xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 288a95fc8c0a3a67c2b76ea127dbda97ce6c6753)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BranchProbabilityInfo.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/Loads.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/CodeGen/Analysis.h"
39 #include "llvm/CodeGen/FunctionLoweringInfo.h"
40 #include "llvm/CodeGen/GCMetadata.h"
41 #include "llvm/CodeGen/ISDOpcodes.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBuilder.h"
47 #include "llvm/CodeGen/MachineJumpTableInfo.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineModuleInfo.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RuntimeLibcalls.h"
53 #include "llvm/CodeGen/SelectionDAG.h"
54 #include "llvm/CodeGen/SelectionDAGNodes.h"
55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/TargetFrameLowering.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/ValueTypes.h"
64 #include "llvm/CodeGen/WinEHFuncInfo.h"
65 #include "llvm/IR/Argument.h"
66 #include "llvm/IR/Attributes.h"
67 #include "llvm/IR/BasicBlock.h"
68 #include "llvm/IR/CFG.h"
69 #include "llvm/IR/CallSite.h"
70 #include "llvm/IR/CallingConv.h"
71 #include "llvm/IR/Constant.h"
72 #include "llvm/IR/ConstantRange.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DataLayout.h"
75 #include "llvm/IR/DebugInfoMetadata.h"
76 #include "llvm/IR/DebugLoc.h"
77 #include "llvm/IR/DerivedTypes.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GetElementPtrTypeIterator.h"
80 #include "llvm/IR/InlineAsm.h"
81 #include "llvm/IR/InstrTypes.h"
82 #include "llvm/IR/Instruction.h"
83 #include "llvm/IR/Instructions.h"
84 #include "llvm/IR/IntrinsicInst.h"
85 #include "llvm/IR/Intrinsics.h"
86 #include "llvm/IR/LLVMContext.h"
87 #include "llvm/IR/Metadata.h"
88 #include "llvm/IR/Module.h"
89 #include "llvm/IR/Operator.h"
90 #include "llvm/IR/PatternMatch.h"
91 #include "llvm/IR/Statepoint.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/MC/MCContext.h"
96 #include "llvm/MC/MCSymbol.h"
97 #include "llvm/Support/AtomicOrdering.h"
98 #include "llvm/Support/BranchProbability.h"
99 #include "llvm/Support/Casting.h"
100 #include "llvm/Support/CodeGen.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Compiler.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MachineValueType.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Target/TargetIntrinsicInfo.h"
109 #include "llvm/Target/TargetMachine.h"
110 #include "llvm/Target/TargetOptions.h"
111 #include "llvm/Transforms/Utils/Local.h"
112 #include <algorithm>
113 #include <cassert>
114 #include <cstddef>
115 #include <cstdint>
116 #include <cstring>
117 #include <iterator>
118 #include <limits>
119 #include <numeric>
120 #include <tuple>
121 #include <utility>
122 #include <vector>
123 
124 using namespace llvm;
125 using namespace PatternMatch;
126 
127 #define DEBUG_TYPE "isel"
128 
129 /// LimitFloatPrecision - Generate low-precision inline sequences for
130 /// some float libcalls (6, 8 or 12 bits).
131 static unsigned LimitFloatPrecision;
132 
133 static cl::opt<unsigned, true>
134     LimitFPPrecision("limit-float-precision",
135                      cl::desc("Generate low-precision inline sequences "
136                               "for some float libcalls"),
137                      cl::location(LimitFloatPrecision), cl::Hidden,
138                      cl::init(0));
139 
140 static cl::opt<unsigned> SwitchPeelThreshold(
141     "switch-peel-threshold", cl::Hidden, cl::init(66),
142     cl::desc("Set the case probability threshold for peeling the case from a "
143              "switch statement. A value greater than 100 will void this "
144              "optimization"));
145 
146 // Limit the width of DAG chains. This is important in general to prevent
147 // DAG-based analysis from blowing up. For example, alias analysis and
148 // load clustering may not complete in reasonable time. It is difficult to
149 // recognize and avoid this situation within each individual analysis, and
150 // future analyses are likely to have the same behavior. Limiting DAG width is
151 // the safe approach and will be especially important with global DAGs.
152 //
153 // MaxParallelChains default is arbitrarily high to avoid affecting
154 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
155 // sequence over this should have been converted to llvm.memcpy by the
156 // frontend. It is easy to induce this behavior with .ll code such as:
157 // %buffer = alloca [4096 x i8]
158 // %data = load [4096 x i8]* %argPtr
159 // store [4096 x i8] %data, [4096 x i8]* %buffer
160 static const unsigned MaxParallelChains = 64;
161 
162 // Return the calling convention if the Value passed requires ABI mangling as it
163 // is a parameter to a function or a return value from a function which is not
164 // an intrinsic.
165 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
166   if (auto *R = dyn_cast<ReturnInst>(V))
167     return R->getParent()->getParent()->getCallingConv();
168 
169   if (auto *CI = dyn_cast<CallInst>(V)) {
170     const bool IsInlineAsm = CI->isInlineAsm();
171     const bool IsIndirectFunctionCall =
172         !IsInlineAsm && !CI->getCalledFunction();
173 
174     // It is possible that the call instruction is an inline asm statement or an
175     // indirect function call in which case the return value of
176     // getCalledFunction() would be nullptr.
177     const bool IsInstrinsicCall =
178         !IsInlineAsm && !IsIndirectFunctionCall &&
179         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
180 
181     if (!IsInlineAsm && !IsInstrinsicCall)
182       return CI->getCallingConv();
183   }
184 
185   return None;
186 }
187 
188 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
189                                       const SDValue *Parts, unsigned NumParts,
190                                       MVT PartVT, EVT ValueVT, const Value *V,
191                                       Optional<CallingConv::ID> CC);
192 
193 /// getCopyFromParts - Create a value that contains the specified legal parts
194 /// combined into the value they represent.  If the parts combine to a type
195 /// larger than ValueVT then AssertOp can be used to specify whether the extra
196 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
197 /// (ISD::AssertSext).
198 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
199                                 const SDValue *Parts, unsigned NumParts,
200                                 MVT PartVT, EVT ValueVT, const Value *V,
201                                 Optional<CallingConv::ID> CC = None,
202                                 Optional<ISD::NodeType> AssertOp = None) {
203   if (ValueVT.isVector())
204     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
205                                   CC);
206 
207   assert(NumParts > 0 && "No parts to assemble!");
208   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
209   SDValue Val = Parts[0];
210 
211   if (NumParts > 1) {
212     // Assemble the value from multiple parts.
213     if (ValueVT.isInteger()) {
214       unsigned PartBits = PartVT.getSizeInBits();
215       unsigned ValueBits = ValueVT.getSizeInBits();
216 
217       // Assemble the power of 2 part.
218       unsigned RoundParts = NumParts & (NumParts - 1) ?
219         1 << Log2_32(NumParts) : NumParts;
220       unsigned RoundBits = PartBits * RoundParts;
221       EVT RoundVT = RoundBits == ValueBits ?
222         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
223       SDValue Lo, Hi;
224 
225       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
226 
227       if (RoundParts > 2) {
228         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
229                               PartVT, HalfVT, V);
230         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
231                               RoundParts / 2, PartVT, HalfVT, V);
232       } else {
233         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
234         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
235       }
236 
237       if (DAG.getDataLayout().isBigEndian())
238         std::swap(Lo, Hi);
239 
240       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
241 
242       if (RoundParts < NumParts) {
243         // Assemble the trailing non-power-of-2 part.
244         unsigned OddParts = NumParts - RoundParts;
245         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
246         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
247                               OddVT, V, CC);
248 
249         // Combine the round and odd parts.
250         Lo = Val;
251         if (DAG.getDataLayout().isBigEndian())
252           std::swap(Lo, Hi);
253         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
254         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
255         Hi =
256             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
257                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
258                                         TLI.getPointerTy(DAG.getDataLayout())));
259         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
260         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
261       }
262     } else if (PartVT.isFloatingPoint()) {
263       // FP split into multiple FP parts (for ppcf128)
264       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
265              "Unexpected split");
266       SDValue Lo, Hi;
267       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
268       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
269       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
270         std::swap(Lo, Hi);
271       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
272     } else {
273       // FP split into integer parts (soft fp)
274       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
275              !PartVT.isVector() && "Unexpected split");
276       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
277       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
278     }
279   }
280 
281   // There is now one part, held in Val.  Correct it to match ValueVT.
282   // PartEVT is the type of the register class that holds the value.
283   // ValueVT is the type of the inline asm operation.
284   EVT PartEVT = Val.getValueType();
285 
286   if (PartEVT == ValueVT)
287     return Val;
288 
289   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
290       ValueVT.bitsLT(PartEVT)) {
291     // For an FP value in an integer part, we need to truncate to the right
292     // width first.
293     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
294     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
295   }
296 
297   // Handle types that have the same size.
298   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
299     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300 
301   // Handle types with different sizes.
302   if (PartEVT.isInteger() && ValueVT.isInteger()) {
303     if (ValueVT.bitsLT(PartEVT)) {
304       // For a truncate, see if we have any information to
305       // indicate whether the truncated bits will always be
306       // zero or sign-extension.
307       if (AssertOp.hasValue())
308         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
309                           DAG.getValueType(ValueVT));
310       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
311     }
312     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
313   }
314 
315   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
316     // FP_ROUND's are always exact here.
317     if (ValueVT.bitsLT(Val.getValueType()))
318       return DAG.getNode(
319           ISD::FP_ROUND, DL, ValueVT, Val,
320           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
321 
322     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
323   }
324 
325   llvm_unreachable("Unknown mismatch!");
326 }
327 
328 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
329                                               const Twine &ErrMsg) {
330   const Instruction *I = dyn_cast_or_null<Instruction>(V);
331   if (!V)
332     return Ctx.emitError(ErrMsg);
333 
334   const char *AsmError = ", possible invalid constraint for vector type";
335   if (const CallInst *CI = dyn_cast<CallInst>(I))
336     if (isa<InlineAsm>(CI->getCalledValue()))
337       return Ctx.emitError(I, ErrMsg + AsmError);
338 
339   return Ctx.emitError(I, ErrMsg);
340 }
341 
342 /// getCopyFromPartsVector - Create a value that contains the specified legal
343 /// parts combined into the value they represent.  If the parts combine to a
344 /// type larger than ValueVT then AssertOp can be used to specify whether the
345 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
346 /// ValueVT (ISD::AssertSext).
347 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
348                                       const SDValue *Parts, unsigned NumParts,
349                                       MVT PartVT, EVT ValueVT, const Value *V,
350                                       Optional<CallingConv::ID> CallConv) {
351   assert(ValueVT.isVector() && "Not a vector value");
352   assert(NumParts > 0 && "No parts to assemble!");
353   const bool IsABIRegCopy = CallConv.hasValue();
354 
355   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
356   SDValue Val = Parts[0];
357 
358   // Handle a multi-element vector.
359   if (NumParts > 1) {
360     EVT IntermediateVT;
361     MVT RegisterVT;
362     unsigned NumIntermediates;
363     unsigned NumRegs;
364 
365     if (IsABIRegCopy) {
366       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
367           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
368           NumIntermediates, RegisterVT);
369     } else {
370       NumRegs =
371           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
372                                      NumIntermediates, RegisterVT);
373     }
374 
375     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
376     NumParts = NumRegs; // Silence a compiler warning.
377     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
378     assert(RegisterVT.getSizeInBits() ==
379            Parts[0].getSimpleValueType().getSizeInBits() &&
380            "Part type sizes don't match!");
381 
382     // Assemble the parts into intermediate operands.
383     SmallVector<SDValue, 8> Ops(NumIntermediates);
384     if (NumIntermediates == NumParts) {
385       // If the register was not expanded, truncate or copy the value,
386       // as appropriate.
387       for (unsigned i = 0; i != NumParts; ++i)
388         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
389                                   PartVT, IntermediateVT, V);
390     } else if (NumParts > 0) {
391       // If the intermediate type was expanded, build the intermediate
392       // operands from the parts.
393       assert(NumParts % NumIntermediates == 0 &&
394              "Must expand into a divisible number of parts!");
395       unsigned Factor = NumParts / NumIntermediates;
396       for (unsigned i = 0; i != NumIntermediates; ++i)
397         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
398                                   PartVT, IntermediateVT, V);
399     }
400 
401     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
402     // intermediate operands.
403     EVT BuiltVectorTy =
404         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
405                          (IntermediateVT.isVector()
406                               ? IntermediateVT.getVectorNumElements() * NumParts
407                               : NumIntermediates));
408     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
409                                                 : ISD::BUILD_VECTOR,
410                       DL, BuiltVectorTy, Ops);
411   }
412 
413   // There is now one part, held in Val.  Correct it to match ValueVT.
414   EVT PartEVT = Val.getValueType();
415 
416   if (PartEVT == ValueVT)
417     return Val;
418 
419   if (PartEVT.isVector()) {
420     // If the element type of the source/dest vectors are the same, but the
421     // parts vector has more elements than the value vector, then we have a
422     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
423     // elements we want.
424     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
425       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
426              "Cannot narrow, it would be a lossy transformation");
427       return DAG.getNode(
428           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
429           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
430     }
431 
432     // Vector/Vector bitcast.
433     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
434       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
435 
436     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
437       "Cannot handle this kind of promotion");
438     // Promoted vector extract
439     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
440 
441   }
442 
443   // Trivial bitcast if the types are the same size and the destination
444   // vector type is legal.
445   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
446       TLI.isTypeLegal(ValueVT))
447     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
448 
449   if (ValueVT.getVectorNumElements() != 1) {
450      // Certain ABIs require that vectors are passed as integers. For vectors
451      // are the same size, this is an obvious bitcast.
452      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
453        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
454      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
455        // Bitcast Val back the original type and extract the corresponding
456        // vector we want.
457        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
458        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
459                                            ValueVT.getVectorElementType(), Elts);
460        Val = DAG.getBitcast(WiderVecType, Val);
461        return DAG.getNode(
462            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
463            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
464      }
465 
466      diagnosePossiblyInvalidConstraint(
467          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
468      return DAG.getUNDEF(ValueVT);
469   }
470 
471   // Handle cases such as i8 -> <1 x i1>
472   EVT ValueSVT = ValueVT.getVectorElementType();
473   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
474     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
475                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
476 
477   return DAG.getBuildVector(ValueVT, DL, Val);
478 }
479 
480 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
481                                  SDValue Val, SDValue *Parts, unsigned NumParts,
482                                  MVT PartVT, const Value *V,
483                                  Optional<CallingConv::ID> CallConv);
484 
485 /// getCopyToParts - Create a series of nodes that contain the specified value
486 /// split into legal parts.  If the parts contain more bits than Val, then, for
487 /// integers, ExtendKind can be used to specify how to generate the extra bits.
488 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
489                            SDValue *Parts, unsigned NumParts, MVT PartVT,
490                            const Value *V,
491                            Optional<CallingConv::ID> CallConv = None,
492                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
493   EVT ValueVT = Val.getValueType();
494 
495   // Handle the vector case separately.
496   if (ValueVT.isVector())
497     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
498                                 CallConv);
499 
500   unsigned PartBits = PartVT.getSizeInBits();
501   unsigned OrigNumParts = NumParts;
502   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
503          "Copying to an illegal type!");
504 
505   if (NumParts == 0)
506     return;
507 
508   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
509   EVT PartEVT = PartVT;
510   if (PartEVT == ValueVT) {
511     assert(NumParts == 1 && "No-op copy with multiple parts!");
512     Parts[0] = Val;
513     return;
514   }
515 
516   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
517     // If the parts cover more bits than the value has, promote the value.
518     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
519       assert(NumParts == 1 && "Do not know what to promote to!");
520       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
521     } else {
522       if (ValueVT.isFloatingPoint()) {
523         // FP values need to be bitcast, then extended if they are being put
524         // into a larger container.
525         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
526         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
527       }
528       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
529              ValueVT.isInteger() &&
530              "Unknown mismatch!");
531       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
532       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
533       if (PartVT == MVT::x86mmx)
534         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
535     }
536   } else if (PartBits == ValueVT.getSizeInBits()) {
537     // Different types of the same size.
538     assert(NumParts == 1 && PartEVT != ValueVT);
539     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
540   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
541     // If the parts cover less bits than value has, truncate the value.
542     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
543            ValueVT.isInteger() &&
544            "Unknown mismatch!");
545     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
546     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
547     if (PartVT == MVT::x86mmx)
548       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
549   }
550 
551   // The value may have changed - recompute ValueVT.
552   ValueVT = Val.getValueType();
553   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
554          "Failed to tile the value with PartVT!");
555 
556   if (NumParts == 1) {
557     if (PartEVT != ValueVT) {
558       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
559                                         "scalar-to-vector conversion failed");
560       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
561     }
562 
563     Parts[0] = Val;
564     return;
565   }
566 
567   // Expand the value into multiple parts.
568   if (NumParts & (NumParts - 1)) {
569     // The number of parts is not a power of 2.  Split off and copy the tail.
570     assert(PartVT.isInteger() && ValueVT.isInteger() &&
571            "Do not know what to expand to!");
572     unsigned RoundParts = 1 << Log2_32(NumParts);
573     unsigned RoundBits = RoundParts * PartBits;
574     unsigned OddParts = NumParts - RoundParts;
575     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
576       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
577 
578     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
579                    CallConv);
580 
581     if (DAG.getDataLayout().isBigEndian())
582       // The odd parts were reversed by getCopyToParts - unreverse them.
583       std::reverse(Parts + RoundParts, Parts + NumParts);
584 
585     NumParts = RoundParts;
586     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
587     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
588   }
589 
590   // The number of parts is a power of 2.  Repeatedly bisect the value using
591   // EXTRACT_ELEMENT.
592   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
593                          EVT::getIntegerVT(*DAG.getContext(),
594                                            ValueVT.getSizeInBits()),
595                          Val);
596 
597   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
598     for (unsigned i = 0; i < NumParts; i += StepSize) {
599       unsigned ThisBits = StepSize * PartBits / 2;
600       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
601       SDValue &Part0 = Parts[i];
602       SDValue &Part1 = Parts[i+StepSize/2];
603 
604       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
605                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
606       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
607                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
608 
609       if (ThisBits == PartBits && ThisVT != PartVT) {
610         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
611         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
612       }
613     }
614   }
615 
616   if (DAG.getDataLayout().isBigEndian())
617     std::reverse(Parts, Parts + OrigNumParts);
618 }
619 
620 static SDValue widenVectorToPartType(SelectionDAG &DAG,
621                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
622   if (!PartVT.isVector())
623     return SDValue();
624 
625   EVT ValueVT = Val.getValueType();
626   unsigned PartNumElts = PartVT.getVectorNumElements();
627   unsigned ValueNumElts = ValueVT.getVectorNumElements();
628   if (PartNumElts > ValueNumElts &&
629       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
630     EVT ElementVT = PartVT.getVectorElementType();
631     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
632     // undef elements.
633     SmallVector<SDValue, 16> Ops;
634     DAG.ExtractVectorElements(Val, Ops);
635     SDValue EltUndef = DAG.getUNDEF(ElementVT);
636     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
637       Ops.push_back(EltUndef);
638 
639     // FIXME: Use CONCAT for 2x -> 4x.
640     return DAG.getBuildVector(PartVT, DL, Ops);
641   }
642 
643   return SDValue();
644 }
645 
646 /// getCopyToPartsVector - Create a series of nodes that contain the specified
647 /// value split into legal parts.
648 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
649                                  SDValue Val, SDValue *Parts, unsigned NumParts,
650                                  MVT PartVT, const Value *V,
651                                  Optional<CallingConv::ID> CallConv) {
652   EVT ValueVT = Val.getValueType();
653   assert(ValueVT.isVector() && "Not a vector");
654   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
655   const bool IsABIRegCopy = CallConv.hasValue();
656 
657   if (NumParts == 1) {
658     EVT PartEVT = PartVT;
659     if (PartEVT == ValueVT) {
660       // Nothing to do.
661     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
662       // Bitconvert vector->vector case.
663       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
664     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
665       Val = Widened;
666     } else if (PartVT.isVector() &&
667                PartEVT.getVectorElementType().bitsGE(
668                  ValueVT.getVectorElementType()) &&
669                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
670 
671       // Promoted vector extract
672       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
673     } else {
674       if (ValueVT.getVectorNumElements() == 1) {
675         Val = DAG.getNode(
676             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
677             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
678       } else {
679         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
680                "lossy conversion of vector to scalar type");
681         EVT IntermediateType =
682             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
683         Val = DAG.getBitcast(IntermediateType, Val);
684         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
685       }
686     }
687 
688     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
689     Parts[0] = Val;
690     return;
691   }
692 
693   // Handle a multi-element vector.
694   EVT IntermediateVT;
695   MVT RegisterVT;
696   unsigned NumIntermediates;
697   unsigned NumRegs;
698   if (IsABIRegCopy) {
699     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
700         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
701         NumIntermediates, RegisterVT);
702   } else {
703     NumRegs =
704         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
705                                    NumIntermediates, RegisterVT);
706   }
707 
708   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
709   NumParts = NumRegs; // Silence a compiler warning.
710   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
711 
712   unsigned IntermediateNumElts = IntermediateVT.isVector() ?
713     IntermediateVT.getVectorNumElements() : 1;
714 
715   // Convert the vector to the appropiate type if necessary.
716   unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
717 
718   EVT BuiltVectorTy = EVT::getVectorVT(
719       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
720   MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
721   if (ValueVT != BuiltVectorTy) {
722     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
723       Val = Widened;
724 
725     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
726   }
727 
728   // Split the vector into intermediate operands.
729   SmallVector<SDValue, 8> Ops(NumIntermediates);
730   for (unsigned i = 0; i != NumIntermediates; ++i) {
731     if (IntermediateVT.isVector()) {
732       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
733                            DAG.getConstant(i * IntermediateNumElts, DL, IdxVT));
734     } else {
735       Ops[i] = DAG.getNode(
736           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
737           DAG.getConstant(i, DL, IdxVT));
738     }
739   }
740 
741   // Split the intermediate operands into legal parts.
742   if (NumParts == NumIntermediates) {
743     // If the register was not expanded, promote or copy the value,
744     // as appropriate.
745     for (unsigned i = 0; i != NumParts; ++i)
746       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
747   } else if (NumParts > 0) {
748     // If the intermediate type was expanded, split each the value into
749     // legal parts.
750     assert(NumIntermediates != 0 && "division by zero");
751     assert(NumParts % NumIntermediates == 0 &&
752            "Must expand into a divisible number of parts!");
753     unsigned Factor = NumParts / NumIntermediates;
754     for (unsigned i = 0; i != NumIntermediates; ++i)
755       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
756                      CallConv);
757   }
758 }
759 
760 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
761                            EVT valuevt, Optional<CallingConv::ID> CC)
762     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
763       RegCount(1, regs.size()), CallConv(CC) {}
764 
765 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
766                            const DataLayout &DL, unsigned Reg, Type *Ty,
767                            Optional<CallingConv::ID> CC) {
768   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
769 
770   CallConv = CC;
771 
772   for (EVT ValueVT : ValueVTs) {
773     unsigned NumRegs =
774         isABIMangled()
775             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
776             : TLI.getNumRegisters(Context, ValueVT);
777     MVT RegisterVT =
778         isABIMangled()
779             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
780             : TLI.getRegisterType(Context, ValueVT);
781     for (unsigned i = 0; i != NumRegs; ++i)
782       Regs.push_back(Reg + i);
783     RegVTs.push_back(RegisterVT);
784     RegCount.push_back(NumRegs);
785     Reg += NumRegs;
786   }
787 }
788 
789 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
790                                       FunctionLoweringInfo &FuncInfo,
791                                       const SDLoc &dl, SDValue &Chain,
792                                       SDValue *Flag, const Value *V) const {
793   // A Value with type {} or [0 x %t] needs no registers.
794   if (ValueVTs.empty())
795     return SDValue();
796 
797   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
798 
799   // Assemble the legal parts into the final values.
800   SmallVector<SDValue, 4> Values(ValueVTs.size());
801   SmallVector<SDValue, 8> Parts;
802   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
803     // Copy the legal parts from the registers.
804     EVT ValueVT = ValueVTs[Value];
805     unsigned NumRegs = RegCount[Value];
806     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
807                                           *DAG.getContext(),
808                                           CallConv.getValue(), RegVTs[Value])
809                                     : RegVTs[Value];
810 
811     Parts.resize(NumRegs);
812     for (unsigned i = 0; i != NumRegs; ++i) {
813       SDValue P;
814       if (!Flag) {
815         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
816       } else {
817         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
818         *Flag = P.getValue(2);
819       }
820 
821       Chain = P.getValue(1);
822       Parts[i] = P;
823 
824       // If the source register was virtual and if we know something about it,
825       // add an assert node.
826       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
827           !RegisterVT.isInteger())
828         continue;
829 
830       const FunctionLoweringInfo::LiveOutInfo *LOI =
831         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
832       if (!LOI)
833         continue;
834 
835       unsigned RegSize = RegisterVT.getScalarSizeInBits();
836       unsigned NumSignBits = LOI->NumSignBits;
837       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
838 
839       if (NumZeroBits == RegSize) {
840         // The current value is a zero.
841         // Explicitly express that as it would be easier for
842         // optimizations to kick in.
843         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
844         continue;
845       }
846 
847       // FIXME: We capture more information than the dag can represent.  For
848       // now, just use the tightest assertzext/assertsext possible.
849       bool isSExt;
850       EVT FromVT(MVT::Other);
851       if (NumZeroBits) {
852         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
853         isSExt = false;
854       } else if (NumSignBits > 1) {
855         FromVT =
856             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
857         isSExt = true;
858       } else {
859         continue;
860       }
861       // Add an assertion node.
862       assert(FromVT != MVT::Other);
863       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
864                              RegisterVT, P, DAG.getValueType(FromVT));
865     }
866 
867     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
868                                      RegisterVT, ValueVT, V, CallConv);
869     Part += NumRegs;
870     Parts.clear();
871   }
872 
873   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
874 }
875 
876 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
877                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
878                                  const Value *V,
879                                  ISD::NodeType PreferredExtendType) const {
880   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
881   ISD::NodeType ExtendKind = PreferredExtendType;
882 
883   // Get the list of the values's legal parts.
884   unsigned NumRegs = Regs.size();
885   SmallVector<SDValue, 8> Parts(NumRegs);
886   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
887     unsigned NumParts = RegCount[Value];
888 
889     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
890                                           *DAG.getContext(),
891                                           CallConv.getValue(), RegVTs[Value])
892                                     : RegVTs[Value];
893 
894     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
895       ExtendKind = ISD::ZERO_EXTEND;
896 
897     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
898                    NumParts, RegisterVT, V, CallConv, ExtendKind);
899     Part += NumParts;
900   }
901 
902   // Copy the parts into the registers.
903   SmallVector<SDValue, 8> Chains(NumRegs);
904   for (unsigned i = 0; i != NumRegs; ++i) {
905     SDValue Part;
906     if (!Flag) {
907       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
908     } else {
909       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
910       *Flag = Part.getValue(1);
911     }
912 
913     Chains[i] = Part.getValue(0);
914   }
915 
916   if (NumRegs == 1 || Flag)
917     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
918     // flagged to it. That is the CopyToReg nodes and the user are considered
919     // a single scheduling unit. If we create a TokenFactor and return it as
920     // chain, then the TokenFactor is both a predecessor (operand) of the
921     // user as well as a successor (the TF operands are flagged to the user).
922     // c1, f1 = CopyToReg
923     // c2, f2 = CopyToReg
924     // c3     = TokenFactor c1, c2
925     // ...
926     //        = op c3, ..., f2
927     Chain = Chains[NumRegs-1];
928   else
929     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
930 }
931 
932 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
933                                         unsigned MatchingIdx, const SDLoc &dl,
934                                         SelectionDAG &DAG,
935                                         std::vector<SDValue> &Ops) const {
936   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
937 
938   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
939   if (HasMatching)
940     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
941   else if (!Regs.empty() &&
942            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
943     // Put the register class of the virtual registers in the flag word.  That
944     // way, later passes can recompute register class constraints for inline
945     // assembly as well as normal instructions.
946     // Don't do this for tied operands that can use the regclass information
947     // from the def.
948     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
949     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
950     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
951   }
952 
953   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
954   Ops.push_back(Res);
955 
956   if (Code == InlineAsm::Kind_Clobber) {
957     // Clobbers should always have a 1:1 mapping with registers, and may
958     // reference registers that have illegal (e.g. vector) types. Hence, we
959     // shouldn't try to apply any sort of splitting logic to them.
960     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
961            "No 1:1 mapping from clobbers to regs?");
962     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
963     (void)SP;
964     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
965       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
966       assert(
967           (Regs[I] != SP ||
968            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
969           "If we clobbered the stack pointer, MFI should know about it.");
970     }
971     return;
972   }
973 
974   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
975     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
976     MVT RegisterVT = RegVTs[Value];
977     for (unsigned i = 0; i != NumRegs; ++i) {
978       assert(Reg < Regs.size() && "Mismatch in # registers expected");
979       unsigned TheReg = Regs[Reg++];
980       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
981     }
982   }
983 }
984 
985 SmallVector<std::pair<unsigned, unsigned>, 4>
986 RegsForValue::getRegsAndSizes() const {
987   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
988   unsigned I = 0;
989   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
990     unsigned RegCount = std::get<0>(CountAndVT);
991     MVT RegisterVT = std::get<1>(CountAndVT);
992     unsigned RegisterSize = RegisterVT.getSizeInBits();
993     for (unsigned E = I + RegCount; I != E; ++I)
994       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
995   }
996   return OutVec;
997 }
998 
999 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1000                                const TargetLibraryInfo *li) {
1001   AA = aa;
1002   GFI = gfi;
1003   LibInfo = li;
1004   DL = &DAG.getDataLayout();
1005   Context = DAG.getContext();
1006   LPadToCallSiteMap.clear();
1007 }
1008 
1009 void SelectionDAGBuilder::clear() {
1010   NodeMap.clear();
1011   UnusedArgNodeMap.clear();
1012   PendingLoads.clear();
1013   PendingExports.clear();
1014   CurInst = nullptr;
1015   HasTailCall = false;
1016   SDNodeOrder = LowestSDNodeOrder;
1017   StatepointLowering.clear();
1018 }
1019 
1020 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1021   DanglingDebugInfoMap.clear();
1022 }
1023 
1024 SDValue SelectionDAGBuilder::getRoot() {
1025   if (PendingLoads.empty())
1026     return DAG.getRoot();
1027 
1028   if (PendingLoads.size() == 1) {
1029     SDValue Root = PendingLoads[0];
1030     DAG.setRoot(Root);
1031     PendingLoads.clear();
1032     return Root;
1033   }
1034 
1035   // Otherwise, we have to make a token factor node.
1036   SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads);
1037   PendingLoads.clear();
1038   DAG.setRoot(Root);
1039   return Root;
1040 }
1041 
1042 SDValue SelectionDAGBuilder::getControlRoot() {
1043   SDValue Root = DAG.getRoot();
1044 
1045   if (PendingExports.empty())
1046     return Root;
1047 
1048   // Turn all of the CopyToReg chains into one factored node.
1049   if (Root.getOpcode() != ISD::EntryToken) {
1050     unsigned i = 0, e = PendingExports.size();
1051     for (; i != e; ++i) {
1052       assert(PendingExports[i].getNode()->getNumOperands() > 1);
1053       if (PendingExports[i].getNode()->getOperand(0) == Root)
1054         break;  // Don't add the root if we already indirectly depend on it.
1055     }
1056 
1057     if (i == e)
1058       PendingExports.push_back(Root);
1059   }
1060 
1061   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1062                      PendingExports);
1063   PendingExports.clear();
1064   DAG.setRoot(Root);
1065   return Root;
1066 }
1067 
1068 void SelectionDAGBuilder::visit(const Instruction &I) {
1069   // Set up outgoing PHI node register values before emitting the terminator.
1070   if (I.isTerminator()) {
1071     HandlePHINodesInSuccessorBlocks(I.getParent());
1072   }
1073 
1074   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1075   if (!isa<DbgInfoIntrinsic>(I))
1076     ++SDNodeOrder;
1077 
1078   CurInst = &I;
1079 
1080   visit(I.getOpcode(), I);
1081 
1082   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1083     // Propagate the fast-math-flags of this IR instruction to the DAG node that
1084     // maps to this instruction.
1085     // TODO: We could handle all flags (nsw, etc) here.
1086     // TODO: If an IR instruction maps to >1 node, only the final node will have
1087     //       flags set.
1088     if (SDNode *Node = getNodeForIRValue(&I)) {
1089       SDNodeFlags IncomingFlags;
1090       IncomingFlags.copyFMF(*FPMO);
1091       if (!Node->getFlags().isDefined())
1092         Node->setFlags(IncomingFlags);
1093       else
1094         Node->intersectFlagsWith(IncomingFlags);
1095     }
1096   }
1097 
1098   if (!I.isTerminator() && !HasTailCall &&
1099       !isStatepoint(&I)) // statepoints handle their exports internally
1100     CopyToExportRegsIfNeeded(&I);
1101 
1102   CurInst = nullptr;
1103 }
1104 
1105 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1106   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1107 }
1108 
1109 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1110   // Note: this doesn't use InstVisitor, because it has to work with
1111   // ConstantExpr's in addition to instructions.
1112   switch (Opcode) {
1113   default: llvm_unreachable("Unknown instruction type encountered!");
1114     // Build the switch statement using the Instruction.def file.
1115 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1116     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1117 #include "llvm/IR/Instruction.def"
1118   }
1119 }
1120 
1121 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1122                                                 const DIExpression *Expr) {
1123   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1124     const DbgValueInst *DI = DDI.getDI();
1125     DIVariable *DanglingVariable = DI->getVariable();
1126     DIExpression *DanglingExpr = DI->getExpression();
1127     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1128       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1129       return true;
1130     }
1131     return false;
1132   };
1133 
1134   for (auto &DDIMI : DanglingDebugInfoMap) {
1135     DanglingDebugInfoVector &DDIV = DDIMI.second;
1136 
1137     // If debug info is to be dropped, run it through final checks to see
1138     // whether it can be salvaged.
1139     for (auto &DDI : DDIV)
1140       if (isMatchingDbgValue(DDI))
1141         salvageUnresolvedDbgValue(DDI);
1142 
1143     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1144   }
1145 }
1146 
1147 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1148 // generate the debug data structures now that we've seen its definition.
1149 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1150                                                    SDValue Val) {
1151   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1152   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1153     return;
1154 
1155   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1156   for (auto &DDI : DDIV) {
1157     const DbgValueInst *DI = DDI.getDI();
1158     assert(DI && "Ill-formed DanglingDebugInfo");
1159     DebugLoc dl = DDI.getdl();
1160     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1161     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1162     DILocalVariable *Variable = DI->getVariable();
1163     DIExpression *Expr = DI->getExpression();
1164     assert(Variable->isValidLocationForIntrinsic(dl) &&
1165            "Expected inlined-at fields to agree");
1166     SDDbgValue *SDV;
1167     if (Val.getNode()) {
1168       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1169       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1170       // we couldn't resolve it directly when examining the DbgValue intrinsic
1171       // in the first place we should not be more successful here). Unless we
1172       // have some test case that prove this to be correct we should avoid
1173       // calling EmitFuncArgumentDbgValue here.
1174       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1175         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1176                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1177         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1178         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1179         // inserted after the definition of Val when emitting the instructions
1180         // after ISel. An alternative could be to teach
1181         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1182         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1183                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1184                    << ValSDNodeOrder << "\n");
1185         SDV = getDbgValue(Val, Variable, Expr, dl,
1186                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1187         DAG.AddDbgValue(SDV, Val.getNode(), false);
1188       } else
1189         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1190                           << "in EmitFuncArgumentDbgValue\n");
1191     } else {
1192       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1193       auto Undef =
1194           UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1195       auto SDV =
1196           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1197       DAG.AddDbgValue(SDV, nullptr, false);
1198     }
1199   }
1200   DDIV.clear();
1201 }
1202 
1203 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1204   Value *V = DDI.getDI()->getValue();
1205   DILocalVariable *Var = DDI.getDI()->getVariable();
1206   DIExpression *Expr = DDI.getDI()->getExpression();
1207   DebugLoc DL = DDI.getdl();
1208   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1209   unsigned SDOrder = DDI.getSDNodeOrder();
1210 
1211   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1212   // that DW_OP_stack_value is desired.
1213   assert(isa<DbgValueInst>(DDI.getDI()));
1214   bool StackValue = true;
1215 
1216   // Can this Value can be encoded without any further work?
1217   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1218     return;
1219 
1220   // Attempt to salvage back through as many instructions as possible. Bail if
1221   // a non-instruction is seen, such as a constant expression or global
1222   // variable. FIXME: Further work could recover those too.
1223   while (isa<Instruction>(V)) {
1224     Instruction &VAsInst = *cast<Instruction>(V);
1225     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1226 
1227     // If we cannot salvage any further, and haven't yet found a suitable debug
1228     // expression, bail out.
1229     if (!NewExpr)
1230       break;
1231 
1232     // New value and expr now represent this debuginfo.
1233     V = VAsInst.getOperand(0);
1234     Expr = NewExpr;
1235 
1236     // Some kind of simplification occurred: check whether the operand of the
1237     // salvaged debug expression can be encoded in this DAG.
1238     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1239       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1240                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1241       return;
1242     }
1243   }
1244 
1245   // This was the final opportunity to salvage this debug information, and it
1246   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1247   // any earlier variable location.
1248   auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1249   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1250   DAG.AddDbgValue(SDV, nullptr, false);
1251 
1252   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1253                     << "\n");
1254   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1255                     << "\n");
1256 }
1257 
1258 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1259                                            DIExpression *Expr, DebugLoc dl,
1260                                            DebugLoc InstDL, unsigned Order) {
1261   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1262   SDDbgValue *SDV;
1263   if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1264       isa<ConstantPointerNull>(V)) {
1265     SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1266     DAG.AddDbgValue(SDV, nullptr, false);
1267     return true;
1268   }
1269 
1270   // If the Value is a frame index, we can create a FrameIndex debug value
1271   // without relying on the DAG at all.
1272   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1273     auto SI = FuncInfo.StaticAllocaMap.find(AI);
1274     if (SI != FuncInfo.StaticAllocaMap.end()) {
1275       auto SDV =
1276           DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1277                                     /*IsIndirect*/ false, dl, SDNodeOrder);
1278       // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1279       // is still available even if the SDNode gets optimized out.
1280       DAG.AddDbgValue(SDV, nullptr, false);
1281       return true;
1282     }
1283   }
1284 
1285   // Do not use getValue() in here; we don't want to generate code at
1286   // this point if it hasn't been done yet.
1287   SDValue N = NodeMap[V];
1288   if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1289     N = UnusedArgNodeMap[V];
1290   if (N.getNode()) {
1291     if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1292       return true;
1293     SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1294     DAG.AddDbgValue(SDV, N.getNode(), false);
1295     return true;
1296   }
1297 
1298   // Special rules apply for the first dbg.values of parameter variables in a
1299   // function. Identify them by the fact they reference Argument Values, that
1300   // they're parameters, and they are parameters of the current function. We
1301   // need to let them dangle until they get an SDNode.
1302   bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1303                        !InstDL.getInlinedAt();
1304   if (!IsParamOfFunc) {
1305     // The value is not used in this block yet (or it would have an SDNode).
1306     // We still want the value to appear for the user if possible -- if it has
1307     // an associated VReg, we can refer to that instead.
1308     auto VMI = FuncInfo.ValueMap.find(V);
1309     if (VMI != FuncInfo.ValueMap.end()) {
1310       unsigned Reg = VMI->second;
1311       // If this is a PHI node, it may be split up into several MI PHI nodes
1312       // (in FunctionLoweringInfo::set).
1313       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1314                        V->getType(), None);
1315       if (RFV.occupiesMultipleRegs()) {
1316         unsigned Offset = 0;
1317         unsigned BitsToDescribe = 0;
1318         if (auto VarSize = Var->getSizeInBits())
1319           BitsToDescribe = *VarSize;
1320         if (auto Fragment = Expr->getFragmentInfo())
1321           BitsToDescribe = Fragment->SizeInBits;
1322         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1323           unsigned RegisterSize = RegAndSize.second;
1324           // Bail out if all bits are described already.
1325           if (Offset >= BitsToDescribe)
1326             break;
1327           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1328               ? BitsToDescribe - Offset
1329               : RegisterSize;
1330           auto FragmentExpr = DIExpression::createFragmentExpression(
1331               Expr, Offset, FragmentSize);
1332           if (!FragmentExpr)
1333               continue;
1334           SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1335                                     false, dl, SDNodeOrder);
1336           DAG.AddDbgValue(SDV, nullptr, false);
1337           Offset += RegisterSize;
1338         }
1339       } else {
1340         SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1341         DAG.AddDbgValue(SDV, nullptr, false);
1342       }
1343       return true;
1344     }
1345   }
1346 
1347   return false;
1348 }
1349 
1350 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1351   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1352   for (auto &Pair : DanglingDebugInfoMap)
1353     for (auto &DDI : Pair.getSecond())
1354       salvageUnresolvedDbgValue(DDI);
1355   clearDanglingDebugInfo();
1356 }
1357 
1358 /// getCopyFromRegs - If there was virtual register allocated for the value V
1359 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1360 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1361   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1362   SDValue Result;
1363 
1364   if (It != FuncInfo.ValueMap.end()) {
1365     unsigned InReg = It->second;
1366 
1367     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1368                      DAG.getDataLayout(), InReg, Ty,
1369                      None); // This is not an ABI copy.
1370     SDValue Chain = DAG.getEntryNode();
1371     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1372                                  V);
1373     resolveDanglingDebugInfo(V, Result);
1374   }
1375 
1376   return Result;
1377 }
1378 
1379 /// getValue - Return an SDValue for the given Value.
1380 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1381   // If we already have an SDValue for this value, use it. It's important
1382   // to do this first, so that we don't create a CopyFromReg if we already
1383   // have a regular SDValue.
1384   SDValue &N = NodeMap[V];
1385   if (N.getNode()) return N;
1386 
1387   // If there's a virtual register allocated and initialized for this
1388   // value, use it.
1389   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1390     return copyFromReg;
1391 
1392   // Otherwise create a new SDValue and remember it.
1393   SDValue Val = getValueImpl(V);
1394   NodeMap[V] = Val;
1395   resolveDanglingDebugInfo(V, Val);
1396   return Val;
1397 }
1398 
1399 // Return true if SDValue exists for the given Value
1400 bool SelectionDAGBuilder::findValue(const Value *V) const {
1401   return (NodeMap.find(V) != NodeMap.end()) ||
1402     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1403 }
1404 
1405 /// getNonRegisterValue - Return an SDValue for the given Value, but
1406 /// don't look in FuncInfo.ValueMap for a virtual register.
1407 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1408   // If we already have an SDValue for this value, use it.
1409   SDValue &N = NodeMap[V];
1410   if (N.getNode()) {
1411     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1412       // Remove the debug location from the node as the node is about to be used
1413       // in a location which may differ from the original debug location.  This
1414       // is relevant to Constant and ConstantFP nodes because they can appear
1415       // as constant expressions inside PHI nodes.
1416       N->setDebugLoc(DebugLoc());
1417     }
1418     return N;
1419   }
1420 
1421   // Otherwise create a new SDValue and remember it.
1422   SDValue Val = getValueImpl(V);
1423   NodeMap[V] = Val;
1424   resolveDanglingDebugInfo(V, Val);
1425   return Val;
1426 }
1427 
1428 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1429 /// Create an SDValue for the given value.
1430 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1431   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1432 
1433   if (const Constant *C = dyn_cast<Constant>(V)) {
1434     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1435 
1436     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1437       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1438 
1439     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1440       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1441 
1442     if (isa<ConstantPointerNull>(C)) {
1443       unsigned AS = V->getType()->getPointerAddressSpace();
1444       return DAG.getConstant(0, getCurSDLoc(),
1445                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1446     }
1447 
1448     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1449       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1450 
1451     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1452       return DAG.getUNDEF(VT);
1453 
1454     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1455       visit(CE->getOpcode(), *CE);
1456       SDValue N1 = NodeMap[V];
1457       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1458       return N1;
1459     }
1460 
1461     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1462       SmallVector<SDValue, 4> Constants;
1463       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1464            OI != OE; ++OI) {
1465         SDNode *Val = getValue(*OI).getNode();
1466         // If the operand is an empty aggregate, there are no values.
1467         if (!Val) continue;
1468         // Add each leaf value from the operand to the Constants list
1469         // to form a flattened list of all the values.
1470         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1471           Constants.push_back(SDValue(Val, i));
1472       }
1473 
1474       return DAG.getMergeValues(Constants, getCurSDLoc());
1475     }
1476 
1477     if (const ConstantDataSequential *CDS =
1478           dyn_cast<ConstantDataSequential>(C)) {
1479       SmallVector<SDValue, 4> Ops;
1480       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1481         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1482         // Add each leaf value from the operand to the Constants list
1483         // to form a flattened list of all the values.
1484         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1485           Ops.push_back(SDValue(Val, i));
1486       }
1487 
1488       if (isa<ArrayType>(CDS->getType()))
1489         return DAG.getMergeValues(Ops, getCurSDLoc());
1490       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1491     }
1492 
1493     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1494       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1495              "Unknown struct or array constant!");
1496 
1497       SmallVector<EVT, 4> ValueVTs;
1498       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1499       unsigned NumElts = ValueVTs.size();
1500       if (NumElts == 0)
1501         return SDValue(); // empty struct
1502       SmallVector<SDValue, 4> Constants(NumElts);
1503       for (unsigned i = 0; i != NumElts; ++i) {
1504         EVT EltVT = ValueVTs[i];
1505         if (isa<UndefValue>(C))
1506           Constants[i] = DAG.getUNDEF(EltVT);
1507         else if (EltVT.isFloatingPoint())
1508           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1509         else
1510           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1511       }
1512 
1513       return DAG.getMergeValues(Constants, getCurSDLoc());
1514     }
1515 
1516     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1517       return DAG.getBlockAddress(BA, VT);
1518 
1519     VectorType *VecTy = cast<VectorType>(V->getType());
1520     unsigned NumElements = VecTy->getNumElements();
1521 
1522     // Now that we know the number and type of the elements, get that number of
1523     // elements into the Ops array based on what kind of constant it is.
1524     SmallVector<SDValue, 16> Ops;
1525     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1526       for (unsigned i = 0; i != NumElements; ++i)
1527         Ops.push_back(getValue(CV->getOperand(i)));
1528     } else {
1529       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1530       EVT EltVT =
1531           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1532 
1533       SDValue Op;
1534       if (EltVT.isFloatingPoint())
1535         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1536       else
1537         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1538       Ops.assign(NumElements, Op);
1539     }
1540 
1541     // Create a BUILD_VECTOR node.
1542     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1543   }
1544 
1545   // If this is a static alloca, generate it as the frameindex instead of
1546   // computation.
1547   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1548     DenseMap<const AllocaInst*, int>::iterator SI =
1549       FuncInfo.StaticAllocaMap.find(AI);
1550     if (SI != FuncInfo.StaticAllocaMap.end())
1551       return DAG.getFrameIndex(SI->second,
1552                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1553   }
1554 
1555   // If this is an instruction which fast-isel has deferred, select it now.
1556   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1557     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1558 
1559     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1560                      Inst->getType(), getABIRegCopyCC(V));
1561     SDValue Chain = DAG.getEntryNode();
1562     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1563   }
1564 
1565   llvm_unreachable("Can't get register for value!");
1566 }
1567 
1568 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1569   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1570   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1571   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1572   bool IsSEH = isAsynchronousEHPersonality(Pers);
1573   bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX;
1574   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1575   if (!IsSEH)
1576     CatchPadMBB->setIsEHScopeEntry();
1577   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1578   if (IsMSVCCXX || IsCoreCLR)
1579     CatchPadMBB->setIsEHFuncletEntry();
1580   // Wasm does not need catchpads anymore
1581   if (!IsWasmCXX)
1582     DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other,
1583                             getControlRoot()));
1584 }
1585 
1586 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1587   // Update machine-CFG edge.
1588   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1589   FuncInfo.MBB->addSuccessor(TargetMBB);
1590 
1591   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1592   bool IsSEH = isAsynchronousEHPersonality(Pers);
1593   if (IsSEH) {
1594     // If this is not a fall-through branch or optimizations are switched off,
1595     // emit the branch.
1596     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1597         TM.getOptLevel() == CodeGenOpt::None)
1598       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1599                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1600     return;
1601   }
1602 
1603   // Figure out the funclet membership for the catchret's successor.
1604   // This will be used by the FuncletLayout pass to determine how to order the
1605   // BB's.
1606   // A 'catchret' returns to the outer scope's color.
1607   Value *ParentPad = I.getCatchSwitchParentPad();
1608   const BasicBlock *SuccessorColor;
1609   if (isa<ConstantTokenNone>(ParentPad))
1610     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1611   else
1612     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1613   assert(SuccessorColor && "No parent funclet for catchret!");
1614   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1615   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1616 
1617   // Create the terminator node.
1618   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1619                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1620                             DAG.getBasicBlock(SuccessorColorMBB));
1621   DAG.setRoot(Ret);
1622 }
1623 
1624 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1625   // Don't emit any special code for the cleanuppad instruction. It just marks
1626   // the start of an EH scope/funclet.
1627   FuncInfo.MBB->setIsEHScopeEntry();
1628   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1629   if (Pers != EHPersonality::Wasm_CXX) {
1630     FuncInfo.MBB->setIsEHFuncletEntry();
1631     FuncInfo.MBB->setIsCleanupFuncletEntry();
1632   }
1633 }
1634 
1635 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1636 // the control flow always stops at the single catch pad, as it does for a
1637 // cleanup pad. In case the exception caught is not of the types the catch pad
1638 // catches, it will be rethrown by a rethrow.
1639 static void findWasmUnwindDestinations(
1640     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1641     BranchProbability Prob,
1642     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1643         &UnwindDests) {
1644   while (EHPadBB) {
1645     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1646     if (isa<CleanupPadInst>(Pad)) {
1647       // Stop on cleanup pads.
1648       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1649       UnwindDests.back().first->setIsEHScopeEntry();
1650       break;
1651     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1652       // Add the catchpad handlers to the possible destinations. We don't
1653       // continue to the unwind destination of the catchswitch for wasm.
1654       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1655         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1656         UnwindDests.back().first->setIsEHScopeEntry();
1657       }
1658       break;
1659     } else {
1660       continue;
1661     }
1662   }
1663 }
1664 
1665 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1666 /// many places it could ultimately go. In the IR, we have a single unwind
1667 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1668 /// This function skips over imaginary basic blocks that hold catchswitch
1669 /// instructions, and finds all the "real" machine
1670 /// basic block destinations. As those destinations may not be successors of
1671 /// EHPadBB, here we also calculate the edge probability to those destinations.
1672 /// The passed-in Prob is the edge probability to EHPadBB.
1673 static void findUnwindDestinations(
1674     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1675     BranchProbability Prob,
1676     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1677         &UnwindDests) {
1678   EHPersonality Personality =
1679     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1680   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1681   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1682   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1683   bool IsSEH = isAsynchronousEHPersonality(Personality);
1684 
1685   if (IsWasmCXX) {
1686     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1687     return;
1688   }
1689 
1690   while (EHPadBB) {
1691     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1692     BasicBlock *NewEHPadBB = nullptr;
1693     if (isa<LandingPadInst>(Pad)) {
1694       // Stop on landingpads. They are not funclets.
1695       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1696       break;
1697     } else if (isa<CleanupPadInst>(Pad)) {
1698       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1699       // personalities.
1700       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1701       UnwindDests.back().first->setIsEHScopeEntry();
1702       UnwindDests.back().first->setIsEHFuncletEntry();
1703       break;
1704     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1705       // Add the catchpad handlers to the possible destinations.
1706       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1707         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1708         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1709         if (IsMSVCCXX || IsCoreCLR)
1710           UnwindDests.back().first->setIsEHFuncletEntry();
1711         if (!IsSEH)
1712           UnwindDests.back().first->setIsEHScopeEntry();
1713       }
1714       NewEHPadBB = CatchSwitch->getUnwindDest();
1715     } else {
1716       continue;
1717     }
1718 
1719     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1720     if (BPI && NewEHPadBB)
1721       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1722     EHPadBB = NewEHPadBB;
1723   }
1724 }
1725 
1726 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1727   // Update successor info.
1728   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1729   auto UnwindDest = I.getUnwindDest();
1730   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1731   BranchProbability UnwindDestProb =
1732       (BPI && UnwindDest)
1733           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1734           : BranchProbability::getZero();
1735   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1736   for (auto &UnwindDest : UnwindDests) {
1737     UnwindDest.first->setIsEHPad();
1738     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1739   }
1740   FuncInfo.MBB->normalizeSuccProbs();
1741 
1742   // Create the terminator node.
1743   SDValue Ret =
1744       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1745   DAG.setRoot(Ret);
1746 }
1747 
1748 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1749   report_fatal_error("visitCatchSwitch not yet implemented!");
1750 }
1751 
1752 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1753   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1754   auto &DL = DAG.getDataLayout();
1755   SDValue Chain = getControlRoot();
1756   SmallVector<ISD::OutputArg, 8> Outs;
1757   SmallVector<SDValue, 8> OutVals;
1758 
1759   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1760   // lower
1761   //
1762   //   %val = call <ty> @llvm.experimental.deoptimize()
1763   //   ret <ty> %val
1764   //
1765   // differently.
1766   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1767     LowerDeoptimizingReturn();
1768     return;
1769   }
1770 
1771   if (!FuncInfo.CanLowerReturn) {
1772     unsigned DemoteReg = FuncInfo.DemoteRegister;
1773     const Function *F = I.getParent()->getParent();
1774 
1775     // Emit a store of the return value through the virtual register.
1776     // Leave Outs empty so that LowerReturn won't try to load return
1777     // registers the usual way.
1778     SmallVector<EVT, 1> PtrValueVTs;
1779     ComputeValueVTs(TLI, DL,
1780                     F->getReturnType()->getPointerTo(
1781                         DAG.getDataLayout().getAllocaAddrSpace()),
1782                     PtrValueVTs);
1783 
1784     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1785                                         DemoteReg, PtrValueVTs[0]);
1786     SDValue RetOp = getValue(I.getOperand(0));
1787 
1788     SmallVector<EVT, 4> ValueVTs;
1789     SmallVector<uint64_t, 4> Offsets;
1790     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1791     unsigned NumValues = ValueVTs.size();
1792 
1793     SmallVector<SDValue, 4> Chains(NumValues);
1794     for (unsigned i = 0; i != NumValues; ++i) {
1795       // An aggregate return value cannot wrap around the address space, so
1796       // offsets to its parts don't wrap either.
1797       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1798       Chains[i] = DAG.getStore(
1799           Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1800           // FIXME: better loc info would be nice.
1801           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1802     }
1803 
1804     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1805                         MVT::Other, Chains);
1806   } else if (I.getNumOperands() != 0) {
1807     SmallVector<EVT, 4> ValueVTs;
1808     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1809     unsigned NumValues = ValueVTs.size();
1810     if (NumValues) {
1811       SDValue RetOp = getValue(I.getOperand(0));
1812 
1813       const Function *F = I.getParent()->getParent();
1814 
1815       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1816       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1817                                           Attribute::SExt))
1818         ExtendKind = ISD::SIGN_EXTEND;
1819       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1820                                                Attribute::ZExt))
1821         ExtendKind = ISD::ZERO_EXTEND;
1822 
1823       LLVMContext &Context = F->getContext();
1824       bool RetInReg = F->getAttributes().hasAttribute(
1825           AttributeList::ReturnIndex, Attribute::InReg);
1826 
1827       for (unsigned j = 0; j != NumValues; ++j) {
1828         EVT VT = ValueVTs[j];
1829 
1830         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1831           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1832 
1833         CallingConv::ID CC = F->getCallingConv();
1834 
1835         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1836         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1837         SmallVector<SDValue, 4> Parts(NumParts);
1838         getCopyToParts(DAG, getCurSDLoc(),
1839                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1840                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1841 
1842         // 'inreg' on function refers to return value
1843         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1844         if (RetInReg)
1845           Flags.setInReg();
1846 
1847         // Propagate extension type if any
1848         if (ExtendKind == ISD::SIGN_EXTEND)
1849           Flags.setSExt();
1850         else if (ExtendKind == ISD::ZERO_EXTEND)
1851           Flags.setZExt();
1852 
1853         for (unsigned i = 0; i < NumParts; ++i) {
1854           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1855                                         VT, /*isfixed=*/true, 0, 0));
1856           OutVals.push_back(Parts[i]);
1857         }
1858       }
1859     }
1860   }
1861 
1862   // Push in swifterror virtual register as the last element of Outs. This makes
1863   // sure swifterror virtual register will be returned in the swifterror
1864   // physical register.
1865   const Function *F = I.getParent()->getParent();
1866   if (TLI.supportSwiftError() &&
1867       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1868     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1869     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1870     Flags.setSwiftError();
1871     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1872                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1873                                   true /*isfixed*/, 1 /*origidx*/,
1874                                   0 /*partOffs*/));
1875     // Create SDNode for the swifterror virtual register.
1876     OutVals.push_back(
1877         DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt(
1878                             &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first,
1879                         EVT(TLI.getPointerTy(DL))));
1880   }
1881 
1882   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1883   CallingConv::ID CallConv =
1884     DAG.getMachineFunction().getFunction().getCallingConv();
1885   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1886       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1887 
1888   // Verify that the target's LowerReturn behaved as expected.
1889   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1890          "LowerReturn didn't return a valid chain!");
1891 
1892   // Update the DAG with the new chain value resulting from return lowering.
1893   DAG.setRoot(Chain);
1894 }
1895 
1896 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1897 /// created for it, emit nodes to copy the value into the virtual
1898 /// registers.
1899 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1900   // Skip empty types
1901   if (V->getType()->isEmptyTy())
1902     return;
1903 
1904   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1905   if (VMI != FuncInfo.ValueMap.end()) {
1906     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1907     CopyValueToVirtualRegister(V, VMI->second);
1908   }
1909 }
1910 
1911 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1912 /// the current basic block, add it to ValueMap now so that we'll get a
1913 /// CopyTo/FromReg.
1914 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1915   // No need to export constants.
1916   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1917 
1918   // Already exported?
1919   if (FuncInfo.isExportedInst(V)) return;
1920 
1921   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1922   CopyValueToVirtualRegister(V, Reg);
1923 }
1924 
1925 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1926                                                      const BasicBlock *FromBB) {
1927   // The operands of the setcc have to be in this block.  We don't know
1928   // how to export them from some other block.
1929   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1930     // Can export from current BB.
1931     if (VI->getParent() == FromBB)
1932       return true;
1933 
1934     // Is already exported, noop.
1935     return FuncInfo.isExportedInst(V);
1936   }
1937 
1938   // If this is an argument, we can export it if the BB is the entry block or
1939   // if it is already exported.
1940   if (isa<Argument>(V)) {
1941     if (FromBB == &FromBB->getParent()->getEntryBlock())
1942       return true;
1943 
1944     // Otherwise, can only export this if it is already exported.
1945     return FuncInfo.isExportedInst(V);
1946   }
1947 
1948   // Otherwise, constants can always be exported.
1949   return true;
1950 }
1951 
1952 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1953 BranchProbability
1954 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1955                                         const MachineBasicBlock *Dst) const {
1956   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1957   const BasicBlock *SrcBB = Src->getBasicBlock();
1958   const BasicBlock *DstBB = Dst->getBasicBlock();
1959   if (!BPI) {
1960     // If BPI is not available, set the default probability as 1 / N, where N is
1961     // the number of successors.
1962     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1963     return BranchProbability(1, SuccSize);
1964   }
1965   return BPI->getEdgeProbability(SrcBB, DstBB);
1966 }
1967 
1968 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1969                                                MachineBasicBlock *Dst,
1970                                                BranchProbability Prob) {
1971   if (!FuncInfo.BPI)
1972     Src->addSuccessorWithoutProb(Dst);
1973   else {
1974     if (Prob.isUnknown())
1975       Prob = getEdgeProbability(Src, Dst);
1976     Src->addSuccessor(Dst, Prob);
1977   }
1978 }
1979 
1980 static bool InBlock(const Value *V, const BasicBlock *BB) {
1981   if (const Instruction *I = dyn_cast<Instruction>(V))
1982     return I->getParent() == BB;
1983   return true;
1984 }
1985 
1986 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1987 /// This function emits a branch and is used at the leaves of an OR or an
1988 /// AND operator tree.
1989 void
1990 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1991                                                   MachineBasicBlock *TBB,
1992                                                   MachineBasicBlock *FBB,
1993                                                   MachineBasicBlock *CurBB,
1994                                                   MachineBasicBlock *SwitchBB,
1995                                                   BranchProbability TProb,
1996                                                   BranchProbability FProb,
1997                                                   bool InvertCond) {
1998   const BasicBlock *BB = CurBB->getBasicBlock();
1999 
2000   // If the leaf of the tree is a comparison, merge the condition into
2001   // the caseblock.
2002   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2003     // The operands of the cmp have to be in this block.  We don't know
2004     // how to export them from some other block.  If this is the first block
2005     // of the sequence, no exporting is needed.
2006     if (CurBB == SwitchBB ||
2007         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2008          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2009       ISD::CondCode Condition;
2010       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2011         ICmpInst::Predicate Pred =
2012             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2013         Condition = getICmpCondCode(Pred);
2014       } else {
2015         const FCmpInst *FC = cast<FCmpInst>(Cond);
2016         FCmpInst::Predicate Pred =
2017             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2018         Condition = getFCmpCondCode(Pred);
2019         if (TM.Options.NoNaNsFPMath)
2020           Condition = getFCmpCodeWithoutNaN(Condition);
2021       }
2022 
2023       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2024                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2025       SwitchCases.push_back(CB);
2026       return;
2027     }
2028   }
2029 
2030   // Create a CaseBlock record representing this branch.
2031   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2032   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2033                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2034   SwitchCases.push_back(CB);
2035 }
2036 
2037 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2038                                                MachineBasicBlock *TBB,
2039                                                MachineBasicBlock *FBB,
2040                                                MachineBasicBlock *CurBB,
2041                                                MachineBasicBlock *SwitchBB,
2042                                                Instruction::BinaryOps Opc,
2043                                                BranchProbability TProb,
2044                                                BranchProbability FProb,
2045                                                bool InvertCond) {
2046   // Skip over not part of the tree and remember to invert op and operands at
2047   // next level.
2048   Value *NotCond;
2049   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2050       InBlock(NotCond, CurBB->getBasicBlock())) {
2051     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2052                          !InvertCond);
2053     return;
2054   }
2055 
2056   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2057   // Compute the effective opcode for Cond, taking into account whether it needs
2058   // to be inverted, e.g.
2059   //   and (not (or A, B)), C
2060   // gets lowered as
2061   //   and (and (not A, not B), C)
2062   unsigned BOpc = 0;
2063   if (BOp) {
2064     BOpc = BOp->getOpcode();
2065     if (InvertCond) {
2066       if (BOpc == Instruction::And)
2067         BOpc = Instruction::Or;
2068       else if (BOpc == Instruction::Or)
2069         BOpc = Instruction::And;
2070     }
2071   }
2072 
2073   // If this node is not part of the or/and tree, emit it as a branch.
2074   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2075       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2076       BOp->getParent() != CurBB->getBasicBlock() ||
2077       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2078       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2079     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2080                                  TProb, FProb, InvertCond);
2081     return;
2082   }
2083 
2084   //  Create TmpBB after CurBB.
2085   MachineFunction::iterator BBI(CurBB);
2086   MachineFunction &MF = DAG.getMachineFunction();
2087   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2088   CurBB->getParent()->insert(++BBI, TmpBB);
2089 
2090   if (Opc == Instruction::Or) {
2091     // Codegen X | Y as:
2092     // BB1:
2093     //   jmp_if_X TBB
2094     //   jmp TmpBB
2095     // TmpBB:
2096     //   jmp_if_Y TBB
2097     //   jmp FBB
2098     //
2099 
2100     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2101     // The requirement is that
2102     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2103     //     = TrueProb for original BB.
2104     // Assuming the original probabilities are A and B, one choice is to set
2105     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2106     // A/(1+B) and 2B/(1+B). This choice assumes that
2107     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2108     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2109     // TmpBB, but the math is more complicated.
2110 
2111     auto NewTrueProb = TProb / 2;
2112     auto NewFalseProb = TProb / 2 + FProb;
2113     // Emit the LHS condition.
2114     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2115                          NewTrueProb, NewFalseProb, InvertCond);
2116 
2117     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2118     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2119     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2120     // Emit the RHS condition into TmpBB.
2121     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2122                          Probs[0], Probs[1], InvertCond);
2123   } else {
2124     assert(Opc == Instruction::And && "Unknown merge op!");
2125     // Codegen X & Y as:
2126     // BB1:
2127     //   jmp_if_X TmpBB
2128     //   jmp FBB
2129     // TmpBB:
2130     //   jmp_if_Y TBB
2131     //   jmp FBB
2132     //
2133     //  This requires creation of TmpBB after CurBB.
2134 
2135     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2136     // The requirement is that
2137     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2138     //     = FalseProb for original BB.
2139     // Assuming the original probabilities are A and B, one choice is to set
2140     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2141     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2142     // TrueProb for BB1 * FalseProb for TmpBB.
2143 
2144     auto NewTrueProb = TProb + FProb / 2;
2145     auto NewFalseProb = FProb / 2;
2146     // Emit the LHS condition.
2147     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2148                          NewTrueProb, NewFalseProb, InvertCond);
2149 
2150     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2151     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2152     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2153     // Emit the RHS condition into TmpBB.
2154     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2155                          Probs[0], Probs[1], InvertCond);
2156   }
2157 }
2158 
2159 /// If the set of cases should be emitted as a series of branches, return true.
2160 /// If we should emit this as a bunch of and/or'd together conditions, return
2161 /// false.
2162 bool
2163 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2164   if (Cases.size() != 2) return true;
2165 
2166   // If this is two comparisons of the same values or'd or and'd together, they
2167   // will get folded into a single comparison, so don't emit two blocks.
2168   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2169        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2170       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2171        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2172     return false;
2173   }
2174 
2175   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2176   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2177   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2178       Cases[0].CC == Cases[1].CC &&
2179       isa<Constant>(Cases[0].CmpRHS) &&
2180       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2181     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2182       return false;
2183     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2184       return false;
2185   }
2186 
2187   return true;
2188 }
2189 
2190 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2191   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2192 
2193   // Update machine-CFG edges.
2194   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2195 
2196   if (I.isUnconditional()) {
2197     // Update machine-CFG edges.
2198     BrMBB->addSuccessor(Succ0MBB);
2199 
2200     // If this is not a fall-through branch or optimizations are switched off,
2201     // emit the branch.
2202     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2203       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2204                               MVT::Other, getControlRoot(),
2205                               DAG.getBasicBlock(Succ0MBB)));
2206 
2207     return;
2208   }
2209 
2210   // If this condition is one of the special cases we handle, do special stuff
2211   // now.
2212   const Value *CondVal = I.getCondition();
2213   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2214 
2215   // If this is a series of conditions that are or'd or and'd together, emit
2216   // this as a sequence of branches instead of setcc's with and/or operations.
2217   // As long as jumps are not expensive, this should improve performance.
2218   // For example, instead of something like:
2219   //     cmp A, B
2220   //     C = seteq
2221   //     cmp D, E
2222   //     F = setle
2223   //     or C, F
2224   //     jnz foo
2225   // Emit:
2226   //     cmp A, B
2227   //     je foo
2228   //     cmp D, E
2229   //     jle foo
2230   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2231     Instruction::BinaryOps Opcode = BOp->getOpcode();
2232     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2233         !I.getMetadata(LLVMContext::MD_unpredictable) &&
2234         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2235       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2236                            Opcode,
2237                            getEdgeProbability(BrMBB, Succ0MBB),
2238                            getEdgeProbability(BrMBB, Succ1MBB),
2239                            /*InvertCond=*/false);
2240       // If the compares in later blocks need to use values not currently
2241       // exported from this block, export them now.  This block should always
2242       // be the first entry.
2243       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2244 
2245       // Allow some cases to be rejected.
2246       if (ShouldEmitAsBranches(SwitchCases)) {
2247         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
2248           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
2249           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
2250         }
2251 
2252         // Emit the branch for this block.
2253         visitSwitchCase(SwitchCases[0], BrMBB);
2254         SwitchCases.erase(SwitchCases.begin());
2255         return;
2256       }
2257 
2258       // Okay, we decided not to do this, remove any inserted MBB's and clear
2259       // SwitchCases.
2260       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
2261         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
2262 
2263       SwitchCases.clear();
2264     }
2265   }
2266 
2267   // Create a CaseBlock record representing this branch.
2268   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2269                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2270 
2271   // Use visitSwitchCase to actually insert the fast branch sequence for this
2272   // cond branch.
2273   visitSwitchCase(CB, BrMBB);
2274 }
2275 
2276 /// visitSwitchCase - Emits the necessary code to represent a single node in
2277 /// the binary search tree resulting from lowering a switch instruction.
2278 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2279                                           MachineBasicBlock *SwitchBB) {
2280   SDValue Cond;
2281   SDValue CondLHS = getValue(CB.CmpLHS);
2282   SDLoc dl = CB.DL;
2283 
2284   // Build the setcc now.
2285   if (!CB.CmpMHS) {
2286     // Fold "(X == true)" to X and "(X == false)" to !X to
2287     // handle common cases produced by branch lowering.
2288     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2289         CB.CC == ISD::SETEQ)
2290       Cond = CondLHS;
2291     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2292              CB.CC == ISD::SETEQ) {
2293       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2294       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2295     } else
2296       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
2297   } else {
2298     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2299 
2300     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2301     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2302 
2303     SDValue CmpOp = getValue(CB.CmpMHS);
2304     EVT VT = CmpOp.getValueType();
2305 
2306     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2307       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2308                           ISD::SETLE);
2309     } else {
2310       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2311                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2312       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2313                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2314     }
2315   }
2316 
2317   // Update successor info
2318   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2319   // TrueBB and FalseBB are always different unless the incoming IR is
2320   // degenerate. This only happens when running llc on weird IR.
2321   if (CB.TrueBB != CB.FalseBB)
2322     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2323   SwitchBB->normalizeSuccProbs();
2324 
2325   // If the lhs block is the next block, invert the condition so that we can
2326   // fall through to the lhs instead of the rhs block.
2327   if (CB.TrueBB == NextBlock(SwitchBB)) {
2328     std::swap(CB.TrueBB, CB.FalseBB);
2329     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2330     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2331   }
2332 
2333   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2334                                MVT::Other, getControlRoot(), Cond,
2335                                DAG.getBasicBlock(CB.TrueBB));
2336 
2337   // Insert the false branch. Do this even if it's a fall through branch,
2338   // this makes it easier to do DAG optimizations which require inverting
2339   // the branch condition.
2340   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2341                        DAG.getBasicBlock(CB.FalseBB));
2342 
2343   DAG.setRoot(BrCond);
2344 }
2345 
2346 /// visitJumpTable - Emit JumpTable node in the current MBB
2347 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
2348   // Emit the code for the jump table
2349   assert(JT.Reg != -1U && "Should lower JT Header first!");
2350   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2351   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2352                                      JT.Reg, PTy);
2353   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2354   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2355                                     MVT::Other, Index.getValue(1),
2356                                     Table, Index);
2357   DAG.setRoot(BrJumpTable);
2358 }
2359 
2360 /// visitJumpTableHeader - This function emits necessary code to produce index
2361 /// in the JumpTable from switch case.
2362 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
2363                                                JumpTableHeader &JTH,
2364                                                MachineBasicBlock *SwitchBB) {
2365   SDLoc dl = getCurSDLoc();
2366 
2367   // Subtract the lowest switch case value from the value being switched on and
2368   // conditional branch to default mbb if the result is greater than the
2369   // difference between smallest and largest cases.
2370   SDValue SwitchOp = getValue(JTH.SValue);
2371   EVT VT = SwitchOp.getValueType();
2372   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2373                             DAG.getConstant(JTH.First, dl, VT));
2374 
2375   // The SDNode we just created, which holds the value being switched on minus
2376   // the smallest case value, needs to be copied to a virtual register so it
2377   // can be used as an index into the jump table in a subsequent basic block.
2378   // This value may be smaller or larger than the target's pointer type, and
2379   // therefore require extension or truncating.
2380   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2381   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2382 
2383   unsigned JumpTableReg =
2384       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2385   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2386                                     JumpTableReg, SwitchOp);
2387   JT.Reg = JumpTableReg;
2388 
2389   // Emit the range check for the jump table, and branch to the default block
2390   // for the switch statement if the value being switched on exceeds the largest
2391   // case in the switch.
2392   SDValue CMP = DAG.getSetCC(
2393       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2394                                  Sub.getValueType()),
2395       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2396 
2397   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2398                                MVT::Other, CopyTo, CMP,
2399                                DAG.getBasicBlock(JT.Default));
2400 
2401   // Avoid emitting unnecessary branches to the next block.
2402   if (JT.MBB != NextBlock(SwitchBB))
2403     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2404                          DAG.getBasicBlock(JT.MBB));
2405 
2406   DAG.setRoot(BrCond);
2407 }
2408 
2409 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2410 /// variable if there exists one.
2411 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2412                                  SDValue &Chain) {
2413   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2414   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2415   MachineFunction &MF = DAG.getMachineFunction();
2416   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2417   MachineSDNode *Node =
2418       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2419   if (Global) {
2420     MachinePointerInfo MPInfo(Global);
2421     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2422                  MachineMemOperand::MODereferenceable;
2423     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2424         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy));
2425     DAG.setNodeMemRefs(Node, {MemRef});
2426   }
2427   return SDValue(Node, 0);
2428 }
2429 
2430 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2431 /// tail spliced into a stack protector check success bb.
2432 ///
2433 /// For a high level explanation of how this fits into the stack protector
2434 /// generation see the comment on the declaration of class
2435 /// StackProtectorDescriptor.
2436 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2437                                                   MachineBasicBlock *ParentBB) {
2438 
2439   // First create the loads to the guard/stack slot for the comparison.
2440   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2441   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2442 
2443   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2444   int FI = MFI.getStackProtectorIndex();
2445 
2446   SDValue Guard;
2447   SDLoc dl = getCurSDLoc();
2448   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2449   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2450   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2451 
2452   // Generate code to load the content of the guard slot.
2453   SDValue GuardVal = DAG.getLoad(
2454       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2455       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2456       MachineMemOperand::MOVolatile);
2457 
2458   if (TLI.useStackGuardXorFP())
2459     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2460 
2461   // Retrieve guard check function, nullptr if instrumentation is inlined.
2462   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2463     // The target provides a guard check function to validate the guard value.
2464     // Generate a call to that function with the content of the guard slot as
2465     // argument.
2466     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2467     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2468 
2469     TargetLowering::ArgListTy Args;
2470     TargetLowering::ArgListEntry Entry;
2471     Entry.Node = GuardVal;
2472     Entry.Ty = FnTy->getParamType(0);
2473     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2474       Entry.IsInReg = true;
2475     Args.push_back(Entry);
2476 
2477     TargetLowering::CallLoweringInfo CLI(DAG);
2478     CLI.setDebugLoc(getCurSDLoc())
2479         .setChain(DAG.getEntryNode())
2480         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2481                    getValue(GuardCheckFn), std::move(Args));
2482 
2483     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2484     DAG.setRoot(Result.second);
2485     return;
2486   }
2487 
2488   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2489   // Otherwise, emit a volatile load to retrieve the stack guard value.
2490   SDValue Chain = DAG.getEntryNode();
2491   if (TLI.useLoadStackGuardNode()) {
2492     Guard = getLoadStackGuard(DAG, dl, Chain);
2493   } else {
2494     const Value *IRGuard = TLI.getSDagStackGuard(M);
2495     SDValue GuardPtr = getValue(IRGuard);
2496 
2497     Guard =
2498         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2499                     Align, MachineMemOperand::MOVolatile);
2500   }
2501 
2502   // Perform the comparison via a subtract/getsetcc.
2503   EVT VT = Guard.getValueType();
2504   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2505 
2506   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2507                                                         *DAG.getContext(),
2508                                                         Sub.getValueType()),
2509                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2510 
2511   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2512   // branch to failure MBB.
2513   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2514                                MVT::Other, GuardVal.getOperand(0),
2515                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2516   // Otherwise branch to success MBB.
2517   SDValue Br = DAG.getNode(ISD::BR, dl,
2518                            MVT::Other, BrCond,
2519                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2520 
2521   DAG.setRoot(Br);
2522 }
2523 
2524 /// Codegen the failure basic block for a stack protector check.
2525 ///
2526 /// A failure stack protector machine basic block consists simply of a call to
2527 /// __stack_chk_fail().
2528 ///
2529 /// For a high level explanation of how this fits into the stack protector
2530 /// generation see the comment on the declaration of class
2531 /// StackProtectorDescriptor.
2532 void
2533 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2534   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2535   SDValue Chain =
2536       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2537                       None, false, getCurSDLoc(), false, false).second;
2538   DAG.setRoot(Chain);
2539 }
2540 
2541 /// visitBitTestHeader - This function emits necessary code to produce value
2542 /// suitable for "bit tests"
2543 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2544                                              MachineBasicBlock *SwitchBB) {
2545   SDLoc dl = getCurSDLoc();
2546 
2547   // Subtract the minimum value
2548   SDValue SwitchOp = getValue(B.SValue);
2549   EVT VT = SwitchOp.getValueType();
2550   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2551                             DAG.getConstant(B.First, dl, VT));
2552 
2553   // Check range
2554   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2555   SDValue RangeCmp = DAG.getSetCC(
2556       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2557                                  Sub.getValueType()),
2558       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2559 
2560   // Determine the type of the test operands.
2561   bool UsePtrType = false;
2562   if (!TLI.isTypeLegal(VT))
2563     UsePtrType = true;
2564   else {
2565     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2566       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2567         // Switch table case range are encoded into series of masks.
2568         // Just use pointer type, it's guaranteed to fit.
2569         UsePtrType = true;
2570         break;
2571       }
2572   }
2573   if (UsePtrType) {
2574     VT = TLI.getPointerTy(DAG.getDataLayout());
2575     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2576   }
2577 
2578   B.RegVT = VT.getSimpleVT();
2579   B.Reg = FuncInfo.CreateReg(B.RegVT);
2580   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2581 
2582   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2583 
2584   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2585   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2586   SwitchBB->normalizeSuccProbs();
2587 
2588   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2589                                 MVT::Other, CopyTo, RangeCmp,
2590                                 DAG.getBasicBlock(B.Default));
2591 
2592   // Avoid emitting unnecessary branches to the next block.
2593   if (MBB != NextBlock(SwitchBB))
2594     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2595                           DAG.getBasicBlock(MBB));
2596 
2597   DAG.setRoot(BrRange);
2598 }
2599 
2600 /// visitBitTestCase - this function produces one "bit test"
2601 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2602                                            MachineBasicBlock* NextMBB,
2603                                            BranchProbability BranchProbToNext,
2604                                            unsigned Reg,
2605                                            BitTestCase &B,
2606                                            MachineBasicBlock *SwitchBB) {
2607   SDLoc dl = getCurSDLoc();
2608   MVT VT = BB.RegVT;
2609   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2610   SDValue Cmp;
2611   unsigned PopCount = countPopulation(B.Mask);
2612   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2613   if (PopCount == 1) {
2614     // Testing for a single bit; just compare the shift count with what it
2615     // would need to be to shift a 1 bit in that position.
2616     Cmp = DAG.getSetCC(
2617         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2618         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2619         ISD::SETEQ);
2620   } else if (PopCount == BB.Range) {
2621     // There is only one zero bit in the range, test for it directly.
2622     Cmp = DAG.getSetCC(
2623         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2624         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2625         ISD::SETNE);
2626   } else {
2627     // Make desired shift
2628     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2629                                     DAG.getConstant(1, dl, VT), ShiftOp);
2630 
2631     // Emit bit tests and jumps
2632     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2633                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2634     Cmp = DAG.getSetCC(
2635         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2636         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2637   }
2638 
2639   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2640   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2641   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2642   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2643   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2644   // one as they are relative probabilities (and thus work more like weights),
2645   // and hence we need to normalize them to let the sum of them become one.
2646   SwitchBB->normalizeSuccProbs();
2647 
2648   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2649                               MVT::Other, getControlRoot(),
2650                               Cmp, DAG.getBasicBlock(B.TargetBB));
2651 
2652   // Avoid emitting unnecessary branches to the next block.
2653   if (NextMBB != NextBlock(SwitchBB))
2654     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2655                         DAG.getBasicBlock(NextMBB));
2656 
2657   DAG.setRoot(BrAnd);
2658 }
2659 
2660 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2661   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2662 
2663   // Retrieve successors. Look through artificial IR level blocks like
2664   // catchswitch for successors.
2665   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2666   const BasicBlock *EHPadBB = I.getSuccessor(1);
2667 
2668   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2669   // have to do anything here to lower funclet bundles.
2670   assert(!I.hasOperandBundlesOtherThan(
2671              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2672          "Cannot lower invokes with arbitrary operand bundles yet!");
2673 
2674   const Value *Callee(I.getCalledValue());
2675   const Function *Fn = dyn_cast<Function>(Callee);
2676   if (isa<InlineAsm>(Callee))
2677     visitInlineAsm(&I);
2678   else if (Fn && Fn->isIntrinsic()) {
2679     switch (Fn->getIntrinsicID()) {
2680     default:
2681       llvm_unreachable("Cannot invoke this intrinsic");
2682     case Intrinsic::donothing:
2683       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2684       break;
2685     case Intrinsic::experimental_patchpoint_void:
2686     case Intrinsic::experimental_patchpoint_i64:
2687       visitPatchpoint(&I, EHPadBB);
2688       break;
2689     case Intrinsic::experimental_gc_statepoint:
2690       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2691       break;
2692     }
2693   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2694     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2695     // Eventually we will support lowering the @llvm.experimental.deoptimize
2696     // intrinsic, and right now there are no plans to support other intrinsics
2697     // with deopt state.
2698     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2699   } else {
2700     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2701   }
2702 
2703   // If the value of the invoke is used outside of its defining block, make it
2704   // available as a virtual register.
2705   // We already took care of the exported value for the statepoint instruction
2706   // during call to the LowerStatepoint.
2707   if (!isStatepoint(I)) {
2708     CopyToExportRegsIfNeeded(&I);
2709   }
2710 
2711   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2712   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2713   BranchProbability EHPadBBProb =
2714       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2715           : BranchProbability::getZero();
2716   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2717 
2718   // Update successor info.
2719   addSuccessorWithProb(InvokeMBB, Return);
2720   for (auto &UnwindDest : UnwindDests) {
2721     UnwindDest.first->setIsEHPad();
2722     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2723   }
2724   InvokeMBB->normalizeSuccProbs();
2725 
2726   // Drop into normal successor.
2727   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2728                           DAG.getBasicBlock(Return)));
2729 }
2730 
2731 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2732   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2733 
2734   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2735   // have to do anything here to lower funclet bundles.
2736   assert(!I.hasOperandBundlesOtherThan(
2737              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2738          "Cannot lower callbrs with arbitrary operand bundles yet!");
2739 
2740   assert(isa<InlineAsm>(I.getCalledValue()) &&
2741          "Only know how to handle inlineasm callbr");
2742   visitInlineAsm(&I);
2743 
2744   // Retrieve successors.
2745   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2746 
2747   // Update successor info.
2748   addSuccessorWithProb(CallBrMBB, Return);
2749   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2750     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2751     addSuccessorWithProb(CallBrMBB, Target);
2752   }
2753   CallBrMBB->normalizeSuccProbs();
2754 
2755   // Drop into default successor.
2756   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2757                           MVT::Other, getControlRoot(),
2758                           DAG.getBasicBlock(Return)));
2759 }
2760 
2761 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2762   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2763 }
2764 
2765 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2766   assert(FuncInfo.MBB->isEHPad() &&
2767          "Call to landingpad not in landing pad!");
2768 
2769   // If there aren't registers to copy the values into (e.g., during SjLj
2770   // exceptions), then don't bother to create these DAG nodes.
2771   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2772   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2773   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2774       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2775     return;
2776 
2777   // If landingpad's return type is token type, we don't create DAG nodes
2778   // for its exception pointer and selector value. The extraction of exception
2779   // pointer or selector value from token type landingpads is not currently
2780   // supported.
2781   if (LP.getType()->isTokenTy())
2782     return;
2783 
2784   SmallVector<EVT, 2> ValueVTs;
2785   SDLoc dl = getCurSDLoc();
2786   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2787   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2788 
2789   // Get the two live-in registers as SDValues. The physregs have already been
2790   // copied into virtual registers.
2791   SDValue Ops[2];
2792   if (FuncInfo.ExceptionPointerVirtReg) {
2793     Ops[0] = DAG.getZExtOrTrunc(
2794         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2795                            FuncInfo.ExceptionPointerVirtReg,
2796                            TLI.getPointerTy(DAG.getDataLayout())),
2797         dl, ValueVTs[0]);
2798   } else {
2799     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2800   }
2801   Ops[1] = DAG.getZExtOrTrunc(
2802       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2803                          FuncInfo.ExceptionSelectorVirtReg,
2804                          TLI.getPointerTy(DAG.getDataLayout())),
2805       dl, ValueVTs[1]);
2806 
2807   // Merge into one.
2808   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2809                             DAG.getVTList(ValueVTs), Ops);
2810   setValue(&LP, Res);
2811 }
2812 
2813 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2814 #ifndef NDEBUG
2815   for (const CaseCluster &CC : Clusters)
2816     assert(CC.Low == CC.High && "Input clusters must be single-case");
2817 #endif
2818 
2819   llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) {
2820     return a.Low->getValue().slt(b.Low->getValue());
2821   });
2822 
2823   // Merge adjacent clusters with the same destination.
2824   const unsigned N = Clusters.size();
2825   unsigned DstIndex = 0;
2826   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2827     CaseCluster &CC = Clusters[SrcIndex];
2828     const ConstantInt *CaseVal = CC.Low;
2829     MachineBasicBlock *Succ = CC.MBB;
2830 
2831     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2832         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2833       // If this case has the same successor and is a neighbour, merge it into
2834       // the previous cluster.
2835       Clusters[DstIndex - 1].High = CaseVal;
2836       Clusters[DstIndex - 1].Prob += CC.Prob;
2837     } else {
2838       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2839                    sizeof(Clusters[SrcIndex]));
2840     }
2841   }
2842   Clusters.resize(DstIndex);
2843 }
2844 
2845 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2846                                            MachineBasicBlock *Last) {
2847   // Update JTCases.
2848   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2849     if (JTCases[i].first.HeaderBB == First)
2850       JTCases[i].first.HeaderBB = Last;
2851 
2852   // Update BitTestCases.
2853   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2854     if (BitTestCases[i].Parent == First)
2855       BitTestCases[i].Parent = Last;
2856 }
2857 
2858 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2859   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2860 
2861   // Update machine-CFG edges with unique successors.
2862   SmallSet<BasicBlock*, 32> Done;
2863   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2864     BasicBlock *BB = I.getSuccessor(i);
2865     bool Inserted = Done.insert(BB).second;
2866     if (!Inserted)
2867         continue;
2868 
2869     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2870     addSuccessorWithProb(IndirectBrMBB, Succ);
2871   }
2872   IndirectBrMBB->normalizeSuccProbs();
2873 
2874   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2875                           MVT::Other, getControlRoot(),
2876                           getValue(I.getAddress())));
2877 }
2878 
2879 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2880   if (!DAG.getTarget().Options.TrapUnreachable)
2881     return;
2882 
2883   // We may be able to ignore unreachable behind a noreturn call.
2884   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2885     const BasicBlock &BB = *I.getParent();
2886     if (&I != &BB.front()) {
2887       BasicBlock::const_iterator PredI =
2888         std::prev(BasicBlock::const_iterator(&I));
2889       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2890         if (Call->doesNotReturn())
2891           return;
2892       }
2893     }
2894   }
2895 
2896   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2897 }
2898 
2899 void SelectionDAGBuilder::visitFSub(const User &I) {
2900   // -0.0 - X --> fneg
2901   Type *Ty = I.getType();
2902   if (isa<Constant>(I.getOperand(0)) &&
2903       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2904     SDValue Op2 = getValue(I.getOperand(1));
2905     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2906                              Op2.getValueType(), Op2));
2907     return;
2908   }
2909 
2910   visitBinary(I, ISD::FSUB);
2911 }
2912 
2913 /// Checks if the given instruction performs a vector reduction, in which case
2914 /// we have the freedom to alter the elements in the result as long as the
2915 /// reduction of them stays unchanged.
2916 static bool isVectorReductionOp(const User *I) {
2917   const Instruction *Inst = dyn_cast<Instruction>(I);
2918   if (!Inst || !Inst->getType()->isVectorTy())
2919     return false;
2920 
2921   auto OpCode = Inst->getOpcode();
2922   switch (OpCode) {
2923   case Instruction::Add:
2924   case Instruction::Mul:
2925   case Instruction::And:
2926   case Instruction::Or:
2927   case Instruction::Xor:
2928     break;
2929   case Instruction::FAdd:
2930   case Instruction::FMul:
2931     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2932       if (FPOp->getFastMathFlags().isFast())
2933         break;
2934     LLVM_FALLTHROUGH;
2935   default:
2936     return false;
2937   }
2938 
2939   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2940   // Ensure the reduction size is a power of 2.
2941   if (!isPowerOf2_32(ElemNum))
2942     return false;
2943 
2944   unsigned ElemNumToReduce = ElemNum;
2945 
2946   // Do DFS search on the def-use chain from the given instruction. We only
2947   // allow four kinds of operations during the search until we reach the
2948   // instruction that extracts the first element from the vector:
2949   //
2950   //   1. The reduction operation of the same opcode as the given instruction.
2951   //
2952   //   2. PHI node.
2953   //
2954   //   3. ShuffleVector instruction together with a reduction operation that
2955   //      does a partial reduction.
2956   //
2957   //   4. ExtractElement that extracts the first element from the vector, and we
2958   //      stop searching the def-use chain here.
2959   //
2960   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2961   // from 1-3 to the stack to continue the DFS. The given instruction is not
2962   // a reduction operation if we meet any other instructions other than those
2963   // listed above.
2964 
2965   SmallVector<const User *, 16> UsersToVisit{Inst};
2966   SmallPtrSet<const User *, 16> Visited;
2967   bool ReduxExtracted = false;
2968 
2969   while (!UsersToVisit.empty()) {
2970     auto User = UsersToVisit.back();
2971     UsersToVisit.pop_back();
2972     if (!Visited.insert(User).second)
2973       continue;
2974 
2975     for (const auto &U : User->users()) {
2976       auto Inst = dyn_cast<Instruction>(U);
2977       if (!Inst)
2978         return false;
2979 
2980       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2981         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2982           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
2983             return false;
2984         UsersToVisit.push_back(U);
2985       } else if (const ShuffleVectorInst *ShufInst =
2986                      dyn_cast<ShuffleVectorInst>(U)) {
2987         // Detect the following pattern: A ShuffleVector instruction together
2988         // with a reduction that do partial reduction on the first and second
2989         // ElemNumToReduce / 2 elements, and store the result in
2990         // ElemNumToReduce / 2 elements in another vector.
2991 
2992         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2993         if (ResultElements < ElemNum)
2994           return false;
2995 
2996         if (ElemNumToReduce == 1)
2997           return false;
2998         if (!isa<UndefValue>(U->getOperand(1)))
2999           return false;
3000         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
3001           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
3002             return false;
3003         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
3004           if (ShufInst->getMaskValue(i) != -1)
3005             return false;
3006 
3007         // There is only one user of this ShuffleVector instruction, which
3008         // must be a reduction operation.
3009         if (!U->hasOneUse())
3010           return false;
3011 
3012         auto U2 = dyn_cast<Instruction>(*U->user_begin());
3013         if (!U2 || U2->getOpcode() != OpCode)
3014           return false;
3015 
3016         // Check operands of the reduction operation.
3017         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
3018             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
3019           UsersToVisit.push_back(U2);
3020           ElemNumToReduce /= 2;
3021         } else
3022           return false;
3023       } else if (isa<ExtractElementInst>(U)) {
3024         // At this moment we should have reduced all elements in the vector.
3025         if (ElemNumToReduce != 1)
3026           return false;
3027 
3028         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
3029         if (!Val || !Val->isZero())
3030           return false;
3031 
3032         ReduxExtracted = true;
3033       } else
3034         return false;
3035     }
3036   }
3037   return ReduxExtracted;
3038 }
3039 
3040 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3041   SDNodeFlags Flags;
3042 
3043   SDValue Op = getValue(I.getOperand(0));
3044   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3045                                     Op, Flags);
3046   setValue(&I, UnNodeValue);
3047 }
3048 
3049 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3050   SDNodeFlags Flags;
3051   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3052     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3053     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3054   }
3055   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
3056     Flags.setExact(ExactOp->isExact());
3057   }
3058   if (isVectorReductionOp(&I)) {
3059     Flags.setVectorReduction(true);
3060     LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
3061   }
3062 
3063   SDValue Op1 = getValue(I.getOperand(0));
3064   SDValue Op2 = getValue(I.getOperand(1));
3065   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3066                                      Op1, Op2, Flags);
3067   setValue(&I, BinNodeValue);
3068 }
3069 
3070 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3071   SDValue Op1 = getValue(I.getOperand(0));
3072   SDValue Op2 = getValue(I.getOperand(1));
3073 
3074   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3075       Op1.getValueType(), DAG.getDataLayout());
3076 
3077   // Coerce the shift amount to the right type if we can.
3078   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3079     unsigned ShiftSize = ShiftTy.getSizeInBits();
3080     unsigned Op2Size = Op2.getValueSizeInBits();
3081     SDLoc DL = getCurSDLoc();
3082 
3083     // If the operand is smaller than the shift count type, promote it.
3084     if (ShiftSize > Op2Size)
3085       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3086 
3087     // If the operand is larger than the shift count type but the shift
3088     // count type has enough bits to represent any shift value, truncate
3089     // it now. This is a common case and it exposes the truncate to
3090     // optimization early.
3091     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3092       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3093     // Otherwise we'll need to temporarily settle for some other convenient
3094     // type.  Type legalization will make adjustments once the shiftee is split.
3095     else
3096       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3097   }
3098 
3099   bool nuw = false;
3100   bool nsw = false;
3101   bool exact = false;
3102 
3103   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3104 
3105     if (const OverflowingBinaryOperator *OFBinOp =
3106             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3107       nuw = OFBinOp->hasNoUnsignedWrap();
3108       nsw = OFBinOp->hasNoSignedWrap();
3109     }
3110     if (const PossiblyExactOperator *ExactOp =
3111             dyn_cast<const PossiblyExactOperator>(&I))
3112       exact = ExactOp->isExact();
3113   }
3114   SDNodeFlags Flags;
3115   Flags.setExact(exact);
3116   Flags.setNoSignedWrap(nsw);
3117   Flags.setNoUnsignedWrap(nuw);
3118   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3119                             Flags);
3120   setValue(&I, Res);
3121 }
3122 
3123 void SelectionDAGBuilder::visitSDiv(const User &I) {
3124   SDValue Op1 = getValue(I.getOperand(0));
3125   SDValue Op2 = getValue(I.getOperand(1));
3126 
3127   SDNodeFlags Flags;
3128   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3129                  cast<PossiblyExactOperator>(&I)->isExact());
3130   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3131                            Op2, Flags));
3132 }
3133 
3134 void SelectionDAGBuilder::visitICmp(const User &I) {
3135   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3136   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3137     predicate = IC->getPredicate();
3138   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3139     predicate = ICmpInst::Predicate(IC->getPredicate());
3140   SDValue Op1 = getValue(I.getOperand(0));
3141   SDValue Op2 = getValue(I.getOperand(1));
3142   ISD::CondCode Opcode = getICmpCondCode(predicate);
3143 
3144   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3145                                                         I.getType());
3146   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3147 }
3148 
3149 void SelectionDAGBuilder::visitFCmp(const User &I) {
3150   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3151   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3152     predicate = FC->getPredicate();
3153   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3154     predicate = FCmpInst::Predicate(FC->getPredicate());
3155   SDValue Op1 = getValue(I.getOperand(0));
3156   SDValue Op2 = getValue(I.getOperand(1));
3157 
3158   ISD::CondCode Condition = getFCmpCondCode(predicate);
3159   auto *FPMO = dyn_cast<FPMathOperator>(&I);
3160   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
3161     Condition = getFCmpCodeWithoutNaN(Condition);
3162 
3163   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3164                                                         I.getType());
3165   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3166 }
3167 
3168 // Check if the condition of the select has one use or two users that are both
3169 // selects with the same condition.
3170 static bool hasOnlySelectUsers(const Value *Cond) {
3171   return llvm::all_of(Cond->users(), [](const Value *V) {
3172     return isa<SelectInst>(V);
3173   });
3174 }
3175 
3176 void SelectionDAGBuilder::visitSelect(const User &I) {
3177   SmallVector<EVT, 4> ValueVTs;
3178   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3179                   ValueVTs);
3180   unsigned NumValues = ValueVTs.size();
3181   if (NumValues == 0) return;
3182 
3183   SmallVector<SDValue, 4> Values(NumValues);
3184   SDValue Cond     = getValue(I.getOperand(0));
3185   SDValue LHSVal   = getValue(I.getOperand(1));
3186   SDValue RHSVal   = getValue(I.getOperand(2));
3187   auto BaseOps = {Cond};
3188   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
3189     ISD::VSELECT : ISD::SELECT;
3190 
3191   // Min/max matching is only viable if all output VTs are the same.
3192   if (is_splat(ValueVTs)) {
3193     EVT VT = ValueVTs[0];
3194     LLVMContext &Ctx = *DAG.getContext();
3195     auto &TLI = DAG.getTargetLoweringInfo();
3196 
3197     // We care about the legality of the operation after it has been type
3198     // legalized.
3199     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
3200            VT != TLI.getTypeToTransformTo(Ctx, VT))
3201       VT = TLI.getTypeToTransformTo(Ctx, VT);
3202 
3203     // If the vselect is legal, assume we want to leave this as a vector setcc +
3204     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3205     // min/max is legal on the scalar type.
3206     bool UseScalarMinMax = VT.isVector() &&
3207       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3208 
3209     Value *LHS, *RHS;
3210     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3211     ISD::NodeType Opc = ISD::DELETED_NODE;
3212     switch (SPR.Flavor) {
3213     case SPF_UMAX:    Opc = ISD::UMAX; break;
3214     case SPF_UMIN:    Opc = ISD::UMIN; break;
3215     case SPF_SMAX:    Opc = ISD::SMAX; break;
3216     case SPF_SMIN:    Opc = ISD::SMIN; break;
3217     case SPF_FMINNUM:
3218       switch (SPR.NaNBehavior) {
3219       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3220       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3221       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3222       case SPNB_RETURNS_ANY: {
3223         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3224           Opc = ISD::FMINNUM;
3225         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3226           Opc = ISD::FMINIMUM;
3227         else if (UseScalarMinMax)
3228           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3229             ISD::FMINNUM : ISD::FMINIMUM;
3230         break;
3231       }
3232       }
3233       break;
3234     case SPF_FMAXNUM:
3235       switch (SPR.NaNBehavior) {
3236       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3237       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3238       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3239       case SPNB_RETURNS_ANY:
3240 
3241         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3242           Opc = ISD::FMAXNUM;
3243         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3244           Opc = ISD::FMAXIMUM;
3245         else if (UseScalarMinMax)
3246           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3247             ISD::FMAXNUM : ISD::FMAXIMUM;
3248         break;
3249       }
3250       break;
3251     default: break;
3252     }
3253 
3254     if (Opc != ISD::DELETED_NODE &&
3255         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3256          (UseScalarMinMax &&
3257           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3258         // If the underlying comparison instruction is used by any other
3259         // instruction, the consumed instructions won't be destroyed, so it is
3260         // not profitable to convert to a min/max.
3261         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3262       OpCode = Opc;
3263       LHSVal = getValue(LHS);
3264       RHSVal = getValue(RHS);
3265       BaseOps = {};
3266     }
3267   }
3268 
3269   for (unsigned i = 0; i != NumValues; ++i) {
3270     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3271     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3272     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3273     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
3274                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
3275                             Ops);
3276   }
3277 
3278   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3279                            DAG.getVTList(ValueVTs), Values));
3280 }
3281 
3282 void SelectionDAGBuilder::visitTrunc(const User &I) {
3283   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3284   SDValue N = getValue(I.getOperand(0));
3285   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3286                                                         I.getType());
3287   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3288 }
3289 
3290 void SelectionDAGBuilder::visitZExt(const User &I) {
3291   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3292   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3293   SDValue N = getValue(I.getOperand(0));
3294   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3295                                                         I.getType());
3296   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3297 }
3298 
3299 void SelectionDAGBuilder::visitSExt(const User &I) {
3300   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3301   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3302   SDValue N = getValue(I.getOperand(0));
3303   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3304                                                         I.getType());
3305   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3306 }
3307 
3308 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3309   // FPTrunc is never a no-op cast, no need to check
3310   SDValue N = getValue(I.getOperand(0));
3311   SDLoc dl = getCurSDLoc();
3312   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3313   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3314   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3315                            DAG.getTargetConstant(
3316                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3317 }
3318 
3319 void SelectionDAGBuilder::visitFPExt(const User &I) {
3320   // FPExt is never a no-op cast, no need to check
3321   SDValue N = getValue(I.getOperand(0));
3322   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3323                                                         I.getType());
3324   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3325 }
3326 
3327 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3328   // FPToUI is never a no-op cast, no need to check
3329   SDValue N = getValue(I.getOperand(0));
3330   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3331                                                         I.getType());
3332   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3333 }
3334 
3335 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3336   // FPToSI is never a no-op cast, no need to check
3337   SDValue N = getValue(I.getOperand(0));
3338   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3339                                                         I.getType());
3340   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3341 }
3342 
3343 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3344   // UIToFP is never a no-op cast, no need to check
3345   SDValue N = getValue(I.getOperand(0));
3346   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3347                                                         I.getType());
3348   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3349 }
3350 
3351 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3352   // SIToFP is never a no-op cast, no need to check
3353   SDValue N = getValue(I.getOperand(0));
3354   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3355                                                         I.getType());
3356   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3357 }
3358 
3359 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3360   // What to do depends on the size of the integer and the size of the pointer.
3361   // We can either truncate, zero extend, or no-op, accordingly.
3362   SDValue N = getValue(I.getOperand(0));
3363   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3364                                                         I.getType());
3365   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3366 }
3367 
3368 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3369   // What to do depends on the size of the integer and the size of the pointer.
3370   // We can either truncate, zero extend, or no-op, accordingly.
3371   SDValue N = getValue(I.getOperand(0));
3372   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3373                                                         I.getType());
3374   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3375 }
3376 
3377 void SelectionDAGBuilder::visitBitCast(const User &I) {
3378   SDValue N = getValue(I.getOperand(0));
3379   SDLoc dl = getCurSDLoc();
3380   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3381                                                         I.getType());
3382 
3383   // BitCast assures us that source and destination are the same size so this is
3384   // either a BITCAST or a no-op.
3385   if (DestVT != N.getValueType())
3386     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3387                              DestVT, N)); // convert types.
3388   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3389   // might fold any kind of constant expression to an integer constant and that
3390   // is not what we are looking for. Only recognize a bitcast of a genuine
3391   // constant integer as an opaque constant.
3392   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3393     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3394                                  /*isOpaque*/true));
3395   else
3396     setValue(&I, N);            // noop cast.
3397 }
3398 
3399 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3400   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3401   const Value *SV = I.getOperand(0);
3402   SDValue N = getValue(SV);
3403   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3404 
3405   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3406   unsigned DestAS = I.getType()->getPointerAddressSpace();
3407 
3408   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3409     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3410 
3411   setValue(&I, N);
3412 }
3413 
3414 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3415   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3416   SDValue InVec = getValue(I.getOperand(0));
3417   SDValue InVal = getValue(I.getOperand(1));
3418   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3419                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3420   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3421                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3422                            InVec, InVal, InIdx));
3423 }
3424 
3425 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3426   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3427   SDValue InVec = getValue(I.getOperand(0));
3428   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3429                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3430   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3431                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3432                            InVec, InIdx));
3433 }
3434 
3435 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3436   SDValue Src1 = getValue(I.getOperand(0));
3437   SDValue Src2 = getValue(I.getOperand(1));
3438   SDLoc DL = getCurSDLoc();
3439 
3440   SmallVector<int, 8> Mask;
3441   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3442   unsigned MaskNumElts = Mask.size();
3443 
3444   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3445   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3446   EVT SrcVT = Src1.getValueType();
3447   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3448 
3449   if (SrcNumElts == MaskNumElts) {
3450     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3451     return;
3452   }
3453 
3454   // Normalize the shuffle vector since mask and vector length don't match.
3455   if (SrcNumElts < MaskNumElts) {
3456     // Mask is longer than the source vectors. We can use concatenate vector to
3457     // make the mask and vectors lengths match.
3458 
3459     if (MaskNumElts % SrcNumElts == 0) {
3460       // Mask length is a multiple of the source vector length.
3461       // Check if the shuffle is some kind of concatenation of the input
3462       // vectors.
3463       unsigned NumConcat = MaskNumElts / SrcNumElts;
3464       bool IsConcat = true;
3465       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3466       for (unsigned i = 0; i != MaskNumElts; ++i) {
3467         int Idx = Mask[i];
3468         if (Idx < 0)
3469           continue;
3470         // Ensure the indices in each SrcVT sized piece are sequential and that
3471         // the same source is used for the whole piece.
3472         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3473             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3474              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3475           IsConcat = false;
3476           break;
3477         }
3478         // Remember which source this index came from.
3479         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3480       }
3481 
3482       // The shuffle is concatenating multiple vectors together. Just emit
3483       // a CONCAT_VECTORS operation.
3484       if (IsConcat) {
3485         SmallVector<SDValue, 8> ConcatOps;
3486         for (auto Src : ConcatSrcs) {
3487           if (Src < 0)
3488             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3489           else if (Src == 0)
3490             ConcatOps.push_back(Src1);
3491           else
3492             ConcatOps.push_back(Src2);
3493         }
3494         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3495         return;
3496       }
3497     }
3498 
3499     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3500     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3501     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3502                                     PaddedMaskNumElts);
3503 
3504     // Pad both vectors with undefs to make them the same length as the mask.
3505     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3506 
3507     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3508     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3509     MOps1[0] = Src1;
3510     MOps2[0] = Src2;
3511 
3512     Src1 = Src1.isUndef()
3513                ? DAG.getUNDEF(PaddedVT)
3514                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3515     Src2 = Src2.isUndef()
3516                ? DAG.getUNDEF(PaddedVT)
3517                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3518 
3519     // Readjust mask for new input vector length.
3520     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3521     for (unsigned i = 0; i != MaskNumElts; ++i) {
3522       int Idx = Mask[i];
3523       if (Idx >= (int)SrcNumElts)
3524         Idx -= SrcNumElts - PaddedMaskNumElts;
3525       MappedOps[i] = Idx;
3526     }
3527 
3528     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3529 
3530     // If the concatenated vector was padded, extract a subvector with the
3531     // correct number of elements.
3532     if (MaskNumElts != PaddedMaskNumElts)
3533       Result = DAG.getNode(
3534           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3535           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3536 
3537     setValue(&I, Result);
3538     return;
3539   }
3540 
3541   if (SrcNumElts > MaskNumElts) {
3542     // Analyze the access pattern of the vector to see if we can extract
3543     // two subvectors and do the shuffle.
3544     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3545     bool CanExtract = true;
3546     for (int Idx : Mask) {
3547       unsigned Input = 0;
3548       if (Idx < 0)
3549         continue;
3550 
3551       if (Idx >= (int)SrcNumElts) {
3552         Input = 1;
3553         Idx -= SrcNumElts;
3554       }
3555 
3556       // If all the indices come from the same MaskNumElts sized portion of
3557       // the sources we can use extract. Also make sure the extract wouldn't
3558       // extract past the end of the source.
3559       int NewStartIdx = alignDown(Idx, MaskNumElts);
3560       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3561           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3562         CanExtract = false;
3563       // Make sure we always update StartIdx as we use it to track if all
3564       // elements are undef.
3565       StartIdx[Input] = NewStartIdx;
3566     }
3567 
3568     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3569       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3570       return;
3571     }
3572     if (CanExtract) {
3573       // Extract appropriate subvector and generate a vector shuffle
3574       for (unsigned Input = 0; Input < 2; ++Input) {
3575         SDValue &Src = Input == 0 ? Src1 : Src2;
3576         if (StartIdx[Input] < 0)
3577           Src = DAG.getUNDEF(VT);
3578         else {
3579           Src = DAG.getNode(
3580               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3581               DAG.getConstant(StartIdx[Input], DL,
3582                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3583         }
3584       }
3585 
3586       // Calculate new mask.
3587       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3588       for (int &Idx : MappedOps) {
3589         if (Idx >= (int)SrcNumElts)
3590           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3591         else if (Idx >= 0)
3592           Idx -= StartIdx[0];
3593       }
3594 
3595       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3596       return;
3597     }
3598   }
3599 
3600   // We can't use either concat vectors or extract subvectors so fall back to
3601   // replacing the shuffle with extract and build vector.
3602   // to insert and build vector.
3603   EVT EltVT = VT.getVectorElementType();
3604   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3605   SmallVector<SDValue,8> Ops;
3606   for (int Idx : Mask) {
3607     SDValue Res;
3608 
3609     if (Idx < 0) {
3610       Res = DAG.getUNDEF(EltVT);
3611     } else {
3612       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3613       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3614 
3615       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3616                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3617     }
3618 
3619     Ops.push_back(Res);
3620   }
3621 
3622   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3623 }
3624 
3625 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3626   ArrayRef<unsigned> Indices;
3627   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3628     Indices = IV->getIndices();
3629   else
3630     Indices = cast<ConstantExpr>(&I)->getIndices();
3631 
3632   const Value *Op0 = I.getOperand(0);
3633   const Value *Op1 = I.getOperand(1);
3634   Type *AggTy = I.getType();
3635   Type *ValTy = Op1->getType();
3636   bool IntoUndef = isa<UndefValue>(Op0);
3637   bool FromUndef = isa<UndefValue>(Op1);
3638 
3639   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3640 
3641   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3642   SmallVector<EVT, 4> AggValueVTs;
3643   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3644   SmallVector<EVT, 4> ValValueVTs;
3645   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3646 
3647   unsigned NumAggValues = AggValueVTs.size();
3648   unsigned NumValValues = ValValueVTs.size();
3649   SmallVector<SDValue, 4> Values(NumAggValues);
3650 
3651   // Ignore an insertvalue that produces an empty object
3652   if (!NumAggValues) {
3653     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3654     return;
3655   }
3656 
3657   SDValue Agg = getValue(Op0);
3658   unsigned i = 0;
3659   // Copy the beginning value(s) from the original aggregate.
3660   for (; i != LinearIndex; ++i)
3661     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3662                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3663   // Copy values from the inserted value(s).
3664   if (NumValValues) {
3665     SDValue Val = getValue(Op1);
3666     for (; i != LinearIndex + NumValValues; ++i)
3667       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3668                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3669   }
3670   // Copy remaining value(s) from the original aggregate.
3671   for (; i != NumAggValues; ++i)
3672     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3673                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3674 
3675   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3676                            DAG.getVTList(AggValueVTs), Values));
3677 }
3678 
3679 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3680   ArrayRef<unsigned> Indices;
3681   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3682     Indices = EV->getIndices();
3683   else
3684     Indices = cast<ConstantExpr>(&I)->getIndices();
3685 
3686   const Value *Op0 = I.getOperand(0);
3687   Type *AggTy = Op0->getType();
3688   Type *ValTy = I.getType();
3689   bool OutOfUndef = isa<UndefValue>(Op0);
3690 
3691   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3692 
3693   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3694   SmallVector<EVT, 4> ValValueVTs;
3695   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3696 
3697   unsigned NumValValues = ValValueVTs.size();
3698 
3699   // Ignore a extractvalue that produces an empty object
3700   if (!NumValValues) {
3701     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3702     return;
3703   }
3704 
3705   SmallVector<SDValue, 4> Values(NumValValues);
3706 
3707   SDValue Agg = getValue(Op0);
3708   // Copy out the selected value(s).
3709   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3710     Values[i - LinearIndex] =
3711       OutOfUndef ?
3712         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3713         SDValue(Agg.getNode(), Agg.getResNo() + i);
3714 
3715   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3716                            DAG.getVTList(ValValueVTs), Values));
3717 }
3718 
3719 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3720   Value *Op0 = I.getOperand(0);
3721   // Note that the pointer operand may be a vector of pointers. Take the scalar
3722   // element which holds a pointer.
3723   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3724   SDValue N = getValue(Op0);
3725   SDLoc dl = getCurSDLoc();
3726 
3727   // Normalize Vector GEP - all scalar operands should be converted to the
3728   // splat vector.
3729   unsigned VectorWidth = I.getType()->isVectorTy() ?
3730     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3731 
3732   if (VectorWidth && !N.getValueType().isVector()) {
3733     LLVMContext &Context = *DAG.getContext();
3734     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3735     N = DAG.getSplatBuildVector(VT, dl, N);
3736   }
3737 
3738   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3739        GTI != E; ++GTI) {
3740     const Value *Idx = GTI.getOperand();
3741     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3742       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3743       if (Field) {
3744         // N = N + Offset
3745         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3746 
3747         // In an inbounds GEP with an offset that is nonnegative even when
3748         // interpreted as signed, assume there is no unsigned overflow.
3749         SDNodeFlags Flags;
3750         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3751           Flags.setNoUnsignedWrap(true);
3752 
3753         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3754                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3755       }
3756     } else {
3757       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3758       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3759       APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3760 
3761       // If this is a scalar constant or a splat vector of constants,
3762       // handle it quickly.
3763       const auto *CI = dyn_cast<ConstantInt>(Idx);
3764       if (!CI && isa<ConstantDataVector>(Idx) &&
3765           cast<ConstantDataVector>(Idx)->getSplatValue())
3766         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3767 
3768       if (CI) {
3769         if (CI->isZero())
3770           continue;
3771         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3772         LLVMContext &Context = *DAG.getContext();
3773         SDValue OffsVal = VectorWidth ?
3774           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3775           DAG.getConstant(Offs, dl, IdxTy);
3776 
3777         // In an inbouds GEP with an offset that is nonnegative even when
3778         // interpreted as signed, assume there is no unsigned overflow.
3779         SDNodeFlags Flags;
3780         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3781           Flags.setNoUnsignedWrap(true);
3782 
3783         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3784         continue;
3785       }
3786 
3787       // N = N + Idx * ElementSize;
3788       SDValue IdxN = getValue(Idx);
3789 
3790       if (!IdxN.getValueType().isVector() && VectorWidth) {
3791         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3792         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3793       }
3794 
3795       // If the index is smaller or larger than intptr_t, truncate or extend
3796       // it.
3797       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3798 
3799       // If this is a multiply by a power of two, turn it into a shl
3800       // immediately.  This is a very common case.
3801       if (ElementSize != 1) {
3802         if (ElementSize.isPowerOf2()) {
3803           unsigned Amt = ElementSize.logBase2();
3804           IdxN = DAG.getNode(ISD::SHL, dl,
3805                              N.getValueType(), IdxN,
3806                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3807         } else {
3808           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3809           IdxN = DAG.getNode(ISD::MUL, dl,
3810                              N.getValueType(), IdxN, Scale);
3811         }
3812       }
3813 
3814       N = DAG.getNode(ISD::ADD, dl,
3815                       N.getValueType(), N, IdxN);
3816     }
3817   }
3818 
3819   setValue(&I, N);
3820 }
3821 
3822 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3823   // If this is a fixed sized alloca in the entry block of the function,
3824   // allocate it statically on the stack.
3825   if (FuncInfo.StaticAllocaMap.count(&I))
3826     return;   // getValue will auto-populate this.
3827 
3828   SDLoc dl = getCurSDLoc();
3829   Type *Ty = I.getAllocatedType();
3830   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3831   auto &DL = DAG.getDataLayout();
3832   uint64_t TySize = DL.getTypeAllocSize(Ty);
3833   unsigned Align =
3834       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3835 
3836   SDValue AllocSize = getValue(I.getArraySize());
3837 
3838   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3839   if (AllocSize.getValueType() != IntPtr)
3840     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3841 
3842   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3843                           AllocSize,
3844                           DAG.getConstant(TySize, dl, IntPtr));
3845 
3846   // Handle alignment.  If the requested alignment is less than or equal to
3847   // the stack alignment, ignore it.  If the size is greater than or equal to
3848   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3849   unsigned StackAlign =
3850       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3851   if (Align <= StackAlign)
3852     Align = 0;
3853 
3854   // Round the size of the allocation up to the stack alignment size
3855   // by add SA-1 to the size. This doesn't overflow because we're computing
3856   // an address inside an alloca.
3857   SDNodeFlags Flags;
3858   Flags.setNoUnsignedWrap(true);
3859   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3860                           DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3861 
3862   // Mask out the low bits for alignment purposes.
3863   AllocSize =
3864       DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3865                   DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
3866 
3867   SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
3868   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3869   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3870   setValue(&I, DSA);
3871   DAG.setRoot(DSA.getValue(1));
3872 
3873   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3874 }
3875 
3876 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3877   if (I.isAtomic())
3878     return visitAtomicLoad(I);
3879 
3880   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3881   const Value *SV = I.getOperand(0);
3882   if (TLI.supportSwiftError()) {
3883     // Swifterror values can come from either a function parameter with
3884     // swifterror attribute or an alloca with swifterror attribute.
3885     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3886       if (Arg->hasSwiftErrorAttr())
3887         return visitLoadFromSwiftError(I);
3888     }
3889 
3890     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3891       if (Alloca->isSwiftError())
3892         return visitLoadFromSwiftError(I);
3893     }
3894   }
3895 
3896   SDValue Ptr = getValue(SV);
3897 
3898   Type *Ty = I.getType();
3899 
3900   bool isVolatile = I.isVolatile();
3901   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3902   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3903   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3904   unsigned Alignment = I.getAlignment();
3905 
3906   AAMDNodes AAInfo;
3907   I.getAAMetadata(AAInfo);
3908   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3909 
3910   SmallVector<EVT, 4> ValueVTs;
3911   SmallVector<uint64_t, 4> Offsets;
3912   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3913   unsigned NumValues = ValueVTs.size();
3914   if (NumValues == 0)
3915     return;
3916 
3917   SDValue Root;
3918   bool ConstantMemory = false;
3919   if (isVolatile || NumValues > MaxParallelChains)
3920     // Serialize volatile loads with other side effects.
3921     Root = getRoot();
3922   else if (AA &&
3923            AA->pointsToConstantMemory(MemoryLocation(
3924                SV,
3925                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
3926                AAInfo))) {
3927     // Do not serialize (non-volatile) loads of constant memory with anything.
3928     Root = DAG.getEntryNode();
3929     ConstantMemory = true;
3930   } else {
3931     // Do not serialize non-volatile loads against each other.
3932     Root = DAG.getRoot();
3933   }
3934 
3935   SDLoc dl = getCurSDLoc();
3936 
3937   if (isVolatile)
3938     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3939 
3940   // An aggregate load cannot wrap around the address space, so offsets to its
3941   // parts don't wrap either.
3942   SDNodeFlags Flags;
3943   Flags.setNoUnsignedWrap(true);
3944 
3945   SmallVector<SDValue, 4> Values(NumValues);
3946   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3947   EVT PtrVT = Ptr.getValueType();
3948   unsigned ChainI = 0;
3949   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3950     // Serializing loads here may result in excessive register pressure, and
3951     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3952     // could recover a bit by hoisting nodes upward in the chain by recognizing
3953     // they are side-effect free or do not alias. The optimizer should really
3954     // avoid this case by converting large object/array copies to llvm.memcpy
3955     // (MaxParallelChains should always remain as failsafe).
3956     if (ChainI == MaxParallelChains) {
3957       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3958       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3959                                   makeArrayRef(Chains.data(), ChainI));
3960       Root = Chain;
3961       ChainI = 0;
3962     }
3963     SDValue A = DAG.getNode(ISD::ADD, dl,
3964                             PtrVT, Ptr,
3965                             DAG.getConstant(Offsets[i], dl, PtrVT),
3966                             Flags);
3967     auto MMOFlags = MachineMemOperand::MONone;
3968     if (isVolatile)
3969       MMOFlags |= MachineMemOperand::MOVolatile;
3970     if (isNonTemporal)
3971       MMOFlags |= MachineMemOperand::MONonTemporal;
3972     if (isInvariant)
3973       MMOFlags |= MachineMemOperand::MOInvariant;
3974     if (isDereferenceable)
3975       MMOFlags |= MachineMemOperand::MODereferenceable;
3976     MMOFlags |= TLI.getMMOFlags(I);
3977 
3978     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
3979                             MachinePointerInfo(SV, Offsets[i]), Alignment,
3980                             MMOFlags, AAInfo, Ranges);
3981 
3982     Values[i] = L;
3983     Chains[ChainI] = L.getValue(1);
3984   }
3985 
3986   if (!ConstantMemory) {
3987     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3988                                 makeArrayRef(Chains.data(), ChainI));
3989     if (isVolatile)
3990       DAG.setRoot(Chain);
3991     else
3992       PendingLoads.push_back(Chain);
3993   }
3994 
3995   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3996                            DAG.getVTList(ValueVTs), Values));
3997 }
3998 
3999 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4000   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4001          "call visitStoreToSwiftError when backend supports swifterror");
4002 
4003   SmallVector<EVT, 4> ValueVTs;
4004   SmallVector<uint64_t, 4> Offsets;
4005   const Value *SrcV = I.getOperand(0);
4006   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4007                   SrcV->getType(), ValueVTs, &Offsets);
4008   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4009          "expect a single EVT for swifterror");
4010 
4011   SDValue Src = getValue(SrcV);
4012   // Create a virtual register, then update the virtual register.
4013   unsigned VReg; bool CreatedVReg;
4014   std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I);
4015   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4016   // Chain can be getRoot or getControlRoot.
4017   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4018                                       SDValue(Src.getNode(), Src.getResNo()));
4019   DAG.setRoot(CopyNode);
4020   if (CreatedVReg)
4021     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
4022 }
4023 
4024 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4025   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4026          "call visitLoadFromSwiftError when backend supports swifterror");
4027 
4028   assert(!I.isVolatile() &&
4029          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
4030          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
4031          "Support volatile, non temporal, invariant for load_from_swift_error");
4032 
4033   const Value *SV = I.getOperand(0);
4034   Type *Ty = I.getType();
4035   AAMDNodes AAInfo;
4036   I.getAAMetadata(AAInfo);
4037   assert(
4038       (!AA ||
4039        !AA->pointsToConstantMemory(MemoryLocation(
4040            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4041            AAInfo))) &&
4042       "load_from_swift_error should not be constant memory");
4043 
4044   SmallVector<EVT, 4> ValueVTs;
4045   SmallVector<uint64_t, 4> Offsets;
4046   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4047                   ValueVTs, &Offsets);
4048   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4049          "expect a single EVT for swifterror");
4050 
4051   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4052   SDValue L = DAG.getCopyFromReg(
4053       getRoot(), getCurSDLoc(),
4054       FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first,
4055       ValueVTs[0]);
4056 
4057   setValue(&I, L);
4058 }
4059 
4060 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4061   if (I.isAtomic())
4062     return visitAtomicStore(I);
4063 
4064   const Value *SrcV = I.getOperand(0);
4065   const Value *PtrV = I.getOperand(1);
4066 
4067   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4068   if (TLI.supportSwiftError()) {
4069     // Swifterror values can come from either a function parameter with
4070     // swifterror attribute or an alloca with swifterror attribute.
4071     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4072       if (Arg->hasSwiftErrorAttr())
4073         return visitStoreToSwiftError(I);
4074     }
4075 
4076     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4077       if (Alloca->isSwiftError())
4078         return visitStoreToSwiftError(I);
4079     }
4080   }
4081 
4082   SmallVector<EVT, 4> ValueVTs;
4083   SmallVector<uint64_t, 4> Offsets;
4084   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4085                   SrcV->getType(), ValueVTs, &Offsets);
4086   unsigned NumValues = ValueVTs.size();
4087   if (NumValues == 0)
4088     return;
4089 
4090   // Get the lowered operands. Note that we do this after
4091   // checking if NumResults is zero, because with zero results
4092   // the operands won't have values in the map.
4093   SDValue Src = getValue(SrcV);
4094   SDValue Ptr = getValue(PtrV);
4095 
4096   SDValue Root = getRoot();
4097   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4098   SDLoc dl = getCurSDLoc();
4099   EVT PtrVT = Ptr.getValueType();
4100   unsigned Alignment = I.getAlignment();
4101   AAMDNodes AAInfo;
4102   I.getAAMetadata(AAInfo);
4103 
4104   auto MMOFlags = MachineMemOperand::MONone;
4105   if (I.isVolatile())
4106     MMOFlags |= MachineMemOperand::MOVolatile;
4107   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
4108     MMOFlags |= MachineMemOperand::MONonTemporal;
4109   MMOFlags |= TLI.getMMOFlags(I);
4110 
4111   // An aggregate load cannot wrap around the address space, so offsets to its
4112   // parts don't wrap either.
4113   SDNodeFlags Flags;
4114   Flags.setNoUnsignedWrap(true);
4115 
4116   unsigned ChainI = 0;
4117   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4118     // See visitLoad comments.
4119     if (ChainI == MaxParallelChains) {
4120       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4121                                   makeArrayRef(Chains.data(), ChainI));
4122       Root = Chain;
4123       ChainI = 0;
4124     }
4125     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
4126                               DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
4127     SDValue St = DAG.getStore(
4128         Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
4129         MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
4130     Chains[ChainI] = St;
4131   }
4132 
4133   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4134                                   makeArrayRef(Chains.data(), ChainI));
4135   DAG.setRoot(StoreNode);
4136 }
4137 
4138 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4139                                            bool IsCompressing) {
4140   SDLoc sdl = getCurSDLoc();
4141 
4142   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4143                            unsigned& Alignment) {
4144     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4145     Src0 = I.getArgOperand(0);
4146     Ptr = I.getArgOperand(1);
4147     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
4148     Mask = I.getArgOperand(3);
4149   };
4150   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4151                            unsigned& Alignment) {
4152     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4153     Src0 = I.getArgOperand(0);
4154     Ptr = I.getArgOperand(1);
4155     Mask = I.getArgOperand(2);
4156     Alignment = 0;
4157   };
4158 
4159   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4160   unsigned Alignment;
4161   if (IsCompressing)
4162     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4163   else
4164     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4165 
4166   SDValue Ptr = getValue(PtrOperand);
4167   SDValue Src0 = getValue(Src0Operand);
4168   SDValue Mask = getValue(MaskOperand);
4169 
4170   EVT VT = Src0.getValueType();
4171   if (!Alignment)
4172     Alignment = DAG.getEVTAlignment(VT);
4173 
4174   AAMDNodes AAInfo;
4175   I.getAAMetadata(AAInfo);
4176 
4177   MachineMemOperand *MMO =
4178     DAG.getMachineFunction().
4179     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4180                           MachineMemOperand::MOStore,  VT.getStoreSize(),
4181                           Alignment, AAInfo);
4182   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
4183                                          MMO, false /* Truncating */,
4184                                          IsCompressing);
4185   DAG.setRoot(StoreNode);
4186   setValue(&I, StoreNode);
4187 }
4188 
4189 // Get a uniform base for the Gather/Scatter intrinsic.
4190 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4191 // We try to represent it as a base pointer + vector of indices.
4192 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4193 // The first operand of the GEP may be a single pointer or a vector of pointers
4194 // Example:
4195 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4196 //  or
4197 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4198 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4199 //
4200 // When the first GEP operand is a single pointer - it is the uniform base we
4201 // are looking for. If first operand of the GEP is a splat vector - we
4202 // extract the splat value and use it as a uniform base.
4203 // In all other cases the function returns 'false'.
4204 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
4205                            SDValue &Scale, SelectionDAGBuilder* SDB) {
4206   SelectionDAG& DAG = SDB->DAG;
4207   LLVMContext &Context = *DAG.getContext();
4208 
4209   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4210   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4211   if (!GEP)
4212     return false;
4213 
4214   const Value *GEPPtr = GEP->getPointerOperand();
4215   if (!GEPPtr->getType()->isVectorTy())
4216     Ptr = GEPPtr;
4217   else if (!(Ptr = getSplatValue(GEPPtr)))
4218     return false;
4219 
4220   unsigned FinalIndex = GEP->getNumOperands() - 1;
4221   Value *IndexVal = GEP->getOperand(FinalIndex);
4222 
4223   // Ensure all the other indices are 0.
4224   for (unsigned i = 1; i < FinalIndex; ++i) {
4225     auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i));
4226     if (!C || !C->isZero())
4227       return false;
4228   }
4229 
4230   // The operands of the GEP may be defined in another basic block.
4231   // In this case we'll not find nodes for the operands.
4232   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
4233     return false;
4234 
4235   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4236   const DataLayout &DL = DAG.getDataLayout();
4237   Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()),
4238                                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4239   Base = SDB->getValue(Ptr);
4240   Index = SDB->getValue(IndexVal);
4241 
4242   if (!Index.getValueType().isVector()) {
4243     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
4244     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
4245     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
4246   }
4247   return true;
4248 }
4249 
4250 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4251   SDLoc sdl = getCurSDLoc();
4252 
4253   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
4254   const Value *Ptr = I.getArgOperand(1);
4255   SDValue Src0 = getValue(I.getArgOperand(0));
4256   SDValue Mask = getValue(I.getArgOperand(3));
4257   EVT VT = Src0.getValueType();
4258   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
4259   if (!Alignment)
4260     Alignment = DAG.getEVTAlignment(VT);
4261   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4262 
4263   AAMDNodes AAInfo;
4264   I.getAAMetadata(AAInfo);
4265 
4266   SDValue Base;
4267   SDValue Index;
4268   SDValue Scale;
4269   const Value *BasePtr = Ptr;
4270   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4271 
4272   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
4273   MachineMemOperand *MMO = DAG.getMachineFunction().
4274     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
4275                          MachineMemOperand::MOStore,  VT.getStoreSize(),
4276                          Alignment, AAInfo);
4277   if (!UniformBase) {
4278     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4279     Index = getValue(Ptr);
4280     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4281   }
4282   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
4283   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4284                                          Ops, MMO);
4285   DAG.setRoot(Scatter);
4286   setValue(&I, Scatter);
4287 }
4288 
4289 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4290   SDLoc sdl = getCurSDLoc();
4291 
4292   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4293                            unsigned& Alignment) {
4294     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4295     Ptr = I.getArgOperand(0);
4296     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4297     Mask = I.getArgOperand(2);
4298     Src0 = I.getArgOperand(3);
4299   };
4300   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4301                            unsigned& Alignment) {
4302     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4303     Ptr = I.getArgOperand(0);
4304     Alignment = 0;
4305     Mask = I.getArgOperand(1);
4306     Src0 = I.getArgOperand(2);
4307   };
4308 
4309   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4310   unsigned Alignment;
4311   if (IsExpanding)
4312     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4313   else
4314     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4315 
4316   SDValue Ptr = getValue(PtrOperand);
4317   SDValue Src0 = getValue(Src0Operand);
4318   SDValue Mask = getValue(MaskOperand);
4319 
4320   EVT VT = Src0.getValueType();
4321   if (!Alignment)
4322     Alignment = DAG.getEVTAlignment(VT);
4323 
4324   AAMDNodes AAInfo;
4325   I.getAAMetadata(AAInfo);
4326   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4327 
4328   // Do not serialize masked loads of constant memory with anything.
4329   bool AddToChain =
4330       !AA || !AA->pointsToConstantMemory(MemoryLocation(
4331                  PtrOperand,
4332                  LocationSize::precise(
4333                      DAG.getDataLayout().getTypeStoreSize(I.getType())),
4334                  AAInfo));
4335   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4336 
4337   MachineMemOperand *MMO =
4338     DAG.getMachineFunction().
4339     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4340                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
4341                           Alignment, AAInfo, Ranges);
4342 
4343   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
4344                                    ISD::NON_EXTLOAD, IsExpanding);
4345   if (AddToChain)
4346     PendingLoads.push_back(Load.getValue(1));
4347   setValue(&I, Load);
4348 }
4349 
4350 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4351   SDLoc sdl = getCurSDLoc();
4352 
4353   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4354   const Value *Ptr = I.getArgOperand(0);
4355   SDValue Src0 = getValue(I.getArgOperand(3));
4356   SDValue Mask = getValue(I.getArgOperand(2));
4357 
4358   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4359   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4360   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4361   if (!Alignment)
4362     Alignment = DAG.getEVTAlignment(VT);
4363 
4364   AAMDNodes AAInfo;
4365   I.getAAMetadata(AAInfo);
4366   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4367 
4368   SDValue Root = DAG.getRoot();
4369   SDValue Base;
4370   SDValue Index;
4371   SDValue Scale;
4372   const Value *BasePtr = Ptr;
4373   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4374   bool ConstantMemory = false;
4375   if (UniformBase && AA &&
4376       AA->pointsToConstantMemory(
4377           MemoryLocation(BasePtr,
4378                          LocationSize::precise(
4379                              DAG.getDataLayout().getTypeStoreSize(I.getType())),
4380                          AAInfo))) {
4381     // Do not serialize (non-volatile) loads of constant memory with anything.
4382     Root = DAG.getEntryNode();
4383     ConstantMemory = true;
4384   }
4385 
4386   MachineMemOperand *MMO =
4387     DAG.getMachineFunction().
4388     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4389                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
4390                          Alignment, AAInfo, Ranges);
4391 
4392   if (!UniformBase) {
4393     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4394     Index = getValue(Ptr);
4395     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4396   }
4397   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4398   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4399                                        Ops, MMO);
4400 
4401   SDValue OutChain = Gather.getValue(1);
4402   if (!ConstantMemory)
4403     PendingLoads.push_back(OutChain);
4404   setValue(&I, Gather);
4405 }
4406 
4407 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4408   SDLoc dl = getCurSDLoc();
4409   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4410   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4411   SyncScope::ID SSID = I.getSyncScopeID();
4412 
4413   SDValue InChain = getRoot();
4414 
4415   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4416   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4417 
4418   auto Alignment = DAG.getEVTAlignment(MemVT);
4419 
4420   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4421   if (I.isVolatile())
4422     Flags |= MachineMemOperand::MOVolatile;
4423   Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4424 
4425   MachineFunction &MF = DAG.getMachineFunction();
4426   MachineMemOperand *MMO =
4427     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4428                             Flags, MemVT.getStoreSize(), Alignment,
4429                             AAMDNodes(), nullptr, SSID, SuccessOrdering,
4430                             FailureOrdering);
4431 
4432   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4433                                    dl, MemVT, VTs, InChain,
4434                                    getValue(I.getPointerOperand()),
4435                                    getValue(I.getCompareOperand()),
4436                                    getValue(I.getNewValOperand()), MMO);
4437 
4438   SDValue OutChain = L.getValue(2);
4439 
4440   setValue(&I, L);
4441   DAG.setRoot(OutChain);
4442 }
4443 
4444 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4445   SDLoc dl = getCurSDLoc();
4446   ISD::NodeType NT;
4447   switch (I.getOperation()) {
4448   default: llvm_unreachable("Unknown atomicrmw operation");
4449   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4450   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4451   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4452   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4453   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4454   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4455   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4456   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4457   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4458   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4459   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4460   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4461   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4462   }
4463   AtomicOrdering Ordering = I.getOrdering();
4464   SyncScope::ID SSID = I.getSyncScopeID();
4465 
4466   SDValue InChain = getRoot();
4467 
4468   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4469   auto Alignment = DAG.getEVTAlignment(MemVT);
4470 
4471   auto Flags = MachineMemOperand::MOLoad |  MachineMemOperand::MOStore;
4472   if (I.isVolatile())
4473     Flags |= MachineMemOperand::MOVolatile;
4474   Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4475 
4476   MachineFunction &MF = DAG.getMachineFunction();
4477   MachineMemOperand *MMO =
4478     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4479                             MemVT.getStoreSize(), Alignment, AAMDNodes(),
4480                             nullptr, SSID, Ordering);
4481 
4482   SDValue L =
4483     DAG.getAtomic(NT, dl, MemVT, InChain,
4484                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4485                   MMO);
4486 
4487   SDValue OutChain = L.getValue(1);
4488 
4489   setValue(&I, L);
4490   DAG.setRoot(OutChain);
4491 }
4492 
4493 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4494   SDLoc dl = getCurSDLoc();
4495   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4496   SDValue Ops[3];
4497   Ops[0] = getRoot();
4498   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4499                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4500   Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4501                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4502   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4503 }
4504 
4505 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4506   SDLoc dl = getCurSDLoc();
4507   AtomicOrdering Order = I.getOrdering();
4508   SyncScope::ID SSID = I.getSyncScopeID();
4509 
4510   SDValue InChain = getRoot();
4511 
4512   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4513   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4514 
4515   if (!TLI.supportsUnalignedAtomics() &&
4516       I.getAlignment() < VT.getStoreSize())
4517     report_fatal_error("Cannot generate unaligned atomic load");
4518 
4519   auto Flags = MachineMemOperand::MOLoad;
4520   if (I.isVolatile())
4521     Flags |= MachineMemOperand::MOVolatile;
4522   Flags |= TLI.getMMOFlags(I);
4523 
4524   MachineMemOperand *MMO =
4525       DAG.getMachineFunction().
4526       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4527                            Flags, VT.getStoreSize(),
4528                            I.getAlignment() ? I.getAlignment() :
4529                                               DAG.getEVTAlignment(VT),
4530                            AAMDNodes(), nullptr, SSID, Order);
4531 
4532   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4533   SDValue L =
4534       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4535                     getValue(I.getPointerOperand()), MMO);
4536 
4537   SDValue OutChain = L.getValue(1);
4538 
4539   setValue(&I, L);
4540   DAG.setRoot(OutChain);
4541 }
4542 
4543 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4544   SDLoc dl = getCurSDLoc();
4545 
4546   AtomicOrdering Ordering = I.getOrdering();
4547   SyncScope::ID SSID = I.getSyncScopeID();
4548 
4549   SDValue InChain = getRoot();
4550 
4551   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4552   EVT VT =
4553       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4554 
4555   if (I.getAlignment() < VT.getStoreSize())
4556     report_fatal_error("Cannot generate unaligned atomic store");
4557 
4558   auto Flags = MachineMemOperand::MOStore;
4559   if (I.isVolatile())
4560     Flags |= MachineMemOperand::MOVolatile;
4561   Flags |= TLI.getMMOFlags(I);
4562 
4563   MachineFunction &MF = DAG.getMachineFunction();
4564   MachineMemOperand *MMO =
4565     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4566                             VT.getStoreSize(), I.getAlignment(), AAMDNodes(),
4567                             nullptr, SSID, Ordering);
4568   SDValue OutChain =
4569     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, InChain,
4570               getValue(I.getPointerOperand()), getValue(I.getValueOperand()),
4571               MMO);
4572 
4573 
4574   DAG.setRoot(OutChain);
4575 }
4576 
4577 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4578 /// node.
4579 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4580                                                unsigned Intrinsic) {
4581   // Ignore the callsite's attributes. A specific call site may be marked with
4582   // readnone, but the lowering code will expect the chain based on the
4583   // definition.
4584   const Function *F = I.getCalledFunction();
4585   bool HasChain = !F->doesNotAccessMemory();
4586   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4587 
4588   // Build the operand list.
4589   SmallVector<SDValue, 8> Ops;
4590   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4591     if (OnlyLoad) {
4592       // We don't need to serialize loads against other loads.
4593       Ops.push_back(DAG.getRoot());
4594     } else {
4595       Ops.push_back(getRoot());
4596     }
4597   }
4598 
4599   // Info is set by getTgtMemInstrinsic
4600   TargetLowering::IntrinsicInfo Info;
4601   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4602   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4603                                                DAG.getMachineFunction(),
4604                                                Intrinsic);
4605 
4606   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4607   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4608       Info.opc == ISD::INTRINSIC_W_CHAIN)
4609     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4610                                         TLI.getPointerTy(DAG.getDataLayout())));
4611 
4612   // Add all operands of the call to the operand list.
4613   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4614     SDValue Op = getValue(I.getArgOperand(i));
4615     Ops.push_back(Op);
4616   }
4617 
4618   SmallVector<EVT, 4> ValueVTs;
4619   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4620 
4621   if (HasChain)
4622     ValueVTs.push_back(MVT::Other);
4623 
4624   SDVTList VTs = DAG.getVTList(ValueVTs);
4625 
4626   // Create the node.
4627   SDValue Result;
4628   if (IsTgtIntrinsic) {
4629     // This is target intrinsic that touches memory
4630     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs,
4631       Ops, Info.memVT,
4632       MachinePointerInfo(Info.ptrVal, Info.offset), Info.align,
4633       Info.flags, Info.size);
4634   } else if (!HasChain) {
4635     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4636   } else if (!I.getType()->isVoidTy()) {
4637     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4638   } else {
4639     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4640   }
4641 
4642   if (HasChain) {
4643     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4644     if (OnlyLoad)
4645       PendingLoads.push_back(Chain);
4646     else
4647       DAG.setRoot(Chain);
4648   }
4649 
4650   if (!I.getType()->isVoidTy()) {
4651     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4652       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4653       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4654     } else
4655       Result = lowerRangeToAssertZExt(DAG, I, Result);
4656 
4657     setValue(&I, Result);
4658   }
4659 }
4660 
4661 /// GetSignificand - Get the significand and build it into a floating-point
4662 /// number with exponent of 1:
4663 ///
4664 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4665 ///
4666 /// where Op is the hexadecimal representation of floating point value.
4667 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4668   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4669                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4670   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4671                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4672   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4673 }
4674 
4675 /// GetExponent - Get the exponent:
4676 ///
4677 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4678 ///
4679 /// where Op is the hexadecimal representation of floating point value.
4680 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4681                            const TargetLowering &TLI, const SDLoc &dl) {
4682   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4683                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4684   SDValue t1 = DAG.getNode(
4685       ISD::SRL, dl, MVT::i32, t0,
4686       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4687   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4688                            DAG.getConstant(127, dl, MVT::i32));
4689   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4690 }
4691 
4692 /// getF32Constant - Get 32-bit floating point constant.
4693 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4694                               const SDLoc &dl) {
4695   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4696                            MVT::f32);
4697 }
4698 
4699 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4700                                        SelectionDAG &DAG) {
4701   // TODO: What fast-math-flags should be set on the floating-point nodes?
4702 
4703   //   IntegerPartOfX = ((int32_t)(t0);
4704   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4705 
4706   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4707   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4708   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4709 
4710   //   IntegerPartOfX <<= 23;
4711   IntegerPartOfX = DAG.getNode(
4712       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4713       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4714                                   DAG.getDataLayout())));
4715 
4716   SDValue TwoToFractionalPartOfX;
4717   if (LimitFloatPrecision <= 6) {
4718     // For floating-point precision of 6:
4719     //
4720     //   TwoToFractionalPartOfX =
4721     //     0.997535578f +
4722     //       (0.735607626f + 0.252464424f * x) * x;
4723     //
4724     // error 0.0144103317, which is 6 bits
4725     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4726                              getF32Constant(DAG, 0x3e814304, dl));
4727     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4728                              getF32Constant(DAG, 0x3f3c50c8, dl));
4729     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4730     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4731                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4732   } else if (LimitFloatPrecision <= 12) {
4733     // For floating-point precision of 12:
4734     //
4735     //   TwoToFractionalPartOfX =
4736     //     0.999892986f +
4737     //       (0.696457318f +
4738     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4739     //
4740     // error 0.000107046256, which is 13 to 14 bits
4741     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4742                              getF32Constant(DAG, 0x3da235e3, dl));
4743     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4744                              getF32Constant(DAG, 0x3e65b8f3, dl));
4745     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4746     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4747                              getF32Constant(DAG, 0x3f324b07, dl));
4748     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4749     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4750                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4751   } else { // LimitFloatPrecision <= 18
4752     // For floating-point precision of 18:
4753     //
4754     //   TwoToFractionalPartOfX =
4755     //     0.999999982f +
4756     //       (0.693148872f +
4757     //         (0.240227044f +
4758     //           (0.554906021e-1f +
4759     //             (0.961591928e-2f +
4760     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4761     // error 2.47208000*10^(-7), which is better than 18 bits
4762     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4763                              getF32Constant(DAG, 0x3924b03e, dl));
4764     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4765                              getF32Constant(DAG, 0x3ab24b87, dl));
4766     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4767     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4768                              getF32Constant(DAG, 0x3c1d8c17, dl));
4769     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4770     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4771                              getF32Constant(DAG, 0x3d634a1d, dl));
4772     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4773     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4774                              getF32Constant(DAG, 0x3e75fe14, dl));
4775     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4776     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4777                               getF32Constant(DAG, 0x3f317234, dl));
4778     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4779     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4780                                          getF32Constant(DAG, 0x3f800000, dl));
4781   }
4782 
4783   // Add the exponent into the result in integer domain.
4784   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4785   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4786                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4787 }
4788 
4789 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4790 /// limited-precision mode.
4791 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4792                          const TargetLowering &TLI) {
4793   if (Op.getValueType() == MVT::f32 &&
4794       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4795 
4796     // Put the exponent in the right bit position for later addition to the
4797     // final result:
4798     //
4799     //   #define LOG2OFe 1.4426950f
4800     //   t0 = Op * LOG2OFe
4801 
4802     // TODO: What fast-math-flags should be set here?
4803     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4804                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4805     return getLimitedPrecisionExp2(t0, dl, DAG);
4806   }
4807 
4808   // No special expansion.
4809   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4810 }
4811 
4812 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4813 /// limited-precision mode.
4814 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4815                          const TargetLowering &TLI) {
4816   // TODO: What fast-math-flags should be set on the floating-point nodes?
4817 
4818   if (Op.getValueType() == MVT::f32 &&
4819       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4820     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4821 
4822     // Scale the exponent by log(2) [0.69314718f].
4823     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4824     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4825                                         getF32Constant(DAG, 0x3f317218, dl));
4826 
4827     // Get the significand and build it into a floating-point number with
4828     // exponent of 1.
4829     SDValue X = GetSignificand(DAG, Op1, dl);
4830 
4831     SDValue LogOfMantissa;
4832     if (LimitFloatPrecision <= 6) {
4833       // For floating-point precision of 6:
4834       //
4835       //   LogofMantissa =
4836       //     -1.1609546f +
4837       //       (1.4034025f - 0.23903021f * x) * x;
4838       //
4839       // error 0.0034276066, which is better than 8 bits
4840       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4841                                getF32Constant(DAG, 0xbe74c456, dl));
4842       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4843                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4844       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4845       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4846                                   getF32Constant(DAG, 0x3f949a29, dl));
4847     } else if (LimitFloatPrecision <= 12) {
4848       // For floating-point precision of 12:
4849       //
4850       //   LogOfMantissa =
4851       //     -1.7417939f +
4852       //       (2.8212026f +
4853       //         (-1.4699568f +
4854       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4855       //
4856       // error 0.000061011436, which is 14 bits
4857       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4858                                getF32Constant(DAG, 0xbd67b6d6, dl));
4859       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4860                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4861       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4862       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4863                                getF32Constant(DAG, 0x3fbc278b, dl));
4864       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4865       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4866                                getF32Constant(DAG, 0x40348e95, dl));
4867       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4868       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4869                                   getF32Constant(DAG, 0x3fdef31a, dl));
4870     } else { // LimitFloatPrecision <= 18
4871       // For floating-point precision of 18:
4872       //
4873       //   LogOfMantissa =
4874       //     -2.1072184f +
4875       //       (4.2372794f +
4876       //         (-3.7029485f +
4877       //           (2.2781945f +
4878       //             (-0.87823314f +
4879       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4880       //
4881       // error 0.0000023660568, which is better than 18 bits
4882       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4883                                getF32Constant(DAG, 0xbc91e5ac, dl));
4884       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4885                                getF32Constant(DAG, 0x3e4350aa, dl));
4886       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4887       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4888                                getF32Constant(DAG, 0x3f60d3e3, dl));
4889       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4890       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4891                                getF32Constant(DAG, 0x4011cdf0, dl));
4892       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4893       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4894                                getF32Constant(DAG, 0x406cfd1c, dl));
4895       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4896       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4897                                getF32Constant(DAG, 0x408797cb, dl));
4898       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4899       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4900                                   getF32Constant(DAG, 0x4006dcab, dl));
4901     }
4902 
4903     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4904   }
4905 
4906   // No special expansion.
4907   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4908 }
4909 
4910 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4911 /// limited-precision mode.
4912 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4913                           const TargetLowering &TLI) {
4914   // TODO: What fast-math-flags should be set on the floating-point nodes?
4915 
4916   if (Op.getValueType() == MVT::f32 &&
4917       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4918     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4919 
4920     // Get the exponent.
4921     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4922 
4923     // Get the significand and build it into a floating-point number with
4924     // exponent of 1.
4925     SDValue X = GetSignificand(DAG, Op1, dl);
4926 
4927     // Different possible minimax approximations of significand in
4928     // floating-point for various degrees of accuracy over [1,2].
4929     SDValue Log2ofMantissa;
4930     if (LimitFloatPrecision <= 6) {
4931       // For floating-point precision of 6:
4932       //
4933       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4934       //
4935       // error 0.0049451742, which is more than 7 bits
4936       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4937                                getF32Constant(DAG, 0xbeb08fe0, dl));
4938       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4939                                getF32Constant(DAG, 0x40019463, dl));
4940       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4941       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4942                                    getF32Constant(DAG, 0x3fd6633d, dl));
4943     } else if (LimitFloatPrecision <= 12) {
4944       // For floating-point precision of 12:
4945       //
4946       //   Log2ofMantissa =
4947       //     -2.51285454f +
4948       //       (4.07009056f +
4949       //         (-2.12067489f +
4950       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4951       //
4952       // error 0.0000876136000, which is better than 13 bits
4953       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4954                                getF32Constant(DAG, 0xbda7262e, dl));
4955       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4956                                getF32Constant(DAG, 0x3f25280b, dl));
4957       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4958       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4959                                getF32Constant(DAG, 0x4007b923, dl));
4960       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4961       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4962                                getF32Constant(DAG, 0x40823e2f, dl));
4963       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4964       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4965                                    getF32Constant(DAG, 0x4020d29c, dl));
4966     } else { // LimitFloatPrecision <= 18
4967       // For floating-point precision of 18:
4968       //
4969       //   Log2ofMantissa =
4970       //     -3.0400495f +
4971       //       (6.1129976f +
4972       //         (-5.3420409f +
4973       //           (3.2865683f +
4974       //             (-1.2669343f +
4975       //               (0.27515199f -
4976       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4977       //
4978       // error 0.0000018516, which is better than 18 bits
4979       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4980                                getF32Constant(DAG, 0xbcd2769e, dl));
4981       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4982                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4983       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4984       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4985                                getF32Constant(DAG, 0x3fa22ae7, dl));
4986       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4987       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4988                                getF32Constant(DAG, 0x40525723, dl));
4989       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4990       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4991                                getF32Constant(DAG, 0x40aaf200, dl));
4992       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4993       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4994                                getF32Constant(DAG, 0x40c39dad, dl));
4995       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4996       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4997                                    getF32Constant(DAG, 0x4042902c, dl));
4998     }
4999 
5000     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5001   }
5002 
5003   // No special expansion.
5004   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
5005 }
5006 
5007 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5008 /// limited-precision mode.
5009 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5010                            const TargetLowering &TLI) {
5011   // TODO: What fast-math-flags should be set on the floating-point nodes?
5012 
5013   if (Op.getValueType() == MVT::f32 &&
5014       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5015     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5016 
5017     // Scale the exponent by log10(2) [0.30102999f].
5018     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5019     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5020                                         getF32Constant(DAG, 0x3e9a209a, dl));
5021 
5022     // Get the significand and build it into a floating-point number with
5023     // exponent of 1.
5024     SDValue X = GetSignificand(DAG, Op1, dl);
5025 
5026     SDValue Log10ofMantissa;
5027     if (LimitFloatPrecision <= 6) {
5028       // For floating-point precision of 6:
5029       //
5030       //   Log10ofMantissa =
5031       //     -0.50419619f +
5032       //       (0.60948995f - 0.10380950f * x) * x;
5033       //
5034       // error 0.0014886165, which is 6 bits
5035       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5036                                getF32Constant(DAG, 0xbdd49a13, dl));
5037       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5038                                getF32Constant(DAG, 0x3f1c0789, dl));
5039       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5040       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5041                                     getF32Constant(DAG, 0x3f011300, dl));
5042     } else if (LimitFloatPrecision <= 12) {
5043       // For floating-point precision of 12:
5044       //
5045       //   Log10ofMantissa =
5046       //     -0.64831180f +
5047       //       (0.91751397f +
5048       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5049       //
5050       // error 0.00019228036, which is better than 12 bits
5051       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5052                                getF32Constant(DAG, 0x3d431f31, dl));
5053       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5054                                getF32Constant(DAG, 0x3ea21fb2, dl));
5055       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5056       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5057                                getF32Constant(DAG, 0x3f6ae232, dl));
5058       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5059       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5060                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5061     } else { // LimitFloatPrecision <= 18
5062       // For floating-point precision of 18:
5063       //
5064       //   Log10ofMantissa =
5065       //     -0.84299375f +
5066       //       (1.5327582f +
5067       //         (-1.0688956f +
5068       //           (0.49102474f +
5069       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5070       //
5071       // error 0.0000037995730, which is better than 18 bits
5072       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5073                                getF32Constant(DAG, 0x3c5d51ce, dl));
5074       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5075                                getF32Constant(DAG, 0x3e00685a, dl));
5076       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5077       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5078                                getF32Constant(DAG, 0x3efb6798, dl));
5079       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5080       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5081                                getF32Constant(DAG, 0x3f88d192, dl));
5082       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5083       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5084                                getF32Constant(DAG, 0x3fc4316c, dl));
5085       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5086       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5087                                     getF32Constant(DAG, 0x3f57ce70, dl));
5088     }
5089 
5090     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5091   }
5092 
5093   // No special expansion.
5094   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
5095 }
5096 
5097 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5098 /// limited-precision mode.
5099 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5100                           const TargetLowering &TLI) {
5101   if (Op.getValueType() == MVT::f32 &&
5102       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5103     return getLimitedPrecisionExp2(Op, dl, DAG);
5104 
5105   // No special expansion.
5106   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
5107 }
5108 
5109 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5110 /// limited-precision mode with x == 10.0f.
5111 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5112                          SelectionDAG &DAG, const TargetLowering &TLI) {
5113   bool IsExp10 = false;
5114   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5115       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5116     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5117       APFloat Ten(10.0f);
5118       IsExp10 = LHSC->isExactlyValue(Ten);
5119     }
5120   }
5121 
5122   // TODO: What fast-math-flags should be set on the FMUL node?
5123   if (IsExp10) {
5124     // Put the exponent in the right bit position for later addition to the
5125     // final result:
5126     //
5127     //   #define LOG2OF10 3.3219281f
5128     //   t0 = Op * LOG2OF10;
5129     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5130                              getF32Constant(DAG, 0x40549a78, dl));
5131     return getLimitedPrecisionExp2(t0, dl, DAG);
5132   }
5133 
5134   // No special expansion.
5135   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
5136 }
5137 
5138 /// ExpandPowI - Expand a llvm.powi intrinsic.
5139 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5140                           SelectionDAG &DAG) {
5141   // If RHS is a constant, we can expand this out to a multiplication tree,
5142   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5143   // optimizing for size, we only want to do this if the expansion would produce
5144   // a small number of multiplies, otherwise we do the full expansion.
5145   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5146     // Get the exponent as a positive value.
5147     unsigned Val = RHSC->getSExtValue();
5148     if ((int)Val < 0) Val = -Val;
5149 
5150     // powi(x, 0) -> 1.0
5151     if (Val == 0)
5152       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5153 
5154     const Function &F = DAG.getMachineFunction().getFunction();
5155     if (!F.optForSize() ||
5156         // If optimizing for size, don't insert too many multiplies.
5157         // This inserts up to 5 multiplies.
5158         countPopulation(Val) + Log2_32(Val) < 7) {
5159       // We use the simple binary decomposition method to generate the multiply
5160       // sequence.  There are more optimal ways to do this (for example,
5161       // powi(x,15) generates one more multiply than it should), but this has
5162       // the benefit of being both really simple and much better than a libcall.
5163       SDValue Res;  // Logically starts equal to 1.0
5164       SDValue CurSquare = LHS;
5165       // TODO: Intrinsics should have fast-math-flags that propagate to these
5166       // nodes.
5167       while (Val) {
5168         if (Val & 1) {
5169           if (Res.getNode())
5170             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5171           else
5172             Res = CurSquare;  // 1.0*CurSquare.
5173         }
5174 
5175         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5176                                 CurSquare, CurSquare);
5177         Val >>= 1;
5178       }
5179 
5180       // If the original was negative, invert the result, producing 1/(x*x*x).
5181       if (RHSC->getSExtValue() < 0)
5182         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5183                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5184       return Res;
5185     }
5186   }
5187 
5188   // Otherwise, expand to a libcall.
5189   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5190 }
5191 
5192 // getUnderlyingArgReg - Find underlying register used for a truncated or
5193 // bitcasted argument.
5194 static unsigned getUnderlyingArgReg(const SDValue &N) {
5195   switch (N.getOpcode()) {
5196   case ISD::CopyFromReg:
5197     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
5198   case ISD::BITCAST:
5199   case ISD::AssertZext:
5200   case ISD::AssertSext:
5201   case ISD::TRUNCATE:
5202     return getUnderlyingArgReg(N.getOperand(0));
5203   default:
5204     return 0;
5205   }
5206 }
5207 
5208 /// If the DbgValueInst is a dbg_value of a function argument, create the
5209 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5210 /// instruction selection, they will be inserted to the entry BB.
5211 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5212     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5213     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5214   const Argument *Arg = dyn_cast<Argument>(V);
5215   if (!Arg)
5216     return false;
5217 
5218   if (!IsDbgDeclare) {
5219     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5220     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5221     // the entry block.
5222     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5223     if (!IsInEntryBlock)
5224       return false;
5225 
5226     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5227     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5228     // variable that also is a param.
5229     //
5230     // Although, if we are at the top of the entry block already, we can still
5231     // emit using ArgDbgValue. This might catch some situations when the
5232     // dbg.value refers to an argument that isn't used in the entry block, so
5233     // any CopyToReg node would be optimized out and the only way to express
5234     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5235     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5236     // we should only emit as ArgDbgValue if the Variable is an argument to the
5237     // current function, and the dbg.value intrinsic is found in the entry
5238     // block.
5239     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5240         !DL->getInlinedAt();
5241     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5242     if (!IsInPrologue && !VariableIsFunctionInputArg)
5243       return false;
5244 
5245     // Here we assume that a function argument on IR level only can be used to
5246     // describe one input parameter on source level. If we for example have
5247     // source code like this
5248     //
5249     //    struct A { long x, y; };
5250     //    void foo(struct A a, long b) {
5251     //      ...
5252     //      b = a.x;
5253     //      ...
5254     //    }
5255     //
5256     // and IR like this
5257     //
5258     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5259     //  entry:
5260     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5261     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5262     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5263     //    ...
5264     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5265     //    ...
5266     //
5267     // then the last dbg.value is describing a parameter "b" using a value that
5268     // is an argument. But since we already has used %a1 to describe a parameter
5269     // we should not handle that last dbg.value here (that would result in an
5270     // incorrect hoisting of the DBG_VALUE to the function entry).
5271     // Notice that we allow one dbg.value per IR level argument, to accomodate
5272     // for the situation with fragments above.
5273     if (VariableIsFunctionInputArg) {
5274       unsigned ArgNo = Arg->getArgNo();
5275       if (ArgNo >= FuncInfo.DescribedArgs.size())
5276         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5277       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5278         return false;
5279       FuncInfo.DescribedArgs.set(ArgNo);
5280     }
5281   }
5282 
5283   MachineFunction &MF = DAG.getMachineFunction();
5284   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5285 
5286   bool IsIndirect = false;
5287   Optional<MachineOperand> Op;
5288   // Some arguments' frame index is recorded during argument lowering.
5289   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5290   if (FI != std::numeric_limits<int>::max())
5291     Op = MachineOperand::CreateFI(FI);
5292 
5293   if (!Op && N.getNode()) {
5294     unsigned Reg = getUnderlyingArgReg(N);
5295     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
5296       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5297       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
5298       if (PR)
5299         Reg = PR;
5300     }
5301     if (Reg) {
5302       Op = MachineOperand::CreateReg(Reg, false);
5303       IsIndirect = IsDbgDeclare;
5304     }
5305   }
5306 
5307   if (!Op && N.getNode())
5308     // Check if frame index is available.
5309     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
5310       if (FrameIndexSDNode *FINode =
5311           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5312         Op = MachineOperand::CreateFI(FINode->getIndex());
5313 
5314   if (!Op) {
5315     // Check if ValueMap has reg number.
5316     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
5317     if (VMI != FuncInfo.ValueMap.end()) {
5318       const auto &TLI = DAG.getTargetLoweringInfo();
5319       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5320                        V->getType(), getABIRegCopyCC(V));
5321       if (RFV.occupiesMultipleRegs()) {
5322         unsigned Offset = 0;
5323         for (auto RegAndSize : RFV.getRegsAndSizes()) {
5324           Op = MachineOperand::CreateReg(RegAndSize.first, false);
5325           auto FragmentExpr = DIExpression::createFragmentExpression(
5326               Expr, Offset, RegAndSize.second);
5327           if (!FragmentExpr)
5328             continue;
5329           FuncInfo.ArgDbgValues.push_back(
5330               BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5331                       Op->getReg(), Variable, *FragmentExpr));
5332           Offset += RegAndSize.second;
5333         }
5334         return true;
5335       }
5336       Op = MachineOperand::CreateReg(VMI->second, false);
5337       IsIndirect = IsDbgDeclare;
5338     }
5339   }
5340 
5341   if (!Op)
5342     return false;
5343 
5344   assert(Variable->isValidLocationForIntrinsic(DL) &&
5345          "Expected inlined-at fields to agree");
5346   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5347   FuncInfo.ArgDbgValues.push_back(
5348       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5349               *Op, Variable, Expr));
5350 
5351   return true;
5352 }
5353 
5354 /// Return the appropriate SDDbgValue based on N.
5355 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5356                                              DILocalVariable *Variable,
5357                                              DIExpression *Expr,
5358                                              const DebugLoc &dl,
5359                                              unsigned DbgSDNodeOrder) {
5360   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5361     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5362     // stack slot locations.
5363     //
5364     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5365     // debug values here after optimization:
5366     //
5367     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5368     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5369     //
5370     // Both describe the direct values of their associated variables.
5371     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5372                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5373   }
5374   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5375                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5376 }
5377 
5378 // VisualStudio defines setjmp as _setjmp
5379 #if defined(_MSC_VER) && defined(setjmp) && \
5380                          !defined(setjmp_undefined_for_msvc)
5381 #  pragma push_macro("setjmp")
5382 #  undef setjmp
5383 #  define setjmp_undefined_for_msvc
5384 #endif
5385 
5386 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5387   switch (Intrinsic) {
5388   case Intrinsic::smul_fix:
5389     return ISD::SMULFIX;
5390   case Intrinsic::umul_fix:
5391     return ISD::UMULFIX;
5392   default:
5393     llvm_unreachable("Unhandled fixed point intrinsic");
5394   }
5395 }
5396 
5397 /// Lower the call to the specified intrinsic function. If we want to emit this
5398 /// as a call to a named external function, return the name. Otherwise, lower it
5399 /// and return null.
5400 const char *
5401 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
5402   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5403   SDLoc sdl = getCurSDLoc();
5404   DebugLoc dl = getCurDebugLoc();
5405   SDValue Res;
5406 
5407   switch (Intrinsic) {
5408   default:
5409     // By default, turn this into a target intrinsic node.
5410     visitTargetIntrinsic(I, Intrinsic);
5411     return nullptr;
5412   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
5413   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
5414   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
5415   case Intrinsic::returnaddress:
5416     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5417                              TLI.getPointerTy(DAG.getDataLayout()),
5418                              getValue(I.getArgOperand(0))));
5419     return nullptr;
5420   case Intrinsic::addressofreturnaddress:
5421     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5422                              TLI.getPointerTy(DAG.getDataLayout())));
5423     return nullptr;
5424   case Intrinsic::sponentry:
5425     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5426                              TLI.getPointerTy(DAG.getDataLayout())));
5427     return nullptr;
5428   case Intrinsic::frameaddress:
5429     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5430                              TLI.getPointerTy(DAG.getDataLayout()),
5431                              getValue(I.getArgOperand(0))));
5432     return nullptr;
5433   case Intrinsic::read_register: {
5434     Value *Reg = I.getArgOperand(0);
5435     SDValue Chain = getRoot();
5436     SDValue RegName =
5437         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5438     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5439     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5440       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5441     setValue(&I, Res);
5442     DAG.setRoot(Res.getValue(1));
5443     return nullptr;
5444   }
5445   case Intrinsic::write_register: {
5446     Value *Reg = I.getArgOperand(0);
5447     Value *RegValue = I.getArgOperand(1);
5448     SDValue Chain = getRoot();
5449     SDValue RegName =
5450         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5451     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5452                             RegName, getValue(RegValue)));
5453     return nullptr;
5454   }
5455   case Intrinsic::setjmp:
5456     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
5457   case Intrinsic::longjmp:
5458     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
5459   case Intrinsic::memcpy: {
5460     const auto &MCI = cast<MemCpyInst>(I);
5461     SDValue Op1 = getValue(I.getArgOperand(0));
5462     SDValue Op2 = getValue(I.getArgOperand(1));
5463     SDValue Op3 = getValue(I.getArgOperand(2));
5464     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5465     unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5466     unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5467     unsigned Align = MinAlign(DstAlign, SrcAlign);
5468     bool isVol = MCI.isVolatile();
5469     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5470     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5471     // node.
5472     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5473                                false, isTC,
5474                                MachinePointerInfo(I.getArgOperand(0)),
5475                                MachinePointerInfo(I.getArgOperand(1)));
5476     updateDAGForMaybeTailCall(MC);
5477     return nullptr;
5478   }
5479   case Intrinsic::memset: {
5480     const auto &MSI = cast<MemSetInst>(I);
5481     SDValue Op1 = getValue(I.getArgOperand(0));
5482     SDValue Op2 = getValue(I.getArgOperand(1));
5483     SDValue Op3 = getValue(I.getArgOperand(2));
5484     // @llvm.memset defines 0 and 1 to both mean no alignment.
5485     unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5486     bool isVol = MSI.isVolatile();
5487     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5488     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5489                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5490     updateDAGForMaybeTailCall(MS);
5491     return nullptr;
5492   }
5493   case Intrinsic::memmove: {
5494     const auto &MMI = cast<MemMoveInst>(I);
5495     SDValue Op1 = getValue(I.getArgOperand(0));
5496     SDValue Op2 = getValue(I.getArgOperand(1));
5497     SDValue Op3 = getValue(I.getArgOperand(2));
5498     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5499     unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5500     unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5501     unsigned Align = MinAlign(DstAlign, SrcAlign);
5502     bool isVol = MMI.isVolatile();
5503     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5504     // FIXME: Support passing different dest/src alignments to the memmove DAG
5505     // node.
5506     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5507                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5508                                 MachinePointerInfo(I.getArgOperand(1)));
5509     updateDAGForMaybeTailCall(MM);
5510     return nullptr;
5511   }
5512   case Intrinsic::memcpy_element_unordered_atomic: {
5513     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5514     SDValue Dst = getValue(MI.getRawDest());
5515     SDValue Src = getValue(MI.getRawSource());
5516     SDValue Length = getValue(MI.getLength());
5517 
5518     unsigned DstAlign = MI.getDestAlignment();
5519     unsigned SrcAlign = MI.getSourceAlignment();
5520     Type *LengthTy = MI.getLength()->getType();
5521     unsigned ElemSz = MI.getElementSizeInBytes();
5522     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5523     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5524                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5525                                      MachinePointerInfo(MI.getRawDest()),
5526                                      MachinePointerInfo(MI.getRawSource()));
5527     updateDAGForMaybeTailCall(MC);
5528     return nullptr;
5529   }
5530   case Intrinsic::memmove_element_unordered_atomic: {
5531     auto &MI = cast<AtomicMemMoveInst>(I);
5532     SDValue Dst = getValue(MI.getRawDest());
5533     SDValue Src = getValue(MI.getRawSource());
5534     SDValue Length = getValue(MI.getLength());
5535 
5536     unsigned DstAlign = MI.getDestAlignment();
5537     unsigned SrcAlign = MI.getSourceAlignment();
5538     Type *LengthTy = MI.getLength()->getType();
5539     unsigned ElemSz = MI.getElementSizeInBytes();
5540     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5541     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5542                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5543                                       MachinePointerInfo(MI.getRawDest()),
5544                                       MachinePointerInfo(MI.getRawSource()));
5545     updateDAGForMaybeTailCall(MC);
5546     return nullptr;
5547   }
5548   case Intrinsic::memset_element_unordered_atomic: {
5549     auto &MI = cast<AtomicMemSetInst>(I);
5550     SDValue Dst = getValue(MI.getRawDest());
5551     SDValue Val = getValue(MI.getValue());
5552     SDValue Length = getValue(MI.getLength());
5553 
5554     unsigned DstAlign = MI.getDestAlignment();
5555     Type *LengthTy = MI.getLength()->getType();
5556     unsigned ElemSz = MI.getElementSizeInBytes();
5557     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5558     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5559                                      LengthTy, ElemSz, isTC,
5560                                      MachinePointerInfo(MI.getRawDest()));
5561     updateDAGForMaybeTailCall(MC);
5562     return nullptr;
5563   }
5564   case Intrinsic::dbg_addr:
5565   case Intrinsic::dbg_declare: {
5566     const auto &DI = cast<DbgVariableIntrinsic>(I);
5567     DILocalVariable *Variable = DI.getVariable();
5568     DIExpression *Expression = DI.getExpression();
5569     dropDanglingDebugInfo(Variable, Expression);
5570     assert(Variable && "Missing variable");
5571 
5572     // Check if address has undef value.
5573     const Value *Address = DI.getVariableLocation();
5574     if (!Address || isa<UndefValue>(Address) ||
5575         (Address->use_empty() && !isa<Argument>(Address))) {
5576       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5577       return nullptr;
5578     }
5579 
5580     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5581 
5582     // Check if this variable can be described by a frame index, typically
5583     // either as a static alloca or a byval parameter.
5584     int FI = std::numeric_limits<int>::max();
5585     if (const auto *AI =
5586             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5587       if (AI->isStaticAlloca()) {
5588         auto I = FuncInfo.StaticAllocaMap.find(AI);
5589         if (I != FuncInfo.StaticAllocaMap.end())
5590           FI = I->second;
5591       }
5592     } else if (const auto *Arg = dyn_cast<Argument>(
5593                    Address->stripInBoundsConstantOffsets())) {
5594       FI = FuncInfo.getArgumentFrameIndex(Arg);
5595     }
5596 
5597     // llvm.dbg.addr is control dependent and always generates indirect
5598     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5599     // the MachineFunction variable table.
5600     if (FI != std::numeric_limits<int>::max()) {
5601       if (Intrinsic == Intrinsic::dbg_addr) {
5602         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5603             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5604         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5605       }
5606       return nullptr;
5607     }
5608 
5609     SDValue &N = NodeMap[Address];
5610     if (!N.getNode() && isa<Argument>(Address))
5611       // Check unused arguments map.
5612       N = UnusedArgNodeMap[Address];
5613     SDDbgValue *SDV;
5614     if (N.getNode()) {
5615       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5616         Address = BCI->getOperand(0);
5617       // Parameters are handled specially.
5618       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5619       if (isParameter && FINode) {
5620         // Byval parameter. We have a frame index at this point.
5621         SDV =
5622             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5623                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5624       } else if (isa<Argument>(Address)) {
5625         // Address is an argument, so try to emit its dbg value using
5626         // virtual register info from the FuncInfo.ValueMap.
5627         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5628         return nullptr;
5629       } else {
5630         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5631                               true, dl, SDNodeOrder);
5632       }
5633       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5634     } else {
5635       // If Address is an argument then try to emit its dbg value using
5636       // virtual register info from the FuncInfo.ValueMap.
5637       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5638                                     N)) {
5639         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5640       }
5641     }
5642     return nullptr;
5643   }
5644   case Intrinsic::dbg_label: {
5645     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5646     DILabel *Label = DI.getLabel();
5647     assert(Label && "Missing label");
5648 
5649     SDDbgLabel *SDV;
5650     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5651     DAG.AddDbgLabel(SDV);
5652     return nullptr;
5653   }
5654   case Intrinsic::dbg_value: {
5655     const DbgValueInst &DI = cast<DbgValueInst>(I);
5656     assert(DI.getVariable() && "Missing variable");
5657 
5658     DILocalVariable *Variable = DI.getVariable();
5659     DIExpression *Expression = DI.getExpression();
5660     dropDanglingDebugInfo(Variable, Expression);
5661     const Value *V = DI.getValue();
5662     if (!V)
5663       return nullptr;
5664 
5665     if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
5666         SDNodeOrder))
5667       return nullptr;
5668 
5669     // TODO: Dangling debug info will eventually either be resolved or produce
5670     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5671     // between the original dbg.value location and its resolved DBG_VALUE, which
5672     // we should ideally fill with an extra Undef DBG_VALUE.
5673 
5674     DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5675     return nullptr;
5676   }
5677 
5678   case Intrinsic::eh_typeid_for: {
5679     // Find the type id for the given typeinfo.
5680     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5681     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5682     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5683     setValue(&I, Res);
5684     return nullptr;
5685   }
5686 
5687   case Intrinsic::eh_return_i32:
5688   case Intrinsic::eh_return_i64:
5689     DAG.getMachineFunction().setCallsEHReturn(true);
5690     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5691                             MVT::Other,
5692                             getControlRoot(),
5693                             getValue(I.getArgOperand(0)),
5694                             getValue(I.getArgOperand(1))));
5695     return nullptr;
5696   case Intrinsic::eh_unwind_init:
5697     DAG.getMachineFunction().setCallsUnwindInit(true);
5698     return nullptr;
5699   case Intrinsic::eh_dwarf_cfa:
5700     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5701                              TLI.getPointerTy(DAG.getDataLayout()),
5702                              getValue(I.getArgOperand(0))));
5703     return nullptr;
5704   case Intrinsic::eh_sjlj_callsite: {
5705     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5706     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5707     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5708     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5709 
5710     MMI.setCurrentCallSite(CI->getZExtValue());
5711     return nullptr;
5712   }
5713   case Intrinsic::eh_sjlj_functioncontext: {
5714     // Get and store the index of the function context.
5715     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5716     AllocaInst *FnCtx =
5717       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5718     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5719     MFI.setFunctionContextIndex(FI);
5720     return nullptr;
5721   }
5722   case Intrinsic::eh_sjlj_setjmp: {
5723     SDValue Ops[2];
5724     Ops[0] = getRoot();
5725     Ops[1] = getValue(I.getArgOperand(0));
5726     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5727                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5728     setValue(&I, Op.getValue(0));
5729     DAG.setRoot(Op.getValue(1));
5730     return nullptr;
5731   }
5732   case Intrinsic::eh_sjlj_longjmp:
5733     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5734                             getRoot(), getValue(I.getArgOperand(0))));
5735     return nullptr;
5736   case Intrinsic::eh_sjlj_setup_dispatch:
5737     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5738                             getRoot()));
5739     return nullptr;
5740   case Intrinsic::masked_gather:
5741     visitMaskedGather(I);
5742     return nullptr;
5743   case Intrinsic::masked_load:
5744     visitMaskedLoad(I);
5745     return nullptr;
5746   case Intrinsic::masked_scatter:
5747     visitMaskedScatter(I);
5748     return nullptr;
5749   case Intrinsic::masked_store:
5750     visitMaskedStore(I);
5751     return nullptr;
5752   case Intrinsic::masked_expandload:
5753     visitMaskedLoad(I, true /* IsExpanding */);
5754     return nullptr;
5755   case Intrinsic::masked_compressstore:
5756     visitMaskedStore(I, true /* IsCompressing */);
5757     return nullptr;
5758   case Intrinsic::x86_mmx_pslli_w:
5759   case Intrinsic::x86_mmx_pslli_d:
5760   case Intrinsic::x86_mmx_pslli_q:
5761   case Intrinsic::x86_mmx_psrli_w:
5762   case Intrinsic::x86_mmx_psrli_d:
5763   case Intrinsic::x86_mmx_psrli_q:
5764   case Intrinsic::x86_mmx_psrai_w:
5765   case Intrinsic::x86_mmx_psrai_d: {
5766     SDValue ShAmt = getValue(I.getArgOperand(1));
5767     if (isa<ConstantSDNode>(ShAmt)) {
5768       visitTargetIntrinsic(I, Intrinsic);
5769       return nullptr;
5770     }
5771     unsigned NewIntrinsic = 0;
5772     EVT ShAmtVT = MVT::v2i32;
5773     switch (Intrinsic) {
5774     case Intrinsic::x86_mmx_pslli_w:
5775       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5776       break;
5777     case Intrinsic::x86_mmx_pslli_d:
5778       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5779       break;
5780     case Intrinsic::x86_mmx_pslli_q:
5781       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5782       break;
5783     case Intrinsic::x86_mmx_psrli_w:
5784       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5785       break;
5786     case Intrinsic::x86_mmx_psrli_d:
5787       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5788       break;
5789     case Intrinsic::x86_mmx_psrli_q:
5790       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5791       break;
5792     case Intrinsic::x86_mmx_psrai_w:
5793       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5794       break;
5795     case Intrinsic::x86_mmx_psrai_d:
5796       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5797       break;
5798     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5799     }
5800 
5801     // The vector shift intrinsics with scalars uses 32b shift amounts but
5802     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5803     // to be zero.
5804     // We must do this early because v2i32 is not a legal type.
5805     SDValue ShOps[2];
5806     ShOps[0] = ShAmt;
5807     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5808     ShAmt =  DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5809     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5810     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5811     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5812                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5813                        getValue(I.getArgOperand(0)), ShAmt);
5814     setValue(&I, Res);
5815     return nullptr;
5816   }
5817   case Intrinsic::powi:
5818     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5819                             getValue(I.getArgOperand(1)), DAG));
5820     return nullptr;
5821   case Intrinsic::log:
5822     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5823     return nullptr;
5824   case Intrinsic::log2:
5825     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5826     return nullptr;
5827   case Intrinsic::log10:
5828     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5829     return nullptr;
5830   case Intrinsic::exp:
5831     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5832     return nullptr;
5833   case Intrinsic::exp2:
5834     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5835     return nullptr;
5836   case Intrinsic::pow:
5837     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5838                            getValue(I.getArgOperand(1)), DAG, TLI));
5839     return nullptr;
5840   case Intrinsic::sqrt:
5841   case Intrinsic::fabs:
5842   case Intrinsic::sin:
5843   case Intrinsic::cos:
5844   case Intrinsic::floor:
5845   case Intrinsic::ceil:
5846   case Intrinsic::trunc:
5847   case Intrinsic::rint:
5848   case Intrinsic::nearbyint:
5849   case Intrinsic::round:
5850   case Intrinsic::canonicalize: {
5851     unsigned Opcode;
5852     switch (Intrinsic) {
5853     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5854     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5855     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5856     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5857     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5858     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5859     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5860     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5861     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5862     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5863     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5864     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5865     }
5866 
5867     setValue(&I, DAG.getNode(Opcode, sdl,
5868                              getValue(I.getArgOperand(0)).getValueType(),
5869                              getValue(I.getArgOperand(0))));
5870     return nullptr;
5871   }
5872   case Intrinsic::minnum: {
5873     auto VT = getValue(I.getArgOperand(0)).getValueType();
5874     unsigned Opc =
5875         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)
5876             ? ISD::FMINIMUM
5877             : ISD::FMINNUM;
5878     setValue(&I, DAG.getNode(Opc, sdl, VT,
5879                              getValue(I.getArgOperand(0)),
5880                              getValue(I.getArgOperand(1))));
5881     return nullptr;
5882   }
5883   case Intrinsic::maxnum: {
5884     auto VT = getValue(I.getArgOperand(0)).getValueType();
5885     unsigned Opc =
5886         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)
5887             ? ISD::FMAXIMUM
5888             : ISD::FMAXNUM;
5889     setValue(&I, DAG.getNode(Opc, sdl, VT,
5890                              getValue(I.getArgOperand(0)),
5891                              getValue(I.getArgOperand(1))));
5892     return nullptr;
5893   }
5894   case Intrinsic::minimum:
5895     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
5896                              getValue(I.getArgOperand(0)).getValueType(),
5897                              getValue(I.getArgOperand(0)),
5898                              getValue(I.getArgOperand(1))));
5899     return nullptr;
5900   case Intrinsic::maximum:
5901     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
5902                              getValue(I.getArgOperand(0)).getValueType(),
5903                              getValue(I.getArgOperand(0)),
5904                              getValue(I.getArgOperand(1))));
5905     return nullptr;
5906   case Intrinsic::copysign:
5907     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5908                              getValue(I.getArgOperand(0)).getValueType(),
5909                              getValue(I.getArgOperand(0)),
5910                              getValue(I.getArgOperand(1))));
5911     return nullptr;
5912   case Intrinsic::fma:
5913     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5914                              getValue(I.getArgOperand(0)).getValueType(),
5915                              getValue(I.getArgOperand(0)),
5916                              getValue(I.getArgOperand(1)),
5917                              getValue(I.getArgOperand(2))));
5918     return nullptr;
5919   case Intrinsic::experimental_constrained_fadd:
5920   case Intrinsic::experimental_constrained_fsub:
5921   case Intrinsic::experimental_constrained_fmul:
5922   case Intrinsic::experimental_constrained_fdiv:
5923   case Intrinsic::experimental_constrained_frem:
5924   case Intrinsic::experimental_constrained_fma:
5925   case Intrinsic::experimental_constrained_sqrt:
5926   case Intrinsic::experimental_constrained_pow:
5927   case Intrinsic::experimental_constrained_powi:
5928   case Intrinsic::experimental_constrained_sin:
5929   case Intrinsic::experimental_constrained_cos:
5930   case Intrinsic::experimental_constrained_exp:
5931   case Intrinsic::experimental_constrained_exp2:
5932   case Intrinsic::experimental_constrained_log:
5933   case Intrinsic::experimental_constrained_log10:
5934   case Intrinsic::experimental_constrained_log2:
5935   case Intrinsic::experimental_constrained_rint:
5936   case Intrinsic::experimental_constrained_nearbyint:
5937   case Intrinsic::experimental_constrained_maxnum:
5938   case Intrinsic::experimental_constrained_minnum:
5939   case Intrinsic::experimental_constrained_ceil:
5940   case Intrinsic::experimental_constrained_floor:
5941   case Intrinsic::experimental_constrained_round:
5942   case Intrinsic::experimental_constrained_trunc:
5943     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
5944     return nullptr;
5945   case Intrinsic::fmuladd: {
5946     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5947     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5948         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5949       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5950                                getValue(I.getArgOperand(0)).getValueType(),
5951                                getValue(I.getArgOperand(0)),
5952                                getValue(I.getArgOperand(1)),
5953                                getValue(I.getArgOperand(2))));
5954     } else {
5955       // TODO: Intrinsic calls should have fast-math-flags.
5956       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5957                                 getValue(I.getArgOperand(0)).getValueType(),
5958                                 getValue(I.getArgOperand(0)),
5959                                 getValue(I.getArgOperand(1)));
5960       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5961                                 getValue(I.getArgOperand(0)).getValueType(),
5962                                 Mul,
5963                                 getValue(I.getArgOperand(2)));
5964       setValue(&I, Add);
5965     }
5966     return nullptr;
5967   }
5968   case Intrinsic::convert_to_fp16:
5969     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5970                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5971                                          getValue(I.getArgOperand(0)),
5972                                          DAG.getTargetConstant(0, sdl,
5973                                                                MVT::i32))));
5974     return nullptr;
5975   case Intrinsic::convert_from_fp16:
5976     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5977                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5978                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5979                                          getValue(I.getArgOperand(0)))));
5980     return nullptr;
5981   case Intrinsic::pcmarker: {
5982     SDValue Tmp = getValue(I.getArgOperand(0));
5983     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5984     return nullptr;
5985   }
5986   case Intrinsic::readcyclecounter: {
5987     SDValue Op = getRoot();
5988     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5989                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5990     setValue(&I, Res);
5991     DAG.setRoot(Res.getValue(1));
5992     return nullptr;
5993   }
5994   case Intrinsic::bitreverse:
5995     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5996                              getValue(I.getArgOperand(0)).getValueType(),
5997                              getValue(I.getArgOperand(0))));
5998     return nullptr;
5999   case Intrinsic::bswap:
6000     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6001                              getValue(I.getArgOperand(0)).getValueType(),
6002                              getValue(I.getArgOperand(0))));
6003     return nullptr;
6004   case Intrinsic::cttz: {
6005     SDValue Arg = getValue(I.getArgOperand(0));
6006     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6007     EVT Ty = Arg.getValueType();
6008     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6009                              sdl, Ty, Arg));
6010     return nullptr;
6011   }
6012   case Intrinsic::ctlz: {
6013     SDValue Arg = getValue(I.getArgOperand(0));
6014     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6015     EVT Ty = Arg.getValueType();
6016     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6017                              sdl, Ty, Arg));
6018     return nullptr;
6019   }
6020   case Intrinsic::ctpop: {
6021     SDValue Arg = getValue(I.getArgOperand(0));
6022     EVT Ty = Arg.getValueType();
6023     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6024     return nullptr;
6025   }
6026   case Intrinsic::fshl:
6027   case Intrinsic::fshr: {
6028     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6029     SDValue X = getValue(I.getArgOperand(0));
6030     SDValue Y = getValue(I.getArgOperand(1));
6031     SDValue Z = getValue(I.getArgOperand(2));
6032     EVT VT = X.getValueType();
6033     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
6034     SDValue Zero = DAG.getConstant(0, sdl, VT);
6035     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
6036 
6037     auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6038     if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
6039       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6040       return nullptr;
6041     }
6042 
6043     // When X == Y, this is rotate. If the data type has a power-of-2 size, we
6044     // avoid the select that is necessary in the general case to filter out
6045     // the 0-shift possibility that leads to UB.
6046     if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
6047       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6048       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6049         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6050         return nullptr;
6051       }
6052 
6053       // Some targets only rotate one way. Try the opposite direction.
6054       RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
6055       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6056         // Negate the shift amount because it is safe to ignore the high bits.
6057         SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6058         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
6059         return nullptr;
6060       }
6061 
6062       // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
6063       // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
6064       SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6065       SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
6066       SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
6067       SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
6068       setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
6069       return nullptr;
6070     }
6071 
6072     // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6073     // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6074     SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
6075     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
6076     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6077     SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
6078 
6079     // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6080     // and that is undefined. We must compare and select to avoid UB.
6081     EVT CCVT = MVT::i1;
6082     if (VT.isVector())
6083       CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
6084 
6085     // For fshl, 0-shift returns the 1st arg (X).
6086     // For fshr, 0-shift returns the 2nd arg (Y).
6087     SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
6088     setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
6089     return nullptr;
6090   }
6091   case Intrinsic::sadd_sat: {
6092     SDValue Op1 = getValue(I.getArgOperand(0));
6093     SDValue Op2 = getValue(I.getArgOperand(1));
6094     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6095     return nullptr;
6096   }
6097   case Intrinsic::uadd_sat: {
6098     SDValue Op1 = getValue(I.getArgOperand(0));
6099     SDValue Op2 = getValue(I.getArgOperand(1));
6100     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6101     return nullptr;
6102   }
6103   case Intrinsic::ssub_sat: {
6104     SDValue Op1 = getValue(I.getArgOperand(0));
6105     SDValue Op2 = getValue(I.getArgOperand(1));
6106     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6107     return nullptr;
6108   }
6109   case Intrinsic::usub_sat: {
6110     SDValue Op1 = getValue(I.getArgOperand(0));
6111     SDValue Op2 = getValue(I.getArgOperand(1));
6112     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6113     return nullptr;
6114   }
6115   case Intrinsic::smul_fix:
6116   case Intrinsic::umul_fix: {
6117     SDValue Op1 = getValue(I.getArgOperand(0));
6118     SDValue Op2 = getValue(I.getArgOperand(1));
6119     SDValue Op3 = getValue(I.getArgOperand(2));
6120     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6121                              Op1.getValueType(), Op1, Op2, Op3));
6122     return nullptr;
6123   }
6124   case Intrinsic::stacksave: {
6125     SDValue Op = getRoot();
6126     Res = DAG.getNode(
6127         ISD::STACKSAVE, sdl,
6128         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
6129     setValue(&I, Res);
6130     DAG.setRoot(Res.getValue(1));
6131     return nullptr;
6132   }
6133   case Intrinsic::stackrestore:
6134     Res = getValue(I.getArgOperand(0));
6135     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6136     return nullptr;
6137   case Intrinsic::get_dynamic_area_offset: {
6138     SDValue Op = getRoot();
6139     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6140     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6141     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6142     // target.
6143     if (PtrTy != ResTy)
6144       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6145                          " intrinsic!");
6146     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6147                       Op);
6148     DAG.setRoot(Op);
6149     setValue(&I, Res);
6150     return nullptr;
6151   }
6152   case Intrinsic::stackguard: {
6153     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6154     MachineFunction &MF = DAG.getMachineFunction();
6155     const Module &M = *MF.getFunction().getParent();
6156     SDValue Chain = getRoot();
6157     if (TLI.useLoadStackGuardNode()) {
6158       Res = getLoadStackGuard(DAG, sdl, Chain);
6159     } else {
6160       const Value *Global = TLI.getSDagStackGuard(M);
6161       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
6162       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6163                         MachinePointerInfo(Global, 0), Align,
6164                         MachineMemOperand::MOVolatile);
6165     }
6166     if (TLI.useStackGuardXorFP())
6167       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6168     DAG.setRoot(Chain);
6169     setValue(&I, Res);
6170     return nullptr;
6171   }
6172   case Intrinsic::stackprotector: {
6173     // Emit code into the DAG to store the stack guard onto the stack.
6174     MachineFunction &MF = DAG.getMachineFunction();
6175     MachineFrameInfo &MFI = MF.getFrameInfo();
6176     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6177     SDValue Src, Chain = getRoot();
6178 
6179     if (TLI.useLoadStackGuardNode())
6180       Src = getLoadStackGuard(DAG, sdl, Chain);
6181     else
6182       Src = getValue(I.getArgOperand(0));   // The guard's value.
6183 
6184     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6185 
6186     int FI = FuncInfo.StaticAllocaMap[Slot];
6187     MFI.setStackProtectorIndex(FI);
6188 
6189     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6190 
6191     // Store the stack protector onto the stack.
6192     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
6193                                                  DAG.getMachineFunction(), FI),
6194                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
6195     setValue(&I, Res);
6196     DAG.setRoot(Res);
6197     return nullptr;
6198   }
6199   case Intrinsic::objectsize: {
6200     // If we don't know by now, we're never going to know.
6201     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
6202 
6203     assert(CI && "Non-constant type in __builtin_object_size?");
6204 
6205     SDValue Arg = getValue(I.getCalledValue());
6206     EVT Ty = Arg.getValueType();
6207 
6208     if (CI->isZero())
6209       Res = DAG.getConstant(-1ULL, sdl, Ty);
6210     else
6211       Res = DAG.getConstant(0, sdl, Ty);
6212 
6213     setValue(&I, Res);
6214     return nullptr;
6215   }
6216 
6217   case Intrinsic::is_constant:
6218     // If this wasn't constant-folded away by now, then it's not a
6219     // constant.
6220     setValue(&I, DAG.getConstant(0, sdl, MVT::i1));
6221     return nullptr;
6222 
6223   case Intrinsic::annotation:
6224   case Intrinsic::ptr_annotation:
6225   case Intrinsic::launder_invariant_group:
6226   case Intrinsic::strip_invariant_group:
6227     // Drop the intrinsic, but forward the value
6228     setValue(&I, getValue(I.getOperand(0)));
6229     return nullptr;
6230   case Intrinsic::assume:
6231   case Intrinsic::var_annotation:
6232   case Intrinsic::sideeffect:
6233     // Discard annotate attributes, assumptions, and artificial side-effects.
6234     return nullptr;
6235 
6236   case Intrinsic::codeview_annotation: {
6237     // Emit a label associated with this metadata.
6238     MachineFunction &MF = DAG.getMachineFunction();
6239     MCSymbol *Label =
6240         MF.getMMI().getContext().createTempSymbol("annotation", true);
6241     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6242     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6243     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6244     DAG.setRoot(Res);
6245     return nullptr;
6246   }
6247 
6248   case Intrinsic::init_trampoline: {
6249     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6250 
6251     SDValue Ops[6];
6252     Ops[0] = getRoot();
6253     Ops[1] = getValue(I.getArgOperand(0));
6254     Ops[2] = getValue(I.getArgOperand(1));
6255     Ops[3] = getValue(I.getArgOperand(2));
6256     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6257     Ops[5] = DAG.getSrcValue(F);
6258 
6259     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6260 
6261     DAG.setRoot(Res);
6262     return nullptr;
6263   }
6264   case Intrinsic::adjust_trampoline:
6265     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6266                              TLI.getPointerTy(DAG.getDataLayout()),
6267                              getValue(I.getArgOperand(0))));
6268     return nullptr;
6269   case Intrinsic::gcroot: {
6270     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6271            "only valid in functions with gc specified, enforced by Verifier");
6272     assert(GFI && "implied by previous");
6273     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6274     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6275 
6276     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6277     GFI->addStackRoot(FI->getIndex(), TypeMap);
6278     return nullptr;
6279   }
6280   case Intrinsic::gcread:
6281   case Intrinsic::gcwrite:
6282     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6283   case Intrinsic::flt_rounds:
6284     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
6285     return nullptr;
6286 
6287   case Intrinsic::expect:
6288     // Just replace __builtin_expect(exp, c) with EXP.
6289     setValue(&I, getValue(I.getArgOperand(0)));
6290     return nullptr;
6291 
6292   case Intrinsic::debugtrap:
6293   case Intrinsic::trap: {
6294     StringRef TrapFuncName =
6295         I.getAttributes()
6296             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6297             .getValueAsString();
6298     if (TrapFuncName.empty()) {
6299       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6300         ISD::TRAP : ISD::DEBUGTRAP;
6301       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6302       return nullptr;
6303     }
6304     TargetLowering::ArgListTy Args;
6305 
6306     TargetLowering::CallLoweringInfo CLI(DAG);
6307     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6308         CallingConv::C, I.getType(),
6309         DAG.getExternalSymbol(TrapFuncName.data(),
6310                               TLI.getPointerTy(DAG.getDataLayout())),
6311         std::move(Args));
6312 
6313     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6314     DAG.setRoot(Result.second);
6315     return nullptr;
6316   }
6317 
6318   case Intrinsic::uadd_with_overflow:
6319   case Intrinsic::sadd_with_overflow:
6320   case Intrinsic::usub_with_overflow:
6321   case Intrinsic::ssub_with_overflow:
6322   case Intrinsic::umul_with_overflow:
6323   case Intrinsic::smul_with_overflow: {
6324     ISD::NodeType Op;
6325     switch (Intrinsic) {
6326     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6327     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6328     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6329     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6330     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6331     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6332     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6333     }
6334     SDValue Op1 = getValue(I.getArgOperand(0));
6335     SDValue Op2 = getValue(I.getArgOperand(1));
6336 
6337     EVT ResultVT = Op1.getValueType();
6338     EVT OverflowVT = MVT::i1;
6339     if (ResultVT.isVector())
6340       OverflowVT = EVT::getVectorVT(
6341           *Context, OverflowVT, ResultVT.getVectorNumElements());
6342 
6343     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6344     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6345     return nullptr;
6346   }
6347   case Intrinsic::prefetch: {
6348     SDValue Ops[5];
6349     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6350     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6351     Ops[0] = DAG.getRoot();
6352     Ops[1] = getValue(I.getArgOperand(0));
6353     Ops[2] = getValue(I.getArgOperand(1));
6354     Ops[3] = getValue(I.getArgOperand(2));
6355     Ops[4] = getValue(I.getArgOperand(3));
6356     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
6357                                              DAG.getVTList(MVT::Other), Ops,
6358                                              EVT::getIntegerVT(*Context, 8),
6359                                              MachinePointerInfo(I.getArgOperand(0)),
6360                                              0, /* align */
6361                                              Flags);
6362 
6363     // Chain the prefetch in parallell with any pending loads, to stay out of
6364     // the way of later optimizations.
6365     PendingLoads.push_back(Result);
6366     Result = getRoot();
6367     DAG.setRoot(Result);
6368     return nullptr;
6369   }
6370   case Intrinsic::lifetime_start:
6371   case Intrinsic::lifetime_end: {
6372     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6373     // Stack coloring is not enabled in O0, discard region information.
6374     if (TM.getOptLevel() == CodeGenOpt::None)
6375       return nullptr;
6376 
6377     const int64_t ObjectSize =
6378         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6379     Value *const ObjectPtr = I.getArgOperand(1);
6380     SmallVector<Value *, 4> Allocas;
6381     GetUnderlyingObjects(ObjectPtr, Allocas, *DL);
6382 
6383     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
6384            E = Allocas.end(); Object != E; ++Object) {
6385       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6386 
6387       // Could not find an Alloca.
6388       if (!LifetimeObject)
6389         continue;
6390 
6391       // First check that the Alloca is static, otherwise it won't have a
6392       // valid frame index.
6393       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6394       if (SI == FuncInfo.StaticAllocaMap.end())
6395         return nullptr;
6396 
6397       const int FrameIndex = SI->second;
6398       int64_t Offset;
6399       if (GetPointerBaseWithConstantOffset(
6400               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6401         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6402       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6403                                 Offset);
6404       DAG.setRoot(Res);
6405     }
6406     return nullptr;
6407   }
6408   case Intrinsic::invariant_start:
6409     // Discard region information.
6410     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6411     return nullptr;
6412   case Intrinsic::invariant_end:
6413     // Discard region information.
6414     return nullptr;
6415   case Intrinsic::clear_cache:
6416     return TLI.getClearCacheBuiltinName();
6417   case Intrinsic::donothing:
6418     // ignore
6419     return nullptr;
6420   case Intrinsic::experimental_stackmap:
6421     visitStackmap(I);
6422     return nullptr;
6423   case Intrinsic::experimental_patchpoint_void:
6424   case Intrinsic::experimental_patchpoint_i64:
6425     visitPatchpoint(&I);
6426     return nullptr;
6427   case Intrinsic::experimental_gc_statepoint:
6428     LowerStatepoint(ImmutableStatepoint(&I));
6429     return nullptr;
6430   case Intrinsic::experimental_gc_result:
6431     visitGCResult(cast<GCResultInst>(I));
6432     return nullptr;
6433   case Intrinsic::experimental_gc_relocate:
6434     visitGCRelocate(cast<GCRelocateInst>(I));
6435     return nullptr;
6436   case Intrinsic::instrprof_increment:
6437     llvm_unreachable("instrprof failed to lower an increment");
6438   case Intrinsic::instrprof_value_profile:
6439     llvm_unreachable("instrprof failed to lower a value profiling call");
6440   case Intrinsic::localescape: {
6441     MachineFunction &MF = DAG.getMachineFunction();
6442     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6443 
6444     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6445     // is the same on all targets.
6446     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6447       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6448       if (isa<ConstantPointerNull>(Arg))
6449         continue; // Skip null pointers. They represent a hole in index space.
6450       AllocaInst *Slot = cast<AllocaInst>(Arg);
6451       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6452              "can only escape static allocas");
6453       int FI = FuncInfo.StaticAllocaMap[Slot];
6454       MCSymbol *FrameAllocSym =
6455           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6456               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6457       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6458               TII->get(TargetOpcode::LOCAL_ESCAPE))
6459           .addSym(FrameAllocSym)
6460           .addFrameIndex(FI);
6461     }
6462 
6463     return nullptr;
6464   }
6465 
6466   case Intrinsic::localrecover: {
6467     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6468     MachineFunction &MF = DAG.getMachineFunction();
6469     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6470 
6471     // Get the symbol that defines the frame offset.
6472     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6473     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6474     unsigned IdxVal =
6475         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6476     MCSymbol *FrameAllocSym =
6477         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6478             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6479 
6480     // Create a MCSymbol for the label to avoid any target lowering
6481     // that would make this PC relative.
6482     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6483     SDValue OffsetVal =
6484         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6485 
6486     // Add the offset to the FP.
6487     Value *FP = I.getArgOperand(1);
6488     SDValue FPVal = getValue(FP);
6489     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
6490     setValue(&I, Add);
6491 
6492     return nullptr;
6493   }
6494 
6495   case Intrinsic::eh_exceptionpointer:
6496   case Intrinsic::eh_exceptioncode: {
6497     // Get the exception pointer vreg, copy from it, and resize it to fit.
6498     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6499     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6500     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6501     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6502     SDValue N =
6503         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6504     if (Intrinsic == Intrinsic::eh_exceptioncode)
6505       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6506     setValue(&I, N);
6507     return nullptr;
6508   }
6509   case Intrinsic::xray_customevent: {
6510     // Here we want to make sure that the intrinsic behaves as if it has a
6511     // specific calling convention, and only for x86_64.
6512     // FIXME: Support other platforms later.
6513     const auto &Triple = DAG.getTarget().getTargetTriple();
6514     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6515       return nullptr;
6516 
6517     SDLoc DL = getCurSDLoc();
6518     SmallVector<SDValue, 8> Ops;
6519 
6520     // We want to say that we always want the arguments in registers.
6521     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6522     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6523     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6524     SDValue Chain = getRoot();
6525     Ops.push_back(LogEntryVal);
6526     Ops.push_back(StrSizeVal);
6527     Ops.push_back(Chain);
6528 
6529     // We need to enforce the calling convention for the callsite, so that
6530     // argument ordering is enforced correctly, and that register allocation can
6531     // see that some registers may be assumed clobbered and have to preserve
6532     // them across calls to the intrinsic.
6533     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6534                                            DL, NodeTys, Ops);
6535     SDValue patchableNode = SDValue(MN, 0);
6536     DAG.setRoot(patchableNode);
6537     setValue(&I, patchableNode);
6538     return nullptr;
6539   }
6540   case Intrinsic::xray_typedevent: {
6541     // Here we want to make sure that the intrinsic behaves as if it has a
6542     // specific calling convention, and only for x86_64.
6543     // FIXME: Support other platforms later.
6544     const auto &Triple = DAG.getTarget().getTargetTriple();
6545     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6546       return nullptr;
6547 
6548     SDLoc DL = getCurSDLoc();
6549     SmallVector<SDValue, 8> Ops;
6550 
6551     // We want to say that we always want the arguments in registers.
6552     // It's unclear to me how manipulating the selection DAG here forces callers
6553     // to provide arguments in registers instead of on the stack.
6554     SDValue LogTypeId = getValue(I.getArgOperand(0));
6555     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6556     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6557     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6558     SDValue Chain = getRoot();
6559     Ops.push_back(LogTypeId);
6560     Ops.push_back(LogEntryVal);
6561     Ops.push_back(StrSizeVal);
6562     Ops.push_back(Chain);
6563 
6564     // We need to enforce the calling convention for the callsite, so that
6565     // argument ordering is enforced correctly, and that register allocation can
6566     // see that some registers may be assumed clobbered and have to preserve
6567     // them across calls to the intrinsic.
6568     MachineSDNode *MN = DAG.getMachineNode(
6569         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6570     SDValue patchableNode = SDValue(MN, 0);
6571     DAG.setRoot(patchableNode);
6572     setValue(&I, patchableNode);
6573     return nullptr;
6574   }
6575   case Intrinsic::experimental_deoptimize:
6576     LowerDeoptimizeCall(&I);
6577     return nullptr;
6578 
6579   case Intrinsic::experimental_vector_reduce_fadd:
6580   case Intrinsic::experimental_vector_reduce_fmul:
6581   case Intrinsic::experimental_vector_reduce_add:
6582   case Intrinsic::experimental_vector_reduce_mul:
6583   case Intrinsic::experimental_vector_reduce_and:
6584   case Intrinsic::experimental_vector_reduce_or:
6585   case Intrinsic::experimental_vector_reduce_xor:
6586   case Intrinsic::experimental_vector_reduce_smax:
6587   case Intrinsic::experimental_vector_reduce_smin:
6588   case Intrinsic::experimental_vector_reduce_umax:
6589   case Intrinsic::experimental_vector_reduce_umin:
6590   case Intrinsic::experimental_vector_reduce_fmax:
6591   case Intrinsic::experimental_vector_reduce_fmin:
6592     visitVectorReduce(I, Intrinsic);
6593     return nullptr;
6594 
6595   case Intrinsic::icall_branch_funnel: {
6596     SmallVector<SDValue, 16> Ops;
6597     Ops.push_back(DAG.getRoot());
6598     Ops.push_back(getValue(I.getArgOperand(0)));
6599 
6600     int64_t Offset;
6601     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6602         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6603     if (!Base)
6604       report_fatal_error(
6605           "llvm.icall.branch.funnel operand must be a GlobalValue");
6606     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6607 
6608     struct BranchFunnelTarget {
6609       int64_t Offset;
6610       SDValue Target;
6611     };
6612     SmallVector<BranchFunnelTarget, 8> Targets;
6613 
6614     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6615       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6616           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6617       if (ElemBase != Base)
6618         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6619                            "to the same GlobalValue");
6620 
6621       SDValue Val = getValue(I.getArgOperand(Op + 1));
6622       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6623       if (!GA)
6624         report_fatal_error(
6625             "llvm.icall.branch.funnel operand must be a GlobalValue");
6626       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6627                                      GA->getGlobal(), getCurSDLoc(),
6628                                      Val.getValueType(), GA->getOffset())});
6629     }
6630     llvm::sort(Targets,
6631                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6632                  return T1.Offset < T2.Offset;
6633                });
6634 
6635     for (auto &T : Targets) {
6636       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6637       Ops.push_back(T.Target);
6638     }
6639 
6640     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6641                                  getCurSDLoc(), MVT::Other, Ops),
6642               0);
6643     DAG.setRoot(N);
6644     setValue(&I, N);
6645     HasTailCall = true;
6646     return nullptr;
6647   }
6648 
6649   case Intrinsic::wasm_landingpad_index:
6650     // Information this intrinsic contained has been transferred to
6651     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6652     // delete it now.
6653     return nullptr;
6654   }
6655 }
6656 
6657 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6658     const ConstrainedFPIntrinsic &FPI) {
6659   SDLoc sdl = getCurSDLoc();
6660   unsigned Opcode;
6661   switch (FPI.getIntrinsicID()) {
6662   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6663   case Intrinsic::experimental_constrained_fadd:
6664     Opcode = ISD::STRICT_FADD;
6665     break;
6666   case Intrinsic::experimental_constrained_fsub:
6667     Opcode = ISD::STRICT_FSUB;
6668     break;
6669   case Intrinsic::experimental_constrained_fmul:
6670     Opcode = ISD::STRICT_FMUL;
6671     break;
6672   case Intrinsic::experimental_constrained_fdiv:
6673     Opcode = ISD::STRICT_FDIV;
6674     break;
6675   case Intrinsic::experimental_constrained_frem:
6676     Opcode = ISD::STRICT_FREM;
6677     break;
6678   case Intrinsic::experimental_constrained_fma:
6679     Opcode = ISD::STRICT_FMA;
6680     break;
6681   case Intrinsic::experimental_constrained_sqrt:
6682     Opcode = ISD::STRICT_FSQRT;
6683     break;
6684   case Intrinsic::experimental_constrained_pow:
6685     Opcode = ISD::STRICT_FPOW;
6686     break;
6687   case Intrinsic::experimental_constrained_powi:
6688     Opcode = ISD::STRICT_FPOWI;
6689     break;
6690   case Intrinsic::experimental_constrained_sin:
6691     Opcode = ISD::STRICT_FSIN;
6692     break;
6693   case Intrinsic::experimental_constrained_cos:
6694     Opcode = ISD::STRICT_FCOS;
6695     break;
6696   case Intrinsic::experimental_constrained_exp:
6697     Opcode = ISD::STRICT_FEXP;
6698     break;
6699   case Intrinsic::experimental_constrained_exp2:
6700     Opcode = ISD::STRICT_FEXP2;
6701     break;
6702   case Intrinsic::experimental_constrained_log:
6703     Opcode = ISD::STRICT_FLOG;
6704     break;
6705   case Intrinsic::experimental_constrained_log10:
6706     Opcode = ISD::STRICT_FLOG10;
6707     break;
6708   case Intrinsic::experimental_constrained_log2:
6709     Opcode = ISD::STRICT_FLOG2;
6710     break;
6711   case Intrinsic::experimental_constrained_rint:
6712     Opcode = ISD::STRICT_FRINT;
6713     break;
6714   case Intrinsic::experimental_constrained_nearbyint:
6715     Opcode = ISD::STRICT_FNEARBYINT;
6716     break;
6717   case Intrinsic::experimental_constrained_maxnum:
6718     Opcode = ISD::STRICT_FMAXNUM;
6719     break;
6720   case Intrinsic::experimental_constrained_minnum:
6721     Opcode = ISD::STRICT_FMINNUM;
6722     break;
6723   case Intrinsic::experimental_constrained_ceil:
6724     Opcode = ISD::STRICT_FCEIL;
6725     break;
6726   case Intrinsic::experimental_constrained_floor:
6727     Opcode = ISD::STRICT_FFLOOR;
6728     break;
6729   case Intrinsic::experimental_constrained_round:
6730     Opcode = ISD::STRICT_FROUND;
6731     break;
6732   case Intrinsic::experimental_constrained_trunc:
6733     Opcode = ISD::STRICT_FTRUNC;
6734     break;
6735   }
6736   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6737   SDValue Chain = getRoot();
6738   SmallVector<EVT, 4> ValueVTs;
6739   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6740   ValueVTs.push_back(MVT::Other); // Out chain
6741 
6742   SDVTList VTs = DAG.getVTList(ValueVTs);
6743   SDValue Result;
6744   if (FPI.isUnaryOp())
6745     Result = DAG.getNode(Opcode, sdl, VTs,
6746                          { Chain, getValue(FPI.getArgOperand(0)) });
6747   else if (FPI.isTernaryOp())
6748     Result = DAG.getNode(Opcode, sdl, VTs,
6749                          { Chain, getValue(FPI.getArgOperand(0)),
6750                                   getValue(FPI.getArgOperand(1)),
6751                                   getValue(FPI.getArgOperand(2)) });
6752   else
6753     Result = DAG.getNode(Opcode, sdl, VTs,
6754                          { Chain, getValue(FPI.getArgOperand(0)),
6755                            getValue(FPI.getArgOperand(1))  });
6756 
6757   assert(Result.getNode()->getNumValues() == 2);
6758   SDValue OutChain = Result.getValue(1);
6759   DAG.setRoot(OutChain);
6760   SDValue FPResult = Result.getValue(0);
6761   setValue(&FPI, FPResult);
6762 }
6763 
6764 std::pair<SDValue, SDValue>
6765 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6766                                     const BasicBlock *EHPadBB) {
6767   MachineFunction &MF = DAG.getMachineFunction();
6768   MachineModuleInfo &MMI = MF.getMMI();
6769   MCSymbol *BeginLabel = nullptr;
6770 
6771   if (EHPadBB) {
6772     // Insert a label before the invoke call to mark the try range.  This can be
6773     // used to detect deletion of the invoke via the MachineModuleInfo.
6774     BeginLabel = MMI.getContext().createTempSymbol();
6775 
6776     // For SjLj, keep track of which landing pads go with which invokes
6777     // so as to maintain the ordering of pads in the LSDA.
6778     unsigned CallSiteIndex = MMI.getCurrentCallSite();
6779     if (CallSiteIndex) {
6780       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
6781       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
6782 
6783       // Now that the call site is handled, stop tracking it.
6784       MMI.setCurrentCallSite(0);
6785     }
6786 
6787     // Both PendingLoads and PendingExports must be flushed here;
6788     // this call might not return.
6789     (void)getRoot();
6790     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
6791 
6792     CLI.setChain(getRoot());
6793   }
6794   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6795   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6796 
6797   assert((CLI.IsTailCall || Result.second.getNode()) &&
6798          "Non-null chain expected with non-tail call!");
6799   assert((Result.second.getNode() || !Result.first.getNode()) &&
6800          "Null value expected with tail call!");
6801 
6802   if (!Result.second.getNode()) {
6803     // As a special case, a null chain means that a tail call has been emitted
6804     // and the DAG root is already updated.
6805     HasTailCall = true;
6806 
6807     // Since there's no actual continuation from this block, nothing can be
6808     // relying on us setting vregs for them.
6809     PendingExports.clear();
6810   } else {
6811     DAG.setRoot(Result.second);
6812   }
6813 
6814   if (EHPadBB) {
6815     // Insert a label at the end of the invoke call to mark the try range.  This
6816     // can be used to detect deletion of the invoke via the MachineModuleInfo.
6817     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
6818     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
6819 
6820     // Inform MachineModuleInfo of range.
6821     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
6822     // There is a platform (e.g. wasm) that uses funclet style IR but does not
6823     // actually use outlined funclets and their LSDA info style.
6824     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
6825       assert(CLI.CS);
6826       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
6827       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
6828                                 BeginLabel, EndLabel);
6829     } else if (!isScopedEHPersonality(Pers)) {
6830       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
6831     }
6832   }
6833 
6834   return Result;
6835 }
6836 
6837 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
6838                                       bool isTailCall,
6839                                       const BasicBlock *EHPadBB) {
6840   auto &DL = DAG.getDataLayout();
6841   FunctionType *FTy = CS.getFunctionType();
6842   Type *RetTy = CS.getType();
6843 
6844   TargetLowering::ArgListTy Args;
6845   Args.reserve(CS.arg_size());
6846 
6847   const Value *SwiftErrorVal = nullptr;
6848   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6849 
6850   // We can't tail call inside a function with a swifterror argument. Lowering
6851   // does not support this yet. It would have to move into the swifterror
6852   // register before the call.
6853   auto *Caller = CS.getInstruction()->getParent()->getParent();
6854   if (TLI.supportSwiftError() &&
6855       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
6856     isTailCall = false;
6857 
6858   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
6859        i != e; ++i) {
6860     TargetLowering::ArgListEntry Entry;
6861     const Value *V = *i;
6862 
6863     // Skip empty types
6864     if (V->getType()->isEmptyTy())
6865       continue;
6866 
6867     SDValue ArgNode = getValue(V);
6868     Entry.Node = ArgNode; Entry.Ty = V->getType();
6869 
6870     Entry.setAttributes(&CS, i - CS.arg_begin());
6871 
6872     // Use swifterror virtual register as input to the call.
6873     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
6874       SwiftErrorVal = V;
6875       // We find the virtual register for the actual swifterror argument.
6876       // Instead of using the Value, we use the virtual register instead.
6877       Entry.Node = DAG.getRegister(FuncInfo
6878                                        .getOrCreateSwiftErrorVRegUseAt(
6879                                            CS.getInstruction(), FuncInfo.MBB, V)
6880                                        .first,
6881                                    EVT(TLI.getPointerTy(DL)));
6882     }
6883 
6884     Args.push_back(Entry);
6885 
6886     // If we have an explicit sret argument that is an Instruction, (i.e., it
6887     // might point to function-local memory), we can't meaningfully tail-call.
6888     if (Entry.IsSRet && isa<Instruction>(V))
6889       isTailCall = false;
6890   }
6891 
6892   // Check if target-independent constraints permit a tail call here.
6893   // Target-dependent constraints are checked within TLI->LowerCallTo.
6894   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
6895     isTailCall = false;
6896 
6897   // Disable tail calls if there is an swifterror argument. Targets have not
6898   // been updated to support tail calls.
6899   if (TLI.supportSwiftError() && SwiftErrorVal)
6900     isTailCall = false;
6901 
6902   TargetLowering::CallLoweringInfo CLI(DAG);
6903   CLI.setDebugLoc(getCurSDLoc())
6904       .setChain(getRoot())
6905       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
6906       .setTailCall(isTailCall)
6907       .setConvergent(CS.isConvergent());
6908   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
6909 
6910   if (Result.first.getNode()) {
6911     const Instruction *Inst = CS.getInstruction();
6912     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
6913     setValue(Inst, Result.first);
6914   }
6915 
6916   // The last element of CLI.InVals has the SDValue for swifterror return.
6917   // Here we copy it to a virtual register and update SwiftErrorMap for
6918   // book-keeping.
6919   if (SwiftErrorVal && TLI.supportSwiftError()) {
6920     // Get the last element of InVals.
6921     SDValue Src = CLI.InVals.back();
6922     unsigned VReg; bool CreatedVReg;
6923     std::tie(VReg, CreatedVReg) =
6924         FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction());
6925     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
6926     // We update the virtual register for the actual swifterror argument.
6927     if (CreatedVReg)
6928       FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
6929     DAG.setRoot(CopyNode);
6930   }
6931 }
6932 
6933 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
6934                              SelectionDAGBuilder &Builder) {
6935   // Check to see if this load can be trivially constant folded, e.g. if the
6936   // input is from a string literal.
6937   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
6938     // Cast pointer to the type we really want to load.
6939     Type *LoadTy =
6940         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
6941     if (LoadVT.isVector())
6942       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
6943 
6944     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
6945                                          PointerType::getUnqual(LoadTy));
6946 
6947     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
6948             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
6949       return Builder.getValue(LoadCst);
6950   }
6951 
6952   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
6953   // still constant memory, the input chain can be the entry node.
6954   SDValue Root;
6955   bool ConstantMemory = false;
6956 
6957   // Do not serialize (non-volatile) loads of constant memory with anything.
6958   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
6959     Root = Builder.DAG.getEntryNode();
6960     ConstantMemory = true;
6961   } else {
6962     // Do not serialize non-volatile loads against each other.
6963     Root = Builder.DAG.getRoot();
6964   }
6965 
6966   SDValue Ptr = Builder.getValue(PtrVal);
6967   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
6968                                         Ptr, MachinePointerInfo(PtrVal),
6969                                         /* Alignment = */ 1);
6970 
6971   if (!ConstantMemory)
6972     Builder.PendingLoads.push_back(LoadVal.getValue(1));
6973   return LoadVal;
6974 }
6975 
6976 /// Record the value for an instruction that produces an integer result,
6977 /// converting the type where necessary.
6978 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
6979                                                   SDValue Value,
6980                                                   bool IsSigned) {
6981   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6982                                                     I.getType(), true);
6983   if (IsSigned)
6984     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
6985   else
6986     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
6987   setValue(&I, Value);
6988 }
6989 
6990 /// See if we can lower a memcmp call into an optimized form. If so, return
6991 /// true and lower it. Otherwise return false, and it will be lowered like a
6992 /// normal call.
6993 /// The caller already checked that \p I calls the appropriate LibFunc with a
6994 /// correct prototype.
6995 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
6996   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
6997   const Value *Size = I.getArgOperand(2);
6998   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
6999   if (CSize && CSize->getZExtValue() == 0) {
7000     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7001                                                           I.getType(), true);
7002     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7003     return true;
7004   }
7005 
7006   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7007   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7008       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7009       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7010   if (Res.first.getNode()) {
7011     processIntegerCallValue(I, Res.first, true);
7012     PendingLoads.push_back(Res.second);
7013     return true;
7014   }
7015 
7016   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7017   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7018   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7019     return false;
7020 
7021   // If the target has a fast compare for the given size, it will return a
7022   // preferred load type for that size. Require that the load VT is legal and
7023   // that the target supports unaligned loads of that type. Otherwise, return
7024   // INVALID.
7025   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7026     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7027     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7028     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7029       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7030       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7031       // TODO: Check alignment of src and dest ptrs.
7032       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7033       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7034       if (!TLI.isTypeLegal(LVT) ||
7035           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7036           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7037         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7038     }
7039 
7040     return LVT;
7041   };
7042 
7043   // This turns into unaligned loads. We only do this if the target natively
7044   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7045   // we'll only produce a small number of byte loads.
7046   MVT LoadVT;
7047   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7048   switch (NumBitsToCompare) {
7049   default:
7050     return false;
7051   case 16:
7052     LoadVT = MVT::i16;
7053     break;
7054   case 32:
7055     LoadVT = MVT::i32;
7056     break;
7057   case 64:
7058   case 128:
7059   case 256:
7060     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7061     break;
7062   }
7063 
7064   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7065     return false;
7066 
7067   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7068   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7069 
7070   // Bitcast to a wide integer type if the loads are vectors.
7071   if (LoadVT.isVector()) {
7072     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7073     LoadL = DAG.getBitcast(CmpVT, LoadL);
7074     LoadR = DAG.getBitcast(CmpVT, LoadR);
7075   }
7076 
7077   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7078   processIntegerCallValue(I, Cmp, false);
7079   return true;
7080 }
7081 
7082 /// See if we can lower a memchr call into an optimized form. If so, return
7083 /// true and lower it. Otherwise return false, and it will be lowered like a
7084 /// normal call.
7085 /// The caller already checked that \p I calls the appropriate LibFunc with a
7086 /// correct prototype.
7087 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7088   const Value *Src = I.getArgOperand(0);
7089   const Value *Char = I.getArgOperand(1);
7090   const Value *Length = I.getArgOperand(2);
7091 
7092   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7093   std::pair<SDValue, SDValue> Res =
7094     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7095                                 getValue(Src), getValue(Char), getValue(Length),
7096                                 MachinePointerInfo(Src));
7097   if (Res.first.getNode()) {
7098     setValue(&I, Res.first);
7099     PendingLoads.push_back(Res.second);
7100     return true;
7101   }
7102 
7103   return false;
7104 }
7105 
7106 /// See if we can lower a mempcpy call into an optimized form. If so, return
7107 /// true and lower it. Otherwise return false, and it will be lowered like a
7108 /// normal call.
7109 /// The caller already checked that \p I calls the appropriate LibFunc with a
7110 /// correct prototype.
7111 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7112   SDValue Dst = getValue(I.getArgOperand(0));
7113   SDValue Src = getValue(I.getArgOperand(1));
7114   SDValue Size = getValue(I.getArgOperand(2));
7115 
7116   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
7117   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
7118   unsigned Align = std::min(DstAlign, SrcAlign);
7119   if (Align == 0) // Alignment of one or both could not be inferred.
7120     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
7121 
7122   bool isVol = false;
7123   SDLoc sdl = getCurSDLoc();
7124 
7125   // In the mempcpy context we need to pass in a false value for isTailCall
7126   // because the return pointer needs to be adjusted by the size of
7127   // the copied memory.
7128   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
7129                              false, /*isTailCall=*/false,
7130                              MachinePointerInfo(I.getArgOperand(0)),
7131                              MachinePointerInfo(I.getArgOperand(1)));
7132   assert(MC.getNode() != nullptr &&
7133          "** memcpy should not be lowered as TailCall in mempcpy context **");
7134   DAG.setRoot(MC);
7135 
7136   // Check if Size needs to be truncated or extended.
7137   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7138 
7139   // Adjust return pointer to point just past the last dst byte.
7140   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7141                                     Dst, Size);
7142   setValue(&I, DstPlusSize);
7143   return true;
7144 }
7145 
7146 /// See if we can lower a strcpy call into an optimized form.  If so, return
7147 /// true and lower it, otherwise return false and it will be lowered like a
7148 /// normal call.
7149 /// The caller already checked that \p I calls the appropriate LibFunc with a
7150 /// correct prototype.
7151 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7152   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7153 
7154   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7155   std::pair<SDValue, SDValue> Res =
7156     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7157                                 getValue(Arg0), getValue(Arg1),
7158                                 MachinePointerInfo(Arg0),
7159                                 MachinePointerInfo(Arg1), isStpcpy);
7160   if (Res.first.getNode()) {
7161     setValue(&I, Res.first);
7162     DAG.setRoot(Res.second);
7163     return true;
7164   }
7165 
7166   return false;
7167 }
7168 
7169 /// See if we can lower a strcmp call into an optimized form.  If so, return
7170 /// true and lower it, otherwise return false and it will be lowered like a
7171 /// normal call.
7172 /// The caller already checked that \p I calls the appropriate LibFunc with a
7173 /// correct prototype.
7174 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7175   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7176 
7177   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7178   std::pair<SDValue, SDValue> Res =
7179     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7180                                 getValue(Arg0), getValue(Arg1),
7181                                 MachinePointerInfo(Arg0),
7182                                 MachinePointerInfo(Arg1));
7183   if (Res.first.getNode()) {
7184     processIntegerCallValue(I, Res.first, true);
7185     PendingLoads.push_back(Res.second);
7186     return true;
7187   }
7188 
7189   return false;
7190 }
7191 
7192 /// See if we can lower a strlen call into an optimized form.  If so, return
7193 /// true and lower it, otherwise return false and it will be lowered like a
7194 /// normal call.
7195 /// The caller already checked that \p I calls the appropriate LibFunc with a
7196 /// correct prototype.
7197 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7198   const Value *Arg0 = I.getArgOperand(0);
7199 
7200   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7201   std::pair<SDValue, SDValue> Res =
7202     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7203                                 getValue(Arg0), MachinePointerInfo(Arg0));
7204   if (Res.first.getNode()) {
7205     processIntegerCallValue(I, Res.first, false);
7206     PendingLoads.push_back(Res.second);
7207     return true;
7208   }
7209 
7210   return false;
7211 }
7212 
7213 /// See if we can lower a strnlen call into an optimized form.  If so, return
7214 /// true and lower it, otherwise return false and it will be lowered like a
7215 /// normal call.
7216 /// The caller already checked that \p I calls the appropriate LibFunc with a
7217 /// correct prototype.
7218 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7219   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7220 
7221   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7222   std::pair<SDValue, SDValue> Res =
7223     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7224                                  getValue(Arg0), getValue(Arg1),
7225                                  MachinePointerInfo(Arg0));
7226   if (Res.first.getNode()) {
7227     processIntegerCallValue(I, Res.first, false);
7228     PendingLoads.push_back(Res.second);
7229     return true;
7230   }
7231 
7232   return false;
7233 }
7234 
7235 /// See if we can lower a unary floating-point operation into an SDNode with
7236 /// the specified Opcode.  If so, return true and lower it, otherwise return
7237 /// false and it will be lowered like a normal call.
7238 /// The caller already checked that \p I calls the appropriate LibFunc with a
7239 /// correct prototype.
7240 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7241                                               unsigned Opcode) {
7242   // We already checked this call's prototype; verify it doesn't modify errno.
7243   if (!I.onlyReadsMemory())
7244     return false;
7245 
7246   SDValue Tmp = getValue(I.getArgOperand(0));
7247   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
7248   return true;
7249 }
7250 
7251 /// See if we can lower a binary floating-point operation into an SDNode with
7252 /// the specified Opcode. If so, return true and lower it. Otherwise return
7253 /// false, and it will be lowered like a normal call.
7254 /// The caller already checked that \p I calls the appropriate LibFunc with a
7255 /// correct prototype.
7256 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7257                                                unsigned Opcode) {
7258   // We already checked this call's prototype; verify it doesn't modify errno.
7259   if (!I.onlyReadsMemory())
7260     return false;
7261 
7262   SDValue Tmp0 = getValue(I.getArgOperand(0));
7263   SDValue Tmp1 = getValue(I.getArgOperand(1));
7264   EVT VT = Tmp0.getValueType();
7265   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
7266   return true;
7267 }
7268 
7269 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7270   // Handle inline assembly differently.
7271   if (isa<InlineAsm>(I.getCalledValue())) {
7272     visitInlineAsm(&I);
7273     return;
7274   }
7275 
7276   const char *RenameFn = nullptr;
7277   if (Function *F = I.getCalledFunction()) {
7278     if (F->isDeclaration()) {
7279       // Is this an LLVM intrinsic or a target-specific intrinsic?
7280       unsigned IID = F->getIntrinsicID();
7281       if (!IID)
7282         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7283           IID = II->getIntrinsicID(F);
7284 
7285       if (IID) {
7286         RenameFn = visitIntrinsicCall(I, IID);
7287         if (!RenameFn)
7288           return;
7289       }
7290     }
7291 
7292     // Check for well-known libc/libm calls.  If the function is internal, it
7293     // can't be a library call.  Don't do the check if marked as nobuiltin for
7294     // some reason or the call site requires strict floating point semantics.
7295     LibFunc Func;
7296     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7297         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7298         LibInfo->hasOptimizedCodeGen(Func)) {
7299       switch (Func) {
7300       default: break;
7301       case LibFunc_copysign:
7302       case LibFunc_copysignf:
7303       case LibFunc_copysignl:
7304         // We already checked this call's prototype; verify it doesn't modify
7305         // errno.
7306         if (I.onlyReadsMemory()) {
7307           SDValue LHS = getValue(I.getArgOperand(0));
7308           SDValue RHS = getValue(I.getArgOperand(1));
7309           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7310                                    LHS.getValueType(), LHS, RHS));
7311           return;
7312         }
7313         break;
7314       case LibFunc_fabs:
7315       case LibFunc_fabsf:
7316       case LibFunc_fabsl:
7317         if (visitUnaryFloatCall(I, ISD::FABS))
7318           return;
7319         break;
7320       case LibFunc_fmin:
7321       case LibFunc_fminf:
7322       case LibFunc_fminl:
7323         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7324           return;
7325         break;
7326       case LibFunc_fmax:
7327       case LibFunc_fmaxf:
7328       case LibFunc_fmaxl:
7329         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7330           return;
7331         break;
7332       case LibFunc_sin:
7333       case LibFunc_sinf:
7334       case LibFunc_sinl:
7335         if (visitUnaryFloatCall(I, ISD::FSIN))
7336           return;
7337         break;
7338       case LibFunc_cos:
7339       case LibFunc_cosf:
7340       case LibFunc_cosl:
7341         if (visitUnaryFloatCall(I, ISD::FCOS))
7342           return;
7343         break;
7344       case LibFunc_sqrt:
7345       case LibFunc_sqrtf:
7346       case LibFunc_sqrtl:
7347       case LibFunc_sqrt_finite:
7348       case LibFunc_sqrtf_finite:
7349       case LibFunc_sqrtl_finite:
7350         if (visitUnaryFloatCall(I, ISD::FSQRT))
7351           return;
7352         break;
7353       case LibFunc_floor:
7354       case LibFunc_floorf:
7355       case LibFunc_floorl:
7356         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7357           return;
7358         break;
7359       case LibFunc_nearbyint:
7360       case LibFunc_nearbyintf:
7361       case LibFunc_nearbyintl:
7362         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7363           return;
7364         break;
7365       case LibFunc_ceil:
7366       case LibFunc_ceilf:
7367       case LibFunc_ceill:
7368         if (visitUnaryFloatCall(I, ISD::FCEIL))
7369           return;
7370         break;
7371       case LibFunc_rint:
7372       case LibFunc_rintf:
7373       case LibFunc_rintl:
7374         if (visitUnaryFloatCall(I, ISD::FRINT))
7375           return;
7376         break;
7377       case LibFunc_round:
7378       case LibFunc_roundf:
7379       case LibFunc_roundl:
7380         if (visitUnaryFloatCall(I, ISD::FROUND))
7381           return;
7382         break;
7383       case LibFunc_trunc:
7384       case LibFunc_truncf:
7385       case LibFunc_truncl:
7386         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7387           return;
7388         break;
7389       case LibFunc_log2:
7390       case LibFunc_log2f:
7391       case LibFunc_log2l:
7392         if (visitUnaryFloatCall(I, ISD::FLOG2))
7393           return;
7394         break;
7395       case LibFunc_exp2:
7396       case LibFunc_exp2f:
7397       case LibFunc_exp2l:
7398         if (visitUnaryFloatCall(I, ISD::FEXP2))
7399           return;
7400         break;
7401       case LibFunc_memcmp:
7402         if (visitMemCmpCall(I))
7403           return;
7404         break;
7405       case LibFunc_mempcpy:
7406         if (visitMemPCpyCall(I))
7407           return;
7408         break;
7409       case LibFunc_memchr:
7410         if (visitMemChrCall(I))
7411           return;
7412         break;
7413       case LibFunc_strcpy:
7414         if (visitStrCpyCall(I, false))
7415           return;
7416         break;
7417       case LibFunc_stpcpy:
7418         if (visitStrCpyCall(I, true))
7419           return;
7420         break;
7421       case LibFunc_strcmp:
7422         if (visitStrCmpCall(I))
7423           return;
7424         break;
7425       case LibFunc_strlen:
7426         if (visitStrLenCall(I))
7427           return;
7428         break;
7429       case LibFunc_strnlen:
7430         if (visitStrNLenCall(I))
7431           return;
7432         break;
7433       }
7434     }
7435   }
7436 
7437   SDValue Callee;
7438   if (!RenameFn)
7439     Callee = getValue(I.getCalledValue());
7440   else
7441     Callee = DAG.getExternalSymbol(
7442         RenameFn,
7443         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
7444 
7445   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7446   // have to do anything here to lower funclet bundles.
7447   assert(!I.hasOperandBundlesOtherThan(
7448              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
7449          "Cannot lower calls with arbitrary operand bundles!");
7450 
7451   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7452     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7453   else
7454     // Check if we can potentially perform a tail call. More detailed checking
7455     // is be done within LowerCallTo, after more information about the call is
7456     // known.
7457     LowerCallTo(&I, Callee, I.isTailCall());
7458 }
7459 
7460 namespace {
7461 
7462 /// AsmOperandInfo - This contains information for each constraint that we are
7463 /// lowering.
7464 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7465 public:
7466   /// CallOperand - If this is the result output operand or a clobber
7467   /// this is null, otherwise it is the incoming operand to the CallInst.
7468   /// This gets modified as the asm is processed.
7469   SDValue CallOperand;
7470 
7471   /// AssignedRegs - If this is a register or register class operand, this
7472   /// contains the set of register corresponding to the operand.
7473   RegsForValue AssignedRegs;
7474 
7475   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7476     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7477   }
7478 
7479   /// Whether or not this operand accesses memory
7480   bool hasMemory(const TargetLowering &TLI) const {
7481     // Indirect operand accesses access memory.
7482     if (isIndirect)
7483       return true;
7484 
7485     for (const auto &Code : Codes)
7486       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7487         return true;
7488 
7489     return false;
7490   }
7491 
7492   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7493   /// corresponds to.  If there is no Value* for this operand, it returns
7494   /// MVT::Other.
7495   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7496                            const DataLayout &DL) const {
7497     if (!CallOperandVal) return MVT::Other;
7498 
7499     if (isa<BasicBlock>(CallOperandVal))
7500       return TLI.getPointerTy(DL);
7501 
7502     llvm::Type *OpTy = CallOperandVal->getType();
7503 
7504     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7505     // If this is an indirect operand, the operand is a pointer to the
7506     // accessed type.
7507     if (isIndirect) {
7508       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7509       if (!PtrTy)
7510         report_fatal_error("Indirect operand for inline asm not a pointer!");
7511       OpTy = PtrTy->getElementType();
7512     }
7513 
7514     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7515     if (StructType *STy = dyn_cast<StructType>(OpTy))
7516       if (STy->getNumElements() == 1)
7517         OpTy = STy->getElementType(0);
7518 
7519     // If OpTy is not a single value, it may be a struct/union that we
7520     // can tile with integers.
7521     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7522       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7523       switch (BitSize) {
7524       default: break;
7525       case 1:
7526       case 8:
7527       case 16:
7528       case 32:
7529       case 64:
7530       case 128:
7531         OpTy = IntegerType::get(Context, BitSize);
7532         break;
7533       }
7534     }
7535 
7536     return TLI.getValueType(DL, OpTy, true);
7537   }
7538 };
7539 
7540 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7541 
7542 } // end anonymous namespace
7543 
7544 /// Make sure that the output operand \p OpInfo and its corresponding input
7545 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7546 /// out).
7547 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7548                                SDISelAsmOperandInfo &MatchingOpInfo,
7549                                SelectionDAG &DAG) {
7550   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7551     return;
7552 
7553   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7554   const auto &TLI = DAG.getTargetLoweringInfo();
7555 
7556   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7557       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7558                                        OpInfo.ConstraintVT);
7559   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7560       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7561                                        MatchingOpInfo.ConstraintVT);
7562   if ((OpInfo.ConstraintVT.isInteger() !=
7563        MatchingOpInfo.ConstraintVT.isInteger()) ||
7564       (MatchRC.second != InputRC.second)) {
7565     // FIXME: error out in a more elegant fashion
7566     report_fatal_error("Unsupported asm: input constraint"
7567                        " with a matching output constraint of"
7568                        " incompatible type!");
7569   }
7570   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7571 }
7572 
7573 /// Get a direct memory input to behave well as an indirect operand.
7574 /// This may introduce stores, hence the need for a \p Chain.
7575 /// \return The (possibly updated) chain.
7576 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7577                                         SDISelAsmOperandInfo &OpInfo,
7578                                         SelectionDAG &DAG) {
7579   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7580 
7581   // If we don't have an indirect input, put it in the constpool if we can,
7582   // otherwise spill it to a stack slot.
7583   // TODO: This isn't quite right. We need to handle these according to
7584   // the addressing mode that the constraint wants. Also, this may take
7585   // an additional register for the computation and we don't want that
7586   // either.
7587 
7588   // If the operand is a float, integer, or vector constant, spill to a
7589   // constant pool entry to get its address.
7590   const Value *OpVal = OpInfo.CallOperandVal;
7591   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7592       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7593     OpInfo.CallOperand = DAG.getConstantPool(
7594         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7595     return Chain;
7596   }
7597 
7598   // Otherwise, create a stack slot and emit a store to it before the asm.
7599   Type *Ty = OpVal->getType();
7600   auto &DL = DAG.getDataLayout();
7601   uint64_t TySize = DL.getTypeAllocSize(Ty);
7602   unsigned Align = DL.getPrefTypeAlignment(Ty);
7603   MachineFunction &MF = DAG.getMachineFunction();
7604   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7605   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7606   Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7607                        MachinePointerInfo::getFixedStack(MF, SSFI));
7608   OpInfo.CallOperand = StackSlot;
7609 
7610   return Chain;
7611 }
7612 
7613 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7614 /// specified operand.  We prefer to assign virtual registers, to allow the
7615 /// register allocator to handle the assignment process.  However, if the asm
7616 /// uses features that we can't model on machineinstrs, we have SDISel do the
7617 /// allocation.  This produces generally horrible, but correct, code.
7618 ///
7619 ///   OpInfo describes the operand
7620 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7621 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7622                                  SDISelAsmOperandInfo &OpInfo,
7623                                  SDISelAsmOperandInfo &RefOpInfo) {
7624   LLVMContext &Context = *DAG.getContext();
7625   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7626 
7627   MachineFunction &MF = DAG.getMachineFunction();
7628   SmallVector<unsigned, 4> Regs;
7629   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7630 
7631   // No work to do for memory operations.
7632   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7633     return;
7634 
7635   // If this is a constraint for a single physreg, or a constraint for a
7636   // register class, find it.
7637   unsigned AssignedReg;
7638   const TargetRegisterClass *RC;
7639   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7640       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7641   // RC is unset only on failure. Return immediately.
7642   if (!RC)
7643     return;
7644 
7645   // Get the actual register value type.  This is important, because the user
7646   // may have asked for (e.g.) the AX register in i32 type.  We need to
7647   // remember that AX is actually i16 to get the right extension.
7648   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7649 
7650   if (OpInfo.ConstraintVT != MVT::Other) {
7651     // If this is an FP operand in an integer register (or visa versa), or more
7652     // generally if the operand value disagrees with the register class we plan
7653     // to stick it in, fix the operand type.
7654     //
7655     // If this is an input value, the bitcast to the new type is done now.
7656     // Bitcast for output value is done at the end of visitInlineAsm().
7657     if ((OpInfo.Type == InlineAsm::isOutput ||
7658          OpInfo.Type == InlineAsm::isInput) &&
7659         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7660       // Try to convert to the first EVT that the reg class contains.  If the
7661       // types are identical size, use a bitcast to convert (e.g. two differing
7662       // vector types).  Note: output bitcast is done at the end of
7663       // visitInlineAsm().
7664       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7665         // Exclude indirect inputs while they are unsupported because the code
7666         // to perform the load is missing and thus OpInfo.CallOperand still
7667         // refers to the input address rather than the pointed-to value.
7668         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7669           OpInfo.CallOperand =
7670               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7671         OpInfo.ConstraintVT = RegVT;
7672         // If the operand is an FP value and we want it in integer registers,
7673         // use the corresponding integer type. This turns an f64 value into
7674         // i64, which can be passed with two i32 values on a 32-bit machine.
7675       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7676         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7677         if (OpInfo.Type == InlineAsm::isInput)
7678           OpInfo.CallOperand =
7679               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
7680         OpInfo.ConstraintVT = VT;
7681       }
7682     }
7683   }
7684 
7685   // No need to allocate a matching input constraint since the constraint it's
7686   // matching to has already been allocated.
7687   if (OpInfo.isMatchingInputConstraint())
7688     return;
7689 
7690   EVT ValueVT = OpInfo.ConstraintVT;
7691   if (OpInfo.ConstraintVT == MVT::Other)
7692     ValueVT = RegVT;
7693 
7694   // Initialize NumRegs.
7695   unsigned NumRegs = 1;
7696   if (OpInfo.ConstraintVT != MVT::Other)
7697     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7698 
7699   // If this is a constraint for a specific physical register, like {r17},
7700   // assign it now.
7701 
7702   // If this associated to a specific register, initialize iterator to correct
7703   // place. If virtual, make sure we have enough registers
7704 
7705   // Initialize iterator if necessary
7706   TargetRegisterClass::iterator I = RC->begin();
7707   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7708 
7709   // Do not check for single registers.
7710   if (AssignedReg) {
7711       for (; *I != AssignedReg; ++I)
7712         assert(I != RC->end() && "AssignedReg should be member of RC");
7713   }
7714 
7715   for (; NumRegs; --NumRegs, ++I) {
7716     assert(I != RC->end() && "Ran out of registers to allocate!");
7717     auto R = (AssignedReg) ? *I : RegInfo.createVirtualRegister(RC);
7718     Regs.push_back(R);
7719   }
7720 
7721   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7722 }
7723 
7724 static unsigned
7725 findMatchingInlineAsmOperand(unsigned OperandNo,
7726                              const std::vector<SDValue> &AsmNodeOperands) {
7727   // Scan until we find the definition we already emitted of this operand.
7728   unsigned CurOp = InlineAsm::Op_FirstOperand;
7729   for (; OperandNo; --OperandNo) {
7730     // Advance to the next operand.
7731     unsigned OpFlag =
7732         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7733     assert((InlineAsm::isRegDefKind(OpFlag) ||
7734             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7735             InlineAsm::isMemKind(OpFlag)) &&
7736            "Skipped past definitions?");
7737     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7738   }
7739   return CurOp;
7740 }
7741 
7742 namespace {
7743 
7744 class ExtraFlags {
7745   unsigned Flags = 0;
7746 
7747 public:
7748   explicit ExtraFlags(ImmutableCallSite CS) {
7749     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7750     if (IA->hasSideEffects())
7751       Flags |= InlineAsm::Extra_HasSideEffects;
7752     if (IA->isAlignStack())
7753       Flags |= InlineAsm::Extra_IsAlignStack;
7754     if (CS.isConvergent())
7755       Flags |= InlineAsm::Extra_IsConvergent;
7756     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7757   }
7758 
7759   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7760     // Ideally, we would only check against memory constraints.  However, the
7761     // meaning of an Other constraint can be target-specific and we can't easily
7762     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
7763     // for Other constraints as well.
7764     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7765         OpInfo.ConstraintType == TargetLowering::C_Other) {
7766       if (OpInfo.Type == InlineAsm::isInput)
7767         Flags |= InlineAsm::Extra_MayLoad;
7768       else if (OpInfo.Type == InlineAsm::isOutput)
7769         Flags |= InlineAsm::Extra_MayStore;
7770       else if (OpInfo.Type == InlineAsm::isClobber)
7771         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
7772     }
7773   }
7774 
7775   unsigned get() const { return Flags; }
7776 };
7777 
7778 } // end anonymous namespace
7779 
7780 /// visitInlineAsm - Handle a call to an InlineAsm object.
7781 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
7782   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7783 
7784   /// ConstraintOperands - Information about all of the constraints.
7785   SDISelAsmOperandInfoVector ConstraintOperands;
7786 
7787   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7788   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
7789       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
7790 
7791   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
7792   // AsmDialect, MayLoad, MayStore).
7793   bool HasSideEffect = IA->hasSideEffects();
7794   ExtraFlags ExtraInfo(CS);
7795 
7796   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
7797   unsigned ResNo = 0;   // ResNo - The result number of the next output.
7798   for (auto &T : TargetConstraints) {
7799     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
7800     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
7801 
7802     // Compute the value type for each operand.
7803     if (OpInfo.Type == InlineAsm::isInput ||
7804         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
7805       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
7806 
7807       // Process the call argument. BasicBlocks are labels, currently appearing
7808       // only in asm's.
7809       const Instruction *I = CS.getInstruction();
7810       if (isa<CallBrInst>(I) &&
7811           (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() -
7812                           cast<CallBrInst>(I)->getNumIndirectDests())) {
7813         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
7814         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
7815         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
7816       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
7817         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
7818       } else {
7819         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
7820       }
7821 
7822       OpInfo.ConstraintVT =
7823           OpInfo
7824               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
7825               .getSimpleVT();
7826     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
7827       // The return value of the call is this value.  As such, there is no
7828       // corresponding argument.
7829       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7830       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
7831         OpInfo.ConstraintVT = TLI.getSimpleValueType(
7832             DAG.getDataLayout(), STy->getElementType(ResNo));
7833       } else {
7834         assert(ResNo == 0 && "Asm only has one result!");
7835         OpInfo.ConstraintVT =
7836             TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
7837       }
7838       ++ResNo;
7839     } else {
7840       OpInfo.ConstraintVT = MVT::Other;
7841     }
7842 
7843     if (!HasSideEffect)
7844       HasSideEffect = OpInfo.hasMemory(TLI);
7845 
7846     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
7847     // FIXME: Could we compute this on OpInfo rather than T?
7848 
7849     // Compute the constraint code and ConstraintType to use.
7850     TLI.ComputeConstraintToUse(T, SDValue());
7851 
7852     ExtraInfo.update(T);
7853   }
7854 
7855   // We won't need to flush pending loads if this asm doesn't touch
7856   // memory and is nonvolatile.
7857   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
7858 
7859   // Second pass over the constraints: compute which constraint option to use.
7860   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
7861     // If this is an output operand with a matching input operand, look up the
7862     // matching input. If their types mismatch, e.g. one is an integer, the
7863     // other is floating point, or their sizes are different, flag it as an
7864     // error.
7865     if (OpInfo.hasMatchingInput()) {
7866       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
7867       patchMatchingInput(OpInfo, Input, DAG);
7868     }
7869 
7870     // Compute the constraint code and ConstraintType to use.
7871     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
7872 
7873     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7874         OpInfo.Type == InlineAsm::isClobber)
7875       continue;
7876 
7877     // If this is a memory input, and if the operand is not indirect, do what we
7878     // need to provide an address for the memory input.
7879     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7880         !OpInfo.isIndirect) {
7881       assert((OpInfo.isMultipleAlternative ||
7882               (OpInfo.Type == InlineAsm::isInput)) &&
7883              "Can only indirectify direct input operands!");
7884 
7885       // Memory operands really want the address of the value.
7886       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
7887 
7888       // There is no longer a Value* corresponding to this operand.
7889       OpInfo.CallOperandVal = nullptr;
7890 
7891       // It is now an indirect operand.
7892       OpInfo.isIndirect = true;
7893     }
7894 
7895   }
7896 
7897   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
7898   std::vector<SDValue> AsmNodeOperands;
7899   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
7900   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
7901       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
7902 
7903   // If we have a !srcloc metadata node associated with it, we want to attach
7904   // this to the ultimately generated inline asm machineinstr.  To do this, we
7905   // pass in the third operand as this (potentially null) inline asm MDNode.
7906   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
7907   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
7908 
7909   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7910   // bits as operand 3.
7911   AsmNodeOperands.push_back(DAG.getTargetConstant(
7912       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7913 
7914   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
7915   // this, assign virtual and physical registers for inputs and otput.
7916   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
7917     // Assign Registers.
7918     SDISelAsmOperandInfo &RefOpInfo =
7919         OpInfo.isMatchingInputConstraint()
7920             ? ConstraintOperands[OpInfo.getMatchedOperand()]
7921             : OpInfo;
7922     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
7923 
7924     switch (OpInfo.Type) {
7925     case InlineAsm::isOutput:
7926       if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7927           (OpInfo.ConstraintType == TargetLowering::C_Other &&
7928            OpInfo.isIndirect)) {
7929         unsigned ConstraintID =
7930             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7931         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7932                "Failed to convert memory constraint code to constraint id.");
7933 
7934         // Add information to the INLINEASM node to know about this output.
7935         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7936         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
7937         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
7938                                                         MVT::i32));
7939         AsmNodeOperands.push_back(OpInfo.CallOperand);
7940         break;
7941       } else if ((OpInfo.ConstraintType == TargetLowering::C_Other &&
7942                   !OpInfo.isIndirect) ||
7943                  OpInfo.ConstraintType == TargetLowering::C_Register ||
7944                  OpInfo.ConstraintType == TargetLowering::C_RegisterClass) {
7945         // Otherwise, this outputs to a register (directly for C_Register /
7946         // C_RegisterClass, and a target-defined fashion for C_Other). Find a
7947         // register that we can use.
7948         if (OpInfo.AssignedRegs.Regs.empty()) {
7949           emitInlineAsmError(
7950               CS, "couldn't allocate output register for constraint '" +
7951                       Twine(OpInfo.ConstraintCode) + "'");
7952           return;
7953         }
7954 
7955         // Add information to the INLINEASM node to know that this register is
7956         // set.
7957         OpInfo.AssignedRegs.AddInlineAsmOperands(
7958             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
7959                                   : InlineAsm::Kind_RegDef,
7960             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
7961       }
7962       break;
7963 
7964     case InlineAsm::isInput: {
7965       SDValue InOperandVal = OpInfo.CallOperand;
7966 
7967       if (OpInfo.isMatchingInputConstraint()) {
7968         // If this is required to match an output register we have already set,
7969         // just use its register.
7970         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
7971                                                   AsmNodeOperands);
7972         unsigned OpFlag =
7973           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7974         if (InlineAsm::isRegDefKind(OpFlag) ||
7975             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
7976           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
7977           if (OpInfo.isIndirect) {
7978             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
7979             emitInlineAsmError(CS, "inline asm not supported yet:"
7980                                    " don't know how to handle tied "
7981                                    "indirect register inputs");
7982             return;
7983           }
7984 
7985           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
7986           SmallVector<unsigned, 4> Regs;
7987 
7988           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
7989             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
7990             MachineRegisterInfo &RegInfo =
7991                 DAG.getMachineFunction().getRegInfo();
7992             for (unsigned i = 0; i != NumRegs; ++i)
7993               Regs.push_back(RegInfo.createVirtualRegister(RC));
7994           } else {
7995             emitInlineAsmError(CS, "inline asm error: This value type register "
7996                                    "class is not natively supported!");
7997             return;
7998           }
7999 
8000           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8001 
8002           SDLoc dl = getCurSDLoc();
8003           // Use the produced MatchedRegs object to
8004           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8005                                     CS.getInstruction());
8006           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8007                                            true, OpInfo.getMatchedOperand(), dl,
8008                                            DAG, AsmNodeOperands);
8009           break;
8010         }
8011 
8012         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8013         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8014                "Unexpected number of operands");
8015         // Add information to the INLINEASM node to know about this input.
8016         // See InlineAsm.h isUseOperandTiedToDef.
8017         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8018         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8019                                                     OpInfo.getMatchedOperand());
8020         AsmNodeOperands.push_back(DAG.getTargetConstant(
8021             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8022         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8023         break;
8024       }
8025 
8026       // Treat indirect 'X' constraint as memory.
8027       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8028           OpInfo.isIndirect)
8029         OpInfo.ConstraintType = TargetLowering::C_Memory;
8030 
8031       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
8032         std::vector<SDValue> Ops;
8033         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8034                                           Ops, DAG);
8035         if (Ops.empty()) {
8036           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
8037                                      Twine(OpInfo.ConstraintCode) + "'");
8038           return;
8039         }
8040 
8041         // Add information to the INLINEASM node to know about this input.
8042         unsigned ResOpType =
8043           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8044         AsmNodeOperands.push_back(DAG.getTargetConstant(
8045             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8046         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8047         break;
8048       }
8049 
8050       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8051         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8052         assert(InOperandVal.getValueType() ==
8053                    TLI.getPointerTy(DAG.getDataLayout()) &&
8054                "Memory operands expect pointer values");
8055 
8056         unsigned ConstraintID =
8057             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8058         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8059                "Failed to convert memory constraint code to constraint id.");
8060 
8061         // Add information to the INLINEASM node to know about this input.
8062         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8063         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8064         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8065                                                         getCurSDLoc(),
8066                                                         MVT::i32));
8067         AsmNodeOperands.push_back(InOperandVal);
8068         break;
8069       }
8070 
8071       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8072               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8073              "Unknown constraint type!");
8074 
8075       // TODO: Support this.
8076       if (OpInfo.isIndirect) {
8077         emitInlineAsmError(
8078             CS, "Don't know how to handle indirect register inputs yet "
8079                 "for constraint '" +
8080                     Twine(OpInfo.ConstraintCode) + "'");
8081         return;
8082       }
8083 
8084       // Copy the input into the appropriate registers.
8085       if (OpInfo.AssignedRegs.Regs.empty()) {
8086         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
8087                                    Twine(OpInfo.ConstraintCode) + "'");
8088         return;
8089       }
8090 
8091       SDLoc dl = getCurSDLoc();
8092 
8093       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
8094                                         Chain, &Flag, CS.getInstruction());
8095 
8096       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8097                                                dl, DAG, AsmNodeOperands);
8098       break;
8099     }
8100     case InlineAsm::isClobber:
8101       // Add the clobbered value to the operand list, so that the register
8102       // allocator is aware that the physreg got clobbered.
8103       if (!OpInfo.AssignedRegs.Regs.empty())
8104         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8105                                                  false, 0, getCurSDLoc(), DAG,
8106                                                  AsmNodeOperands);
8107       break;
8108     }
8109   }
8110 
8111   // Finish up input operands.  Set the input chain and add the flag last.
8112   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8113   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8114 
8115   unsigned ISDOpc = isa<CallBrInst>(CS.getInstruction()) ? ISD::INLINEASM_BR : ISD::INLINEASM;
8116   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8117                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8118   Flag = Chain.getValue(1);
8119 
8120   // Do additional work to generate outputs.
8121 
8122   SmallVector<EVT, 1> ResultVTs;
8123   SmallVector<SDValue, 1> ResultValues;
8124   SmallVector<SDValue, 8> OutChains;
8125 
8126   llvm::Type *CSResultType = CS.getType();
8127   ArrayRef<Type *> ResultTypes;
8128   if (StructType *StructResult = dyn_cast<StructType>(CSResultType))
8129     ResultTypes = StructResult->elements();
8130   else if (!CSResultType->isVoidTy())
8131     ResultTypes = makeArrayRef(CSResultType);
8132 
8133   auto CurResultType = ResultTypes.begin();
8134   auto handleRegAssign = [&](SDValue V) {
8135     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8136     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8137     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8138     ++CurResultType;
8139     // If the type of the inline asm call site return value is different but has
8140     // same size as the type of the asm output bitcast it.  One example of this
8141     // is for vectors with different width / number of elements.  This can
8142     // happen for register classes that can contain multiple different value
8143     // types.  The preg or vreg allocated may not have the same VT as was
8144     // expected.
8145     //
8146     // This can also happen for a return value that disagrees with the register
8147     // class it is put in, eg. a double in a general-purpose register on a
8148     // 32-bit machine.
8149     if (ResultVT != V.getValueType() &&
8150         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8151       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8152     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8153              V.getValueType().isInteger()) {
8154       // If a result value was tied to an input value, the computed result
8155       // may have a wider width than the expected result.  Extract the
8156       // relevant portion.
8157       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8158     }
8159     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8160     ResultVTs.push_back(ResultVT);
8161     ResultValues.push_back(V);
8162   };
8163 
8164   // Deal with output operands.
8165   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8166     if (OpInfo.Type == InlineAsm::isOutput) {
8167       SDValue Val;
8168       // Skip trivial output operands.
8169       if (OpInfo.AssignedRegs.Regs.empty())
8170         continue;
8171 
8172       switch (OpInfo.ConstraintType) {
8173       case TargetLowering::C_Register:
8174       case TargetLowering::C_RegisterClass:
8175         Val = OpInfo.AssignedRegs.getCopyFromRegs(
8176             DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction());
8177         break;
8178       case TargetLowering::C_Other:
8179         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8180                                               OpInfo, DAG);
8181         break;
8182       case TargetLowering::C_Memory:
8183         break; // Already handled.
8184       case TargetLowering::C_Unknown:
8185         assert(false && "Unexpected unknown constraint");
8186       }
8187 
8188       // Indirect output manifest as stores. Record output chains.
8189       if (OpInfo.isIndirect) {
8190         const Value *Ptr = OpInfo.CallOperandVal;
8191         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8192         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8193                                      MachinePointerInfo(Ptr));
8194         OutChains.push_back(Store);
8195       } else {
8196         // generate CopyFromRegs to associated registers.
8197         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8198         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8199           for (const SDValue &V : Val->op_values())
8200             handleRegAssign(V);
8201         } else
8202           handleRegAssign(Val);
8203       }
8204     }
8205   }
8206 
8207   // Set results.
8208   if (!ResultValues.empty()) {
8209     assert(CurResultType == ResultTypes.end() &&
8210            "Mismatch in number of ResultTypes");
8211     assert(ResultValues.size() == ResultTypes.size() &&
8212            "Mismatch in number of output operands in asm result");
8213 
8214     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8215                             DAG.getVTList(ResultVTs), ResultValues);
8216     setValue(CS.getInstruction(), V);
8217   }
8218 
8219   // Collect store chains.
8220   if (!OutChains.empty())
8221     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8222 
8223   // Only Update Root if inline assembly has a memory effect.
8224   if (ResultValues.empty() || HasSideEffect || !OutChains.empty())
8225     DAG.setRoot(Chain);
8226 }
8227 
8228 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
8229                                              const Twine &Message) {
8230   LLVMContext &Ctx = *DAG.getContext();
8231   Ctx.emitError(CS.getInstruction(), Message);
8232 
8233   // Make sure we leave the DAG in a valid state
8234   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8235   SmallVector<EVT, 1> ValueVTs;
8236   ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8237 
8238   if (ValueVTs.empty())
8239     return;
8240 
8241   SmallVector<SDValue, 1> Ops;
8242   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8243     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8244 
8245   setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
8246 }
8247 
8248 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8249   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8250                           MVT::Other, getRoot(),
8251                           getValue(I.getArgOperand(0)),
8252                           DAG.getSrcValue(I.getArgOperand(0))));
8253 }
8254 
8255 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8256   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8257   const DataLayout &DL = DAG.getDataLayout();
8258   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
8259                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
8260                            DAG.getSrcValue(I.getOperand(0)),
8261                            DL.getABITypeAlignment(I.getType()));
8262   setValue(&I, V);
8263   DAG.setRoot(V.getValue(1));
8264 }
8265 
8266 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8267   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8268                           MVT::Other, getRoot(),
8269                           getValue(I.getArgOperand(0)),
8270                           DAG.getSrcValue(I.getArgOperand(0))));
8271 }
8272 
8273 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8274   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8275                           MVT::Other, getRoot(),
8276                           getValue(I.getArgOperand(0)),
8277                           getValue(I.getArgOperand(1)),
8278                           DAG.getSrcValue(I.getArgOperand(0)),
8279                           DAG.getSrcValue(I.getArgOperand(1))));
8280 }
8281 
8282 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8283                                                     const Instruction &I,
8284                                                     SDValue Op) {
8285   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8286   if (!Range)
8287     return Op;
8288 
8289   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8290   if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet())
8291     return Op;
8292 
8293   APInt Lo = CR.getUnsignedMin();
8294   if (!Lo.isMinValue())
8295     return Op;
8296 
8297   APInt Hi = CR.getUnsignedMax();
8298   unsigned Bits = std::max(Hi.getActiveBits(),
8299                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8300 
8301   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8302 
8303   SDLoc SL = getCurSDLoc();
8304 
8305   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8306                              DAG.getValueType(SmallVT));
8307   unsigned NumVals = Op.getNode()->getNumValues();
8308   if (NumVals == 1)
8309     return ZExt;
8310 
8311   SmallVector<SDValue, 4> Ops;
8312 
8313   Ops.push_back(ZExt);
8314   for (unsigned I = 1; I != NumVals; ++I)
8315     Ops.push_back(Op.getValue(I));
8316 
8317   return DAG.getMergeValues(Ops, SL);
8318 }
8319 
8320 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8321 /// the call being lowered.
8322 ///
8323 /// This is a helper for lowering intrinsics that follow a target calling
8324 /// convention or require stack pointer adjustment. Only a subset of the
8325 /// intrinsic's operands need to participate in the calling convention.
8326 void SelectionDAGBuilder::populateCallLoweringInfo(
8327     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8328     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8329     bool IsPatchPoint) {
8330   TargetLowering::ArgListTy Args;
8331   Args.reserve(NumArgs);
8332 
8333   // Populate the argument list.
8334   // Attributes for args start at offset 1, after the return attribute.
8335   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8336        ArgI != ArgE; ++ArgI) {
8337     const Value *V = Call->getOperand(ArgI);
8338 
8339     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8340 
8341     TargetLowering::ArgListEntry Entry;
8342     Entry.Node = getValue(V);
8343     Entry.Ty = V->getType();
8344     Entry.setAttributes(Call, ArgI);
8345     Args.push_back(Entry);
8346   }
8347 
8348   CLI.setDebugLoc(getCurSDLoc())
8349       .setChain(getRoot())
8350       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8351       .setDiscardResult(Call->use_empty())
8352       .setIsPatchPoint(IsPatchPoint);
8353 }
8354 
8355 /// Add a stack map intrinsic call's live variable operands to a stackmap
8356 /// or patchpoint target node's operand list.
8357 ///
8358 /// Constants are converted to TargetConstants purely as an optimization to
8359 /// avoid constant materialization and register allocation.
8360 ///
8361 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8362 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
8363 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8364 /// address materialization and register allocation, but may also be required
8365 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8366 /// alloca in the entry block, then the runtime may assume that the alloca's
8367 /// StackMap location can be read immediately after compilation and that the
8368 /// location is valid at any point during execution (this is similar to the
8369 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8370 /// only available in a register, then the runtime would need to trap when
8371 /// execution reaches the StackMap in order to read the alloca's location.
8372 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
8373                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8374                                 SelectionDAGBuilder &Builder) {
8375   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
8376     SDValue OpVal = Builder.getValue(CS.getArgument(i));
8377     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8378       Ops.push_back(
8379         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8380       Ops.push_back(
8381         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8382     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8383       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8384       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8385           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8386     } else
8387       Ops.push_back(OpVal);
8388   }
8389 }
8390 
8391 /// Lower llvm.experimental.stackmap directly to its target opcode.
8392 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8393   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8394   //                                  [live variables...])
8395 
8396   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8397 
8398   SDValue Chain, InFlag, Callee, NullPtr;
8399   SmallVector<SDValue, 32> Ops;
8400 
8401   SDLoc DL = getCurSDLoc();
8402   Callee = getValue(CI.getCalledValue());
8403   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8404 
8405   // The stackmap intrinsic only records the live variables (the arguemnts
8406   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8407   // intrinsic, this won't be lowered to a function call. This means we don't
8408   // have to worry about calling conventions and target specific lowering code.
8409   // Instead we perform the call lowering right here.
8410   //
8411   // chain, flag = CALLSEQ_START(chain, 0, 0)
8412   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8413   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8414   //
8415   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8416   InFlag = Chain.getValue(1);
8417 
8418   // Add the <id> and <numBytes> constants.
8419   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8420   Ops.push_back(DAG.getTargetConstant(
8421                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8422   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8423   Ops.push_back(DAG.getTargetConstant(
8424                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8425                   MVT::i32));
8426 
8427   // Push live variables for the stack map.
8428   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
8429 
8430   // We are not pushing any register mask info here on the operands list,
8431   // because the stackmap doesn't clobber anything.
8432 
8433   // Push the chain and the glue flag.
8434   Ops.push_back(Chain);
8435   Ops.push_back(InFlag);
8436 
8437   // Create the STACKMAP node.
8438   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8439   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8440   Chain = SDValue(SM, 0);
8441   InFlag = Chain.getValue(1);
8442 
8443   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8444 
8445   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8446 
8447   // Set the root to the target-lowered call chain.
8448   DAG.setRoot(Chain);
8449 
8450   // Inform the Frame Information that we have a stackmap in this function.
8451   FuncInfo.MF->getFrameInfo().setHasStackMap();
8452 }
8453 
8454 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8455 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
8456                                           const BasicBlock *EHPadBB) {
8457   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8458   //                                                 i32 <numBytes>,
8459   //                                                 i8* <target>,
8460   //                                                 i32 <numArgs>,
8461   //                                                 [Args...],
8462   //                                                 [live variables...])
8463 
8464   CallingConv::ID CC = CS.getCallingConv();
8465   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8466   bool HasDef = !CS->getType()->isVoidTy();
8467   SDLoc dl = getCurSDLoc();
8468   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8469 
8470   // Handle immediate and symbolic callees.
8471   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8472     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8473                                    /*isTarget=*/true);
8474   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8475     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8476                                          SDLoc(SymbolicCallee),
8477                                          SymbolicCallee->getValueType(0));
8478 
8479   // Get the real number of arguments participating in the call <numArgs>
8480   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8481   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8482 
8483   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8484   // Intrinsics include all meta-operands up to but not including CC.
8485   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8486   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8487          "Not enough arguments provided to the patchpoint intrinsic");
8488 
8489   // For AnyRegCC the arguments are lowered later on manually.
8490   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8491   Type *ReturnTy =
8492     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8493 
8494   TargetLowering::CallLoweringInfo CLI(DAG);
8495   populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()),
8496                            NumMetaOpers, NumCallArgs, Callee, ReturnTy, true);
8497   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8498 
8499   SDNode *CallEnd = Result.second.getNode();
8500   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8501     CallEnd = CallEnd->getOperand(0).getNode();
8502 
8503   /// Get a call instruction from the call sequence chain.
8504   /// Tail calls are not allowed.
8505   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8506          "Expected a callseq node.");
8507   SDNode *Call = CallEnd->getOperand(0).getNode();
8508   bool HasGlue = Call->getGluedNode();
8509 
8510   // Replace the target specific call node with the patchable intrinsic.
8511   SmallVector<SDValue, 8> Ops;
8512 
8513   // Add the <id> and <numBytes> constants.
8514   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8515   Ops.push_back(DAG.getTargetConstant(
8516                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8517   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8518   Ops.push_back(DAG.getTargetConstant(
8519                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8520                   MVT::i32));
8521 
8522   // Add the callee.
8523   Ops.push_back(Callee);
8524 
8525   // Adjust <numArgs> to account for any arguments that have been passed on the
8526   // stack instead.
8527   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8528   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8529   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8530   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8531 
8532   // Add the calling convention
8533   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8534 
8535   // Add the arguments we omitted previously. The register allocator should
8536   // place these in any free register.
8537   if (IsAnyRegCC)
8538     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8539       Ops.push_back(getValue(CS.getArgument(i)));
8540 
8541   // Push the arguments from the call instruction up to the register mask.
8542   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8543   Ops.append(Call->op_begin() + 2, e);
8544 
8545   // Push live variables for the stack map.
8546   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8547 
8548   // Push the register mask info.
8549   if (HasGlue)
8550     Ops.push_back(*(Call->op_end()-2));
8551   else
8552     Ops.push_back(*(Call->op_end()-1));
8553 
8554   // Push the chain (this is originally the first operand of the call, but
8555   // becomes now the last or second to last operand).
8556   Ops.push_back(*(Call->op_begin()));
8557 
8558   // Push the glue flag (last operand).
8559   if (HasGlue)
8560     Ops.push_back(*(Call->op_end()-1));
8561 
8562   SDVTList NodeTys;
8563   if (IsAnyRegCC && HasDef) {
8564     // Create the return types based on the intrinsic definition
8565     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8566     SmallVector<EVT, 3> ValueVTs;
8567     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8568     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8569 
8570     // There is always a chain and a glue type at the end
8571     ValueVTs.push_back(MVT::Other);
8572     ValueVTs.push_back(MVT::Glue);
8573     NodeTys = DAG.getVTList(ValueVTs);
8574   } else
8575     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8576 
8577   // Replace the target specific call node with a PATCHPOINT node.
8578   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8579                                          dl, NodeTys, Ops);
8580 
8581   // Update the NodeMap.
8582   if (HasDef) {
8583     if (IsAnyRegCC)
8584       setValue(CS.getInstruction(), SDValue(MN, 0));
8585     else
8586       setValue(CS.getInstruction(), Result.first);
8587   }
8588 
8589   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8590   // call sequence. Furthermore the location of the chain and glue can change
8591   // when the AnyReg calling convention is used and the intrinsic returns a
8592   // value.
8593   if (IsAnyRegCC && HasDef) {
8594     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8595     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8596     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8597   } else
8598     DAG.ReplaceAllUsesWith(Call, MN);
8599   DAG.DeleteNode(Call);
8600 
8601   // Inform the Frame Information that we have a patchpoint in this function.
8602   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8603 }
8604 
8605 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8606                                             unsigned Intrinsic) {
8607   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8608   SDValue Op1 = getValue(I.getArgOperand(0));
8609   SDValue Op2;
8610   if (I.getNumArgOperands() > 1)
8611     Op2 = getValue(I.getArgOperand(1));
8612   SDLoc dl = getCurSDLoc();
8613   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8614   SDValue Res;
8615   FastMathFlags FMF;
8616   if (isa<FPMathOperator>(I))
8617     FMF = I.getFastMathFlags();
8618 
8619   switch (Intrinsic) {
8620   case Intrinsic::experimental_vector_reduce_fadd:
8621     if (FMF.isFast())
8622       Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2);
8623     else
8624       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8625     break;
8626   case Intrinsic::experimental_vector_reduce_fmul:
8627     if (FMF.isFast())
8628       Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2);
8629     else
8630       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8631     break;
8632   case Intrinsic::experimental_vector_reduce_add:
8633     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8634     break;
8635   case Intrinsic::experimental_vector_reduce_mul:
8636     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8637     break;
8638   case Intrinsic::experimental_vector_reduce_and:
8639     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8640     break;
8641   case Intrinsic::experimental_vector_reduce_or:
8642     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8643     break;
8644   case Intrinsic::experimental_vector_reduce_xor:
8645     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8646     break;
8647   case Intrinsic::experimental_vector_reduce_smax:
8648     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8649     break;
8650   case Intrinsic::experimental_vector_reduce_smin:
8651     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8652     break;
8653   case Intrinsic::experimental_vector_reduce_umax:
8654     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8655     break;
8656   case Intrinsic::experimental_vector_reduce_umin:
8657     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8658     break;
8659   case Intrinsic::experimental_vector_reduce_fmax:
8660     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8661     break;
8662   case Intrinsic::experimental_vector_reduce_fmin:
8663     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8664     break;
8665   default:
8666     llvm_unreachable("Unhandled vector reduce intrinsic");
8667   }
8668   setValue(&I, Res);
8669 }
8670 
8671 /// Returns an AttributeList representing the attributes applied to the return
8672 /// value of the given call.
8673 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8674   SmallVector<Attribute::AttrKind, 2> Attrs;
8675   if (CLI.RetSExt)
8676     Attrs.push_back(Attribute::SExt);
8677   if (CLI.RetZExt)
8678     Attrs.push_back(Attribute::ZExt);
8679   if (CLI.IsInReg)
8680     Attrs.push_back(Attribute::InReg);
8681 
8682   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8683                             Attrs);
8684 }
8685 
8686 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8687 /// implementation, which just calls LowerCall.
8688 /// FIXME: When all targets are
8689 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8690 std::pair<SDValue, SDValue>
8691 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8692   // Handle the incoming return values from the call.
8693   CLI.Ins.clear();
8694   Type *OrigRetTy = CLI.RetTy;
8695   SmallVector<EVT, 4> RetTys;
8696   SmallVector<uint64_t, 4> Offsets;
8697   auto &DL = CLI.DAG.getDataLayout();
8698   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8699 
8700   if (CLI.IsPostTypeLegalization) {
8701     // If we are lowering a libcall after legalization, split the return type.
8702     SmallVector<EVT, 4> OldRetTys = std::move(RetTys);
8703     SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets);
8704     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8705       EVT RetVT = OldRetTys[i];
8706       uint64_t Offset = OldOffsets[i];
8707       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8708       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8709       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8710       RetTys.append(NumRegs, RegisterVT);
8711       for (unsigned j = 0; j != NumRegs; ++j)
8712         Offsets.push_back(Offset + j * RegisterVTByteSZ);
8713     }
8714   }
8715 
8716   SmallVector<ISD::OutputArg, 4> Outs;
8717   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8718 
8719   bool CanLowerReturn =
8720       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8721                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8722 
8723   SDValue DemoteStackSlot;
8724   int DemoteStackIdx = -100;
8725   if (!CanLowerReturn) {
8726     // FIXME: equivalent assert?
8727     // assert(!CS.hasInAllocaArgument() &&
8728     //        "sret demotion is incompatible with inalloca");
8729     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8730     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
8731     MachineFunction &MF = CLI.DAG.getMachineFunction();
8732     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
8733     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
8734                                               DL.getAllocaAddrSpace());
8735 
8736     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
8737     ArgListEntry Entry;
8738     Entry.Node = DemoteStackSlot;
8739     Entry.Ty = StackSlotPtrType;
8740     Entry.IsSExt = false;
8741     Entry.IsZExt = false;
8742     Entry.IsInReg = false;
8743     Entry.IsSRet = true;
8744     Entry.IsNest = false;
8745     Entry.IsByVal = false;
8746     Entry.IsReturned = false;
8747     Entry.IsSwiftSelf = false;
8748     Entry.IsSwiftError = false;
8749     Entry.Alignment = Align;
8750     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
8751     CLI.NumFixedArgs += 1;
8752     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
8753 
8754     // sret demotion isn't compatible with tail-calls, since the sret argument
8755     // points into the callers stack frame.
8756     CLI.IsTailCall = false;
8757   } else {
8758     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8759       EVT VT = RetTys[I];
8760       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8761                                                      CLI.CallConv, VT);
8762       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8763                                                        CLI.CallConv, VT);
8764       for (unsigned i = 0; i != NumRegs; ++i) {
8765         ISD::InputArg MyFlags;
8766         MyFlags.VT = RegisterVT;
8767         MyFlags.ArgVT = VT;
8768         MyFlags.Used = CLI.IsReturnValueUsed;
8769         if (CLI.RetSExt)
8770           MyFlags.Flags.setSExt();
8771         if (CLI.RetZExt)
8772           MyFlags.Flags.setZExt();
8773         if (CLI.IsInReg)
8774           MyFlags.Flags.setInReg();
8775         CLI.Ins.push_back(MyFlags);
8776       }
8777     }
8778   }
8779 
8780   // We push in swifterror return as the last element of CLI.Ins.
8781   ArgListTy &Args = CLI.getArgs();
8782   if (supportSwiftError()) {
8783     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8784       if (Args[i].IsSwiftError) {
8785         ISD::InputArg MyFlags;
8786         MyFlags.VT = getPointerTy(DL);
8787         MyFlags.ArgVT = EVT(getPointerTy(DL));
8788         MyFlags.Flags.setSwiftError();
8789         CLI.Ins.push_back(MyFlags);
8790       }
8791     }
8792   }
8793 
8794   // Handle all of the outgoing arguments.
8795   CLI.Outs.clear();
8796   CLI.OutVals.clear();
8797   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8798     SmallVector<EVT, 4> ValueVTs;
8799     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
8800     // FIXME: Split arguments if CLI.IsPostTypeLegalization
8801     Type *FinalType = Args[i].Ty;
8802     if (Args[i].IsByVal)
8803       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
8804     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
8805         FinalType, CLI.CallConv, CLI.IsVarArg);
8806     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
8807          ++Value) {
8808       EVT VT = ValueVTs[Value];
8809       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
8810       SDValue Op = SDValue(Args[i].Node.getNode(),
8811                            Args[i].Node.getResNo() + Value);
8812       ISD::ArgFlagsTy Flags;
8813 
8814       // Certain targets (such as MIPS), may have a different ABI alignment
8815       // for a type depending on the context. Give the target a chance to
8816       // specify the alignment it wants.
8817       unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL);
8818 
8819       if (Args[i].IsZExt)
8820         Flags.setZExt();
8821       if (Args[i].IsSExt)
8822         Flags.setSExt();
8823       if (Args[i].IsInReg) {
8824         // If we are using vectorcall calling convention, a structure that is
8825         // passed InReg - is surely an HVA
8826         if (CLI.CallConv == CallingConv::X86_VectorCall &&
8827             isa<StructType>(FinalType)) {
8828           // The first value of a structure is marked
8829           if (0 == Value)
8830             Flags.setHvaStart();
8831           Flags.setHva();
8832         }
8833         // Set InReg Flag
8834         Flags.setInReg();
8835       }
8836       if (Args[i].IsSRet)
8837         Flags.setSRet();
8838       if (Args[i].IsSwiftSelf)
8839         Flags.setSwiftSelf();
8840       if (Args[i].IsSwiftError)
8841         Flags.setSwiftError();
8842       if (Args[i].IsByVal)
8843         Flags.setByVal();
8844       if (Args[i].IsInAlloca) {
8845         Flags.setInAlloca();
8846         // Set the byval flag for CCAssignFn callbacks that don't know about
8847         // inalloca.  This way we can know how many bytes we should've allocated
8848         // and how many bytes a callee cleanup function will pop.  If we port
8849         // inalloca to more targets, we'll have to add custom inalloca handling
8850         // in the various CC lowering callbacks.
8851         Flags.setByVal();
8852       }
8853       if (Args[i].IsByVal || Args[i].IsInAlloca) {
8854         PointerType *Ty = cast<PointerType>(Args[i].Ty);
8855         Type *ElementTy = Ty->getElementType();
8856         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8857         // For ByVal, alignment should come from FE.  BE will guess if this
8858         // info is not there but there are cases it cannot get right.
8859         unsigned FrameAlign;
8860         if (Args[i].Alignment)
8861           FrameAlign = Args[i].Alignment;
8862         else
8863           FrameAlign = getByValTypeAlignment(ElementTy, DL);
8864         Flags.setByValAlign(FrameAlign);
8865       }
8866       if (Args[i].IsNest)
8867         Flags.setNest();
8868       if (NeedsRegBlock)
8869         Flags.setInConsecutiveRegs();
8870       Flags.setOrigAlign(OriginalAlignment);
8871 
8872       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8873                                                  CLI.CallConv, VT);
8874       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8875                                                         CLI.CallConv, VT);
8876       SmallVector<SDValue, 4> Parts(NumParts);
8877       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
8878 
8879       if (Args[i].IsSExt)
8880         ExtendKind = ISD::SIGN_EXTEND;
8881       else if (Args[i].IsZExt)
8882         ExtendKind = ISD::ZERO_EXTEND;
8883 
8884       // Conservatively only handle 'returned' on non-vectors that can be lowered,
8885       // for now.
8886       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
8887           CanLowerReturn) {
8888         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
8889                "unexpected use of 'returned'");
8890         // Before passing 'returned' to the target lowering code, ensure that
8891         // either the register MVT and the actual EVT are the same size or that
8892         // the return value and argument are extended in the same way; in these
8893         // cases it's safe to pass the argument register value unchanged as the
8894         // return register value (although it's at the target's option whether
8895         // to do so)
8896         // TODO: allow code generation to take advantage of partially preserved
8897         // registers rather than clobbering the entire register when the
8898         // parameter extension method is not compatible with the return
8899         // extension method
8900         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
8901             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
8902              CLI.RetZExt == Args[i].IsZExt))
8903           Flags.setReturned();
8904       }
8905 
8906       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
8907                      CLI.CS.getInstruction(), CLI.CallConv, ExtendKind);
8908 
8909       for (unsigned j = 0; j != NumParts; ++j) {
8910         // if it isn't first piece, alignment must be 1
8911         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
8912                                i < CLI.NumFixedArgs,
8913                                i, j*Parts[j].getValueType().getStoreSize());
8914         if (NumParts > 1 && j == 0)
8915           MyFlags.Flags.setSplit();
8916         else if (j != 0) {
8917           MyFlags.Flags.setOrigAlign(1);
8918           if (j == NumParts - 1)
8919             MyFlags.Flags.setSplitEnd();
8920         }
8921 
8922         CLI.Outs.push_back(MyFlags);
8923         CLI.OutVals.push_back(Parts[j]);
8924       }
8925 
8926       if (NeedsRegBlock && Value == NumValues - 1)
8927         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
8928     }
8929   }
8930 
8931   SmallVector<SDValue, 4> InVals;
8932   CLI.Chain = LowerCall(CLI, InVals);
8933 
8934   // Update CLI.InVals to use outside of this function.
8935   CLI.InVals = InVals;
8936 
8937   // Verify that the target's LowerCall behaved as expected.
8938   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
8939          "LowerCall didn't return a valid chain!");
8940   assert((!CLI.IsTailCall || InVals.empty()) &&
8941          "LowerCall emitted a return value for a tail call!");
8942   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
8943          "LowerCall didn't emit the correct number of values!");
8944 
8945   // For a tail call, the return value is merely live-out and there aren't
8946   // any nodes in the DAG representing it. Return a special value to
8947   // indicate that a tail call has been emitted and no more Instructions
8948   // should be processed in the current block.
8949   if (CLI.IsTailCall) {
8950     CLI.DAG.setRoot(CLI.Chain);
8951     return std::make_pair(SDValue(), SDValue());
8952   }
8953 
8954 #ifndef NDEBUG
8955   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
8956     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
8957     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
8958            "LowerCall emitted a value with the wrong type!");
8959   }
8960 #endif
8961 
8962   SmallVector<SDValue, 4> ReturnValues;
8963   if (!CanLowerReturn) {
8964     // The instruction result is the result of loading from the
8965     // hidden sret parameter.
8966     SmallVector<EVT, 1> PVTs;
8967     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
8968 
8969     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
8970     assert(PVTs.size() == 1 && "Pointers should fit in one register");
8971     EVT PtrVT = PVTs[0];
8972 
8973     unsigned NumValues = RetTys.size();
8974     ReturnValues.resize(NumValues);
8975     SmallVector<SDValue, 4> Chains(NumValues);
8976 
8977     // An aggregate return value cannot wrap around the address space, so
8978     // offsets to its parts don't wrap either.
8979     SDNodeFlags Flags;
8980     Flags.setNoUnsignedWrap(true);
8981 
8982     for (unsigned i = 0; i < NumValues; ++i) {
8983       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
8984                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
8985                                                         PtrVT), Flags);
8986       SDValue L = CLI.DAG.getLoad(
8987           RetTys[i], CLI.DL, CLI.Chain, Add,
8988           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
8989                                             DemoteStackIdx, Offsets[i]),
8990           /* Alignment = */ 1);
8991       ReturnValues[i] = L;
8992       Chains[i] = L.getValue(1);
8993     }
8994 
8995     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
8996   } else {
8997     // Collect the legal value parts into potentially illegal values
8998     // that correspond to the original function's return values.
8999     Optional<ISD::NodeType> AssertOp;
9000     if (CLI.RetSExt)
9001       AssertOp = ISD::AssertSext;
9002     else if (CLI.RetZExt)
9003       AssertOp = ISD::AssertZext;
9004     unsigned CurReg = 0;
9005     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9006       EVT VT = RetTys[I];
9007       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9008                                                      CLI.CallConv, VT);
9009       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9010                                                        CLI.CallConv, VT);
9011 
9012       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9013                                               NumRegs, RegisterVT, VT, nullptr,
9014                                               CLI.CallConv, AssertOp));
9015       CurReg += NumRegs;
9016     }
9017 
9018     // For a function returning void, there is no return value. We can't create
9019     // such a node, so we just return a null return value in that case. In
9020     // that case, nothing will actually look at the value.
9021     if (ReturnValues.empty())
9022       return std::make_pair(SDValue(), CLI.Chain);
9023   }
9024 
9025   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9026                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9027   return std::make_pair(Res, CLI.Chain);
9028 }
9029 
9030 void TargetLowering::LowerOperationWrapper(SDNode *N,
9031                                            SmallVectorImpl<SDValue> &Results,
9032                                            SelectionDAG &DAG) const {
9033   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
9034     Results.push_back(Res);
9035 }
9036 
9037 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9038   llvm_unreachable("LowerOperation not implemented for this target!");
9039 }
9040 
9041 void
9042 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9043   SDValue Op = getNonRegisterValue(V);
9044   assert((Op.getOpcode() != ISD::CopyFromReg ||
9045           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9046          "Copy from a reg to the same reg!");
9047   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
9048 
9049   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9050   // If this is an InlineAsm we have to match the registers required, not the
9051   // notional registers required by the type.
9052 
9053   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9054                    None); // This is not an ABI copy.
9055   SDValue Chain = DAG.getEntryNode();
9056 
9057   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9058                               FuncInfo.PreferredExtendType.end())
9059                                  ? ISD::ANY_EXTEND
9060                                  : FuncInfo.PreferredExtendType[V];
9061   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9062   PendingExports.push_back(Chain);
9063 }
9064 
9065 #include "llvm/CodeGen/SelectionDAGISel.h"
9066 
9067 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9068 /// entry block, return true.  This includes arguments used by switches, since
9069 /// the switch may expand into multiple basic blocks.
9070 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9071   // With FastISel active, we may be splitting blocks, so force creation
9072   // of virtual registers for all non-dead arguments.
9073   if (FastISel)
9074     return A->use_empty();
9075 
9076   const BasicBlock &Entry = A->getParent()->front();
9077   for (const User *U : A->users())
9078     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9079       return false;  // Use not in entry block.
9080 
9081   return true;
9082 }
9083 
9084 using ArgCopyElisionMapTy =
9085     DenseMap<const Argument *,
9086              std::pair<const AllocaInst *, const StoreInst *>>;
9087 
9088 /// Scan the entry block of the function in FuncInfo for arguments that look
9089 /// like copies into a local alloca. Record any copied arguments in
9090 /// ArgCopyElisionCandidates.
9091 static void
9092 findArgumentCopyElisionCandidates(const DataLayout &DL,
9093                                   FunctionLoweringInfo *FuncInfo,
9094                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9095   // Record the state of every static alloca used in the entry block. Argument
9096   // allocas are all used in the entry block, so we need approximately as many
9097   // entries as we have arguments.
9098   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9099   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9100   unsigned NumArgs = FuncInfo->Fn->arg_size();
9101   StaticAllocas.reserve(NumArgs * 2);
9102 
9103   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9104     if (!V)
9105       return nullptr;
9106     V = V->stripPointerCasts();
9107     const auto *AI = dyn_cast<AllocaInst>(V);
9108     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9109       return nullptr;
9110     auto Iter = StaticAllocas.insert({AI, Unknown});
9111     return &Iter.first->second;
9112   };
9113 
9114   // Look for stores of arguments to static allocas. Look through bitcasts and
9115   // GEPs to handle type coercions, as long as the alloca is fully initialized
9116   // by the store. Any non-store use of an alloca escapes it and any subsequent
9117   // unanalyzed store might write it.
9118   // FIXME: Handle structs initialized with multiple stores.
9119   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9120     // Look for stores, and handle non-store uses conservatively.
9121     const auto *SI = dyn_cast<StoreInst>(&I);
9122     if (!SI) {
9123       // We will look through cast uses, so ignore them completely.
9124       if (I.isCast())
9125         continue;
9126       // Ignore debug info intrinsics, they don't escape or store to allocas.
9127       if (isa<DbgInfoIntrinsic>(I))
9128         continue;
9129       // This is an unknown instruction. Assume it escapes or writes to all
9130       // static alloca operands.
9131       for (const Use &U : I.operands()) {
9132         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9133           *Info = StaticAllocaInfo::Clobbered;
9134       }
9135       continue;
9136     }
9137 
9138     // If the stored value is a static alloca, mark it as escaped.
9139     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9140       *Info = StaticAllocaInfo::Clobbered;
9141 
9142     // Check if the destination is a static alloca.
9143     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9144     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9145     if (!Info)
9146       continue;
9147     const AllocaInst *AI = cast<AllocaInst>(Dst);
9148 
9149     // Skip allocas that have been initialized or clobbered.
9150     if (*Info != StaticAllocaInfo::Unknown)
9151       continue;
9152 
9153     // Check if the stored value is an argument, and that this store fully
9154     // initializes the alloca. Don't elide copies from the same argument twice.
9155     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9156     const auto *Arg = dyn_cast<Argument>(Val);
9157     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
9158         Arg->getType()->isEmptyTy() ||
9159         DL.getTypeStoreSize(Arg->getType()) !=
9160             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9161         ArgCopyElisionCandidates.count(Arg)) {
9162       *Info = StaticAllocaInfo::Clobbered;
9163       continue;
9164     }
9165 
9166     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9167                       << '\n');
9168 
9169     // Mark this alloca and store for argument copy elision.
9170     *Info = StaticAllocaInfo::Elidable;
9171     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9172 
9173     // Stop scanning if we've seen all arguments. This will happen early in -O0
9174     // builds, which is useful, because -O0 builds have large entry blocks and
9175     // many allocas.
9176     if (ArgCopyElisionCandidates.size() == NumArgs)
9177       break;
9178   }
9179 }
9180 
9181 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9182 /// ArgVal is a load from a suitable fixed stack object.
9183 static void tryToElideArgumentCopy(
9184     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
9185     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9186     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9187     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9188     SDValue ArgVal, bool &ArgHasUses) {
9189   // Check if this is a load from a fixed stack object.
9190   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9191   if (!LNode)
9192     return;
9193   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9194   if (!FINode)
9195     return;
9196 
9197   // Check that the fixed stack object is the right size and alignment.
9198   // Look at the alignment that the user wrote on the alloca instead of looking
9199   // at the stack object.
9200   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9201   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9202   const AllocaInst *AI = ArgCopyIter->second.first;
9203   int FixedIndex = FINode->getIndex();
9204   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
9205   int OldIndex = AllocaIndex;
9206   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
9207   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9208     LLVM_DEBUG(
9209         dbgs() << "  argument copy elision failed due to bad fixed stack "
9210                   "object size\n");
9211     return;
9212   }
9213   unsigned RequiredAlignment = AI->getAlignment();
9214   if (!RequiredAlignment) {
9215     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
9216         AI->getAllocatedType());
9217   }
9218   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
9219     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9220                          "greater than stack argument alignment ("
9221                       << RequiredAlignment << " vs "
9222                       << MFI.getObjectAlignment(FixedIndex) << ")\n");
9223     return;
9224   }
9225 
9226   // Perform the elision. Delete the old stack object and replace its only use
9227   // in the variable info map. Mark the stack object as mutable.
9228   LLVM_DEBUG({
9229     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9230            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9231            << '\n';
9232   });
9233   MFI.RemoveStackObject(OldIndex);
9234   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9235   AllocaIndex = FixedIndex;
9236   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9237   Chains.push_back(ArgVal.getValue(1));
9238 
9239   // Avoid emitting code for the store implementing the copy.
9240   const StoreInst *SI = ArgCopyIter->second.second;
9241   ElidedArgCopyInstrs.insert(SI);
9242 
9243   // Check for uses of the argument again so that we can avoid exporting ArgVal
9244   // if it is't used by anything other than the store.
9245   for (const Value *U : Arg.users()) {
9246     if (U != SI) {
9247       ArgHasUses = true;
9248       break;
9249     }
9250   }
9251 }
9252 
9253 void SelectionDAGISel::LowerArguments(const Function &F) {
9254   SelectionDAG &DAG = SDB->DAG;
9255   SDLoc dl = SDB->getCurSDLoc();
9256   const DataLayout &DL = DAG.getDataLayout();
9257   SmallVector<ISD::InputArg, 16> Ins;
9258 
9259   if (!FuncInfo->CanLowerReturn) {
9260     // Put in an sret pointer parameter before all the other parameters.
9261     SmallVector<EVT, 1> ValueVTs;
9262     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9263                     F.getReturnType()->getPointerTo(
9264                         DAG.getDataLayout().getAllocaAddrSpace()),
9265                     ValueVTs);
9266 
9267     // NOTE: Assuming that a pointer will never break down to more than one VT
9268     // or one register.
9269     ISD::ArgFlagsTy Flags;
9270     Flags.setSRet();
9271     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9272     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9273                          ISD::InputArg::NoArgIndex, 0);
9274     Ins.push_back(RetArg);
9275   }
9276 
9277   // Look for stores of arguments to static allocas. Mark such arguments with a
9278   // flag to ask the target to give us the memory location of that argument if
9279   // available.
9280   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9281   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
9282 
9283   // Set up the incoming argument description vector.
9284   for (const Argument &Arg : F.args()) {
9285     unsigned ArgNo = Arg.getArgNo();
9286     SmallVector<EVT, 4> ValueVTs;
9287     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9288     bool isArgValueUsed = !Arg.use_empty();
9289     unsigned PartBase = 0;
9290     Type *FinalType = Arg.getType();
9291     if (Arg.hasAttribute(Attribute::ByVal))
9292       FinalType = cast<PointerType>(FinalType)->getElementType();
9293     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9294         FinalType, F.getCallingConv(), F.isVarArg());
9295     for (unsigned Value = 0, NumValues = ValueVTs.size();
9296          Value != NumValues; ++Value) {
9297       EVT VT = ValueVTs[Value];
9298       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9299       ISD::ArgFlagsTy Flags;
9300 
9301       // Certain targets (such as MIPS), may have a different ABI alignment
9302       // for a type depending on the context. Give the target a chance to
9303       // specify the alignment it wants.
9304       unsigned OriginalAlignment =
9305           TLI->getABIAlignmentForCallingConv(ArgTy, DL);
9306 
9307       if (Arg.hasAttribute(Attribute::ZExt))
9308         Flags.setZExt();
9309       if (Arg.hasAttribute(Attribute::SExt))
9310         Flags.setSExt();
9311       if (Arg.hasAttribute(Attribute::InReg)) {
9312         // If we are using vectorcall calling convention, a structure that is
9313         // passed InReg - is surely an HVA
9314         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9315             isa<StructType>(Arg.getType())) {
9316           // The first value of a structure is marked
9317           if (0 == Value)
9318             Flags.setHvaStart();
9319           Flags.setHva();
9320         }
9321         // Set InReg Flag
9322         Flags.setInReg();
9323       }
9324       if (Arg.hasAttribute(Attribute::StructRet))
9325         Flags.setSRet();
9326       if (Arg.hasAttribute(Attribute::SwiftSelf))
9327         Flags.setSwiftSelf();
9328       if (Arg.hasAttribute(Attribute::SwiftError))
9329         Flags.setSwiftError();
9330       if (Arg.hasAttribute(Attribute::ByVal))
9331         Flags.setByVal();
9332       if (Arg.hasAttribute(Attribute::InAlloca)) {
9333         Flags.setInAlloca();
9334         // Set the byval flag for CCAssignFn callbacks that don't know about
9335         // inalloca.  This way we can know how many bytes we should've allocated
9336         // and how many bytes a callee cleanup function will pop.  If we port
9337         // inalloca to more targets, we'll have to add custom inalloca handling
9338         // in the various CC lowering callbacks.
9339         Flags.setByVal();
9340       }
9341       if (F.getCallingConv() == CallingConv::X86_INTR) {
9342         // IA Interrupt passes frame (1st parameter) by value in the stack.
9343         if (ArgNo == 0)
9344           Flags.setByVal();
9345       }
9346       if (Flags.isByVal() || Flags.isInAlloca()) {
9347         PointerType *Ty = cast<PointerType>(Arg.getType());
9348         Type *ElementTy = Ty->getElementType();
9349         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
9350         // For ByVal, alignment should be passed from FE.  BE will guess if
9351         // this info is not there but there are cases it cannot get right.
9352         unsigned FrameAlign;
9353         if (Arg.getParamAlignment())
9354           FrameAlign = Arg.getParamAlignment();
9355         else
9356           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9357         Flags.setByValAlign(FrameAlign);
9358       }
9359       if (Arg.hasAttribute(Attribute::Nest))
9360         Flags.setNest();
9361       if (NeedsRegBlock)
9362         Flags.setInConsecutiveRegs();
9363       Flags.setOrigAlign(OriginalAlignment);
9364       if (ArgCopyElisionCandidates.count(&Arg))
9365         Flags.setCopyElisionCandidate();
9366 
9367       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9368           *CurDAG->getContext(), F.getCallingConv(), VT);
9369       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9370           *CurDAG->getContext(), F.getCallingConv(), VT);
9371       for (unsigned i = 0; i != NumRegs; ++i) {
9372         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9373                               ArgNo, PartBase+i*RegisterVT.getStoreSize());
9374         if (NumRegs > 1 && i == 0)
9375           MyFlags.Flags.setSplit();
9376         // if it isn't first piece, alignment must be 1
9377         else if (i > 0) {
9378           MyFlags.Flags.setOrigAlign(1);
9379           if (i == NumRegs - 1)
9380             MyFlags.Flags.setSplitEnd();
9381         }
9382         Ins.push_back(MyFlags);
9383       }
9384       if (NeedsRegBlock && Value == NumValues - 1)
9385         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9386       PartBase += VT.getStoreSize();
9387     }
9388   }
9389 
9390   // Call the target to set up the argument values.
9391   SmallVector<SDValue, 8> InVals;
9392   SDValue NewRoot = TLI->LowerFormalArguments(
9393       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9394 
9395   // Verify that the target's LowerFormalArguments behaved as expected.
9396   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9397          "LowerFormalArguments didn't return a valid chain!");
9398   assert(InVals.size() == Ins.size() &&
9399          "LowerFormalArguments didn't emit the correct number of values!");
9400   LLVM_DEBUG({
9401     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9402       assert(InVals[i].getNode() &&
9403              "LowerFormalArguments emitted a null value!");
9404       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9405              "LowerFormalArguments emitted a value with the wrong type!");
9406     }
9407   });
9408 
9409   // Update the DAG with the new chain value resulting from argument lowering.
9410   DAG.setRoot(NewRoot);
9411 
9412   // Set up the argument values.
9413   unsigned i = 0;
9414   if (!FuncInfo->CanLowerReturn) {
9415     // Create a virtual register for the sret pointer, and put in a copy
9416     // from the sret argument into it.
9417     SmallVector<EVT, 1> ValueVTs;
9418     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9419                     F.getReturnType()->getPointerTo(
9420                         DAG.getDataLayout().getAllocaAddrSpace()),
9421                     ValueVTs);
9422     MVT VT = ValueVTs[0].getSimpleVT();
9423     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9424     Optional<ISD::NodeType> AssertOp = None;
9425     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9426                                         nullptr, F.getCallingConv(), AssertOp);
9427 
9428     MachineFunction& MF = SDB->DAG.getMachineFunction();
9429     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9430     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9431     FuncInfo->DemoteRegister = SRetReg;
9432     NewRoot =
9433         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9434     DAG.setRoot(NewRoot);
9435 
9436     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9437     ++i;
9438   }
9439 
9440   SmallVector<SDValue, 4> Chains;
9441   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9442   for (const Argument &Arg : F.args()) {
9443     SmallVector<SDValue, 4> ArgValues;
9444     SmallVector<EVT, 4> ValueVTs;
9445     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9446     unsigned NumValues = ValueVTs.size();
9447     if (NumValues == 0)
9448       continue;
9449 
9450     bool ArgHasUses = !Arg.use_empty();
9451 
9452     // Elide the copying store if the target loaded this argument from a
9453     // suitable fixed stack object.
9454     if (Ins[i].Flags.isCopyElisionCandidate()) {
9455       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9456                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9457                              InVals[i], ArgHasUses);
9458     }
9459 
9460     // If this argument is unused then remember its value. It is used to generate
9461     // debugging information.
9462     bool isSwiftErrorArg =
9463         TLI->supportSwiftError() &&
9464         Arg.hasAttribute(Attribute::SwiftError);
9465     if (!ArgHasUses && !isSwiftErrorArg) {
9466       SDB->setUnusedArgValue(&Arg, InVals[i]);
9467 
9468       // Also remember any frame index for use in FastISel.
9469       if (FrameIndexSDNode *FI =
9470           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9471         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9472     }
9473 
9474     for (unsigned Val = 0; Val != NumValues; ++Val) {
9475       EVT VT = ValueVTs[Val];
9476       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9477                                                       F.getCallingConv(), VT);
9478       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9479           *CurDAG->getContext(), F.getCallingConv(), VT);
9480 
9481       // Even an apparant 'unused' swifterror argument needs to be returned. So
9482       // we do generate a copy for it that can be used on return from the
9483       // function.
9484       if (ArgHasUses || isSwiftErrorArg) {
9485         Optional<ISD::NodeType> AssertOp;
9486         if (Arg.hasAttribute(Attribute::SExt))
9487           AssertOp = ISD::AssertSext;
9488         else if (Arg.hasAttribute(Attribute::ZExt))
9489           AssertOp = ISD::AssertZext;
9490 
9491         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9492                                              PartVT, VT, nullptr,
9493                                              F.getCallingConv(), AssertOp));
9494       }
9495 
9496       i += NumParts;
9497     }
9498 
9499     // We don't need to do anything else for unused arguments.
9500     if (ArgValues.empty())
9501       continue;
9502 
9503     // Note down frame index.
9504     if (FrameIndexSDNode *FI =
9505         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9506       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9507 
9508     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9509                                      SDB->getCurSDLoc());
9510 
9511     SDB->setValue(&Arg, Res);
9512     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9513       // We want to associate the argument with the frame index, among
9514       // involved operands, that correspond to the lowest address. The
9515       // getCopyFromParts function, called earlier, is swapping the order of
9516       // the operands to BUILD_PAIR depending on endianness. The result of
9517       // that swapping is that the least significant bits of the argument will
9518       // be in the first operand of the BUILD_PAIR node, and the most
9519       // significant bits will be in the second operand.
9520       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9521       if (LoadSDNode *LNode =
9522           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9523         if (FrameIndexSDNode *FI =
9524             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9525           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9526     }
9527 
9528     // Update the SwiftErrorVRegDefMap.
9529     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9530       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9531       if (TargetRegisterInfo::isVirtualRegister(Reg))
9532         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
9533                                            FuncInfo->SwiftErrorArg, Reg);
9534     }
9535 
9536     // If this argument is live outside of the entry block, insert a copy from
9537     // wherever we got it to the vreg that other BB's will reference it as.
9538     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
9539       // If we can, though, try to skip creating an unnecessary vreg.
9540       // FIXME: This isn't very clean... it would be nice to make this more
9541       // general.  It's also subtly incompatible with the hacks FastISel
9542       // uses with vregs.
9543       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9544       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
9545         FuncInfo->ValueMap[&Arg] = Reg;
9546         continue;
9547       }
9548     }
9549     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9550       FuncInfo->InitializeRegForValue(&Arg);
9551       SDB->CopyToExportRegsIfNeeded(&Arg);
9552     }
9553   }
9554 
9555   if (!Chains.empty()) {
9556     Chains.push_back(NewRoot);
9557     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9558   }
9559 
9560   DAG.setRoot(NewRoot);
9561 
9562   assert(i == InVals.size() && "Argument register count mismatch!");
9563 
9564   // If any argument copy elisions occurred and we have debug info, update the
9565   // stale frame indices used in the dbg.declare variable info table.
9566   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9567   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9568     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9569       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9570       if (I != ArgCopyElisionFrameIndexMap.end())
9571         VI.Slot = I->second;
9572     }
9573   }
9574 
9575   // Finally, if the target has anything special to do, allow it to do so.
9576   EmitFunctionEntryCode();
9577 }
9578 
9579 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9580 /// ensure constants are generated when needed.  Remember the virtual registers
9581 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9582 /// directly add them, because expansion might result in multiple MBB's for one
9583 /// BB.  As such, the start of the BB might correspond to a different MBB than
9584 /// the end.
9585 void
9586 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9587   const Instruction *TI = LLVMBB->getTerminator();
9588 
9589   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9590 
9591   // Check PHI nodes in successors that expect a value to be available from this
9592   // block.
9593   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9594     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9595     if (!isa<PHINode>(SuccBB->begin())) continue;
9596     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9597 
9598     // If this terminator has multiple identical successors (common for
9599     // switches), only handle each succ once.
9600     if (!SuccsHandled.insert(SuccMBB).second)
9601       continue;
9602 
9603     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9604 
9605     // At this point we know that there is a 1-1 correspondence between LLVM PHI
9606     // nodes and Machine PHI nodes, but the incoming operands have not been
9607     // emitted yet.
9608     for (const PHINode &PN : SuccBB->phis()) {
9609       // Ignore dead phi's.
9610       if (PN.use_empty())
9611         continue;
9612 
9613       // Skip empty types
9614       if (PN.getType()->isEmptyTy())
9615         continue;
9616 
9617       unsigned Reg;
9618       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9619 
9620       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9621         unsigned &RegOut = ConstantsOut[C];
9622         if (RegOut == 0) {
9623           RegOut = FuncInfo.CreateRegs(C->getType());
9624           CopyValueToVirtualRegister(C, RegOut);
9625         }
9626         Reg = RegOut;
9627       } else {
9628         DenseMap<const Value *, unsigned>::iterator I =
9629           FuncInfo.ValueMap.find(PHIOp);
9630         if (I != FuncInfo.ValueMap.end())
9631           Reg = I->second;
9632         else {
9633           assert(isa<AllocaInst>(PHIOp) &&
9634                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9635                  "Didn't codegen value into a register!??");
9636           Reg = FuncInfo.CreateRegs(PHIOp->getType());
9637           CopyValueToVirtualRegister(PHIOp, Reg);
9638         }
9639       }
9640 
9641       // Remember that this register needs to added to the machine PHI node as
9642       // the input for this MBB.
9643       SmallVector<EVT, 4> ValueVTs;
9644       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9645       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9646       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9647         EVT VT = ValueVTs[vti];
9648         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9649         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9650           FuncInfo.PHINodesToUpdate.push_back(
9651               std::make_pair(&*MBBI++, Reg + i));
9652         Reg += NumRegisters;
9653       }
9654     }
9655   }
9656 
9657   ConstantsOut.clear();
9658 }
9659 
9660 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9661 /// is 0.
9662 MachineBasicBlock *
9663 SelectionDAGBuilder::StackProtectorDescriptor::
9664 AddSuccessorMBB(const BasicBlock *BB,
9665                 MachineBasicBlock *ParentMBB,
9666                 bool IsLikely,
9667                 MachineBasicBlock *SuccMBB) {
9668   // If SuccBB has not been created yet, create it.
9669   if (!SuccMBB) {
9670     MachineFunction *MF = ParentMBB->getParent();
9671     MachineFunction::iterator BBI(ParentMBB);
9672     SuccMBB = MF->CreateMachineBasicBlock(BB);
9673     MF->insert(++BBI, SuccMBB);
9674   }
9675   // Add it as a successor of ParentMBB.
9676   ParentMBB->addSuccessor(
9677       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9678   return SuccMBB;
9679 }
9680 
9681 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9682   MachineFunction::iterator I(MBB);
9683   if (++I == FuncInfo.MF->end())
9684     return nullptr;
9685   return &*I;
9686 }
9687 
9688 /// During lowering new call nodes can be created (such as memset, etc.).
9689 /// Those will become new roots of the current DAG, but complications arise
9690 /// when they are tail calls. In such cases, the call lowering will update
9691 /// the root, but the builder still needs to know that a tail call has been
9692 /// lowered in order to avoid generating an additional return.
9693 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
9694   // If the node is null, we do have a tail call.
9695   if (MaybeTC.getNode() != nullptr)
9696     DAG.setRoot(MaybeTC);
9697   else
9698     HasTailCall = true;
9699 }
9700 
9701 uint64_t
9702 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters,
9703                                        unsigned First, unsigned Last) const {
9704   assert(Last >= First);
9705   const APInt &LowCase = Clusters[First].Low->getValue();
9706   const APInt &HighCase = Clusters[Last].High->getValue();
9707   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
9708 
9709   // FIXME: A range of consecutive cases has 100% density, but only requires one
9710   // comparison to lower. We should discriminate against such consecutive ranges
9711   // in jump tables.
9712 
9713   return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
9714 }
9715 
9716 uint64_t SelectionDAGBuilder::getJumpTableNumCases(
9717     const SmallVectorImpl<unsigned> &TotalCases, unsigned First,
9718     unsigned Last) const {
9719   assert(Last >= First);
9720   assert(TotalCases[Last] >= TotalCases[First]);
9721   uint64_t NumCases =
9722       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
9723   return NumCases;
9724 }
9725 
9726 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
9727                                          unsigned First, unsigned Last,
9728                                          const SwitchInst *SI,
9729                                          MachineBasicBlock *DefaultMBB,
9730                                          CaseCluster &JTCluster) {
9731   assert(First <= Last);
9732 
9733   auto Prob = BranchProbability::getZero();
9734   unsigned NumCmps = 0;
9735   std::vector<MachineBasicBlock*> Table;
9736   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
9737 
9738   // Initialize probabilities in JTProbs.
9739   for (unsigned I = First; I <= Last; ++I)
9740     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
9741 
9742   for (unsigned I = First; I <= Last; ++I) {
9743     assert(Clusters[I].Kind == CC_Range);
9744     Prob += Clusters[I].Prob;
9745     const APInt &Low = Clusters[I].Low->getValue();
9746     const APInt &High = Clusters[I].High->getValue();
9747     NumCmps += (Low == High) ? 1 : 2;
9748     if (I != First) {
9749       // Fill the gap between this and the previous cluster.
9750       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
9751       assert(PreviousHigh.slt(Low));
9752       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
9753       for (uint64_t J = 0; J < Gap; J++)
9754         Table.push_back(DefaultMBB);
9755     }
9756     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
9757     for (uint64_t J = 0; J < ClusterSize; ++J)
9758       Table.push_back(Clusters[I].MBB);
9759     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
9760   }
9761 
9762   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9763   unsigned NumDests = JTProbs.size();
9764   if (TLI.isSuitableForBitTests(
9765           NumDests, NumCmps, Clusters[First].Low->getValue(),
9766           Clusters[Last].High->getValue(), DAG.getDataLayout())) {
9767     // Clusters[First..Last] should be lowered as bit tests instead.
9768     return false;
9769   }
9770 
9771   // Create the MBB that will load from and jump through the table.
9772   // Note: We create it here, but it's not inserted into the function yet.
9773   MachineFunction *CurMF = FuncInfo.MF;
9774   MachineBasicBlock *JumpTableMBB =
9775       CurMF->CreateMachineBasicBlock(SI->getParent());
9776 
9777   // Add successors. Note: use table order for determinism.
9778   SmallPtrSet<MachineBasicBlock *, 8> Done;
9779   for (MachineBasicBlock *Succ : Table) {
9780     if (Done.count(Succ))
9781       continue;
9782     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
9783     Done.insert(Succ);
9784   }
9785   JumpTableMBB->normalizeSuccProbs();
9786 
9787   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
9788                      ->createJumpTableIndex(Table);
9789 
9790   // Set up the jump table info.
9791   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
9792   JumpTableHeader JTH(Clusters[First].Low->getValue(),
9793                       Clusters[Last].High->getValue(), SI->getCondition(),
9794                       nullptr, false);
9795   JTCases.emplace_back(std::move(JTH), std::move(JT));
9796 
9797   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
9798                                      JTCases.size() - 1, Prob);
9799   return true;
9800 }
9801 
9802 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
9803                                          const SwitchInst *SI,
9804                                          MachineBasicBlock *DefaultMBB) {
9805 #ifndef NDEBUG
9806   // Clusters must be non-empty, sorted, and only contain Range clusters.
9807   assert(!Clusters.empty());
9808   for (CaseCluster &C : Clusters)
9809     assert(C.Kind == CC_Range);
9810   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
9811     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
9812 #endif
9813 
9814   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9815   if (!TLI.areJTsAllowed(SI->getParent()->getParent()))
9816     return;
9817 
9818   const int64_t N = Clusters.size();
9819   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
9820   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
9821 
9822   if (N < 2 || N < MinJumpTableEntries)
9823     return;
9824 
9825   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
9826   SmallVector<unsigned, 8> TotalCases(N);
9827   for (unsigned i = 0; i < N; ++i) {
9828     const APInt &Hi = Clusters[i].High->getValue();
9829     const APInt &Lo = Clusters[i].Low->getValue();
9830     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
9831     if (i != 0)
9832       TotalCases[i] += TotalCases[i - 1];
9833   }
9834 
9835   // Cheap case: the whole range may be suitable for jump table.
9836   uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
9837   uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
9838   assert(NumCases < UINT64_MAX / 100);
9839   assert(Range >= NumCases);
9840   if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9841     CaseCluster JTCluster;
9842     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
9843       Clusters[0] = JTCluster;
9844       Clusters.resize(1);
9845       return;
9846     }
9847   }
9848 
9849   // The algorithm below is not suitable for -O0.
9850   if (TM.getOptLevel() == CodeGenOpt::None)
9851     return;
9852 
9853   // Split Clusters into minimum number of dense partitions. The algorithm uses
9854   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
9855   // for the Case Statement'" (1994), but builds the MinPartitions array in
9856   // reverse order to make it easier to reconstruct the partitions in ascending
9857   // order. In the choice between two optimal partitionings, it picks the one
9858   // which yields more jump tables.
9859 
9860   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9861   SmallVector<unsigned, 8> MinPartitions(N);
9862   // LastElement[i] is the last element of the partition starting at i.
9863   SmallVector<unsigned, 8> LastElement(N);
9864   // PartitionsScore[i] is used to break ties when choosing between two
9865   // partitionings resulting in the same number of partitions.
9866   SmallVector<unsigned, 8> PartitionsScore(N);
9867   // For PartitionsScore, a small number of comparisons is considered as good as
9868   // a jump table and a single comparison is considered better than a jump
9869   // table.
9870   enum PartitionScores : unsigned {
9871     NoTable = 0,
9872     Table = 1,
9873     FewCases = 1,
9874     SingleCase = 2
9875   };
9876 
9877   // Base case: There is only one way to partition Clusters[N-1].
9878   MinPartitions[N - 1] = 1;
9879   LastElement[N - 1] = N - 1;
9880   PartitionsScore[N - 1] = PartitionScores::SingleCase;
9881 
9882   // Note: loop indexes are signed to avoid underflow.
9883   for (int64_t i = N - 2; i >= 0; i--) {
9884     // Find optimal partitioning of Clusters[i..N-1].
9885     // Baseline: Put Clusters[i] into a partition on its own.
9886     MinPartitions[i] = MinPartitions[i + 1] + 1;
9887     LastElement[i] = i;
9888     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
9889 
9890     // Search for a solution that results in fewer partitions.
9891     for (int64_t j = N - 1; j > i; j--) {
9892       // Try building a partition from Clusters[i..j].
9893       uint64_t Range = getJumpTableRange(Clusters, i, j);
9894       uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j);
9895       assert(NumCases < UINT64_MAX / 100);
9896       assert(Range >= NumCases);
9897       if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9898         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9899         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
9900         int64_t NumEntries = j - i + 1;
9901 
9902         if (NumEntries == 1)
9903           Score += PartitionScores::SingleCase;
9904         else if (NumEntries <= SmallNumberOfEntries)
9905           Score += PartitionScores::FewCases;
9906         else if (NumEntries >= MinJumpTableEntries)
9907           Score += PartitionScores::Table;
9908 
9909         // If this leads to fewer partitions, or to the same number of
9910         // partitions with better score, it is a better partitioning.
9911         if (NumPartitions < MinPartitions[i] ||
9912             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
9913           MinPartitions[i] = NumPartitions;
9914           LastElement[i] = j;
9915           PartitionsScore[i] = Score;
9916         }
9917       }
9918     }
9919   }
9920 
9921   // Iterate over the partitions, replacing some with jump tables in-place.
9922   unsigned DstIndex = 0;
9923   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9924     Last = LastElement[First];
9925     assert(Last >= First);
9926     assert(DstIndex <= First);
9927     unsigned NumClusters = Last - First + 1;
9928 
9929     CaseCluster JTCluster;
9930     if (NumClusters >= MinJumpTableEntries &&
9931         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
9932       Clusters[DstIndex++] = JTCluster;
9933     } else {
9934       for (unsigned I = First; I <= Last; ++I)
9935         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
9936     }
9937   }
9938   Clusters.resize(DstIndex);
9939 }
9940 
9941 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
9942                                         unsigned First, unsigned Last,
9943                                         const SwitchInst *SI,
9944                                         CaseCluster &BTCluster) {
9945   assert(First <= Last);
9946   if (First == Last)
9947     return false;
9948 
9949   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9950   unsigned NumCmps = 0;
9951   for (int64_t I = First; I <= Last; ++I) {
9952     assert(Clusters[I].Kind == CC_Range);
9953     Dests.set(Clusters[I].MBB->getNumber());
9954     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
9955   }
9956   unsigned NumDests = Dests.count();
9957 
9958   APInt Low = Clusters[First].Low->getValue();
9959   APInt High = Clusters[Last].High->getValue();
9960   assert(Low.slt(High));
9961 
9962   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9963   const DataLayout &DL = DAG.getDataLayout();
9964   if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL))
9965     return false;
9966 
9967   APInt LowBound;
9968   APInt CmpRange;
9969 
9970   const int BitWidth = TLI.getPointerTy(DL).getSizeInBits();
9971   assert(TLI.rangeFitsInWord(Low, High, DL) &&
9972          "Case range must fit in bit mask!");
9973 
9974   // Check if the clusters cover a contiguous range such that no value in the
9975   // range will jump to the default statement.
9976   bool ContiguousRange = true;
9977   for (int64_t I = First + 1; I <= Last; ++I) {
9978     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
9979       ContiguousRange = false;
9980       break;
9981     }
9982   }
9983 
9984   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
9985     // Optimize the case where all the case values fit in a word without having
9986     // to subtract minValue. In this case, we can optimize away the subtraction.
9987     LowBound = APInt::getNullValue(Low.getBitWidth());
9988     CmpRange = High;
9989     ContiguousRange = false;
9990   } else {
9991     LowBound = Low;
9992     CmpRange = High - Low;
9993   }
9994 
9995   CaseBitsVector CBV;
9996   auto TotalProb = BranchProbability::getZero();
9997   for (unsigned i = First; i <= Last; ++i) {
9998     // Find the CaseBits for this destination.
9999     unsigned j;
10000     for (j = 0; j < CBV.size(); ++j)
10001       if (CBV[j].BB == Clusters[i].MBB)
10002         break;
10003     if (j == CBV.size())
10004       CBV.push_back(
10005           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
10006     CaseBits *CB = &CBV[j];
10007 
10008     // Update Mask, Bits and ExtraProb.
10009     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
10010     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
10011     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
10012     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
10013     CB->Bits += Hi - Lo + 1;
10014     CB->ExtraProb += Clusters[i].Prob;
10015     TotalProb += Clusters[i].Prob;
10016   }
10017 
10018   BitTestInfo BTI;
10019   llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) {
10020     // Sort by probability first, number of bits second, bit mask third.
10021     if (a.ExtraProb != b.ExtraProb)
10022       return a.ExtraProb > b.ExtraProb;
10023     if (a.Bits != b.Bits)
10024       return a.Bits > b.Bits;
10025     return a.Mask < b.Mask;
10026   });
10027 
10028   for (auto &CB : CBV) {
10029     MachineBasicBlock *BitTestBB =
10030         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
10031     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
10032   }
10033   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
10034                             SI->getCondition(), -1U, MVT::Other, false,
10035                             ContiguousRange, nullptr, nullptr, std::move(BTI),
10036                             TotalProb);
10037 
10038   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
10039                                     BitTestCases.size() - 1, TotalProb);
10040   return true;
10041 }
10042 
10043 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
10044                                               const SwitchInst *SI) {
10045 // Partition Clusters into as few subsets as possible, where each subset has a
10046 // range that fits in a machine word and has <= 3 unique destinations.
10047 
10048 #ifndef NDEBUG
10049   // Clusters must be sorted and contain Range or JumpTable clusters.
10050   assert(!Clusters.empty());
10051   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
10052   for (const CaseCluster &C : Clusters)
10053     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
10054   for (unsigned i = 1; i < Clusters.size(); ++i)
10055     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
10056 #endif
10057 
10058   // The algorithm below is not suitable for -O0.
10059   if (TM.getOptLevel() == CodeGenOpt::None)
10060     return;
10061 
10062   // If target does not have legal shift left, do not emit bit tests at all.
10063   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10064   const DataLayout &DL = DAG.getDataLayout();
10065 
10066   EVT PTy = TLI.getPointerTy(DL);
10067   if (!TLI.isOperationLegal(ISD::SHL, PTy))
10068     return;
10069 
10070   int BitWidth = PTy.getSizeInBits();
10071   const int64_t N = Clusters.size();
10072 
10073   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
10074   SmallVector<unsigned, 8> MinPartitions(N);
10075   // LastElement[i] is the last element of the partition starting at i.
10076   SmallVector<unsigned, 8> LastElement(N);
10077 
10078   // FIXME: This might not be the best algorithm for finding bit test clusters.
10079 
10080   // Base case: There is only one way to partition Clusters[N-1].
10081   MinPartitions[N - 1] = 1;
10082   LastElement[N - 1] = N - 1;
10083 
10084   // Note: loop indexes are signed to avoid underflow.
10085   for (int64_t i = N - 2; i >= 0; --i) {
10086     // Find optimal partitioning of Clusters[i..N-1].
10087     // Baseline: Put Clusters[i] into a partition on its own.
10088     MinPartitions[i] = MinPartitions[i + 1] + 1;
10089     LastElement[i] = i;
10090 
10091     // Search for a solution that results in fewer partitions.
10092     // Note: the search is limited by BitWidth, reducing time complexity.
10093     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
10094       // Try building a partition from Clusters[i..j].
10095 
10096       // Check the range.
10097       if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(),
10098                                Clusters[j].High->getValue(), DL))
10099         continue;
10100 
10101       // Check nbr of destinations and cluster types.
10102       // FIXME: This works, but doesn't seem very efficient.
10103       bool RangesOnly = true;
10104       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
10105       for (int64_t k = i; k <= j; k++) {
10106         if (Clusters[k].Kind != CC_Range) {
10107           RangesOnly = false;
10108           break;
10109         }
10110         Dests.set(Clusters[k].MBB->getNumber());
10111       }
10112       if (!RangesOnly || Dests.count() > 3)
10113         break;
10114 
10115       // Check if it's a better partition.
10116       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
10117       if (NumPartitions < MinPartitions[i]) {
10118         // Found a better partition.
10119         MinPartitions[i] = NumPartitions;
10120         LastElement[i] = j;
10121       }
10122     }
10123   }
10124 
10125   // Iterate over the partitions, replacing with bit-test clusters in-place.
10126   unsigned DstIndex = 0;
10127   for (unsigned First = 0, Last; First < N; First = Last + 1) {
10128     Last = LastElement[First];
10129     assert(First <= Last);
10130     assert(DstIndex <= First);
10131 
10132     CaseCluster BitTestCluster;
10133     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
10134       Clusters[DstIndex++] = BitTestCluster;
10135     } else {
10136       size_t NumClusters = Last - First + 1;
10137       std::memmove(&Clusters[DstIndex], &Clusters[First],
10138                    sizeof(Clusters[0]) * NumClusters);
10139       DstIndex += NumClusters;
10140     }
10141   }
10142   Clusters.resize(DstIndex);
10143 }
10144 
10145 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10146                                         MachineBasicBlock *SwitchMBB,
10147                                         MachineBasicBlock *DefaultMBB) {
10148   MachineFunction *CurMF = FuncInfo.MF;
10149   MachineBasicBlock *NextMBB = nullptr;
10150   MachineFunction::iterator BBI(W.MBB);
10151   if (++BBI != FuncInfo.MF->end())
10152     NextMBB = &*BBI;
10153 
10154   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10155 
10156   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10157 
10158   if (Size == 2 && W.MBB == SwitchMBB) {
10159     // If any two of the cases has the same destination, and if one value
10160     // is the same as the other, but has one bit unset that the other has set,
10161     // use bit manipulation to do two compares at once.  For example:
10162     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10163     // TODO: This could be extended to merge any 2 cases in switches with 3
10164     // cases.
10165     // TODO: Handle cases where W.CaseBB != SwitchBB.
10166     CaseCluster &Small = *W.FirstCluster;
10167     CaseCluster &Big = *W.LastCluster;
10168 
10169     if (Small.Low == Small.High && Big.Low == Big.High &&
10170         Small.MBB == Big.MBB) {
10171       const APInt &SmallValue = Small.Low->getValue();
10172       const APInt &BigValue = Big.Low->getValue();
10173 
10174       // Check that there is only one bit different.
10175       APInt CommonBit = BigValue ^ SmallValue;
10176       if (CommonBit.isPowerOf2()) {
10177         SDValue CondLHS = getValue(Cond);
10178         EVT VT = CondLHS.getValueType();
10179         SDLoc DL = getCurSDLoc();
10180 
10181         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10182                                  DAG.getConstant(CommonBit, DL, VT));
10183         SDValue Cond = DAG.getSetCC(
10184             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10185             ISD::SETEQ);
10186 
10187         // Update successor info.
10188         // Both Small and Big will jump to Small.BB, so we sum up the
10189         // probabilities.
10190         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10191         if (BPI)
10192           addSuccessorWithProb(
10193               SwitchMBB, DefaultMBB,
10194               // The default destination is the first successor in IR.
10195               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10196         else
10197           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10198 
10199         // Insert the true branch.
10200         SDValue BrCond =
10201             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10202                         DAG.getBasicBlock(Small.MBB));
10203         // Insert the false branch.
10204         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10205                              DAG.getBasicBlock(DefaultMBB));
10206 
10207         DAG.setRoot(BrCond);
10208         return;
10209       }
10210     }
10211   }
10212 
10213   if (TM.getOptLevel() != CodeGenOpt::None) {
10214     // Here, we order cases by probability so the most likely case will be
10215     // checked first. However, two clusters can have the same probability in
10216     // which case their relative ordering is non-deterministic. So we use Low
10217     // as a tie-breaker as clusters are guaranteed to never overlap.
10218     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10219                [](const CaseCluster &a, const CaseCluster &b) {
10220       return a.Prob != b.Prob ?
10221              a.Prob > b.Prob :
10222              a.Low->getValue().slt(b.Low->getValue());
10223     });
10224 
10225     // Rearrange the case blocks so that the last one falls through if possible
10226     // without changing the order of probabilities.
10227     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10228       --I;
10229       if (I->Prob > W.LastCluster->Prob)
10230         break;
10231       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10232         std::swap(*I, *W.LastCluster);
10233         break;
10234       }
10235     }
10236   }
10237 
10238   // Compute total probability.
10239   BranchProbability DefaultProb = W.DefaultProb;
10240   BranchProbability UnhandledProbs = DefaultProb;
10241   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10242     UnhandledProbs += I->Prob;
10243 
10244   MachineBasicBlock *CurMBB = W.MBB;
10245   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10246     MachineBasicBlock *Fallthrough;
10247     if (I == W.LastCluster) {
10248       // For the last cluster, fall through to the default destination.
10249       Fallthrough = DefaultMBB;
10250     } else {
10251       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10252       CurMF->insert(BBI, Fallthrough);
10253       // Put Cond in a virtual register to make it available from the new blocks.
10254       ExportFromCurrentBlock(Cond);
10255     }
10256     UnhandledProbs -= I->Prob;
10257 
10258     switch (I->Kind) {
10259       case CC_JumpTable: {
10260         // FIXME: Optimize away range check based on pivot comparisons.
10261         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
10262         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
10263 
10264         // The jump block hasn't been inserted yet; insert it here.
10265         MachineBasicBlock *JumpMBB = JT->MBB;
10266         CurMF->insert(BBI, JumpMBB);
10267 
10268         auto JumpProb = I->Prob;
10269         auto FallthroughProb = UnhandledProbs;
10270 
10271         // If the default statement is a target of the jump table, we evenly
10272         // distribute the default probability to successors of CurMBB. Also
10273         // update the probability on the edge from JumpMBB to Fallthrough.
10274         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10275                                               SE = JumpMBB->succ_end();
10276              SI != SE; ++SI) {
10277           if (*SI == DefaultMBB) {
10278             JumpProb += DefaultProb / 2;
10279             FallthroughProb -= DefaultProb / 2;
10280             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10281             JumpMBB->normalizeSuccProbs();
10282             break;
10283           }
10284         }
10285 
10286         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10287         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10288         CurMBB->normalizeSuccProbs();
10289 
10290         // The jump table header will be inserted in our current block, do the
10291         // range check, and fall through to our fallthrough block.
10292         JTH->HeaderBB = CurMBB;
10293         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10294 
10295         // If we're in the right place, emit the jump table header right now.
10296         if (CurMBB == SwitchMBB) {
10297           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10298           JTH->Emitted = true;
10299         }
10300         break;
10301       }
10302       case CC_BitTests: {
10303         // FIXME: Optimize away range check based on pivot comparisons.
10304         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
10305 
10306         // The bit test blocks haven't been inserted yet; insert them here.
10307         for (BitTestCase &BTC : BTB->Cases)
10308           CurMF->insert(BBI, BTC.ThisBB);
10309 
10310         // Fill in fields of the BitTestBlock.
10311         BTB->Parent = CurMBB;
10312         BTB->Default = Fallthrough;
10313 
10314         BTB->DefaultProb = UnhandledProbs;
10315         // If the cases in bit test don't form a contiguous range, we evenly
10316         // distribute the probability on the edge to Fallthrough to two
10317         // successors of CurMBB.
10318         if (!BTB->ContiguousRange) {
10319           BTB->Prob += DefaultProb / 2;
10320           BTB->DefaultProb -= DefaultProb / 2;
10321         }
10322 
10323         // If we're in the right place, emit the bit test header right now.
10324         if (CurMBB == SwitchMBB) {
10325           visitBitTestHeader(*BTB, SwitchMBB);
10326           BTB->Emitted = true;
10327         }
10328         break;
10329       }
10330       case CC_Range: {
10331         const Value *RHS, *LHS, *MHS;
10332         ISD::CondCode CC;
10333         if (I->Low == I->High) {
10334           // Check Cond == I->Low.
10335           CC = ISD::SETEQ;
10336           LHS = Cond;
10337           RHS=I->Low;
10338           MHS = nullptr;
10339         } else {
10340           // Check I->Low <= Cond <= I->High.
10341           CC = ISD::SETLE;
10342           LHS = I->Low;
10343           MHS = Cond;
10344           RHS = I->High;
10345         }
10346 
10347         // The false probability is the sum of all unhandled cases.
10348         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10349                      getCurSDLoc(), I->Prob, UnhandledProbs);
10350 
10351         if (CurMBB == SwitchMBB)
10352           visitSwitchCase(CB, SwitchMBB);
10353         else
10354           SwitchCases.push_back(CB);
10355 
10356         break;
10357       }
10358     }
10359     CurMBB = Fallthrough;
10360   }
10361 }
10362 
10363 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10364                                               CaseClusterIt First,
10365                                               CaseClusterIt Last) {
10366   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10367     if (X.Prob != CC.Prob)
10368       return X.Prob > CC.Prob;
10369 
10370     // Ties are broken by comparing the case value.
10371     return X.Low->getValue().slt(CC.Low->getValue());
10372   });
10373 }
10374 
10375 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10376                                         const SwitchWorkListItem &W,
10377                                         Value *Cond,
10378                                         MachineBasicBlock *SwitchMBB) {
10379   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10380          "Clusters not sorted?");
10381 
10382   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10383 
10384   // Balance the tree based on branch probabilities to create a near-optimal (in
10385   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10386   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10387   CaseClusterIt LastLeft = W.FirstCluster;
10388   CaseClusterIt FirstRight = W.LastCluster;
10389   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10390   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10391 
10392   // Move LastLeft and FirstRight towards each other from opposite directions to
10393   // find a partitioning of the clusters which balances the probability on both
10394   // sides. If LeftProb and RightProb are equal, alternate which side is
10395   // taken to ensure 0-probability nodes are distributed evenly.
10396   unsigned I = 0;
10397   while (LastLeft + 1 < FirstRight) {
10398     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10399       LeftProb += (++LastLeft)->Prob;
10400     else
10401       RightProb += (--FirstRight)->Prob;
10402     I++;
10403   }
10404 
10405   while (true) {
10406     // Our binary search tree differs from a typical BST in that ours can have up
10407     // to three values in each leaf. The pivot selection above doesn't take that
10408     // into account, which means the tree might require more nodes and be less
10409     // efficient. We compensate for this here.
10410 
10411     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10412     unsigned NumRight = W.LastCluster - FirstRight + 1;
10413 
10414     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10415       // If one side has less than 3 clusters, and the other has more than 3,
10416       // consider taking a cluster from the other side.
10417 
10418       if (NumLeft < NumRight) {
10419         // Consider moving the first cluster on the right to the left side.
10420         CaseCluster &CC = *FirstRight;
10421         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10422         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10423         if (LeftSideRank <= RightSideRank) {
10424           // Moving the cluster to the left does not demote it.
10425           ++LastLeft;
10426           ++FirstRight;
10427           continue;
10428         }
10429       } else {
10430         assert(NumRight < NumLeft);
10431         // Consider moving the last element on the left to the right side.
10432         CaseCluster &CC = *LastLeft;
10433         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10434         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10435         if (RightSideRank <= LeftSideRank) {
10436           // Moving the cluster to the right does not demot it.
10437           --LastLeft;
10438           --FirstRight;
10439           continue;
10440         }
10441       }
10442     }
10443     break;
10444   }
10445 
10446   assert(LastLeft + 1 == FirstRight);
10447   assert(LastLeft >= W.FirstCluster);
10448   assert(FirstRight <= W.LastCluster);
10449 
10450   // Use the first element on the right as pivot since we will make less-than
10451   // comparisons against it.
10452   CaseClusterIt PivotCluster = FirstRight;
10453   assert(PivotCluster > W.FirstCluster);
10454   assert(PivotCluster <= W.LastCluster);
10455 
10456   CaseClusterIt FirstLeft = W.FirstCluster;
10457   CaseClusterIt LastRight = W.LastCluster;
10458 
10459   const ConstantInt *Pivot = PivotCluster->Low;
10460 
10461   // New blocks will be inserted immediately after the current one.
10462   MachineFunction::iterator BBI(W.MBB);
10463   ++BBI;
10464 
10465   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10466   // we can branch to its destination directly if it's squeezed exactly in
10467   // between the known lower bound and Pivot - 1.
10468   MachineBasicBlock *LeftMBB;
10469   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10470       FirstLeft->Low == W.GE &&
10471       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10472     LeftMBB = FirstLeft->MBB;
10473   } else {
10474     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10475     FuncInfo.MF->insert(BBI, LeftMBB);
10476     WorkList.push_back(
10477         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10478     // Put Cond in a virtual register to make it available from the new blocks.
10479     ExportFromCurrentBlock(Cond);
10480   }
10481 
10482   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10483   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10484   // directly if RHS.High equals the current upper bound.
10485   MachineBasicBlock *RightMBB;
10486   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10487       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10488     RightMBB = FirstRight->MBB;
10489   } else {
10490     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10491     FuncInfo.MF->insert(BBI, RightMBB);
10492     WorkList.push_back(
10493         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10494     // Put Cond in a virtual register to make it available from the new blocks.
10495     ExportFromCurrentBlock(Cond);
10496   }
10497 
10498   // Create the CaseBlock record that will be used to lower the branch.
10499   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10500                getCurSDLoc(), LeftProb, RightProb);
10501 
10502   if (W.MBB == SwitchMBB)
10503     visitSwitchCase(CB, SwitchMBB);
10504   else
10505     SwitchCases.push_back(CB);
10506 }
10507 
10508 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10509 // from the swith statement.
10510 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10511                                             BranchProbability PeeledCaseProb) {
10512   if (PeeledCaseProb == BranchProbability::getOne())
10513     return BranchProbability::getZero();
10514   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10515 
10516   uint32_t Numerator = CaseProb.getNumerator();
10517   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10518   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10519 }
10520 
10521 // Try to peel the top probability case if it exceeds the threshold.
10522 // Return current MachineBasicBlock for the switch statement if the peeling
10523 // does not occur.
10524 // If the peeling is performed, return the newly created MachineBasicBlock
10525 // for the peeled switch statement. Also update Clusters to remove the peeled
10526 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10527 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10528     const SwitchInst &SI, CaseClusterVector &Clusters,
10529     BranchProbability &PeeledCaseProb) {
10530   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10531   // Don't perform if there is only one cluster or optimizing for size.
10532   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10533       TM.getOptLevel() == CodeGenOpt::None ||
10534       SwitchMBB->getParent()->getFunction().optForMinSize())
10535     return SwitchMBB;
10536 
10537   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10538   unsigned PeeledCaseIndex = 0;
10539   bool SwitchPeeled = false;
10540   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10541     CaseCluster &CC = Clusters[Index];
10542     if (CC.Prob < TopCaseProb)
10543       continue;
10544     TopCaseProb = CC.Prob;
10545     PeeledCaseIndex = Index;
10546     SwitchPeeled = true;
10547   }
10548   if (!SwitchPeeled)
10549     return SwitchMBB;
10550 
10551   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10552                     << TopCaseProb << "\n");
10553 
10554   // Record the MBB for the peeled switch statement.
10555   MachineFunction::iterator BBI(SwitchMBB);
10556   ++BBI;
10557   MachineBasicBlock *PeeledSwitchMBB =
10558       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10559   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10560 
10561   ExportFromCurrentBlock(SI.getCondition());
10562   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10563   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10564                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10565   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10566 
10567   Clusters.erase(PeeledCaseIt);
10568   for (CaseCluster &CC : Clusters) {
10569     LLVM_DEBUG(
10570         dbgs() << "Scale the probablity for one cluster, before scaling: "
10571                << CC.Prob << "\n");
10572     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10573     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10574   }
10575   PeeledCaseProb = TopCaseProb;
10576   return PeeledSwitchMBB;
10577 }
10578 
10579 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10580   // Extract cases from the switch.
10581   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10582   CaseClusterVector Clusters;
10583   Clusters.reserve(SI.getNumCases());
10584   for (auto I : SI.cases()) {
10585     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10586     const ConstantInt *CaseVal = I.getCaseValue();
10587     BranchProbability Prob =
10588         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10589             : BranchProbability(1, SI.getNumCases() + 1);
10590     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10591   }
10592 
10593   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10594 
10595   // Cluster adjacent cases with the same destination. We do this at all
10596   // optimization levels because it's cheap to do and will make codegen faster
10597   // if there are many clusters.
10598   sortAndRangeify(Clusters);
10599 
10600   if (TM.getOptLevel() != CodeGenOpt::None) {
10601     // Replace an unreachable default with the most popular destination.
10602     // FIXME: Exploit unreachable default more aggressively.
10603     bool UnreachableDefault =
10604         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
10605     if (UnreachableDefault && !Clusters.empty()) {
10606       DenseMap<const BasicBlock *, unsigned> Popularity;
10607       unsigned MaxPop = 0;
10608       const BasicBlock *MaxBB = nullptr;
10609       for (auto I : SI.cases()) {
10610         const BasicBlock *BB = I.getCaseSuccessor();
10611         if (++Popularity[BB] > MaxPop) {
10612           MaxPop = Popularity[BB];
10613           MaxBB = BB;
10614         }
10615       }
10616       // Set new default.
10617       assert(MaxPop > 0 && MaxBB);
10618       DefaultMBB = FuncInfo.MBBMap[MaxBB];
10619 
10620       // Remove cases that were pointing to the destination that is now the
10621       // default.
10622       CaseClusterVector New;
10623       New.reserve(Clusters.size());
10624       for (CaseCluster &CC : Clusters) {
10625         if (CC.MBB != DefaultMBB)
10626           New.push_back(CC);
10627       }
10628       Clusters = std::move(New);
10629     }
10630   }
10631 
10632   // The branch probablity of the peeled case.
10633   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10634   MachineBasicBlock *PeeledSwitchMBB =
10635       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10636 
10637   // If there is only the default destination, jump there directly.
10638   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10639   if (Clusters.empty()) {
10640     assert(PeeledSwitchMBB == SwitchMBB);
10641     SwitchMBB->addSuccessor(DefaultMBB);
10642     if (DefaultMBB != NextBlock(SwitchMBB)) {
10643       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10644                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10645     }
10646     return;
10647   }
10648 
10649   findJumpTables(Clusters, &SI, DefaultMBB);
10650   findBitTestClusters(Clusters, &SI);
10651 
10652   LLVM_DEBUG({
10653     dbgs() << "Case clusters: ";
10654     for (const CaseCluster &C : Clusters) {
10655       if (C.Kind == CC_JumpTable)
10656         dbgs() << "JT:";
10657       if (C.Kind == CC_BitTests)
10658         dbgs() << "BT:";
10659 
10660       C.Low->getValue().print(dbgs(), true);
10661       if (C.Low != C.High) {
10662         dbgs() << '-';
10663         C.High->getValue().print(dbgs(), true);
10664       }
10665       dbgs() << ' ';
10666     }
10667     dbgs() << '\n';
10668   });
10669 
10670   assert(!Clusters.empty());
10671   SwitchWorkList WorkList;
10672   CaseClusterIt First = Clusters.begin();
10673   CaseClusterIt Last = Clusters.end() - 1;
10674   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10675   // Scale the branchprobability for DefaultMBB if the peel occurs and
10676   // DefaultMBB is not replaced.
10677   if (PeeledCaseProb != BranchProbability::getZero() &&
10678       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10679     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10680   WorkList.push_back(
10681       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10682 
10683   while (!WorkList.empty()) {
10684     SwitchWorkListItem W = WorkList.back();
10685     WorkList.pop_back();
10686     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10687 
10688     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10689         !DefaultMBB->getParent()->getFunction().optForMinSize()) {
10690       // For optimized builds, lower large range as a balanced binary tree.
10691       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10692       continue;
10693     }
10694 
10695     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10696   }
10697 }
10698