1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SDNodeDbgValue.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/PostOrderIterator.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Constants.h" 23 #include "llvm/CallingConv.h" 24 #include "llvm/DerivedTypes.h" 25 #include "llvm/Function.h" 26 #include "llvm/GlobalVariable.h" 27 #include "llvm/InlineAsm.h" 28 #include "llvm/Instructions.h" 29 #include "llvm/Intrinsics.h" 30 #include "llvm/IntrinsicInst.h" 31 #include "llvm/LLVMContext.h" 32 #include "llvm/Module.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/FastISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCStrategy.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineJumpTableInfo.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/CodeGen/MachineRegisterInfo.h" 44 #include "llvm/CodeGen/PseudoSourceValue.h" 45 #include "llvm/CodeGen/SelectionDAG.h" 46 #include "llvm/Analysis/DebugInfo.h" 47 #include "llvm/Target/TargetData.h" 48 #include "llvm/Target/TargetFrameLowering.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetIntrinsicInfo.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetOptions.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include <algorithm> 59 using namespace llvm; 60 61 /// LimitFloatPrecision - Generate low-precision inline sequences for 62 /// some float libcalls (6, 8 or 12 bits). 63 static unsigned LimitFloatPrecision; 64 65 static cl::opt<unsigned, true> 66 LimitFPPrecision("limit-float-precision", 67 cl::desc("Generate low-precision inline sequences " 68 "for some float libcalls"), 69 cl::location(LimitFloatPrecision), 70 cl::init(0)); 71 72 // Limit the width of DAG chains. This is important in general to prevent 73 // prevent DAG-based analysis from blowing up. For example, alias analysis and 74 // load clustering may not complete in reasonable time. It is difficult to 75 // recognize and avoid this situation within each individual analysis, and 76 // future analyses are likely to have the same behavior. Limiting DAG width is 77 // the safe approach, and will be especially important with global DAGs. 78 // 79 // MaxParallelChains default is arbitrarily high to avoid affecting 80 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 81 // sequence over this should have been converted to llvm.memcpy by the 82 // frontend. It easy to induce this behavior with .ll code such as: 83 // %buffer = alloca [4096 x i8] 84 // %data = load [4096 x i8]* %argPtr 85 // store [4096 x i8] %data, [4096 x i8]* %buffer 86 static const unsigned MaxParallelChains = 64; 87 88 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 89 const SDValue *Parts, unsigned NumParts, 90 EVT PartVT, EVT ValueVT); 91 92 /// getCopyFromParts - Create a value that contains the specified legal parts 93 /// combined into the value they represent. If the parts combine to a type 94 /// larger then ValueVT then AssertOp can be used to specify whether the extra 95 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 96 /// (ISD::AssertSext). 97 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL, 98 const SDValue *Parts, 99 unsigned NumParts, EVT PartVT, EVT ValueVT, 100 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 101 if (ValueVT.isVector()) 102 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT); 103 104 assert(NumParts > 0 && "No parts to assemble!"); 105 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 106 SDValue Val = Parts[0]; 107 108 if (NumParts > 1) { 109 // Assemble the value from multiple parts. 110 if (ValueVT.isInteger()) { 111 unsigned PartBits = PartVT.getSizeInBits(); 112 unsigned ValueBits = ValueVT.getSizeInBits(); 113 114 // Assemble the power of 2 part. 115 unsigned RoundParts = NumParts & (NumParts - 1) ? 116 1 << Log2_32(NumParts) : NumParts; 117 unsigned RoundBits = PartBits * RoundParts; 118 EVT RoundVT = RoundBits == ValueBits ? 119 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 120 SDValue Lo, Hi; 121 122 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 123 124 if (RoundParts > 2) { 125 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 126 PartVT, HalfVT); 127 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 128 RoundParts / 2, PartVT, HalfVT); 129 } else { 130 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 131 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 132 } 133 134 if (TLI.isBigEndian()) 135 std::swap(Lo, Hi); 136 137 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 138 139 if (RoundParts < NumParts) { 140 // Assemble the trailing non-power-of-2 part. 141 unsigned OddParts = NumParts - RoundParts; 142 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 143 Hi = getCopyFromParts(DAG, DL, 144 Parts + RoundParts, OddParts, PartVT, OddVT); 145 146 // Combine the round and odd parts. 147 Lo = Val; 148 if (TLI.isBigEndian()) 149 std::swap(Lo, Hi); 150 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 151 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 152 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 153 DAG.getConstant(Lo.getValueType().getSizeInBits(), 154 TLI.getPointerTy())); 155 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 156 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 157 } 158 } else if (PartVT.isFloatingPoint()) { 159 // FP split into multiple FP parts (for ppcf128) 160 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 161 "Unexpected split"); 162 SDValue Lo, Hi; 163 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 164 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 165 if (TLI.isBigEndian()) 166 std::swap(Lo, Hi); 167 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 168 } else { 169 // FP split into integer parts (soft fp) 170 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 171 !PartVT.isVector() && "Unexpected split"); 172 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 173 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT); 174 } 175 } 176 177 // There is now one part, held in Val. Correct it to match ValueVT. 178 PartVT = Val.getValueType(); 179 180 if (PartVT == ValueVT) 181 return Val; 182 183 if (PartVT.isInteger() && ValueVT.isInteger()) { 184 if (ValueVT.bitsLT(PartVT)) { 185 // For a truncate, see if we have any information to 186 // indicate whether the truncated bits will always be 187 // zero or sign-extension. 188 if (AssertOp != ISD::DELETED_NODE) 189 Val = DAG.getNode(AssertOp, DL, PartVT, Val, 190 DAG.getValueType(ValueVT)); 191 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 192 } 193 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 194 } 195 196 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 197 // FP_ROUND's are always exact here. 198 if (ValueVT.bitsLT(Val.getValueType())) 199 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 200 DAG.getIntPtrConstant(1)); 201 202 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 203 } 204 205 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 206 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 207 208 llvm_unreachable("Unknown mismatch!"); 209 return SDValue(); 210 } 211 212 /// getCopyFromParts - Create a value that contains the specified legal parts 213 /// combined into the value they represent. If the parts combine to a type 214 /// larger then ValueVT then AssertOp can be used to specify whether the extra 215 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 216 /// (ISD::AssertSext). 217 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 218 const SDValue *Parts, unsigned NumParts, 219 EVT PartVT, EVT ValueVT) { 220 assert(ValueVT.isVector() && "Not a vector value"); 221 assert(NumParts > 0 && "No parts to assemble!"); 222 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 223 SDValue Val = Parts[0]; 224 225 // Handle a multi-element vector. 226 if (NumParts > 1) { 227 EVT IntermediateVT, RegisterVT; 228 unsigned NumIntermediates; 229 unsigned NumRegs = 230 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 231 NumIntermediates, RegisterVT); 232 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 233 NumParts = NumRegs; // Silence a compiler warning. 234 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 235 assert(RegisterVT == Parts[0].getValueType() && 236 "Part type doesn't match part!"); 237 238 // Assemble the parts into intermediate operands. 239 SmallVector<SDValue, 8> Ops(NumIntermediates); 240 if (NumIntermediates == NumParts) { 241 // If the register was not expanded, truncate or copy the value, 242 // as appropriate. 243 for (unsigned i = 0; i != NumParts; ++i) 244 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 245 PartVT, IntermediateVT); 246 } else if (NumParts > 0) { 247 // If the intermediate type was expanded, build the intermediate 248 // operands from the parts. 249 assert(NumParts % NumIntermediates == 0 && 250 "Must expand into a divisible number of parts!"); 251 unsigned Factor = NumParts / NumIntermediates; 252 for (unsigned i = 0; i != NumIntermediates; ++i) 253 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 254 PartVT, IntermediateVT); 255 } 256 257 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 258 // intermediate operands. 259 Val = DAG.getNode(IntermediateVT.isVector() ? 260 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 261 ValueVT, &Ops[0], NumIntermediates); 262 } 263 264 // There is now one part, held in Val. Correct it to match ValueVT. 265 PartVT = Val.getValueType(); 266 267 if (PartVT == ValueVT) 268 return Val; 269 270 if (PartVT.isVector()) { 271 // If the element type of the source/dest vectors are the same, but the 272 // parts vector has more elements than the value vector, then we have a 273 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 274 // elements we want. 275 if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 276 assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 277 "Cannot narrow, it would be a lossy transformation"); 278 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 279 DAG.getIntPtrConstant(0)); 280 } 281 282 // Vector/Vector bitcast. 283 if (ValueVT.getSizeInBits() == PartVT.getSizeInBits()) 284 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 285 286 assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 287 "Cannot handle this kind of promotion"); 288 // Promoted vector extract 289 bool Smaller = ValueVT.bitsLE(PartVT); 290 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 291 DL, ValueVT, Val); 292 293 } 294 295 // Trivial bitcast if the types are the same size and the destination 296 // vector type is legal. 297 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() && 298 TLI.isTypeLegal(ValueVT)) 299 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 300 301 // Handle cases such as i8 -> <1 x i1> 302 assert(ValueVT.getVectorNumElements() == 1 && 303 "Only trivial scalar-to-vector conversions should get here!"); 304 305 if (ValueVT.getVectorNumElements() == 1 && 306 ValueVT.getVectorElementType() != PartVT) { 307 bool Smaller = ValueVT.bitsLE(PartVT); 308 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 309 DL, ValueVT.getScalarType(), Val); 310 } 311 312 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 313 } 314 315 316 317 318 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl, 319 SDValue Val, SDValue *Parts, unsigned NumParts, 320 EVT PartVT); 321 322 /// getCopyToParts - Create a series of nodes that contain the specified value 323 /// split into legal parts. If the parts contain more bits than Val, then, for 324 /// integers, ExtendKind can be used to specify how to generate the extra bits. 325 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL, 326 SDValue Val, SDValue *Parts, unsigned NumParts, 327 EVT PartVT, 328 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 329 EVT ValueVT = Val.getValueType(); 330 331 // Handle the vector case separately. 332 if (ValueVT.isVector()) 333 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT); 334 335 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 336 unsigned PartBits = PartVT.getSizeInBits(); 337 unsigned OrigNumParts = NumParts; 338 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 339 340 if (NumParts == 0) 341 return; 342 343 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 344 if (PartVT == ValueVT) { 345 assert(NumParts == 1 && "No-op copy with multiple parts!"); 346 Parts[0] = Val; 347 return; 348 } 349 350 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 351 // If the parts cover more bits than the value has, promote the value. 352 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 353 assert(NumParts == 1 && "Do not know what to promote to!"); 354 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 355 } else { 356 assert(PartVT.isInteger() && ValueVT.isInteger() && 357 "Unknown mismatch!"); 358 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 359 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 360 } 361 } else if (PartBits == ValueVT.getSizeInBits()) { 362 // Different types of the same size. 363 assert(NumParts == 1 && PartVT != ValueVT); 364 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 365 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 366 // If the parts cover less bits than value has, truncate the value. 367 assert(PartVT.isInteger() && ValueVT.isInteger() && 368 "Unknown mismatch!"); 369 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 370 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 371 } 372 373 // The value may have changed - recompute ValueVT. 374 ValueVT = Val.getValueType(); 375 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 376 "Failed to tile the value with PartVT!"); 377 378 if (NumParts == 1) { 379 assert(PartVT == ValueVT && "Type conversion failed!"); 380 Parts[0] = Val; 381 return; 382 } 383 384 // Expand the value into multiple parts. 385 if (NumParts & (NumParts - 1)) { 386 // The number of parts is not a power of 2. Split off and copy the tail. 387 assert(PartVT.isInteger() && ValueVT.isInteger() && 388 "Do not know what to expand to!"); 389 unsigned RoundParts = 1 << Log2_32(NumParts); 390 unsigned RoundBits = RoundParts * PartBits; 391 unsigned OddParts = NumParts - RoundParts; 392 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 393 DAG.getIntPtrConstant(RoundBits)); 394 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT); 395 396 if (TLI.isBigEndian()) 397 // The odd parts were reversed by getCopyToParts - unreverse them. 398 std::reverse(Parts + RoundParts, Parts + NumParts); 399 400 NumParts = RoundParts; 401 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 402 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 403 } 404 405 // The number of parts is a power of 2. Repeatedly bisect the value using 406 // EXTRACT_ELEMENT. 407 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 408 EVT::getIntegerVT(*DAG.getContext(), 409 ValueVT.getSizeInBits()), 410 Val); 411 412 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 413 for (unsigned i = 0; i < NumParts; i += StepSize) { 414 unsigned ThisBits = StepSize * PartBits / 2; 415 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 416 SDValue &Part0 = Parts[i]; 417 SDValue &Part1 = Parts[i+StepSize/2]; 418 419 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 420 ThisVT, Part0, DAG.getIntPtrConstant(1)); 421 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 422 ThisVT, Part0, DAG.getIntPtrConstant(0)); 423 424 if (ThisBits == PartBits && ThisVT != PartVT) { 425 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 426 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 427 } 428 } 429 } 430 431 if (TLI.isBigEndian()) 432 std::reverse(Parts, Parts + OrigNumParts); 433 } 434 435 436 /// getCopyToPartsVector - Create a series of nodes that contain the specified 437 /// value split into legal parts. 438 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL, 439 SDValue Val, SDValue *Parts, unsigned NumParts, 440 EVT PartVT) { 441 EVT ValueVT = Val.getValueType(); 442 assert(ValueVT.isVector() && "Not a vector"); 443 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 444 445 if (NumParts == 1) { 446 if (PartVT == ValueVT) { 447 // Nothing to do. 448 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 449 // Bitconvert vector->vector case. 450 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 451 } else if (PartVT.isVector() && 452 PartVT.getVectorElementType() == ValueVT.getVectorElementType() && 453 PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 454 EVT ElementVT = PartVT.getVectorElementType(); 455 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 456 // undef elements. 457 SmallVector<SDValue, 16> Ops; 458 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 459 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 460 ElementVT, Val, DAG.getIntPtrConstant(i))); 461 462 for (unsigned i = ValueVT.getVectorNumElements(), 463 e = PartVT.getVectorNumElements(); i != e; ++i) 464 Ops.push_back(DAG.getUNDEF(ElementVT)); 465 466 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 467 468 // FIXME: Use CONCAT for 2x -> 4x. 469 470 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 471 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 472 } else if (PartVT.isVector() && 473 PartVT.getVectorElementType().bitsGE( 474 ValueVT.getVectorElementType()) && 475 PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 476 477 // Promoted vector extract 478 bool Smaller = PartVT.bitsLE(ValueVT); 479 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 480 DL, PartVT, Val); 481 } else{ 482 // Vector -> scalar conversion. 483 assert(ValueVT.getVectorNumElements() == 1 && 484 "Only trivial vector-to-scalar conversions should get here!"); 485 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 486 PartVT, Val, DAG.getIntPtrConstant(0)); 487 488 bool Smaller = ValueVT.bitsLE(PartVT); 489 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 490 DL, PartVT, Val); 491 } 492 493 Parts[0] = Val; 494 return; 495 } 496 497 // Handle a multi-element vector. 498 EVT IntermediateVT, RegisterVT; 499 unsigned NumIntermediates; 500 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 501 IntermediateVT, 502 NumIntermediates, RegisterVT); 503 unsigned NumElements = ValueVT.getVectorNumElements(); 504 505 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 506 NumParts = NumRegs; // Silence a compiler warning. 507 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 508 509 // Split the vector into intermediate operands. 510 SmallVector<SDValue, 8> Ops(NumIntermediates); 511 for (unsigned i = 0; i != NumIntermediates; ++i) { 512 if (IntermediateVT.isVector()) 513 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 514 IntermediateVT, Val, 515 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates))); 516 else 517 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 518 IntermediateVT, Val, DAG.getIntPtrConstant(i)); 519 } 520 521 // Split the intermediate operands into legal parts. 522 if (NumParts == NumIntermediates) { 523 // If the register was not expanded, promote or copy the value, 524 // as appropriate. 525 for (unsigned i = 0; i != NumParts; ++i) 526 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT); 527 } else if (NumParts > 0) { 528 // If the intermediate type was expanded, split each the value into 529 // legal parts. 530 assert(NumParts % NumIntermediates == 0 && 531 "Must expand into a divisible number of parts!"); 532 unsigned Factor = NumParts / NumIntermediates; 533 for (unsigned i = 0; i != NumIntermediates; ++i) 534 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT); 535 } 536 } 537 538 539 540 541 namespace { 542 /// RegsForValue - This struct represents the registers (physical or virtual) 543 /// that a particular set of values is assigned, and the type information 544 /// about the value. The most common situation is to represent one value at a 545 /// time, but struct or array values are handled element-wise as multiple 546 /// values. The splitting of aggregates is performed recursively, so that we 547 /// never have aggregate-typed registers. The values at this point do not 548 /// necessarily have legal types, so each value may require one or more 549 /// registers of some legal type. 550 /// 551 struct RegsForValue { 552 /// ValueVTs - The value types of the values, which may not be legal, and 553 /// may need be promoted or synthesized from one or more registers. 554 /// 555 SmallVector<EVT, 4> ValueVTs; 556 557 /// RegVTs - The value types of the registers. This is the same size as 558 /// ValueVTs and it records, for each value, what the type of the assigned 559 /// register or registers are. (Individual values are never synthesized 560 /// from more than one type of register.) 561 /// 562 /// With virtual registers, the contents of RegVTs is redundant with TLI's 563 /// getRegisterType member function, however when with physical registers 564 /// it is necessary to have a separate record of the types. 565 /// 566 SmallVector<EVT, 4> RegVTs; 567 568 /// Regs - This list holds the registers assigned to the values. 569 /// Each legal or promoted value requires one register, and each 570 /// expanded value requires multiple registers. 571 /// 572 SmallVector<unsigned, 4> Regs; 573 574 RegsForValue() {} 575 576 RegsForValue(const SmallVector<unsigned, 4> ®s, 577 EVT regvt, EVT valuevt) 578 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 579 580 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 581 unsigned Reg, Type *Ty) { 582 ComputeValueVTs(tli, Ty, ValueVTs); 583 584 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 585 EVT ValueVT = ValueVTs[Value]; 586 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 587 EVT RegisterVT = tli.getRegisterType(Context, ValueVT); 588 for (unsigned i = 0; i != NumRegs; ++i) 589 Regs.push_back(Reg + i); 590 RegVTs.push_back(RegisterVT); 591 Reg += NumRegs; 592 } 593 } 594 595 /// areValueTypesLegal - Return true if types of all the values are legal. 596 bool areValueTypesLegal(const TargetLowering &TLI) { 597 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 598 EVT RegisterVT = RegVTs[Value]; 599 if (!TLI.isTypeLegal(RegisterVT)) 600 return false; 601 } 602 return true; 603 } 604 605 /// append - Add the specified values to this one. 606 void append(const RegsForValue &RHS) { 607 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 608 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 609 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 610 } 611 612 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 613 /// this value and returns the result as a ValueVTs value. This uses 614 /// Chain/Flag as the input and updates them for the output Chain/Flag. 615 /// If the Flag pointer is NULL, no flag is used. 616 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 617 DebugLoc dl, 618 SDValue &Chain, SDValue *Flag) const; 619 620 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 621 /// specified value into the registers specified by this object. This uses 622 /// Chain/Flag as the input and updates them for the output Chain/Flag. 623 /// If the Flag pointer is NULL, no flag is used. 624 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 625 SDValue &Chain, SDValue *Flag) const; 626 627 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 628 /// operand list. This adds the code marker, matching input operand index 629 /// (if applicable), and includes the number of values added into it. 630 void AddInlineAsmOperands(unsigned Kind, 631 bool HasMatching, unsigned MatchingIdx, 632 SelectionDAG &DAG, 633 std::vector<SDValue> &Ops) const; 634 }; 635 } 636 637 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 638 /// this value and returns the result as a ValueVT value. This uses 639 /// Chain/Flag as the input and updates them for the output Chain/Flag. 640 /// If the Flag pointer is NULL, no flag is used. 641 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 642 FunctionLoweringInfo &FuncInfo, 643 DebugLoc dl, 644 SDValue &Chain, SDValue *Flag) const { 645 // A Value with type {} or [0 x %t] needs no registers. 646 if (ValueVTs.empty()) 647 return SDValue(); 648 649 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 650 651 // Assemble the legal parts into the final values. 652 SmallVector<SDValue, 4> Values(ValueVTs.size()); 653 SmallVector<SDValue, 8> Parts; 654 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 655 // Copy the legal parts from the registers. 656 EVT ValueVT = ValueVTs[Value]; 657 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 658 EVT RegisterVT = RegVTs[Value]; 659 660 Parts.resize(NumRegs); 661 for (unsigned i = 0; i != NumRegs; ++i) { 662 SDValue P; 663 if (Flag == 0) { 664 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 665 } else { 666 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 667 *Flag = P.getValue(2); 668 } 669 670 Chain = P.getValue(1); 671 Parts[i] = P; 672 673 // If the source register was virtual and if we know something about it, 674 // add an assert node. 675 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 676 !RegisterVT.isInteger() || RegisterVT.isVector()) 677 continue; 678 679 const FunctionLoweringInfo::LiveOutInfo *LOI = 680 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 681 if (!LOI) 682 continue; 683 684 unsigned RegSize = RegisterVT.getSizeInBits(); 685 unsigned NumSignBits = LOI->NumSignBits; 686 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 687 688 // FIXME: We capture more information than the dag can represent. For 689 // now, just use the tightest assertzext/assertsext possible. 690 bool isSExt = true; 691 EVT FromVT(MVT::Other); 692 if (NumSignBits == RegSize) 693 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 694 else if (NumZeroBits >= RegSize-1) 695 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 696 else if (NumSignBits > RegSize-8) 697 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 698 else if (NumZeroBits >= RegSize-8) 699 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 700 else if (NumSignBits > RegSize-16) 701 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 702 else if (NumZeroBits >= RegSize-16) 703 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 704 else if (NumSignBits > RegSize-32) 705 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 706 else if (NumZeroBits >= RegSize-32) 707 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 708 else 709 continue; 710 711 // Add an assertion node. 712 assert(FromVT != MVT::Other); 713 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 714 RegisterVT, P, DAG.getValueType(FromVT)); 715 } 716 717 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 718 NumRegs, RegisterVT, ValueVT); 719 Part += NumRegs; 720 Parts.clear(); 721 } 722 723 return DAG.getNode(ISD::MERGE_VALUES, dl, 724 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 725 &Values[0], ValueVTs.size()); 726 } 727 728 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 729 /// specified value into the registers specified by this object. This uses 730 /// Chain/Flag as the input and updates them for the output Chain/Flag. 731 /// If the Flag pointer is NULL, no flag is used. 732 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 733 SDValue &Chain, SDValue *Flag) const { 734 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 735 736 // Get the list of the values's legal parts. 737 unsigned NumRegs = Regs.size(); 738 SmallVector<SDValue, 8> Parts(NumRegs); 739 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 740 EVT ValueVT = ValueVTs[Value]; 741 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 742 EVT RegisterVT = RegVTs[Value]; 743 744 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 745 &Parts[Part], NumParts, RegisterVT); 746 Part += NumParts; 747 } 748 749 // Copy the parts into the registers. 750 SmallVector<SDValue, 8> Chains(NumRegs); 751 for (unsigned i = 0; i != NumRegs; ++i) { 752 SDValue Part; 753 if (Flag == 0) { 754 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 755 } else { 756 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 757 *Flag = Part.getValue(1); 758 } 759 760 Chains[i] = Part.getValue(0); 761 } 762 763 if (NumRegs == 1 || Flag) 764 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 765 // flagged to it. That is the CopyToReg nodes and the user are considered 766 // a single scheduling unit. If we create a TokenFactor and return it as 767 // chain, then the TokenFactor is both a predecessor (operand) of the 768 // user as well as a successor (the TF operands are flagged to the user). 769 // c1, f1 = CopyToReg 770 // c2, f2 = CopyToReg 771 // c3 = TokenFactor c1, c2 772 // ... 773 // = op c3, ..., f2 774 Chain = Chains[NumRegs-1]; 775 else 776 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 777 } 778 779 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 780 /// operand list. This adds the code marker and includes the number of 781 /// values added into it. 782 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 783 unsigned MatchingIdx, 784 SelectionDAG &DAG, 785 std::vector<SDValue> &Ops) const { 786 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 787 788 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 789 if (HasMatching) 790 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 791 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 792 Ops.push_back(Res); 793 794 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 795 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 796 EVT RegisterVT = RegVTs[Value]; 797 for (unsigned i = 0; i != NumRegs; ++i) { 798 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 799 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 800 } 801 } 802 } 803 804 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { 805 AA = &aa; 806 GFI = gfi; 807 TD = DAG.getTarget().getTargetData(); 808 } 809 810 /// clear - Clear out the current SelectionDAG and the associated 811 /// state and prepare this SelectionDAGBuilder object to be used 812 /// for a new block. This doesn't clear out information about 813 /// additional blocks that are needed to complete switch lowering 814 /// or PHI node updating; that information is cleared out as it is 815 /// consumed. 816 void SelectionDAGBuilder::clear() { 817 NodeMap.clear(); 818 UnusedArgNodeMap.clear(); 819 PendingLoads.clear(); 820 PendingExports.clear(); 821 CurDebugLoc = DebugLoc(); 822 HasTailCall = false; 823 } 824 825 /// clearDanglingDebugInfo - Clear the dangling debug information 826 /// map. This function is seperated from the clear so that debug 827 /// information that is dangling in a basic block can be properly 828 /// resolved in a different basic block. This allows the 829 /// SelectionDAG to resolve dangling debug information attached 830 /// to PHI nodes. 831 void SelectionDAGBuilder::clearDanglingDebugInfo() { 832 DanglingDebugInfoMap.clear(); 833 } 834 835 /// getRoot - Return the current virtual root of the Selection DAG, 836 /// flushing any PendingLoad items. This must be done before emitting 837 /// a store or any other node that may need to be ordered after any 838 /// prior load instructions. 839 /// 840 SDValue SelectionDAGBuilder::getRoot() { 841 if (PendingLoads.empty()) 842 return DAG.getRoot(); 843 844 if (PendingLoads.size() == 1) { 845 SDValue Root = PendingLoads[0]; 846 DAG.setRoot(Root); 847 PendingLoads.clear(); 848 return Root; 849 } 850 851 // Otherwise, we have to make a token factor node. 852 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 853 &PendingLoads[0], PendingLoads.size()); 854 PendingLoads.clear(); 855 DAG.setRoot(Root); 856 return Root; 857 } 858 859 /// getControlRoot - Similar to getRoot, but instead of flushing all the 860 /// PendingLoad items, flush all the PendingExports items. It is necessary 861 /// to do this before emitting a terminator instruction. 862 /// 863 SDValue SelectionDAGBuilder::getControlRoot() { 864 SDValue Root = DAG.getRoot(); 865 866 if (PendingExports.empty()) 867 return Root; 868 869 // Turn all of the CopyToReg chains into one factored node. 870 if (Root.getOpcode() != ISD::EntryToken) { 871 unsigned i = 0, e = PendingExports.size(); 872 for (; i != e; ++i) { 873 assert(PendingExports[i].getNode()->getNumOperands() > 1); 874 if (PendingExports[i].getNode()->getOperand(0) == Root) 875 break; // Don't add the root if we already indirectly depend on it. 876 } 877 878 if (i == e) 879 PendingExports.push_back(Root); 880 } 881 882 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 883 &PendingExports[0], 884 PendingExports.size()); 885 PendingExports.clear(); 886 DAG.setRoot(Root); 887 return Root; 888 } 889 890 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 891 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 892 DAG.AssignOrdering(Node, SDNodeOrder); 893 894 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 895 AssignOrderingToNode(Node->getOperand(I).getNode()); 896 } 897 898 void SelectionDAGBuilder::visit(const Instruction &I) { 899 // Set up outgoing PHI node register values before emitting the terminator. 900 if (isa<TerminatorInst>(&I)) 901 HandlePHINodesInSuccessorBlocks(I.getParent()); 902 903 CurDebugLoc = I.getDebugLoc(); 904 905 visit(I.getOpcode(), I); 906 907 if (!isa<TerminatorInst>(&I) && !HasTailCall) 908 CopyToExportRegsIfNeeded(&I); 909 910 CurDebugLoc = DebugLoc(); 911 } 912 913 void SelectionDAGBuilder::visitPHI(const PHINode &) { 914 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 915 } 916 917 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &) { 918 // FIXME: Handle this 919 } 920 921 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 922 // Note: this doesn't use InstVisitor, because it has to work with 923 // ConstantExpr's in addition to instructions. 924 switch (Opcode) { 925 default: llvm_unreachable("Unknown instruction type encountered!"); 926 // Build the switch statement using the Instruction.def file. 927 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 928 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break; 929 #include "llvm/Instruction.def" 930 } 931 932 // Assign the ordering to the freshly created DAG nodes. 933 if (NodeMap.count(&I)) { 934 ++SDNodeOrder; 935 AssignOrderingToNode(getValue(&I).getNode()); 936 } 937 } 938 939 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 940 // generate the debug data structures now that we've seen its definition. 941 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 942 SDValue Val) { 943 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 944 if (DDI.getDI()) { 945 const DbgValueInst *DI = DDI.getDI(); 946 DebugLoc dl = DDI.getdl(); 947 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 948 MDNode *Variable = DI->getVariable(); 949 uint64_t Offset = DI->getOffset(); 950 SDDbgValue *SDV; 951 if (Val.getNode()) { 952 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 953 SDV = DAG.getDbgValue(Variable, Val.getNode(), 954 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 955 DAG.AddDbgValue(SDV, Val.getNode(), false); 956 } 957 } else 958 DEBUG(dbgs() << "Dropping debug info for " << DI); 959 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 960 } 961 } 962 963 // getValue - Return an SDValue for the given Value. 964 SDValue SelectionDAGBuilder::getValue(const Value *V) { 965 // If we already have an SDValue for this value, use it. It's important 966 // to do this first, so that we don't create a CopyFromReg if we already 967 // have a regular SDValue. 968 SDValue &N = NodeMap[V]; 969 if (N.getNode()) return N; 970 971 // If there's a virtual register allocated and initialized for this 972 // value, use it. 973 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 974 if (It != FuncInfo.ValueMap.end()) { 975 unsigned InReg = It->second; 976 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 977 SDValue Chain = DAG.getEntryNode(); 978 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL); 979 resolveDanglingDebugInfo(V, N); 980 return N; 981 } 982 983 // Otherwise create a new SDValue and remember it. 984 SDValue Val = getValueImpl(V); 985 NodeMap[V] = Val; 986 resolveDanglingDebugInfo(V, Val); 987 return Val; 988 } 989 990 /// getNonRegisterValue - Return an SDValue for the given Value, but 991 /// don't look in FuncInfo.ValueMap for a virtual register. 992 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 993 // If we already have an SDValue for this value, use it. 994 SDValue &N = NodeMap[V]; 995 if (N.getNode()) return N; 996 997 // Otherwise create a new SDValue and remember it. 998 SDValue Val = getValueImpl(V); 999 NodeMap[V] = Val; 1000 resolveDanglingDebugInfo(V, Val); 1001 return Val; 1002 } 1003 1004 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1005 /// Create an SDValue for the given value. 1006 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1007 if (const Constant *C = dyn_cast<Constant>(V)) { 1008 EVT VT = TLI.getValueType(V->getType(), true); 1009 1010 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1011 return DAG.getConstant(*CI, VT); 1012 1013 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1014 return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT); 1015 1016 if (isa<ConstantPointerNull>(C)) 1017 return DAG.getConstant(0, TLI.getPointerTy()); 1018 1019 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1020 return DAG.getConstantFP(*CFP, VT); 1021 1022 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1023 return DAG.getUNDEF(VT); 1024 1025 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1026 visit(CE->getOpcode(), *CE); 1027 SDValue N1 = NodeMap[V]; 1028 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1029 return N1; 1030 } 1031 1032 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1033 SmallVector<SDValue, 4> Constants; 1034 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1035 OI != OE; ++OI) { 1036 SDNode *Val = getValue(*OI).getNode(); 1037 // If the operand is an empty aggregate, there are no values. 1038 if (!Val) continue; 1039 // Add each leaf value from the operand to the Constants list 1040 // to form a flattened list of all the values. 1041 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1042 Constants.push_back(SDValue(Val, i)); 1043 } 1044 1045 return DAG.getMergeValues(&Constants[0], Constants.size(), 1046 getCurDebugLoc()); 1047 } 1048 1049 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1050 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1051 "Unknown struct or array constant!"); 1052 1053 SmallVector<EVT, 4> ValueVTs; 1054 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1055 unsigned NumElts = ValueVTs.size(); 1056 if (NumElts == 0) 1057 return SDValue(); // empty struct 1058 SmallVector<SDValue, 4> Constants(NumElts); 1059 for (unsigned i = 0; i != NumElts; ++i) { 1060 EVT EltVT = ValueVTs[i]; 1061 if (isa<UndefValue>(C)) 1062 Constants[i] = DAG.getUNDEF(EltVT); 1063 else if (EltVT.isFloatingPoint()) 1064 Constants[i] = DAG.getConstantFP(0, EltVT); 1065 else 1066 Constants[i] = DAG.getConstant(0, EltVT); 1067 } 1068 1069 return DAG.getMergeValues(&Constants[0], NumElts, 1070 getCurDebugLoc()); 1071 } 1072 1073 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1074 return DAG.getBlockAddress(BA, VT); 1075 1076 VectorType *VecTy = cast<VectorType>(V->getType()); 1077 unsigned NumElements = VecTy->getNumElements(); 1078 1079 // Now that we know the number and type of the elements, get that number of 1080 // elements into the Ops array based on what kind of constant it is. 1081 SmallVector<SDValue, 16> Ops; 1082 if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) { 1083 for (unsigned i = 0; i != NumElements; ++i) 1084 Ops.push_back(getValue(CP->getOperand(i))); 1085 } else { 1086 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1087 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1088 1089 SDValue Op; 1090 if (EltVT.isFloatingPoint()) 1091 Op = DAG.getConstantFP(0, EltVT); 1092 else 1093 Op = DAG.getConstant(0, EltVT); 1094 Ops.assign(NumElements, Op); 1095 } 1096 1097 // Create a BUILD_VECTOR node. 1098 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1099 VT, &Ops[0], Ops.size()); 1100 } 1101 1102 // If this is a static alloca, generate it as the frameindex instead of 1103 // computation. 1104 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1105 DenseMap<const AllocaInst*, int>::iterator SI = 1106 FuncInfo.StaticAllocaMap.find(AI); 1107 if (SI != FuncInfo.StaticAllocaMap.end()) 1108 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1109 } 1110 1111 // If this is an instruction which fast-isel has deferred, select it now. 1112 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1113 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1114 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1115 SDValue Chain = DAG.getEntryNode(); 1116 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 1117 } 1118 1119 llvm_unreachable("Can't get register for value!"); 1120 return SDValue(); 1121 } 1122 1123 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1124 SDValue Chain = getControlRoot(); 1125 SmallVector<ISD::OutputArg, 8> Outs; 1126 SmallVector<SDValue, 8> OutVals; 1127 1128 if (!FuncInfo.CanLowerReturn) { 1129 unsigned DemoteReg = FuncInfo.DemoteRegister; 1130 const Function *F = I.getParent()->getParent(); 1131 1132 // Emit a store of the return value through the virtual register. 1133 // Leave Outs empty so that LowerReturn won't try to load return 1134 // registers the usual way. 1135 SmallVector<EVT, 1> PtrValueVTs; 1136 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1137 PtrValueVTs); 1138 1139 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1140 SDValue RetOp = getValue(I.getOperand(0)); 1141 1142 SmallVector<EVT, 4> ValueVTs; 1143 SmallVector<uint64_t, 4> Offsets; 1144 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1145 unsigned NumValues = ValueVTs.size(); 1146 1147 SmallVector<SDValue, 4> Chains(NumValues); 1148 for (unsigned i = 0; i != NumValues; ++i) { 1149 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), 1150 RetPtr.getValueType(), RetPtr, 1151 DAG.getIntPtrConstant(Offsets[i])); 1152 Chains[i] = 1153 DAG.getStore(Chain, getCurDebugLoc(), 1154 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1155 // FIXME: better loc info would be nice. 1156 Add, MachinePointerInfo(), false, false, 0); 1157 } 1158 1159 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 1160 MVT::Other, &Chains[0], NumValues); 1161 } else if (I.getNumOperands() != 0) { 1162 SmallVector<EVT, 4> ValueVTs; 1163 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1164 unsigned NumValues = ValueVTs.size(); 1165 if (NumValues) { 1166 SDValue RetOp = getValue(I.getOperand(0)); 1167 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1168 EVT VT = ValueVTs[j]; 1169 1170 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1171 1172 const Function *F = I.getParent()->getParent(); 1173 if (F->paramHasAttr(0, Attribute::SExt)) 1174 ExtendKind = ISD::SIGN_EXTEND; 1175 else if (F->paramHasAttr(0, Attribute::ZExt)) 1176 ExtendKind = ISD::ZERO_EXTEND; 1177 1178 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1179 VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind); 1180 1181 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1182 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1183 SmallVector<SDValue, 4> Parts(NumParts); 1184 getCopyToParts(DAG, getCurDebugLoc(), 1185 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1186 &Parts[0], NumParts, PartVT, ExtendKind); 1187 1188 // 'inreg' on function refers to return value 1189 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1190 if (F->paramHasAttr(0, Attribute::InReg)) 1191 Flags.setInReg(); 1192 1193 // Propagate extension type if any 1194 if (ExtendKind == ISD::SIGN_EXTEND) 1195 Flags.setSExt(); 1196 else if (ExtendKind == ISD::ZERO_EXTEND) 1197 Flags.setZExt(); 1198 1199 for (unsigned i = 0; i < NumParts; ++i) { 1200 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1201 /*isfixed=*/true)); 1202 OutVals.push_back(Parts[i]); 1203 } 1204 } 1205 } 1206 } 1207 1208 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1209 CallingConv::ID CallConv = 1210 DAG.getMachineFunction().getFunction()->getCallingConv(); 1211 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 1212 Outs, OutVals, getCurDebugLoc(), DAG); 1213 1214 // Verify that the target's LowerReturn behaved as expected. 1215 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1216 "LowerReturn didn't return a valid chain!"); 1217 1218 // Update the DAG with the new chain value resulting from return lowering. 1219 DAG.setRoot(Chain); 1220 } 1221 1222 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1223 /// created for it, emit nodes to copy the value into the virtual 1224 /// registers. 1225 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1226 // Skip empty types 1227 if (V->getType()->isEmptyTy()) 1228 return; 1229 1230 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1231 if (VMI != FuncInfo.ValueMap.end()) { 1232 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1233 CopyValueToVirtualRegister(V, VMI->second); 1234 } 1235 } 1236 1237 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1238 /// the current basic block, add it to ValueMap now so that we'll get a 1239 /// CopyTo/FromReg. 1240 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1241 // No need to export constants. 1242 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1243 1244 // Already exported? 1245 if (FuncInfo.isExportedInst(V)) return; 1246 1247 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1248 CopyValueToVirtualRegister(V, Reg); 1249 } 1250 1251 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1252 const BasicBlock *FromBB) { 1253 // The operands of the setcc have to be in this block. We don't know 1254 // how to export them from some other block. 1255 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1256 // Can export from current BB. 1257 if (VI->getParent() == FromBB) 1258 return true; 1259 1260 // Is already exported, noop. 1261 return FuncInfo.isExportedInst(V); 1262 } 1263 1264 // If this is an argument, we can export it if the BB is the entry block or 1265 // if it is already exported. 1266 if (isa<Argument>(V)) { 1267 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1268 return true; 1269 1270 // Otherwise, can only export this if it is already exported. 1271 return FuncInfo.isExportedInst(V); 1272 } 1273 1274 // Otherwise, constants can always be exported. 1275 return true; 1276 } 1277 1278 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1279 uint32_t SelectionDAGBuilder::getEdgeWeight(MachineBasicBlock *Src, 1280 MachineBasicBlock *Dst) { 1281 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1282 if (!BPI) 1283 return 0; 1284 BasicBlock *SrcBB = const_cast<BasicBlock*>(Src->getBasicBlock()); 1285 BasicBlock *DstBB = const_cast<BasicBlock*>(Dst->getBasicBlock()); 1286 return BPI->getEdgeWeight(SrcBB, DstBB); 1287 } 1288 1289 void SelectionDAGBuilder::addSuccessorWithWeight(MachineBasicBlock *Src, 1290 MachineBasicBlock *Dst) { 1291 uint32_t weight = getEdgeWeight(Src, Dst); 1292 Src->addSuccessor(Dst, weight); 1293 } 1294 1295 1296 static bool InBlock(const Value *V, const BasicBlock *BB) { 1297 if (const Instruction *I = dyn_cast<Instruction>(V)) 1298 return I->getParent() == BB; 1299 return true; 1300 } 1301 1302 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1303 /// This function emits a branch and is used at the leaves of an OR or an 1304 /// AND operator tree. 1305 /// 1306 void 1307 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1308 MachineBasicBlock *TBB, 1309 MachineBasicBlock *FBB, 1310 MachineBasicBlock *CurBB, 1311 MachineBasicBlock *SwitchBB) { 1312 const BasicBlock *BB = CurBB->getBasicBlock(); 1313 1314 // If the leaf of the tree is a comparison, merge the condition into 1315 // the caseblock. 1316 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1317 // The operands of the cmp have to be in this block. We don't know 1318 // how to export them from some other block. If this is the first block 1319 // of the sequence, no exporting is needed. 1320 if (CurBB == SwitchBB || 1321 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1322 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1323 ISD::CondCode Condition; 1324 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1325 Condition = getICmpCondCode(IC->getPredicate()); 1326 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1327 Condition = getFCmpCondCode(FC->getPredicate()); 1328 } else { 1329 Condition = ISD::SETEQ; // silence warning. 1330 llvm_unreachable("Unknown compare instruction"); 1331 } 1332 1333 CaseBlock CB(Condition, BOp->getOperand(0), 1334 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1335 SwitchCases.push_back(CB); 1336 return; 1337 } 1338 } 1339 1340 // Create a CaseBlock record representing this branch. 1341 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1342 NULL, TBB, FBB, CurBB); 1343 SwitchCases.push_back(CB); 1344 } 1345 1346 /// FindMergedConditions - If Cond is an expression like 1347 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1348 MachineBasicBlock *TBB, 1349 MachineBasicBlock *FBB, 1350 MachineBasicBlock *CurBB, 1351 MachineBasicBlock *SwitchBB, 1352 unsigned Opc) { 1353 // If this node is not part of the or/and tree, emit it as a branch. 1354 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1355 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1356 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1357 BOp->getParent() != CurBB->getBasicBlock() || 1358 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1359 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1360 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1361 return; 1362 } 1363 1364 // Create TmpBB after CurBB. 1365 MachineFunction::iterator BBI = CurBB; 1366 MachineFunction &MF = DAG.getMachineFunction(); 1367 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1368 CurBB->getParent()->insert(++BBI, TmpBB); 1369 1370 if (Opc == Instruction::Or) { 1371 // Codegen X | Y as: 1372 // jmp_if_X TBB 1373 // jmp TmpBB 1374 // TmpBB: 1375 // jmp_if_Y TBB 1376 // jmp FBB 1377 // 1378 1379 // Emit the LHS condition. 1380 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1381 1382 // Emit the RHS condition into TmpBB. 1383 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1384 } else { 1385 assert(Opc == Instruction::And && "Unknown merge op!"); 1386 // Codegen X & Y as: 1387 // jmp_if_X TmpBB 1388 // jmp FBB 1389 // TmpBB: 1390 // jmp_if_Y TBB 1391 // jmp FBB 1392 // 1393 // This requires creation of TmpBB after CurBB. 1394 1395 // Emit the LHS condition. 1396 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1397 1398 // Emit the RHS condition into TmpBB. 1399 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1400 } 1401 } 1402 1403 /// If the set of cases should be emitted as a series of branches, return true. 1404 /// If we should emit this as a bunch of and/or'd together conditions, return 1405 /// false. 1406 bool 1407 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1408 if (Cases.size() != 2) return true; 1409 1410 // If this is two comparisons of the same values or'd or and'd together, they 1411 // will get folded into a single comparison, so don't emit two blocks. 1412 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1413 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1414 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1415 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1416 return false; 1417 } 1418 1419 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1420 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1421 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1422 Cases[0].CC == Cases[1].CC && 1423 isa<Constant>(Cases[0].CmpRHS) && 1424 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1425 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1426 return false; 1427 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1428 return false; 1429 } 1430 1431 return true; 1432 } 1433 1434 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1435 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1436 1437 // Update machine-CFG edges. 1438 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1439 1440 // Figure out which block is immediately after the current one. 1441 MachineBasicBlock *NextBlock = 0; 1442 MachineFunction::iterator BBI = BrMBB; 1443 if (++BBI != FuncInfo.MF->end()) 1444 NextBlock = BBI; 1445 1446 if (I.isUnconditional()) { 1447 // Update machine-CFG edges. 1448 BrMBB->addSuccessor(Succ0MBB); 1449 1450 // If this is not a fall-through branch, emit the branch. 1451 if (Succ0MBB != NextBlock) 1452 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1453 MVT::Other, getControlRoot(), 1454 DAG.getBasicBlock(Succ0MBB))); 1455 1456 return; 1457 } 1458 1459 // If this condition is one of the special cases we handle, do special stuff 1460 // now. 1461 const Value *CondVal = I.getCondition(); 1462 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1463 1464 // If this is a series of conditions that are or'd or and'd together, emit 1465 // this as a sequence of branches instead of setcc's with and/or operations. 1466 // As long as jumps are not expensive, this should improve performance. 1467 // For example, instead of something like: 1468 // cmp A, B 1469 // C = seteq 1470 // cmp D, E 1471 // F = setle 1472 // or C, F 1473 // jnz foo 1474 // Emit: 1475 // cmp A, B 1476 // je foo 1477 // cmp D, E 1478 // jle foo 1479 // 1480 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1481 if (!TLI.isJumpExpensive() && 1482 BOp->hasOneUse() && 1483 (BOp->getOpcode() == Instruction::And || 1484 BOp->getOpcode() == Instruction::Or)) { 1485 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1486 BOp->getOpcode()); 1487 // If the compares in later blocks need to use values not currently 1488 // exported from this block, export them now. This block should always 1489 // be the first entry. 1490 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1491 1492 // Allow some cases to be rejected. 1493 if (ShouldEmitAsBranches(SwitchCases)) { 1494 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1495 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1496 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1497 } 1498 1499 // Emit the branch for this block. 1500 visitSwitchCase(SwitchCases[0], BrMBB); 1501 SwitchCases.erase(SwitchCases.begin()); 1502 return; 1503 } 1504 1505 // Okay, we decided not to do this, remove any inserted MBB's and clear 1506 // SwitchCases. 1507 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1508 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1509 1510 SwitchCases.clear(); 1511 } 1512 } 1513 1514 // Create a CaseBlock record representing this branch. 1515 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1516 NULL, Succ0MBB, Succ1MBB, BrMBB); 1517 1518 // Use visitSwitchCase to actually insert the fast branch sequence for this 1519 // cond branch. 1520 visitSwitchCase(CB, BrMBB); 1521 } 1522 1523 /// visitSwitchCase - Emits the necessary code to represent a single node in 1524 /// the binary search tree resulting from lowering a switch instruction. 1525 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1526 MachineBasicBlock *SwitchBB) { 1527 SDValue Cond; 1528 SDValue CondLHS = getValue(CB.CmpLHS); 1529 DebugLoc dl = getCurDebugLoc(); 1530 1531 // Build the setcc now. 1532 if (CB.CmpMHS == NULL) { 1533 // Fold "(X == true)" to X and "(X == false)" to !X to 1534 // handle common cases produced by branch lowering. 1535 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1536 CB.CC == ISD::SETEQ) 1537 Cond = CondLHS; 1538 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1539 CB.CC == ISD::SETEQ) { 1540 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1541 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1542 } else 1543 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1544 } else { 1545 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1546 1547 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1548 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1549 1550 SDValue CmpOp = getValue(CB.CmpMHS); 1551 EVT VT = CmpOp.getValueType(); 1552 1553 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1554 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1555 ISD::SETLE); 1556 } else { 1557 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1558 VT, CmpOp, DAG.getConstant(Low, VT)); 1559 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1560 DAG.getConstant(High-Low, VT), ISD::SETULE); 1561 } 1562 } 1563 1564 // Update successor info 1565 addSuccessorWithWeight(SwitchBB, CB.TrueBB); 1566 addSuccessorWithWeight(SwitchBB, CB.FalseBB); 1567 1568 // Set NextBlock to be the MBB immediately after the current one, if any. 1569 // This is used to avoid emitting unnecessary branches to the next block. 1570 MachineBasicBlock *NextBlock = 0; 1571 MachineFunction::iterator BBI = SwitchBB; 1572 if (++BBI != FuncInfo.MF->end()) 1573 NextBlock = BBI; 1574 1575 // If the lhs block is the next block, invert the condition so that we can 1576 // fall through to the lhs instead of the rhs block. 1577 if (CB.TrueBB == NextBlock) { 1578 std::swap(CB.TrueBB, CB.FalseBB); 1579 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1580 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1581 } 1582 1583 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1584 MVT::Other, getControlRoot(), Cond, 1585 DAG.getBasicBlock(CB.TrueBB)); 1586 1587 // Insert the false branch. Do this even if it's a fall through branch, 1588 // this makes it easier to do DAG optimizations which require inverting 1589 // the branch condition. 1590 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1591 DAG.getBasicBlock(CB.FalseBB)); 1592 1593 DAG.setRoot(BrCond); 1594 } 1595 1596 /// visitJumpTable - Emit JumpTable node in the current MBB 1597 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1598 // Emit the code for the jump table 1599 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1600 EVT PTy = TLI.getPointerTy(); 1601 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1602 JT.Reg, PTy); 1603 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1604 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1605 MVT::Other, Index.getValue(1), 1606 Table, Index); 1607 DAG.setRoot(BrJumpTable); 1608 } 1609 1610 /// visitJumpTableHeader - This function emits necessary code to produce index 1611 /// in the JumpTable from switch case. 1612 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1613 JumpTableHeader &JTH, 1614 MachineBasicBlock *SwitchBB) { 1615 // Subtract the lowest switch case value from the value being switched on and 1616 // conditional branch to default mbb if the result is greater than the 1617 // difference between smallest and largest cases. 1618 SDValue SwitchOp = getValue(JTH.SValue); 1619 EVT VT = SwitchOp.getValueType(); 1620 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1621 DAG.getConstant(JTH.First, VT)); 1622 1623 // The SDNode we just created, which holds the value being switched on minus 1624 // the smallest case value, needs to be copied to a virtual register so it 1625 // can be used as an index into the jump table in a subsequent basic block. 1626 // This value may be smaller or larger than the target's pointer type, and 1627 // therefore require extension or truncating. 1628 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1629 1630 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1631 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1632 JumpTableReg, SwitchOp); 1633 JT.Reg = JumpTableReg; 1634 1635 // Emit the range check for the jump table, and branch to the default block 1636 // for the switch statement if the value being switched on exceeds the largest 1637 // case in the switch. 1638 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1639 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1640 DAG.getConstant(JTH.Last-JTH.First,VT), 1641 ISD::SETUGT); 1642 1643 // Set NextBlock to be the MBB immediately after the current one, if any. 1644 // This is used to avoid emitting unnecessary branches to the next block. 1645 MachineBasicBlock *NextBlock = 0; 1646 MachineFunction::iterator BBI = SwitchBB; 1647 1648 if (++BBI != FuncInfo.MF->end()) 1649 NextBlock = BBI; 1650 1651 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1652 MVT::Other, CopyTo, CMP, 1653 DAG.getBasicBlock(JT.Default)); 1654 1655 if (JT.MBB != NextBlock) 1656 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1657 DAG.getBasicBlock(JT.MBB)); 1658 1659 DAG.setRoot(BrCond); 1660 } 1661 1662 /// visitBitTestHeader - This function emits necessary code to produce value 1663 /// suitable for "bit tests" 1664 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1665 MachineBasicBlock *SwitchBB) { 1666 // Subtract the minimum value 1667 SDValue SwitchOp = getValue(B.SValue); 1668 EVT VT = SwitchOp.getValueType(); 1669 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1670 DAG.getConstant(B.First, VT)); 1671 1672 // Check range 1673 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1674 TLI.getSetCCResultType(Sub.getValueType()), 1675 Sub, DAG.getConstant(B.Range, VT), 1676 ISD::SETUGT); 1677 1678 // Determine the type of the test operands. 1679 bool UsePtrType = false; 1680 if (!TLI.isTypeLegal(VT)) 1681 UsePtrType = true; 1682 else { 1683 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1684 if ((uint64_t)((int64_t)B.Cases[i].Mask >> VT.getSizeInBits()) + 1 >= 2) { 1685 // Switch table case range are encoded into series of masks. 1686 // Just use pointer type, it's guaranteed to fit. 1687 UsePtrType = true; 1688 break; 1689 } 1690 } 1691 if (UsePtrType) { 1692 VT = TLI.getPointerTy(); 1693 Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT); 1694 } 1695 1696 B.RegVT = VT; 1697 B.Reg = FuncInfo.CreateReg(VT); 1698 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1699 B.Reg, Sub); 1700 1701 // Set NextBlock to be the MBB immediately after the current one, if any. 1702 // This is used to avoid emitting unnecessary branches to the next block. 1703 MachineBasicBlock *NextBlock = 0; 1704 MachineFunction::iterator BBI = SwitchBB; 1705 if (++BBI != FuncInfo.MF->end()) 1706 NextBlock = BBI; 1707 1708 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1709 1710 addSuccessorWithWeight(SwitchBB, B.Default); 1711 addSuccessorWithWeight(SwitchBB, MBB); 1712 1713 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1714 MVT::Other, CopyTo, RangeCmp, 1715 DAG.getBasicBlock(B.Default)); 1716 1717 if (MBB != NextBlock) 1718 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1719 DAG.getBasicBlock(MBB)); 1720 1721 DAG.setRoot(BrRange); 1722 } 1723 1724 /// visitBitTestCase - this function produces one "bit test" 1725 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1726 MachineBasicBlock* NextMBB, 1727 unsigned Reg, 1728 BitTestCase &B, 1729 MachineBasicBlock *SwitchBB) { 1730 EVT VT = BB.RegVT; 1731 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1732 Reg, VT); 1733 SDValue Cmp; 1734 unsigned PopCount = CountPopulation_64(B.Mask); 1735 if (PopCount == 1) { 1736 // Testing for a single bit; just compare the shift count with what it 1737 // would need to be to shift a 1 bit in that position. 1738 Cmp = DAG.getSetCC(getCurDebugLoc(), 1739 TLI.getSetCCResultType(VT), 1740 ShiftOp, 1741 DAG.getConstant(CountTrailingZeros_64(B.Mask), VT), 1742 ISD::SETEQ); 1743 } else if (PopCount == BB.Range) { 1744 // There is only one zero bit in the range, test for it directly. 1745 Cmp = DAG.getSetCC(getCurDebugLoc(), 1746 TLI.getSetCCResultType(VT), 1747 ShiftOp, 1748 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1749 ISD::SETNE); 1750 } else { 1751 // Make desired shift 1752 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT, 1753 DAG.getConstant(1, VT), ShiftOp); 1754 1755 // Emit bit tests and jumps 1756 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1757 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1758 Cmp = DAG.getSetCC(getCurDebugLoc(), 1759 TLI.getSetCCResultType(VT), 1760 AndOp, DAG.getConstant(0, VT), 1761 ISD::SETNE); 1762 } 1763 1764 addSuccessorWithWeight(SwitchBB, B.TargetBB); 1765 addSuccessorWithWeight(SwitchBB, NextMBB); 1766 1767 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1768 MVT::Other, getControlRoot(), 1769 Cmp, DAG.getBasicBlock(B.TargetBB)); 1770 1771 // Set NextBlock to be the MBB immediately after the current one, if any. 1772 // This is used to avoid emitting unnecessary branches to the next block. 1773 MachineBasicBlock *NextBlock = 0; 1774 MachineFunction::iterator BBI = SwitchBB; 1775 if (++BBI != FuncInfo.MF->end()) 1776 NextBlock = BBI; 1777 1778 if (NextMBB != NextBlock) 1779 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1780 DAG.getBasicBlock(NextMBB)); 1781 1782 DAG.setRoot(BrAnd); 1783 } 1784 1785 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1786 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1787 1788 // Retrieve successors. 1789 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1790 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1791 1792 const Value *Callee(I.getCalledValue()); 1793 if (isa<InlineAsm>(Callee)) 1794 visitInlineAsm(&I); 1795 else 1796 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1797 1798 // If the value of the invoke is used outside of its defining block, make it 1799 // available as a virtual register. 1800 CopyToExportRegsIfNeeded(&I); 1801 1802 // Update successor info 1803 InvokeMBB->addSuccessor(Return); 1804 InvokeMBB->addSuccessor(LandingPad); 1805 1806 // Drop into normal successor. 1807 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1808 MVT::Other, getControlRoot(), 1809 DAG.getBasicBlock(Return))); 1810 } 1811 1812 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) { 1813 } 1814 1815 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 1816 // FIXME: Handle this 1817 } 1818 1819 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1820 /// small case ranges). 1821 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1822 CaseRecVector& WorkList, 1823 const Value* SV, 1824 MachineBasicBlock *Default, 1825 MachineBasicBlock *SwitchBB) { 1826 Case& BackCase = *(CR.Range.second-1); 1827 1828 // Size is the number of Cases represented by this range. 1829 size_t Size = CR.Range.second - CR.Range.first; 1830 if (Size > 3) 1831 return false; 1832 1833 // Get the MachineFunction which holds the current MBB. This is used when 1834 // inserting any additional MBBs necessary to represent the switch. 1835 MachineFunction *CurMF = FuncInfo.MF; 1836 1837 // Figure out which block is immediately after the current one. 1838 MachineBasicBlock *NextBlock = 0; 1839 MachineFunction::iterator BBI = CR.CaseBB; 1840 1841 if (++BBI != FuncInfo.MF->end()) 1842 NextBlock = BBI; 1843 1844 // If any two of the cases has the same destination, and if one value 1845 // is the same as the other, but has one bit unset that the other has set, 1846 // use bit manipulation to do two compares at once. For example: 1847 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1848 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 1849 // TODO: Handle cases where CR.CaseBB != SwitchBB. 1850 if (Size == 2 && CR.CaseBB == SwitchBB) { 1851 Case &Small = *CR.Range.first; 1852 Case &Big = *(CR.Range.second-1); 1853 1854 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 1855 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 1856 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 1857 1858 // Check that there is only one bit different. 1859 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 1860 (SmallValue | BigValue) == BigValue) { 1861 // Isolate the common bit. 1862 APInt CommonBit = BigValue & ~SmallValue; 1863 assert((SmallValue | CommonBit) == BigValue && 1864 CommonBit.countPopulation() == 1 && "Not a common bit?"); 1865 1866 SDValue CondLHS = getValue(SV); 1867 EVT VT = CondLHS.getValueType(); 1868 DebugLoc DL = getCurDebugLoc(); 1869 1870 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 1871 DAG.getConstant(CommonBit, VT)); 1872 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 1873 Or, DAG.getConstant(BigValue, VT), 1874 ISD::SETEQ); 1875 1876 // Update successor info. 1877 SwitchBB->addSuccessor(Small.BB); 1878 SwitchBB->addSuccessor(Default); 1879 1880 // Insert the true branch. 1881 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 1882 getControlRoot(), Cond, 1883 DAG.getBasicBlock(Small.BB)); 1884 1885 // Insert the false branch. 1886 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 1887 DAG.getBasicBlock(Default)); 1888 1889 DAG.setRoot(BrCond); 1890 return true; 1891 } 1892 } 1893 } 1894 1895 // Rearrange the case blocks so that the last one falls through if possible. 1896 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1897 // The last case block won't fall through into 'NextBlock' if we emit the 1898 // branches in this order. See if rearranging a case value would help. 1899 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { 1900 if (I->BB == NextBlock) { 1901 std::swap(*I, BackCase); 1902 break; 1903 } 1904 } 1905 } 1906 1907 // Create a CaseBlock record representing a conditional branch to 1908 // the Case's target mbb if the value being switched on SV is equal 1909 // to C. 1910 MachineBasicBlock *CurBlock = CR.CaseBB; 1911 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 1912 MachineBasicBlock *FallThrough; 1913 if (I != E-1) { 1914 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 1915 CurMF->insert(BBI, FallThrough); 1916 1917 // Put SV in a virtual register to make it available from the new blocks. 1918 ExportFromCurrentBlock(SV); 1919 } else { 1920 // If the last case doesn't match, go to the default block. 1921 FallThrough = Default; 1922 } 1923 1924 const Value *RHS, *LHS, *MHS; 1925 ISD::CondCode CC; 1926 if (I->High == I->Low) { 1927 // This is just small small case range :) containing exactly 1 case 1928 CC = ISD::SETEQ; 1929 LHS = SV; RHS = I->High; MHS = NULL; 1930 } else { 1931 CC = ISD::SETLE; 1932 LHS = I->Low; MHS = SV; RHS = I->High; 1933 } 1934 CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock); 1935 1936 // If emitting the first comparison, just call visitSwitchCase to emit the 1937 // code into the current block. Otherwise, push the CaseBlock onto the 1938 // vector to be later processed by SDISel, and insert the node's MBB 1939 // before the next MBB. 1940 if (CurBlock == SwitchBB) 1941 visitSwitchCase(CB, SwitchBB); 1942 else 1943 SwitchCases.push_back(CB); 1944 1945 CurBlock = FallThrough; 1946 } 1947 1948 return true; 1949 } 1950 1951 static inline bool areJTsAllowed(const TargetLowering &TLI) { 1952 return !DisableJumpTables && 1953 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 1954 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 1955 } 1956 1957 static APInt ComputeRange(const APInt &First, const APInt &Last) { 1958 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 1959 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 1960 return (LastExt - FirstExt + 1ULL); 1961 } 1962 1963 /// handleJTSwitchCase - Emit jumptable for current switch case range 1964 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR, 1965 CaseRecVector& WorkList, 1966 const Value* SV, 1967 MachineBasicBlock* Default, 1968 MachineBasicBlock *SwitchBB) { 1969 Case& FrontCase = *CR.Range.first; 1970 Case& BackCase = *(CR.Range.second-1); 1971 1972 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1973 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1974 1975 APInt TSize(First.getBitWidth(), 0); 1976 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1977 I!=E; ++I) 1978 TSize += I->size(); 1979 1980 if (!areJTsAllowed(TLI) || TSize.ult(4)) 1981 return false; 1982 1983 APInt Range = ComputeRange(First, Last); 1984 double Density = TSize.roundToDouble() / Range.roundToDouble(); 1985 if (Density < 0.4) 1986 return false; 1987 1988 DEBUG(dbgs() << "Lowering jump table\n" 1989 << "First entry: " << First << ". Last entry: " << Last << '\n' 1990 << "Range: " << Range 1991 << ". Size: " << TSize << ". Density: " << Density << "\n\n"); 1992 1993 // Get the MachineFunction which holds the current MBB. This is used when 1994 // inserting any additional MBBs necessary to represent the switch. 1995 MachineFunction *CurMF = FuncInfo.MF; 1996 1997 // Figure out which block is immediately after the current one. 1998 MachineFunction::iterator BBI = CR.CaseBB; 1999 ++BBI; 2000 2001 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2002 2003 // Create a new basic block to hold the code for loading the address 2004 // of the jump table, and jumping to it. Update successor information; 2005 // we will either branch to the default case for the switch, or the jump 2006 // table. 2007 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2008 CurMF->insert(BBI, JumpTableBB); 2009 2010 addSuccessorWithWeight(CR.CaseBB, Default); 2011 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2012 2013 // Build a vector of destination BBs, corresponding to each target 2014 // of the jump table. If the value of the jump table slot corresponds to 2015 // a case statement, push the case's BB onto the vector, otherwise, push 2016 // the default BB. 2017 std::vector<MachineBasicBlock*> DestBBs; 2018 APInt TEI = First; 2019 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2020 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2021 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2022 2023 if (Low.sle(TEI) && TEI.sle(High)) { 2024 DestBBs.push_back(I->BB); 2025 if (TEI==High) 2026 ++I; 2027 } else { 2028 DestBBs.push_back(Default); 2029 } 2030 } 2031 2032 // Update successor info. Add one edge to each unique successor. 2033 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2034 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2035 E = DestBBs.end(); I != E; ++I) { 2036 if (!SuccsHandled[(*I)->getNumber()]) { 2037 SuccsHandled[(*I)->getNumber()] = true; 2038 addSuccessorWithWeight(JumpTableBB, *I); 2039 } 2040 } 2041 2042 // Create a jump table index for this jump table. 2043 unsigned JTEncoding = TLI.getJumpTableEncoding(); 2044 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2045 ->createJumpTableIndex(DestBBs); 2046 2047 // Set the jump table information so that we can codegen it as a second 2048 // MachineBasicBlock 2049 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2050 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2051 if (CR.CaseBB == SwitchBB) 2052 visitJumpTableHeader(JT, JTH, SwitchBB); 2053 2054 JTCases.push_back(JumpTableBlock(JTH, JT)); 2055 2056 return true; 2057 } 2058 2059 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2060 /// 2 subtrees. 2061 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2062 CaseRecVector& WorkList, 2063 const Value* SV, 2064 MachineBasicBlock *Default, 2065 MachineBasicBlock *SwitchBB) { 2066 // Get the MachineFunction which holds the current MBB. This is used when 2067 // inserting any additional MBBs necessary to represent the switch. 2068 MachineFunction *CurMF = FuncInfo.MF; 2069 2070 // Figure out which block is immediately after the current one. 2071 MachineFunction::iterator BBI = CR.CaseBB; 2072 ++BBI; 2073 2074 Case& FrontCase = *CR.Range.first; 2075 Case& BackCase = *(CR.Range.second-1); 2076 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2077 2078 // Size is the number of Cases represented by this range. 2079 unsigned Size = CR.Range.second - CR.Range.first; 2080 2081 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2082 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2083 double FMetric = 0; 2084 CaseItr Pivot = CR.Range.first + Size/2; 2085 2086 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2087 // (heuristically) allow us to emit JumpTable's later. 2088 APInt TSize(First.getBitWidth(), 0); 2089 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2090 I!=E; ++I) 2091 TSize += I->size(); 2092 2093 APInt LSize = FrontCase.size(); 2094 APInt RSize = TSize-LSize; 2095 DEBUG(dbgs() << "Selecting best pivot: \n" 2096 << "First: " << First << ", Last: " << Last <<'\n' 2097 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2098 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2099 J!=E; ++I, ++J) { 2100 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2101 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2102 APInt Range = ComputeRange(LEnd, RBegin); 2103 assert((Range - 2ULL).isNonNegative() && 2104 "Invalid case distance"); 2105 // Use volatile double here to avoid excess precision issues on some hosts, 2106 // e.g. that use 80-bit X87 registers. 2107 volatile double LDensity = 2108 (double)LSize.roundToDouble() / 2109 (LEnd - First + 1ULL).roundToDouble(); 2110 volatile double RDensity = 2111 (double)RSize.roundToDouble() / 2112 (Last - RBegin + 1ULL).roundToDouble(); 2113 double Metric = Range.logBase2()*(LDensity+RDensity); 2114 // Should always split in some non-trivial place 2115 DEBUG(dbgs() <<"=>Step\n" 2116 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2117 << "LDensity: " << LDensity 2118 << ", RDensity: " << RDensity << '\n' 2119 << "Metric: " << Metric << '\n'); 2120 if (FMetric < Metric) { 2121 Pivot = J; 2122 FMetric = Metric; 2123 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2124 } 2125 2126 LSize += J->size(); 2127 RSize -= J->size(); 2128 } 2129 if (areJTsAllowed(TLI)) { 2130 // If our case is dense we *really* should handle it earlier! 2131 assert((FMetric > 0) && "Should handle dense range earlier!"); 2132 } else { 2133 Pivot = CR.Range.first + Size/2; 2134 } 2135 2136 CaseRange LHSR(CR.Range.first, Pivot); 2137 CaseRange RHSR(Pivot, CR.Range.second); 2138 Constant *C = Pivot->Low; 2139 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 2140 2141 // We know that we branch to the LHS if the Value being switched on is 2142 // less than the Pivot value, C. We use this to optimize our binary 2143 // tree a bit, by recognizing that if SV is greater than or equal to the 2144 // LHS's Case Value, and that Case Value is exactly one less than the 2145 // Pivot's Value, then we can branch directly to the LHS's Target, 2146 // rather than creating a leaf node for it. 2147 if ((LHSR.second - LHSR.first) == 1 && 2148 LHSR.first->High == CR.GE && 2149 cast<ConstantInt>(C)->getValue() == 2150 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2151 TrueBB = LHSR.first->BB; 2152 } else { 2153 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2154 CurMF->insert(BBI, TrueBB); 2155 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2156 2157 // Put SV in a virtual register to make it available from the new blocks. 2158 ExportFromCurrentBlock(SV); 2159 } 2160 2161 // Similar to the optimization above, if the Value being switched on is 2162 // known to be less than the Constant CR.LT, and the current Case Value 2163 // is CR.LT - 1, then we can branch directly to the target block for 2164 // the current Case Value, rather than emitting a RHS leaf node for it. 2165 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2166 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2167 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2168 FalseBB = RHSR.first->BB; 2169 } else { 2170 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2171 CurMF->insert(BBI, FalseBB); 2172 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2173 2174 // Put SV in a virtual register to make it available from the new blocks. 2175 ExportFromCurrentBlock(SV); 2176 } 2177 2178 // Create a CaseBlock record representing a conditional branch to 2179 // the LHS node if the value being switched on SV is less than C. 2180 // Otherwise, branch to LHS. 2181 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2182 2183 if (CR.CaseBB == SwitchBB) 2184 visitSwitchCase(CB, SwitchBB); 2185 else 2186 SwitchCases.push_back(CB); 2187 2188 return true; 2189 } 2190 2191 /// handleBitTestsSwitchCase - if current case range has few destination and 2192 /// range span less, than machine word bitwidth, encode case range into series 2193 /// of masks and emit bit tests with these masks. 2194 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2195 CaseRecVector& WorkList, 2196 const Value* SV, 2197 MachineBasicBlock* Default, 2198 MachineBasicBlock *SwitchBB){ 2199 EVT PTy = TLI.getPointerTy(); 2200 unsigned IntPtrBits = PTy.getSizeInBits(); 2201 2202 Case& FrontCase = *CR.Range.first; 2203 Case& BackCase = *(CR.Range.second-1); 2204 2205 // Get the MachineFunction which holds the current MBB. This is used when 2206 // inserting any additional MBBs necessary to represent the switch. 2207 MachineFunction *CurMF = FuncInfo.MF; 2208 2209 // If target does not have legal shift left, do not emit bit tests at all. 2210 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 2211 return false; 2212 2213 size_t numCmps = 0; 2214 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2215 I!=E; ++I) { 2216 // Single case counts one, case range - two. 2217 numCmps += (I->Low == I->High ? 1 : 2); 2218 } 2219 2220 // Count unique destinations 2221 SmallSet<MachineBasicBlock*, 4> Dests; 2222 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2223 Dests.insert(I->BB); 2224 if (Dests.size() > 3) 2225 // Don't bother the code below, if there are too much unique destinations 2226 return false; 2227 } 2228 DEBUG(dbgs() << "Total number of unique destinations: " 2229 << Dests.size() << '\n' 2230 << "Total number of comparisons: " << numCmps << '\n'); 2231 2232 // Compute span of values. 2233 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2234 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2235 APInt cmpRange = maxValue - minValue; 2236 2237 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2238 << "Low bound: " << minValue << '\n' 2239 << "High bound: " << maxValue << '\n'); 2240 2241 if (cmpRange.uge(IntPtrBits) || 2242 (!(Dests.size() == 1 && numCmps >= 3) && 2243 !(Dests.size() == 2 && numCmps >= 5) && 2244 !(Dests.size() >= 3 && numCmps >= 6))) 2245 return false; 2246 2247 DEBUG(dbgs() << "Emitting bit tests\n"); 2248 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2249 2250 // Optimize the case where all the case values fit in a 2251 // word without having to subtract minValue. In this case, 2252 // we can optimize away the subtraction. 2253 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2254 cmpRange = maxValue; 2255 } else { 2256 lowBound = minValue; 2257 } 2258 2259 CaseBitsVector CasesBits; 2260 unsigned i, count = 0; 2261 2262 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2263 MachineBasicBlock* Dest = I->BB; 2264 for (i = 0; i < count; ++i) 2265 if (Dest == CasesBits[i].BB) 2266 break; 2267 2268 if (i == count) { 2269 assert((count < 3) && "Too much destinations to test!"); 2270 CasesBits.push_back(CaseBits(0, Dest, 0)); 2271 count++; 2272 } 2273 2274 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2275 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2276 2277 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2278 uint64_t hi = (highValue - lowBound).getZExtValue(); 2279 2280 for (uint64_t j = lo; j <= hi; j++) { 2281 CasesBits[i].Mask |= 1ULL << j; 2282 CasesBits[i].Bits++; 2283 } 2284 2285 } 2286 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2287 2288 BitTestInfo BTC; 2289 2290 // Figure out which block is immediately after the current one. 2291 MachineFunction::iterator BBI = CR.CaseBB; 2292 ++BBI; 2293 2294 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2295 2296 DEBUG(dbgs() << "Cases:\n"); 2297 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2298 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2299 << ", Bits: " << CasesBits[i].Bits 2300 << ", BB: " << CasesBits[i].BB << '\n'); 2301 2302 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2303 CurMF->insert(BBI, CaseBB); 2304 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2305 CaseBB, 2306 CasesBits[i].BB)); 2307 2308 // Put SV in a virtual register to make it available from the new blocks. 2309 ExportFromCurrentBlock(SV); 2310 } 2311 2312 BitTestBlock BTB(lowBound, cmpRange, SV, 2313 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2314 CR.CaseBB, Default, BTC); 2315 2316 if (CR.CaseBB == SwitchBB) 2317 visitBitTestHeader(BTB, SwitchBB); 2318 2319 BitTestCases.push_back(BTB); 2320 2321 return true; 2322 } 2323 2324 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2325 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2326 const SwitchInst& SI) { 2327 size_t numCmps = 0; 2328 2329 // Start with "simple" cases 2330 for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { 2331 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)]; 2332 Cases.push_back(Case(SI.getSuccessorValue(i), 2333 SI.getSuccessorValue(i), 2334 SMBB)); 2335 } 2336 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2337 2338 // Merge case into clusters 2339 if (Cases.size() >= 2) 2340 // Must recompute end() each iteration because it may be 2341 // invalidated by erase if we hold on to it 2342 for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin()); 2343 J != Cases.end(); ) { 2344 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2345 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2346 MachineBasicBlock* nextBB = J->BB; 2347 MachineBasicBlock* currentBB = I->BB; 2348 2349 // If the two neighboring cases go to the same destination, merge them 2350 // into a single case. 2351 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2352 I->High = J->High; 2353 J = Cases.erase(J); 2354 } else { 2355 I = J++; 2356 } 2357 } 2358 2359 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2360 if (I->Low != I->High) 2361 // A range counts double, since it requires two compares. 2362 ++numCmps; 2363 } 2364 2365 return numCmps; 2366 } 2367 2368 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2369 MachineBasicBlock *Last) { 2370 // Update JTCases. 2371 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2372 if (JTCases[i].first.HeaderBB == First) 2373 JTCases[i].first.HeaderBB = Last; 2374 2375 // Update BitTestCases. 2376 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2377 if (BitTestCases[i].Parent == First) 2378 BitTestCases[i].Parent = Last; 2379 } 2380 2381 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2382 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2383 2384 // Figure out which block is immediately after the current one. 2385 MachineBasicBlock *NextBlock = 0; 2386 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2387 2388 // If there is only the default destination, branch to it if it is not the 2389 // next basic block. Otherwise, just fall through. 2390 if (SI.getNumOperands() == 2) { 2391 // Update machine-CFG edges. 2392 2393 // If this is not a fall-through branch, emit the branch. 2394 SwitchMBB->addSuccessor(Default); 2395 if (Default != NextBlock) 2396 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 2397 MVT::Other, getControlRoot(), 2398 DAG.getBasicBlock(Default))); 2399 2400 return; 2401 } 2402 2403 // If there are any non-default case statements, create a vector of Cases 2404 // representing each one, and sort the vector so that we can efficiently 2405 // create a binary search tree from them. 2406 CaseVector Cases; 2407 size_t numCmps = Clusterify(Cases, SI); 2408 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2409 << ". Total compares: " << numCmps << '\n'); 2410 numCmps = 0; 2411 2412 // Get the Value to be switched on and default basic blocks, which will be 2413 // inserted into CaseBlock records, representing basic blocks in the binary 2414 // search tree. 2415 const Value *SV = SI.getOperand(0); 2416 2417 // Push the initial CaseRec onto the worklist 2418 CaseRecVector WorkList; 2419 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2420 CaseRange(Cases.begin(),Cases.end()))); 2421 2422 while (!WorkList.empty()) { 2423 // Grab a record representing a case range to process off the worklist 2424 CaseRec CR = WorkList.back(); 2425 WorkList.pop_back(); 2426 2427 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2428 continue; 2429 2430 // If the range has few cases (two or less) emit a series of specific 2431 // tests. 2432 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2433 continue; 2434 2435 // If the switch has more than 5 blocks, and at least 40% dense, and the 2436 // target supports indirect branches, then emit a jump table rather than 2437 // lowering the switch to a binary tree of conditional branches. 2438 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2439 continue; 2440 2441 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2442 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2443 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2444 } 2445 } 2446 2447 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2448 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2449 2450 // Update machine-CFG edges with unique successors. 2451 SmallVector<BasicBlock*, 32> succs; 2452 succs.reserve(I.getNumSuccessors()); 2453 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2454 succs.push_back(I.getSuccessor(i)); 2455 array_pod_sort(succs.begin(), succs.end()); 2456 succs.erase(std::unique(succs.begin(), succs.end()), succs.end()); 2457 for (unsigned i = 0, e = succs.size(); i != e; ++i) { 2458 MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]]; 2459 addSuccessorWithWeight(IndirectBrMBB, Succ); 2460 } 2461 2462 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2463 MVT::Other, getControlRoot(), 2464 getValue(I.getAddress()))); 2465 } 2466 2467 void SelectionDAGBuilder::visitFSub(const User &I) { 2468 // -0.0 - X --> fneg 2469 Type *Ty = I.getType(); 2470 if (isa<Constant>(I.getOperand(0)) && 2471 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2472 SDValue Op2 = getValue(I.getOperand(1)); 2473 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2474 Op2.getValueType(), Op2)); 2475 return; 2476 } 2477 2478 visitBinary(I, ISD::FSUB); 2479 } 2480 2481 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2482 SDValue Op1 = getValue(I.getOperand(0)); 2483 SDValue Op2 = getValue(I.getOperand(1)); 2484 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2485 Op1.getValueType(), Op1, Op2)); 2486 } 2487 2488 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2489 SDValue Op1 = getValue(I.getOperand(0)); 2490 SDValue Op2 = getValue(I.getOperand(1)); 2491 2492 MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType()); 2493 2494 // Coerce the shift amount to the right type if we can. 2495 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2496 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2497 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2498 DebugLoc DL = getCurDebugLoc(); 2499 2500 // If the operand is smaller than the shift count type, promote it. 2501 if (ShiftSize > Op2Size) 2502 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2503 2504 // If the operand is larger than the shift count type but the shift 2505 // count type has enough bits to represent any shift value, truncate 2506 // it now. This is a common case and it exposes the truncate to 2507 // optimization early. 2508 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2509 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2510 // Otherwise we'll need to temporarily settle for some other convenient 2511 // type. Type legalization will make adjustments once the shiftee is split. 2512 else 2513 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2514 } 2515 2516 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2517 Op1.getValueType(), Op1, Op2)); 2518 } 2519 2520 void SelectionDAGBuilder::visitSDiv(const User &I) { 2521 SDValue Op1 = getValue(I.getOperand(0)); 2522 SDValue Op2 = getValue(I.getOperand(1)); 2523 2524 // Turn exact SDivs into multiplications. 2525 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2526 // exact bit. 2527 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2528 !isa<ConstantSDNode>(Op1) && 2529 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2530 setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG)); 2531 else 2532 setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(), 2533 Op1, Op2)); 2534 } 2535 2536 void SelectionDAGBuilder::visitICmp(const User &I) { 2537 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2538 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2539 predicate = IC->getPredicate(); 2540 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2541 predicate = ICmpInst::Predicate(IC->getPredicate()); 2542 SDValue Op1 = getValue(I.getOperand(0)); 2543 SDValue Op2 = getValue(I.getOperand(1)); 2544 ISD::CondCode Opcode = getICmpCondCode(predicate); 2545 2546 EVT DestVT = TLI.getValueType(I.getType()); 2547 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2548 } 2549 2550 void SelectionDAGBuilder::visitFCmp(const User &I) { 2551 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2552 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2553 predicate = FC->getPredicate(); 2554 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2555 predicate = FCmpInst::Predicate(FC->getPredicate()); 2556 SDValue Op1 = getValue(I.getOperand(0)); 2557 SDValue Op2 = getValue(I.getOperand(1)); 2558 ISD::CondCode Condition = getFCmpCondCode(predicate); 2559 EVT DestVT = TLI.getValueType(I.getType()); 2560 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2561 } 2562 2563 void SelectionDAGBuilder::visitSelect(const User &I) { 2564 SmallVector<EVT, 4> ValueVTs; 2565 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2566 unsigned NumValues = ValueVTs.size(); 2567 if (NumValues == 0) return; 2568 2569 SmallVector<SDValue, 4> Values(NumValues); 2570 SDValue Cond = getValue(I.getOperand(0)); 2571 SDValue TrueVal = getValue(I.getOperand(1)); 2572 SDValue FalseVal = getValue(I.getOperand(2)); 2573 2574 for (unsigned i = 0; i != NumValues; ++i) 2575 Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(), 2576 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2577 Cond, 2578 SDValue(TrueVal.getNode(), 2579 TrueVal.getResNo() + i), 2580 SDValue(FalseVal.getNode(), 2581 FalseVal.getResNo() + i)); 2582 2583 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2584 DAG.getVTList(&ValueVTs[0], NumValues), 2585 &Values[0], NumValues)); 2586 } 2587 2588 void SelectionDAGBuilder::visitTrunc(const User &I) { 2589 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2590 SDValue N = getValue(I.getOperand(0)); 2591 EVT DestVT = TLI.getValueType(I.getType()); 2592 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2593 } 2594 2595 void SelectionDAGBuilder::visitZExt(const User &I) { 2596 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2597 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2598 SDValue N = getValue(I.getOperand(0)); 2599 EVT DestVT = TLI.getValueType(I.getType()); 2600 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2601 } 2602 2603 void SelectionDAGBuilder::visitSExt(const User &I) { 2604 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2605 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2606 SDValue N = getValue(I.getOperand(0)); 2607 EVT DestVT = TLI.getValueType(I.getType()); 2608 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2609 } 2610 2611 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2612 // FPTrunc is never a no-op cast, no need to check 2613 SDValue N = getValue(I.getOperand(0)); 2614 EVT DestVT = TLI.getValueType(I.getType()); 2615 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2616 DestVT, N, DAG.getIntPtrConstant(0))); 2617 } 2618 2619 void SelectionDAGBuilder::visitFPExt(const User &I){ 2620 // FPTrunc is never a no-op cast, no need to check 2621 SDValue N = getValue(I.getOperand(0)); 2622 EVT DestVT = TLI.getValueType(I.getType()); 2623 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2624 } 2625 2626 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2627 // FPToUI is never a no-op cast, no need to check 2628 SDValue N = getValue(I.getOperand(0)); 2629 EVT DestVT = TLI.getValueType(I.getType()); 2630 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2631 } 2632 2633 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2634 // FPToSI is never a no-op cast, no need to check 2635 SDValue N = getValue(I.getOperand(0)); 2636 EVT DestVT = TLI.getValueType(I.getType()); 2637 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2638 } 2639 2640 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2641 // UIToFP is never a no-op cast, no need to check 2642 SDValue N = getValue(I.getOperand(0)); 2643 EVT DestVT = TLI.getValueType(I.getType()); 2644 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2645 } 2646 2647 void SelectionDAGBuilder::visitSIToFP(const User &I){ 2648 // SIToFP is never a no-op cast, no need to check 2649 SDValue N = getValue(I.getOperand(0)); 2650 EVT DestVT = TLI.getValueType(I.getType()); 2651 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2652 } 2653 2654 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2655 // What to do depends on the size of the integer and the size of the pointer. 2656 // We can either truncate, zero extend, or no-op, accordingly. 2657 SDValue N = getValue(I.getOperand(0)); 2658 EVT DestVT = TLI.getValueType(I.getType()); 2659 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2660 } 2661 2662 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2663 // What to do depends on the size of the integer and the size of the pointer. 2664 // We can either truncate, zero extend, or no-op, accordingly. 2665 SDValue N = getValue(I.getOperand(0)); 2666 EVT DestVT = TLI.getValueType(I.getType()); 2667 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2668 } 2669 2670 void SelectionDAGBuilder::visitBitCast(const User &I) { 2671 SDValue N = getValue(I.getOperand(0)); 2672 EVT DestVT = TLI.getValueType(I.getType()); 2673 2674 // BitCast assures us that source and destination are the same size so this is 2675 // either a BITCAST or a no-op. 2676 if (DestVT != N.getValueType()) 2677 setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 2678 DestVT, N)); // convert types. 2679 else 2680 setValue(&I, N); // noop cast. 2681 } 2682 2683 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2684 SDValue InVec = getValue(I.getOperand(0)); 2685 SDValue InVal = getValue(I.getOperand(1)); 2686 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2687 TLI.getPointerTy(), 2688 getValue(I.getOperand(2))); 2689 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2690 TLI.getValueType(I.getType()), 2691 InVec, InVal, InIdx)); 2692 } 2693 2694 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2695 SDValue InVec = getValue(I.getOperand(0)); 2696 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2697 TLI.getPointerTy(), 2698 getValue(I.getOperand(1))); 2699 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2700 TLI.getValueType(I.getType()), InVec, InIdx)); 2701 } 2702 2703 // Utility for visitShuffleVector - Returns true if the mask is mask starting 2704 // from SIndx and increasing to the element length (undefs are allowed). 2705 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) { 2706 unsigned MaskNumElts = Mask.size(); 2707 for (unsigned i = 0; i != MaskNumElts; ++i) 2708 if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx))) 2709 return false; 2710 return true; 2711 } 2712 2713 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2714 SmallVector<int, 8> Mask; 2715 SDValue Src1 = getValue(I.getOperand(0)); 2716 SDValue Src2 = getValue(I.getOperand(1)); 2717 2718 // Convert the ConstantVector mask operand into an array of ints, with -1 2719 // representing undef values. 2720 SmallVector<Constant*, 8> MaskElts; 2721 cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts); 2722 unsigned MaskNumElts = MaskElts.size(); 2723 for (unsigned i = 0; i != MaskNumElts; ++i) { 2724 if (isa<UndefValue>(MaskElts[i])) 2725 Mask.push_back(-1); 2726 else 2727 Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue()); 2728 } 2729 2730 EVT VT = TLI.getValueType(I.getType()); 2731 EVT SrcVT = Src1.getValueType(); 2732 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2733 2734 if (SrcNumElts == MaskNumElts) { 2735 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2736 &Mask[0])); 2737 return; 2738 } 2739 2740 // Normalize the shuffle vector since mask and vector length don't match. 2741 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2742 // Mask is longer than the source vectors and is a multiple of the source 2743 // vectors. We can use concatenate vector to make the mask and vectors 2744 // lengths match. 2745 if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { 2746 // The shuffle is concatenating two vectors together. 2747 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2748 VT, Src1, Src2)); 2749 return; 2750 } 2751 2752 // Pad both vectors with undefs to make them the same length as the mask. 2753 unsigned NumConcat = MaskNumElts / SrcNumElts; 2754 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2755 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2756 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2757 2758 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2759 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2760 MOps1[0] = Src1; 2761 MOps2[0] = Src2; 2762 2763 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2764 getCurDebugLoc(), VT, 2765 &MOps1[0], NumConcat); 2766 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2767 getCurDebugLoc(), VT, 2768 &MOps2[0], NumConcat); 2769 2770 // Readjust mask for new input vector length. 2771 SmallVector<int, 8> MappedOps; 2772 for (unsigned i = 0; i != MaskNumElts; ++i) { 2773 int Idx = Mask[i]; 2774 if (Idx < (int)SrcNumElts) 2775 MappedOps.push_back(Idx); 2776 else 2777 MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); 2778 } 2779 2780 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2781 &MappedOps[0])); 2782 return; 2783 } 2784 2785 if (SrcNumElts > MaskNumElts) { 2786 // Analyze the access pattern of the vector to see if we can extract 2787 // two subvectors and do the shuffle. The analysis is done by calculating 2788 // the range of elements the mask access on both vectors. 2789 int MinRange[2] = { static_cast<int>(SrcNumElts+1), 2790 static_cast<int>(SrcNumElts+1)}; 2791 int MaxRange[2] = {-1, -1}; 2792 2793 for (unsigned i = 0; i != MaskNumElts; ++i) { 2794 int Idx = Mask[i]; 2795 int Input = 0; 2796 if (Idx < 0) 2797 continue; 2798 2799 if (Idx >= (int)SrcNumElts) { 2800 Input = 1; 2801 Idx -= SrcNumElts; 2802 } 2803 if (Idx > MaxRange[Input]) 2804 MaxRange[Input] = Idx; 2805 if (Idx < MinRange[Input]) 2806 MinRange[Input] = Idx; 2807 } 2808 2809 // Check if the access is smaller than the vector size and can we find 2810 // a reasonable extract index. 2811 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not 2812 // Extract. 2813 int StartIdx[2]; // StartIdx to extract from 2814 for (int Input=0; Input < 2; ++Input) { 2815 if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { 2816 RangeUse[Input] = 0; // Unused 2817 StartIdx[Input] = 0; 2818 } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { 2819 // Fits within range but we should see if we can find a good 2820 // start index that is a multiple of the mask length. 2821 if (MaxRange[Input] < (int)MaskNumElts) { 2822 RangeUse[Input] = 1; // Extract from beginning of the vector 2823 StartIdx[Input] = 0; 2824 } else { 2825 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2826 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2827 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2828 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2829 } 2830 } 2831 } 2832 2833 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2834 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2835 return; 2836 } 2837 else if (RangeUse[0] < 2 && RangeUse[1] < 2) { 2838 // Extract appropriate subvector and generate a vector shuffle 2839 for (int Input=0; Input < 2; ++Input) { 2840 SDValue &Src = Input == 0 ? Src1 : Src2; 2841 if (RangeUse[Input] == 0) 2842 Src = DAG.getUNDEF(VT); 2843 else 2844 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2845 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2846 } 2847 2848 // Calculate new mask. 2849 SmallVector<int, 8> MappedOps; 2850 for (unsigned i = 0; i != MaskNumElts; ++i) { 2851 int Idx = Mask[i]; 2852 if (Idx < 0) 2853 MappedOps.push_back(Idx); 2854 else if (Idx < (int)SrcNumElts) 2855 MappedOps.push_back(Idx - StartIdx[0]); 2856 else 2857 MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); 2858 } 2859 2860 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2861 &MappedOps[0])); 2862 return; 2863 } 2864 } 2865 2866 // We can't use either concat vectors or extract subvectors so fall back to 2867 // replacing the shuffle with extract and build vector. 2868 // to insert and build vector. 2869 EVT EltVT = VT.getVectorElementType(); 2870 EVT PtrVT = TLI.getPointerTy(); 2871 SmallVector<SDValue,8> Ops; 2872 for (unsigned i = 0; i != MaskNumElts; ++i) { 2873 if (Mask[i] < 0) { 2874 Ops.push_back(DAG.getUNDEF(EltVT)); 2875 } else { 2876 int Idx = Mask[i]; 2877 SDValue Res; 2878 2879 if (Idx < (int)SrcNumElts) 2880 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2881 EltVT, Src1, DAG.getConstant(Idx, PtrVT)); 2882 else 2883 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2884 EltVT, Src2, 2885 DAG.getConstant(Idx - SrcNumElts, PtrVT)); 2886 2887 Ops.push_back(Res); 2888 } 2889 } 2890 2891 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 2892 VT, &Ops[0], Ops.size())); 2893 } 2894 2895 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2896 const Value *Op0 = I.getOperand(0); 2897 const Value *Op1 = I.getOperand(1); 2898 Type *AggTy = I.getType(); 2899 Type *ValTy = Op1->getType(); 2900 bool IntoUndef = isa<UndefValue>(Op0); 2901 bool FromUndef = isa<UndefValue>(Op1); 2902 2903 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2904 2905 SmallVector<EVT, 4> AggValueVTs; 2906 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2907 SmallVector<EVT, 4> ValValueVTs; 2908 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2909 2910 unsigned NumAggValues = AggValueVTs.size(); 2911 unsigned NumValValues = ValValueVTs.size(); 2912 SmallVector<SDValue, 4> Values(NumAggValues); 2913 2914 SDValue Agg = getValue(Op0); 2915 unsigned i = 0; 2916 // Copy the beginning value(s) from the original aggregate. 2917 for (; i != LinearIndex; ++i) 2918 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2919 SDValue(Agg.getNode(), Agg.getResNo() + i); 2920 // Copy values from the inserted value(s). 2921 if (NumValValues) { 2922 SDValue Val = getValue(Op1); 2923 for (; i != LinearIndex + NumValValues; ++i) 2924 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2925 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2926 } 2927 // Copy remaining value(s) from the original aggregate. 2928 for (; i != NumAggValues; ++i) 2929 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2930 SDValue(Agg.getNode(), Agg.getResNo() + i); 2931 2932 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2933 DAG.getVTList(&AggValueVTs[0], NumAggValues), 2934 &Values[0], NumAggValues)); 2935 } 2936 2937 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2938 const Value *Op0 = I.getOperand(0); 2939 Type *AggTy = Op0->getType(); 2940 Type *ValTy = I.getType(); 2941 bool OutOfUndef = isa<UndefValue>(Op0); 2942 2943 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2944 2945 SmallVector<EVT, 4> ValValueVTs; 2946 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2947 2948 unsigned NumValValues = ValValueVTs.size(); 2949 2950 // Ignore a extractvalue that produces an empty object 2951 if (!NumValValues) { 2952 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2953 return; 2954 } 2955 2956 SmallVector<SDValue, 4> Values(NumValValues); 2957 2958 SDValue Agg = getValue(Op0); 2959 // Copy out the selected value(s). 2960 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2961 Values[i - LinearIndex] = 2962 OutOfUndef ? 2963 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2964 SDValue(Agg.getNode(), Agg.getResNo() + i); 2965 2966 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2967 DAG.getVTList(&ValValueVTs[0], NumValValues), 2968 &Values[0], NumValValues)); 2969 } 2970 2971 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2972 SDValue N = getValue(I.getOperand(0)); 2973 Type *Ty = I.getOperand(0)->getType(); 2974 2975 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2976 OI != E; ++OI) { 2977 const Value *Idx = *OI; 2978 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2979 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2980 if (Field) { 2981 // N = N + Offset 2982 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 2983 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2984 DAG.getIntPtrConstant(Offset)); 2985 } 2986 2987 Ty = StTy->getElementType(Field); 2988 } else { 2989 Ty = cast<SequentialType>(Ty)->getElementType(); 2990 2991 // If this is a constant subscript, handle it quickly. 2992 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 2993 if (CI->isZero()) continue; 2994 uint64_t Offs = 2995 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 2996 SDValue OffsVal; 2997 EVT PTy = TLI.getPointerTy(); 2998 unsigned PtrBits = PTy.getSizeInBits(); 2999 if (PtrBits < 64) 3000 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 3001 TLI.getPointerTy(), 3002 DAG.getConstant(Offs, MVT::i64)); 3003 else 3004 OffsVal = DAG.getIntPtrConstant(Offs); 3005 3006 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 3007 OffsVal); 3008 continue; 3009 } 3010 3011 // N = N + Idx * ElementSize; 3012 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 3013 TD->getTypeAllocSize(Ty)); 3014 SDValue IdxN = getValue(Idx); 3015 3016 // If the index is smaller or larger than intptr_t, truncate or extend 3017 // it. 3018 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 3019 3020 // If this is a multiply by a power of two, turn it into a shl 3021 // immediately. This is a very common case. 3022 if (ElementSize != 1) { 3023 if (ElementSize.isPowerOf2()) { 3024 unsigned Amt = ElementSize.logBase2(); 3025 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 3026 N.getValueType(), IdxN, 3027 DAG.getConstant(Amt, TLI.getPointerTy())); 3028 } else { 3029 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 3030 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 3031 N.getValueType(), IdxN, Scale); 3032 } 3033 } 3034 3035 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3036 N.getValueType(), N, IdxN); 3037 } 3038 } 3039 3040 setValue(&I, N); 3041 } 3042 3043 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3044 // If this is a fixed sized alloca in the entry block of the function, 3045 // allocate it statically on the stack. 3046 if (FuncInfo.StaticAllocaMap.count(&I)) 3047 return; // getValue will auto-populate this. 3048 3049 Type *Ty = I.getAllocatedType(); 3050 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 3051 unsigned Align = 3052 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 3053 I.getAlignment()); 3054 3055 SDValue AllocSize = getValue(I.getArraySize()); 3056 3057 EVT IntPtr = TLI.getPointerTy(); 3058 if (AllocSize.getValueType() != IntPtr) 3059 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 3060 3061 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr, 3062 AllocSize, 3063 DAG.getConstant(TySize, IntPtr)); 3064 3065 // Handle alignment. If the requested alignment is less than or equal to 3066 // the stack alignment, ignore it. If the size is greater than or equal to 3067 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3068 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 3069 if (Align <= StackAlign) 3070 Align = 0; 3071 3072 // Round the size of the allocation up to the stack alignment size 3073 // by add SA-1 to the size. 3074 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3075 AllocSize.getValueType(), AllocSize, 3076 DAG.getIntPtrConstant(StackAlign-1)); 3077 3078 // Mask out the low bits for alignment purposes. 3079 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 3080 AllocSize.getValueType(), AllocSize, 3081 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3082 3083 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3084 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3085 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 3086 VTs, Ops, 3); 3087 setValue(&I, DSA); 3088 DAG.setRoot(DSA.getValue(1)); 3089 3090 // Inform the Frame Information that we have just allocated a variable-sized 3091 // object. 3092 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); 3093 } 3094 3095 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3096 const Value *SV = I.getOperand(0); 3097 SDValue Ptr = getValue(SV); 3098 3099 Type *Ty = I.getType(); 3100 3101 bool isVolatile = I.isVolatile(); 3102 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3103 unsigned Alignment = I.getAlignment(); 3104 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3105 3106 SmallVector<EVT, 4> ValueVTs; 3107 SmallVector<uint64_t, 4> Offsets; 3108 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3109 unsigned NumValues = ValueVTs.size(); 3110 if (NumValues == 0) 3111 return; 3112 3113 SDValue Root; 3114 bool ConstantMemory = false; 3115 if (I.isVolatile() || NumValues > MaxParallelChains) 3116 // Serialize volatile loads with other side effects. 3117 Root = getRoot(); 3118 else if (AA->pointsToConstantMemory( 3119 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3120 // Do not serialize (non-volatile) loads of constant memory with anything. 3121 Root = DAG.getEntryNode(); 3122 ConstantMemory = true; 3123 } else { 3124 // Do not serialize non-volatile loads against each other. 3125 Root = DAG.getRoot(); 3126 } 3127 3128 SmallVector<SDValue, 4> Values(NumValues); 3129 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3130 NumValues)); 3131 EVT PtrVT = Ptr.getValueType(); 3132 unsigned ChainI = 0; 3133 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3134 // Serializing loads here may result in excessive register pressure, and 3135 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3136 // could recover a bit by hoisting nodes upward in the chain by recognizing 3137 // they are side-effect free or do not alias. The optimizer should really 3138 // avoid this case by converting large object/array copies to llvm.memcpy 3139 // (MaxParallelChains should always remain as failsafe). 3140 if (ChainI == MaxParallelChains) { 3141 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3142 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3143 MVT::Other, &Chains[0], ChainI); 3144 Root = Chain; 3145 ChainI = 0; 3146 } 3147 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3148 PtrVT, Ptr, 3149 DAG.getConstant(Offsets[i], PtrVT)); 3150 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 3151 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3152 isNonTemporal, Alignment, TBAAInfo); 3153 3154 Values[i] = L; 3155 Chains[ChainI] = L.getValue(1); 3156 } 3157 3158 if (!ConstantMemory) { 3159 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3160 MVT::Other, &Chains[0], ChainI); 3161 if (isVolatile) 3162 DAG.setRoot(Chain); 3163 else 3164 PendingLoads.push_back(Chain); 3165 } 3166 3167 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3168 DAG.getVTList(&ValueVTs[0], NumValues), 3169 &Values[0], NumValues)); 3170 } 3171 3172 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3173 const Value *SrcV = I.getOperand(0); 3174 const Value *PtrV = I.getOperand(1); 3175 3176 SmallVector<EVT, 4> ValueVTs; 3177 SmallVector<uint64_t, 4> Offsets; 3178 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 3179 unsigned NumValues = ValueVTs.size(); 3180 if (NumValues == 0) 3181 return; 3182 3183 // Get the lowered operands. Note that we do this after 3184 // checking if NumResults is zero, because with zero results 3185 // the operands won't have values in the map. 3186 SDValue Src = getValue(SrcV); 3187 SDValue Ptr = getValue(PtrV); 3188 3189 SDValue Root = getRoot(); 3190 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3191 NumValues)); 3192 EVT PtrVT = Ptr.getValueType(); 3193 bool isVolatile = I.isVolatile(); 3194 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3195 unsigned Alignment = I.getAlignment(); 3196 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3197 3198 unsigned ChainI = 0; 3199 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3200 // See visitLoad comments. 3201 if (ChainI == MaxParallelChains) { 3202 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3203 MVT::Other, &Chains[0], ChainI); 3204 Root = Chain; 3205 ChainI = 0; 3206 } 3207 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 3208 DAG.getConstant(Offsets[i], PtrVT)); 3209 SDValue St = DAG.getStore(Root, getCurDebugLoc(), 3210 SDValue(Src.getNode(), Src.getResNo() + i), 3211 Add, MachinePointerInfo(PtrV, Offsets[i]), 3212 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3213 Chains[ChainI] = St; 3214 } 3215 3216 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3217 MVT::Other, &Chains[0], ChainI); 3218 ++SDNodeOrder; 3219 AssignOrderingToNode(StoreNode.getNode()); 3220 DAG.setRoot(StoreNode); 3221 } 3222 3223 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3224 DebugLoc dl = getCurDebugLoc(); 3225 SDValue Ops[3]; 3226 Ops[0] = getRoot(); 3227 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); 3228 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); 3229 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3)); 3230 } 3231 3232 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3233 /// node. 3234 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3235 unsigned Intrinsic) { 3236 bool HasChain = !I.doesNotAccessMemory(); 3237 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3238 3239 // Build the operand list. 3240 SmallVector<SDValue, 8> Ops; 3241 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3242 if (OnlyLoad) { 3243 // We don't need to serialize loads against other loads. 3244 Ops.push_back(DAG.getRoot()); 3245 } else { 3246 Ops.push_back(getRoot()); 3247 } 3248 } 3249 3250 // Info is set by getTgtMemInstrinsic 3251 TargetLowering::IntrinsicInfo Info; 3252 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3253 3254 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3255 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3256 Info.opc == ISD::INTRINSIC_W_CHAIN) 3257 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); 3258 3259 // Add all operands of the call to the operand list. 3260 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3261 SDValue Op = getValue(I.getArgOperand(i)); 3262 assert(TLI.isTypeLegal(Op.getValueType()) && 3263 "Intrinsic uses a non-legal type?"); 3264 Ops.push_back(Op); 3265 } 3266 3267 SmallVector<EVT, 4> ValueVTs; 3268 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3269 #ifndef NDEBUG 3270 for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) { 3271 assert(TLI.isTypeLegal(ValueVTs[Val]) && 3272 "Intrinsic uses a non-legal type?"); 3273 } 3274 #endif // NDEBUG 3275 3276 if (HasChain) 3277 ValueVTs.push_back(MVT::Other); 3278 3279 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3280 3281 // Create the node. 3282 SDValue Result; 3283 if (IsTgtIntrinsic) { 3284 // This is target intrinsic that touches memory 3285 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 3286 VTs, &Ops[0], Ops.size(), 3287 Info.memVT, 3288 MachinePointerInfo(Info.ptrVal, Info.offset), 3289 Info.align, Info.vol, 3290 Info.readMem, Info.writeMem); 3291 } else if (!HasChain) { 3292 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 3293 VTs, &Ops[0], Ops.size()); 3294 } else if (!I.getType()->isVoidTy()) { 3295 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 3296 VTs, &Ops[0], Ops.size()); 3297 } else { 3298 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 3299 VTs, &Ops[0], Ops.size()); 3300 } 3301 3302 if (HasChain) { 3303 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3304 if (OnlyLoad) 3305 PendingLoads.push_back(Chain); 3306 else 3307 DAG.setRoot(Chain); 3308 } 3309 3310 if (!I.getType()->isVoidTy()) { 3311 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3312 EVT VT = TLI.getValueType(PTy); 3313 Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result); 3314 } 3315 3316 setValue(&I, Result); 3317 } 3318 } 3319 3320 /// GetSignificand - Get the significand and build it into a floating-point 3321 /// number with exponent of 1: 3322 /// 3323 /// Op = (Op & 0x007fffff) | 0x3f800000; 3324 /// 3325 /// where Op is the hexidecimal representation of floating point value. 3326 static SDValue 3327 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 3328 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3329 DAG.getConstant(0x007fffff, MVT::i32)); 3330 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3331 DAG.getConstant(0x3f800000, MVT::i32)); 3332 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3333 } 3334 3335 /// GetExponent - Get the exponent: 3336 /// 3337 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3338 /// 3339 /// where Op is the hexidecimal representation of floating point value. 3340 static SDValue 3341 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3342 DebugLoc dl) { 3343 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3344 DAG.getConstant(0x7f800000, MVT::i32)); 3345 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3346 DAG.getConstant(23, TLI.getPointerTy())); 3347 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3348 DAG.getConstant(127, MVT::i32)); 3349 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3350 } 3351 3352 /// getF32Constant - Get 32-bit floating point constant. 3353 static SDValue 3354 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3355 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 3356 } 3357 3358 /// Inlined utility function to implement binary input atomic intrinsics for 3359 /// visitIntrinsicCall: I is a call instruction 3360 /// Op is the associated NodeType for I 3361 const char * 3362 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I, 3363 ISD::NodeType Op) { 3364 SDValue Root = getRoot(); 3365 SDValue L = 3366 DAG.getAtomic(Op, getCurDebugLoc(), 3367 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(), 3368 Root, 3369 getValue(I.getArgOperand(0)), 3370 getValue(I.getArgOperand(1)), 3371 I.getArgOperand(0)); 3372 setValue(&I, L); 3373 DAG.setRoot(L.getValue(1)); 3374 return 0; 3375 } 3376 3377 // implVisitAluOverflow - Lower arithmetic overflow instrinsics. 3378 const char * 3379 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) { 3380 SDValue Op1 = getValue(I.getArgOperand(0)); 3381 SDValue Op2 = getValue(I.getArgOperand(1)); 3382 3383 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 3384 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); 3385 return 0; 3386 } 3387 3388 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 3389 /// limited-precision mode. 3390 void 3391 SelectionDAGBuilder::visitExp(const CallInst &I) { 3392 SDValue result; 3393 DebugLoc dl = getCurDebugLoc(); 3394 3395 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3396 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3397 SDValue Op = getValue(I.getArgOperand(0)); 3398 3399 // Put the exponent in the right bit position for later addition to the 3400 // final result: 3401 // 3402 // #define LOG2OFe 1.4426950f 3403 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3404 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3405 getF32Constant(DAG, 0x3fb8aa3b)); 3406 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3407 3408 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3409 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3410 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3411 3412 // IntegerPartOfX <<= 23; 3413 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3414 DAG.getConstant(23, TLI.getPointerTy())); 3415 3416 if (LimitFloatPrecision <= 6) { 3417 // For floating-point precision of 6: 3418 // 3419 // TwoToFractionalPartOfX = 3420 // 0.997535578f + 3421 // (0.735607626f + 0.252464424f * x) * x; 3422 // 3423 // error 0.0144103317, which is 6 bits 3424 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3425 getF32Constant(DAG, 0x3e814304)); 3426 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3427 getF32Constant(DAG, 0x3f3c50c8)); 3428 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3429 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3430 getF32Constant(DAG, 0x3f7f5e7e)); 3431 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5); 3432 3433 // Add the exponent into the result in integer domain. 3434 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3435 TwoToFracPartOfX, IntegerPartOfX); 3436 3437 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6); 3438 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3439 // For floating-point precision of 12: 3440 // 3441 // TwoToFractionalPartOfX = 3442 // 0.999892986f + 3443 // (0.696457318f + 3444 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3445 // 3446 // 0.000107046256 error, which is 13 to 14 bits 3447 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3448 getF32Constant(DAG, 0x3da235e3)); 3449 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3450 getF32Constant(DAG, 0x3e65b8f3)); 3451 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3452 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3453 getF32Constant(DAG, 0x3f324b07)); 3454 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3455 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3456 getF32Constant(DAG, 0x3f7ff8fd)); 3457 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7); 3458 3459 // Add the exponent into the result in integer domain. 3460 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3461 TwoToFracPartOfX, IntegerPartOfX); 3462 3463 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8); 3464 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3465 // For floating-point precision of 18: 3466 // 3467 // TwoToFractionalPartOfX = 3468 // 0.999999982f + 3469 // (0.693148872f + 3470 // (0.240227044f + 3471 // (0.554906021e-1f + 3472 // (0.961591928e-2f + 3473 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3474 // 3475 // error 2.47208000*10^(-7), which is better than 18 bits 3476 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3477 getF32Constant(DAG, 0x3924b03e)); 3478 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3479 getF32Constant(DAG, 0x3ab24b87)); 3480 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3481 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3482 getF32Constant(DAG, 0x3c1d8c17)); 3483 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3484 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3485 getF32Constant(DAG, 0x3d634a1d)); 3486 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3487 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3488 getF32Constant(DAG, 0x3e75fe14)); 3489 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3490 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3491 getF32Constant(DAG, 0x3f317234)); 3492 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3493 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3494 getF32Constant(DAG, 0x3f800000)); 3495 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl, 3496 MVT::i32, t13); 3497 3498 // Add the exponent into the result in integer domain. 3499 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3500 TwoToFracPartOfX, IntegerPartOfX); 3501 3502 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14); 3503 } 3504 } else { 3505 // No special expansion. 3506 result = DAG.getNode(ISD::FEXP, dl, 3507 getValue(I.getArgOperand(0)).getValueType(), 3508 getValue(I.getArgOperand(0))); 3509 } 3510 3511 setValue(&I, result); 3512 } 3513 3514 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3515 /// limited-precision mode. 3516 void 3517 SelectionDAGBuilder::visitLog(const CallInst &I) { 3518 SDValue result; 3519 DebugLoc dl = getCurDebugLoc(); 3520 3521 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3522 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3523 SDValue Op = getValue(I.getArgOperand(0)); 3524 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3525 3526 // Scale the exponent by log(2) [0.69314718f]. 3527 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3528 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3529 getF32Constant(DAG, 0x3f317218)); 3530 3531 // Get the significand and build it into a floating-point number with 3532 // exponent of 1. 3533 SDValue X = GetSignificand(DAG, Op1, dl); 3534 3535 if (LimitFloatPrecision <= 6) { 3536 // For floating-point precision of 6: 3537 // 3538 // LogofMantissa = 3539 // -1.1609546f + 3540 // (1.4034025f - 0.23903021f * x) * x; 3541 // 3542 // error 0.0034276066, which is better than 8 bits 3543 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3544 getF32Constant(DAG, 0xbe74c456)); 3545 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3546 getF32Constant(DAG, 0x3fb3a2b1)); 3547 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3548 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3549 getF32Constant(DAG, 0x3f949a29)); 3550 3551 result = DAG.getNode(ISD::FADD, dl, 3552 MVT::f32, LogOfExponent, LogOfMantissa); 3553 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3554 // For floating-point precision of 12: 3555 // 3556 // LogOfMantissa = 3557 // -1.7417939f + 3558 // (2.8212026f + 3559 // (-1.4699568f + 3560 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3561 // 3562 // error 0.000061011436, which is 14 bits 3563 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3564 getF32Constant(DAG, 0xbd67b6d6)); 3565 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3566 getF32Constant(DAG, 0x3ee4f4b8)); 3567 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3568 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3569 getF32Constant(DAG, 0x3fbc278b)); 3570 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3571 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3572 getF32Constant(DAG, 0x40348e95)); 3573 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3574 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3575 getF32Constant(DAG, 0x3fdef31a)); 3576 3577 result = DAG.getNode(ISD::FADD, dl, 3578 MVT::f32, LogOfExponent, LogOfMantissa); 3579 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3580 // For floating-point precision of 18: 3581 // 3582 // LogOfMantissa = 3583 // -2.1072184f + 3584 // (4.2372794f + 3585 // (-3.7029485f + 3586 // (2.2781945f + 3587 // (-0.87823314f + 3588 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3589 // 3590 // error 0.0000023660568, which is better than 18 bits 3591 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3592 getF32Constant(DAG, 0xbc91e5ac)); 3593 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3594 getF32Constant(DAG, 0x3e4350aa)); 3595 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3596 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3597 getF32Constant(DAG, 0x3f60d3e3)); 3598 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3599 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3600 getF32Constant(DAG, 0x4011cdf0)); 3601 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3602 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3603 getF32Constant(DAG, 0x406cfd1c)); 3604 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3605 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3606 getF32Constant(DAG, 0x408797cb)); 3607 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3608 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3609 getF32Constant(DAG, 0x4006dcab)); 3610 3611 result = DAG.getNode(ISD::FADD, dl, 3612 MVT::f32, LogOfExponent, LogOfMantissa); 3613 } 3614 } else { 3615 // No special expansion. 3616 result = DAG.getNode(ISD::FLOG, dl, 3617 getValue(I.getArgOperand(0)).getValueType(), 3618 getValue(I.getArgOperand(0))); 3619 } 3620 3621 setValue(&I, result); 3622 } 3623 3624 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3625 /// limited-precision mode. 3626 void 3627 SelectionDAGBuilder::visitLog2(const CallInst &I) { 3628 SDValue result; 3629 DebugLoc dl = getCurDebugLoc(); 3630 3631 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3632 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3633 SDValue Op = getValue(I.getArgOperand(0)); 3634 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3635 3636 // Get the exponent. 3637 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3638 3639 // Get the significand and build it into a floating-point number with 3640 // exponent of 1. 3641 SDValue X = GetSignificand(DAG, Op1, dl); 3642 3643 // Different possible minimax approximations of significand in 3644 // floating-point for various degrees of accuracy over [1,2]. 3645 if (LimitFloatPrecision <= 6) { 3646 // For floating-point precision of 6: 3647 // 3648 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3649 // 3650 // error 0.0049451742, which is more than 7 bits 3651 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3652 getF32Constant(DAG, 0xbeb08fe0)); 3653 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3654 getF32Constant(DAG, 0x40019463)); 3655 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3656 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3657 getF32Constant(DAG, 0x3fd6633d)); 3658 3659 result = DAG.getNode(ISD::FADD, dl, 3660 MVT::f32, LogOfExponent, Log2ofMantissa); 3661 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3662 // For floating-point precision of 12: 3663 // 3664 // Log2ofMantissa = 3665 // -2.51285454f + 3666 // (4.07009056f + 3667 // (-2.12067489f + 3668 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3669 // 3670 // error 0.0000876136000, which is better than 13 bits 3671 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3672 getF32Constant(DAG, 0xbda7262e)); 3673 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3674 getF32Constant(DAG, 0x3f25280b)); 3675 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3676 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3677 getF32Constant(DAG, 0x4007b923)); 3678 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3679 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3680 getF32Constant(DAG, 0x40823e2f)); 3681 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3682 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3683 getF32Constant(DAG, 0x4020d29c)); 3684 3685 result = DAG.getNode(ISD::FADD, dl, 3686 MVT::f32, LogOfExponent, Log2ofMantissa); 3687 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3688 // For floating-point precision of 18: 3689 // 3690 // Log2ofMantissa = 3691 // -3.0400495f + 3692 // (6.1129976f + 3693 // (-5.3420409f + 3694 // (3.2865683f + 3695 // (-1.2669343f + 3696 // (0.27515199f - 3697 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3698 // 3699 // error 0.0000018516, which is better than 18 bits 3700 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3701 getF32Constant(DAG, 0xbcd2769e)); 3702 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3703 getF32Constant(DAG, 0x3e8ce0b9)); 3704 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3705 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3706 getF32Constant(DAG, 0x3fa22ae7)); 3707 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3708 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3709 getF32Constant(DAG, 0x40525723)); 3710 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3711 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3712 getF32Constant(DAG, 0x40aaf200)); 3713 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3714 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3715 getF32Constant(DAG, 0x40c39dad)); 3716 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3717 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3718 getF32Constant(DAG, 0x4042902c)); 3719 3720 result = DAG.getNode(ISD::FADD, dl, 3721 MVT::f32, LogOfExponent, Log2ofMantissa); 3722 } 3723 } else { 3724 // No special expansion. 3725 result = DAG.getNode(ISD::FLOG2, dl, 3726 getValue(I.getArgOperand(0)).getValueType(), 3727 getValue(I.getArgOperand(0))); 3728 } 3729 3730 setValue(&I, result); 3731 } 3732 3733 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3734 /// limited-precision mode. 3735 void 3736 SelectionDAGBuilder::visitLog10(const CallInst &I) { 3737 SDValue result; 3738 DebugLoc dl = getCurDebugLoc(); 3739 3740 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3741 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3742 SDValue Op = getValue(I.getArgOperand(0)); 3743 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3744 3745 // Scale the exponent by log10(2) [0.30102999f]. 3746 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3747 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3748 getF32Constant(DAG, 0x3e9a209a)); 3749 3750 // Get the significand and build it into a floating-point number with 3751 // exponent of 1. 3752 SDValue X = GetSignificand(DAG, Op1, dl); 3753 3754 if (LimitFloatPrecision <= 6) { 3755 // For floating-point precision of 6: 3756 // 3757 // Log10ofMantissa = 3758 // -0.50419619f + 3759 // (0.60948995f - 0.10380950f * x) * x; 3760 // 3761 // error 0.0014886165, which is 6 bits 3762 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3763 getF32Constant(DAG, 0xbdd49a13)); 3764 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3765 getF32Constant(DAG, 0x3f1c0789)); 3766 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3767 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3768 getF32Constant(DAG, 0x3f011300)); 3769 3770 result = DAG.getNode(ISD::FADD, dl, 3771 MVT::f32, LogOfExponent, Log10ofMantissa); 3772 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3773 // For floating-point precision of 12: 3774 // 3775 // Log10ofMantissa = 3776 // -0.64831180f + 3777 // (0.91751397f + 3778 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3779 // 3780 // error 0.00019228036, which is better than 12 bits 3781 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3782 getF32Constant(DAG, 0x3d431f31)); 3783 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3784 getF32Constant(DAG, 0x3ea21fb2)); 3785 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3786 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3787 getF32Constant(DAG, 0x3f6ae232)); 3788 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3789 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3790 getF32Constant(DAG, 0x3f25f7c3)); 3791 3792 result = DAG.getNode(ISD::FADD, dl, 3793 MVT::f32, LogOfExponent, Log10ofMantissa); 3794 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3795 // For floating-point precision of 18: 3796 // 3797 // Log10ofMantissa = 3798 // -0.84299375f + 3799 // (1.5327582f + 3800 // (-1.0688956f + 3801 // (0.49102474f + 3802 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3803 // 3804 // error 0.0000037995730, which is better than 18 bits 3805 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3806 getF32Constant(DAG, 0x3c5d51ce)); 3807 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3808 getF32Constant(DAG, 0x3e00685a)); 3809 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3810 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3811 getF32Constant(DAG, 0x3efb6798)); 3812 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3813 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3814 getF32Constant(DAG, 0x3f88d192)); 3815 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3816 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3817 getF32Constant(DAG, 0x3fc4316c)); 3818 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3819 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3820 getF32Constant(DAG, 0x3f57ce70)); 3821 3822 result = DAG.getNode(ISD::FADD, dl, 3823 MVT::f32, LogOfExponent, Log10ofMantissa); 3824 } 3825 } else { 3826 // No special expansion. 3827 result = DAG.getNode(ISD::FLOG10, dl, 3828 getValue(I.getArgOperand(0)).getValueType(), 3829 getValue(I.getArgOperand(0))); 3830 } 3831 3832 setValue(&I, result); 3833 } 3834 3835 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3836 /// limited-precision mode. 3837 void 3838 SelectionDAGBuilder::visitExp2(const CallInst &I) { 3839 SDValue result; 3840 DebugLoc dl = getCurDebugLoc(); 3841 3842 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3843 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3844 SDValue Op = getValue(I.getArgOperand(0)); 3845 3846 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 3847 3848 // FractionalPartOfX = x - (float)IntegerPartOfX; 3849 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3850 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 3851 3852 // IntegerPartOfX <<= 23; 3853 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3854 DAG.getConstant(23, TLI.getPointerTy())); 3855 3856 if (LimitFloatPrecision <= 6) { 3857 // For floating-point precision of 6: 3858 // 3859 // TwoToFractionalPartOfX = 3860 // 0.997535578f + 3861 // (0.735607626f + 0.252464424f * x) * x; 3862 // 3863 // error 0.0144103317, which is 6 bits 3864 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3865 getF32Constant(DAG, 0x3e814304)); 3866 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3867 getF32Constant(DAG, 0x3f3c50c8)); 3868 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3869 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3870 getF32Constant(DAG, 0x3f7f5e7e)); 3871 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 3872 SDValue TwoToFractionalPartOfX = 3873 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3874 3875 result = DAG.getNode(ISD::BITCAST, dl, 3876 MVT::f32, TwoToFractionalPartOfX); 3877 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3878 // For floating-point precision of 12: 3879 // 3880 // TwoToFractionalPartOfX = 3881 // 0.999892986f + 3882 // (0.696457318f + 3883 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3884 // 3885 // error 0.000107046256, which is 13 to 14 bits 3886 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3887 getF32Constant(DAG, 0x3da235e3)); 3888 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3889 getF32Constant(DAG, 0x3e65b8f3)); 3890 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3891 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3892 getF32Constant(DAG, 0x3f324b07)); 3893 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3894 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3895 getF32Constant(DAG, 0x3f7ff8fd)); 3896 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 3897 SDValue TwoToFractionalPartOfX = 3898 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3899 3900 result = DAG.getNode(ISD::BITCAST, dl, 3901 MVT::f32, TwoToFractionalPartOfX); 3902 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3903 // For floating-point precision of 18: 3904 // 3905 // TwoToFractionalPartOfX = 3906 // 0.999999982f + 3907 // (0.693148872f + 3908 // (0.240227044f + 3909 // (0.554906021e-1f + 3910 // (0.961591928e-2f + 3911 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3912 // error 2.47208000*10^(-7), which is better than 18 bits 3913 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3914 getF32Constant(DAG, 0x3924b03e)); 3915 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3916 getF32Constant(DAG, 0x3ab24b87)); 3917 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3918 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3919 getF32Constant(DAG, 0x3c1d8c17)); 3920 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3921 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3922 getF32Constant(DAG, 0x3d634a1d)); 3923 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3924 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3925 getF32Constant(DAG, 0x3e75fe14)); 3926 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3927 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3928 getF32Constant(DAG, 0x3f317234)); 3929 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3930 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3931 getF32Constant(DAG, 0x3f800000)); 3932 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 3933 SDValue TwoToFractionalPartOfX = 3934 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3935 3936 result = DAG.getNode(ISD::BITCAST, dl, 3937 MVT::f32, TwoToFractionalPartOfX); 3938 } 3939 } else { 3940 // No special expansion. 3941 result = DAG.getNode(ISD::FEXP2, dl, 3942 getValue(I.getArgOperand(0)).getValueType(), 3943 getValue(I.getArgOperand(0))); 3944 } 3945 3946 setValue(&I, result); 3947 } 3948 3949 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3950 /// limited-precision mode with x == 10.0f. 3951 void 3952 SelectionDAGBuilder::visitPow(const CallInst &I) { 3953 SDValue result; 3954 const Value *Val = I.getArgOperand(0); 3955 DebugLoc dl = getCurDebugLoc(); 3956 bool IsExp10 = false; 3957 3958 if (getValue(Val).getValueType() == MVT::f32 && 3959 getValue(I.getArgOperand(1)).getValueType() == MVT::f32 && 3960 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3961 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 3962 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3963 APFloat Ten(10.0f); 3964 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 3965 } 3966 } 3967 } 3968 3969 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3970 SDValue Op = getValue(I.getArgOperand(1)); 3971 3972 // Put the exponent in the right bit position for later addition to the 3973 // final result: 3974 // 3975 // #define LOG2OF10 3.3219281f 3976 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 3977 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3978 getF32Constant(DAG, 0x40549a78)); 3979 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3980 3981 // FractionalPartOfX = x - (float)IntegerPartOfX; 3982 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3983 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3984 3985 // IntegerPartOfX <<= 23; 3986 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3987 DAG.getConstant(23, TLI.getPointerTy())); 3988 3989 if (LimitFloatPrecision <= 6) { 3990 // For floating-point precision of 6: 3991 // 3992 // twoToFractionalPartOfX = 3993 // 0.997535578f + 3994 // (0.735607626f + 0.252464424f * x) * x; 3995 // 3996 // error 0.0144103317, which is 6 bits 3997 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3998 getF32Constant(DAG, 0x3e814304)); 3999 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4000 getF32Constant(DAG, 0x3f3c50c8)); 4001 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4002 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4003 getF32Constant(DAG, 0x3f7f5e7e)); 4004 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 4005 SDValue TwoToFractionalPartOfX = 4006 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 4007 4008 result = DAG.getNode(ISD::BITCAST, dl, 4009 MVT::f32, TwoToFractionalPartOfX); 4010 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4011 // For floating-point precision of 12: 4012 // 4013 // TwoToFractionalPartOfX = 4014 // 0.999892986f + 4015 // (0.696457318f + 4016 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4017 // 4018 // error 0.000107046256, which is 13 to 14 bits 4019 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4020 getF32Constant(DAG, 0x3da235e3)); 4021 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4022 getF32Constant(DAG, 0x3e65b8f3)); 4023 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4024 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4025 getF32Constant(DAG, 0x3f324b07)); 4026 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4027 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4028 getF32Constant(DAG, 0x3f7ff8fd)); 4029 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 4030 SDValue TwoToFractionalPartOfX = 4031 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 4032 4033 result = DAG.getNode(ISD::BITCAST, dl, 4034 MVT::f32, TwoToFractionalPartOfX); 4035 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4036 // For floating-point precision of 18: 4037 // 4038 // TwoToFractionalPartOfX = 4039 // 0.999999982f + 4040 // (0.693148872f + 4041 // (0.240227044f + 4042 // (0.554906021e-1f + 4043 // (0.961591928e-2f + 4044 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4045 // error 2.47208000*10^(-7), which is better than 18 bits 4046 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4047 getF32Constant(DAG, 0x3924b03e)); 4048 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4049 getF32Constant(DAG, 0x3ab24b87)); 4050 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4051 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4052 getF32Constant(DAG, 0x3c1d8c17)); 4053 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4054 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4055 getF32Constant(DAG, 0x3d634a1d)); 4056 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4057 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4058 getF32Constant(DAG, 0x3e75fe14)); 4059 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4060 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4061 getF32Constant(DAG, 0x3f317234)); 4062 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4063 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4064 getF32Constant(DAG, 0x3f800000)); 4065 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 4066 SDValue TwoToFractionalPartOfX = 4067 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 4068 4069 result = DAG.getNode(ISD::BITCAST, dl, 4070 MVT::f32, TwoToFractionalPartOfX); 4071 } 4072 } else { 4073 // No special expansion. 4074 result = DAG.getNode(ISD::FPOW, dl, 4075 getValue(I.getArgOperand(0)).getValueType(), 4076 getValue(I.getArgOperand(0)), 4077 getValue(I.getArgOperand(1))); 4078 } 4079 4080 setValue(&I, result); 4081 } 4082 4083 4084 /// ExpandPowI - Expand a llvm.powi intrinsic. 4085 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 4086 SelectionDAG &DAG) { 4087 // If RHS is a constant, we can expand this out to a multiplication tree, 4088 // otherwise we end up lowering to a call to __powidf2 (for example). When 4089 // optimizing for size, we only want to do this if the expansion would produce 4090 // a small number of multiplies, otherwise we do the full expansion. 4091 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4092 // Get the exponent as a positive value. 4093 unsigned Val = RHSC->getSExtValue(); 4094 if ((int)Val < 0) Val = -Val; 4095 4096 // powi(x, 0) -> 1.0 4097 if (Val == 0) 4098 return DAG.getConstantFP(1.0, LHS.getValueType()); 4099 4100 const Function *F = DAG.getMachineFunction().getFunction(); 4101 if (!F->hasFnAttr(Attribute::OptimizeForSize) || 4102 // If optimizing for size, don't insert too many multiplies. This 4103 // inserts up to 5 multiplies. 4104 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4105 // We use the simple binary decomposition method to generate the multiply 4106 // sequence. There are more optimal ways to do this (for example, 4107 // powi(x,15) generates one more multiply than it should), but this has 4108 // the benefit of being both really simple and much better than a libcall. 4109 SDValue Res; // Logically starts equal to 1.0 4110 SDValue CurSquare = LHS; 4111 while (Val) { 4112 if (Val & 1) { 4113 if (Res.getNode()) 4114 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4115 else 4116 Res = CurSquare; // 1.0*CurSquare. 4117 } 4118 4119 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4120 CurSquare, CurSquare); 4121 Val >>= 1; 4122 } 4123 4124 // If the original was negative, invert the result, producing 1/(x*x*x). 4125 if (RHSC->getSExtValue() < 0) 4126 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4127 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4128 return Res; 4129 } 4130 } 4131 4132 // Otherwise, expand to a libcall. 4133 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4134 } 4135 4136 // getTruncatedArgReg - Find underlying register used for an truncated 4137 // argument. 4138 static unsigned getTruncatedArgReg(const SDValue &N) { 4139 if (N.getOpcode() != ISD::TRUNCATE) 4140 return 0; 4141 4142 const SDValue &Ext = N.getOperand(0); 4143 if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){ 4144 const SDValue &CFR = Ext.getOperand(0); 4145 if (CFR.getOpcode() == ISD::CopyFromReg) 4146 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4147 else 4148 if (CFR.getOpcode() == ISD::TRUNCATE) 4149 return getTruncatedArgReg(CFR); 4150 } 4151 return 0; 4152 } 4153 4154 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4155 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4156 /// At the end of instruction selection, they will be inserted to the entry BB. 4157 bool 4158 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4159 int64_t Offset, 4160 const SDValue &N) { 4161 const Argument *Arg = dyn_cast<Argument>(V); 4162 if (!Arg) 4163 return false; 4164 4165 MachineFunction &MF = DAG.getMachineFunction(); 4166 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4167 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 4168 4169 // Ignore inlined function arguments here. 4170 DIVariable DV(Variable); 4171 if (DV.isInlinedFnArgument(MF.getFunction())) 4172 return false; 4173 4174 unsigned Reg = 0; 4175 if (Arg->hasByValAttr()) { 4176 // Byval arguments' frame index is recorded during argument lowering. 4177 // Use this info directly. 4178 Reg = TRI->getFrameRegister(MF); 4179 Offset = FuncInfo.getByValArgumentFrameIndex(Arg); 4180 // If byval argument ofset is not recorded then ignore this. 4181 if (!Offset) 4182 Reg = 0; 4183 } 4184 4185 if (N.getNode()) { 4186 if (N.getOpcode() == ISD::CopyFromReg) 4187 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4188 else 4189 Reg = getTruncatedArgReg(N); 4190 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4191 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4192 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4193 if (PR) 4194 Reg = PR; 4195 } 4196 } 4197 4198 if (!Reg) { 4199 // Check if ValueMap has reg number. 4200 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4201 if (VMI != FuncInfo.ValueMap.end()) 4202 Reg = VMI->second; 4203 } 4204 4205 if (!Reg && N.getNode()) { 4206 // Check if frame index is available. 4207 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4208 if (FrameIndexSDNode *FINode = 4209 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) { 4210 Reg = TRI->getFrameRegister(MF); 4211 Offset = FINode->getIndex(); 4212 } 4213 } 4214 4215 if (!Reg) 4216 return false; 4217 4218 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(), 4219 TII->get(TargetOpcode::DBG_VALUE)) 4220 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable); 4221 FuncInfo.ArgDbgValues.push_back(&*MIB); 4222 return true; 4223 } 4224 4225 // VisualStudio defines setjmp as _setjmp 4226 #if defined(_MSC_VER) && defined(setjmp) && \ 4227 !defined(setjmp_undefined_for_msvc) 4228 # pragma push_macro("setjmp") 4229 # undef setjmp 4230 # define setjmp_undefined_for_msvc 4231 #endif 4232 4233 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4234 /// we want to emit this as a call to a named external function, return the name 4235 /// otherwise lower it and return null. 4236 const char * 4237 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4238 DebugLoc dl = getCurDebugLoc(); 4239 SDValue Res; 4240 4241 switch (Intrinsic) { 4242 default: 4243 // By default, turn this into a target intrinsic node. 4244 visitTargetIntrinsic(I, Intrinsic); 4245 return 0; 4246 case Intrinsic::vastart: visitVAStart(I); return 0; 4247 case Intrinsic::vaend: visitVAEnd(I); return 0; 4248 case Intrinsic::vacopy: visitVACopy(I); return 0; 4249 case Intrinsic::returnaddress: 4250 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 4251 getValue(I.getArgOperand(0)))); 4252 return 0; 4253 case Intrinsic::frameaddress: 4254 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 4255 getValue(I.getArgOperand(0)))); 4256 return 0; 4257 case Intrinsic::setjmp: 4258 return "_setjmp"+!TLI.usesUnderscoreSetJmp(); 4259 case Intrinsic::longjmp: 4260 return "_longjmp"+!TLI.usesUnderscoreLongJmp(); 4261 case Intrinsic::memcpy: { 4262 // Assert for address < 256 since we support only user defined address 4263 // spaces. 4264 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4265 < 256 && 4266 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4267 < 256 && 4268 "Unknown address space"); 4269 SDValue Op1 = getValue(I.getArgOperand(0)); 4270 SDValue Op2 = getValue(I.getArgOperand(1)); 4271 SDValue Op3 = getValue(I.getArgOperand(2)); 4272 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4273 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4274 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, 4275 MachinePointerInfo(I.getArgOperand(0)), 4276 MachinePointerInfo(I.getArgOperand(1)))); 4277 return 0; 4278 } 4279 case Intrinsic::memset: { 4280 // Assert for address < 256 since we support only user defined address 4281 // spaces. 4282 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4283 < 256 && 4284 "Unknown address space"); 4285 SDValue Op1 = getValue(I.getArgOperand(0)); 4286 SDValue Op2 = getValue(I.getArgOperand(1)); 4287 SDValue Op3 = getValue(I.getArgOperand(2)); 4288 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4289 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4290 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4291 MachinePointerInfo(I.getArgOperand(0)))); 4292 return 0; 4293 } 4294 case Intrinsic::memmove: { 4295 // Assert for address < 256 since we support only user defined address 4296 // spaces. 4297 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4298 < 256 && 4299 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4300 < 256 && 4301 "Unknown address space"); 4302 SDValue Op1 = getValue(I.getArgOperand(0)); 4303 SDValue Op2 = getValue(I.getArgOperand(1)); 4304 SDValue Op3 = getValue(I.getArgOperand(2)); 4305 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4306 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4307 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4308 MachinePointerInfo(I.getArgOperand(0)), 4309 MachinePointerInfo(I.getArgOperand(1)))); 4310 return 0; 4311 } 4312 case Intrinsic::dbg_declare: { 4313 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4314 MDNode *Variable = DI.getVariable(); 4315 const Value *Address = DI.getAddress(); 4316 if (!Address || !DIVariable(DI.getVariable()).Verify()) 4317 return 0; 4318 4319 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4320 // but do not always have a corresponding SDNode built. The SDNodeOrder 4321 // absolute, but not relative, values are different depending on whether 4322 // debug info exists. 4323 ++SDNodeOrder; 4324 4325 // Check if address has undef value. 4326 if (isa<UndefValue>(Address) || 4327 (Address->use_empty() && !isa<Argument>(Address))) { 4328 DEBUG(dbgs() << "Dropping debug info for " << DI); 4329 return 0; 4330 } 4331 4332 SDValue &N = NodeMap[Address]; 4333 if (!N.getNode() && isa<Argument>(Address)) 4334 // Check unused arguments map. 4335 N = UnusedArgNodeMap[Address]; 4336 SDDbgValue *SDV; 4337 if (N.getNode()) { 4338 // Parameters are handled specially. 4339 bool isParameter = 4340 DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable; 4341 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4342 Address = BCI->getOperand(0); 4343 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4344 4345 if (isParameter && !AI) { 4346 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4347 if (FINode) 4348 // Byval parameter. We have a frame index at this point. 4349 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4350 0, dl, SDNodeOrder); 4351 else { 4352 // Address is an argument, so try to emit its dbg value using 4353 // virtual register info from the FuncInfo.ValueMap. 4354 EmitFuncArgumentDbgValue(Address, Variable, 0, N); 4355 return 0; 4356 } 4357 } else if (AI) 4358 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4359 0, dl, SDNodeOrder); 4360 else { 4361 // Can't do anything with other non-AI cases yet. 4362 DEBUG(dbgs() << "Dropping debug info for " << DI); 4363 return 0; 4364 } 4365 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4366 } else { 4367 // If Address is an argument then try to emit its dbg value using 4368 // virtual register info from the FuncInfo.ValueMap. 4369 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { 4370 // If variable is pinned by a alloca in dominating bb then 4371 // use StaticAllocaMap. 4372 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4373 if (AI->getParent() != DI.getParent()) { 4374 DenseMap<const AllocaInst*, int>::iterator SI = 4375 FuncInfo.StaticAllocaMap.find(AI); 4376 if (SI != FuncInfo.StaticAllocaMap.end()) { 4377 SDV = DAG.getDbgValue(Variable, SI->second, 4378 0, dl, SDNodeOrder); 4379 DAG.AddDbgValue(SDV, 0, false); 4380 return 0; 4381 } 4382 } 4383 } 4384 DEBUG(dbgs() << "Dropping debug info for " << DI); 4385 } 4386 } 4387 return 0; 4388 } 4389 case Intrinsic::dbg_value: { 4390 const DbgValueInst &DI = cast<DbgValueInst>(I); 4391 if (!DIVariable(DI.getVariable()).Verify()) 4392 return 0; 4393 4394 MDNode *Variable = DI.getVariable(); 4395 uint64_t Offset = DI.getOffset(); 4396 const Value *V = DI.getValue(); 4397 if (!V) 4398 return 0; 4399 4400 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4401 // but do not always have a corresponding SDNode built. The SDNodeOrder 4402 // absolute, but not relative, values are different depending on whether 4403 // debug info exists. 4404 ++SDNodeOrder; 4405 SDDbgValue *SDV; 4406 if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) { 4407 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4408 DAG.AddDbgValue(SDV, 0, false); 4409 } else { 4410 // Do not use getValue() in here; we don't want to generate code at 4411 // this point if it hasn't been done yet. 4412 SDValue N = NodeMap[V]; 4413 if (!N.getNode() && isa<Argument>(V)) 4414 // Check unused arguments map. 4415 N = UnusedArgNodeMap[V]; 4416 if (N.getNode()) { 4417 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4418 SDV = DAG.getDbgValue(Variable, N.getNode(), 4419 N.getResNo(), Offset, dl, SDNodeOrder); 4420 DAG.AddDbgValue(SDV, N.getNode(), false); 4421 } 4422 } else if (!V->use_empty() ) { 4423 // Do not call getValue(V) yet, as we don't want to generate code. 4424 // Remember it for later. 4425 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4426 DanglingDebugInfoMap[V] = DDI; 4427 } else { 4428 // We may expand this to cover more cases. One case where we have no 4429 // data available is an unreferenced parameter. 4430 DEBUG(dbgs() << "Dropping debug info for " << DI); 4431 } 4432 } 4433 4434 // Build a debug info table entry. 4435 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4436 V = BCI->getOperand(0); 4437 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4438 // Don't handle byval struct arguments or VLAs, for example. 4439 if (!AI) 4440 return 0; 4441 DenseMap<const AllocaInst*, int>::iterator SI = 4442 FuncInfo.StaticAllocaMap.find(AI); 4443 if (SI == FuncInfo.StaticAllocaMap.end()) 4444 return 0; // VLAs. 4445 int FI = SI->second; 4446 4447 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4448 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4449 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4450 return 0; 4451 } 4452 case Intrinsic::eh_exception: { 4453 // Insert the EXCEPTIONADDR instruction. 4454 assert(FuncInfo.MBB->isLandingPad() && 4455 "Call to eh.exception not in landing pad!"); 4456 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4457 SDValue Ops[1]; 4458 Ops[0] = DAG.getRoot(); 4459 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); 4460 setValue(&I, Op); 4461 DAG.setRoot(Op.getValue(1)); 4462 return 0; 4463 } 4464 4465 case Intrinsic::eh_selector: { 4466 MachineBasicBlock *CallMBB = FuncInfo.MBB; 4467 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4468 if (CallMBB->isLandingPad()) 4469 AddCatchInfo(I, &MMI, CallMBB); 4470 else { 4471 #ifndef NDEBUG 4472 FuncInfo.CatchInfoLost.insert(&I); 4473 #endif 4474 // FIXME: Mark exception selector register as live in. Hack for PR1508. 4475 unsigned Reg = TLI.getExceptionSelectorRegister(); 4476 if (Reg) FuncInfo.MBB->addLiveIn(Reg); 4477 } 4478 4479 // Insert the EHSELECTION instruction. 4480 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4481 SDValue Ops[2]; 4482 Ops[0] = getValue(I.getArgOperand(0)); 4483 Ops[1] = getRoot(); 4484 SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); 4485 DAG.setRoot(Op.getValue(1)); 4486 setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32)); 4487 return 0; 4488 } 4489 4490 case Intrinsic::eh_typeid_for: { 4491 // Find the type id for the given typeinfo. 4492 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4493 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4494 Res = DAG.getConstant(TypeID, MVT::i32); 4495 setValue(&I, Res); 4496 return 0; 4497 } 4498 4499 case Intrinsic::eh_return_i32: 4500 case Intrinsic::eh_return_i64: 4501 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4502 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 4503 MVT::Other, 4504 getControlRoot(), 4505 getValue(I.getArgOperand(0)), 4506 getValue(I.getArgOperand(1)))); 4507 return 0; 4508 case Intrinsic::eh_unwind_init: 4509 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4510 return 0; 4511 case Intrinsic::eh_dwarf_cfa: { 4512 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl, 4513 TLI.getPointerTy()); 4514 SDValue Offset = DAG.getNode(ISD::ADD, dl, 4515 TLI.getPointerTy(), 4516 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 4517 TLI.getPointerTy()), 4518 CfaArg); 4519 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 4520 TLI.getPointerTy(), 4521 DAG.getConstant(0, TLI.getPointerTy())); 4522 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 4523 FA, Offset)); 4524 return 0; 4525 } 4526 case Intrinsic::eh_sjlj_callsite: { 4527 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4528 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4529 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4530 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4531 4532 MMI.setCurrentCallSite(CI->getZExtValue()); 4533 return 0; 4534 } 4535 case Intrinsic::eh_sjlj_setjmp: { 4536 setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(), 4537 getValue(I.getArgOperand(0)))); 4538 return 0; 4539 } 4540 case Intrinsic::eh_sjlj_longjmp: { 4541 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other, 4542 getRoot(), getValue(I.getArgOperand(0)))); 4543 return 0; 4544 } 4545 case Intrinsic::eh_sjlj_dispatch_setup: { 4546 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other, 4547 getRoot(), getValue(I.getArgOperand(0)))); 4548 return 0; 4549 } 4550 4551 case Intrinsic::x86_mmx_pslli_w: 4552 case Intrinsic::x86_mmx_pslli_d: 4553 case Intrinsic::x86_mmx_pslli_q: 4554 case Intrinsic::x86_mmx_psrli_w: 4555 case Intrinsic::x86_mmx_psrli_d: 4556 case Intrinsic::x86_mmx_psrli_q: 4557 case Intrinsic::x86_mmx_psrai_w: 4558 case Intrinsic::x86_mmx_psrai_d: { 4559 SDValue ShAmt = getValue(I.getArgOperand(1)); 4560 if (isa<ConstantSDNode>(ShAmt)) { 4561 visitTargetIntrinsic(I, Intrinsic); 4562 return 0; 4563 } 4564 unsigned NewIntrinsic = 0; 4565 EVT ShAmtVT = MVT::v2i32; 4566 switch (Intrinsic) { 4567 case Intrinsic::x86_mmx_pslli_w: 4568 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4569 break; 4570 case Intrinsic::x86_mmx_pslli_d: 4571 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4572 break; 4573 case Intrinsic::x86_mmx_pslli_q: 4574 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4575 break; 4576 case Intrinsic::x86_mmx_psrli_w: 4577 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4578 break; 4579 case Intrinsic::x86_mmx_psrli_d: 4580 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4581 break; 4582 case Intrinsic::x86_mmx_psrli_q: 4583 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4584 break; 4585 case Intrinsic::x86_mmx_psrai_w: 4586 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4587 break; 4588 case Intrinsic::x86_mmx_psrai_d: 4589 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4590 break; 4591 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4592 } 4593 4594 // The vector shift intrinsics with scalars uses 32b shift amounts but 4595 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4596 // to be zero. 4597 // We must do this early because v2i32 is not a legal type. 4598 DebugLoc dl = getCurDebugLoc(); 4599 SDValue ShOps[2]; 4600 ShOps[0] = ShAmt; 4601 ShOps[1] = DAG.getConstant(0, MVT::i32); 4602 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2); 4603 EVT DestVT = TLI.getValueType(I.getType()); 4604 ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt); 4605 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 4606 DAG.getConstant(NewIntrinsic, MVT::i32), 4607 getValue(I.getArgOperand(0)), ShAmt); 4608 setValue(&I, Res); 4609 return 0; 4610 } 4611 case Intrinsic::convertff: 4612 case Intrinsic::convertfsi: 4613 case Intrinsic::convertfui: 4614 case Intrinsic::convertsif: 4615 case Intrinsic::convertuif: 4616 case Intrinsic::convertss: 4617 case Intrinsic::convertsu: 4618 case Intrinsic::convertus: 4619 case Intrinsic::convertuu: { 4620 ISD::CvtCode Code = ISD::CVT_INVALID; 4621 switch (Intrinsic) { 4622 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4623 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4624 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4625 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4626 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4627 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4628 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4629 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4630 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4631 } 4632 EVT DestVT = TLI.getValueType(I.getType()); 4633 const Value *Op1 = I.getArgOperand(0); 4634 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 4635 DAG.getValueType(DestVT), 4636 DAG.getValueType(getValue(Op1).getValueType()), 4637 getValue(I.getArgOperand(1)), 4638 getValue(I.getArgOperand(2)), 4639 Code); 4640 setValue(&I, Res); 4641 return 0; 4642 } 4643 case Intrinsic::sqrt: 4644 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 4645 getValue(I.getArgOperand(0)).getValueType(), 4646 getValue(I.getArgOperand(0)))); 4647 return 0; 4648 case Intrinsic::powi: 4649 setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)), 4650 getValue(I.getArgOperand(1)), DAG)); 4651 return 0; 4652 case Intrinsic::sin: 4653 setValue(&I, DAG.getNode(ISD::FSIN, dl, 4654 getValue(I.getArgOperand(0)).getValueType(), 4655 getValue(I.getArgOperand(0)))); 4656 return 0; 4657 case Intrinsic::cos: 4658 setValue(&I, DAG.getNode(ISD::FCOS, dl, 4659 getValue(I.getArgOperand(0)).getValueType(), 4660 getValue(I.getArgOperand(0)))); 4661 return 0; 4662 case Intrinsic::log: 4663 visitLog(I); 4664 return 0; 4665 case Intrinsic::log2: 4666 visitLog2(I); 4667 return 0; 4668 case Intrinsic::log10: 4669 visitLog10(I); 4670 return 0; 4671 case Intrinsic::exp: 4672 visitExp(I); 4673 return 0; 4674 case Intrinsic::exp2: 4675 visitExp2(I); 4676 return 0; 4677 case Intrinsic::pow: 4678 visitPow(I); 4679 return 0; 4680 case Intrinsic::fma: 4681 setValue(&I, DAG.getNode(ISD::FMA, dl, 4682 getValue(I.getArgOperand(0)).getValueType(), 4683 getValue(I.getArgOperand(0)), 4684 getValue(I.getArgOperand(1)), 4685 getValue(I.getArgOperand(2)))); 4686 return 0; 4687 case Intrinsic::convert_to_fp16: 4688 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 4689 MVT::i16, getValue(I.getArgOperand(0)))); 4690 return 0; 4691 case Intrinsic::convert_from_fp16: 4692 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 4693 MVT::f32, getValue(I.getArgOperand(0)))); 4694 return 0; 4695 case Intrinsic::pcmarker: { 4696 SDValue Tmp = getValue(I.getArgOperand(0)); 4697 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 4698 return 0; 4699 } 4700 case Intrinsic::readcyclecounter: { 4701 SDValue Op = getRoot(); 4702 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 4703 DAG.getVTList(MVT::i64, MVT::Other), 4704 &Op, 1); 4705 setValue(&I, Res); 4706 DAG.setRoot(Res.getValue(1)); 4707 return 0; 4708 } 4709 case Intrinsic::bswap: 4710 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 4711 getValue(I.getArgOperand(0)).getValueType(), 4712 getValue(I.getArgOperand(0)))); 4713 return 0; 4714 case Intrinsic::cttz: { 4715 SDValue Arg = getValue(I.getArgOperand(0)); 4716 EVT Ty = Arg.getValueType(); 4717 setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg)); 4718 return 0; 4719 } 4720 case Intrinsic::ctlz: { 4721 SDValue Arg = getValue(I.getArgOperand(0)); 4722 EVT Ty = Arg.getValueType(); 4723 setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg)); 4724 return 0; 4725 } 4726 case Intrinsic::ctpop: { 4727 SDValue Arg = getValue(I.getArgOperand(0)); 4728 EVT Ty = Arg.getValueType(); 4729 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 4730 return 0; 4731 } 4732 case Intrinsic::stacksave: { 4733 SDValue Op = getRoot(); 4734 Res = DAG.getNode(ISD::STACKSAVE, dl, 4735 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 4736 setValue(&I, Res); 4737 DAG.setRoot(Res.getValue(1)); 4738 return 0; 4739 } 4740 case Intrinsic::stackrestore: { 4741 Res = getValue(I.getArgOperand(0)); 4742 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 4743 return 0; 4744 } 4745 case Intrinsic::stackprotector: { 4746 // Emit code into the DAG to store the stack guard onto the stack. 4747 MachineFunction &MF = DAG.getMachineFunction(); 4748 MachineFrameInfo *MFI = MF.getFrameInfo(); 4749 EVT PtrTy = TLI.getPointerTy(); 4750 4751 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 4752 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4753 4754 int FI = FuncInfo.StaticAllocaMap[Slot]; 4755 MFI->setStackProtectorIndex(FI); 4756 4757 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4758 4759 // Store the stack protector onto the stack. 4760 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 4761 MachinePointerInfo::getFixedStack(FI), 4762 true, false, 0); 4763 setValue(&I, Res); 4764 DAG.setRoot(Res); 4765 return 0; 4766 } 4767 case Intrinsic::objectsize: { 4768 // If we don't know by now, we're never going to know. 4769 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4770 4771 assert(CI && "Non-constant type in __builtin_object_size?"); 4772 4773 SDValue Arg = getValue(I.getCalledValue()); 4774 EVT Ty = Arg.getValueType(); 4775 4776 if (CI->isZero()) 4777 Res = DAG.getConstant(-1ULL, Ty); 4778 else 4779 Res = DAG.getConstant(0, Ty); 4780 4781 setValue(&I, Res); 4782 return 0; 4783 } 4784 case Intrinsic::var_annotation: 4785 // Discard annotate attributes 4786 return 0; 4787 4788 case Intrinsic::init_trampoline: { 4789 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4790 4791 SDValue Ops[6]; 4792 Ops[0] = getRoot(); 4793 Ops[1] = getValue(I.getArgOperand(0)); 4794 Ops[2] = getValue(I.getArgOperand(1)); 4795 Ops[3] = getValue(I.getArgOperand(2)); 4796 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4797 Ops[5] = DAG.getSrcValue(F); 4798 4799 Res = DAG.getNode(ISD::TRAMPOLINE, dl, 4800 DAG.getVTList(TLI.getPointerTy(), MVT::Other), 4801 Ops, 6); 4802 4803 setValue(&I, Res); 4804 DAG.setRoot(Res.getValue(1)); 4805 return 0; 4806 } 4807 case Intrinsic::gcroot: 4808 if (GFI) { 4809 const Value *Alloca = I.getArgOperand(0); 4810 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4811 4812 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4813 GFI->addStackRoot(FI->getIndex(), TypeMap); 4814 } 4815 return 0; 4816 case Intrinsic::gcread: 4817 case Intrinsic::gcwrite: 4818 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4819 return 0; 4820 case Intrinsic::flt_rounds: 4821 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 4822 return 0; 4823 4824 case Intrinsic::expect: { 4825 // Just replace __builtin_expect(exp, c) with EXP. 4826 setValue(&I, getValue(I.getArgOperand(0))); 4827 return 0; 4828 } 4829 4830 case Intrinsic::trap: { 4831 StringRef TrapFuncName = getTrapFunctionName(); 4832 if (TrapFuncName.empty()) { 4833 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 4834 return 0; 4835 } 4836 TargetLowering::ArgListTy Args; 4837 std::pair<SDValue, SDValue> Result = 4838 TLI.LowerCallTo(getRoot(), I.getType(), 4839 false, false, false, false, 0, CallingConv::C, 4840 /*isTailCall=*/false, /*isReturnValueUsed=*/true, 4841 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 4842 Args, DAG, getCurDebugLoc()); 4843 DAG.setRoot(Result.second); 4844 return 0; 4845 } 4846 case Intrinsic::uadd_with_overflow: 4847 return implVisitAluOverflow(I, ISD::UADDO); 4848 case Intrinsic::sadd_with_overflow: 4849 return implVisitAluOverflow(I, ISD::SADDO); 4850 case Intrinsic::usub_with_overflow: 4851 return implVisitAluOverflow(I, ISD::USUBO); 4852 case Intrinsic::ssub_with_overflow: 4853 return implVisitAluOverflow(I, ISD::SSUBO); 4854 case Intrinsic::umul_with_overflow: 4855 return implVisitAluOverflow(I, ISD::UMULO); 4856 case Intrinsic::smul_with_overflow: 4857 return implVisitAluOverflow(I, ISD::SMULO); 4858 4859 case Intrinsic::prefetch: { 4860 SDValue Ops[5]; 4861 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4862 Ops[0] = getRoot(); 4863 Ops[1] = getValue(I.getArgOperand(0)); 4864 Ops[2] = getValue(I.getArgOperand(1)); 4865 Ops[3] = getValue(I.getArgOperand(2)); 4866 Ops[4] = getValue(I.getArgOperand(3)); 4867 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl, 4868 DAG.getVTList(MVT::Other), 4869 &Ops[0], 5, 4870 EVT::getIntegerVT(*Context, 8), 4871 MachinePointerInfo(I.getArgOperand(0)), 4872 0, /* align */ 4873 false, /* volatile */ 4874 rw==0, /* read */ 4875 rw==1)); /* write */ 4876 return 0; 4877 } 4878 case Intrinsic::memory_barrier: { 4879 SDValue Ops[6]; 4880 Ops[0] = getRoot(); 4881 for (int x = 1; x < 6; ++x) 4882 Ops[x] = getValue(I.getArgOperand(x - 1)); 4883 4884 DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6)); 4885 return 0; 4886 } 4887 case Intrinsic::atomic_cmp_swap: { 4888 SDValue Root = getRoot(); 4889 SDValue L = 4890 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(), 4891 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(), 4892 Root, 4893 getValue(I.getArgOperand(0)), 4894 getValue(I.getArgOperand(1)), 4895 getValue(I.getArgOperand(2)), 4896 MachinePointerInfo(I.getArgOperand(0))); 4897 setValue(&I, L); 4898 DAG.setRoot(L.getValue(1)); 4899 return 0; 4900 } 4901 case Intrinsic::atomic_load_add: 4902 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD); 4903 case Intrinsic::atomic_load_sub: 4904 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB); 4905 case Intrinsic::atomic_load_or: 4906 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR); 4907 case Intrinsic::atomic_load_xor: 4908 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR); 4909 case Intrinsic::atomic_load_and: 4910 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND); 4911 case Intrinsic::atomic_load_nand: 4912 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND); 4913 case Intrinsic::atomic_load_max: 4914 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX); 4915 case Intrinsic::atomic_load_min: 4916 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN); 4917 case Intrinsic::atomic_load_umin: 4918 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN); 4919 case Intrinsic::atomic_load_umax: 4920 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX); 4921 case Intrinsic::atomic_swap: 4922 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP); 4923 4924 case Intrinsic::invariant_start: 4925 case Intrinsic::lifetime_start: 4926 // Discard region information. 4927 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4928 return 0; 4929 case Intrinsic::invariant_end: 4930 case Intrinsic::lifetime_end: 4931 // Discard region information. 4932 return 0; 4933 } 4934 } 4935 4936 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 4937 bool isTailCall, 4938 MachineBasicBlock *LandingPad) { 4939 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 4940 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 4941 Type *RetTy = FTy->getReturnType(); 4942 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4943 MCSymbol *BeginLabel = 0; 4944 4945 TargetLowering::ArgListTy Args; 4946 TargetLowering::ArgListEntry Entry; 4947 Args.reserve(CS.arg_size()); 4948 4949 // Check whether the function can return without sret-demotion. 4950 SmallVector<ISD::OutputArg, 4> Outs; 4951 SmallVector<uint64_t, 4> Offsets; 4952 GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 4953 Outs, TLI, &Offsets); 4954 4955 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 4956 DAG.getMachineFunction(), 4957 FTy->isVarArg(), Outs, 4958 FTy->getContext()); 4959 4960 SDValue DemoteStackSlot; 4961 int DemoteStackIdx = -100; 4962 4963 if (!CanLowerReturn) { 4964 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 4965 FTy->getReturnType()); 4966 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 4967 FTy->getReturnType()); 4968 MachineFunction &MF = DAG.getMachineFunction(); 4969 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 4970 Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 4971 4972 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy()); 4973 Entry.Node = DemoteStackSlot; 4974 Entry.Ty = StackSlotPtrType; 4975 Entry.isSExt = false; 4976 Entry.isZExt = false; 4977 Entry.isInReg = false; 4978 Entry.isSRet = true; 4979 Entry.isNest = false; 4980 Entry.isByVal = false; 4981 Entry.Alignment = Align; 4982 Args.push_back(Entry); 4983 RetTy = Type::getVoidTy(FTy->getContext()); 4984 } 4985 4986 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 4987 i != e; ++i) { 4988 const Value *V = *i; 4989 4990 // Skip empty types 4991 if (V->getType()->isEmptyTy()) 4992 continue; 4993 4994 SDValue ArgNode = getValue(V); 4995 Entry.Node = ArgNode; Entry.Ty = V->getType(); 4996 4997 unsigned attrInd = i - CS.arg_begin() + 1; 4998 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 4999 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 5000 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 5001 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 5002 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 5003 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 5004 Entry.Alignment = CS.getParamAlignment(attrInd); 5005 Args.push_back(Entry); 5006 } 5007 5008 if (LandingPad) { 5009 // Insert a label before the invoke call to mark the try range. This can be 5010 // used to detect deletion of the invoke via the MachineModuleInfo. 5011 BeginLabel = MMI.getContext().CreateTempSymbol(); 5012 5013 // For SjLj, keep track of which landing pads go with which invokes 5014 // so as to maintain the ordering of pads in the LSDA. 5015 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5016 if (CallSiteIndex) { 5017 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5018 // Now that the call site is handled, stop tracking it. 5019 MMI.setCurrentCallSite(0); 5020 } 5021 5022 // Both PendingLoads and PendingExports must be flushed here; 5023 // this call might not return. 5024 (void)getRoot(); 5025 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 5026 } 5027 5028 // Check if target-independent constraints permit a tail call here. 5029 // Target-dependent constraints are checked within TLI.LowerCallTo. 5030 if (isTailCall && 5031 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 5032 isTailCall = false; 5033 5034 // If there's a possibility that fast-isel has already selected some amount 5035 // of the current basic block, don't emit a tail call. 5036 if (isTailCall && EnableFastISel) 5037 isTailCall = false; 5038 5039 std::pair<SDValue,SDValue> Result = 5040 TLI.LowerCallTo(getRoot(), RetTy, 5041 CS.paramHasAttr(0, Attribute::SExt), 5042 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), 5043 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), 5044 CS.getCallingConv(), 5045 isTailCall, 5046 !CS.getInstruction()->use_empty(), 5047 Callee, Args, DAG, getCurDebugLoc()); 5048 assert((isTailCall || Result.second.getNode()) && 5049 "Non-null chain expected with non-tail call!"); 5050 assert((Result.second.getNode() || !Result.first.getNode()) && 5051 "Null value expected with tail call!"); 5052 if (Result.first.getNode()) { 5053 setValue(CS.getInstruction(), Result.first); 5054 } else if (!CanLowerReturn && Result.second.getNode()) { 5055 // The instruction result is the result of loading from the 5056 // hidden sret parameter. 5057 SmallVector<EVT, 1> PVTs; 5058 Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 5059 5060 ComputeValueVTs(TLI, PtrRetTy, PVTs); 5061 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 5062 EVT PtrVT = PVTs[0]; 5063 unsigned NumValues = Outs.size(); 5064 SmallVector<SDValue, 4> Values(NumValues); 5065 SmallVector<SDValue, 4> Chains(NumValues); 5066 5067 for (unsigned i = 0; i < NumValues; ++i) { 5068 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 5069 DemoteStackSlot, 5070 DAG.getConstant(Offsets[i], PtrVT)); 5071 SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second, 5072 Add, 5073 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 5074 false, false, 1); 5075 Values[i] = L; 5076 Chains[i] = L.getValue(1); 5077 } 5078 5079 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 5080 MVT::Other, &Chains[0], NumValues); 5081 PendingLoads.push_back(Chain); 5082 5083 // Collect the legal value parts into potentially illegal values 5084 // that correspond to the original function's return values. 5085 SmallVector<EVT, 4> RetTys; 5086 RetTy = FTy->getReturnType(); 5087 ComputeValueVTs(TLI, RetTy, RetTys); 5088 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5089 SmallVector<SDValue, 4> ReturnValues; 5090 unsigned CurReg = 0; 5091 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5092 EVT VT = RetTys[I]; 5093 EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT); 5094 unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT); 5095 5096 SDValue ReturnValue = 5097 getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs, 5098 RegisterVT, VT, AssertOp); 5099 ReturnValues.push_back(ReturnValue); 5100 CurReg += NumRegs; 5101 } 5102 5103 setValue(CS.getInstruction(), 5104 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 5105 DAG.getVTList(&RetTys[0], RetTys.size()), 5106 &ReturnValues[0], ReturnValues.size())); 5107 } 5108 5109 // Assign order to nodes here. If the call does not produce a result, it won't 5110 // be mapped to a SDNode and visit() will not assign it an order number. 5111 if (!Result.second.getNode()) { 5112 // As a special case, a null chain means that a tail call has been emitted and 5113 // the DAG root is already updated. 5114 HasTailCall = true; 5115 ++SDNodeOrder; 5116 AssignOrderingToNode(DAG.getRoot().getNode()); 5117 } else { 5118 DAG.setRoot(Result.second); 5119 ++SDNodeOrder; 5120 AssignOrderingToNode(Result.second.getNode()); 5121 } 5122 5123 if (LandingPad) { 5124 // Insert a label at the end of the invoke call to mark the try range. This 5125 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5126 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5127 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 5128 5129 // Inform MachineModuleInfo of range. 5130 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5131 } 5132 } 5133 5134 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5135 /// value is equal or not-equal to zero. 5136 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5137 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 5138 UI != E; ++UI) { 5139 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 5140 if (IC->isEquality()) 5141 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5142 if (C->isNullValue()) 5143 continue; 5144 // Unknown instruction. 5145 return false; 5146 } 5147 return true; 5148 } 5149 5150 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5151 Type *LoadTy, 5152 SelectionDAGBuilder &Builder) { 5153 5154 // Check to see if this load can be trivially constant folded, e.g. if the 5155 // input is from a string literal. 5156 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5157 // Cast pointer to the type we really want to load. 5158 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5159 PointerType::getUnqual(LoadTy)); 5160 5161 if (const Constant *LoadCst = 5162 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5163 Builder.TD)) 5164 return Builder.getValue(LoadCst); 5165 } 5166 5167 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5168 // still constant memory, the input chain can be the entry node. 5169 SDValue Root; 5170 bool ConstantMemory = false; 5171 5172 // Do not serialize (non-volatile) loads of constant memory with anything. 5173 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5174 Root = Builder.DAG.getEntryNode(); 5175 ConstantMemory = true; 5176 } else { 5177 // Do not serialize non-volatile loads against each other. 5178 Root = Builder.DAG.getRoot(); 5179 } 5180 5181 SDValue Ptr = Builder.getValue(PtrVal); 5182 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 5183 Ptr, MachinePointerInfo(PtrVal), 5184 false /*volatile*/, 5185 false /*nontemporal*/, 1 /* align=1 */); 5186 5187 if (!ConstantMemory) 5188 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5189 return LoadVal; 5190 } 5191 5192 5193 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5194 /// If so, return true and lower it, otherwise return false and it will be 5195 /// lowered like a normal call. 5196 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5197 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5198 if (I.getNumArgOperands() != 3) 5199 return false; 5200 5201 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5202 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5203 !I.getArgOperand(2)->getType()->isIntegerTy() || 5204 !I.getType()->isIntegerTy()) 5205 return false; 5206 5207 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); 5208 5209 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5210 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5211 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 5212 bool ActuallyDoIt = true; 5213 MVT LoadVT; 5214 Type *LoadTy; 5215 switch (Size->getZExtValue()) { 5216 default: 5217 LoadVT = MVT::Other; 5218 LoadTy = 0; 5219 ActuallyDoIt = false; 5220 break; 5221 case 2: 5222 LoadVT = MVT::i16; 5223 LoadTy = Type::getInt16Ty(Size->getContext()); 5224 break; 5225 case 4: 5226 LoadVT = MVT::i32; 5227 LoadTy = Type::getInt32Ty(Size->getContext()); 5228 break; 5229 case 8: 5230 LoadVT = MVT::i64; 5231 LoadTy = Type::getInt64Ty(Size->getContext()); 5232 break; 5233 /* 5234 case 16: 5235 LoadVT = MVT::v4i32; 5236 LoadTy = Type::getInt32Ty(Size->getContext()); 5237 LoadTy = VectorType::get(LoadTy, 4); 5238 break; 5239 */ 5240 } 5241 5242 // This turns into unaligned loads. We only do this if the target natively 5243 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5244 // we'll only produce a small number of byte loads. 5245 5246 // Require that we can find a legal MVT, and only do this if the target 5247 // supports unaligned loads of that type. Expanding into byte loads would 5248 // bloat the code. 5249 if (ActuallyDoIt && Size->getZExtValue() > 4) { 5250 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5251 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5252 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 5253 ActuallyDoIt = false; 5254 } 5255 5256 if (ActuallyDoIt) { 5257 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5258 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5259 5260 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 5261 ISD::SETNE); 5262 EVT CallVT = TLI.getValueType(I.getType(), true); 5263 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 5264 return true; 5265 } 5266 } 5267 5268 5269 return false; 5270 } 5271 5272 5273 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5274 // Handle inline assembly differently. 5275 if (isa<InlineAsm>(I.getCalledValue())) { 5276 visitInlineAsm(&I); 5277 return; 5278 } 5279 5280 // See if any floating point values are being passed to this function. This is 5281 // used to emit an undefined reference to fltused on Windows. 5282 FunctionType *FT = 5283 cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0)); 5284 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5285 if (FT->isVarArg() && 5286 !MMI.callsExternalVAFunctionWithFloatingPointArguments()) { 5287 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 5288 Type* T = I.getArgOperand(i)->getType(); 5289 for (po_iterator<Type*> i = po_begin(T), e = po_end(T); 5290 i != e; ++i) { 5291 if (!i->isFloatingPointTy()) continue; 5292 MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true); 5293 break; 5294 } 5295 } 5296 } 5297 5298 const char *RenameFn = 0; 5299 if (Function *F = I.getCalledFunction()) { 5300 if (F->isDeclaration()) { 5301 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5302 if (unsigned IID = II->getIntrinsicID(F)) { 5303 RenameFn = visitIntrinsicCall(I, IID); 5304 if (!RenameFn) 5305 return; 5306 } 5307 } 5308 if (unsigned IID = F->getIntrinsicID()) { 5309 RenameFn = visitIntrinsicCall(I, IID); 5310 if (!RenameFn) 5311 return; 5312 } 5313 } 5314 5315 // Check for well-known libc/libm calls. If the function is internal, it 5316 // can't be a library call. 5317 if (!F->hasLocalLinkage() && F->hasName()) { 5318 StringRef Name = F->getName(); 5319 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") { 5320 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5321 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5322 I.getType() == I.getArgOperand(0)->getType() && 5323 I.getType() == I.getArgOperand(1)->getType()) { 5324 SDValue LHS = getValue(I.getArgOperand(0)); 5325 SDValue RHS = getValue(I.getArgOperand(1)); 5326 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 5327 LHS.getValueType(), LHS, RHS)); 5328 return; 5329 } 5330 } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") { 5331 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5332 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5333 I.getType() == I.getArgOperand(0)->getType()) { 5334 SDValue Tmp = getValue(I.getArgOperand(0)); 5335 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), 5336 Tmp.getValueType(), Tmp)); 5337 return; 5338 } 5339 } else if (Name == "sin" || Name == "sinf" || Name == "sinl") { 5340 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5341 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5342 I.getType() == I.getArgOperand(0)->getType() && 5343 I.onlyReadsMemory()) { 5344 SDValue Tmp = getValue(I.getArgOperand(0)); 5345 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), 5346 Tmp.getValueType(), Tmp)); 5347 return; 5348 } 5349 } else if (Name == "cos" || Name == "cosf" || Name == "cosl") { 5350 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5351 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5352 I.getType() == I.getArgOperand(0)->getType() && 5353 I.onlyReadsMemory()) { 5354 SDValue Tmp = getValue(I.getArgOperand(0)); 5355 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), 5356 Tmp.getValueType(), Tmp)); 5357 return; 5358 } 5359 } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") { 5360 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5361 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5362 I.getType() == I.getArgOperand(0)->getType() && 5363 I.onlyReadsMemory()) { 5364 SDValue Tmp = getValue(I.getArgOperand(0)); 5365 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), 5366 Tmp.getValueType(), Tmp)); 5367 return; 5368 } 5369 } else if (Name == "memcmp") { 5370 if (visitMemCmpCall(I)) 5371 return; 5372 } 5373 } 5374 } 5375 5376 SDValue Callee; 5377 if (!RenameFn) 5378 Callee = getValue(I.getCalledValue()); 5379 else 5380 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 5381 5382 // Check if we can potentially perform a tail call. More detailed checking is 5383 // be done within LowerCallTo, after more information about the call is known. 5384 LowerCallTo(&I, Callee, I.isTailCall()); 5385 } 5386 5387 namespace { 5388 5389 /// AsmOperandInfo - This contains information for each constraint that we are 5390 /// lowering. 5391 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5392 public: 5393 /// CallOperand - If this is the result output operand or a clobber 5394 /// this is null, otherwise it is the incoming operand to the CallInst. 5395 /// This gets modified as the asm is processed. 5396 SDValue CallOperand; 5397 5398 /// AssignedRegs - If this is a register or register class operand, this 5399 /// contains the set of register corresponding to the operand. 5400 RegsForValue AssignedRegs; 5401 5402 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5403 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 5404 } 5405 5406 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers 5407 /// busy in OutputRegs/InputRegs. 5408 void MarkAllocatedRegs(bool isOutReg, bool isInReg, 5409 std::set<unsigned> &OutputRegs, 5410 std::set<unsigned> &InputRegs, 5411 const TargetRegisterInfo &TRI) const { 5412 if (isOutReg) { 5413 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5414 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); 5415 } 5416 if (isInReg) { 5417 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5418 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); 5419 } 5420 } 5421 5422 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5423 /// corresponds to. If there is no Value* for this operand, it returns 5424 /// MVT::Other. 5425 EVT getCallOperandValEVT(LLVMContext &Context, 5426 const TargetLowering &TLI, 5427 const TargetData *TD) const { 5428 if (CallOperandVal == 0) return MVT::Other; 5429 5430 if (isa<BasicBlock>(CallOperandVal)) 5431 return TLI.getPointerTy(); 5432 5433 llvm::Type *OpTy = CallOperandVal->getType(); 5434 5435 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5436 // If this is an indirect operand, the operand is a pointer to the 5437 // accessed type. 5438 if (isIndirect) { 5439 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5440 if (!PtrTy) 5441 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5442 OpTy = PtrTy->getElementType(); 5443 } 5444 5445 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5446 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5447 if (STy->getNumElements() == 1) 5448 OpTy = STy->getElementType(0); 5449 5450 // If OpTy is not a single value, it may be a struct/union that we 5451 // can tile with integers. 5452 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5453 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5454 switch (BitSize) { 5455 default: break; 5456 case 1: 5457 case 8: 5458 case 16: 5459 case 32: 5460 case 64: 5461 case 128: 5462 OpTy = IntegerType::get(Context, BitSize); 5463 break; 5464 } 5465 } 5466 5467 return TLI.getValueType(OpTy, true); 5468 } 5469 5470 private: 5471 /// MarkRegAndAliases - Mark the specified register and all aliases in the 5472 /// specified set. 5473 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, 5474 const TargetRegisterInfo &TRI) { 5475 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); 5476 Regs.insert(Reg); 5477 if (const unsigned *Aliases = TRI.getAliasSet(Reg)) 5478 for (; *Aliases; ++Aliases) 5479 Regs.insert(*Aliases); 5480 } 5481 }; 5482 5483 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5484 5485 } // end anonymous namespace 5486 5487 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5488 /// specified operand. We prefer to assign virtual registers, to allow the 5489 /// register allocator to handle the assignment process. However, if the asm 5490 /// uses features that we can't model on machineinstrs, we have SDISel do the 5491 /// allocation. This produces generally horrible, but correct, code. 5492 /// 5493 /// OpInfo describes the operand. 5494 /// Input and OutputRegs are the set of already allocated physical registers. 5495 /// 5496 static void GetRegistersForValue(SelectionDAG &DAG, 5497 const TargetLowering &TLI, 5498 DebugLoc DL, 5499 SDISelAsmOperandInfo &OpInfo, 5500 std::set<unsigned> &OutputRegs, 5501 std::set<unsigned> &InputRegs) { 5502 LLVMContext &Context = *DAG.getContext(); 5503 5504 // Compute whether this value requires an input register, an output register, 5505 // or both. 5506 bool isOutReg = false; 5507 bool isInReg = false; 5508 switch (OpInfo.Type) { 5509 case InlineAsm::isOutput: 5510 isOutReg = true; 5511 5512 // If there is an input constraint that matches this, we need to reserve 5513 // the input register so no other inputs allocate to it. 5514 isInReg = OpInfo.hasMatchingInput(); 5515 break; 5516 case InlineAsm::isInput: 5517 isInReg = true; 5518 isOutReg = false; 5519 break; 5520 case InlineAsm::isClobber: 5521 isOutReg = true; 5522 isInReg = true; 5523 break; 5524 } 5525 5526 5527 MachineFunction &MF = DAG.getMachineFunction(); 5528 SmallVector<unsigned, 4> Regs; 5529 5530 // If this is a constraint for a single physreg, or a constraint for a 5531 // register class, find it. 5532 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5533 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5534 OpInfo.ConstraintVT); 5535 5536 unsigned NumRegs = 1; 5537 if (OpInfo.ConstraintVT != MVT::Other) { 5538 // If this is a FP input in an integer register (or visa versa) insert a bit 5539 // cast of the input value. More generally, handle any case where the input 5540 // value disagrees with the register class we plan to stick this in. 5541 if (OpInfo.Type == InlineAsm::isInput && 5542 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5543 // Try to convert to the first EVT that the reg class contains. If the 5544 // types are identical size, use a bitcast to convert (e.g. two differing 5545 // vector types). 5546 EVT RegVT = *PhysReg.second->vt_begin(); 5547 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5548 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5549 RegVT, OpInfo.CallOperand); 5550 OpInfo.ConstraintVT = RegVT; 5551 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5552 // If the input is a FP value and we want it in FP registers, do a 5553 // bitcast to the corresponding integer type. This turns an f64 value 5554 // into i64, which can be passed with two i32 values on a 32-bit 5555 // machine. 5556 RegVT = EVT::getIntegerVT(Context, 5557 OpInfo.ConstraintVT.getSizeInBits()); 5558 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5559 RegVT, OpInfo.CallOperand); 5560 OpInfo.ConstraintVT = RegVT; 5561 } 5562 } 5563 5564 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5565 } 5566 5567 EVT RegVT; 5568 EVT ValueVT = OpInfo.ConstraintVT; 5569 5570 // If this is a constraint for a specific physical register, like {r17}, 5571 // assign it now. 5572 if (unsigned AssignedReg = PhysReg.first) { 5573 const TargetRegisterClass *RC = PhysReg.second; 5574 if (OpInfo.ConstraintVT == MVT::Other) 5575 ValueVT = *RC->vt_begin(); 5576 5577 // Get the actual register value type. This is important, because the user 5578 // may have asked for (e.g.) the AX register in i32 type. We need to 5579 // remember that AX is actually i16 to get the right extension. 5580 RegVT = *RC->vt_begin(); 5581 5582 // This is a explicit reference to a physical register. 5583 Regs.push_back(AssignedReg); 5584 5585 // If this is an expanded reference, add the rest of the regs to Regs. 5586 if (NumRegs != 1) { 5587 TargetRegisterClass::iterator I = RC->begin(); 5588 for (; *I != AssignedReg; ++I) 5589 assert(I != RC->end() && "Didn't find reg!"); 5590 5591 // Already added the first reg. 5592 --NumRegs; ++I; 5593 for (; NumRegs; --NumRegs, ++I) { 5594 assert(I != RC->end() && "Ran out of registers to allocate!"); 5595 Regs.push_back(*I); 5596 } 5597 } 5598 5599 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5600 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5601 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5602 return; 5603 } 5604 5605 // Otherwise, if this was a reference to an LLVM register class, create vregs 5606 // for this reference. 5607 if (const TargetRegisterClass *RC = PhysReg.second) { 5608 RegVT = *RC->vt_begin(); 5609 if (OpInfo.ConstraintVT == MVT::Other) 5610 ValueVT = RegVT; 5611 5612 // Create the appropriate number of virtual registers. 5613 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5614 for (; NumRegs; --NumRegs) 5615 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5616 5617 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5618 return; 5619 } 5620 5621 // Otherwise, we couldn't allocate enough registers for this. 5622 } 5623 5624 /// visitInlineAsm - Handle a call to an InlineAsm object. 5625 /// 5626 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5627 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5628 5629 /// ConstraintOperands - Information about all of the constraints. 5630 SDISelAsmOperandInfoVector ConstraintOperands; 5631 5632 std::set<unsigned> OutputRegs, InputRegs; 5633 5634 TargetLowering::AsmOperandInfoVector 5635 TargetConstraints = TLI.ParseConstraints(CS); 5636 5637 bool hasMemory = false; 5638 5639 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5640 unsigned ResNo = 0; // ResNo - The result number of the next output. 5641 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5642 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5643 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5644 5645 EVT OpVT = MVT::Other; 5646 5647 // Compute the value type for each operand. 5648 switch (OpInfo.Type) { 5649 case InlineAsm::isOutput: 5650 // Indirect outputs just consume an argument. 5651 if (OpInfo.isIndirect) { 5652 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5653 break; 5654 } 5655 5656 // The return value of the call is this value. As such, there is no 5657 // corresponding argument. 5658 assert(!CS.getType()->isVoidTy() && 5659 "Bad inline asm!"); 5660 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5661 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5662 } else { 5663 assert(ResNo == 0 && "Asm only has one result!"); 5664 OpVT = TLI.getValueType(CS.getType()); 5665 } 5666 ++ResNo; 5667 break; 5668 case InlineAsm::isInput: 5669 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5670 break; 5671 case InlineAsm::isClobber: 5672 // Nothing to do. 5673 break; 5674 } 5675 5676 // If this is an input or an indirect output, process the call argument. 5677 // BasicBlocks are labels, currently appearing only in asm's. 5678 if (OpInfo.CallOperandVal) { 5679 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5680 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5681 } else { 5682 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5683 } 5684 5685 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5686 } 5687 5688 OpInfo.ConstraintVT = OpVT; 5689 5690 // Indirect operand accesses access memory. 5691 if (OpInfo.isIndirect) 5692 hasMemory = true; 5693 else { 5694 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5695 TargetLowering::ConstraintType 5696 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5697 if (CType == TargetLowering::C_Memory) { 5698 hasMemory = true; 5699 break; 5700 } 5701 } 5702 } 5703 } 5704 5705 SDValue Chain, Flag; 5706 5707 // We won't need to flush pending loads if this asm doesn't touch 5708 // memory and is nonvolatile. 5709 if (hasMemory || IA->hasSideEffects()) 5710 Chain = getRoot(); 5711 else 5712 Chain = DAG.getRoot(); 5713 5714 // Second pass over the constraints: compute which constraint option to use 5715 // and assign registers to constraints that want a specific physreg. 5716 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5717 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5718 5719 // If this is an output operand with a matching input operand, look up the 5720 // matching input. If their types mismatch, e.g. one is an integer, the 5721 // other is floating point, or their sizes are different, flag it as an 5722 // error. 5723 if (OpInfo.hasMatchingInput()) { 5724 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5725 5726 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5727 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 5728 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, OpInfo.ConstraintVT); 5729 std::pair<unsigned, const TargetRegisterClass*> InputRC = 5730 TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, Input.ConstraintVT); 5731 if ((OpInfo.ConstraintVT.isInteger() != 5732 Input.ConstraintVT.isInteger()) || 5733 (MatchRC.second != InputRC.second)) { 5734 report_fatal_error("Unsupported asm: input constraint" 5735 " with a matching output constraint of" 5736 " incompatible type!"); 5737 } 5738 Input.ConstraintVT = OpInfo.ConstraintVT; 5739 } 5740 } 5741 5742 // Compute the constraint code and ConstraintType to use. 5743 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5744 5745 // If this is a memory input, and if the operand is not indirect, do what we 5746 // need to to provide an address for the memory input. 5747 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5748 !OpInfo.isIndirect) { 5749 assert((OpInfo.isMultipleAlternative || 5750 (OpInfo.Type == InlineAsm::isInput)) && 5751 "Can only indirectify direct input operands!"); 5752 5753 // Memory operands really want the address of the value. If we don't have 5754 // an indirect input, put it in the constpool if we can, otherwise spill 5755 // it to a stack slot. 5756 // TODO: This isn't quite right. We need to handle these according to 5757 // the addressing mode that the constraint wants. Also, this may take 5758 // an additional register for the computation and we don't want that 5759 // either. 5760 5761 // If the operand is a float, integer, or vector constant, spill to a 5762 // constant pool entry to get its address. 5763 const Value *OpVal = OpInfo.CallOperandVal; 5764 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5765 isa<ConstantVector>(OpVal)) { 5766 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5767 TLI.getPointerTy()); 5768 } else { 5769 // Otherwise, create a stack slot and emit a store to it before the 5770 // asm. 5771 Type *Ty = OpVal->getType(); 5772 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 5773 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 5774 MachineFunction &MF = DAG.getMachineFunction(); 5775 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5776 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5777 Chain = DAG.getStore(Chain, getCurDebugLoc(), 5778 OpInfo.CallOperand, StackSlot, 5779 MachinePointerInfo::getFixedStack(SSFI), 5780 false, false, 0); 5781 OpInfo.CallOperand = StackSlot; 5782 } 5783 5784 // There is no longer a Value* corresponding to this operand. 5785 OpInfo.CallOperandVal = 0; 5786 5787 // It is now an indirect operand. 5788 OpInfo.isIndirect = true; 5789 } 5790 5791 // If this constraint is for a specific register, allocate it before 5792 // anything else. 5793 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5794 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs, 5795 InputRegs); 5796 } 5797 5798 // Second pass - Loop over all of the operands, assigning virtual or physregs 5799 // to register class operands. 5800 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5801 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5802 5803 // C_Register operands have already been allocated, Other/Memory don't need 5804 // to be. 5805 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 5806 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs, 5807 InputRegs); 5808 } 5809 5810 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 5811 std::vector<SDValue> AsmNodeOperands; 5812 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 5813 AsmNodeOperands.push_back( 5814 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 5815 TLI.getPointerTy())); 5816 5817 // If we have a !srcloc metadata node associated with it, we want to attach 5818 // this to the ultimately generated inline asm machineinstr. To do this, we 5819 // pass in the third operand as this (potentially null) inline asm MDNode. 5820 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 5821 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 5822 5823 // Remember the HasSideEffect and AlignStack bits as operand 3. 5824 unsigned ExtraInfo = 0; 5825 if (IA->hasSideEffects()) 5826 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 5827 if (IA->isAlignStack()) 5828 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 5829 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 5830 TLI.getPointerTy())); 5831 5832 // Loop over all of the inputs, copying the operand values into the 5833 // appropriate registers and processing the output regs. 5834 RegsForValue RetValRegs; 5835 5836 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 5837 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 5838 5839 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5840 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5841 5842 switch (OpInfo.Type) { 5843 case InlineAsm::isOutput: { 5844 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 5845 OpInfo.ConstraintType != TargetLowering::C_Register) { 5846 // Memory output, or 'other' output (e.g. 'X' constraint). 5847 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 5848 5849 // Add information to the INLINEASM node to know about this output. 5850 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5851 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 5852 TLI.getPointerTy())); 5853 AsmNodeOperands.push_back(OpInfo.CallOperand); 5854 break; 5855 } 5856 5857 // Otherwise, this is a register or register class output. 5858 5859 // Copy the output from the appropriate register. Find a register that 5860 // we can use. 5861 if (OpInfo.AssignedRegs.Regs.empty()) 5862 report_fatal_error("Couldn't allocate output reg for constraint '" + 5863 Twine(OpInfo.ConstraintCode) + "'!"); 5864 5865 // If this is an indirect operand, store through the pointer after the 5866 // asm. 5867 if (OpInfo.isIndirect) { 5868 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 5869 OpInfo.CallOperandVal)); 5870 } else { 5871 // This is the result value of the call. 5872 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5873 // Concatenate this output onto the outputs list. 5874 RetValRegs.append(OpInfo.AssignedRegs); 5875 } 5876 5877 // Add information to the INLINEASM node to know that this register is 5878 // set. 5879 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 5880 InlineAsm::Kind_RegDefEarlyClobber : 5881 InlineAsm::Kind_RegDef, 5882 false, 5883 0, 5884 DAG, 5885 AsmNodeOperands); 5886 break; 5887 } 5888 case InlineAsm::isInput: { 5889 SDValue InOperandVal = OpInfo.CallOperand; 5890 5891 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 5892 // If this is required to match an output register we have already set, 5893 // just use its register. 5894 unsigned OperandNo = OpInfo.getMatchedOperand(); 5895 5896 // Scan until we find the definition we already emitted of this operand. 5897 // When we find it, create a RegsForValue operand. 5898 unsigned CurOp = InlineAsm::Op_FirstOperand; 5899 for (; OperandNo; --OperandNo) { 5900 // Advance to the next operand. 5901 unsigned OpFlag = 5902 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5903 assert((InlineAsm::isRegDefKind(OpFlag) || 5904 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 5905 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 5906 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 5907 } 5908 5909 unsigned OpFlag = 5910 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5911 if (InlineAsm::isRegDefKind(OpFlag) || 5912 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 5913 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 5914 if (OpInfo.isIndirect) { 5915 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 5916 LLVMContext &Ctx = *DAG.getContext(); 5917 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 5918 " don't know how to handle tied " 5919 "indirect register inputs"); 5920 } 5921 5922 RegsForValue MatchedRegs; 5923 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 5924 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 5925 MatchedRegs.RegVTs.push_back(RegVT); 5926 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 5927 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 5928 i != e; ++i) 5929 MatchedRegs.Regs.push_back 5930 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 5931 5932 // Use the produced MatchedRegs object to 5933 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5934 Chain, &Flag); 5935 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 5936 true, OpInfo.getMatchedOperand(), 5937 DAG, AsmNodeOperands); 5938 break; 5939 } 5940 5941 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 5942 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 5943 "Unexpected number of operands"); 5944 // Add information to the INLINEASM node to know about this input. 5945 // See InlineAsm.h isUseOperandTiedToDef. 5946 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 5947 OpInfo.getMatchedOperand()); 5948 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 5949 TLI.getPointerTy())); 5950 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 5951 break; 5952 } 5953 5954 // Treat indirect 'X' constraint as memory. 5955 if (OpInfo.ConstraintType == TargetLowering::C_Other && 5956 OpInfo.isIndirect) 5957 OpInfo.ConstraintType = TargetLowering::C_Memory; 5958 5959 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 5960 std::vector<SDValue> Ops; 5961 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 5962 Ops, DAG); 5963 if (Ops.empty()) 5964 report_fatal_error("Invalid operand for inline asm constraint '" + 5965 Twine(OpInfo.ConstraintCode) + "'!"); 5966 5967 // Add information to the INLINEASM node to know about this input. 5968 unsigned ResOpType = 5969 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 5970 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5971 TLI.getPointerTy())); 5972 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 5973 break; 5974 } 5975 5976 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 5977 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 5978 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 5979 "Memory operands expect pointer values"); 5980 5981 // Add information to the INLINEASM node to know about this input. 5982 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5983 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5984 TLI.getPointerTy())); 5985 AsmNodeOperands.push_back(InOperandVal); 5986 break; 5987 } 5988 5989 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 5990 OpInfo.ConstraintType == TargetLowering::C_Register) && 5991 "Unknown constraint type!"); 5992 assert(!OpInfo.isIndirect && 5993 "Don't know how to handle indirect register inputs yet!"); 5994 5995 // Copy the input into the appropriate registers. 5996 if (OpInfo.AssignedRegs.Regs.empty()) 5997 report_fatal_error("Couldn't allocate input reg for constraint '" + 5998 Twine(OpInfo.ConstraintCode) + "'!"); 5999 6000 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 6001 Chain, &Flag); 6002 6003 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6004 DAG, AsmNodeOperands); 6005 break; 6006 } 6007 case InlineAsm::isClobber: { 6008 // Add the clobbered value to the operand list, so that the register 6009 // allocator is aware that the physreg got clobbered. 6010 if (!OpInfo.AssignedRegs.Regs.empty()) 6011 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6012 false, 0, DAG, 6013 AsmNodeOperands); 6014 break; 6015 } 6016 } 6017 } 6018 6019 // Finish up input operands. Set the input chain and add the flag last. 6020 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6021 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6022 6023 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 6024 DAG.getVTList(MVT::Other, MVT::Glue), 6025 &AsmNodeOperands[0], AsmNodeOperands.size()); 6026 Flag = Chain.getValue(1); 6027 6028 // If this asm returns a register value, copy the result from that register 6029 // and set it as the value of the call. 6030 if (!RetValRegs.Regs.empty()) { 6031 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6032 Chain, &Flag); 6033 6034 // FIXME: Why don't we do this for inline asms with MRVs? 6035 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6036 EVT ResultType = TLI.getValueType(CS.getType()); 6037 6038 // If any of the results of the inline asm is a vector, it may have the 6039 // wrong width/num elts. This can happen for register classes that can 6040 // contain multiple different value types. The preg or vreg allocated may 6041 // not have the same VT as was expected. Convert it to the right type 6042 // with bit_convert. 6043 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6044 Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 6045 ResultType, Val); 6046 6047 } else if (ResultType != Val.getValueType() && 6048 ResultType.isInteger() && Val.getValueType().isInteger()) { 6049 // If a result value was tied to an input value, the computed result may 6050 // have a wider width than the expected result. Extract the relevant 6051 // portion. 6052 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 6053 } 6054 6055 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6056 } 6057 6058 setValue(CS.getInstruction(), Val); 6059 // Don't need to use this as a chain in this case. 6060 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6061 return; 6062 } 6063 6064 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6065 6066 // Process indirect outputs, first output all of the flagged copies out of 6067 // physregs. 6068 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6069 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6070 const Value *Ptr = IndirectStoresToEmit[i].second; 6071 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6072 Chain, &Flag); 6073 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6074 } 6075 6076 // Emit the non-flagged stores from the physregs. 6077 SmallVector<SDValue, 8> OutChains; 6078 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6079 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 6080 StoresToEmit[i].first, 6081 getValue(StoresToEmit[i].second), 6082 MachinePointerInfo(StoresToEmit[i].second), 6083 false, false, 0); 6084 OutChains.push_back(Val); 6085 } 6086 6087 if (!OutChains.empty()) 6088 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 6089 &OutChains[0], OutChains.size()); 6090 6091 DAG.setRoot(Chain); 6092 } 6093 6094 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6095 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 6096 MVT::Other, getRoot(), 6097 getValue(I.getArgOperand(0)), 6098 DAG.getSrcValue(I.getArgOperand(0)))); 6099 } 6100 6101 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6102 const TargetData &TD = *TLI.getTargetData(); 6103 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 6104 getRoot(), getValue(I.getOperand(0)), 6105 DAG.getSrcValue(I.getOperand(0)), 6106 TD.getABITypeAlignment(I.getType())); 6107 setValue(&I, V); 6108 DAG.setRoot(V.getValue(1)); 6109 } 6110 6111 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6112 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 6113 MVT::Other, getRoot(), 6114 getValue(I.getArgOperand(0)), 6115 DAG.getSrcValue(I.getArgOperand(0)))); 6116 } 6117 6118 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6119 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 6120 MVT::Other, getRoot(), 6121 getValue(I.getArgOperand(0)), 6122 getValue(I.getArgOperand(1)), 6123 DAG.getSrcValue(I.getArgOperand(0)), 6124 DAG.getSrcValue(I.getArgOperand(1)))); 6125 } 6126 6127 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6128 /// implementation, which just calls LowerCall. 6129 /// FIXME: When all targets are 6130 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6131 std::pair<SDValue, SDValue> 6132 TargetLowering::LowerCallTo(SDValue Chain, Type *RetTy, 6133 bool RetSExt, bool RetZExt, bool isVarArg, 6134 bool isInreg, unsigned NumFixedArgs, 6135 CallingConv::ID CallConv, bool isTailCall, 6136 bool isReturnValueUsed, 6137 SDValue Callee, 6138 ArgListTy &Args, SelectionDAG &DAG, 6139 DebugLoc dl) const { 6140 // Handle all of the outgoing arguments. 6141 SmallVector<ISD::OutputArg, 32> Outs; 6142 SmallVector<SDValue, 32> OutVals; 6143 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6144 SmallVector<EVT, 4> ValueVTs; 6145 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6146 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6147 Value != NumValues; ++Value) { 6148 EVT VT = ValueVTs[Value]; 6149 Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); 6150 SDValue Op = SDValue(Args[i].Node.getNode(), 6151 Args[i].Node.getResNo() + Value); 6152 ISD::ArgFlagsTy Flags; 6153 unsigned OriginalAlignment = 6154 getTargetData()->getABITypeAlignment(ArgTy); 6155 6156 if (Args[i].isZExt) 6157 Flags.setZExt(); 6158 if (Args[i].isSExt) 6159 Flags.setSExt(); 6160 if (Args[i].isInReg) 6161 Flags.setInReg(); 6162 if (Args[i].isSRet) 6163 Flags.setSRet(); 6164 if (Args[i].isByVal) { 6165 Flags.setByVal(); 6166 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6167 Type *ElementTy = Ty->getElementType(); 6168 Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy)); 6169 // For ByVal, alignment should come from FE. BE will guess if this 6170 // info is not there but there are cases it cannot get right. 6171 unsigned FrameAlign; 6172 if (Args[i].Alignment) 6173 FrameAlign = Args[i].Alignment; 6174 else 6175 FrameAlign = getByValTypeAlignment(ElementTy); 6176 Flags.setByValAlign(FrameAlign); 6177 } 6178 if (Args[i].isNest) 6179 Flags.setNest(); 6180 Flags.setOrigAlign(OriginalAlignment); 6181 6182 EVT PartVT = getRegisterType(RetTy->getContext(), VT); 6183 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); 6184 SmallVector<SDValue, 4> Parts(NumParts); 6185 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6186 6187 if (Args[i].isSExt) 6188 ExtendKind = ISD::SIGN_EXTEND; 6189 else if (Args[i].isZExt) 6190 ExtendKind = ISD::ZERO_EXTEND; 6191 6192 getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, 6193 PartVT, ExtendKind); 6194 6195 for (unsigned j = 0; j != NumParts; ++j) { 6196 // if it isn't first piece, alignment must be 1 6197 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), 6198 i < NumFixedArgs); 6199 if (NumParts > 1 && j == 0) 6200 MyFlags.Flags.setSplit(); 6201 else if (j != 0) 6202 MyFlags.Flags.setOrigAlign(1); 6203 6204 Outs.push_back(MyFlags); 6205 OutVals.push_back(Parts[j]); 6206 } 6207 } 6208 } 6209 6210 // Handle the incoming return values from the call. 6211 SmallVector<ISD::InputArg, 32> Ins; 6212 SmallVector<EVT, 4> RetTys; 6213 ComputeValueVTs(*this, RetTy, RetTys); 6214 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6215 EVT VT = RetTys[I]; 6216 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 6217 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 6218 for (unsigned i = 0; i != NumRegs; ++i) { 6219 ISD::InputArg MyFlags; 6220 MyFlags.VT = RegisterVT.getSimpleVT(); 6221 MyFlags.Used = isReturnValueUsed; 6222 if (RetSExt) 6223 MyFlags.Flags.setSExt(); 6224 if (RetZExt) 6225 MyFlags.Flags.setZExt(); 6226 if (isInreg) 6227 MyFlags.Flags.setInReg(); 6228 Ins.push_back(MyFlags); 6229 } 6230 } 6231 6232 SmallVector<SDValue, 4> InVals; 6233 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, 6234 Outs, OutVals, Ins, dl, DAG, InVals); 6235 6236 // Verify that the target's LowerCall behaved as expected. 6237 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 6238 "LowerCall didn't return a valid chain!"); 6239 assert((!isTailCall || InVals.empty()) && 6240 "LowerCall emitted a return value for a tail call!"); 6241 assert((isTailCall || InVals.size() == Ins.size()) && 6242 "LowerCall didn't emit the correct number of values!"); 6243 6244 // For a tail call, the return value is merely live-out and there aren't 6245 // any nodes in the DAG representing it. Return a special value to 6246 // indicate that a tail call has been emitted and no more Instructions 6247 // should be processed in the current block. 6248 if (isTailCall) { 6249 DAG.setRoot(Chain); 6250 return std::make_pair(SDValue(), SDValue()); 6251 } 6252 6253 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6254 assert(InVals[i].getNode() && 6255 "LowerCall emitted a null value!"); 6256 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6257 "LowerCall emitted a value with the wrong type!"); 6258 }); 6259 6260 // Collect the legal value parts into potentially illegal values 6261 // that correspond to the original function's return values. 6262 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6263 if (RetSExt) 6264 AssertOp = ISD::AssertSext; 6265 else if (RetZExt) 6266 AssertOp = ISD::AssertZext; 6267 SmallVector<SDValue, 4> ReturnValues; 6268 unsigned CurReg = 0; 6269 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6270 EVT VT = RetTys[I]; 6271 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 6272 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 6273 6274 ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg], 6275 NumRegs, RegisterVT, VT, 6276 AssertOp)); 6277 CurReg += NumRegs; 6278 } 6279 6280 // For a function returning void, there is no return value. We can't create 6281 // such a node, so we just return a null return value in that case. In 6282 // that case, nothing will actually look at the value. 6283 if (ReturnValues.empty()) 6284 return std::make_pair(SDValue(), Chain); 6285 6286 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 6287 DAG.getVTList(&RetTys[0], RetTys.size()), 6288 &ReturnValues[0], ReturnValues.size()); 6289 return std::make_pair(Res, Chain); 6290 } 6291 6292 void TargetLowering::LowerOperationWrapper(SDNode *N, 6293 SmallVectorImpl<SDValue> &Results, 6294 SelectionDAG &DAG) const { 6295 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6296 if (Res.getNode()) 6297 Results.push_back(Res); 6298 } 6299 6300 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6301 llvm_unreachable("LowerOperation not implemented for this target!"); 6302 return SDValue(); 6303 } 6304 6305 void 6306 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6307 SDValue Op = getNonRegisterValue(V); 6308 assert((Op.getOpcode() != ISD::CopyFromReg || 6309 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6310 "Copy from a reg to the same reg!"); 6311 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6312 6313 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6314 SDValue Chain = DAG.getEntryNode(); 6315 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 6316 PendingExports.push_back(Chain); 6317 } 6318 6319 #include "llvm/CodeGen/SelectionDAGISel.h" 6320 6321 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 6322 /// entry block, return true. This includes arguments used by switches, since 6323 /// the switch may expand into multiple basic blocks. 6324 static bool isOnlyUsedInEntryBlock(const Argument *A) { 6325 // With FastISel active, we may be splitting blocks, so force creation 6326 // of virtual registers for all non-dead arguments. 6327 if (EnableFastISel) 6328 return A->use_empty(); 6329 6330 const BasicBlock *Entry = A->getParent()->begin(); 6331 for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end(); 6332 UI != E; ++UI) { 6333 const User *U = *UI; 6334 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 6335 return false; // Use not in entry block. 6336 } 6337 return true; 6338 } 6339 6340 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { 6341 // If this is the entry block, emit arguments. 6342 const Function &F = *LLVMBB->getParent(); 6343 SelectionDAG &DAG = SDB->DAG; 6344 DebugLoc dl = SDB->getCurDebugLoc(); 6345 const TargetData *TD = TLI.getTargetData(); 6346 SmallVector<ISD::InputArg, 16> Ins; 6347 6348 // Check whether the function can return without sret-demotion. 6349 SmallVector<ISD::OutputArg, 4> Outs; 6350 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 6351 Outs, TLI); 6352 6353 if (!FuncInfo->CanLowerReturn) { 6354 // Put in an sret pointer parameter before all the other parameters. 6355 SmallVector<EVT, 1> ValueVTs; 6356 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6357 6358 // NOTE: Assuming that a pointer will never break down to more than one VT 6359 // or one register. 6360 ISD::ArgFlagsTy Flags; 6361 Flags.setSRet(); 6362 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]); 6363 ISD::InputArg RetArg(Flags, RegisterVT, true); 6364 Ins.push_back(RetArg); 6365 } 6366 6367 // Set up the incoming argument description vector. 6368 unsigned Idx = 1; 6369 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 6370 I != E; ++I, ++Idx) { 6371 SmallVector<EVT, 4> ValueVTs; 6372 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6373 bool isArgValueUsed = !I->use_empty(); 6374 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6375 Value != NumValues; ++Value) { 6376 EVT VT = ValueVTs[Value]; 6377 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6378 ISD::ArgFlagsTy Flags; 6379 unsigned OriginalAlignment = 6380 TD->getABITypeAlignment(ArgTy); 6381 6382 if (F.paramHasAttr(Idx, Attribute::ZExt)) 6383 Flags.setZExt(); 6384 if (F.paramHasAttr(Idx, Attribute::SExt)) 6385 Flags.setSExt(); 6386 if (F.paramHasAttr(Idx, Attribute::InReg)) 6387 Flags.setInReg(); 6388 if (F.paramHasAttr(Idx, Attribute::StructRet)) 6389 Flags.setSRet(); 6390 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 6391 Flags.setByVal(); 6392 PointerType *Ty = cast<PointerType>(I->getType()); 6393 Type *ElementTy = Ty->getElementType(); 6394 Flags.setByValSize(TD->getTypeAllocSize(ElementTy)); 6395 // For ByVal, alignment should be passed from FE. BE will guess if 6396 // this info is not there but there are cases it cannot get right. 6397 unsigned FrameAlign; 6398 if (F.getParamAlignment(Idx)) 6399 FrameAlign = F.getParamAlignment(Idx); 6400 else 6401 FrameAlign = TLI.getByValTypeAlignment(ElementTy); 6402 Flags.setByValAlign(FrameAlign); 6403 } 6404 if (F.paramHasAttr(Idx, Attribute::Nest)) 6405 Flags.setNest(); 6406 Flags.setOrigAlign(OriginalAlignment); 6407 6408 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6409 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6410 for (unsigned i = 0; i != NumRegs; ++i) { 6411 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 6412 if (NumRegs > 1 && i == 0) 6413 MyFlags.Flags.setSplit(); 6414 // if it isn't first piece, alignment must be 1 6415 else if (i > 0) 6416 MyFlags.Flags.setOrigAlign(1); 6417 Ins.push_back(MyFlags); 6418 } 6419 } 6420 } 6421 6422 // Call the target to set up the argument values. 6423 SmallVector<SDValue, 8> InVals; 6424 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6425 F.isVarArg(), Ins, 6426 dl, DAG, InVals); 6427 6428 // Verify that the target's LowerFormalArguments behaved as expected. 6429 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6430 "LowerFormalArguments didn't return a valid chain!"); 6431 assert(InVals.size() == Ins.size() && 6432 "LowerFormalArguments didn't emit the correct number of values!"); 6433 DEBUG({ 6434 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6435 assert(InVals[i].getNode() && 6436 "LowerFormalArguments emitted a null value!"); 6437 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6438 "LowerFormalArguments emitted a value with the wrong type!"); 6439 } 6440 }); 6441 6442 // Update the DAG with the new chain value resulting from argument lowering. 6443 DAG.setRoot(NewRoot); 6444 6445 // Set up the argument values. 6446 unsigned i = 0; 6447 Idx = 1; 6448 if (!FuncInfo->CanLowerReturn) { 6449 // Create a virtual register for the sret pointer, and put in a copy 6450 // from the sret argument into it. 6451 SmallVector<EVT, 1> ValueVTs; 6452 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6453 EVT VT = ValueVTs[0]; 6454 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6455 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6456 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6457 RegVT, VT, AssertOp); 6458 6459 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6460 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6461 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 6462 FuncInfo->DemoteRegister = SRetReg; 6463 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 6464 SRetReg, ArgValue); 6465 DAG.setRoot(NewRoot); 6466 6467 // i indexes lowered arguments. Bump it past the hidden sret argument. 6468 // Idx indexes LLVM arguments. Don't touch it. 6469 ++i; 6470 } 6471 6472 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6473 ++I, ++Idx) { 6474 SmallVector<SDValue, 4> ArgValues; 6475 SmallVector<EVT, 4> ValueVTs; 6476 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6477 unsigned NumValues = ValueVTs.size(); 6478 6479 // If this argument is unused then remember its value. It is used to generate 6480 // debugging information. 6481 if (I->use_empty() && NumValues) 6482 SDB->setUnusedArgValue(I, InVals[i]); 6483 6484 for (unsigned Val = 0; Val != NumValues; ++Val) { 6485 EVT VT = ValueVTs[Val]; 6486 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6487 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6488 6489 if (!I->use_empty()) { 6490 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6491 if (F.paramHasAttr(Idx, Attribute::SExt)) 6492 AssertOp = ISD::AssertSext; 6493 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 6494 AssertOp = ISD::AssertZext; 6495 6496 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6497 NumParts, PartVT, VT, 6498 AssertOp)); 6499 } 6500 6501 i += NumParts; 6502 } 6503 6504 // We don't need to do anything else for unused arguments. 6505 if (ArgValues.empty()) 6506 continue; 6507 6508 // Note down frame index for byval arguments. 6509 if (I->hasByValAttr()) 6510 if (FrameIndexSDNode *FI = 6511 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 6512 FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex()); 6513 6514 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6515 SDB->getCurDebugLoc()); 6516 SDB->setValue(I, Res); 6517 6518 // If this argument is live outside of the entry block, insert a copy from 6519 // wherever we got it to the vreg that other BB's will reference it as. 6520 if (!EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 6521 // If we can, though, try to skip creating an unnecessary vreg. 6522 // FIXME: This isn't very clean... it would be nice to make this more 6523 // general. It's also subtly incompatible with the hacks FastISel 6524 // uses with vregs. 6525 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 6526 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 6527 FuncInfo->ValueMap[I] = Reg; 6528 continue; 6529 } 6530 } 6531 if (!isOnlyUsedInEntryBlock(I)) { 6532 FuncInfo->InitializeRegForValue(I); 6533 SDB->CopyToExportRegsIfNeeded(I); 6534 } 6535 } 6536 6537 assert(i == InVals.size() && "Argument register count mismatch!"); 6538 6539 // Finally, if the target has anything special to do, allow it to do so. 6540 // FIXME: this should insert code into the DAG! 6541 EmitFunctionEntryCode(); 6542 } 6543 6544 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6545 /// ensure constants are generated when needed. Remember the virtual registers 6546 /// that need to be added to the Machine PHI nodes as input. We cannot just 6547 /// directly add them, because expansion might result in multiple MBB's for one 6548 /// BB. As such, the start of the BB might correspond to a different MBB than 6549 /// the end. 6550 /// 6551 void 6552 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 6553 const TerminatorInst *TI = LLVMBB->getTerminator(); 6554 6555 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6556 6557 // Check successor nodes' PHI nodes that expect a constant to be available 6558 // from this block. 6559 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6560 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6561 if (!isa<PHINode>(SuccBB->begin())) continue; 6562 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 6563 6564 // If this terminator has multiple identical successors (common for 6565 // switches), only handle each succ once. 6566 if (!SuccsHandled.insert(SuccMBB)) continue; 6567 6568 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6569 6570 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6571 // nodes and Machine PHI nodes, but the incoming operands have not been 6572 // emitted yet. 6573 for (BasicBlock::const_iterator I = SuccBB->begin(); 6574 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6575 // Ignore dead phi's. 6576 if (PN->use_empty()) continue; 6577 6578 // Skip empty types 6579 if (PN->getType()->isEmptyTy()) 6580 continue; 6581 6582 unsigned Reg; 6583 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6584 6585 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 6586 unsigned &RegOut = ConstantsOut[C]; 6587 if (RegOut == 0) { 6588 RegOut = FuncInfo.CreateRegs(C->getType()); 6589 CopyValueToVirtualRegister(C, RegOut); 6590 } 6591 Reg = RegOut; 6592 } else { 6593 DenseMap<const Value *, unsigned>::iterator I = 6594 FuncInfo.ValueMap.find(PHIOp); 6595 if (I != FuncInfo.ValueMap.end()) 6596 Reg = I->second; 6597 else { 6598 assert(isa<AllocaInst>(PHIOp) && 6599 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6600 "Didn't codegen value into a register!??"); 6601 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 6602 CopyValueToVirtualRegister(PHIOp, Reg); 6603 } 6604 } 6605 6606 // Remember that this register needs to added to the machine PHI node as 6607 // the input for this MBB. 6608 SmallVector<EVT, 4> ValueVTs; 6609 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6610 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6611 EVT VT = ValueVTs[vti]; 6612 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 6613 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6614 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6615 Reg += NumRegisters; 6616 } 6617 } 6618 } 6619 ConstantsOut.clear(); 6620 } 6621