other BB's will reference it as.
9978     if (Res.getOpcode() == ISD::CopyFromReg) {
9979       // If we can, though, try to skip creating an unnecessary vreg.
9980       // FIXME: This isn't very clean... it would be nice to make this more
9981       // general.
9982       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9983       if (Register::isVirtualRegister(Reg)) {
9984         FuncInfo->ValueMap[&Arg] = Reg;
9985         continue;
9986       }
9987     }
9988     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9989       FuncInfo->InitializeRegForValue(&Arg);
9990       SDB->CopyToExportRegsIfNeeded(&Arg);
9991     }
9992   }
9993 
9994   if (!Chains.empty()) {
9995     Chains.push_back(NewRoot);
9996     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9997   }
9998 
9999   DAG.setRoot(NewRoot);
10000 
10001   assert(i == InVals.size() && "Argument register count mismatch!");
10002 
10003   // If any argument copy elisions occurred and we have debug info, update the
10004   // stale frame indices used in the dbg.declare variable info table.
10005   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10006   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10007     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10008       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10009       if (I != ArgCopyElisionFrameIndexMap.end())
10010         VI.Slot = I->second;
10011     }
10012   }
10013 
10014   // Finally, if the target has anything special to do, allow it to do so.
10015   emitFunctionEntryCode();
10016 }
10017 
10018 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10019 /// ensure constants are generated when needed.  Remember the virtual registers
10020 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10021 /// directly add them, because expansion might result in multiple MBB's for one
10022 /// BB.  As such, the start of the BB might correspond to a different MBB than
10023 /// the end.
10024 void
10025 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10026   const Instruction *TI = LLVMBB->getTerminator();
10027 
10028   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10029 
10030   // Check PHI nodes in successors that expect a value to be available from this
10031   // block.
10032   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
10033     const BasicBlock *SuccBB = TI->getSuccessor(succ);
10034     if (!isa<PHINode>(SuccBB->begin())) continue;
10035     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10036 
10037     // If this terminator has multiple identical successors (common for
10038     // switches), only handle each succ once.
10039     if (!SuccsHandled.insert(SuccMBB).second)
10040       continue;
10041 
10042     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10043 
10044     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10045     // nodes and Machine PHI nodes, but the incoming operands have not been
10046     // emitted yet.
10047     for (const PHINode &PN : SuccBB->phis()) {
10048       // Ignore dead phi's.
10049       if (PN.use_empty())
10050         continue;
10051 
10052       // Skip empty types
10053       if (PN.getType()->isEmptyTy())
10054         continue;
10055 
10056       unsigned Reg;
10057       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10058 
10059       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10060         unsigned &RegOut = ConstantsOut[C];
10061         if (RegOut == 0) {
10062           RegOut = FuncInfo.CreateRegs(C);
10063           CopyValueToVirtualRegister(C, RegOut);
10064         }
10065         Reg = RegOut;
10066       } else {
10067         DenseMap<const Value *, Register>::iterator I =
10068           FuncInfo.ValueMap.find(PHIOp);
10069         if (I != FuncInfo.ValueMap.end())
10070           Reg = I->second;
10071         else {
10072           assert(isa<AllocaInst>(PHIOp) &&
10073                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10074                  "Didn't codegen value into a register!??");
10075           Reg = FuncInfo.CreateRegs(PHIOp);
10076           CopyValueToVirtualRegister(PHIOp, Reg);
10077         }
10078       }
10079 
10080       // Remember that this register needs to added to the machine PHI node as
10081       // the input for this MBB.
10082       SmallVector<EVT, 4> ValueVTs;
10083       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10084       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10085       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10086         EVT VT = ValueVTs[vti];
10087         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10088         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10089           FuncInfo.PHINodesToUpdate.push_back(
10090               std::make_pair(&*MBBI++, Reg + i));
10091         Reg += NumRegisters;
10092       }
10093     }
10094   }
10095 
10096   ConstantsOut.clear();
10097 }
10098 
10099 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
10100 /// is 0.
10101 MachineBasicBlock *
10102 SelectionDAGBuilder::StackProtectorDescriptor::
10103 AddSuccessorMBB(const BasicBlock *BB,
10104                 MachineBasicBlock *ParentMBB,
10105                 bool IsLikely,
10106                 MachineBasicBlock *SuccMBB) {
10107   // If SuccBB has not been created yet, create it.
10108   if (!SuccMBB) {
10109     MachineFunction *MF = ParentMBB->getParent();
10110     MachineFunction::iterator BBI(ParentMBB);
10111     SuccMBB = MF->CreateMachineBasicBlock(BB);
10112     MF->insert(++BBI, SuccMBB);
10113   }
10114   // Add it as a successor of ParentMBB.
10115   ParentMBB->addSuccessor(
10116       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
10117   return SuccMBB;
10118 }
10119 
10120 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10121   MachineFunction::iterator I(MBB);
10122   if (++I == FuncInfo.MF->end())
10123     return nullptr;
10124   return &*I;
10125 }
10126 
10127 /// During lowering new call nodes can be created (such as memset, etc.).
10128 /// Those will become new roots of the current DAG, but complications arise
10129 /// when they are tail calls. In such cases, the call lowering will update
10130 /// the root, but the builder still needs to know that a tail call has been
10131 /// lowered in order to avoid generating an additional return.
10132 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10133   // If the node is null, we do have a tail call.
10134   if (MaybeTC.getNode() != nullptr)
10135     DAG.setRoot(MaybeTC);
10136   else
10137     HasTailCall = true;
10138 }
10139 
10140 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10141                                         MachineBasicBlock *SwitchMBB,
10142                                         MachineBasicBlock *DefaultMBB) {
10143   MachineFunction *CurMF = FuncInfo.MF;
10144   MachineBasicBlock *NextMBB = nullptr;
10145   MachineFunction::iterator BBI(W.MBB);
10146   if (++BBI != FuncInfo.MF->end())
10147     NextMBB = &*BBI;
10148 
10149   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10150 
10151   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10152 
10153   if (Size == 2 && W.MBB == SwitchMBB) {
10154     // If any two of the cases has the same destination, and if one value
10155     // is the same as the other, but has one bit unset that the other has set,
10156     // use bit manipulation to do two compares at once.  For example:
10157     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10158     // TODO: This could be extended to merge any 2 cases in switches with 3
10159     // cases.
10160     // TODO: Handle cases where W.CaseBB != SwitchBB.
10161     CaseCluster &Small = *W.FirstCluster;
10162     CaseCluster &Big = *W.LastCluster;
10163 
10164     if (Small.Low == Small.High && Big.Low == Big.High &&
10165         Small.MBB == Big.MBB) {
10166       const APInt &SmallValue = Small.Low->getValue();
10167       const APInt &BigValue = Big.Low->getValue();
10168 
10169       // Check that there is only one bit different.
10170       APInt CommonBit = BigValue ^ SmallValue;
10171       if (CommonBit.isPowerOf2()) {
10172         SDValue CondLHS = getValue(Cond);
10173         EVT VT = CondLHS.getValueType();
10174         SDLoc DL = getCurSDLoc();
10175 
10176         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10177                                  DAG.getConstant(CommonBit, DL, VT));
10178         SDValue Cond = DAG.getSetCC(
10179             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10180             ISD::SETEQ);
10181 
10182         // Update successor info.
10183         // Both Small and Big will jump to Small.BB, so we sum up the
10184         // probabilities.
10185         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10186         if (BPI)
10187           addSuccessorWithProb(
10188               SwitchMBB, DefaultMBB,
10189               // The default destination is the first successor in IR.
10190               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10191         else
10192           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10193 
10194         // Insert the true branch.
10195         SDValue BrCond =
10196             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10197                         DAG.getBasicBlock(Small.MBB));
10198         // Insert the false branch.
10199         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10200                              DAG.getBasicBlock(DefaultMBB));
10201 
10202         DAG.setRoot(BrCond);
10203         return;
10204       }
10205     }
10206   }
10207 
10208   if (TM.getOptLevel() != CodeGenOpt::None) {
10209     // Here, we order cases by probability so the most likely case will be
10210     // checked first. However, two clusters can have the same probability in
10211     // which case their relative ordering is non-deterministic. So we use Low
10212     // as a tie-breaker as clusters are guaranteed to never overlap.
10213     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10214                [](const CaseCluster &a, const CaseCluster &b) {
10215       return a.Prob != b.Prob ?
10216              a.Prob > b.Prob :
10217              a.Low->getValue().slt(b.Low->getValue());
10218     });
10219 
10220     // Rearrange the case blocks so that the last one falls through if possible
10221     // without changing the order of probabilities.
10222     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10223       --I;
10224       if (I->Prob > W.LastCluster->Prob)
10225         break;
10226       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10227         std::swap(*I, *W.LastCluster);
10228         break;
10229       }
10230     }
10231   }
10232 
10233   // Compute total probability.
10234   BranchProbability DefaultProb = W.DefaultProb;
10235   BranchProbability UnhandledProbs = DefaultProb;
10236   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10237     UnhandledProbs += I->Prob;
10238 
10239   MachineBasicBlock *CurMBB = W.MBB;
10240   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10241     bool FallthroughUnreachable = false;
10242     MachineBasicBlock *Fallthrough;
10243     if (I == W.LastCluster) {
10244       // For the last cluster, fall through to the default destination.
10245       Fallthrough = DefaultMBB;
10246       FallthroughUnreachable = isa<UnreachableInst>(
10247           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10248     } else {
10249       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10250       CurMF->insert(BBI, Fallthrough);
10251       // Put Cond in a virtual register to make it available from the new blocks.
10252       ExportFromCurrentBlock(Cond);
10253     }
10254     UnhandledProbs -= I->Prob;
10255 
10256     switch (I->Kind) {
10257       case CC_JumpTable: {
10258         // FIXME: Optimize away range check based on pivot comparisons.
10259         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10260         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10261 
10262         // The jump block hasn't been inserted yet; insert it here.
10263         MachineBasicBlock *JumpMBB = JT->MBB;
10264         CurMF->insert(BBI, JumpMBB);
10265 
10266         auto JumpProb = I->Prob;
10267         auto FallthroughProb = UnhandledProbs;
10268 
10269         // If the default statement is a target of the jump table, we evenly
10270         // distribute the default probability to successors of CurMBB. Also
10271         // update the probability on the edge from JumpMBB to Fallthrough.
10272         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10273                                               SE = JumpMBB->succ_end();
10274              SI != SE; ++SI) {
10275           if (*SI == DefaultMBB) {
10276             JumpProb += DefaultProb / 2;
10277             FallthroughProb -= DefaultProb / 2;
10278             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10279             JumpMBB->normalizeSuccProbs();
10280             break;
10281           }
10282         }
10283 
10284         if (FallthroughUnreachable) {
10285           // Skip the range check if the fallthrough block is unreachable.
10286           JTH->OmitRangeCheck = true;
10287         }
10288 
10289         if (!JTH->OmitRangeCheck)
10290           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10291         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10292         CurMBB->normalizeSuccProbs();
10293 
10294         // The jump table header will be inserted in our current block, do the
10295         // range check, and fall through to our fallthrough block.
10296         JTH->HeaderBB = CurMBB;
10297         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10298 
10299         // If we're in the right place, emit the jump table header right now.
10300         if (CurMBB == SwitchMBB) {
10301           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10302           JTH->Emitted = true;
10303         }
10304         break;
10305       }
10306       case CC_BitTests: {
10307         // FIXME: Optimize away range check based on pivot comparisons.
10308         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10309 
10310         // The bit test blocks haven't been inserted yet; insert them here.
10311         for (BitTestCase &BTC : BTB->Cases)
10312           CurMF->insert(BBI, BTC.ThisBB);
10313 
10314         // Fill in fields of the BitTestBlock.
10315         BTB->Parent = CurMBB;
10316         BTB->Default = Fallthrough;
10317 
10318         BTB->DefaultProb = UnhandledProbs;
10319         // If the cases in bit test don't form a contiguous range, we evenly
10320         // distribute the probability on the edge to Fallthrough to two
10321         // successors of CurMBB.
10322         if (!BTB->ContiguousRange) {
10323           BTB->Prob += DefaultProb / 2;
10324           BTB->DefaultProb -= DefaultProb / 2;
10325         }
10326 
10327         if (FallthroughUnreachable) {
10328           // Skip the range check if the fallthrough block is unreachable.
10329           BTB->OmitRangeCheck = true;
10330         }
10331 
10332         // If we're in the right place, emit the bit test header right now.
10333         if (CurMBB == SwitchMBB) {
10334           visitBitTestHeader(*BTB, SwitchMBB);
10335           BTB->Emitted = true;
10336         }
10337         break;
10338       }
10339       case CC_Range: {
10340         const Value *RHS, *LHS, *MHS;
10341         ISD::CondCode CC;
10342         if (I->Low == I->High) {
10343           // Check Cond == I->Low.
10344           CC = ISD::SETEQ;
10345           LHS = Cond;
10346           RHS=I->Low;
10347           MHS = nullptr;
10348         } else {
10349           // Check I->Low <= Cond <= I->High.
10350           CC = ISD::SETLE;
10351           LHS = I->Low;
10352           MHS = Cond;
10353           RHS = I->High;
10354         }
10355 
10356         // If Fallthrough is unreachable, fold away the comparison.
10357         if (FallthroughUnreachable)
10358           CC = ISD::SETTRUE;
10359 
10360         // The false probability is the sum of all unhandled cases.
10361         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10362                      getCurSDLoc(), I->Prob, UnhandledProbs);
10363 
10364         if (CurMBB == SwitchMBB)
10365           visitSwitchCase(CB, SwitchMBB);
10366         else
10367           SL->SwitchCases.push_back(CB);
10368 
10369         break;
10370       }
10371     }
10372     CurMBB = Fallthrough;
10373   }
10374 }
10375 
10376 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10377                                               CaseClusterIt First,
10378                                               CaseClusterIt Last) {
10379   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10380     if (X.Prob != CC.Prob)
10381       return X.Prob > CC.Prob;
10382 
10383     // Ties are broken by comparing the case value.
10384     return X.Low->getValue().slt(CC.Low->getValue());
10385   });
10386 }
10387 
10388 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10389                                         const SwitchWorkListItem &W,
10390                                         Value *Cond,
10391                                         MachineBasicBlock *SwitchMBB) {
10392   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10393          "Clusters not sorted?");
10394 
10395   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10396 
10397   // Balance the tree based on branch probabilities to create a near-optimal (in
10398   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10399   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10400   CaseClusterIt LastLeft = W.FirstCluster;
10401   CaseClusterIt FirstRight = W.LastCluster;
10402   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10403   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10404 
10405   // Move LastLeft and FirstRight towards each other from opposite directions to
10406   // find a partitioning of the clusters which balances the probability on both
10407   // sides. If LeftProb and RightProb are equal, alternate which side is
10408   // taken to ensure 0-probability nodes are distributed evenly.
10409   unsigned I = 0;
10410   while (LastLeft + 1 < FirstRight) {
10411     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10412       LeftProb += (++LastLeft)->Prob;
10413     else
10414       RightProb += (--FirstRight)->Prob;
10415     I++;
10416   }
10417 
10418   while (true) {
10419     // Our binary search tree differs from a typical BST in that ours can have up
10420     // to three values in each leaf. The pivot selection above doesn't take that
10421     // into account, which means the tree might require more nodes and be less
10422     // efficient. We compensate for this here.
10423 
10424     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10425     unsigned NumRight = W.LastCluster - FirstRight + 1;
10426 
10427     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10428       // If one side has less than 3 clusters, and the other has more than 3,
10429       // consider taking a cluster from the other side.
10430 
10431       if (NumLeft < NumRight) {
10432         // Consider moving the first cluster on the right to the left side.
10433         CaseCluster &CC = *FirstRight;
10434         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10435         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10436         if (LeftSideRank <= RightSideRank) {
10437           // Moving the cluster to the left does not demote it.
10438           ++LastLeft;
10439           ++FirstRight;
10440           continue;
10441         }
10442       } else {
10443         assert(NumRight < NumLeft);
10444         // Consider moving the last element on the left to the right side.
10445         CaseCluster &CC = *LastLeft;
10446         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10447         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10448         if (RightSideRank <= LeftSideRank) {
10449           // Moving the cluster to the right does not demot it.
10450           --LastLeft;
10451           --FirstRight;
10452           continue;
10453         }
10454       }
10455     }
10456     break;
10457   }
10458 
10459   assert(LastLeft + 1 == FirstRight);
10460   assert(LastLeft >= W.FirstCluster);
10461   assert(FirstRight <= W.LastCluster);
10462 
10463   // Use the first element on the right as pivot since we will make less-than
10464   // comparisons against it.
10465   CaseClusterIt PivotCluster = FirstRight;
10466   assert(PivotCluster > W.FirstCluster);
10467   assert(PivotCluster <= W.LastCluster);
10468 
10469   CaseClusterIt FirstLeft = W.FirstCluster;
10470   CaseClusterIt LastRight = W.LastCluster;
10471 
10472   const ConstantInt *Pivot = PivotCluster->Low;
10473 
10474   // New blocks will be inserted immediately after the current one.
10475   MachineFunction::iterator BBI(W.MBB);
10476   ++BBI;
10477 
10478   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10479   // we can branch to its destination directly if it's squeezed exactly in
10480   // between the known lower bound and Pivot - 1.
10481   MachineBasicBlock *LeftMBB;
10482   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10483       FirstLeft->Low == W.GE &&
10484       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10485     LeftMBB = FirstLeft->MBB;
10486   } else {
10487     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10488     FuncInfo.MF->insert(BBI, LeftMBB);
10489     WorkList.push_back(
10490         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10491     // Put Cond in a virtual register to make it available from the new blocks.
10492     ExportFromCurrentBlock(Cond);
10493   }
10494 
10495   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10496   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10497   // directly if RHS.High equals the current upper bound.
10498   MachineBasicBlock *RightMBB;
10499   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10500       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10501     RightMBB = FirstRight->MBB;
10502   } else {
10503     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10504     FuncInfo.MF->insert(BBI, RightMBB);
10505     WorkList.push_back(
10506         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10507     // Put Cond in a virtual register to make it available from the new blocks.
10508     ExportFromCurrentBlock(Cond);
10509   }
10510 
10511   // Create the CaseBlock record that will be used to lower the branch.
10512   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10513                getCurSDLoc(), LeftProb, RightProb);
10514 
10515   if (W.MBB == SwitchMBB)
10516     visitSwitchCase(CB, SwitchMBB);
10517   else
10518     SL->SwitchCases.push_back(CB);
10519 }
10520 
10521 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10522 // from the swith statement.
10523 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10524                                             BranchProbability PeeledCaseProb) {
10525   if (PeeledCaseProb == BranchProbability::getOne())
10526     return BranchProbability::getZero();
10527   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10528 
10529   uint32_t Numerator = CaseProb.getNumerator();
10530   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10531   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10532 }
10533 
10534 // Try to peel the top probability case if it exceeds the threshold.
10535 // Return current MachineBasicBlock for the switch statement if the peeling
10536 // does not occur.
10537 // If the peeling is performed, return the newly created MachineBasicBlock
10538 // for the peeled switch statement. Also update Clusters to remove the peeled
10539 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10540 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10541     const SwitchInst &SI, CaseClusterVector &Clusters,
10542     BranchProbability &PeeledCaseProb) {
10543   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10544   // Don't perform if there is only one cluster or optimizing for size.
10545   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10546       TM.getOptLevel() == CodeGenOpt::None ||
10547       SwitchMBB->getParent()->getFunction().hasMinSize())
10548     return SwitchMBB;
10549 
10550   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10551   unsigned PeeledCaseIndex = 0;
10552   bool SwitchPeeled = false;
10553   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10554     CaseCluster &CC = Clusters[Index];
10555     if (CC.Prob < TopCaseProb)
10556       continue;
10557     TopCaseProb = CC.Prob;
10558     PeeledCaseIndex = Index;
10559     SwitchPeeled = true;
10560   }
10561   if (!SwitchPeeled)
10562     return SwitchMBB;
10563 
10564   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10565                     << TopCaseProb << "\n");
10566 
10567   // Record the MBB for the peeled switch statement.
10568   MachineFunction::iterator BBI(SwitchMBB);
10569   ++BBI;
10570   MachineBasicBlock *PeeledSwitchMBB =
10571       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10572   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10573 
10574   ExportFromCurrentBlock(SI.getCondition());
10575   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10576   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10577                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10578   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10579 
10580   Clusters.erase(PeeledCaseIt);
10581   for (CaseCluster &CC : Clusters) {
10582     LLVM_DEBUG(
10583         dbgs() << "Scale the probablity for one cluster, before scaling: "
10584                << CC.Prob << "\n");
10585     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10586     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10587   }
10588   PeeledCaseProb = TopCaseProb;
10589   return PeeledSwitchMBB;
10590 }
10591 
10592 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10593   // Extract cases from the switch.
10594   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10595   CaseClusterVector Clusters;
10596   Clusters.reserve(SI.getNumCases());
10597   for (auto I : SI.cases()) {
10598     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10599     const ConstantInt *CaseVal = I.getCaseValue();
10600     BranchProbability Prob =
10601         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10602             : BranchProbability(1, SI.getNumCases() + 1);
10603     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10604   }
10605 
10606   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10607 
10608   // Cluster adjacent cases with the same destination. We do this at all
10609   // optimization levels because it's cheap to do and will make codegen faster
10610   // if there are many clusters.
10611   sortAndRangeify(Clusters);
10612 
10613   // The branch probablity of the peeled case.
10614   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10615   MachineBasicBlock *PeeledSwitchMBB =
10616       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10617 
10618   // If there is only the default destination, jump there directly.
10619   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10620   if (Clusters.empty()) {
10621     assert(PeeledSwitchMBB == SwitchMBB);
10622     SwitchMBB->addSuccessor(DefaultMBB);
10623     if (DefaultMBB != NextBlock(SwitchMBB)) {
10624       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10625                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10626     }
10627     return;
10628   }
10629 
10630   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
10631   SL->findBitTestClusters(Clusters, &SI);
10632 
10633   LLVM_DEBUG({
10634     dbgs() << "Case clusters: ";
10635     for (const CaseCluster &C : Clusters) {
10636       if (C.Kind == CC_JumpTable)
10637         dbgs() << "JT:";
10638       if (C.Kind == CC_BitTests)
10639         dbgs() << "BT:";
10640 
10641       C.Low->getValue().print(dbgs(), true);
10642       if (C.Low != C.High) {
10643         dbgs() << '-';
10644         C.High->getValue().print(dbgs(), true);
10645       }
10646       dbgs() << ' ';
10647     }
10648     dbgs() << '\n';
10649   });
10650 
10651   assert(!Clusters.empty());
10652   SwitchWorkList WorkList;
10653   CaseClusterIt First = Clusters.begin();
10654   CaseClusterIt Last = Clusters.end() - 1;
10655   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10656   // Scale the branchprobability for DefaultMBB if the peel occurs and
10657   // DefaultMBB is not replaced.
10658   if (PeeledCaseProb != BranchProbability::getZero() &&
10659       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10660     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10661   WorkList.push_back(
10662       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10663 
10664   while (!WorkList.empty()) {
10665     SwitchWorkListItem W = WorkList.back();
10666     WorkList.pop_back();
10667     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10668 
10669     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10670         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10671       // For optimized builds, lower large range as a balanced binary tree.
10672       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10673       continue;
10674     }
10675 
10676     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10677   }
10678 }
10679 
10680 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
10681   SmallVector<EVT, 4> ValueVTs;
10682   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
10683                   ValueVTs);
10684   unsigned NumValues = ValueVTs.size();
10685   if (NumValues == 0) return;
10686 
10687   SmallVector<SDValue, 4> Values(NumValues);
10688   SDValue Op = getValue(I.getOperand(0));
10689 
10690   for (unsigned i = 0; i != NumValues; ++i)
10691     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
10692                             SDValue(Op.getNode(), Op.getResNo() + i));
10693 
10694   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
10695                            DAG.getVTList(ValueVTs), Values));
10696 }
10697