1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetFrameLowering.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetOptions.h" 64 #include "llvm/Target/TargetSelectionDAGInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 #include <utility> 68 using namespace llvm; 69 70 #define DEBUG_TYPE "isel" 71 72 /// LimitFloatPrecision - Generate low-precision inline sequences for 73 /// some float libcalls (6, 8 or 12 bits). 74 static unsigned LimitFloatPrecision; 75 76 static cl::opt<unsigned, true> 77 LimitFPPrecision("limit-float-precision", 78 cl::desc("Generate low-precision inline sequences " 79 "for some float libcalls"), 80 cl::location(LimitFloatPrecision), 81 cl::init(0)); 82 83 static cl::opt<bool> 84 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 85 cl::desc("Enable fast-math-flags for DAG nodes")); 86 87 // Limit the width of DAG chains. This is important in general to prevent 88 // DAG-based analysis from blowing up. For example, alias analysis and 89 // load clustering may not complete in reasonable time. It is difficult to 90 // recognize and avoid this situation within each individual analysis, and 91 // future analyses are likely to have the same behavior. Limiting DAG width is 92 // the safe approach and will be especially important with global DAGs. 93 // 94 // MaxParallelChains default is arbitrarily high to avoid affecting 95 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 96 // sequence over this should have been converted to llvm.memcpy by the 97 // frontend. It easy to induce this behavior with .ll code such as: 98 // %buffer = alloca [4096 x i8] 99 // %data = load [4096 x i8]* %argPtr 100 // store [4096 x i8] %data, [4096 x i8]* %buffer 101 static const unsigned MaxParallelChains = 64; 102 103 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 104 const SDValue *Parts, unsigned NumParts, 105 MVT PartVT, EVT ValueVT, const Value *V); 106 107 /// getCopyFromParts - Create a value that contains the specified legal parts 108 /// combined into the value they represent. If the parts combine to a type 109 /// larger then ValueVT then AssertOp can be used to specify whether the extra 110 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 111 /// (ISD::AssertSext). 112 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 113 const SDValue *Parts, 114 unsigned NumParts, MVT PartVT, EVT ValueVT, 115 const Value *V, 116 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 117 if (ValueVT.isVector()) 118 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 119 PartVT, ValueVT, V); 120 121 assert(NumParts > 0 && "No parts to assemble!"); 122 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 123 SDValue Val = Parts[0]; 124 125 if (NumParts > 1) { 126 // Assemble the value from multiple parts. 127 if (ValueVT.isInteger()) { 128 unsigned PartBits = PartVT.getSizeInBits(); 129 unsigned ValueBits = ValueVT.getSizeInBits(); 130 131 // Assemble the power of 2 part. 132 unsigned RoundParts = NumParts & (NumParts - 1) ? 133 1 << Log2_32(NumParts) : NumParts; 134 unsigned RoundBits = PartBits * RoundParts; 135 EVT RoundVT = RoundBits == ValueBits ? 136 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 137 SDValue Lo, Hi; 138 139 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 140 141 if (RoundParts > 2) { 142 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 143 PartVT, HalfVT, V); 144 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 145 RoundParts / 2, PartVT, HalfVT, V); 146 } else { 147 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 148 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 149 } 150 151 if (DAG.getDataLayout().isBigEndian()) 152 std::swap(Lo, Hi); 153 154 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 155 156 if (RoundParts < NumParts) { 157 // Assemble the trailing non-power-of-2 part. 158 unsigned OddParts = NumParts - RoundParts; 159 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 160 Hi = getCopyFromParts(DAG, DL, 161 Parts + RoundParts, OddParts, PartVT, OddVT, V); 162 163 // Combine the round and odd parts. 164 Lo = Val; 165 if (DAG.getDataLayout().isBigEndian()) 166 std::swap(Lo, Hi); 167 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 168 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 169 Hi = 170 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 171 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 172 TLI.getPointerTy(DAG.getDataLayout()))); 173 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 174 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 175 } 176 } else if (PartVT.isFloatingPoint()) { 177 // FP split into multiple FP parts (for ppcf128) 178 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 179 "Unexpected split"); 180 SDValue Lo, Hi; 181 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 182 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 183 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 184 std::swap(Lo, Hi); 185 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 186 } else { 187 // FP split into integer parts (soft fp) 188 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 189 !PartVT.isVector() && "Unexpected split"); 190 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 191 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 192 } 193 } 194 195 // There is now one part, held in Val. Correct it to match ValueVT. 196 EVT PartEVT = Val.getValueType(); 197 198 if (PartEVT == ValueVT) 199 return Val; 200 201 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 202 ValueVT.bitsLT(PartEVT)) { 203 // For an FP value in an integer part, we need to truncate to the right 204 // width first. 205 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 206 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 207 } 208 209 if (PartEVT.isInteger() && ValueVT.isInteger()) { 210 if (ValueVT.bitsLT(PartEVT)) { 211 // For a truncate, see if we have any information to 212 // indicate whether the truncated bits will always be 213 // zero or sign-extension. 214 if (AssertOp != ISD::DELETED_NODE) 215 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 216 DAG.getValueType(ValueVT)); 217 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 218 } 219 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 220 } 221 222 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 223 // FP_ROUND's are always exact here. 224 if (ValueVT.bitsLT(Val.getValueType())) 225 return DAG.getNode( 226 ISD::FP_ROUND, DL, ValueVT, Val, 227 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 228 229 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 230 } 231 232 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 233 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 234 235 llvm_unreachable("Unknown mismatch!"); 236 } 237 238 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 239 const Twine &ErrMsg) { 240 const Instruction *I = dyn_cast_or_null<Instruction>(V); 241 if (!V) 242 return Ctx.emitError(ErrMsg); 243 244 const char *AsmError = ", possible invalid constraint for vector type"; 245 if (const CallInst *CI = dyn_cast<CallInst>(I)) 246 if (isa<InlineAsm>(CI->getCalledValue())) 247 return Ctx.emitError(I, ErrMsg + AsmError); 248 249 return Ctx.emitError(I, ErrMsg); 250 } 251 252 /// getCopyFromPartsVector - Create a value that contains the specified legal 253 /// parts combined into the value they represent. If the parts combine to a 254 /// type larger then ValueVT then AssertOp can be used to specify whether the 255 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 256 /// ValueVT (ISD::AssertSext). 257 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 258 const SDValue *Parts, unsigned NumParts, 259 MVT PartVT, EVT ValueVT, const Value *V) { 260 assert(ValueVT.isVector() && "Not a vector value"); 261 assert(NumParts > 0 && "No parts to assemble!"); 262 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 263 SDValue Val = Parts[0]; 264 265 // Handle a multi-element vector. 266 if (NumParts > 1) { 267 EVT IntermediateVT; 268 MVT RegisterVT; 269 unsigned NumIntermediates; 270 unsigned NumRegs = 271 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 272 NumIntermediates, RegisterVT); 273 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 274 NumParts = NumRegs; // Silence a compiler warning. 275 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 276 assert(RegisterVT.getSizeInBits() == 277 Parts[0].getSimpleValueType().getSizeInBits() && 278 "Part type sizes don't match!"); 279 280 // Assemble the parts into intermediate operands. 281 SmallVector<SDValue, 8> Ops(NumIntermediates); 282 if (NumIntermediates == NumParts) { 283 // If the register was not expanded, truncate or copy the value, 284 // as appropriate. 285 for (unsigned i = 0; i != NumParts; ++i) 286 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 287 PartVT, IntermediateVT, V); 288 } else if (NumParts > 0) { 289 // If the intermediate type was expanded, build the intermediate 290 // operands from the parts. 291 assert(NumParts % NumIntermediates == 0 && 292 "Must expand into a divisible number of parts!"); 293 unsigned Factor = NumParts / NumIntermediates; 294 for (unsigned i = 0; i != NumIntermediates; ++i) 295 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 296 PartVT, IntermediateVT, V); 297 } 298 299 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 300 // intermediate operands. 301 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 302 : ISD::BUILD_VECTOR, 303 DL, ValueVT, Ops); 304 } 305 306 // There is now one part, held in Val. Correct it to match ValueVT. 307 EVT PartEVT = Val.getValueType(); 308 309 if (PartEVT == ValueVT) 310 return Val; 311 312 if (PartEVT.isVector()) { 313 // If the element type of the source/dest vectors are the same, but the 314 // parts vector has more elements than the value vector, then we have a 315 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 316 // elements we want. 317 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 318 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 319 "Cannot narrow, it would be a lossy transformation"); 320 return DAG.getNode( 321 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 322 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 323 } 324 325 // Vector/Vector bitcast. 326 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 327 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 328 329 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 330 "Cannot handle this kind of promotion"); 331 // Promoted vector extract 332 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 333 334 } 335 336 // Trivial bitcast if the types are the same size and the destination 337 // vector type is legal. 338 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 339 TLI.isTypeLegal(ValueVT)) 340 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 341 342 // Handle cases such as i8 -> <1 x i1> 343 if (ValueVT.getVectorNumElements() != 1) { 344 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 345 "non-trivial scalar-to-vector conversion"); 346 return DAG.getUNDEF(ValueVT); 347 } 348 349 if (ValueVT.getVectorNumElements() == 1 && 350 ValueVT.getVectorElementType() != PartEVT) 351 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 352 353 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 354 } 355 356 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 357 SDValue Val, SDValue *Parts, unsigned NumParts, 358 MVT PartVT, const Value *V); 359 360 /// getCopyToParts - Create a series of nodes that contain the specified value 361 /// split into legal parts. If the parts contain more bits than Val, then, for 362 /// integers, ExtendKind can be used to specify how to generate the extra bits. 363 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 364 SDValue Val, SDValue *Parts, unsigned NumParts, 365 MVT PartVT, const Value *V, 366 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 367 EVT ValueVT = Val.getValueType(); 368 369 // Handle the vector case separately. 370 if (ValueVT.isVector()) 371 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 372 373 unsigned PartBits = PartVT.getSizeInBits(); 374 unsigned OrigNumParts = NumParts; 375 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 376 "Copying to an illegal type!"); 377 378 if (NumParts == 0) 379 return; 380 381 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 382 EVT PartEVT = PartVT; 383 if (PartEVT == ValueVT) { 384 assert(NumParts == 1 && "No-op copy with multiple parts!"); 385 Parts[0] = Val; 386 return; 387 } 388 389 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 390 // If the parts cover more bits than the value has, promote the value. 391 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 392 assert(NumParts == 1 && "Do not know what to promote to!"); 393 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 394 } else { 395 if (ValueVT.isFloatingPoint()) { 396 // FP values need to be bitcast, then extended if they are being put 397 // into a larger container. 398 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 399 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 400 } 401 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 402 ValueVT.isInteger() && 403 "Unknown mismatch!"); 404 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 405 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 406 if (PartVT == MVT::x86mmx) 407 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 408 } 409 } else if (PartBits == ValueVT.getSizeInBits()) { 410 // Different types of the same size. 411 assert(NumParts == 1 && PartEVT != ValueVT); 412 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 413 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 414 // If the parts cover less bits than value has, truncate the value. 415 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 416 ValueVT.isInteger() && 417 "Unknown mismatch!"); 418 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 419 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 420 if (PartVT == MVT::x86mmx) 421 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 422 } 423 424 // The value may have changed - recompute ValueVT. 425 ValueVT = Val.getValueType(); 426 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 427 "Failed to tile the value with PartVT!"); 428 429 if (NumParts == 1) { 430 if (PartEVT != ValueVT) 431 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 432 "scalar-to-vector conversion failed"); 433 434 Parts[0] = Val; 435 return; 436 } 437 438 // Expand the value into multiple parts. 439 if (NumParts & (NumParts - 1)) { 440 // The number of parts is not a power of 2. Split off and copy the tail. 441 assert(PartVT.isInteger() && ValueVT.isInteger() && 442 "Do not know what to expand to!"); 443 unsigned RoundParts = 1 << Log2_32(NumParts); 444 unsigned RoundBits = RoundParts * PartBits; 445 unsigned OddParts = NumParts - RoundParts; 446 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 447 DAG.getIntPtrConstant(RoundBits, DL)); 448 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 449 450 if (DAG.getDataLayout().isBigEndian()) 451 // The odd parts were reversed by getCopyToParts - unreverse them. 452 std::reverse(Parts + RoundParts, Parts + NumParts); 453 454 NumParts = RoundParts; 455 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 456 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 457 } 458 459 // The number of parts is a power of 2. Repeatedly bisect the value using 460 // EXTRACT_ELEMENT. 461 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 462 EVT::getIntegerVT(*DAG.getContext(), 463 ValueVT.getSizeInBits()), 464 Val); 465 466 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 467 for (unsigned i = 0; i < NumParts; i += StepSize) { 468 unsigned ThisBits = StepSize * PartBits / 2; 469 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 470 SDValue &Part0 = Parts[i]; 471 SDValue &Part1 = Parts[i+StepSize/2]; 472 473 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 474 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 475 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 476 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 477 478 if (ThisBits == PartBits && ThisVT != PartVT) { 479 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 480 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 481 } 482 } 483 } 484 485 if (DAG.getDataLayout().isBigEndian()) 486 std::reverse(Parts, Parts + OrigNumParts); 487 } 488 489 490 /// getCopyToPartsVector - Create a series of nodes that contain the specified 491 /// value split into legal parts. 492 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 493 SDValue Val, SDValue *Parts, unsigned NumParts, 494 MVT PartVT, const Value *V) { 495 EVT ValueVT = Val.getValueType(); 496 assert(ValueVT.isVector() && "Not a vector"); 497 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 498 499 if (NumParts == 1) { 500 EVT PartEVT = PartVT; 501 if (PartEVT == ValueVT) { 502 // Nothing to do. 503 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 504 // Bitconvert vector->vector case. 505 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 506 } else if (PartVT.isVector() && 507 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 508 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 509 EVT ElementVT = PartVT.getVectorElementType(); 510 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 511 // undef elements. 512 SmallVector<SDValue, 16> Ops; 513 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 514 Ops.push_back(DAG.getNode( 515 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 516 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 517 518 for (unsigned i = ValueVT.getVectorNumElements(), 519 e = PartVT.getVectorNumElements(); i != e; ++i) 520 Ops.push_back(DAG.getUNDEF(ElementVT)); 521 522 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 523 524 // FIXME: Use CONCAT for 2x -> 4x. 525 526 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 527 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 528 } else if (PartVT.isVector() && 529 PartEVT.getVectorElementType().bitsGE( 530 ValueVT.getVectorElementType()) && 531 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 532 533 // Promoted vector extract 534 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 535 } else{ 536 // Vector -> scalar conversion. 537 assert(ValueVT.getVectorNumElements() == 1 && 538 "Only trivial vector-to-scalar conversions should get here!"); 539 Val = DAG.getNode( 540 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 541 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 542 543 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 544 } 545 546 Parts[0] = Val; 547 return; 548 } 549 550 // Handle a multi-element vector. 551 EVT IntermediateVT; 552 MVT RegisterVT; 553 unsigned NumIntermediates; 554 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 555 IntermediateVT, 556 NumIntermediates, RegisterVT); 557 unsigned NumElements = ValueVT.getVectorNumElements(); 558 559 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 560 NumParts = NumRegs; // Silence a compiler warning. 561 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 562 563 // Split the vector into intermediate operands. 564 SmallVector<SDValue, 8> Ops(NumIntermediates); 565 for (unsigned i = 0; i != NumIntermediates; ++i) { 566 if (IntermediateVT.isVector()) 567 Ops[i] = 568 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 569 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 570 TLI.getVectorIdxTy(DAG.getDataLayout()))); 571 else 572 Ops[i] = DAG.getNode( 573 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 574 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 575 } 576 577 // Split the intermediate operands into legal parts. 578 if (NumParts == NumIntermediates) { 579 // If the register was not expanded, promote or copy the value, 580 // as appropriate. 581 for (unsigned i = 0; i != NumParts; ++i) 582 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 583 } else if (NumParts > 0) { 584 // If the intermediate type was expanded, split each the value into 585 // legal parts. 586 assert(NumIntermediates != 0 && "division by zero"); 587 assert(NumParts % NumIntermediates == 0 && 588 "Must expand into a divisible number of parts!"); 589 unsigned Factor = NumParts / NumIntermediates; 590 for (unsigned i = 0; i != NumIntermediates; ++i) 591 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 592 } 593 } 594 595 RegsForValue::RegsForValue() {} 596 597 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 598 EVT valuevt) 599 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 600 601 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 602 const DataLayout &DL, unsigned Reg, Type *Ty) { 603 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 604 605 for (EVT ValueVT : ValueVTs) { 606 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 607 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 608 for (unsigned i = 0; i != NumRegs; ++i) 609 Regs.push_back(Reg + i); 610 RegVTs.push_back(RegisterVT); 611 Reg += NumRegs; 612 } 613 } 614 615 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 616 /// this value and returns the result as a ValueVT value. This uses 617 /// Chain/Flag as the input and updates them for the output Chain/Flag. 618 /// If the Flag pointer is NULL, no flag is used. 619 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 620 FunctionLoweringInfo &FuncInfo, 621 SDLoc dl, 622 SDValue &Chain, SDValue *Flag, 623 const Value *V) const { 624 // A Value with type {} or [0 x %t] needs no registers. 625 if (ValueVTs.empty()) 626 return SDValue(); 627 628 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 629 630 // Assemble the legal parts into the final values. 631 SmallVector<SDValue, 4> Values(ValueVTs.size()); 632 SmallVector<SDValue, 8> Parts; 633 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 634 // Copy the legal parts from the registers. 635 EVT ValueVT = ValueVTs[Value]; 636 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 637 MVT RegisterVT = RegVTs[Value]; 638 639 Parts.resize(NumRegs); 640 for (unsigned i = 0; i != NumRegs; ++i) { 641 SDValue P; 642 if (!Flag) { 643 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 644 } else { 645 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 646 *Flag = P.getValue(2); 647 } 648 649 Chain = P.getValue(1); 650 Parts[i] = P; 651 652 // If the source register was virtual and if we know something about it, 653 // add an assert node. 654 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 655 !RegisterVT.isInteger() || RegisterVT.isVector()) 656 continue; 657 658 const FunctionLoweringInfo::LiveOutInfo *LOI = 659 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 660 if (!LOI) 661 continue; 662 663 unsigned RegSize = RegisterVT.getSizeInBits(); 664 unsigned NumSignBits = LOI->NumSignBits; 665 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 666 667 if (NumZeroBits == RegSize) { 668 // The current value is a zero. 669 // Explicitly express that as it would be easier for 670 // optimizations to kick in. 671 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 672 continue; 673 } 674 675 // FIXME: We capture more information than the dag can represent. For 676 // now, just use the tightest assertzext/assertsext possible. 677 bool isSExt = true; 678 EVT FromVT(MVT::Other); 679 if (NumSignBits == RegSize) 680 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 681 else if (NumZeroBits >= RegSize-1) 682 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 683 else if (NumSignBits > RegSize-8) 684 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 685 else if (NumZeroBits >= RegSize-8) 686 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 687 else if (NumSignBits > RegSize-16) 688 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 689 else if (NumZeroBits >= RegSize-16) 690 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 691 else if (NumSignBits > RegSize-32) 692 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 693 else if (NumZeroBits >= RegSize-32) 694 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 695 else 696 continue; 697 698 // Add an assertion node. 699 assert(FromVT != MVT::Other); 700 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 701 RegisterVT, P, DAG.getValueType(FromVT)); 702 } 703 704 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 705 NumRegs, RegisterVT, ValueVT, V); 706 Part += NumRegs; 707 Parts.clear(); 708 } 709 710 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 711 } 712 713 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 714 /// specified value into the registers specified by this object. This uses 715 /// Chain/Flag as the input and updates them for the output Chain/Flag. 716 /// If the Flag pointer is NULL, no flag is used. 717 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 718 SDValue &Chain, SDValue *Flag, const Value *V, 719 ISD::NodeType PreferredExtendType) const { 720 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 721 ISD::NodeType ExtendKind = PreferredExtendType; 722 723 // Get the list of the values's legal parts. 724 unsigned NumRegs = Regs.size(); 725 SmallVector<SDValue, 8> Parts(NumRegs); 726 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 727 EVT ValueVT = ValueVTs[Value]; 728 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 729 MVT RegisterVT = RegVTs[Value]; 730 731 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 732 ExtendKind = ISD::ZERO_EXTEND; 733 734 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 735 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 736 Part += NumParts; 737 } 738 739 // Copy the parts into the registers. 740 SmallVector<SDValue, 8> Chains(NumRegs); 741 for (unsigned i = 0; i != NumRegs; ++i) { 742 SDValue Part; 743 if (!Flag) { 744 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 745 } else { 746 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 747 *Flag = Part.getValue(1); 748 } 749 750 Chains[i] = Part.getValue(0); 751 } 752 753 if (NumRegs == 1 || Flag) 754 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 755 // flagged to it. That is the CopyToReg nodes and the user are considered 756 // a single scheduling unit. If we create a TokenFactor and return it as 757 // chain, then the TokenFactor is both a predecessor (operand) of the 758 // user as well as a successor (the TF operands are flagged to the user). 759 // c1, f1 = CopyToReg 760 // c2, f2 = CopyToReg 761 // c3 = TokenFactor c1, c2 762 // ... 763 // = op c3, ..., f2 764 Chain = Chains[NumRegs-1]; 765 else 766 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 767 } 768 769 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 770 /// operand list. This adds the code marker and includes the number of 771 /// values added into it. 772 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 773 unsigned MatchingIdx, SDLoc dl, 774 SelectionDAG &DAG, 775 std::vector<SDValue> &Ops) const { 776 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 777 778 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 779 if (HasMatching) 780 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 781 else if (!Regs.empty() && 782 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 783 // Put the register class of the virtual registers in the flag word. That 784 // way, later passes can recompute register class constraints for inline 785 // assembly as well as normal instructions. 786 // Don't do this for tied operands that can use the regclass information 787 // from the def. 788 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 789 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 790 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 791 } 792 793 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 794 Ops.push_back(Res); 795 796 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 797 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 798 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 799 MVT RegisterVT = RegVTs[Value]; 800 for (unsigned i = 0; i != NumRegs; ++i) { 801 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 802 unsigned TheReg = Regs[Reg++]; 803 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 804 805 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 806 // If we clobbered the stack pointer, MFI should know about it. 807 assert(DAG.getMachineFunction().getFrameInfo()-> 808 hasOpaqueSPAdjustment()); 809 } 810 } 811 } 812 } 813 814 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 815 const TargetLibraryInfo *li) { 816 AA = &aa; 817 GFI = gfi; 818 LibInfo = li; 819 DL = &DAG.getDataLayout(); 820 Context = DAG.getContext(); 821 LPadToCallSiteMap.clear(); 822 } 823 824 /// clear - Clear out the current SelectionDAG and the associated 825 /// state and prepare this SelectionDAGBuilder object to be used 826 /// for a new block. This doesn't clear out information about 827 /// additional blocks that are needed to complete switch lowering 828 /// or PHI node updating; that information is cleared out as it is 829 /// consumed. 830 void SelectionDAGBuilder::clear() { 831 NodeMap.clear(); 832 UnusedArgNodeMap.clear(); 833 PendingLoads.clear(); 834 PendingExports.clear(); 835 CurInst = nullptr; 836 HasTailCall = false; 837 SDNodeOrder = LowestSDNodeOrder; 838 StatepointLowering.clear(); 839 } 840 841 /// clearDanglingDebugInfo - Clear the dangling debug information 842 /// map. This function is separated from the clear so that debug 843 /// information that is dangling in a basic block can be properly 844 /// resolved in a different basic block. This allows the 845 /// SelectionDAG to resolve dangling debug information attached 846 /// to PHI nodes. 847 void SelectionDAGBuilder::clearDanglingDebugInfo() { 848 DanglingDebugInfoMap.clear(); 849 } 850 851 /// getRoot - Return the current virtual root of the Selection DAG, 852 /// flushing any PendingLoad items. This must be done before emitting 853 /// a store or any other node that may need to be ordered after any 854 /// prior load instructions. 855 /// 856 SDValue SelectionDAGBuilder::getRoot() { 857 if (PendingLoads.empty()) 858 return DAG.getRoot(); 859 860 if (PendingLoads.size() == 1) { 861 SDValue Root = PendingLoads[0]; 862 DAG.setRoot(Root); 863 PendingLoads.clear(); 864 return Root; 865 } 866 867 // Otherwise, we have to make a token factor node. 868 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 869 PendingLoads); 870 PendingLoads.clear(); 871 DAG.setRoot(Root); 872 return Root; 873 } 874 875 /// getControlRoot - Similar to getRoot, but instead of flushing all the 876 /// PendingLoad items, flush all the PendingExports items. It is necessary 877 /// to do this before emitting a terminator instruction. 878 /// 879 SDValue SelectionDAGBuilder::getControlRoot() { 880 SDValue Root = DAG.getRoot(); 881 882 if (PendingExports.empty()) 883 return Root; 884 885 // Turn all of the CopyToReg chains into one factored node. 886 if (Root.getOpcode() != ISD::EntryToken) { 887 unsigned i = 0, e = PendingExports.size(); 888 for (; i != e; ++i) { 889 assert(PendingExports[i].getNode()->getNumOperands() > 1); 890 if (PendingExports[i].getNode()->getOperand(0) == Root) 891 break; // Don't add the root if we already indirectly depend on it. 892 } 893 894 if (i == e) 895 PendingExports.push_back(Root); 896 } 897 898 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 899 PendingExports); 900 PendingExports.clear(); 901 DAG.setRoot(Root); 902 return Root; 903 } 904 905 void SelectionDAGBuilder::visit(const Instruction &I) { 906 // Set up outgoing PHI node register values before emitting the terminator. 907 if (isa<TerminatorInst>(&I)) 908 HandlePHINodesInSuccessorBlocks(I.getParent()); 909 910 ++SDNodeOrder; 911 912 CurInst = &I; 913 914 visit(I.getOpcode(), I); 915 916 if (!isa<TerminatorInst>(&I) && !HasTailCall && 917 !isStatepoint(&I)) // statepoints handle their exports internally 918 CopyToExportRegsIfNeeded(&I); 919 920 CurInst = nullptr; 921 } 922 923 void SelectionDAGBuilder::visitPHI(const PHINode &) { 924 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 925 } 926 927 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 928 // Note: this doesn't use InstVisitor, because it has to work with 929 // ConstantExpr's in addition to instructions. 930 switch (Opcode) { 931 default: llvm_unreachable("Unknown instruction type encountered!"); 932 // Build the switch statement using the Instruction.def file. 933 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 934 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 935 #include "llvm/IR/Instruction.def" 936 } 937 } 938 939 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 940 // generate the debug data structures now that we've seen its definition. 941 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 942 SDValue Val) { 943 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 944 if (DDI.getDI()) { 945 const DbgValueInst *DI = DDI.getDI(); 946 DebugLoc dl = DDI.getdl(); 947 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 948 DILocalVariable *Variable = DI->getVariable(); 949 DIExpression *Expr = DI->getExpression(); 950 assert(Variable->isValidLocationForIntrinsic(dl) && 951 "Expected inlined-at fields to agree"); 952 uint64_t Offset = DI->getOffset(); 953 // A dbg.value for an alloca is always indirect. 954 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 955 SDDbgValue *SDV; 956 if (Val.getNode()) { 957 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 958 Val)) { 959 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 960 IsIndirect, Offset, dl, DbgSDNodeOrder); 961 DAG.AddDbgValue(SDV, Val.getNode(), false); 962 } 963 } else 964 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 965 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 966 } 967 } 968 969 /// getCopyFromRegs - If there was virtual register allocated for the value V 970 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 971 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 972 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 973 SDValue Result; 974 975 if (It != FuncInfo.ValueMap.end()) { 976 unsigned InReg = It->second; 977 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 978 DAG.getDataLayout(), InReg, Ty); 979 SDValue Chain = DAG.getEntryNode(); 980 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 981 resolveDanglingDebugInfo(V, Result); 982 } 983 984 return Result; 985 } 986 987 /// getValue - Return an SDValue for the given Value. 988 SDValue SelectionDAGBuilder::getValue(const Value *V) { 989 // If we already have an SDValue for this value, use it. It's important 990 // to do this first, so that we don't create a CopyFromReg if we already 991 // have a regular SDValue. 992 SDValue &N = NodeMap[V]; 993 if (N.getNode()) return N; 994 995 // If there's a virtual register allocated and initialized for this 996 // value, use it. 997 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 998 if (copyFromReg.getNode()) { 999 return copyFromReg; 1000 } 1001 1002 // Otherwise create a new SDValue and remember it. 1003 SDValue Val = getValueImpl(V); 1004 NodeMap[V] = Val; 1005 resolveDanglingDebugInfo(V, Val); 1006 return Val; 1007 } 1008 1009 // Return true if SDValue exists for the given Value 1010 bool SelectionDAGBuilder::findValue(const Value *V) const { 1011 return (NodeMap.find(V) != NodeMap.end()) || 1012 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1013 } 1014 1015 /// getNonRegisterValue - Return an SDValue for the given Value, but 1016 /// don't look in FuncInfo.ValueMap for a virtual register. 1017 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1018 // If we already have an SDValue for this value, use it. 1019 SDValue &N = NodeMap[V]; 1020 if (N.getNode()) { 1021 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1022 // Remove the debug location from the node as the node is about to be used 1023 // in a location which may differ from the original debug location. This 1024 // is relevant to Constant and ConstantFP nodes because they can appear 1025 // as constant expressions inside PHI nodes. 1026 N->setDebugLoc(DebugLoc()); 1027 } 1028 return N; 1029 } 1030 1031 // Otherwise create a new SDValue and remember it. 1032 SDValue Val = getValueImpl(V); 1033 NodeMap[V] = Val; 1034 resolveDanglingDebugInfo(V, Val); 1035 return Val; 1036 } 1037 1038 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1039 /// Create an SDValue for the given value. 1040 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1041 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1042 1043 if (const Constant *C = dyn_cast<Constant>(V)) { 1044 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1045 1046 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1047 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1048 1049 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1050 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1051 1052 if (isa<ConstantPointerNull>(C)) { 1053 unsigned AS = V->getType()->getPointerAddressSpace(); 1054 return DAG.getConstant(0, getCurSDLoc(), 1055 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1056 } 1057 1058 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1059 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1060 1061 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1062 return DAG.getUNDEF(VT); 1063 1064 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1065 visit(CE->getOpcode(), *CE); 1066 SDValue N1 = NodeMap[V]; 1067 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1068 return N1; 1069 } 1070 1071 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1072 SmallVector<SDValue, 4> Constants; 1073 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1074 OI != OE; ++OI) { 1075 SDNode *Val = getValue(*OI).getNode(); 1076 // If the operand is an empty aggregate, there are no values. 1077 if (!Val) continue; 1078 // Add each leaf value from the operand to the Constants list 1079 // to form a flattened list of all the values. 1080 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1081 Constants.push_back(SDValue(Val, i)); 1082 } 1083 1084 return DAG.getMergeValues(Constants, getCurSDLoc()); 1085 } 1086 1087 if (const ConstantDataSequential *CDS = 1088 dyn_cast<ConstantDataSequential>(C)) { 1089 SmallVector<SDValue, 4> Ops; 1090 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1091 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1092 // Add each leaf value from the operand to the Constants list 1093 // to form a flattened list of all the values. 1094 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1095 Ops.push_back(SDValue(Val, i)); 1096 } 1097 1098 if (isa<ArrayType>(CDS->getType())) 1099 return DAG.getMergeValues(Ops, getCurSDLoc()); 1100 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1101 VT, Ops); 1102 } 1103 1104 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1105 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1106 "Unknown struct or array constant!"); 1107 1108 SmallVector<EVT, 4> ValueVTs; 1109 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1110 unsigned NumElts = ValueVTs.size(); 1111 if (NumElts == 0) 1112 return SDValue(); // empty struct 1113 SmallVector<SDValue, 4> Constants(NumElts); 1114 for (unsigned i = 0; i != NumElts; ++i) { 1115 EVT EltVT = ValueVTs[i]; 1116 if (isa<UndefValue>(C)) 1117 Constants[i] = DAG.getUNDEF(EltVT); 1118 else if (EltVT.isFloatingPoint()) 1119 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1120 else 1121 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1122 } 1123 1124 return DAG.getMergeValues(Constants, getCurSDLoc()); 1125 } 1126 1127 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1128 return DAG.getBlockAddress(BA, VT); 1129 1130 VectorType *VecTy = cast<VectorType>(V->getType()); 1131 unsigned NumElements = VecTy->getNumElements(); 1132 1133 // Now that we know the number and type of the elements, get that number of 1134 // elements into the Ops array based on what kind of constant it is. 1135 SmallVector<SDValue, 16> Ops; 1136 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1137 for (unsigned i = 0; i != NumElements; ++i) 1138 Ops.push_back(getValue(CV->getOperand(i))); 1139 } else { 1140 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1141 EVT EltVT = 1142 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1143 1144 SDValue Op; 1145 if (EltVT.isFloatingPoint()) 1146 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1147 else 1148 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1149 Ops.assign(NumElements, Op); 1150 } 1151 1152 // Create a BUILD_VECTOR node. 1153 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1154 } 1155 1156 // If this is a static alloca, generate it as the frameindex instead of 1157 // computation. 1158 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1159 DenseMap<const AllocaInst*, int>::iterator SI = 1160 FuncInfo.StaticAllocaMap.find(AI); 1161 if (SI != FuncInfo.StaticAllocaMap.end()) 1162 return DAG.getFrameIndex(SI->second, 1163 TLI.getPointerTy(DAG.getDataLayout())); 1164 } 1165 1166 // If this is an instruction which fast-isel has deferred, select it now. 1167 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1168 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1169 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1170 Inst->getType()); 1171 SDValue Chain = DAG.getEntryNode(); 1172 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1173 } 1174 1175 llvm_unreachable("Can't get register for value!"); 1176 } 1177 1178 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1179 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1180 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1181 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1182 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1183 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1184 if (IsMSVCCXX || IsCoreCLR) 1185 CatchPadMBB->setIsEHFuncletEntry(); 1186 1187 MachineBasicBlock *NormalDestMBB = FuncInfo.MBBMap[I.getNormalDest()]; 1188 1189 // Update machine-CFG edge. 1190 FuncInfo.MBB->addSuccessor(NormalDestMBB); 1191 1192 SDValue Chain = 1193 DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()); 1194 1195 // If this is not a fall-through branch or optimizations are switched off, 1196 // emit the branch. 1197 if (NormalDestMBB != NextBlock(CatchPadMBB) || 1198 TM.getOptLevel() == CodeGenOpt::None) 1199 Chain = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, Chain, 1200 DAG.getBasicBlock(NormalDestMBB)); 1201 DAG.setRoot(Chain); 1202 } 1203 1204 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1205 // Update machine-CFG edge. 1206 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1207 FuncInfo.MBB->addSuccessor(TargetMBB); 1208 1209 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1210 bool IsSEH = isAsynchronousEHPersonality(Pers); 1211 if (IsSEH) { 1212 // If this is not a fall-through branch or optimizations are switched off, 1213 // emit the branch. 1214 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1215 TM.getOptLevel() == CodeGenOpt::None) 1216 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1217 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1218 return; 1219 } 1220 1221 // Figure out the funclet membership for the catchret's successor. 1222 // This will be used by the FuncletLayout pass to determine how to order the 1223 // BB's. 1224 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1225 WinEHFuncInfo &EHInfo = 1226 MMI.getWinEHFuncInfo(DAG.getMachineFunction().getFunction()); 1227 const BasicBlock *SuccessorColor = EHInfo.CatchRetSuccessorColorMap[&I]; 1228 assert(SuccessorColor && "No parent funclet for catchret!"); 1229 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1230 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1231 1232 // Create the terminator node. 1233 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1234 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1235 DAG.getBasicBlock(SuccessorColorMBB)); 1236 DAG.setRoot(Ret); 1237 } 1238 1239 void SelectionDAGBuilder::visitCatchEndPad(const CatchEndPadInst &I) { 1240 llvm_unreachable("should never codegen catchendpads"); 1241 } 1242 1243 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1244 // Don't emit any special code for the cleanuppad instruction. It just marks 1245 // the start of a funclet. 1246 FuncInfo.MBB->setIsEHFuncletEntry(); 1247 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1248 } 1249 1250 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1251 /// many places it could ultimately go. In the IR, we have a single unwind 1252 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1253 /// This function skips over imaginary basic blocks that hold catchpad, 1254 /// terminatepad, or catchendpad instructions, and finds all the "real" machine 1255 /// basic block destinations. As those destinations may not be successors of 1256 /// EHPadBB, here we also calculate the edge weight to those destinations. The 1257 /// passed-in Weight is the edge weight to EHPadBB. 1258 static void findUnwindDestinations( 1259 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, uint32_t Weight, 1260 SmallVectorImpl<std::pair<MachineBasicBlock *, uint32_t>> &UnwindDests) { 1261 EHPersonality Personality = 1262 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1263 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1264 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1265 1266 while (EHPadBB) { 1267 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1268 BasicBlock *NewEHPadBB = nullptr; 1269 if (isa<LandingPadInst>(Pad)) { 1270 // Stop on landingpads. They are not funclets. 1271 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Weight); 1272 break; 1273 } else if (isa<CleanupPadInst>(Pad)) { 1274 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1275 // personalities. 1276 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Weight); 1277 UnwindDests.back().first->setIsEHFuncletEntry(); 1278 break; 1279 } else if (const auto *CPI = dyn_cast<CatchPadInst>(Pad)) { 1280 // Add the catchpad handler to the possible destinations. 1281 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Weight); 1282 // In MSVC C++, catchblocks are funclets and need prologues. 1283 if (IsMSVCCXX || IsCoreCLR) 1284 UnwindDests.back().first->setIsEHFuncletEntry(); 1285 NewEHPadBB = CPI->getUnwindDest(); 1286 } else if (const auto *CEPI = dyn_cast<CatchEndPadInst>(Pad)) 1287 NewEHPadBB = CEPI->getUnwindDest(); 1288 else if (const auto *CEPI = dyn_cast<CleanupEndPadInst>(Pad)) 1289 NewEHPadBB = CEPI->getUnwindDest(); 1290 else 1291 continue; 1292 1293 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1294 if (BPI && NewEHPadBB) { 1295 // When BPI is available, the calculated weight cannot be zero as zero 1296 // will be turned to a default weight in MachineBlockFrequencyInfo. 1297 Weight = std::max<uint32_t>( 1298 BPI->getEdgeProbability(EHPadBB, NewEHPadBB).scale(Weight), 1); 1299 } 1300 EHPadBB = NewEHPadBB; 1301 } 1302 } 1303 1304 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1305 // Update successor info. 1306 SmallVector<std::pair<MachineBasicBlock *, uint32_t>, 1> UnwindDests; 1307 auto UnwindDest = I.getUnwindDest(); 1308 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1309 uint32_t UnwindDestWeight = 1310 BPI ? BPI->getEdgeWeight(FuncInfo.MBB->getBasicBlock(), UnwindDest) : 0; 1311 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestWeight, UnwindDests); 1312 for (auto &UnwindDest : UnwindDests) { 1313 UnwindDest.first->setIsEHPad(); 1314 addSuccessorWithWeight(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1315 } 1316 1317 // Create the terminator node. 1318 SDValue Ret = 1319 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1320 DAG.setRoot(Ret); 1321 } 1322 1323 void SelectionDAGBuilder::visitCleanupEndPad(const CleanupEndPadInst &I) { 1324 report_fatal_error("visitCleanupEndPad not yet implemented!"); 1325 } 1326 1327 void SelectionDAGBuilder::visitTerminatePad(const TerminatePadInst &TPI) { 1328 report_fatal_error("visitTerminatePad not yet implemented!"); 1329 } 1330 1331 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1332 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1333 auto &DL = DAG.getDataLayout(); 1334 SDValue Chain = getControlRoot(); 1335 SmallVector<ISD::OutputArg, 8> Outs; 1336 SmallVector<SDValue, 8> OutVals; 1337 1338 if (!FuncInfo.CanLowerReturn) { 1339 unsigned DemoteReg = FuncInfo.DemoteRegister; 1340 const Function *F = I.getParent()->getParent(); 1341 1342 // Emit a store of the return value through the virtual register. 1343 // Leave Outs empty so that LowerReturn won't try to load return 1344 // registers the usual way. 1345 SmallVector<EVT, 1> PtrValueVTs; 1346 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1347 PtrValueVTs); 1348 1349 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1350 SDValue RetOp = getValue(I.getOperand(0)); 1351 1352 SmallVector<EVT, 4> ValueVTs; 1353 SmallVector<uint64_t, 4> Offsets; 1354 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1355 unsigned NumValues = ValueVTs.size(); 1356 1357 SmallVector<SDValue, 4> Chains(NumValues); 1358 for (unsigned i = 0; i != NumValues; ++i) { 1359 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1360 RetPtr.getValueType(), RetPtr, 1361 DAG.getIntPtrConstant(Offsets[i], 1362 getCurSDLoc())); 1363 Chains[i] = 1364 DAG.getStore(Chain, getCurSDLoc(), 1365 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1366 // FIXME: better loc info would be nice. 1367 Add, MachinePointerInfo(), false, false, 0); 1368 } 1369 1370 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1371 MVT::Other, Chains); 1372 } else if (I.getNumOperands() != 0) { 1373 SmallVector<EVT, 4> ValueVTs; 1374 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1375 unsigned NumValues = ValueVTs.size(); 1376 if (NumValues) { 1377 SDValue RetOp = getValue(I.getOperand(0)); 1378 1379 const Function *F = I.getParent()->getParent(); 1380 1381 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1382 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1383 Attribute::SExt)) 1384 ExtendKind = ISD::SIGN_EXTEND; 1385 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1386 Attribute::ZExt)) 1387 ExtendKind = ISD::ZERO_EXTEND; 1388 1389 LLVMContext &Context = F->getContext(); 1390 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1391 Attribute::InReg); 1392 1393 for (unsigned j = 0; j != NumValues; ++j) { 1394 EVT VT = ValueVTs[j]; 1395 1396 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1397 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1398 1399 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1400 MVT PartVT = TLI.getRegisterType(Context, VT); 1401 SmallVector<SDValue, 4> Parts(NumParts); 1402 getCopyToParts(DAG, getCurSDLoc(), 1403 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1404 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1405 1406 // 'inreg' on function refers to return value 1407 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1408 if (RetInReg) 1409 Flags.setInReg(); 1410 1411 // Propagate extension type if any 1412 if (ExtendKind == ISD::SIGN_EXTEND) 1413 Flags.setSExt(); 1414 else if (ExtendKind == ISD::ZERO_EXTEND) 1415 Flags.setZExt(); 1416 1417 for (unsigned i = 0; i < NumParts; ++i) { 1418 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1419 VT, /*isfixed=*/true, 0, 0)); 1420 OutVals.push_back(Parts[i]); 1421 } 1422 } 1423 } 1424 } 1425 1426 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1427 CallingConv::ID CallConv = 1428 DAG.getMachineFunction().getFunction()->getCallingConv(); 1429 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1430 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1431 1432 // Verify that the target's LowerReturn behaved as expected. 1433 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1434 "LowerReturn didn't return a valid chain!"); 1435 1436 // Update the DAG with the new chain value resulting from return lowering. 1437 DAG.setRoot(Chain); 1438 } 1439 1440 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1441 /// created for it, emit nodes to copy the value into the virtual 1442 /// registers. 1443 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1444 // Skip empty types 1445 if (V->getType()->isEmptyTy()) 1446 return; 1447 1448 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1449 if (VMI != FuncInfo.ValueMap.end()) { 1450 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1451 CopyValueToVirtualRegister(V, VMI->second); 1452 } 1453 } 1454 1455 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1456 /// the current basic block, add it to ValueMap now so that we'll get a 1457 /// CopyTo/FromReg. 1458 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1459 // No need to export constants. 1460 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1461 1462 // Already exported? 1463 if (FuncInfo.isExportedInst(V)) return; 1464 1465 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1466 CopyValueToVirtualRegister(V, Reg); 1467 } 1468 1469 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1470 const BasicBlock *FromBB) { 1471 // The operands of the setcc have to be in this block. We don't know 1472 // how to export them from some other block. 1473 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1474 // Can export from current BB. 1475 if (VI->getParent() == FromBB) 1476 return true; 1477 1478 // Is already exported, noop. 1479 return FuncInfo.isExportedInst(V); 1480 } 1481 1482 // If this is an argument, we can export it if the BB is the entry block or 1483 // if it is already exported. 1484 if (isa<Argument>(V)) { 1485 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1486 return true; 1487 1488 // Otherwise, can only export this if it is already exported. 1489 return FuncInfo.isExportedInst(V); 1490 } 1491 1492 // Otherwise, constants can always be exported. 1493 return true; 1494 } 1495 1496 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1497 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1498 const MachineBasicBlock *Dst) const { 1499 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1500 if (!BPI) 1501 return 0; 1502 const BasicBlock *SrcBB = Src->getBasicBlock(); 1503 const BasicBlock *DstBB = Dst->getBasicBlock(); 1504 return BPI->getEdgeWeight(SrcBB, DstBB); 1505 } 1506 1507 void SelectionDAGBuilder:: 1508 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1509 uint32_t Weight /* = 0 */) { 1510 if (!FuncInfo.BPI) 1511 Src->addSuccessorWithoutWeight(Dst); 1512 else { 1513 if (!Weight) 1514 Weight = getEdgeWeight(Src, Dst); 1515 Src->addSuccessor(Dst, Weight); 1516 } 1517 } 1518 1519 1520 static bool InBlock(const Value *V, const BasicBlock *BB) { 1521 if (const Instruction *I = dyn_cast<Instruction>(V)) 1522 return I->getParent() == BB; 1523 return true; 1524 } 1525 1526 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1527 /// This function emits a branch and is used at the leaves of an OR or an 1528 /// AND operator tree. 1529 /// 1530 void 1531 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1532 MachineBasicBlock *TBB, 1533 MachineBasicBlock *FBB, 1534 MachineBasicBlock *CurBB, 1535 MachineBasicBlock *SwitchBB, 1536 uint32_t TWeight, 1537 uint32_t FWeight) { 1538 const BasicBlock *BB = CurBB->getBasicBlock(); 1539 1540 // If the leaf of the tree is a comparison, merge the condition into 1541 // the caseblock. 1542 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1543 // The operands of the cmp have to be in this block. We don't know 1544 // how to export them from some other block. If this is the first block 1545 // of the sequence, no exporting is needed. 1546 if (CurBB == SwitchBB || 1547 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1548 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1549 ISD::CondCode Condition; 1550 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1551 Condition = getICmpCondCode(IC->getPredicate()); 1552 } else { 1553 const FCmpInst *FC = cast<FCmpInst>(Cond); 1554 Condition = getFCmpCondCode(FC->getPredicate()); 1555 if (TM.Options.NoNaNsFPMath) 1556 Condition = getFCmpCodeWithoutNaN(Condition); 1557 } 1558 1559 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1560 TBB, FBB, CurBB, TWeight, FWeight); 1561 SwitchCases.push_back(CB); 1562 return; 1563 } 1564 } 1565 1566 // Create a CaseBlock record representing this branch. 1567 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1568 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1569 SwitchCases.push_back(CB); 1570 } 1571 1572 /// Scale down both weights to fit into uint32_t. 1573 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1574 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1575 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1576 NewTrue = NewTrue / Scale; 1577 NewFalse = NewFalse / Scale; 1578 } 1579 1580 /// FindMergedConditions - If Cond is an expression like 1581 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1582 MachineBasicBlock *TBB, 1583 MachineBasicBlock *FBB, 1584 MachineBasicBlock *CurBB, 1585 MachineBasicBlock *SwitchBB, 1586 Instruction::BinaryOps Opc, 1587 uint32_t TWeight, 1588 uint32_t FWeight) { 1589 // If this node is not part of the or/and tree, emit it as a branch. 1590 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1591 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1592 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1593 BOp->getParent() != CurBB->getBasicBlock() || 1594 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1595 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1596 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1597 TWeight, FWeight); 1598 return; 1599 } 1600 1601 // Create TmpBB after CurBB. 1602 MachineFunction::iterator BBI(CurBB); 1603 MachineFunction &MF = DAG.getMachineFunction(); 1604 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1605 CurBB->getParent()->insert(++BBI, TmpBB); 1606 1607 if (Opc == Instruction::Or) { 1608 // Codegen X | Y as: 1609 // BB1: 1610 // jmp_if_X TBB 1611 // jmp TmpBB 1612 // TmpBB: 1613 // jmp_if_Y TBB 1614 // jmp FBB 1615 // 1616 1617 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1618 // The requirement is that 1619 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1620 // = TrueProb for original BB. 1621 // Assuming the original weights are A and B, one choice is to set BB1's 1622 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1623 // assumes that 1624 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1625 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1626 // TmpBB, but the math is more complicated. 1627 1628 uint64_t NewTrueWeight = TWeight; 1629 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1630 ScaleWeights(NewTrueWeight, NewFalseWeight); 1631 // Emit the LHS condition. 1632 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1633 NewTrueWeight, NewFalseWeight); 1634 1635 NewTrueWeight = TWeight; 1636 NewFalseWeight = 2 * (uint64_t)FWeight; 1637 ScaleWeights(NewTrueWeight, NewFalseWeight); 1638 // Emit the RHS condition into TmpBB. 1639 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1640 NewTrueWeight, NewFalseWeight); 1641 } else { 1642 assert(Opc == Instruction::And && "Unknown merge op!"); 1643 // Codegen X & Y as: 1644 // BB1: 1645 // jmp_if_X TmpBB 1646 // jmp FBB 1647 // TmpBB: 1648 // jmp_if_Y TBB 1649 // jmp FBB 1650 // 1651 // This requires creation of TmpBB after CurBB. 1652 1653 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1654 // The requirement is that 1655 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1656 // = FalseProb for original BB. 1657 // Assuming the original weights are A and B, one choice is to set BB1's 1658 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1659 // assumes that 1660 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1661 1662 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1663 uint64_t NewFalseWeight = FWeight; 1664 ScaleWeights(NewTrueWeight, NewFalseWeight); 1665 // Emit the LHS condition. 1666 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1667 NewTrueWeight, NewFalseWeight); 1668 1669 NewTrueWeight = 2 * (uint64_t)TWeight; 1670 NewFalseWeight = FWeight; 1671 ScaleWeights(NewTrueWeight, NewFalseWeight); 1672 // Emit the RHS condition into TmpBB. 1673 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1674 NewTrueWeight, NewFalseWeight); 1675 } 1676 } 1677 1678 /// If the set of cases should be emitted as a series of branches, return true. 1679 /// If we should emit this as a bunch of and/or'd together conditions, return 1680 /// false. 1681 bool 1682 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1683 if (Cases.size() != 2) return true; 1684 1685 // If this is two comparisons of the same values or'd or and'd together, they 1686 // will get folded into a single comparison, so don't emit two blocks. 1687 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1688 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1689 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1690 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1691 return false; 1692 } 1693 1694 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1695 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1696 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1697 Cases[0].CC == Cases[1].CC && 1698 isa<Constant>(Cases[0].CmpRHS) && 1699 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1700 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1701 return false; 1702 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1703 return false; 1704 } 1705 1706 return true; 1707 } 1708 1709 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1710 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1711 1712 // Update machine-CFG edges. 1713 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1714 1715 if (I.isUnconditional()) { 1716 // Update machine-CFG edges. 1717 BrMBB->addSuccessor(Succ0MBB); 1718 1719 // If this is not a fall-through branch or optimizations are switched off, 1720 // emit the branch. 1721 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1722 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1723 MVT::Other, getControlRoot(), 1724 DAG.getBasicBlock(Succ0MBB))); 1725 1726 return; 1727 } 1728 1729 // If this condition is one of the special cases we handle, do special stuff 1730 // now. 1731 const Value *CondVal = I.getCondition(); 1732 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1733 1734 // If this is a series of conditions that are or'd or and'd together, emit 1735 // this as a sequence of branches instead of setcc's with and/or operations. 1736 // As long as jumps are not expensive, this should improve performance. 1737 // For example, instead of something like: 1738 // cmp A, B 1739 // C = seteq 1740 // cmp D, E 1741 // F = setle 1742 // or C, F 1743 // jnz foo 1744 // Emit: 1745 // cmp A, B 1746 // je foo 1747 // cmp D, E 1748 // jle foo 1749 // 1750 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1751 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1752 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1753 !I.getMetadata(LLVMContext::MD_unpredictable) && 1754 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1755 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1756 Opcode, getEdgeWeight(BrMBB, Succ0MBB), 1757 getEdgeWeight(BrMBB, Succ1MBB)); 1758 // If the compares in later blocks need to use values not currently 1759 // exported from this block, export them now. This block should always 1760 // be the first entry. 1761 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1762 1763 // Allow some cases to be rejected. 1764 if (ShouldEmitAsBranches(SwitchCases)) { 1765 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1766 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1767 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1768 } 1769 1770 // Emit the branch for this block. 1771 visitSwitchCase(SwitchCases[0], BrMBB); 1772 SwitchCases.erase(SwitchCases.begin()); 1773 return; 1774 } 1775 1776 // Okay, we decided not to do this, remove any inserted MBB's and clear 1777 // SwitchCases. 1778 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1779 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1780 1781 SwitchCases.clear(); 1782 } 1783 } 1784 1785 // Create a CaseBlock record representing this branch. 1786 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1787 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1788 1789 // Use visitSwitchCase to actually insert the fast branch sequence for this 1790 // cond branch. 1791 visitSwitchCase(CB, BrMBB); 1792 } 1793 1794 /// visitSwitchCase - Emits the necessary code to represent a single node in 1795 /// the binary search tree resulting from lowering a switch instruction. 1796 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1797 MachineBasicBlock *SwitchBB) { 1798 SDValue Cond; 1799 SDValue CondLHS = getValue(CB.CmpLHS); 1800 SDLoc dl = getCurSDLoc(); 1801 1802 // Build the setcc now. 1803 if (!CB.CmpMHS) { 1804 // Fold "(X == true)" to X and "(X == false)" to !X to 1805 // handle common cases produced by branch lowering. 1806 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1807 CB.CC == ISD::SETEQ) 1808 Cond = CondLHS; 1809 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1810 CB.CC == ISD::SETEQ) { 1811 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1812 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1813 } else 1814 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1815 } else { 1816 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1817 1818 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1819 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1820 1821 SDValue CmpOp = getValue(CB.CmpMHS); 1822 EVT VT = CmpOp.getValueType(); 1823 1824 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1825 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1826 ISD::SETLE); 1827 } else { 1828 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1829 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1830 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1831 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1832 } 1833 } 1834 1835 // Update successor info 1836 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1837 // TrueBB and FalseBB are always different unless the incoming IR is 1838 // degenerate. This only happens when running llc on weird IR. 1839 if (CB.TrueBB != CB.FalseBB) 1840 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1841 1842 // If the lhs block is the next block, invert the condition so that we can 1843 // fall through to the lhs instead of the rhs block. 1844 if (CB.TrueBB == NextBlock(SwitchBB)) { 1845 std::swap(CB.TrueBB, CB.FalseBB); 1846 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1847 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1848 } 1849 1850 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1851 MVT::Other, getControlRoot(), Cond, 1852 DAG.getBasicBlock(CB.TrueBB)); 1853 1854 // Insert the false branch. Do this even if it's a fall through branch, 1855 // this makes it easier to do DAG optimizations which require inverting 1856 // the branch condition. 1857 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1858 DAG.getBasicBlock(CB.FalseBB)); 1859 1860 DAG.setRoot(BrCond); 1861 } 1862 1863 /// visitJumpTable - Emit JumpTable node in the current MBB 1864 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1865 // Emit the code for the jump table 1866 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1867 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1868 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1869 JT.Reg, PTy); 1870 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1871 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1872 MVT::Other, Index.getValue(1), 1873 Table, Index); 1874 DAG.setRoot(BrJumpTable); 1875 } 1876 1877 /// visitJumpTableHeader - This function emits necessary code to produce index 1878 /// in the JumpTable from switch case. 1879 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1880 JumpTableHeader &JTH, 1881 MachineBasicBlock *SwitchBB) { 1882 SDLoc dl = getCurSDLoc(); 1883 1884 // Subtract the lowest switch case value from the value being switched on and 1885 // conditional branch to default mbb if the result is greater than the 1886 // difference between smallest and largest cases. 1887 SDValue SwitchOp = getValue(JTH.SValue); 1888 EVT VT = SwitchOp.getValueType(); 1889 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1890 DAG.getConstant(JTH.First, dl, VT)); 1891 1892 // The SDNode we just created, which holds the value being switched on minus 1893 // the smallest case value, needs to be copied to a virtual register so it 1894 // can be used as an index into the jump table in a subsequent basic block. 1895 // This value may be smaller or larger than the target's pointer type, and 1896 // therefore require extension or truncating. 1897 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1898 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1899 1900 unsigned JumpTableReg = 1901 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1902 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1903 JumpTableReg, SwitchOp); 1904 JT.Reg = JumpTableReg; 1905 1906 // Emit the range check for the jump table, and branch to the default block 1907 // for the switch statement if the value being switched on exceeds the largest 1908 // case in the switch. 1909 SDValue CMP = DAG.getSetCC( 1910 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1911 Sub.getValueType()), 1912 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1913 1914 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1915 MVT::Other, CopyTo, CMP, 1916 DAG.getBasicBlock(JT.Default)); 1917 1918 // Avoid emitting unnecessary branches to the next block. 1919 if (JT.MBB != NextBlock(SwitchBB)) 1920 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1921 DAG.getBasicBlock(JT.MBB)); 1922 1923 DAG.setRoot(BrCond); 1924 } 1925 1926 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1927 /// tail spliced into a stack protector check success bb. 1928 /// 1929 /// For a high level explanation of how this fits into the stack protector 1930 /// generation see the comment on the declaration of class 1931 /// StackProtectorDescriptor. 1932 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1933 MachineBasicBlock *ParentBB) { 1934 1935 // First create the loads to the guard/stack slot for the comparison. 1936 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1937 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1938 1939 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1940 int FI = MFI->getStackProtectorIndex(); 1941 1942 const Value *IRGuard = SPD.getGuard(); 1943 SDValue GuardPtr = getValue(IRGuard); 1944 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1945 1946 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1947 1948 SDValue Guard; 1949 SDLoc dl = getCurSDLoc(); 1950 1951 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1952 // guard value from the virtual register holding the value. Otherwise, emit a 1953 // volatile load to retrieve the stack guard value. 1954 unsigned GuardReg = SPD.getGuardReg(); 1955 1956 if (GuardReg && TLI.useLoadStackGuardNode()) 1957 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1958 PtrTy); 1959 else 1960 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1961 GuardPtr, MachinePointerInfo(IRGuard, 0), 1962 true, false, false, Align); 1963 1964 SDValue StackSlot = DAG.getLoad( 1965 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1966 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1967 false, false, Align); 1968 1969 // Perform the comparison via a subtract/getsetcc. 1970 EVT VT = Guard.getValueType(); 1971 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1972 1973 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1974 *DAG.getContext(), 1975 Sub.getValueType()), 1976 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1977 1978 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1979 // branch to failure MBB. 1980 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1981 MVT::Other, StackSlot.getOperand(0), 1982 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1983 // Otherwise branch to success MBB. 1984 SDValue Br = DAG.getNode(ISD::BR, dl, 1985 MVT::Other, BrCond, 1986 DAG.getBasicBlock(SPD.getSuccessMBB())); 1987 1988 DAG.setRoot(Br); 1989 } 1990 1991 /// Codegen the failure basic block for a stack protector check. 1992 /// 1993 /// A failure stack protector machine basic block consists simply of a call to 1994 /// __stack_chk_fail(). 1995 /// 1996 /// For a high level explanation of how this fits into the stack protector 1997 /// generation see the comment on the declaration of class 1998 /// StackProtectorDescriptor. 1999 void 2000 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2001 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2002 SDValue Chain = 2003 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2004 None, false, getCurSDLoc(), false, false).second; 2005 DAG.setRoot(Chain); 2006 } 2007 2008 /// visitBitTestHeader - This function emits necessary code to produce value 2009 /// suitable for "bit tests" 2010 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2011 MachineBasicBlock *SwitchBB) { 2012 SDLoc dl = getCurSDLoc(); 2013 2014 // Subtract the minimum value 2015 SDValue SwitchOp = getValue(B.SValue); 2016 EVT VT = SwitchOp.getValueType(); 2017 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2018 DAG.getConstant(B.First, dl, VT)); 2019 2020 // Check range 2021 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2022 SDValue RangeCmp = DAG.getSetCC( 2023 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2024 Sub.getValueType()), 2025 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2026 2027 // Determine the type of the test operands. 2028 bool UsePtrType = false; 2029 if (!TLI.isTypeLegal(VT)) 2030 UsePtrType = true; 2031 else { 2032 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2033 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2034 // Switch table case range are encoded into series of masks. 2035 // Just use pointer type, it's guaranteed to fit. 2036 UsePtrType = true; 2037 break; 2038 } 2039 } 2040 if (UsePtrType) { 2041 VT = TLI.getPointerTy(DAG.getDataLayout()); 2042 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2043 } 2044 2045 B.RegVT = VT.getSimpleVT(); 2046 B.Reg = FuncInfo.CreateReg(B.RegVT); 2047 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2048 2049 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2050 2051 addSuccessorWithWeight(SwitchBB, B.Default, B.DefaultWeight); 2052 addSuccessorWithWeight(SwitchBB, MBB, B.Weight); 2053 2054 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2055 MVT::Other, CopyTo, RangeCmp, 2056 DAG.getBasicBlock(B.Default)); 2057 2058 // Avoid emitting unnecessary branches to the next block. 2059 if (MBB != NextBlock(SwitchBB)) 2060 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2061 DAG.getBasicBlock(MBB)); 2062 2063 DAG.setRoot(BrRange); 2064 } 2065 2066 /// visitBitTestCase - this function produces one "bit test" 2067 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2068 MachineBasicBlock* NextMBB, 2069 uint32_t BranchWeightToNext, 2070 unsigned Reg, 2071 BitTestCase &B, 2072 MachineBasicBlock *SwitchBB) { 2073 SDLoc dl = getCurSDLoc(); 2074 MVT VT = BB.RegVT; 2075 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2076 SDValue Cmp; 2077 unsigned PopCount = countPopulation(B.Mask); 2078 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2079 if (PopCount == 1) { 2080 // Testing for a single bit; just compare the shift count with what it 2081 // would need to be to shift a 1 bit in that position. 2082 Cmp = DAG.getSetCC( 2083 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2084 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2085 ISD::SETEQ); 2086 } else if (PopCount == BB.Range) { 2087 // There is only one zero bit in the range, test for it directly. 2088 Cmp = DAG.getSetCC( 2089 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2090 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2091 ISD::SETNE); 2092 } else { 2093 // Make desired shift 2094 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2095 DAG.getConstant(1, dl, VT), ShiftOp); 2096 2097 // Emit bit tests and jumps 2098 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2099 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2100 Cmp = DAG.getSetCC( 2101 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2102 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2103 } 2104 2105 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 2106 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 2107 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 2108 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 2109 2110 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2111 MVT::Other, getControlRoot(), 2112 Cmp, DAG.getBasicBlock(B.TargetBB)); 2113 2114 // Avoid emitting unnecessary branches to the next block. 2115 if (NextMBB != NextBlock(SwitchBB)) 2116 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2117 DAG.getBasicBlock(NextMBB)); 2118 2119 DAG.setRoot(BrAnd); 2120 } 2121 2122 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2123 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2124 2125 // Retrieve successors. Look through artificial IR level blocks like catchpads 2126 // and catchendpads for successors. 2127 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2128 const BasicBlock *EHPadBB = I.getSuccessor(1); 2129 2130 const Value *Callee(I.getCalledValue()); 2131 const Function *Fn = dyn_cast<Function>(Callee); 2132 if (isa<InlineAsm>(Callee)) 2133 visitInlineAsm(&I); 2134 else if (Fn && Fn->isIntrinsic()) { 2135 switch (Fn->getIntrinsicID()) { 2136 default: 2137 llvm_unreachable("Cannot invoke this intrinsic"); 2138 case Intrinsic::donothing: 2139 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2140 break; 2141 case Intrinsic::experimental_patchpoint_void: 2142 case Intrinsic::experimental_patchpoint_i64: 2143 visitPatchpoint(&I, EHPadBB); 2144 break; 2145 case Intrinsic::experimental_gc_statepoint: 2146 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2147 break; 2148 } 2149 } else 2150 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2151 2152 // If the value of the invoke is used outside of its defining block, make it 2153 // available as a virtual register. 2154 // We already took care of the exported value for the statepoint instruction 2155 // during call to the LowerStatepoint. 2156 if (!isStatepoint(I)) { 2157 CopyToExportRegsIfNeeded(&I); 2158 } 2159 2160 SmallVector<std::pair<MachineBasicBlock *, uint32_t>, 1> UnwindDests; 2161 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2162 uint32_t EHPadBBWeight = 2163 BPI ? BPI->getEdgeWeight(InvokeMBB->getBasicBlock(), EHPadBB) : 0; 2164 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBWeight, UnwindDests); 2165 2166 // Update successor info. 2167 addSuccessorWithWeight(InvokeMBB, Return); 2168 for (auto &UnwindDest : UnwindDests) { 2169 UnwindDest.first->setIsEHPad(); 2170 addSuccessorWithWeight(InvokeMBB, UnwindDest.first, UnwindDest.second); 2171 } 2172 2173 // Drop into normal successor. 2174 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2175 MVT::Other, getControlRoot(), 2176 DAG.getBasicBlock(Return))); 2177 } 2178 2179 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2180 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2181 } 2182 2183 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2184 assert(FuncInfo.MBB->isEHPad() && 2185 "Call to landingpad not in landing pad!"); 2186 2187 MachineBasicBlock *MBB = FuncInfo.MBB; 2188 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2189 AddLandingPadInfo(LP, MMI, MBB); 2190 2191 // If there aren't registers to copy the values into (e.g., during SjLj 2192 // exceptions), then don't bother to create these DAG nodes. 2193 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2194 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2195 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2196 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2197 return; 2198 2199 SmallVector<EVT, 2> ValueVTs; 2200 SDLoc dl = getCurSDLoc(); 2201 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2202 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2203 2204 // Get the two live-in registers as SDValues. The physregs have already been 2205 // copied into virtual registers. 2206 SDValue Ops[2]; 2207 if (FuncInfo.ExceptionPointerVirtReg) { 2208 Ops[0] = DAG.getZExtOrTrunc( 2209 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2210 FuncInfo.ExceptionPointerVirtReg, 2211 TLI.getPointerTy(DAG.getDataLayout())), 2212 dl, ValueVTs[0]); 2213 } else { 2214 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2215 } 2216 Ops[1] = DAG.getZExtOrTrunc( 2217 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2218 FuncInfo.ExceptionSelectorVirtReg, 2219 TLI.getPointerTy(DAG.getDataLayout())), 2220 dl, ValueVTs[1]); 2221 2222 // Merge into one. 2223 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2224 DAG.getVTList(ValueVTs), Ops); 2225 setValue(&LP, Res); 2226 } 2227 2228 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2229 #ifndef NDEBUG 2230 for (const CaseCluster &CC : Clusters) 2231 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2232 #endif 2233 2234 std::sort(Clusters.begin(), Clusters.end(), 2235 [](const CaseCluster &a, const CaseCluster &b) { 2236 return a.Low->getValue().slt(b.Low->getValue()); 2237 }); 2238 2239 // Merge adjacent clusters with the same destination. 2240 const unsigned N = Clusters.size(); 2241 unsigned DstIndex = 0; 2242 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2243 CaseCluster &CC = Clusters[SrcIndex]; 2244 const ConstantInt *CaseVal = CC.Low; 2245 MachineBasicBlock *Succ = CC.MBB; 2246 2247 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2248 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2249 // If this case has the same successor and is a neighbour, merge it into 2250 // the previous cluster. 2251 Clusters[DstIndex - 1].High = CaseVal; 2252 Clusters[DstIndex - 1].Weight += CC.Weight; 2253 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2254 } else { 2255 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2256 sizeof(Clusters[SrcIndex])); 2257 } 2258 } 2259 Clusters.resize(DstIndex); 2260 } 2261 2262 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2263 MachineBasicBlock *Last) { 2264 // Update JTCases. 2265 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2266 if (JTCases[i].first.HeaderBB == First) 2267 JTCases[i].first.HeaderBB = Last; 2268 2269 // Update BitTestCases. 2270 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2271 if (BitTestCases[i].Parent == First) 2272 BitTestCases[i].Parent = Last; 2273 } 2274 2275 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2276 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2277 2278 // Update machine-CFG edges with unique successors. 2279 SmallSet<BasicBlock*, 32> Done; 2280 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2281 BasicBlock *BB = I.getSuccessor(i); 2282 bool Inserted = Done.insert(BB).second; 2283 if (!Inserted) 2284 continue; 2285 2286 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2287 addSuccessorWithWeight(IndirectBrMBB, Succ); 2288 } 2289 2290 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2291 MVT::Other, getControlRoot(), 2292 getValue(I.getAddress()))); 2293 } 2294 2295 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2296 if (DAG.getTarget().Options.TrapUnreachable) 2297 DAG.setRoot( 2298 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2299 } 2300 2301 void SelectionDAGBuilder::visitFSub(const User &I) { 2302 // -0.0 - X --> fneg 2303 Type *Ty = I.getType(); 2304 if (isa<Constant>(I.getOperand(0)) && 2305 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2306 SDValue Op2 = getValue(I.getOperand(1)); 2307 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2308 Op2.getValueType(), Op2)); 2309 return; 2310 } 2311 2312 visitBinary(I, ISD::FSUB); 2313 } 2314 2315 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2316 SDValue Op1 = getValue(I.getOperand(0)); 2317 SDValue Op2 = getValue(I.getOperand(1)); 2318 2319 bool nuw = false; 2320 bool nsw = false; 2321 bool exact = false; 2322 FastMathFlags FMF; 2323 2324 if (const OverflowingBinaryOperator *OFBinOp = 2325 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2326 nuw = OFBinOp->hasNoUnsignedWrap(); 2327 nsw = OFBinOp->hasNoSignedWrap(); 2328 } 2329 if (const PossiblyExactOperator *ExactOp = 2330 dyn_cast<const PossiblyExactOperator>(&I)) 2331 exact = ExactOp->isExact(); 2332 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2333 FMF = FPOp->getFastMathFlags(); 2334 2335 SDNodeFlags Flags; 2336 Flags.setExact(exact); 2337 Flags.setNoSignedWrap(nsw); 2338 Flags.setNoUnsignedWrap(nuw); 2339 if (EnableFMFInDAG) { 2340 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2341 Flags.setNoInfs(FMF.noInfs()); 2342 Flags.setNoNaNs(FMF.noNaNs()); 2343 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2344 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2345 } 2346 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2347 Op1, Op2, &Flags); 2348 setValue(&I, BinNodeValue); 2349 } 2350 2351 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2352 SDValue Op1 = getValue(I.getOperand(0)); 2353 SDValue Op2 = getValue(I.getOperand(1)); 2354 2355 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2356 Op2.getValueType(), DAG.getDataLayout()); 2357 2358 // Coerce the shift amount to the right type if we can. 2359 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2360 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2361 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2362 SDLoc DL = getCurSDLoc(); 2363 2364 // If the operand is smaller than the shift count type, promote it. 2365 if (ShiftSize > Op2Size) 2366 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2367 2368 // If the operand is larger than the shift count type but the shift 2369 // count type has enough bits to represent any shift value, truncate 2370 // it now. This is a common case and it exposes the truncate to 2371 // optimization early. 2372 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2373 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2374 // Otherwise we'll need to temporarily settle for some other convenient 2375 // type. Type legalization will make adjustments once the shiftee is split. 2376 else 2377 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2378 } 2379 2380 bool nuw = false; 2381 bool nsw = false; 2382 bool exact = false; 2383 2384 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2385 2386 if (const OverflowingBinaryOperator *OFBinOp = 2387 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2388 nuw = OFBinOp->hasNoUnsignedWrap(); 2389 nsw = OFBinOp->hasNoSignedWrap(); 2390 } 2391 if (const PossiblyExactOperator *ExactOp = 2392 dyn_cast<const PossiblyExactOperator>(&I)) 2393 exact = ExactOp->isExact(); 2394 } 2395 SDNodeFlags Flags; 2396 Flags.setExact(exact); 2397 Flags.setNoSignedWrap(nsw); 2398 Flags.setNoUnsignedWrap(nuw); 2399 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2400 &Flags); 2401 setValue(&I, Res); 2402 } 2403 2404 void SelectionDAGBuilder::visitSDiv(const User &I) { 2405 SDValue Op1 = getValue(I.getOperand(0)); 2406 SDValue Op2 = getValue(I.getOperand(1)); 2407 2408 SDNodeFlags Flags; 2409 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2410 cast<PossiblyExactOperator>(&I)->isExact()); 2411 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2412 Op2, &Flags)); 2413 } 2414 2415 void SelectionDAGBuilder::visitICmp(const User &I) { 2416 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2417 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2418 predicate = IC->getPredicate(); 2419 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2420 predicate = ICmpInst::Predicate(IC->getPredicate()); 2421 SDValue Op1 = getValue(I.getOperand(0)); 2422 SDValue Op2 = getValue(I.getOperand(1)); 2423 ISD::CondCode Opcode = getICmpCondCode(predicate); 2424 2425 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2426 I.getType()); 2427 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2428 } 2429 2430 void SelectionDAGBuilder::visitFCmp(const User &I) { 2431 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2432 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2433 predicate = FC->getPredicate(); 2434 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2435 predicate = FCmpInst::Predicate(FC->getPredicate()); 2436 SDValue Op1 = getValue(I.getOperand(0)); 2437 SDValue Op2 = getValue(I.getOperand(1)); 2438 ISD::CondCode Condition = getFCmpCondCode(predicate); 2439 2440 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2441 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2442 // further optimization, but currently FMF is only applicable to binary nodes. 2443 if (TM.Options.NoNaNsFPMath) 2444 Condition = getFCmpCodeWithoutNaN(Condition); 2445 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2446 I.getType()); 2447 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2448 } 2449 2450 void SelectionDAGBuilder::visitSelect(const User &I) { 2451 SmallVector<EVT, 4> ValueVTs; 2452 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2453 ValueVTs); 2454 unsigned NumValues = ValueVTs.size(); 2455 if (NumValues == 0) return; 2456 2457 SmallVector<SDValue, 4> Values(NumValues); 2458 SDValue Cond = getValue(I.getOperand(0)); 2459 SDValue LHSVal = getValue(I.getOperand(1)); 2460 SDValue RHSVal = getValue(I.getOperand(2)); 2461 auto BaseOps = {Cond}; 2462 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2463 ISD::VSELECT : ISD::SELECT; 2464 2465 // Min/max matching is only viable if all output VTs are the same. 2466 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2467 EVT VT = ValueVTs[0]; 2468 LLVMContext &Ctx = *DAG.getContext(); 2469 auto &TLI = DAG.getTargetLoweringInfo(); 2470 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2471 VT = TLI.getTypeToTransformTo(Ctx, VT); 2472 2473 Value *LHS, *RHS; 2474 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2475 ISD::NodeType Opc = ISD::DELETED_NODE; 2476 switch (SPR.Flavor) { 2477 case SPF_UMAX: Opc = ISD::UMAX; break; 2478 case SPF_UMIN: Opc = ISD::UMIN; break; 2479 case SPF_SMAX: Opc = ISD::SMAX; break; 2480 case SPF_SMIN: Opc = ISD::SMIN; break; 2481 case SPF_FMINNUM: 2482 switch (SPR.NaNBehavior) { 2483 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2484 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2485 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2486 case SPNB_RETURNS_ANY: 2487 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ? ISD::FMINNUM 2488 : ISD::FMINNAN; 2489 break; 2490 } 2491 break; 2492 case SPF_FMAXNUM: 2493 switch (SPR.NaNBehavior) { 2494 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2495 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2496 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2497 case SPNB_RETURNS_ANY: 2498 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ? ISD::FMAXNUM 2499 : ISD::FMAXNAN; 2500 break; 2501 } 2502 break; 2503 default: break; 2504 } 2505 2506 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) && 2507 // If the underlying comparison instruction is used by any other instruction, 2508 // the consumed instructions won't be destroyed, so it is not profitable 2509 // to convert to a min/max. 2510 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2511 OpCode = Opc; 2512 LHSVal = getValue(LHS); 2513 RHSVal = getValue(RHS); 2514 BaseOps = {}; 2515 } 2516 } 2517 2518 for (unsigned i = 0; i != NumValues; ++i) { 2519 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2520 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2521 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2522 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2523 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2524 Ops); 2525 } 2526 2527 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2528 DAG.getVTList(ValueVTs), Values)); 2529 } 2530 2531 void SelectionDAGBuilder::visitTrunc(const User &I) { 2532 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2533 SDValue N = getValue(I.getOperand(0)); 2534 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2535 I.getType()); 2536 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2537 } 2538 2539 void SelectionDAGBuilder::visitZExt(const User &I) { 2540 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2541 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2542 SDValue N = getValue(I.getOperand(0)); 2543 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2544 I.getType()); 2545 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2546 } 2547 2548 void SelectionDAGBuilder::visitSExt(const User &I) { 2549 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2550 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2551 SDValue N = getValue(I.getOperand(0)); 2552 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2553 I.getType()); 2554 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2555 } 2556 2557 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2558 // FPTrunc is never a no-op cast, no need to check 2559 SDValue N = getValue(I.getOperand(0)); 2560 SDLoc dl = getCurSDLoc(); 2561 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2562 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2563 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2564 DAG.getTargetConstant( 2565 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2566 } 2567 2568 void SelectionDAGBuilder::visitFPExt(const User &I) { 2569 // FPExt is never a no-op cast, no need to check 2570 SDValue N = getValue(I.getOperand(0)); 2571 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2572 I.getType()); 2573 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2574 } 2575 2576 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2577 // FPToUI is never a no-op cast, no need to check 2578 SDValue N = getValue(I.getOperand(0)); 2579 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2580 I.getType()); 2581 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2582 } 2583 2584 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2585 // FPToSI is never a no-op cast, no need to check 2586 SDValue N = getValue(I.getOperand(0)); 2587 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2588 I.getType()); 2589 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2590 } 2591 2592 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2593 // UIToFP is never a no-op cast, no need to check 2594 SDValue N = getValue(I.getOperand(0)); 2595 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2596 I.getType()); 2597 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2598 } 2599 2600 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2601 // SIToFP is never a no-op cast, no need to check 2602 SDValue N = getValue(I.getOperand(0)); 2603 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2604 I.getType()); 2605 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2606 } 2607 2608 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2609 // What to do depends on the size of the integer and the size of the pointer. 2610 // We can either truncate, zero extend, or no-op, accordingly. 2611 SDValue N = getValue(I.getOperand(0)); 2612 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2613 I.getType()); 2614 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2615 } 2616 2617 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2618 // What to do depends on the size of the integer and the size of the pointer. 2619 // We can either truncate, zero extend, or no-op, accordingly. 2620 SDValue N = getValue(I.getOperand(0)); 2621 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2622 I.getType()); 2623 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2624 } 2625 2626 void SelectionDAGBuilder::visitBitCast(const User &I) { 2627 SDValue N = getValue(I.getOperand(0)); 2628 SDLoc dl = getCurSDLoc(); 2629 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2630 I.getType()); 2631 2632 // BitCast assures us that source and destination are the same size so this is 2633 // either a BITCAST or a no-op. 2634 if (DestVT != N.getValueType()) 2635 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2636 DestVT, N)); // convert types. 2637 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2638 // might fold any kind of constant expression to an integer constant and that 2639 // is not what we are looking for. Only regcognize a bitcast of a genuine 2640 // constant integer as an opaque constant. 2641 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2642 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2643 /*isOpaque*/true)); 2644 else 2645 setValue(&I, N); // noop cast. 2646 } 2647 2648 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2649 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2650 const Value *SV = I.getOperand(0); 2651 SDValue N = getValue(SV); 2652 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2653 2654 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2655 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2656 2657 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2658 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2659 2660 setValue(&I, N); 2661 } 2662 2663 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2664 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2665 SDValue InVec = getValue(I.getOperand(0)); 2666 SDValue InVal = getValue(I.getOperand(1)); 2667 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2668 TLI.getVectorIdxTy(DAG.getDataLayout())); 2669 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2670 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2671 InVec, InVal, InIdx)); 2672 } 2673 2674 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2675 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2676 SDValue InVec = getValue(I.getOperand(0)); 2677 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2678 TLI.getVectorIdxTy(DAG.getDataLayout())); 2679 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2680 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2681 InVec, InIdx)); 2682 } 2683 2684 // Utility for visitShuffleVector - Return true if every element in Mask, 2685 // beginning from position Pos and ending in Pos+Size, falls within the 2686 // specified sequential range [L, L+Pos). or is undef. 2687 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2688 unsigned Pos, unsigned Size, int Low) { 2689 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2690 if (Mask[i] >= 0 && Mask[i] != Low) 2691 return false; 2692 return true; 2693 } 2694 2695 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2696 SDValue Src1 = getValue(I.getOperand(0)); 2697 SDValue Src2 = getValue(I.getOperand(1)); 2698 2699 SmallVector<int, 8> Mask; 2700 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2701 unsigned MaskNumElts = Mask.size(); 2702 2703 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2704 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2705 EVT SrcVT = Src1.getValueType(); 2706 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2707 2708 if (SrcNumElts == MaskNumElts) { 2709 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2710 &Mask[0])); 2711 return; 2712 } 2713 2714 // Normalize the shuffle vector since mask and vector length don't match. 2715 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2716 // Mask is longer than the source vectors and is a multiple of the source 2717 // vectors. We can use concatenate vector to make the mask and vectors 2718 // lengths match. 2719 if (SrcNumElts*2 == MaskNumElts) { 2720 // First check for Src1 in low and Src2 in high 2721 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2722 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2723 // The shuffle is concatenating two vectors together. 2724 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2725 VT, Src1, Src2)); 2726 return; 2727 } 2728 // Then check for Src2 in low and Src1 in high 2729 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2730 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2731 // The shuffle is concatenating two vectors together. 2732 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2733 VT, Src2, Src1)); 2734 return; 2735 } 2736 } 2737 2738 // Pad both vectors with undefs to make them the same length as the mask. 2739 unsigned NumConcat = MaskNumElts / SrcNumElts; 2740 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2741 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2742 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2743 2744 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2745 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2746 MOps1[0] = Src1; 2747 MOps2[0] = Src2; 2748 2749 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2750 getCurSDLoc(), VT, MOps1); 2751 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2752 getCurSDLoc(), VT, MOps2); 2753 2754 // Readjust mask for new input vector length. 2755 SmallVector<int, 8> MappedOps; 2756 for (unsigned i = 0; i != MaskNumElts; ++i) { 2757 int Idx = Mask[i]; 2758 if (Idx >= (int)SrcNumElts) 2759 Idx -= SrcNumElts - MaskNumElts; 2760 MappedOps.push_back(Idx); 2761 } 2762 2763 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2764 &MappedOps[0])); 2765 return; 2766 } 2767 2768 if (SrcNumElts > MaskNumElts) { 2769 // Analyze the access pattern of the vector to see if we can extract 2770 // two subvectors and do the shuffle. The analysis is done by calculating 2771 // the range of elements the mask access on both vectors. 2772 int MinRange[2] = { static_cast<int>(SrcNumElts), 2773 static_cast<int>(SrcNumElts)}; 2774 int MaxRange[2] = {-1, -1}; 2775 2776 for (unsigned i = 0; i != MaskNumElts; ++i) { 2777 int Idx = Mask[i]; 2778 unsigned Input = 0; 2779 if (Idx < 0) 2780 continue; 2781 2782 if (Idx >= (int)SrcNumElts) { 2783 Input = 1; 2784 Idx -= SrcNumElts; 2785 } 2786 if (Idx > MaxRange[Input]) 2787 MaxRange[Input] = Idx; 2788 if (Idx < MinRange[Input]) 2789 MinRange[Input] = Idx; 2790 } 2791 2792 // Check if the access is smaller than the vector size and can we find 2793 // a reasonable extract index. 2794 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2795 // Extract. 2796 int StartIdx[2]; // StartIdx to extract from 2797 for (unsigned Input = 0; Input < 2; ++Input) { 2798 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2799 RangeUse[Input] = 0; // Unused 2800 StartIdx[Input] = 0; 2801 continue; 2802 } 2803 2804 // Find a good start index that is a multiple of the mask length. Then 2805 // see if the rest of the elements are in range. 2806 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2807 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2808 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2809 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2810 } 2811 2812 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2813 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2814 return; 2815 } 2816 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2817 // Extract appropriate subvector and generate a vector shuffle 2818 for (unsigned Input = 0; Input < 2; ++Input) { 2819 SDValue &Src = Input == 0 ? Src1 : Src2; 2820 if (RangeUse[Input] == 0) 2821 Src = DAG.getUNDEF(VT); 2822 else { 2823 SDLoc dl = getCurSDLoc(); 2824 Src = DAG.getNode( 2825 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2826 DAG.getConstant(StartIdx[Input], dl, 2827 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2828 } 2829 } 2830 2831 // Calculate new mask. 2832 SmallVector<int, 8> MappedOps; 2833 for (unsigned i = 0; i != MaskNumElts; ++i) { 2834 int Idx = Mask[i]; 2835 if (Idx >= 0) { 2836 if (Idx < (int)SrcNumElts) 2837 Idx -= StartIdx[0]; 2838 else 2839 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2840 } 2841 MappedOps.push_back(Idx); 2842 } 2843 2844 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2845 &MappedOps[0])); 2846 return; 2847 } 2848 } 2849 2850 // We can't use either concat vectors or extract subvectors so fall back to 2851 // replacing the shuffle with extract and build vector. 2852 // to insert and build vector. 2853 EVT EltVT = VT.getVectorElementType(); 2854 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2855 SDLoc dl = getCurSDLoc(); 2856 SmallVector<SDValue,8> Ops; 2857 for (unsigned i = 0; i != MaskNumElts; ++i) { 2858 int Idx = Mask[i]; 2859 SDValue Res; 2860 2861 if (Idx < 0) { 2862 Res = DAG.getUNDEF(EltVT); 2863 } else { 2864 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2865 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2866 2867 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2868 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2869 } 2870 2871 Ops.push_back(Res); 2872 } 2873 2874 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2875 } 2876 2877 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2878 const Value *Op0 = I.getOperand(0); 2879 const Value *Op1 = I.getOperand(1); 2880 Type *AggTy = I.getType(); 2881 Type *ValTy = Op1->getType(); 2882 bool IntoUndef = isa<UndefValue>(Op0); 2883 bool FromUndef = isa<UndefValue>(Op1); 2884 2885 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2886 2887 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2888 SmallVector<EVT, 4> AggValueVTs; 2889 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2890 SmallVector<EVT, 4> ValValueVTs; 2891 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2892 2893 unsigned NumAggValues = AggValueVTs.size(); 2894 unsigned NumValValues = ValValueVTs.size(); 2895 SmallVector<SDValue, 4> Values(NumAggValues); 2896 2897 // Ignore an insertvalue that produces an empty object 2898 if (!NumAggValues) { 2899 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2900 return; 2901 } 2902 2903 SDValue Agg = getValue(Op0); 2904 unsigned i = 0; 2905 // Copy the beginning value(s) from the original aggregate. 2906 for (; i != LinearIndex; ++i) 2907 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2908 SDValue(Agg.getNode(), Agg.getResNo() + i); 2909 // Copy values from the inserted value(s). 2910 if (NumValValues) { 2911 SDValue Val = getValue(Op1); 2912 for (; i != LinearIndex + NumValValues; ++i) 2913 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2914 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2915 } 2916 // Copy remaining value(s) from the original aggregate. 2917 for (; i != NumAggValues; ++i) 2918 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2919 SDValue(Agg.getNode(), Agg.getResNo() + i); 2920 2921 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2922 DAG.getVTList(AggValueVTs), Values)); 2923 } 2924 2925 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2926 const Value *Op0 = I.getOperand(0); 2927 Type *AggTy = Op0->getType(); 2928 Type *ValTy = I.getType(); 2929 bool OutOfUndef = isa<UndefValue>(Op0); 2930 2931 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2932 2933 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2934 SmallVector<EVT, 4> ValValueVTs; 2935 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2936 2937 unsigned NumValValues = ValValueVTs.size(); 2938 2939 // Ignore a extractvalue that produces an empty object 2940 if (!NumValValues) { 2941 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2942 return; 2943 } 2944 2945 SmallVector<SDValue, 4> Values(NumValValues); 2946 2947 SDValue Agg = getValue(Op0); 2948 // Copy out the selected value(s). 2949 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2950 Values[i - LinearIndex] = 2951 OutOfUndef ? 2952 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2953 SDValue(Agg.getNode(), Agg.getResNo() + i); 2954 2955 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2956 DAG.getVTList(ValValueVTs), Values)); 2957 } 2958 2959 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2960 Value *Op0 = I.getOperand(0); 2961 // Note that the pointer operand may be a vector of pointers. Take the scalar 2962 // element which holds a pointer. 2963 Type *Ty = Op0->getType()->getScalarType(); 2964 unsigned AS = Ty->getPointerAddressSpace(); 2965 SDValue N = getValue(Op0); 2966 SDLoc dl = getCurSDLoc(); 2967 2968 // Normalize Vector GEP - all scalar operands should be converted to the 2969 // splat vector. 2970 unsigned VectorWidth = I.getType()->isVectorTy() ? 2971 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2972 2973 if (VectorWidth && !N.getValueType().isVector()) { 2974 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2975 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2976 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2977 } 2978 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2979 OI != E; ++OI) { 2980 const Value *Idx = *OI; 2981 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2982 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2983 if (Field) { 2984 // N = N + Offset 2985 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2986 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2987 DAG.getConstant(Offset, dl, N.getValueType())); 2988 } 2989 2990 Ty = StTy->getElementType(Field); 2991 } else { 2992 Ty = cast<SequentialType>(Ty)->getElementType(); 2993 MVT PtrTy = 2994 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 2995 unsigned PtrSize = PtrTy.getSizeInBits(); 2996 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2997 2998 // If this is a scalar constant or a splat vector of constants, 2999 // handle it quickly. 3000 const auto *CI = dyn_cast<ConstantInt>(Idx); 3001 if (!CI && isa<ConstantDataVector>(Idx) && 3002 cast<ConstantDataVector>(Idx)->getSplatValue()) 3003 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3004 3005 if (CI) { 3006 if (CI->isZero()) 3007 continue; 3008 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3009 SDValue OffsVal = VectorWidth ? 3010 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 3011 DAG.getConstant(Offs, dl, PtrTy); 3012 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 3013 continue; 3014 } 3015 3016 // N = N + Idx * ElementSize; 3017 SDValue IdxN = getValue(Idx); 3018 3019 if (!IdxN.getValueType().isVector() && VectorWidth) { 3020 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3021 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 3022 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3023 } 3024 // If the index is smaller or larger than intptr_t, truncate or extend 3025 // it. 3026 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3027 3028 // If this is a multiply by a power of two, turn it into a shl 3029 // immediately. This is a very common case. 3030 if (ElementSize != 1) { 3031 if (ElementSize.isPowerOf2()) { 3032 unsigned Amt = ElementSize.logBase2(); 3033 IdxN = DAG.getNode(ISD::SHL, dl, 3034 N.getValueType(), IdxN, 3035 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3036 } else { 3037 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3038 IdxN = DAG.getNode(ISD::MUL, dl, 3039 N.getValueType(), IdxN, Scale); 3040 } 3041 } 3042 3043 N = DAG.getNode(ISD::ADD, dl, 3044 N.getValueType(), N, IdxN); 3045 } 3046 } 3047 3048 setValue(&I, N); 3049 } 3050 3051 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3052 // If this is a fixed sized alloca in the entry block of the function, 3053 // allocate it statically on the stack. 3054 if (FuncInfo.StaticAllocaMap.count(&I)) 3055 return; // getValue will auto-populate this. 3056 3057 SDLoc dl = getCurSDLoc(); 3058 Type *Ty = I.getAllocatedType(); 3059 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3060 auto &DL = DAG.getDataLayout(); 3061 uint64_t TySize = DL.getTypeAllocSize(Ty); 3062 unsigned Align = 3063 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3064 3065 SDValue AllocSize = getValue(I.getArraySize()); 3066 3067 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3068 if (AllocSize.getValueType() != IntPtr) 3069 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3070 3071 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3072 AllocSize, 3073 DAG.getConstant(TySize, dl, IntPtr)); 3074 3075 // Handle alignment. If the requested alignment is less than or equal to 3076 // the stack alignment, ignore it. If the size is greater than or equal to 3077 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3078 unsigned StackAlign = 3079 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3080 if (Align <= StackAlign) 3081 Align = 0; 3082 3083 // Round the size of the allocation up to the stack alignment size 3084 // by add SA-1 to the size. 3085 AllocSize = DAG.getNode(ISD::ADD, dl, 3086 AllocSize.getValueType(), AllocSize, 3087 DAG.getIntPtrConstant(StackAlign - 1, dl)); 3088 3089 // Mask out the low bits for alignment purposes. 3090 AllocSize = DAG.getNode(ISD::AND, dl, 3091 AllocSize.getValueType(), AllocSize, 3092 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3093 dl)); 3094 3095 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3096 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3097 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3098 setValue(&I, DSA); 3099 DAG.setRoot(DSA.getValue(1)); 3100 3101 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3102 } 3103 3104 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3105 if (I.isAtomic()) 3106 return visitAtomicLoad(I); 3107 3108 const Value *SV = I.getOperand(0); 3109 SDValue Ptr = getValue(SV); 3110 3111 Type *Ty = I.getType(); 3112 3113 bool isVolatile = I.isVolatile(); 3114 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3115 3116 // The IR notion of invariant_load only guarantees that all *non-faulting* 3117 // invariant loads result in the same value. The MI notion of invariant load 3118 // guarantees that the load can be legally moved to any location within its 3119 // containing function. The MI notion of invariant_load is stronger than the 3120 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3121 // with a guarantee that the location being loaded from is dereferenceable 3122 // throughout the function's lifetime. 3123 3124 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3125 isDereferenceablePointer(SV, DAG.getDataLayout()); 3126 unsigned Alignment = I.getAlignment(); 3127 3128 AAMDNodes AAInfo; 3129 I.getAAMetadata(AAInfo); 3130 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3131 3132 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3133 SmallVector<EVT, 4> ValueVTs; 3134 SmallVector<uint64_t, 4> Offsets; 3135 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3136 unsigned NumValues = ValueVTs.size(); 3137 if (NumValues == 0) 3138 return; 3139 3140 SDValue Root; 3141 bool ConstantMemory = false; 3142 if (isVolatile || NumValues > MaxParallelChains) 3143 // Serialize volatile loads with other side effects. 3144 Root = getRoot(); 3145 else if (AA->pointsToConstantMemory(MemoryLocation( 3146 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3147 // Do not serialize (non-volatile) loads of constant memory with anything. 3148 Root = DAG.getEntryNode(); 3149 ConstantMemory = true; 3150 } else { 3151 // Do not serialize non-volatile loads against each other. 3152 Root = DAG.getRoot(); 3153 } 3154 3155 SDLoc dl = getCurSDLoc(); 3156 3157 if (isVolatile) 3158 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3159 3160 SmallVector<SDValue, 4> Values(NumValues); 3161 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3162 EVT PtrVT = Ptr.getValueType(); 3163 unsigned ChainI = 0; 3164 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3165 // Serializing loads here may result in excessive register pressure, and 3166 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3167 // could recover a bit by hoisting nodes upward in the chain by recognizing 3168 // they are side-effect free or do not alias. The optimizer should really 3169 // avoid this case by converting large object/array copies to llvm.memcpy 3170 // (MaxParallelChains should always remain as failsafe). 3171 if (ChainI == MaxParallelChains) { 3172 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3173 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3174 makeArrayRef(Chains.data(), ChainI)); 3175 Root = Chain; 3176 ChainI = 0; 3177 } 3178 SDValue A = DAG.getNode(ISD::ADD, dl, 3179 PtrVT, Ptr, 3180 DAG.getConstant(Offsets[i], dl, PtrVT)); 3181 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3182 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3183 isNonTemporal, isInvariant, Alignment, AAInfo, 3184 Ranges); 3185 3186 Values[i] = L; 3187 Chains[ChainI] = L.getValue(1); 3188 } 3189 3190 if (!ConstantMemory) { 3191 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3192 makeArrayRef(Chains.data(), ChainI)); 3193 if (isVolatile) 3194 DAG.setRoot(Chain); 3195 else 3196 PendingLoads.push_back(Chain); 3197 } 3198 3199 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3200 DAG.getVTList(ValueVTs), Values)); 3201 } 3202 3203 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3204 if (I.isAtomic()) 3205 return visitAtomicStore(I); 3206 3207 const Value *SrcV = I.getOperand(0); 3208 const Value *PtrV = I.getOperand(1); 3209 3210 SmallVector<EVT, 4> ValueVTs; 3211 SmallVector<uint64_t, 4> Offsets; 3212 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3213 SrcV->getType(), ValueVTs, &Offsets); 3214 unsigned NumValues = ValueVTs.size(); 3215 if (NumValues == 0) 3216 return; 3217 3218 // Get the lowered operands. Note that we do this after 3219 // checking if NumResults is zero, because with zero results 3220 // the operands won't have values in the map. 3221 SDValue Src = getValue(SrcV); 3222 SDValue Ptr = getValue(PtrV); 3223 3224 SDValue Root = getRoot(); 3225 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3226 EVT PtrVT = Ptr.getValueType(); 3227 bool isVolatile = I.isVolatile(); 3228 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3229 unsigned Alignment = I.getAlignment(); 3230 SDLoc dl = getCurSDLoc(); 3231 3232 AAMDNodes AAInfo; 3233 I.getAAMetadata(AAInfo); 3234 3235 unsigned ChainI = 0; 3236 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3237 // See visitLoad comments. 3238 if (ChainI == MaxParallelChains) { 3239 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3240 makeArrayRef(Chains.data(), ChainI)); 3241 Root = Chain; 3242 ChainI = 0; 3243 } 3244 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3245 DAG.getConstant(Offsets[i], dl, PtrVT)); 3246 SDValue St = DAG.getStore(Root, dl, 3247 SDValue(Src.getNode(), Src.getResNo() + i), 3248 Add, MachinePointerInfo(PtrV, Offsets[i]), 3249 isVolatile, isNonTemporal, Alignment, AAInfo); 3250 Chains[ChainI] = St; 3251 } 3252 3253 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3254 makeArrayRef(Chains.data(), ChainI)); 3255 DAG.setRoot(StoreNode); 3256 } 3257 3258 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3259 SDLoc sdl = getCurSDLoc(); 3260 3261 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3262 Value *PtrOperand = I.getArgOperand(1); 3263 SDValue Ptr = getValue(PtrOperand); 3264 SDValue Src0 = getValue(I.getArgOperand(0)); 3265 SDValue Mask = getValue(I.getArgOperand(3)); 3266 EVT VT = Src0.getValueType(); 3267 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3268 if (!Alignment) 3269 Alignment = DAG.getEVTAlignment(VT); 3270 3271 AAMDNodes AAInfo; 3272 I.getAAMetadata(AAInfo); 3273 3274 MachineMemOperand *MMO = 3275 DAG.getMachineFunction(). 3276 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3277 MachineMemOperand::MOStore, VT.getStoreSize(), 3278 Alignment, AAInfo); 3279 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3280 MMO, false); 3281 DAG.setRoot(StoreNode); 3282 setValue(&I, StoreNode); 3283 } 3284 3285 // Get a uniform base for the Gather/Scatter intrinsic. 3286 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3287 // We try to represent it as a base pointer + vector of indices. 3288 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3289 // The first operand of the GEP may be a single pointer or a vector of pointers 3290 // Example: 3291 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3292 // or 3293 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3294 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3295 // 3296 // When the first GEP operand is a single pointer - it is the uniform base we 3297 // are looking for. If first operand of the GEP is a splat vector - we 3298 // extract the spalt value and use it as a uniform base. 3299 // In all other cases the function returns 'false'. 3300 // 3301 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3302 SelectionDAGBuilder* SDB) { 3303 3304 SelectionDAG& DAG = SDB->DAG; 3305 LLVMContext &Context = *DAG.getContext(); 3306 3307 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3308 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3309 if (!GEP || GEP->getNumOperands() > 2) 3310 return false; 3311 3312 Value *GEPPtr = GEP->getPointerOperand(); 3313 if (!GEPPtr->getType()->isVectorTy()) 3314 Ptr = GEPPtr; 3315 else if (!(Ptr = getSplatValue(GEPPtr))) 3316 return false; 3317 3318 Value *IndexVal = GEP->getOperand(1); 3319 3320 // The operands of the GEP may be defined in another basic block. 3321 // In this case we'll not find nodes for the operands. 3322 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3323 return false; 3324 3325 Base = SDB->getValue(Ptr); 3326 Index = SDB->getValue(IndexVal); 3327 3328 // Suppress sign extension. 3329 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3330 if (SDB->findValue(Sext->getOperand(0))) { 3331 IndexVal = Sext->getOperand(0); 3332 Index = SDB->getValue(IndexVal); 3333 } 3334 } 3335 if (!Index.getValueType().isVector()) { 3336 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3337 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3338 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3339 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3340 } 3341 return true; 3342 } 3343 3344 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3345 SDLoc sdl = getCurSDLoc(); 3346 3347 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3348 Value *Ptr = I.getArgOperand(1); 3349 SDValue Src0 = getValue(I.getArgOperand(0)); 3350 SDValue Mask = getValue(I.getArgOperand(3)); 3351 EVT VT = Src0.getValueType(); 3352 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3353 if (!Alignment) 3354 Alignment = DAG.getEVTAlignment(VT); 3355 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3356 3357 AAMDNodes AAInfo; 3358 I.getAAMetadata(AAInfo); 3359 3360 SDValue Base; 3361 SDValue Index; 3362 Value *BasePtr = Ptr; 3363 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3364 3365 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3366 MachineMemOperand *MMO = DAG.getMachineFunction(). 3367 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3368 MachineMemOperand::MOStore, VT.getStoreSize(), 3369 Alignment, AAInfo); 3370 if (!UniformBase) { 3371 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3372 Index = getValue(Ptr); 3373 } 3374 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3375 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3376 Ops, MMO); 3377 DAG.setRoot(Scatter); 3378 setValue(&I, Scatter); 3379 } 3380 3381 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3382 SDLoc sdl = getCurSDLoc(); 3383 3384 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3385 Value *PtrOperand = I.getArgOperand(0); 3386 SDValue Ptr = getValue(PtrOperand); 3387 SDValue Src0 = getValue(I.getArgOperand(3)); 3388 SDValue Mask = getValue(I.getArgOperand(2)); 3389 3390 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3391 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3392 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3393 if (!Alignment) 3394 Alignment = DAG.getEVTAlignment(VT); 3395 3396 AAMDNodes AAInfo; 3397 I.getAAMetadata(AAInfo); 3398 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3399 3400 SDValue InChain = DAG.getRoot(); 3401 if (AA->pointsToConstantMemory(MemoryLocation( 3402 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3403 AAInfo))) { 3404 // Do not serialize (non-volatile) loads of constant memory with anything. 3405 InChain = DAG.getEntryNode(); 3406 } 3407 3408 MachineMemOperand *MMO = 3409 DAG.getMachineFunction(). 3410 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3411 MachineMemOperand::MOLoad, VT.getStoreSize(), 3412 Alignment, AAInfo, Ranges); 3413 3414 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3415 ISD::NON_EXTLOAD); 3416 SDValue OutChain = Load.getValue(1); 3417 DAG.setRoot(OutChain); 3418 setValue(&I, Load); 3419 } 3420 3421 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3422 SDLoc sdl = getCurSDLoc(); 3423 3424 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3425 Value *Ptr = I.getArgOperand(0); 3426 SDValue Src0 = getValue(I.getArgOperand(3)); 3427 SDValue Mask = getValue(I.getArgOperand(2)); 3428 3429 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3430 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3431 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3432 if (!Alignment) 3433 Alignment = DAG.getEVTAlignment(VT); 3434 3435 AAMDNodes AAInfo; 3436 I.getAAMetadata(AAInfo); 3437 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3438 3439 SDValue Root = DAG.getRoot(); 3440 SDValue Base; 3441 SDValue Index; 3442 Value *BasePtr = Ptr; 3443 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3444 bool ConstantMemory = false; 3445 if (UniformBase && 3446 AA->pointsToConstantMemory(MemoryLocation( 3447 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3448 AAInfo))) { 3449 // Do not serialize (non-volatile) loads of constant memory with anything. 3450 Root = DAG.getEntryNode(); 3451 ConstantMemory = true; 3452 } 3453 3454 MachineMemOperand *MMO = 3455 DAG.getMachineFunction(). 3456 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3457 MachineMemOperand::MOLoad, VT.getStoreSize(), 3458 Alignment, AAInfo, Ranges); 3459 3460 if (!UniformBase) { 3461 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3462 Index = getValue(Ptr); 3463 } 3464 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3465 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3466 Ops, MMO); 3467 3468 SDValue OutChain = Gather.getValue(1); 3469 if (!ConstantMemory) 3470 PendingLoads.push_back(OutChain); 3471 setValue(&I, Gather); 3472 } 3473 3474 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3475 SDLoc dl = getCurSDLoc(); 3476 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3477 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3478 SynchronizationScope Scope = I.getSynchScope(); 3479 3480 SDValue InChain = getRoot(); 3481 3482 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3483 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3484 SDValue L = DAG.getAtomicCmpSwap( 3485 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3486 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3487 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3488 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3489 3490 SDValue OutChain = L.getValue(2); 3491 3492 setValue(&I, L); 3493 DAG.setRoot(OutChain); 3494 } 3495 3496 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3497 SDLoc dl = getCurSDLoc(); 3498 ISD::NodeType NT; 3499 switch (I.getOperation()) { 3500 default: llvm_unreachable("Unknown atomicrmw operation"); 3501 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3502 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3503 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3504 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3505 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3506 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3507 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3508 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3509 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3510 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3511 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3512 } 3513 AtomicOrdering Order = I.getOrdering(); 3514 SynchronizationScope Scope = I.getSynchScope(); 3515 3516 SDValue InChain = getRoot(); 3517 3518 SDValue L = 3519 DAG.getAtomic(NT, dl, 3520 getValue(I.getValOperand()).getSimpleValueType(), 3521 InChain, 3522 getValue(I.getPointerOperand()), 3523 getValue(I.getValOperand()), 3524 I.getPointerOperand(), 3525 /* Alignment=*/ 0, Order, Scope); 3526 3527 SDValue OutChain = L.getValue(1); 3528 3529 setValue(&I, L); 3530 DAG.setRoot(OutChain); 3531 } 3532 3533 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3534 SDLoc dl = getCurSDLoc(); 3535 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3536 SDValue Ops[3]; 3537 Ops[0] = getRoot(); 3538 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3539 TLI.getPointerTy(DAG.getDataLayout())); 3540 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3541 TLI.getPointerTy(DAG.getDataLayout())); 3542 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3543 } 3544 3545 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3546 SDLoc dl = getCurSDLoc(); 3547 AtomicOrdering Order = I.getOrdering(); 3548 SynchronizationScope Scope = I.getSynchScope(); 3549 3550 SDValue InChain = getRoot(); 3551 3552 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3553 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3554 3555 if (I.getAlignment() < VT.getSizeInBits() / 8) 3556 report_fatal_error("Cannot generate unaligned atomic load"); 3557 3558 MachineMemOperand *MMO = 3559 DAG.getMachineFunction(). 3560 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3561 MachineMemOperand::MOVolatile | 3562 MachineMemOperand::MOLoad, 3563 VT.getStoreSize(), 3564 I.getAlignment() ? I.getAlignment() : 3565 DAG.getEVTAlignment(VT)); 3566 3567 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3568 SDValue L = 3569 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3570 getValue(I.getPointerOperand()), MMO, 3571 Order, Scope); 3572 3573 SDValue OutChain = L.getValue(1); 3574 3575 setValue(&I, L); 3576 DAG.setRoot(OutChain); 3577 } 3578 3579 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3580 SDLoc dl = getCurSDLoc(); 3581 3582 AtomicOrdering Order = I.getOrdering(); 3583 SynchronizationScope Scope = I.getSynchScope(); 3584 3585 SDValue InChain = getRoot(); 3586 3587 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3588 EVT VT = 3589 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3590 3591 if (I.getAlignment() < VT.getSizeInBits() / 8) 3592 report_fatal_error("Cannot generate unaligned atomic store"); 3593 3594 SDValue OutChain = 3595 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3596 InChain, 3597 getValue(I.getPointerOperand()), 3598 getValue(I.getValueOperand()), 3599 I.getPointerOperand(), I.getAlignment(), 3600 Order, Scope); 3601 3602 DAG.setRoot(OutChain); 3603 } 3604 3605 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3606 /// node. 3607 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3608 unsigned Intrinsic) { 3609 bool HasChain = !I.doesNotAccessMemory(); 3610 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3611 3612 // Build the operand list. 3613 SmallVector<SDValue, 8> Ops; 3614 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3615 if (OnlyLoad) { 3616 // We don't need to serialize loads against other loads. 3617 Ops.push_back(DAG.getRoot()); 3618 } else { 3619 Ops.push_back(getRoot()); 3620 } 3621 } 3622 3623 // Info is set by getTgtMemInstrinsic 3624 TargetLowering::IntrinsicInfo Info; 3625 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3626 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3627 3628 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3629 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3630 Info.opc == ISD::INTRINSIC_W_CHAIN) 3631 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3632 TLI.getPointerTy(DAG.getDataLayout()))); 3633 3634 // Add all operands of the call to the operand list. 3635 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3636 SDValue Op = getValue(I.getArgOperand(i)); 3637 Ops.push_back(Op); 3638 } 3639 3640 SmallVector<EVT, 4> ValueVTs; 3641 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3642 3643 if (HasChain) 3644 ValueVTs.push_back(MVT::Other); 3645 3646 SDVTList VTs = DAG.getVTList(ValueVTs); 3647 3648 // Create the node. 3649 SDValue Result; 3650 if (IsTgtIntrinsic) { 3651 // This is target intrinsic that touches memory 3652 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3653 VTs, Ops, Info.memVT, 3654 MachinePointerInfo(Info.ptrVal, Info.offset), 3655 Info.align, Info.vol, 3656 Info.readMem, Info.writeMem, Info.size); 3657 } else if (!HasChain) { 3658 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3659 } else if (!I.getType()->isVoidTy()) { 3660 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3661 } else { 3662 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3663 } 3664 3665 if (HasChain) { 3666 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3667 if (OnlyLoad) 3668 PendingLoads.push_back(Chain); 3669 else 3670 DAG.setRoot(Chain); 3671 } 3672 3673 if (!I.getType()->isVoidTy()) { 3674 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3675 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3676 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3677 } 3678 3679 setValue(&I, Result); 3680 } 3681 } 3682 3683 /// GetSignificand - Get the significand and build it into a floating-point 3684 /// number with exponent of 1: 3685 /// 3686 /// Op = (Op & 0x007fffff) | 0x3f800000; 3687 /// 3688 /// where Op is the hexadecimal representation of floating point value. 3689 static SDValue 3690 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3691 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3692 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3693 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3694 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3695 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3696 } 3697 3698 /// GetExponent - Get the exponent: 3699 /// 3700 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3701 /// 3702 /// where Op is the hexadecimal representation of floating point value. 3703 static SDValue 3704 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3705 SDLoc dl) { 3706 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3707 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3708 SDValue t1 = DAG.getNode( 3709 ISD::SRL, dl, MVT::i32, t0, 3710 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3711 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3712 DAG.getConstant(127, dl, MVT::i32)); 3713 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3714 } 3715 3716 /// getF32Constant - Get 32-bit floating point constant. 3717 static SDValue 3718 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3719 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3720 MVT::f32); 3721 } 3722 3723 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3724 SelectionDAG &DAG) { 3725 // TODO: What fast-math-flags should be set on the floating-point nodes? 3726 3727 // IntegerPartOfX = ((int32_t)(t0); 3728 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3729 3730 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3731 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3732 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3733 3734 // IntegerPartOfX <<= 23; 3735 IntegerPartOfX = DAG.getNode( 3736 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3737 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3738 DAG.getDataLayout()))); 3739 3740 SDValue TwoToFractionalPartOfX; 3741 if (LimitFloatPrecision <= 6) { 3742 // For floating-point precision of 6: 3743 // 3744 // TwoToFractionalPartOfX = 3745 // 0.997535578f + 3746 // (0.735607626f + 0.252464424f * x) * x; 3747 // 3748 // error 0.0144103317, which is 6 bits 3749 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3750 getF32Constant(DAG, 0x3e814304, dl)); 3751 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3752 getF32Constant(DAG, 0x3f3c50c8, dl)); 3753 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3754 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3755 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3756 } else if (LimitFloatPrecision <= 12) { 3757 // For floating-point precision of 12: 3758 // 3759 // TwoToFractionalPartOfX = 3760 // 0.999892986f + 3761 // (0.696457318f + 3762 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3763 // 3764 // error 0.000107046256, which is 13 to 14 bits 3765 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3766 getF32Constant(DAG, 0x3da235e3, dl)); 3767 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3768 getF32Constant(DAG, 0x3e65b8f3, dl)); 3769 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3770 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3771 getF32Constant(DAG, 0x3f324b07, dl)); 3772 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3773 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3774 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3775 } else { // LimitFloatPrecision <= 18 3776 // For floating-point precision of 18: 3777 // 3778 // TwoToFractionalPartOfX = 3779 // 0.999999982f + 3780 // (0.693148872f + 3781 // (0.240227044f + 3782 // (0.554906021e-1f + 3783 // (0.961591928e-2f + 3784 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3785 // error 2.47208000*10^(-7), which is better than 18 bits 3786 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3787 getF32Constant(DAG, 0x3924b03e, dl)); 3788 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3789 getF32Constant(DAG, 0x3ab24b87, dl)); 3790 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3791 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3792 getF32Constant(DAG, 0x3c1d8c17, dl)); 3793 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3794 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3795 getF32Constant(DAG, 0x3d634a1d, dl)); 3796 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3797 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3798 getF32Constant(DAG, 0x3e75fe14, dl)); 3799 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3800 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3801 getF32Constant(DAG, 0x3f317234, dl)); 3802 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3803 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3804 getF32Constant(DAG, 0x3f800000, dl)); 3805 } 3806 3807 // Add the exponent into the result in integer domain. 3808 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3809 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3810 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3811 } 3812 3813 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3814 /// limited-precision mode. 3815 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3816 const TargetLowering &TLI) { 3817 if (Op.getValueType() == MVT::f32 && 3818 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3819 3820 // Put the exponent in the right bit position for later addition to the 3821 // final result: 3822 // 3823 // #define LOG2OFe 1.4426950f 3824 // t0 = Op * LOG2OFe 3825 3826 // TODO: What fast-math-flags should be set here? 3827 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3828 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3829 return getLimitedPrecisionExp2(t0, dl, DAG); 3830 } 3831 3832 // No special expansion. 3833 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3834 } 3835 3836 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3837 /// limited-precision mode. 3838 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3839 const TargetLowering &TLI) { 3840 3841 // TODO: What fast-math-flags should be set on the floating-point nodes? 3842 3843 if (Op.getValueType() == MVT::f32 && 3844 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3845 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3846 3847 // Scale the exponent by log(2) [0.69314718f]. 3848 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3849 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3850 getF32Constant(DAG, 0x3f317218, dl)); 3851 3852 // Get the significand and build it into a floating-point number with 3853 // exponent of 1. 3854 SDValue X = GetSignificand(DAG, Op1, dl); 3855 3856 SDValue LogOfMantissa; 3857 if (LimitFloatPrecision <= 6) { 3858 // For floating-point precision of 6: 3859 // 3860 // LogofMantissa = 3861 // -1.1609546f + 3862 // (1.4034025f - 0.23903021f * x) * x; 3863 // 3864 // error 0.0034276066, which is better than 8 bits 3865 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3866 getF32Constant(DAG, 0xbe74c456, dl)); 3867 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3868 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3869 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3870 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3871 getF32Constant(DAG, 0x3f949a29, dl)); 3872 } else if (LimitFloatPrecision <= 12) { 3873 // For floating-point precision of 12: 3874 // 3875 // LogOfMantissa = 3876 // -1.7417939f + 3877 // (2.8212026f + 3878 // (-1.4699568f + 3879 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3880 // 3881 // error 0.000061011436, which is 14 bits 3882 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3883 getF32Constant(DAG, 0xbd67b6d6, dl)); 3884 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3885 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3886 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3887 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3888 getF32Constant(DAG, 0x3fbc278b, dl)); 3889 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3890 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3891 getF32Constant(DAG, 0x40348e95, dl)); 3892 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3893 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3894 getF32Constant(DAG, 0x3fdef31a, dl)); 3895 } else { // LimitFloatPrecision <= 18 3896 // For floating-point precision of 18: 3897 // 3898 // LogOfMantissa = 3899 // -2.1072184f + 3900 // (4.2372794f + 3901 // (-3.7029485f + 3902 // (2.2781945f + 3903 // (-0.87823314f + 3904 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3905 // 3906 // error 0.0000023660568, which is better than 18 bits 3907 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3908 getF32Constant(DAG, 0xbc91e5ac, dl)); 3909 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3910 getF32Constant(DAG, 0x3e4350aa, dl)); 3911 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3912 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3913 getF32Constant(DAG, 0x3f60d3e3, dl)); 3914 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3915 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3916 getF32Constant(DAG, 0x4011cdf0, dl)); 3917 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3918 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3919 getF32Constant(DAG, 0x406cfd1c, dl)); 3920 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3921 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3922 getF32Constant(DAG, 0x408797cb, dl)); 3923 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3924 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3925 getF32Constant(DAG, 0x4006dcab, dl)); 3926 } 3927 3928 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3929 } 3930 3931 // No special expansion. 3932 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3933 } 3934 3935 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3936 /// limited-precision mode. 3937 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3938 const TargetLowering &TLI) { 3939 3940 // TODO: What fast-math-flags should be set on the floating-point nodes? 3941 3942 if (Op.getValueType() == MVT::f32 && 3943 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3944 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3945 3946 // Get the exponent. 3947 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3948 3949 // Get the significand and build it into a floating-point number with 3950 // exponent of 1. 3951 SDValue X = GetSignificand(DAG, Op1, dl); 3952 3953 // Different possible minimax approximations of significand in 3954 // floating-point for various degrees of accuracy over [1,2]. 3955 SDValue Log2ofMantissa; 3956 if (LimitFloatPrecision <= 6) { 3957 // For floating-point precision of 6: 3958 // 3959 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3960 // 3961 // error 0.0049451742, which is more than 7 bits 3962 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3963 getF32Constant(DAG, 0xbeb08fe0, dl)); 3964 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3965 getF32Constant(DAG, 0x40019463, dl)); 3966 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3967 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3968 getF32Constant(DAG, 0x3fd6633d, dl)); 3969 } else if (LimitFloatPrecision <= 12) { 3970 // For floating-point precision of 12: 3971 // 3972 // Log2ofMantissa = 3973 // -2.51285454f + 3974 // (4.07009056f + 3975 // (-2.12067489f + 3976 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3977 // 3978 // error 0.0000876136000, which is better than 13 bits 3979 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3980 getF32Constant(DAG, 0xbda7262e, dl)); 3981 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3982 getF32Constant(DAG, 0x3f25280b, dl)); 3983 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3984 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3985 getF32Constant(DAG, 0x4007b923, dl)); 3986 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3987 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3988 getF32Constant(DAG, 0x40823e2f, dl)); 3989 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3990 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3991 getF32Constant(DAG, 0x4020d29c, dl)); 3992 } else { // LimitFloatPrecision <= 18 3993 // For floating-point precision of 18: 3994 // 3995 // Log2ofMantissa = 3996 // -3.0400495f + 3997 // (6.1129976f + 3998 // (-5.3420409f + 3999 // (3.2865683f + 4000 // (-1.2669343f + 4001 // (0.27515199f - 4002 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4003 // 4004 // error 0.0000018516, which is better than 18 bits 4005 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4006 getF32Constant(DAG, 0xbcd2769e, dl)); 4007 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4008 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4009 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4010 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4011 getF32Constant(DAG, 0x3fa22ae7, dl)); 4012 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4013 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4014 getF32Constant(DAG, 0x40525723, dl)); 4015 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4016 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4017 getF32Constant(DAG, 0x40aaf200, dl)); 4018 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4019 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4020 getF32Constant(DAG, 0x40c39dad, dl)); 4021 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4022 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4023 getF32Constant(DAG, 0x4042902c, dl)); 4024 } 4025 4026 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4027 } 4028 4029 // No special expansion. 4030 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4031 } 4032 4033 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4034 /// limited-precision mode. 4035 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4036 const TargetLowering &TLI) { 4037 4038 // TODO: What fast-math-flags should be set on the floating-point nodes? 4039 4040 if (Op.getValueType() == MVT::f32 && 4041 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4042 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4043 4044 // Scale the exponent by log10(2) [0.30102999f]. 4045 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4046 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4047 getF32Constant(DAG, 0x3e9a209a, dl)); 4048 4049 // Get the significand and build it into a floating-point number with 4050 // exponent of 1. 4051 SDValue X = GetSignificand(DAG, Op1, dl); 4052 4053 SDValue Log10ofMantissa; 4054 if (LimitFloatPrecision <= 6) { 4055 // For floating-point precision of 6: 4056 // 4057 // Log10ofMantissa = 4058 // -0.50419619f + 4059 // (0.60948995f - 0.10380950f * x) * x; 4060 // 4061 // error 0.0014886165, which is 6 bits 4062 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4063 getF32Constant(DAG, 0xbdd49a13, dl)); 4064 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4065 getF32Constant(DAG, 0x3f1c0789, dl)); 4066 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4067 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4068 getF32Constant(DAG, 0x3f011300, dl)); 4069 } else if (LimitFloatPrecision <= 12) { 4070 // For floating-point precision of 12: 4071 // 4072 // Log10ofMantissa = 4073 // -0.64831180f + 4074 // (0.91751397f + 4075 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4076 // 4077 // error 0.00019228036, which is better than 12 bits 4078 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4079 getF32Constant(DAG, 0x3d431f31, dl)); 4080 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4081 getF32Constant(DAG, 0x3ea21fb2, dl)); 4082 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4083 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4084 getF32Constant(DAG, 0x3f6ae232, dl)); 4085 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4086 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4087 getF32Constant(DAG, 0x3f25f7c3, dl)); 4088 } else { // LimitFloatPrecision <= 18 4089 // For floating-point precision of 18: 4090 // 4091 // Log10ofMantissa = 4092 // -0.84299375f + 4093 // (1.5327582f + 4094 // (-1.0688956f + 4095 // (0.49102474f + 4096 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4097 // 4098 // error 0.0000037995730, which is better than 18 bits 4099 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4100 getF32Constant(DAG, 0x3c5d51ce, dl)); 4101 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4102 getF32Constant(DAG, 0x3e00685a, dl)); 4103 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4104 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4105 getF32Constant(DAG, 0x3efb6798, dl)); 4106 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4107 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4108 getF32Constant(DAG, 0x3f88d192, dl)); 4109 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4110 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4111 getF32Constant(DAG, 0x3fc4316c, dl)); 4112 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4113 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4114 getF32Constant(DAG, 0x3f57ce70, dl)); 4115 } 4116 4117 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4118 } 4119 4120 // No special expansion. 4121 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4122 } 4123 4124 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4125 /// limited-precision mode. 4126 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4127 const TargetLowering &TLI) { 4128 if (Op.getValueType() == MVT::f32 && 4129 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4130 return getLimitedPrecisionExp2(Op, dl, DAG); 4131 4132 // No special expansion. 4133 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4134 } 4135 4136 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4137 /// limited-precision mode with x == 10.0f. 4138 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4139 SelectionDAG &DAG, const TargetLowering &TLI) { 4140 bool IsExp10 = false; 4141 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4142 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4143 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4144 APFloat Ten(10.0f); 4145 IsExp10 = LHSC->isExactlyValue(Ten); 4146 } 4147 } 4148 4149 // TODO: What fast-math-flags should be set on the FMUL node? 4150 if (IsExp10) { 4151 // Put the exponent in the right bit position for later addition to the 4152 // final result: 4153 // 4154 // #define LOG2OF10 3.3219281f 4155 // t0 = Op * LOG2OF10; 4156 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4157 getF32Constant(DAG, 0x40549a78, dl)); 4158 return getLimitedPrecisionExp2(t0, dl, DAG); 4159 } 4160 4161 // No special expansion. 4162 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4163 } 4164 4165 4166 /// ExpandPowI - Expand a llvm.powi intrinsic. 4167 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4168 SelectionDAG &DAG) { 4169 // If RHS is a constant, we can expand this out to a multiplication tree, 4170 // otherwise we end up lowering to a call to __powidf2 (for example). When 4171 // optimizing for size, we only want to do this if the expansion would produce 4172 // a small number of multiplies, otherwise we do the full expansion. 4173 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4174 // Get the exponent as a positive value. 4175 unsigned Val = RHSC->getSExtValue(); 4176 if ((int)Val < 0) Val = -Val; 4177 4178 // powi(x, 0) -> 1.0 4179 if (Val == 0) 4180 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4181 4182 const Function *F = DAG.getMachineFunction().getFunction(); 4183 if (!F->optForSize() || 4184 // If optimizing for size, don't insert too many multiplies. 4185 // This inserts up to 5 multiplies. 4186 countPopulation(Val) + Log2_32(Val) < 7) { 4187 // We use the simple binary decomposition method to generate the multiply 4188 // sequence. There are more optimal ways to do this (for example, 4189 // powi(x,15) generates one more multiply than it should), but this has 4190 // the benefit of being both really simple and much better than a libcall. 4191 SDValue Res; // Logically starts equal to 1.0 4192 SDValue CurSquare = LHS; 4193 // TODO: Intrinsics should have fast-math-flags that propagate to these 4194 // nodes. 4195 while (Val) { 4196 if (Val & 1) { 4197 if (Res.getNode()) 4198 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4199 else 4200 Res = CurSquare; // 1.0*CurSquare. 4201 } 4202 4203 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4204 CurSquare, CurSquare); 4205 Val >>= 1; 4206 } 4207 4208 // If the original was negative, invert the result, producing 1/(x*x*x). 4209 if (RHSC->getSExtValue() < 0) 4210 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4211 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4212 return Res; 4213 } 4214 } 4215 4216 // Otherwise, expand to a libcall. 4217 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4218 } 4219 4220 // getUnderlyingArgReg - Find underlying register used for a truncated or 4221 // bitcasted argument. 4222 static unsigned getUnderlyingArgReg(const SDValue &N) { 4223 switch (N.getOpcode()) { 4224 case ISD::CopyFromReg: 4225 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4226 case ISD::BITCAST: 4227 case ISD::AssertZext: 4228 case ISD::AssertSext: 4229 case ISD::TRUNCATE: 4230 return getUnderlyingArgReg(N.getOperand(0)); 4231 default: 4232 return 0; 4233 } 4234 } 4235 4236 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4237 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4238 /// At the end of instruction selection, they will be inserted to the entry BB. 4239 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4240 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4241 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4242 const Argument *Arg = dyn_cast<Argument>(V); 4243 if (!Arg) 4244 return false; 4245 4246 MachineFunction &MF = DAG.getMachineFunction(); 4247 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4248 4249 // Ignore inlined function arguments here. 4250 // 4251 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4252 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4253 return false; 4254 4255 Optional<MachineOperand> Op; 4256 // Some arguments' frame index is recorded during argument lowering. 4257 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4258 Op = MachineOperand::CreateFI(FI); 4259 4260 if (!Op && N.getNode()) { 4261 unsigned Reg = getUnderlyingArgReg(N); 4262 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4263 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4264 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4265 if (PR) 4266 Reg = PR; 4267 } 4268 if (Reg) 4269 Op = MachineOperand::CreateReg(Reg, false); 4270 } 4271 4272 if (!Op) { 4273 // Check if ValueMap has reg number. 4274 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4275 if (VMI != FuncInfo.ValueMap.end()) 4276 Op = MachineOperand::CreateReg(VMI->second, false); 4277 } 4278 4279 if (!Op && N.getNode()) 4280 // Check if frame index is available. 4281 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4282 if (FrameIndexSDNode *FINode = 4283 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4284 Op = MachineOperand::CreateFI(FINode->getIndex()); 4285 4286 if (!Op) 4287 return false; 4288 4289 assert(Variable->isValidLocationForIntrinsic(DL) && 4290 "Expected inlined-at fields to agree"); 4291 if (Op->isReg()) 4292 FuncInfo.ArgDbgValues.push_back( 4293 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4294 Op->getReg(), Offset, Variable, Expr)); 4295 else 4296 FuncInfo.ArgDbgValues.push_back( 4297 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4298 .addOperand(*Op) 4299 .addImm(Offset) 4300 .addMetadata(Variable) 4301 .addMetadata(Expr)); 4302 4303 return true; 4304 } 4305 4306 // VisualStudio defines setjmp as _setjmp 4307 #if defined(_MSC_VER) && defined(setjmp) && \ 4308 !defined(setjmp_undefined_for_msvc) 4309 # pragma push_macro("setjmp") 4310 # undef setjmp 4311 # define setjmp_undefined_for_msvc 4312 #endif 4313 4314 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4315 /// we want to emit this as a call to a named external function, return the name 4316 /// otherwise lower it and return null. 4317 const char * 4318 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4319 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4320 SDLoc sdl = getCurSDLoc(); 4321 DebugLoc dl = getCurDebugLoc(); 4322 SDValue Res; 4323 4324 switch (Intrinsic) { 4325 default: 4326 // By default, turn this into a target intrinsic node. 4327 visitTargetIntrinsic(I, Intrinsic); 4328 return nullptr; 4329 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4330 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4331 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4332 case Intrinsic::returnaddress: 4333 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4334 TLI.getPointerTy(DAG.getDataLayout()), 4335 getValue(I.getArgOperand(0)))); 4336 return nullptr; 4337 case Intrinsic::frameaddress: 4338 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4339 TLI.getPointerTy(DAG.getDataLayout()), 4340 getValue(I.getArgOperand(0)))); 4341 return nullptr; 4342 case Intrinsic::read_register: { 4343 Value *Reg = I.getArgOperand(0); 4344 SDValue Chain = getRoot(); 4345 SDValue RegName = 4346 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4347 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4348 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4349 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4350 setValue(&I, Res); 4351 DAG.setRoot(Res.getValue(1)); 4352 return nullptr; 4353 } 4354 case Intrinsic::write_register: { 4355 Value *Reg = I.getArgOperand(0); 4356 Value *RegValue = I.getArgOperand(1); 4357 SDValue Chain = getRoot(); 4358 SDValue RegName = 4359 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4360 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4361 RegName, getValue(RegValue))); 4362 return nullptr; 4363 } 4364 case Intrinsic::setjmp: 4365 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4366 case Intrinsic::longjmp: 4367 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4368 case Intrinsic::memcpy: { 4369 // FIXME: this definition of "user defined address space" is x86-specific 4370 // Assert for address < 256 since we support only user defined address 4371 // spaces. 4372 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4373 < 256 && 4374 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4375 < 256 && 4376 "Unknown address space"); 4377 SDValue Op1 = getValue(I.getArgOperand(0)); 4378 SDValue Op2 = getValue(I.getArgOperand(1)); 4379 SDValue Op3 = getValue(I.getArgOperand(2)); 4380 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4381 if (!Align) 4382 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4383 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4384 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4385 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4386 false, isTC, 4387 MachinePointerInfo(I.getArgOperand(0)), 4388 MachinePointerInfo(I.getArgOperand(1))); 4389 updateDAGForMaybeTailCall(MC); 4390 return nullptr; 4391 } 4392 case Intrinsic::memset: { 4393 // FIXME: this definition of "user defined address space" is x86-specific 4394 // Assert for address < 256 since we support only user defined address 4395 // spaces. 4396 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4397 < 256 && 4398 "Unknown address space"); 4399 SDValue Op1 = getValue(I.getArgOperand(0)); 4400 SDValue Op2 = getValue(I.getArgOperand(1)); 4401 SDValue Op3 = getValue(I.getArgOperand(2)); 4402 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4403 if (!Align) 4404 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4405 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4406 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4407 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4408 isTC, MachinePointerInfo(I.getArgOperand(0))); 4409 updateDAGForMaybeTailCall(MS); 4410 return nullptr; 4411 } 4412 case Intrinsic::memmove: { 4413 // FIXME: this definition of "user defined address space" is x86-specific 4414 // Assert for address < 256 since we support only user defined address 4415 // spaces. 4416 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4417 < 256 && 4418 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4419 < 256 && 4420 "Unknown address space"); 4421 SDValue Op1 = getValue(I.getArgOperand(0)); 4422 SDValue Op2 = getValue(I.getArgOperand(1)); 4423 SDValue Op3 = getValue(I.getArgOperand(2)); 4424 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4425 if (!Align) 4426 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4427 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4428 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4429 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4430 isTC, MachinePointerInfo(I.getArgOperand(0)), 4431 MachinePointerInfo(I.getArgOperand(1))); 4432 updateDAGForMaybeTailCall(MM); 4433 return nullptr; 4434 } 4435 case Intrinsic::dbg_declare: { 4436 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4437 DILocalVariable *Variable = DI.getVariable(); 4438 DIExpression *Expression = DI.getExpression(); 4439 const Value *Address = DI.getAddress(); 4440 assert(Variable && "Missing variable"); 4441 if (!Address) { 4442 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4443 return nullptr; 4444 } 4445 4446 // Check if address has undef value. 4447 if (isa<UndefValue>(Address) || 4448 (Address->use_empty() && !isa<Argument>(Address))) { 4449 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4450 return nullptr; 4451 } 4452 4453 SDValue &N = NodeMap[Address]; 4454 if (!N.getNode() && isa<Argument>(Address)) 4455 // Check unused arguments map. 4456 N = UnusedArgNodeMap[Address]; 4457 SDDbgValue *SDV; 4458 if (N.getNode()) { 4459 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4460 Address = BCI->getOperand(0); 4461 // Parameters are handled specially. 4462 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4463 4464 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4465 4466 if (isParameter && !AI) { 4467 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4468 if (FINode) 4469 // Byval parameter. We have a frame index at this point. 4470 SDV = DAG.getFrameIndexDbgValue( 4471 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4472 else { 4473 // Address is an argument, so try to emit its dbg value using 4474 // virtual register info from the FuncInfo.ValueMap. 4475 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4476 N); 4477 return nullptr; 4478 } 4479 } else { 4480 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4481 true, 0, dl, SDNodeOrder); 4482 } 4483 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4484 } else { 4485 // If Address is an argument then try to emit its dbg value using 4486 // virtual register info from the FuncInfo.ValueMap. 4487 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4488 N)) { 4489 // If variable is pinned by a alloca in dominating bb then 4490 // use StaticAllocaMap. 4491 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4492 if (AI->getParent() != DI.getParent()) { 4493 DenseMap<const AllocaInst*, int>::iterator SI = 4494 FuncInfo.StaticAllocaMap.find(AI); 4495 if (SI != FuncInfo.StaticAllocaMap.end()) { 4496 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4497 0, dl, SDNodeOrder); 4498 DAG.AddDbgValue(SDV, nullptr, false); 4499 return nullptr; 4500 } 4501 } 4502 } 4503 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4504 } 4505 } 4506 return nullptr; 4507 } 4508 case Intrinsic::dbg_value: { 4509 const DbgValueInst &DI = cast<DbgValueInst>(I); 4510 assert(DI.getVariable() && "Missing variable"); 4511 4512 DILocalVariable *Variable = DI.getVariable(); 4513 DIExpression *Expression = DI.getExpression(); 4514 uint64_t Offset = DI.getOffset(); 4515 const Value *V = DI.getValue(); 4516 if (!V) 4517 return nullptr; 4518 4519 SDDbgValue *SDV; 4520 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4521 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4522 SDNodeOrder); 4523 DAG.AddDbgValue(SDV, nullptr, false); 4524 } else { 4525 // Do not use getValue() in here; we don't want to generate code at 4526 // this point if it hasn't been done yet. 4527 SDValue N = NodeMap[V]; 4528 if (!N.getNode() && isa<Argument>(V)) 4529 // Check unused arguments map. 4530 N = UnusedArgNodeMap[V]; 4531 if (N.getNode()) { 4532 // A dbg.value for an alloca is always indirect. 4533 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4534 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4535 IsIndirect, N)) { 4536 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4537 IsIndirect, Offset, dl, SDNodeOrder); 4538 DAG.AddDbgValue(SDV, N.getNode(), false); 4539 } 4540 } else if (!V->use_empty() ) { 4541 // Do not call getValue(V) yet, as we don't want to generate code. 4542 // Remember it for later. 4543 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4544 DanglingDebugInfoMap[V] = DDI; 4545 } else { 4546 // We may expand this to cover more cases. One case where we have no 4547 // data available is an unreferenced parameter. 4548 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4549 } 4550 } 4551 4552 // Build a debug info table entry. 4553 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4554 V = BCI->getOperand(0); 4555 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4556 // Don't handle byval struct arguments or VLAs, for example. 4557 if (!AI) { 4558 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4559 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4560 return nullptr; 4561 } 4562 DenseMap<const AllocaInst*, int>::iterator SI = 4563 FuncInfo.StaticAllocaMap.find(AI); 4564 if (SI == FuncInfo.StaticAllocaMap.end()) 4565 return nullptr; // VLAs. 4566 return nullptr; 4567 } 4568 4569 case Intrinsic::eh_typeid_for: { 4570 // Find the type id for the given typeinfo. 4571 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4572 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4573 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4574 setValue(&I, Res); 4575 return nullptr; 4576 } 4577 4578 case Intrinsic::eh_return_i32: 4579 case Intrinsic::eh_return_i64: 4580 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4581 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4582 MVT::Other, 4583 getControlRoot(), 4584 getValue(I.getArgOperand(0)), 4585 getValue(I.getArgOperand(1)))); 4586 return nullptr; 4587 case Intrinsic::eh_unwind_init: 4588 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4589 return nullptr; 4590 case Intrinsic::eh_dwarf_cfa: { 4591 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4592 TLI.getPointerTy(DAG.getDataLayout())); 4593 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4594 CfaArg.getValueType(), 4595 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4596 CfaArg.getValueType()), 4597 CfaArg); 4598 SDValue FA = DAG.getNode( 4599 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4600 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4601 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4602 FA, Offset)); 4603 return nullptr; 4604 } 4605 case Intrinsic::eh_sjlj_callsite: { 4606 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4607 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4608 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4609 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4610 4611 MMI.setCurrentCallSite(CI->getZExtValue()); 4612 return nullptr; 4613 } 4614 case Intrinsic::eh_sjlj_functioncontext: { 4615 // Get and store the index of the function context. 4616 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4617 AllocaInst *FnCtx = 4618 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4619 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4620 MFI->setFunctionContextIndex(FI); 4621 return nullptr; 4622 } 4623 case Intrinsic::eh_sjlj_setjmp: { 4624 SDValue Ops[2]; 4625 Ops[0] = getRoot(); 4626 Ops[1] = getValue(I.getArgOperand(0)); 4627 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4628 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4629 setValue(&I, Op.getValue(0)); 4630 DAG.setRoot(Op.getValue(1)); 4631 return nullptr; 4632 } 4633 case Intrinsic::eh_sjlj_longjmp: { 4634 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4635 getRoot(), getValue(I.getArgOperand(0)))); 4636 return nullptr; 4637 } 4638 case Intrinsic::eh_sjlj_setup_dispatch: { 4639 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4640 getRoot())); 4641 return nullptr; 4642 } 4643 4644 case Intrinsic::masked_gather: 4645 visitMaskedGather(I); 4646 return nullptr; 4647 case Intrinsic::masked_load: 4648 visitMaskedLoad(I); 4649 return nullptr; 4650 case Intrinsic::masked_scatter: 4651 visitMaskedScatter(I); 4652 return nullptr; 4653 case Intrinsic::masked_store: 4654 visitMaskedStore(I); 4655 return nullptr; 4656 case Intrinsic::x86_mmx_pslli_w: 4657 case Intrinsic::x86_mmx_pslli_d: 4658 case Intrinsic::x86_mmx_pslli_q: 4659 case Intrinsic::x86_mmx_psrli_w: 4660 case Intrinsic::x86_mmx_psrli_d: 4661 case Intrinsic::x86_mmx_psrli_q: 4662 case Intrinsic::x86_mmx_psrai_w: 4663 case Intrinsic::x86_mmx_psrai_d: { 4664 SDValue ShAmt = getValue(I.getArgOperand(1)); 4665 if (isa<ConstantSDNode>(ShAmt)) { 4666 visitTargetIntrinsic(I, Intrinsic); 4667 return nullptr; 4668 } 4669 unsigned NewIntrinsic = 0; 4670 EVT ShAmtVT = MVT::v2i32; 4671 switch (Intrinsic) { 4672 case Intrinsic::x86_mmx_pslli_w: 4673 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4674 break; 4675 case Intrinsic::x86_mmx_pslli_d: 4676 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4677 break; 4678 case Intrinsic::x86_mmx_pslli_q: 4679 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4680 break; 4681 case Intrinsic::x86_mmx_psrli_w: 4682 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4683 break; 4684 case Intrinsic::x86_mmx_psrli_d: 4685 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4686 break; 4687 case Intrinsic::x86_mmx_psrli_q: 4688 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4689 break; 4690 case Intrinsic::x86_mmx_psrai_w: 4691 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4692 break; 4693 case Intrinsic::x86_mmx_psrai_d: 4694 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4695 break; 4696 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4697 } 4698 4699 // The vector shift intrinsics with scalars uses 32b shift amounts but 4700 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4701 // to be zero. 4702 // We must do this early because v2i32 is not a legal type. 4703 SDValue ShOps[2]; 4704 ShOps[0] = ShAmt; 4705 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4706 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4707 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4708 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4709 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4710 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4711 getValue(I.getArgOperand(0)), ShAmt); 4712 setValue(&I, Res); 4713 return nullptr; 4714 } 4715 case Intrinsic::convertff: 4716 case Intrinsic::convertfsi: 4717 case Intrinsic::convertfui: 4718 case Intrinsic::convertsif: 4719 case Intrinsic::convertuif: 4720 case Intrinsic::convertss: 4721 case Intrinsic::convertsu: 4722 case Intrinsic::convertus: 4723 case Intrinsic::convertuu: { 4724 ISD::CvtCode Code = ISD::CVT_INVALID; 4725 switch (Intrinsic) { 4726 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4727 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4728 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4729 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4730 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4731 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4732 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4733 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4734 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4735 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4736 } 4737 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4738 const Value *Op1 = I.getArgOperand(0); 4739 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4740 DAG.getValueType(DestVT), 4741 DAG.getValueType(getValue(Op1).getValueType()), 4742 getValue(I.getArgOperand(1)), 4743 getValue(I.getArgOperand(2)), 4744 Code); 4745 setValue(&I, Res); 4746 return nullptr; 4747 } 4748 case Intrinsic::powi: 4749 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4750 getValue(I.getArgOperand(1)), DAG)); 4751 return nullptr; 4752 case Intrinsic::log: 4753 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4754 return nullptr; 4755 case Intrinsic::log2: 4756 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4757 return nullptr; 4758 case Intrinsic::log10: 4759 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4760 return nullptr; 4761 case Intrinsic::exp: 4762 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4763 return nullptr; 4764 case Intrinsic::exp2: 4765 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4766 return nullptr; 4767 case Intrinsic::pow: 4768 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4769 getValue(I.getArgOperand(1)), DAG, TLI)); 4770 return nullptr; 4771 case Intrinsic::sqrt: 4772 case Intrinsic::fabs: 4773 case Intrinsic::sin: 4774 case Intrinsic::cos: 4775 case Intrinsic::floor: 4776 case Intrinsic::ceil: 4777 case Intrinsic::trunc: 4778 case Intrinsic::rint: 4779 case Intrinsic::nearbyint: 4780 case Intrinsic::round: { 4781 unsigned Opcode; 4782 switch (Intrinsic) { 4783 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4784 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4785 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4786 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4787 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4788 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4789 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4790 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4791 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4792 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4793 case Intrinsic::round: Opcode = ISD::FROUND; break; 4794 } 4795 4796 setValue(&I, DAG.getNode(Opcode, sdl, 4797 getValue(I.getArgOperand(0)).getValueType(), 4798 getValue(I.getArgOperand(0)))); 4799 return nullptr; 4800 } 4801 case Intrinsic::minnum: 4802 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4803 getValue(I.getArgOperand(0)).getValueType(), 4804 getValue(I.getArgOperand(0)), 4805 getValue(I.getArgOperand(1)))); 4806 return nullptr; 4807 case Intrinsic::maxnum: 4808 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4809 getValue(I.getArgOperand(0)).getValueType(), 4810 getValue(I.getArgOperand(0)), 4811 getValue(I.getArgOperand(1)))); 4812 return nullptr; 4813 case Intrinsic::copysign: 4814 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4815 getValue(I.getArgOperand(0)).getValueType(), 4816 getValue(I.getArgOperand(0)), 4817 getValue(I.getArgOperand(1)))); 4818 return nullptr; 4819 case Intrinsic::fma: 4820 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4821 getValue(I.getArgOperand(0)).getValueType(), 4822 getValue(I.getArgOperand(0)), 4823 getValue(I.getArgOperand(1)), 4824 getValue(I.getArgOperand(2)))); 4825 return nullptr; 4826 case Intrinsic::fmuladd: { 4827 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4828 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4829 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4830 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4831 getValue(I.getArgOperand(0)).getValueType(), 4832 getValue(I.getArgOperand(0)), 4833 getValue(I.getArgOperand(1)), 4834 getValue(I.getArgOperand(2)))); 4835 } else { 4836 // TODO: Intrinsic calls should have fast-math-flags. 4837 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4838 getValue(I.getArgOperand(0)).getValueType(), 4839 getValue(I.getArgOperand(0)), 4840 getValue(I.getArgOperand(1))); 4841 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4842 getValue(I.getArgOperand(0)).getValueType(), 4843 Mul, 4844 getValue(I.getArgOperand(2))); 4845 setValue(&I, Add); 4846 } 4847 return nullptr; 4848 } 4849 case Intrinsic::convert_to_fp16: 4850 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4851 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4852 getValue(I.getArgOperand(0)), 4853 DAG.getTargetConstant(0, sdl, 4854 MVT::i32)))); 4855 return nullptr; 4856 case Intrinsic::convert_from_fp16: 4857 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4858 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4859 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4860 getValue(I.getArgOperand(0))))); 4861 return nullptr; 4862 case Intrinsic::pcmarker: { 4863 SDValue Tmp = getValue(I.getArgOperand(0)); 4864 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4865 return nullptr; 4866 } 4867 case Intrinsic::readcyclecounter: { 4868 SDValue Op = getRoot(); 4869 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4870 DAG.getVTList(MVT::i64, MVT::Other), Op); 4871 setValue(&I, Res); 4872 DAG.setRoot(Res.getValue(1)); 4873 return nullptr; 4874 } 4875 case Intrinsic::bswap: 4876 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4877 getValue(I.getArgOperand(0)).getValueType(), 4878 getValue(I.getArgOperand(0)))); 4879 return nullptr; 4880 case Intrinsic::uabsdiff: 4881 setValue(&I, DAG.getNode(ISD::UABSDIFF, sdl, 4882 getValue(I.getArgOperand(0)).getValueType(), 4883 getValue(I.getArgOperand(0)), 4884 getValue(I.getArgOperand(1)))); 4885 return nullptr; 4886 case Intrinsic::sabsdiff: 4887 setValue(&I, DAG.getNode(ISD::SABSDIFF, sdl, 4888 getValue(I.getArgOperand(0)).getValueType(), 4889 getValue(I.getArgOperand(0)), 4890 getValue(I.getArgOperand(1)))); 4891 return nullptr; 4892 case Intrinsic::cttz: { 4893 SDValue Arg = getValue(I.getArgOperand(0)); 4894 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4895 EVT Ty = Arg.getValueType(); 4896 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4897 sdl, Ty, Arg)); 4898 return nullptr; 4899 } 4900 case Intrinsic::ctlz: { 4901 SDValue Arg = getValue(I.getArgOperand(0)); 4902 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4903 EVT Ty = Arg.getValueType(); 4904 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4905 sdl, Ty, Arg)); 4906 return nullptr; 4907 } 4908 case Intrinsic::ctpop: { 4909 SDValue Arg = getValue(I.getArgOperand(0)); 4910 EVT Ty = Arg.getValueType(); 4911 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4912 return nullptr; 4913 } 4914 case Intrinsic::stacksave: { 4915 SDValue Op = getRoot(); 4916 Res = DAG.getNode( 4917 ISD::STACKSAVE, sdl, 4918 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4919 setValue(&I, Res); 4920 DAG.setRoot(Res.getValue(1)); 4921 return nullptr; 4922 } 4923 case Intrinsic::stackrestore: { 4924 Res = getValue(I.getArgOperand(0)); 4925 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4926 return nullptr; 4927 } 4928 case Intrinsic::stackprotector: { 4929 // Emit code into the DAG to store the stack guard onto the stack. 4930 MachineFunction &MF = DAG.getMachineFunction(); 4931 MachineFrameInfo *MFI = MF.getFrameInfo(); 4932 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4933 SDValue Src, Chain = getRoot(); 4934 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4935 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4936 4937 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4938 // global variable __stack_chk_guard. 4939 if (!GV) 4940 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4941 if (BC->getOpcode() == Instruction::BitCast) 4942 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4943 4944 if (GV && TLI.useLoadStackGuardNode()) { 4945 // Emit a LOAD_STACK_GUARD node. 4946 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4947 sdl, PtrTy, Chain); 4948 MachinePointerInfo MPInfo(GV); 4949 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4950 unsigned Flags = MachineMemOperand::MOLoad | 4951 MachineMemOperand::MOInvariant; 4952 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4953 PtrTy.getSizeInBits() / 8, 4954 DAG.getEVTAlignment(PtrTy)); 4955 Node->setMemRefs(MemRefs, MemRefs + 1); 4956 4957 // Copy the guard value to a virtual register so that it can be 4958 // retrieved in the epilogue. 4959 Src = SDValue(Node, 0); 4960 const TargetRegisterClass *RC = 4961 TLI.getRegClassFor(Src.getSimpleValueType()); 4962 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4963 4964 SPDescriptor.setGuardReg(Reg); 4965 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4966 } else { 4967 Src = getValue(I.getArgOperand(0)); // The guard's value. 4968 } 4969 4970 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4971 4972 int FI = FuncInfo.StaticAllocaMap[Slot]; 4973 MFI->setStackProtectorIndex(FI); 4974 4975 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4976 4977 // Store the stack protector onto the stack. 4978 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 4979 DAG.getMachineFunction(), FI), 4980 true, false, 0); 4981 setValue(&I, Res); 4982 DAG.setRoot(Res); 4983 return nullptr; 4984 } 4985 case Intrinsic::objectsize: { 4986 // If we don't know by now, we're never going to know. 4987 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4988 4989 assert(CI && "Non-constant type in __builtin_object_size?"); 4990 4991 SDValue Arg = getValue(I.getCalledValue()); 4992 EVT Ty = Arg.getValueType(); 4993 4994 if (CI->isZero()) 4995 Res = DAG.getConstant(-1ULL, sdl, Ty); 4996 else 4997 Res = DAG.getConstant(0, sdl, Ty); 4998 4999 setValue(&I, Res); 5000 return nullptr; 5001 } 5002 case Intrinsic::annotation: 5003 case Intrinsic::ptr_annotation: 5004 // Drop the intrinsic, but forward the value 5005 setValue(&I, getValue(I.getOperand(0))); 5006 return nullptr; 5007 case Intrinsic::assume: 5008 case Intrinsic::var_annotation: 5009 // Discard annotate attributes and assumptions 5010 return nullptr; 5011 5012 case Intrinsic::init_trampoline: { 5013 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5014 5015 SDValue Ops[6]; 5016 Ops[0] = getRoot(); 5017 Ops[1] = getValue(I.getArgOperand(0)); 5018 Ops[2] = getValue(I.getArgOperand(1)); 5019 Ops[3] = getValue(I.getArgOperand(2)); 5020 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5021 Ops[5] = DAG.getSrcValue(F); 5022 5023 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5024 5025 DAG.setRoot(Res); 5026 return nullptr; 5027 } 5028 case Intrinsic::adjust_trampoline: { 5029 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5030 TLI.getPointerTy(DAG.getDataLayout()), 5031 getValue(I.getArgOperand(0)))); 5032 return nullptr; 5033 } 5034 case Intrinsic::gcroot: 5035 if (GFI) { 5036 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5037 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5038 5039 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5040 GFI->addStackRoot(FI->getIndex(), TypeMap); 5041 } 5042 return nullptr; 5043 case Intrinsic::gcread: 5044 case Intrinsic::gcwrite: 5045 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5046 case Intrinsic::flt_rounds: 5047 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5048 return nullptr; 5049 5050 case Intrinsic::expect: { 5051 // Just replace __builtin_expect(exp, c) with EXP. 5052 setValue(&I, getValue(I.getArgOperand(0))); 5053 return nullptr; 5054 } 5055 5056 case Intrinsic::debugtrap: 5057 case Intrinsic::trap: { 5058 StringRef TrapFuncName = 5059 I.getAttributes() 5060 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 5061 .getValueAsString(); 5062 if (TrapFuncName.empty()) { 5063 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5064 ISD::TRAP : ISD::DEBUGTRAP; 5065 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5066 return nullptr; 5067 } 5068 TargetLowering::ArgListTy Args; 5069 5070 TargetLowering::CallLoweringInfo CLI(DAG); 5071 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5072 CallingConv::C, I.getType(), 5073 DAG.getExternalSymbol(TrapFuncName.data(), 5074 TLI.getPointerTy(DAG.getDataLayout())), 5075 std::move(Args), 0); 5076 5077 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5078 DAG.setRoot(Result.second); 5079 return nullptr; 5080 } 5081 5082 case Intrinsic::uadd_with_overflow: 5083 case Intrinsic::sadd_with_overflow: 5084 case Intrinsic::usub_with_overflow: 5085 case Intrinsic::ssub_with_overflow: 5086 case Intrinsic::umul_with_overflow: 5087 case Intrinsic::smul_with_overflow: { 5088 ISD::NodeType Op; 5089 switch (Intrinsic) { 5090 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5091 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5092 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5093 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5094 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5095 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5096 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5097 } 5098 SDValue Op1 = getValue(I.getArgOperand(0)); 5099 SDValue Op2 = getValue(I.getArgOperand(1)); 5100 5101 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5102 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5103 return nullptr; 5104 } 5105 case Intrinsic::prefetch: { 5106 SDValue Ops[5]; 5107 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5108 Ops[0] = getRoot(); 5109 Ops[1] = getValue(I.getArgOperand(0)); 5110 Ops[2] = getValue(I.getArgOperand(1)); 5111 Ops[3] = getValue(I.getArgOperand(2)); 5112 Ops[4] = getValue(I.getArgOperand(3)); 5113 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5114 DAG.getVTList(MVT::Other), Ops, 5115 EVT::getIntegerVT(*Context, 8), 5116 MachinePointerInfo(I.getArgOperand(0)), 5117 0, /* align */ 5118 false, /* volatile */ 5119 rw==0, /* read */ 5120 rw==1)); /* write */ 5121 return nullptr; 5122 } 5123 case Intrinsic::lifetime_start: 5124 case Intrinsic::lifetime_end: { 5125 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5126 // Stack coloring is not enabled in O0, discard region information. 5127 if (TM.getOptLevel() == CodeGenOpt::None) 5128 return nullptr; 5129 5130 SmallVector<Value *, 4> Allocas; 5131 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5132 5133 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5134 E = Allocas.end(); Object != E; ++Object) { 5135 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5136 5137 // Could not find an Alloca. 5138 if (!LifetimeObject) 5139 continue; 5140 5141 // First check that the Alloca is static, otherwise it won't have a 5142 // valid frame index. 5143 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5144 if (SI == FuncInfo.StaticAllocaMap.end()) 5145 return nullptr; 5146 5147 int FI = SI->second; 5148 5149 SDValue Ops[2]; 5150 Ops[0] = getRoot(); 5151 Ops[1] = 5152 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5153 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5154 5155 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5156 DAG.setRoot(Res); 5157 } 5158 return nullptr; 5159 } 5160 case Intrinsic::invariant_start: 5161 // Discard region information. 5162 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5163 return nullptr; 5164 case Intrinsic::invariant_end: 5165 // Discard region information. 5166 return nullptr; 5167 case Intrinsic::stackprotectorcheck: { 5168 // Do not actually emit anything for this basic block. Instead we initialize 5169 // the stack protector descriptor and export the guard variable so we can 5170 // access it in FinishBasicBlock. 5171 const BasicBlock *BB = I.getParent(); 5172 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5173 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5174 5175 // Flush our exports since we are going to process a terminator. 5176 (void)getControlRoot(); 5177 return nullptr; 5178 } 5179 case Intrinsic::clear_cache: 5180 return TLI.getClearCacheBuiltinName(); 5181 case Intrinsic::donothing: 5182 // ignore 5183 return nullptr; 5184 case Intrinsic::experimental_stackmap: { 5185 visitStackmap(I); 5186 return nullptr; 5187 } 5188 case Intrinsic::experimental_patchpoint_void: 5189 case Intrinsic::experimental_patchpoint_i64: { 5190 visitPatchpoint(&I); 5191 return nullptr; 5192 } 5193 case Intrinsic::experimental_gc_statepoint: { 5194 visitStatepoint(I); 5195 return nullptr; 5196 } 5197 case Intrinsic::experimental_gc_result_int: 5198 case Intrinsic::experimental_gc_result_float: 5199 case Intrinsic::experimental_gc_result_ptr: 5200 case Intrinsic::experimental_gc_result: { 5201 visitGCResult(I); 5202 return nullptr; 5203 } 5204 case Intrinsic::experimental_gc_relocate: { 5205 visitGCRelocate(I); 5206 return nullptr; 5207 } 5208 case Intrinsic::instrprof_increment: 5209 llvm_unreachable("instrprof failed to lower an increment"); 5210 5211 case Intrinsic::localescape: { 5212 MachineFunction &MF = DAG.getMachineFunction(); 5213 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5214 5215 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5216 // is the same on all targets. 5217 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5218 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5219 if (isa<ConstantPointerNull>(Arg)) 5220 continue; // Skip null pointers. They represent a hole in index space. 5221 AllocaInst *Slot = cast<AllocaInst>(Arg); 5222 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5223 "can only escape static allocas"); 5224 int FI = FuncInfo.StaticAllocaMap[Slot]; 5225 MCSymbol *FrameAllocSym = 5226 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5227 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5228 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5229 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5230 .addSym(FrameAllocSym) 5231 .addFrameIndex(FI); 5232 } 5233 5234 return nullptr; 5235 } 5236 5237 case Intrinsic::localrecover: { 5238 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5239 MachineFunction &MF = DAG.getMachineFunction(); 5240 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5241 5242 // Get the symbol that defines the frame offset. 5243 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5244 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5245 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5246 MCSymbol *FrameAllocSym = 5247 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5248 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5249 5250 // Create a MCSymbol for the label to avoid any target lowering 5251 // that would make this PC relative. 5252 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5253 SDValue OffsetVal = 5254 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5255 5256 // Add the offset to the FP. 5257 Value *FP = I.getArgOperand(1); 5258 SDValue FPVal = getValue(FP); 5259 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5260 setValue(&I, Add); 5261 5262 return nullptr; 5263 } 5264 5265 case Intrinsic::eh_exceptionpointer: 5266 case Intrinsic::eh_exceptioncode: { 5267 // Get the exception pointer vreg, copy from it, and resize it to fit. 5268 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5269 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5270 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5271 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5272 SDValue N = 5273 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5274 if (Intrinsic == Intrinsic::eh_exceptioncode) 5275 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5276 setValue(&I, N); 5277 return nullptr; 5278 } 5279 } 5280 } 5281 5282 std::pair<SDValue, SDValue> 5283 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5284 const BasicBlock *EHPadBB) { 5285 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5286 MCSymbol *BeginLabel = nullptr; 5287 5288 if (EHPadBB) { 5289 // Insert a label before the invoke call to mark the try range. This can be 5290 // used to detect deletion of the invoke via the MachineModuleInfo. 5291 BeginLabel = MMI.getContext().createTempSymbol(); 5292 5293 // For SjLj, keep track of which landing pads go with which invokes 5294 // so as to maintain the ordering of pads in the LSDA. 5295 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5296 if (CallSiteIndex) { 5297 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5298 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5299 5300 // Now that the call site is handled, stop tracking it. 5301 MMI.setCurrentCallSite(0); 5302 } 5303 5304 // Both PendingLoads and PendingExports must be flushed here; 5305 // this call might not return. 5306 (void)getRoot(); 5307 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5308 5309 CLI.setChain(getRoot()); 5310 } 5311 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5312 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5313 5314 assert((CLI.IsTailCall || Result.second.getNode()) && 5315 "Non-null chain expected with non-tail call!"); 5316 assert((Result.second.getNode() || !Result.first.getNode()) && 5317 "Null value expected with tail call!"); 5318 5319 if (!Result.second.getNode()) { 5320 // As a special case, a null chain means that a tail call has been emitted 5321 // and the DAG root is already updated. 5322 HasTailCall = true; 5323 5324 // Since there's no actual continuation from this block, nothing can be 5325 // relying on us setting vregs for them. 5326 PendingExports.clear(); 5327 } else { 5328 DAG.setRoot(Result.second); 5329 } 5330 5331 if (EHPadBB) { 5332 // Insert a label at the end of the invoke call to mark the try range. This 5333 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5334 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5335 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5336 5337 // Inform MachineModuleInfo of range. 5338 if (MMI.hasEHFunclets()) { 5339 WinEHFuncInfo &EHInfo = 5340 MMI.getWinEHFuncInfo(DAG.getMachineFunction().getFunction()); 5341 EHInfo.addIPToStateRange(EHPadBB, BeginLabel, EndLabel); 5342 } else { 5343 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5344 } 5345 } 5346 5347 return Result; 5348 } 5349 5350 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5351 bool isTailCall, 5352 const BasicBlock *EHPadBB) { 5353 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5354 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5355 Type *RetTy = FTy->getReturnType(); 5356 5357 TargetLowering::ArgListTy Args; 5358 TargetLowering::ArgListEntry Entry; 5359 Args.reserve(CS.arg_size()); 5360 5361 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5362 i != e; ++i) { 5363 const Value *V = *i; 5364 5365 // Skip empty types 5366 if (V->getType()->isEmptyTy()) 5367 continue; 5368 5369 SDValue ArgNode = getValue(V); 5370 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5371 5372 // Skip the first return-type Attribute to get to params. 5373 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5374 Args.push_back(Entry); 5375 5376 // If we have an explicit sret argument that is an Instruction, (i.e., it 5377 // might point to function-local memory), we can't meaningfully tail-call. 5378 if (Entry.isSRet && isa<Instruction>(V)) 5379 isTailCall = false; 5380 } 5381 5382 // Check if target-independent constraints permit a tail call here. 5383 // Target-dependent constraints are checked within TLI->LowerCallTo. 5384 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5385 isTailCall = false; 5386 5387 TargetLowering::CallLoweringInfo CLI(DAG); 5388 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5389 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5390 .setTailCall(isTailCall); 5391 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5392 5393 if (Result.first.getNode()) 5394 setValue(CS.getInstruction(), Result.first); 5395 } 5396 5397 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5398 /// value is equal or not-equal to zero. 5399 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5400 for (const User *U : V->users()) { 5401 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5402 if (IC->isEquality()) 5403 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5404 if (C->isNullValue()) 5405 continue; 5406 // Unknown instruction. 5407 return false; 5408 } 5409 return true; 5410 } 5411 5412 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5413 Type *LoadTy, 5414 SelectionDAGBuilder &Builder) { 5415 5416 // Check to see if this load can be trivially constant folded, e.g. if the 5417 // input is from a string literal. 5418 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5419 // Cast pointer to the type we really want to load. 5420 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5421 PointerType::getUnqual(LoadTy)); 5422 5423 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5424 const_cast<Constant *>(LoadInput), *Builder.DL)) 5425 return Builder.getValue(LoadCst); 5426 } 5427 5428 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5429 // still constant memory, the input chain can be the entry node. 5430 SDValue Root; 5431 bool ConstantMemory = false; 5432 5433 // Do not serialize (non-volatile) loads of constant memory with anything. 5434 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5435 Root = Builder.DAG.getEntryNode(); 5436 ConstantMemory = true; 5437 } else { 5438 // Do not serialize non-volatile loads against each other. 5439 Root = Builder.DAG.getRoot(); 5440 } 5441 5442 SDValue Ptr = Builder.getValue(PtrVal); 5443 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5444 Ptr, MachinePointerInfo(PtrVal), 5445 false /*volatile*/, 5446 false /*nontemporal*/, 5447 false /*isinvariant*/, 1 /* align=1 */); 5448 5449 if (!ConstantMemory) 5450 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5451 return LoadVal; 5452 } 5453 5454 /// processIntegerCallValue - Record the value for an instruction that 5455 /// produces an integer result, converting the type where necessary. 5456 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5457 SDValue Value, 5458 bool IsSigned) { 5459 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5460 I.getType(), true); 5461 if (IsSigned) 5462 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5463 else 5464 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5465 setValue(&I, Value); 5466 } 5467 5468 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5469 /// If so, return true and lower it, otherwise return false and it will be 5470 /// lowered like a normal call. 5471 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5472 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5473 if (I.getNumArgOperands() != 3) 5474 return false; 5475 5476 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5477 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5478 !I.getArgOperand(2)->getType()->isIntegerTy() || 5479 !I.getType()->isIntegerTy()) 5480 return false; 5481 5482 const Value *Size = I.getArgOperand(2); 5483 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5484 if (CSize && CSize->getZExtValue() == 0) { 5485 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5486 I.getType(), true); 5487 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5488 return true; 5489 } 5490 5491 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5492 std::pair<SDValue, SDValue> Res = 5493 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5494 getValue(LHS), getValue(RHS), getValue(Size), 5495 MachinePointerInfo(LHS), 5496 MachinePointerInfo(RHS)); 5497 if (Res.first.getNode()) { 5498 processIntegerCallValue(I, Res.first, true); 5499 PendingLoads.push_back(Res.second); 5500 return true; 5501 } 5502 5503 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5504 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5505 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5506 bool ActuallyDoIt = true; 5507 MVT LoadVT; 5508 Type *LoadTy; 5509 switch (CSize->getZExtValue()) { 5510 default: 5511 LoadVT = MVT::Other; 5512 LoadTy = nullptr; 5513 ActuallyDoIt = false; 5514 break; 5515 case 2: 5516 LoadVT = MVT::i16; 5517 LoadTy = Type::getInt16Ty(CSize->getContext()); 5518 break; 5519 case 4: 5520 LoadVT = MVT::i32; 5521 LoadTy = Type::getInt32Ty(CSize->getContext()); 5522 break; 5523 case 8: 5524 LoadVT = MVT::i64; 5525 LoadTy = Type::getInt64Ty(CSize->getContext()); 5526 break; 5527 /* 5528 case 16: 5529 LoadVT = MVT::v4i32; 5530 LoadTy = Type::getInt32Ty(CSize->getContext()); 5531 LoadTy = VectorType::get(LoadTy, 4); 5532 break; 5533 */ 5534 } 5535 5536 // This turns into unaligned loads. We only do this if the target natively 5537 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5538 // we'll only produce a small number of byte loads. 5539 5540 // Require that we can find a legal MVT, and only do this if the target 5541 // supports unaligned loads of that type. Expanding into byte loads would 5542 // bloat the code. 5543 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5544 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5545 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5546 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5547 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5548 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5549 // TODO: Check alignment of src and dest ptrs. 5550 if (!TLI.isTypeLegal(LoadVT) || 5551 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5552 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5553 ActuallyDoIt = false; 5554 } 5555 5556 if (ActuallyDoIt) { 5557 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5558 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5559 5560 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5561 ISD::SETNE); 5562 processIntegerCallValue(I, Res, false); 5563 return true; 5564 } 5565 } 5566 5567 5568 return false; 5569 } 5570 5571 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5572 /// form. If so, return true and lower it, otherwise return false and it 5573 /// will be lowered like a normal call. 5574 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5575 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5576 if (I.getNumArgOperands() != 3) 5577 return false; 5578 5579 const Value *Src = I.getArgOperand(0); 5580 const Value *Char = I.getArgOperand(1); 5581 const Value *Length = I.getArgOperand(2); 5582 if (!Src->getType()->isPointerTy() || 5583 !Char->getType()->isIntegerTy() || 5584 !Length->getType()->isIntegerTy() || 5585 !I.getType()->isPointerTy()) 5586 return false; 5587 5588 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5589 std::pair<SDValue, SDValue> Res = 5590 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5591 getValue(Src), getValue(Char), getValue(Length), 5592 MachinePointerInfo(Src)); 5593 if (Res.first.getNode()) { 5594 setValue(&I, Res.first); 5595 PendingLoads.push_back(Res.second); 5596 return true; 5597 } 5598 5599 return false; 5600 } 5601 5602 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5603 /// optimized form. If so, return true and lower it, otherwise return false 5604 /// and it will be lowered like a normal call. 5605 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5606 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5607 if (I.getNumArgOperands() != 2) 5608 return false; 5609 5610 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5611 if (!Arg0->getType()->isPointerTy() || 5612 !Arg1->getType()->isPointerTy() || 5613 !I.getType()->isPointerTy()) 5614 return false; 5615 5616 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5617 std::pair<SDValue, SDValue> Res = 5618 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5619 getValue(Arg0), getValue(Arg1), 5620 MachinePointerInfo(Arg0), 5621 MachinePointerInfo(Arg1), isStpcpy); 5622 if (Res.first.getNode()) { 5623 setValue(&I, Res.first); 5624 DAG.setRoot(Res.second); 5625 return true; 5626 } 5627 5628 return false; 5629 } 5630 5631 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5632 /// If so, return true and lower it, otherwise return false and it will be 5633 /// lowered like a normal call. 5634 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5635 // Verify that the prototype makes sense. int strcmp(void*,void*) 5636 if (I.getNumArgOperands() != 2) 5637 return false; 5638 5639 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5640 if (!Arg0->getType()->isPointerTy() || 5641 !Arg1->getType()->isPointerTy() || 5642 !I.getType()->isIntegerTy()) 5643 return false; 5644 5645 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5646 std::pair<SDValue, SDValue> Res = 5647 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5648 getValue(Arg0), getValue(Arg1), 5649 MachinePointerInfo(Arg0), 5650 MachinePointerInfo(Arg1)); 5651 if (Res.first.getNode()) { 5652 processIntegerCallValue(I, Res.first, true); 5653 PendingLoads.push_back(Res.second); 5654 return true; 5655 } 5656 5657 return false; 5658 } 5659 5660 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5661 /// form. If so, return true and lower it, otherwise return false and it 5662 /// will be lowered like a normal call. 5663 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5664 // Verify that the prototype makes sense. size_t strlen(char *) 5665 if (I.getNumArgOperands() != 1) 5666 return false; 5667 5668 const Value *Arg0 = I.getArgOperand(0); 5669 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5670 return false; 5671 5672 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5673 std::pair<SDValue, SDValue> Res = 5674 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5675 getValue(Arg0), MachinePointerInfo(Arg0)); 5676 if (Res.first.getNode()) { 5677 processIntegerCallValue(I, Res.first, false); 5678 PendingLoads.push_back(Res.second); 5679 return true; 5680 } 5681 5682 return false; 5683 } 5684 5685 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5686 /// form. If so, return true and lower it, otherwise return false and it 5687 /// will be lowered like a normal call. 5688 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5689 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5690 if (I.getNumArgOperands() != 2) 5691 return false; 5692 5693 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5694 if (!Arg0->getType()->isPointerTy() || 5695 !Arg1->getType()->isIntegerTy() || 5696 !I.getType()->isIntegerTy()) 5697 return false; 5698 5699 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5700 std::pair<SDValue, SDValue> Res = 5701 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5702 getValue(Arg0), getValue(Arg1), 5703 MachinePointerInfo(Arg0)); 5704 if (Res.first.getNode()) { 5705 processIntegerCallValue(I, Res.first, false); 5706 PendingLoads.push_back(Res.second); 5707 return true; 5708 } 5709 5710 return false; 5711 } 5712 5713 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5714 /// operation (as expected), translate it to an SDNode with the specified opcode 5715 /// and return true. 5716 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5717 unsigned Opcode) { 5718 // Sanity check that it really is a unary floating-point call. 5719 if (I.getNumArgOperands() != 1 || 5720 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5721 I.getType() != I.getArgOperand(0)->getType() || 5722 !I.onlyReadsMemory()) 5723 return false; 5724 5725 SDValue Tmp = getValue(I.getArgOperand(0)); 5726 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5727 return true; 5728 } 5729 5730 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5731 /// operation (as expected), translate it to an SDNode with the specified opcode 5732 /// and return true. 5733 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5734 unsigned Opcode) { 5735 // Sanity check that it really is a binary floating-point call. 5736 if (I.getNumArgOperands() != 2 || 5737 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5738 I.getType() != I.getArgOperand(0)->getType() || 5739 I.getType() != I.getArgOperand(1)->getType() || 5740 !I.onlyReadsMemory()) 5741 return false; 5742 5743 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5744 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5745 EVT VT = Tmp0.getValueType(); 5746 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5747 return true; 5748 } 5749 5750 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5751 // Handle inline assembly differently. 5752 if (isa<InlineAsm>(I.getCalledValue())) { 5753 visitInlineAsm(&I); 5754 return; 5755 } 5756 5757 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5758 ComputeUsesVAFloatArgument(I, &MMI); 5759 5760 const char *RenameFn = nullptr; 5761 if (Function *F = I.getCalledFunction()) { 5762 if (F->isDeclaration()) { 5763 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5764 if (unsigned IID = II->getIntrinsicID(F)) { 5765 RenameFn = visitIntrinsicCall(I, IID); 5766 if (!RenameFn) 5767 return; 5768 } 5769 } 5770 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5771 RenameFn = visitIntrinsicCall(I, IID); 5772 if (!RenameFn) 5773 return; 5774 } 5775 } 5776 5777 // Check for well-known libc/libm calls. If the function is internal, it 5778 // can't be a library call. 5779 LibFunc::Func Func; 5780 if (!F->hasLocalLinkage() && F->hasName() && 5781 LibInfo->getLibFunc(F->getName(), Func) && 5782 LibInfo->hasOptimizedCodeGen(Func)) { 5783 switch (Func) { 5784 default: break; 5785 case LibFunc::copysign: 5786 case LibFunc::copysignf: 5787 case LibFunc::copysignl: 5788 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5789 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5790 I.getType() == I.getArgOperand(0)->getType() && 5791 I.getType() == I.getArgOperand(1)->getType() && 5792 I.onlyReadsMemory()) { 5793 SDValue LHS = getValue(I.getArgOperand(0)); 5794 SDValue RHS = getValue(I.getArgOperand(1)); 5795 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5796 LHS.getValueType(), LHS, RHS)); 5797 return; 5798 } 5799 break; 5800 case LibFunc::fabs: 5801 case LibFunc::fabsf: 5802 case LibFunc::fabsl: 5803 if (visitUnaryFloatCall(I, ISD::FABS)) 5804 return; 5805 break; 5806 case LibFunc::fmin: 5807 case LibFunc::fminf: 5808 case LibFunc::fminl: 5809 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5810 return; 5811 break; 5812 case LibFunc::fmax: 5813 case LibFunc::fmaxf: 5814 case LibFunc::fmaxl: 5815 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5816 return; 5817 break; 5818 case LibFunc::sin: 5819 case LibFunc::sinf: 5820 case LibFunc::sinl: 5821 if (visitUnaryFloatCall(I, ISD::FSIN)) 5822 return; 5823 break; 5824 case LibFunc::cos: 5825 case LibFunc::cosf: 5826 case LibFunc::cosl: 5827 if (visitUnaryFloatCall(I, ISD::FCOS)) 5828 return; 5829 break; 5830 case LibFunc::sqrt: 5831 case LibFunc::sqrtf: 5832 case LibFunc::sqrtl: 5833 case LibFunc::sqrt_finite: 5834 case LibFunc::sqrtf_finite: 5835 case LibFunc::sqrtl_finite: 5836 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5837 return; 5838 break; 5839 case LibFunc::floor: 5840 case LibFunc::floorf: 5841 case LibFunc::floorl: 5842 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5843 return; 5844 break; 5845 case LibFunc::nearbyint: 5846 case LibFunc::nearbyintf: 5847 case LibFunc::nearbyintl: 5848 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5849 return; 5850 break; 5851 case LibFunc::ceil: 5852 case LibFunc::ceilf: 5853 case LibFunc::ceill: 5854 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5855 return; 5856 break; 5857 case LibFunc::rint: 5858 case LibFunc::rintf: 5859 case LibFunc::rintl: 5860 if (visitUnaryFloatCall(I, ISD::FRINT)) 5861 return; 5862 break; 5863 case LibFunc::round: 5864 case LibFunc::roundf: 5865 case LibFunc::roundl: 5866 if (visitUnaryFloatCall(I, ISD::FROUND)) 5867 return; 5868 break; 5869 case LibFunc::trunc: 5870 case LibFunc::truncf: 5871 case LibFunc::truncl: 5872 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5873 return; 5874 break; 5875 case LibFunc::log2: 5876 case LibFunc::log2f: 5877 case LibFunc::log2l: 5878 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5879 return; 5880 break; 5881 case LibFunc::exp2: 5882 case LibFunc::exp2f: 5883 case LibFunc::exp2l: 5884 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5885 return; 5886 break; 5887 case LibFunc::memcmp: 5888 if (visitMemCmpCall(I)) 5889 return; 5890 break; 5891 case LibFunc::memchr: 5892 if (visitMemChrCall(I)) 5893 return; 5894 break; 5895 case LibFunc::strcpy: 5896 if (visitStrCpyCall(I, false)) 5897 return; 5898 break; 5899 case LibFunc::stpcpy: 5900 if (visitStrCpyCall(I, true)) 5901 return; 5902 break; 5903 case LibFunc::strcmp: 5904 if (visitStrCmpCall(I)) 5905 return; 5906 break; 5907 case LibFunc::strlen: 5908 if (visitStrLenCall(I)) 5909 return; 5910 break; 5911 case LibFunc::strnlen: 5912 if (visitStrNLenCall(I)) 5913 return; 5914 break; 5915 } 5916 } 5917 } 5918 5919 SDValue Callee; 5920 if (!RenameFn) 5921 Callee = getValue(I.getCalledValue()); 5922 else 5923 Callee = DAG.getExternalSymbol( 5924 RenameFn, 5925 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5926 5927 // Check if we can potentially perform a tail call. More detailed checking is 5928 // be done within LowerCallTo, after more information about the call is known. 5929 LowerCallTo(&I, Callee, I.isTailCall()); 5930 } 5931 5932 namespace { 5933 5934 /// AsmOperandInfo - This contains information for each constraint that we are 5935 /// lowering. 5936 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5937 public: 5938 /// CallOperand - If this is the result output operand or a clobber 5939 /// this is null, otherwise it is the incoming operand to the CallInst. 5940 /// This gets modified as the asm is processed. 5941 SDValue CallOperand; 5942 5943 /// AssignedRegs - If this is a register or register class operand, this 5944 /// contains the set of register corresponding to the operand. 5945 RegsForValue AssignedRegs; 5946 5947 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5948 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5949 } 5950 5951 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5952 /// corresponds to. If there is no Value* for this operand, it returns 5953 /// MVT::Other. 5954 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5955 const DataLayout &DL) const { 5956 if (!CallOperandVal) return MVT::Other; 5957 5958 if (isa<BasicBlock>(CallOperandVal)) 5959 return TLI.getPointerTy(DL); 5960 5961 llvm::Type *OpTy = CallOperandVal->getType(); 5962 5963 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5964 // If this is an indirect operand, the operand is a pointer to the 5965 // accessed type. 5966 if (isIndirect) { 5967 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5968 if (!PtrTy) 5969 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5970 OpTy = PtrTy->getElementType(); 5971 } 5972 5973 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5974 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5975 if (STy->getNumElements() == 1) 5976 OpTy = STy->getElementType(0); 5977 5978 // If OpTy is not a single value, it may be a struct/union that we 5979 // can tile with integers. 5980 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5981 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5982 switch (BitSize) { 5983 default: break; 5984 case 1: 5985 case 8: 5986 case 16: 5987 case 32: 5988 case 64: 5989 case 128: 5990 OpTy = IntegerType::get(Context, BitSize); 5991 break; 5992 } 5993 } 5994 5995 return TLI.getValueType(DL, OpTy, true); 5996 } 5997 }; 5998 5999 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6000 6001 } // end anonymous namespace 6002 6003 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6004 /// specified operand. We prefer to assign virtual registers, to allow the 6005 /// register allocator to handle the assignment process. However, if the asm 6006 /// uses features that we can't model on machineinstrs, we have SDISel do the 6007 /// allocation. This produces generally horrible, but correct, code. 6008 /// 6009 /// OpInfo describes the operand. 6010 /// 6011 static void GetRegistersForValue(SelectionDAG &DAG, 6012 const TargetLowering &TLI, 6013 SDLoc DL, 6014 SDISelAsmOperandInfo &OpInfo) { 6015 LLVMContext &Context = *DAG.getContext(); 6016 6017 MachineFunction &MF = DAG.getMachineFunction(); 6018 SmallVector<unsigned, 4> Regs; 6019 6020 // If this is a constraint for a single physreg, or a constraint for a 6021 // register class, find it. 6022 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6023 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6024 OpInfo.ConstraintCode, 6025 OpInfo.ConstraintVT); 6026 6027 unsigned NumRegs = 1; 6028 if (OpInfo.ConstraintVT != MVT::Other) { 6029 // If this is a FP input in an integer register (or visa versa) insert a bit 6030 // cast of the input value. More generally, handle any case where the input 6031 // value disagrees with the register class we plan to stick this in. 6032 if (OpInfo.Type == InlineAsm::isInput && 6033 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6034 // Try to convert to the first EVT that the reg class contains. If the 6035 // types are identical size, use a bitcast to convert (e.g. two differing 6036 // vector types). 6037 MVT RegVT = *PhysReg.second->vt_begin(); 6038 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6039 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6040 RegVT, OpInfo.CallOperand); 6041 OpInfo.ConstraintVT = RegVT; 6042 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6043 // If the input is a FP value and we want it in FP registers, do a 6044 // bitcast to the corresponding integer type. This turns an f64 value 6045 // into i64, which can be passed with two i32 values on a 32-bit 6046 // machine. 6047 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6048 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6049 RegVT, OpInfo.CallOperand); 6050 OpInfo.ConstraintVT = RegVT; 6051 } 6052 } 6053 6054 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6055 } 6056 6057 MVT RegVT; 6058 EVT ValueVT = OpInfo.ConstraintVT; 6059 6060 // If this is a constraint for a specific physical register, like {r17}, 6061 // assign it now. 6062 if (unsigned AssignedReg = PhysReg.first) { 6063 const TargetRegisterClass *RC = PhysReg.second; 6064 if (OpInfo.ConstraintVT == MVT::Other) 6065 ValueVT = *RC->vt_begin(); 6066 6067 // Get the actual register value type. This is important, because the user 6068 // may have asked for (e.g.) the AX register in i32 type. We need to 6069 // remember that AX is actually i16 to get the right extension. 6070 RegVT = *RC->vt_begin(); 6071 6072 // This is a explicit reference to a physical register. 6073 Regs.push_back(AssignedReg); 6074 6075 // If this is an expanded reference, add the rest of the regs to Regs. 6076 if (NumRegs != 1) { 6077 TargetRegisterClass::iterator I = RC->begin(); 6078 for (; *I != AssignedReg; ++I) 6079 assert(I != RC->end() && "Didn't find reg!"); 6080 6081 // Already added the first reg. 6082 --NumRegs; ++I; 6083 for (; NumRegs; --NumRegs, ++I) { 6084 assert(I != RC->end() && "Ran out of registers to allocate!"); 6085 Regs.push_back(*I); 6086 } 6087 } 6088 6089 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6090 return; 6091 } 6092 6093 // Otherwise, if this was a reference to an LLVM register class, create vregs 6094 // for this reference. 6095 if (const TargetRegisterClass *RC = PhysReg.second) { 6096 RegVT = *RC->vt_begin(); 6097 if (OpInfo.ConstraintVT == MVT::Other) 6098 ValueVT = RegVT; 6099 6100 // Create the appropriate number of virtual registers. 6101 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6102 for (; NumRegs; --NumRegs) 6103 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6104 6105 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6106 return; 6107 } 6108 6109 // Otherwise, we couldn't allocate enough registers for this. 6110 } 6111 6112 /// visitInlineAsm - Handle a call to an InlineAsm object. 6113 /// 6114 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6115 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6116 6117 /// ConstraintOperands - Information about all of the constraints. 6118 SDISelAsmOperandInfoVector ConstraintOperands; 6119 6120 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6121 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6122 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6123 6124 bool hasMemory = false; 6125 6126 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6127 unsigned ResNo = 0; // ResNo - The result number of the next output. 6128 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6129 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6130 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6131 6132 MVT OpVT = MVT::Other; 6133 6134 // Compute the value type for each operand. 6135 switch (OpInfo.Type) { 6136 case InlineAsm::isOutput: 6137 // Indirect outputs just consume an argument. 6138 if (OpInfo.isIndirect) { 6139 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6140 break; 6141 } 6142 6143 // The return value of the call is this value. As such, there is no 6144 // corresponding argument. 6145 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6146 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6147 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6148 STy->getElementType(ResNo)); 6149 } else { 6150 assert(ResNo == 0 && "Asm only has one result!"); 6151 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6152 } 6153 ++ResNo; 6154 break; 6155 case InlineAsm::isInput: 6156 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6157 break; 6158 case InlineAsm::isClobber: 6159 // Nothing to do. 6160 break; 6161 } 6162 6163 // If this is an input or an indirect output, process the call argument. 6164 // BasicBlocks are labels, currently appearing only in asm's. 6165 if (OpInfo.CallOperandVal) { 6166 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6167 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6168 } else { 6169 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6170 } 6171 6172 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6173 DAG.getDataLayout()).getSimpleVT(); 6174 } 6175 6176 OpInfo.ConstraintVT = OpVT; 6177 6178 // Indirect operand accesses access memory. 6179 if (OpInfo.isIndirect) 6180 hasMemory = true; 6181 else { 6182 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6183 TargetLowering::ConstraintType 6184 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6185 if (CType == TargetLowering::C_Memory) { 6186 hasMemory = true; 6187 break; 6188 } 6189 } 6190 } 6191 } 6192 6193 SDValue Chain, Flag; 6194 6195 // We won't need to flush pending loads if this asm doesn't touch 6196 // memory and is nonvolatile. 6197 if (hasMemory || IA->hasSideEffects()) 6198 Chain = getRoot(); 6199 else 6200 Chain = DAG.getRoot(); 6201 6202 // Second pass over the constraints: compute which constraint option to use 6203 // and assign registers to constraints that want a specific physreg. 6204 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6205 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6206 6207 // If this is an output operand with a matching input operand, look up the 6208 // matching input. If their types mismatch, e.g. one is an integer, the 6209 // other is floating point, or their sizes are different, flag it as an 6210 // error. 6211 if (OpInfo.hasMatchingInput()) { 6212 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6213 6214 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6215 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6216 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6217 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6218 OpInfo.ConstraintVT); 6219 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6220 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6221 Input.ConstraintVT); 6222 if ((OpInfo.ConstraintVT.isInteger() != 6223 Input.ConstraintVT.isInteger()) || 6224 (MatchRC.second != InputRC.second)) { 6225 report_fatal_error("Unsupported asm: input constraint" 6226 " with a matching output constraint of" 6227 " incompatible type!"); 6228 } 6229 Input.ConstraintVT = OpInfo.ConstraintVT; 6230 } 6231 } 6232 6233 // Compute the constraint code and ConstraintType to use. 6234 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6235 6236 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6237 OpInfo.Type == InlineAsm::isClobber) 6238 continue; 6239 6240 // If this is a memory input, and if the operand is not indirect, do what we 6241 // need to to provide an address for the memory input. 6242 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6243 !OpInfo.isIndirect) { 6244 assert((OpInfo.isMultipleAlternative || 6245 (OpInfo.Type == InlineAsm::isInput)) && 6246 "Can only indirectify direct input operands!"); 6247 6248 // Memory operands really want the address of the value. If we don't have 6249 // an indirect input, put it in the constpool if we can, otherwise spill 6250 // it to a stack slot. 6251 // TODO: This isn't quite right. We need to handle these according to 6252 // the addressing mode that the constraint wants. Also, this may take 6253 // an additional register for the computation and we don't want that 6254 // either. 6255 6256 // If the operand is a float, integer, or vector constant, spill to a 6257 // constant pool entry to get its address. 6258 const Value *OpVal = OpInfo.CallOperandVal; 6259 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6260 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6261 OpInfo.CallOperand = DAG.getConstantPool( 6262 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6263 } else { 6264 // Otherwise, create a stack slot and emit a store to it before the 6265 // asm. 6266 Type *Ty = OpVal->getType(); 6267 auto &DL = DAG.getDataLayout(); 6268 uint64_t TySize = DL.getTypeAllocSize(Ty); 6269 unsigned Align = DL.getPrefTypeAlignment(Ty); 6270 MachineFunction &MF = DAG.getMachineFunction(); 6271 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6272 SDValue StackSlot = 6273 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6274 Chain = DAG.getStore( 6275 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6276 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6277 false, false, 0); 6278 OpInfo.CallOperand = StackSlot; 6279 } 6280 6281 // There is no longer a Value* corresponding to this operand. 6282 OpInfo.CallOperandVal = nullptr; 6283 6284 // It is now an indirect operand. 6285 OpInfo.isIndirect = true; 6286 } 6287 6288 // If this constraint is for a specific register, allocate it before 6289 // anything else. 6290 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6291 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6292 } 6293 6294 // Second pass - Loop over all of the operands, assigning virtual or physregs 6295 // to register class operands. 6296 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6297 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6298 6299 // C_Register operands have already been allocated, Other/Memory don't need 6300 // to be. 6301 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6302 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6303 } 6304 6305 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6306 std::vector<SDValue> AsmNodeOperands; 6307 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6308 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6309 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6310 6311 // If we have a !srcloc metadata node associated with it, we want to attach 6312 // this to the ultimately generated inline asm machineinstr. To do this, we 6313 // pass in the third operand as this (potentially null) inline asm MDNode. 6314 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6315 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6316 6317 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6318 // bits as operand 3. 6319 unsigned ExtraInfo = 0; 6320 if (IA->hasSideEffects()) 6321 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6322 if (IA->isAlignStack()) 6323 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6324 // Set the asm dialect. 6325 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6326 6327 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6328 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6329 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6330 6331 // Compute the constraint code and ConstraintType to use. 6332 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6333 6334 // Ideally, we would only check against memory constraints. However, the 6335 // meaning of an other constraint can be target-specific and we can't easily 6336 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6337 // for other constriants as well. 6338 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6339 OpInfo.ConstraintType == TargetLowering::C_Other) { 6340 if (OpInfo.Type == InlineAsm::isInput) 6341 ExtraInfo |= InlineAsm::Extra_MayLoad; 6342 else if (OpInfo.Type == InlineAsm::isOutput) 6343 ExtraInfo |= InlineAsm::Extra_MayStore; 6344 else if (OpInfo.Type == InlineAsm::isClobber) 6345 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6346 } 6347 } 6348 6349 AsmNodeOperands.push_back(DAG.getTargetConstant( 6350 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6351 6352 // Loop over all of the inputs, copying the operand values into the 6353 // appropriate registers and processing the output regs. 6354 RegsForValue RetValRegs; 6355 6356 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6357 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6358 6359 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6360 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6361 6362 switch (OpInfo.Type) { 6363 case InlineAsm::isOutput: { 6364 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6365 OpInfo.ConstraintType != TargetLowering::C_Register) { 6366 // Memory output, or 'other' output (e.g. 'X' constraint). 6367 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6368 6369 unsigned ConstraintID = 6370 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6371 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6372 "Failed to convert memory constraint code to constraint id."); 6373 6374 // Add information to the INLINEASM node to know about this output. 6375 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6376 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6377 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6378 MVT::i32)); 6379 AsmNodeOperands.push_back(OpInfo.CallOperand); 6380 break; 6381 } 6382 6383 // Otherwise, this is a register or register class output. 6384 6385 // Copy the output from the appropriate register. Find a register that 6386 // we can use. 6387 if (OpInfo.AssignedRegs.Regs.empty()) { 6388 LLVMContext &Ctx = *DAG.getContext(); 6389 Ctx.emitError(CS.getInstruction(), 6390 "couldn't allocate output register for constraint '" + 6391 Twine(OpInfo.ConstraintCode) + "'"); 6392 return; 6393 } 6394 6395 // If this is an indirect operand, store through the pointer after the 6396 // asm. 6397 if (OpInfo.isIndirect) { 6398 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6399 OpInfo.CallOperandVal)); 6400 } else { 6401 // This is the result value of the call. 6402 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6403 // Concatenate this output onto the outputs list. 6404 RetValRegs.append(OpInfo.AssignedRegs); 6405 } 6406 6407 // Add information to the INLINEASM node to know that this register is 6408 // set. 6409 OpInfo.AssignedRegs 6410 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6411 ? InlineAsm::Kind_RegDefEarlyClobber 6412 : InlineAsm::Kind_RegDef, 6413 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6414 break; 6415 } 6416 case InlineAsm::isInput: { 6417 SDValue InOperandVal = OpInfo.CallOperand; 6418 6419 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6420 // If this is required to match an output register we have already set, 6421 // just use its register. 6422 unsigned OperandNo = OpInfo.getMatchedOperand(); 6423 6424 // Scan until we find the definition we already emitted of this operand. 6425 // When we find it, create a RegsForValue operand. 6426 unsigned CurOp = InlineAsm::Op_FirstOperand; 6427 for (; OperandNo; --OperandNo) { 6428 // Advance to the next operand. 6429 unsigned OpFlag = 6430 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6431 assert((InlineAsm::isRegDefKind(OpFlag) || 6432 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6433 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6434 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6435 } 6436 6437 unsigned OpFlag = 6438 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6439 if (InlineAsm::isRegDefKind(OpFlag) || 6440 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6441 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6442 if (OpInfo.isIndirect) { 6443 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6444 LLVMContext &Ctx = *DAG.getContext(); 6445 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6446 " don't know how to handle tied " 6447 "indirect register inputs"); 6448 return; 6449 } 6450 6451 RegsForValue MatchedRegs; 6452 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6453 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6454 MatchedRegs.RegVTs.push_back(RegVT); 6455 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6456 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6457 i != e; ++i) { 6458 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6459 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6460 else { 6461 LLVMContext &Ctx = *DAG.getContext(); 6462 Ctx.emitError(CS.getInstruction(), 6463 "inline asm error: This value" 6464 " type register class is not natively supported!"); 6465 return; 6466 } 6467 } 6468 SDLoc dl = getCurSDLoc(); 6469 // Use the produced MatchedRegs object to 6470 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6471 Chain, &Flag, CS.getInstruction()); 6472 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6473 true, OpInfo.getMatchedOperand(), dl, 6474 DAG, AsmNodeOperands); 6475 break; 6476 } 6477 6478 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6479 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6480 "Unexpected number of operands"); 6481 // Add information to the INLINEASM node to know about this input. 6482 // See InlineAsm.h isUseOperandTiedToDef. 6483 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6484 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6485 OpInfo.getMatchedOperand()); 6486 AsmNodeOperands.push_back(DAG.getTargetConstant( 6487 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6488 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6489 break; 6490 } 6491 6492 // Treat indirect 'X' constraint as memory. 6493 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6494 OpInfo.isIndirect) 6495 OpInfo.ConstraintType = TargetLowering::C_Memory; 6496 6497 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6498 std::vector<SDValue> Ops; 6499 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6500 Ops, DAG); 6501 if (Ops.empty()) { 6502 LLVMContext &Ctx = *DAG.getContext(); 6503 Ctx.emitError(CS.getInstruction(), 6504 "invalid operand for inline asm constraint '" + 6505 Twine(OpInfo.ConstraintCode) + "'"); 6506 return; 6507 } 6508 6509 // Add information to the INLINEASM node to know about this input. 6510 unsigned ResOpType = 6511 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6512 AsmNodeOperands.push_back(DAG.getTargetConstant( 6513 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6514 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6515 break; 6516 } 6517 6518 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6519 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6520 assert(InOperandVal.getValueType() == 6521 TLI.getPointerTy(DAG.getDataLayout()) && 6522 "Memory operands expect pointer values"); 6523 6524 unsigned ConstraintID = 6525 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6526 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6527 "Failed to convert memory constraint code to constraint id."); 6528 6529 // Add information to the INLINEASM node to know about this input. 6530 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6531 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6532 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6533 getCurSDLoc(), 6534 MVT::i32)); 6535 AsmNodeOperands.push_back(InOperandVal); 6536 break; 6537 } 6538 6539 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6540 OpInfo.ConstraintType == TargetLowering::C_Register) && 6541 "Unknown constraint type!"); 6542 6543 // TODO: Support this. 6544 if (OpInfo.isIndirect) { 6545 LLVMContext &Ctx = *DAG.getContext(); 6546 Ctx.emitError(CS.getInstruction(), 6547 "Don't know how to handle indirect register inputs yet " 6548 "for constraint '" + 6549 Twine(OpInfo.ConstraintCode) + "'"); 6550 return; 6551 } 6552 6553 // Copy the input into the appropriate registers. 6554 if (OpInfo.AssignedRegs.Regs.empty()) { 6555 LLVMContext &Ctx = *DAG.getContext(); 6556 Ctx.emitError(CS.getInstruction(), 6557 "couldn't allocate input reg for constraint '" + 6558 Twine(OpInfo.ConstraintCode) + "'"); 6559 return; 6560 } 6561 6562 SDLoc dl = getCurSDLoc(); 6563 6564 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6565 Chain, &Flag, CS.getInstruction()); 6566 6567 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6568 dl, DAG, AsmNodeOperands); 6569 break; 6570 } 6571 case InlineAsm::isClobber: { 6572 // Add the clobbered value to the operand list, so that the register 6573 // allocator is aware that the physreg got clobbered. 6574 if (!OpInfo.AssignedRegs.Regs.empty()) 6575 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6576 false, 0, getCurSDLoc(), DAG, 6577 AsmNodeOperands); 6578 break; 6579 } 6580 } 6581 } 6582 6583 // Finish up input operands. Set the input chain and add the flag last. 6584 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6585 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6586 6587 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6588 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6589 Flag = Chain.getValue(1); 6590 6591 // If this asm returns a register value, copy the result from that register 6592 // and set it as the value of the call. 6593 if (!RetValRegs.Regs.empty()) { 6594 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6595 Chain, &Flag, CS.getInstruction()); 6596 6597 // FIXME: Why don't we do this for inline asms with MRVs? 6598 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6599 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6600 6601 // If any of the results of the inline asm is a vector, it may have the 6602 // wrong width/num elts. This can happen for register classes that can 6603 // contain multiple different value types. The preg or vreg allocated may 6604 // not have the same VT as was expected. Convert it to the right type 6605 // with bit_convert. 6606 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6607 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6608 ResultType, Val); 6609 6610 } else if (ResultType != Val.getValueType() && 6611 ResultType.isInteger() && Val.getValueType().isInteger()) { 6612 // If a result value was tied to an input value, the computed result may 6613 // have a wider width than the expected result. Extract the relevant 6614 // portion. 6615 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6616 } 6617 6618 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6619 } 6620 6621 setValue(CS.getInstruction(), Val); 6622 // Don't need to use this as a chain in this case. 6623 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6624 return; 6625 } 6626 6627 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6628 6629 // Process indirect outputs, first output all of the flagged copies out of 6630 // physregs. 6631 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6632 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6633 const Value *Ptr = IndirectStoresToEmit[i].second; 6634 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6635 Chain, &Flag, IA); 6636 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6637 } 6638 6639 // Emit the non-flagged stores from the physregs. 6640 SmallVector<SDValue, 8> OutChains; 6641 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6642 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6643 StoresToEmit[i].first, 6644 getValue(StoresToEmit[i].second), 6645 MachinePointerInfo(StoresToEmit[i].second), 6646 false, false, 0); 6647 OutChains.push_back(Val); 6648 } 6649 6650 if (!OutChains.empty()) 6651 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6652 6653 DAG.setRoot(Chain); 6654 } 6655 6656 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6657 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6658 MVT::Other, getRoot(), 6659 getValue(I.getArgOperand(0)), 6660 DAG.getSrcValue(I.getArgOperand(0)))); 6661 } 6662 6663 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6664 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6665 const DataLayout &DL = DAG.getDataLayout(); 6666 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6667 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6668 DAG.getSrcValue(I.getOperand(0)), 6669 DL.getABITypeAlignment(I.getType())); 6670 setValue(&I, V); 6671 DAG.setRoot(V.getValue(1)); 6672 } 6673 6674 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6675 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6676 MVT::Other, getRoot(), 6677 getValue(I.getArgOperand(0)), 6678 DAG.getSrcValue(I.getArgOperand(0)))); 6679 } 6680 6681 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6682 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6683 MVT::Other, getRoot(), 6684 getValue(I.getArgOperand(0)), 6685 getValue(I.getArgOperand(1)), 6686 DAG.getSrcValue(I.getArgOperand(0)), 6687 DAG.getSrcValue(I.getArgOperand(1)))); 6688 } 6689 6690 /// \brief Lower an argument list according to the target calling convention. 6691 /// 6692 /// \return A tuple of <return-value, token-chain> 6693 /// 6694 /// This is a helper for lowering intrinsics that follow a target calling 6695 /// convention or require stack pointer adjustment. Only a subset of the 6696 /// intrinsic's operands need to participate in the calling convention. 6697 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands( 6698 ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, 6699 Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) { 6700 TargetLowering::ArgListTy Args; 6701 Args.reserve(NumArgs); 6702 6703 // Populate the argument list. 6704 // Attributes for args start at offset 1, after the return attribute. 6705 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6706 ArgI != ArgE; ++ArgI) { 6707 const Value *V = CS->getOperand(ArgI); 6708 6709 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6710 6711 TargetLowering::ArgListEntry Entry; 6712 Entry.Node = getValue(V); 6713 Entry.Ty = V->getType(); 6714 Entry.setAttributes(&CS, AttrI); 6715 Args.push_back(Entry); 6716 } 6717 6718 TargetLowering::CallLoweringInfo CLI(DAG); 6719 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6720 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6721 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6722 6723 return lowerInvokable(CLI, EHPadBB); 6724 } 6725 6726 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6727 /// or patchpoint target node's operand list. 6728 /// 6729 /// Constants are converted to TargetConstants purely as an optimization to 6730 /// avoid constant materialization and register allocation. 6731 /// 6732 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6733 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6734 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6735 /// address materialization and register allocation, but may also be required 6736 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6737 /// alloca in the entry block, then the runtime may assume that the alloca's 6738 /// StackMap location can be read immediately after compilation and that the 6739 /// location is valid at any point during execution (this is similar to the 6740 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6741 /// only available in a register, then the runtime would need to trap when 6742 /// execution reaches the StackMap in order to read the alloca's location. 6743 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6744 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6745 SelectionDAGBuilder &Builder) { 6746 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6747 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6748 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6749 Ops.push_back( 6750 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6751 Ops.push_back( 6752 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6753 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6754 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6755 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6756 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6757 } else 6758 Ops.push_back(OpVal); 6759 } 6760 } 6761 6762 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6763 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6764 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6765 // [live variables...]) 6766 6767 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6768 6769 SDValue Chain, InFlag, Callee, NullPtr; 6770 SmallVector<SDValue, 32> Ops; 6771 6772 SDLoc DL = getCurSDLoc(); 6773 Callee = getValue(CI.getCalledValue()); 6774 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6775 6776 // The stackmap intrinsic only records the live variables (the arguemnts 6777 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6778 // intrinsic, this won't be lowered to a function call. This means we don't 6779 // have to worry about calling conventions and target specific lowering code. 6780 // Instead we perform the call lowering right here. 6781 // 6782 // chain, flag = CALLSEQ_START(chain, 0) 6783 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6784 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6785 // 6786 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6787 InFlag = Chain.getValue(1); 6788 6789 // Add the <id> and <numBytes> constants. 6790 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6791 Ops.push_back(DAG.getTargetConstant( 6792 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6793 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6794 Ops.push_back(DAG.getTargetConstant( 6795 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6796 MVT::i32)); 6797 6798 // Push live variables for the stack map. 6799 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6800 6801 // We are not pushing any register mask info here on the operands list, 6802 // because the stackmap doesn't clobber anything. 6803 6804 // Push the chain and the glue flag. 6805 Ops.push_back(Chain); 6806 Ops.push_back(InFlag); 6807 6808 // Create the STACKMAP node. 6809 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6810 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6811 Chain = SDValue(SM, 0); 6812 InFlag = Chain.getValue(1); 6813 6814 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6815 6816 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6817 6818 // Set the root to the target-lowered call chain. 6819 DAG.setRoot(Chain); 6820 6821 // Inform the Frame Information that we have a stackmap in this function. 6822 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6823 } 6824 6825 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6826 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6827 const BasicBlock *EHPadBB) { 6828 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6829 // i32 <numBytes>, 6830 // i8* <target>, 6831 // i32 <numArgs>, 6832 // [Args...], 6833 // [live variables...]) 6834 6835 CallingConv::ID CC = CS.getCallingConv(); 6836 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6837 bool HasDef = !CS->getType()->isVoidTy(); 6838 SDLoc dl = getCurSDLoc(); 6839 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6840 6841 // Handle immediate and symbolic callees. 6842 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6843 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6844 /*isTarget=*/true); 6845 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6846 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6847 SDLoc(SymbolicCallee), 6848 SymbolicCallee->getValueType(0)); 6849 6850 // Get the real number of arguments participating in the call <numArgs> 6851 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6852 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6853 6854 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6855 // Intrinsics include all meta-operands up to but not including CC. 6856 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6857 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6858 "Not enough arguments provided to the patchpoint intrinsic"); 6859 6860 // For AnyRegCC the arguments are lowered later on manually. 6861 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6862 Type *ReturnTy = 6863 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6864 std::pair<SDValue, SDValue> Result = lowerCallOperands( 6865 CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true); 6866 6867 SDNode *CallEnd = Result.second.getNode(); 6868 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6869 CallEnd = CallEnd->getOperand(0).getNode(); 6870 6871 /// Get a call instruction from the call sequence chain. 6872 /// Tail calls are not allowed. 6873 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6874 "Expected a callseq node."); 6875 SDNode *Call = CallEnd->getOperand(0).getNode(); 6876 bool HasGlue = Call->getGluedNode(); 6877 6878 // Replace the target specific call node with the patchable intrinsic. 6879 SmallVector<SDValue, 8> Ops; 6880 6881 // Add the <id> and <numBytes> constants. 6882 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6883 Ops.push_back(DAG.getTargetConstant( 6884 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6885 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6886 Ops.push_back(DAG.getTargetConstant( 6887 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6888 MVT::i32)); 6889 6890 // Add the callee. 6891 Ops.push_back(Callee); 6892 6893 // Adjust <numArgs> to account for any arguments that have been passed on the 6894 // stack instead. 6895 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6896 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6897 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6898 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6899 6900 // Add the calling convention 6901 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6902 6903 // Add the arguments we omitted previously. The register allocator should 6904 // place these in any free register. 6905 if (IsAnyRegCC) 6906 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6907 Ops.push_back(getValue(CS.getArgument(i))); 6908 6909 // Push the arguments from the call instruction up to the register mask. 6910 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6911 Ops.append(Call->op_begin() + 2, e); 6912 6913 // Push live variables for the stack map. 6914 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6915 6916 // Push the register mask info. 6917 if (HasGlue) 6918 Ops.push_back(*(Call->op_end()-2)); 6919 else 6920 Ops.push_back(*(Call->op_end()-1)); 6921 6922 // Push the chain (this is originally the first operand of the call, but 6923 // becomes now the last or second to last operand). 6924 Ops.push_back(*(Call->op_begin())); 6925 6926 // Push the glue flag (last operand). 6927 if (HasGlue) 6928 Ops.push_back(*(Call->op_end()-1)); 6929 6930 SDVTList NodeTys; 6931 if (IsAnyRegCC && HasDef) { 6932 // Create the return types based on the intrinsic definition 6933 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6934 SmallVector<EVT, 3> ValueVTs; 6935 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6936 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6937 6938 // There is always a chain and a glue type at the end 6939 ValueVTs.push_back(MVT::Other); 6940 ValueVTs.push_back(MVT::Glue); 6941 NodeTys = DAG.getVTList(ValueVTs); 6942 } else 6943 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6944 6945 // Replace the target specific call node with a PATCHPOINT node. 6946 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6947 dl, NodeTys, Ops); 6948 6949 // Update the NodeMap. 6950 if (HasDef) { 6951 if (IsAnyRegCC) 6952 setValue(CS.getInstruction(), SDValue(MN, 0)); 6953 else 6954 setValue(CS.getInstruction(), Result.first); 6955 } 6956 6957 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6958 // call sequence. Furthermore the location of the chain and glue can change 6959 // when the AnyReg calling convention is used and the intrinsic returns a 6960 // value. 6961 if (IsAnyRegCC && HasDef) { 6962 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6963 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6964 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6965 } else 6966 DAG.ReplaceAllUsesWith(Call, MN); 6967 DAG.DeleteNode(Call); 6968 6969 // Inform the Frame Information that we have a patchpoint in this function. 6970 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6971 } 6972 6973 /// Returns an AttributeSet representing the attributes applied to the return 6974 /// value of the given call. 6975 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6976 SmallVector<Attribute::AttrKind, 2> Attrs; 6977 if (CLI.RetSExt) 6978 Attrs.push_back(Attribute::SExt); 6979 if (CLI.RetZExt) 6980 Attrs.push_back(Attribute::ZExt); 6981 if (CLI.IsInReg) 6982 Attrs.push_back(Attribute::InReg); 6983 6984 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6985 Attrs); 6986 } 6987 6988 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6989 /// implementation, which just calls LowerCall. 6990 /// FIXME: When all targets are 6991 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6992 std::pair<SDValue, SDValue> 6993 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6994 // Handle the incoming return values from the call. 6995 CLI.Ins.clear(); 6996 Type *OrigRetTy = CLI.RetTy; 6997 SmallVector<EVT, 4> RetTys; 6998 SmallVector<uint64_t, 4> Offsets; 6999 auto &DL = CLI.DAG.getDataLayout(); 7000 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 7001 7002 SmallVector<ISD::OutputArg, 4> Outs; 7003 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 7004 7005 bool CanLowerReturn = 7006 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7007 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7008 7009 SDValue DemoteStackSlot; 7010 int DemoteStackIdx = -100; 7011 if (!CanLowerReturn) { 7012 // FIXME: equivalent assert? 7013 // assert(!CS.hasInAllocaArgument() && 7014 // "sret demotion is incompatible with inalloca"); 7015 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7016 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7017 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7018 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7019 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7020 7021 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7022 ArgListEntry Entry; 7023 Entry.Node = DemoteStackSlot; 7024 Entry.Ty = StackSlotPtrType; 7025 Entry.isSExt = false; 7026 Entry.isZExt = false; 7027 Entry.isInReg = false; 7028 Entry.isSRet = true; 7029 Entry.isNest = false; 7030 Entry.isByVal = false; 7031 Entry.isReturned = false; 7032 Entry.Alignment = Align; 7033 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7034 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7035 7036 // sret demotion isn't compatible with tail-calls, since the sret argument 7037 // points into the callers stack frame. 7038 CLI.IsTailCall = false; 7039 } else { 7040 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7041 EVT VT = RetTys[I]; 7042 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7043 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7044 for (unsigned i = 0; i != NumRegs; ++i) { 7045 ISD::InputArg MyFlags; 7046 MyFlags.VT = RegisterVT; 7047 MyFlags.ArgVT = VT; 7048 MyFlags.Used = CLI.IsReturnValueUsed; 7049 if (CLI.RetSExt) 7050 MyFlags.Flags.setSExt(); 7051 if (CLI.RetZExt) 7052 MyFlags.Flags.setZExt(); 7053 if (CLI.IsInReg) 7054 MyFlags.Flags.setInReg(); 7055 CLI.Ins.push_back(MyFlags); 7056 } 7057 } 7058 } 7059 7060 // Handle all of the outgoing arguments. 7061 CLI.Outs.clear(); 7062 CLI.OutVals.clear(); 7063 ArgListTy &Args = CLI.getArgs(); 7064 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7065 SmallVector<EVT, 4> ValueVTs; 7066 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7067 Type *FinalType = Args[i].Ty; 7068 if (Args[i].isByVal) 7069 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7070 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7071 FinalType, CLI.CallConv, CLI.IsVarArg); 7072 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7073 ++Value) { 7074 EVT VT = ValueVTs[Value]; 7075 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7076 SDValue Op = SDValue(Args[i].Node.getNode(), 7077 Args[i].Node.getResNo() + Value); 7078 ISD::ArgFlagsTy Flags; 7079 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7080 7081 if (Args[i].isZExt) 7082 Flags.setZExt(); 7083 if (Args[i].isSExt) 7084 Flags.setSExt(); 7085 if (Args[i].isInReg) 7086 Flags.setInReg(); 7087 if (Args[i].isSRet) 7088 Flags.setSRet(); 7089 if (Args[i].isByVal) 7090 Flags.setByVal(); 7091 if (Args[i].isInAlloca) { 7092 Flags.setInAlloca(); 7093 // Set the byval flag for CCAssignFn callbacks that don't know about 7094 // inalloca. This way we can know how many bytes we should've allocated 7095 // and how many bytes a callee cleanup function will pop. If we port 7096 // inalloca to more targets, we'll have to add custom inalloca handling 7097 // in the various CC lowering callbacks. 7098 Flags.setByVal(); 7099 } 7100 if (Args[i].isByVal || Args[i].isInAlloca) { 7101 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7102 Type *ElementTy = Ty->getElementType(); 7103 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7104 // For ByVal, alignment should come from FE. BE will guess if this 7105 // info is not there but there are cases it cannot get right. 7106 unsigned FrameAlign; 7107 if (Args[i].Alignment) 7108 FrameAlign = Args[i].Alignment; 7109 else 7110 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7111 Flags.setByValAlign(FrameAlign); 7112 } 7113 if (Args[i].isNest) 7114 Flags.setNest(); 7115 if (NeedsRegBlock) 7116 Flags.setInConsecutiveRegs(); 7117 Flags.setOrigAlign(OriginalAlignment); 7118 7119 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7120 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7121 SmallVector<SDValue, 4> Parts(NumParts); 7122 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7123 7124 if (Args[i].isSExt) 7125 ExtendKind = ISD::SIGN_EXTEND; 7126 else if (Args[i].isZExt) 7127 ExtendKind = ISD::ZERO_EXTEND; 7128 7129 // Conservatively only handle 'returned' on non-vectors for now 7130 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7131 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7132 "unexpected use of 'returned'"); 7133 // Before passing 'returned' to the target lowering code, ensure that 7134 // either the register MVT and the actual EVT are the same size or that 7135 // the return value and argument are extended in the same way; in these 7136 // cases it's safe to pass the argument register value unchanged as the 7137 // return register value (although it's at the target's option whether 7138 // to do so) 7139 // TODO: allow code generation to take advantage of partially preserved 7140 // registers rather than clobbering the entire register when the 7141 // parameter extension method is not compatible with the return 7142 // extension method 7143 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7144 (ExtendKind != ISD::ANY_EXTEND && 7145 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7146 Flags.setReturned(); 7147 } 7148 7149 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7150 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7151 7152 for (unsigned j = 0; j != NumParts; ++j) { 7153 // if it isn't first piece, alignment must be 1 7154 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7155 i < CLI.NumFixedArgs, 7156 i, j*Parts[j].getValueType().getStoreSize()); 7157 if (NumParts > 1 && j == 0) 7158 MyFlags.Flags.setSplit(); 7159 else if (j != 0) 7160 MyFlags.Flags.setOrigAlign(1); 7161 7162 CLI.Outs.push_back(MyFlags); 7163 CLI.OutVals.push_back(Parts[j]); 7164 } 7165 7166 if (NeedsRegBlock && Value == NumValues - 1) 7167 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7168 } 7169 } 7170 7171 SmallVector<SDValue, 4> InVals; 7172 CLI.Chain = LowerCall(CLI, InVals); 7173 7174 // Verify that the target's LowerCall behaved as expected. 7175 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7176 "LowerCall didn't return a valid chain!"); 7177 assert((!CLI.IsTailCall || InVals.empty()) && 7178 "LowerCall emitted a return value for a tail call!"); 7179 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7180 "LowerCall didn't emit the correct number of values!"); 7181 7182 // For a tail call, the return value is merely live-out and there aren't 7183 // any nodes in the DAG representing it. Return a special value to 7184 // indicate that a tail call has been emitted and no more Instructions 7185 // should be processed in the current block. 7186 if (CLI.IsTailCall) { 7187 CLI.DAG.setRoot(CLI.Chain); 7188 return std::make_pair(SDValue(), SDValue()); 7189 } 7190 7191 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7192 assert(InVals[i].getNode() && 7193 "LowerCall emitted a null value!"); 7194 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7195 "LowerCall emitted a value with the wrong type!"); 7196 }); 7197 7198 SmallVector<SDValue, 4> ReturnValues; 7199 if (!CanLowerReturn) { 7200 // The instruction result is the result of loading from the 7201 // hidden sret parameter. 7202 SmallVector<EVT, 1> PVTs; 7203 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7204 7205 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7206 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7207 EVT PtrVT = PVTs[0]; 7208 7209 unsigned NumValues = RetTys.size(); 7210 ReturnValues.resize(NumValues); 7211 SmallVector<SDValue, 4> Chains(NumValues); 7212 7213 for (unsigned i = 0; i < NumValues; ++i) { 7214 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7215 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7216 PtrVT)); 7217 SDValue L = CLI.DAG.getLoad( 7218 RetTys[i], CLI.DL, CLI.Chain, Add, 7219 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7220 DemoteStackIdx, Offsets[i]), 7221 false, false, false, 1); 7222 ReturnValues[i] = L; 7223 Chains[i] = L.getValue(1); 7224 } 7225 7226 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7227 } else { 7228 // Collect the legal value parts into potentially illegal values 7229 // that correspond to the original function's return values. 7230 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7231 if (CLI.RetSExt) 7232 AssertOp = ISD::AssertSext; 7233 else if (CLI.RetZExt) 7234 AssertOp = ISD::AssertZext; 7235 unsigned CurReg = 0; 7236 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7237 EVT VT = RetTys[I]; 7238 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7239 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7240 7241 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7242 NumRegs, RegisterVT, VT, nullptr, 7243 AssertOp)); 7244 CurReg += NumRegs; 7245 } 7246 7247 // For a function returning void, there is no return value. We can't create 7248 // such a node, so we just return a null return value in that case. In 7249 // that case, nothing will actually look at the value. 7250 if (ReturnValues.empty()) 7251 return std::make_pair(SDValue(), CLI.Chain); 7252 } 7253 7254 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7255 CLI.DAG.getVTList(RetTys), ReturnValues); 7256 return std::make_pair(Res, CLI.Chain); 7257 } 7258 7259 void TargetLowering::LowerOperationWrapper(SDNode *N, 7260 SmallVectorImpl<SDValue> &Results, 7261 SelectionDAG &DAG) const { 7262 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7263 if (Res.getNode()) 7264 Results.push_back(Res); 7265 } 7266 7267 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7268 llvm_unreachable("LowerOperation not implemented for this target!"); 7269 } 7270 7271 void 7272 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7273 SDValue Op = getNonRegisterValue(V); 7274 assert((Op.getOpcode() != ISD::CopyFromReg || 7275 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7276 "Copy from a reg to the same reg!"); 7277 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7278 7279 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7280 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7281 V->getType()); 7282 SDValue Chain = DAG.getEntryNode(); 7283 7284 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7285 FuncInfo.PreferredExtendType.end()) 7286 ? ISD::ANY_EXTEND 7287 : FuncInfo.PreferredExtendType[V]; 7288 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7289 PendingExports.push_back(Chain); 7290 } 7291 7292 #include "llvm/CodeGen/SelectionDAGISel.h" 7293 7294 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7295 /// entry block, return true. This includes arguments used by switches, since 7296 /// the switch may expand into multiple basic blocks. 7297 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7298 // With FastISel active, we may be splitting blocks, so force creation 7299 // of virtual registers for all non-dead arguments. 7300 if (FastISel) 7301 return A->use_empty(); 7302 7303 const BasicBlock &Entry = A->getParent()->front(); 7304 for (const User *U : A->users()) 7305 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 7306 return false; // Use not in entry block. 7307 7308 return true; 7309 } 7310 7311 void SelectionDAGISel::LowerArguments(const Function &F) { 7312 SelectionDAG &DAG = SDB->DAG; 7313 SDLoc dl = SDB->getCurSDLoc(); 7314 const DataLayout &DL = DAG.getDataLayout(); 7315 SmallVector<ISD::InputArg, 16> Ins; 7316 7317 if (!FuncInfo->CanLowerReturn) { 7318 // Put in an sret pointer parameter before all the other parameters. 7319 SmallVector<EVT, 1> ValueVTs; 7320 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7321 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7322 7323 // NOTE: Assuming that a pointer will never break down to more than one VT 7324 // or one register. 7325 ISD::ArgFlagsTy Flags; 7326 Flags.setSRet(); 7327 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7328 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7329 ISD::InputArg::NoArgIndex, 0); 7330 Ins.push_back(RetArg); 7331 } 7332 7333 // Set up the incoming argument description vector. 7334 unsigned Idx = 1; 7335 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7336 I != E; ++I, ++Idx) { 7337 SmallVector<EVT, 4> ValueVTs; 7338 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7339 bool isArgValueUsed = !I->use_empty(); 7340 unsigned PartBase = 0; 7341 Type *FinalType = I->getType(); 7342 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7343 FinalType = cast<PointerType>(FinalType)->getElementType(); 7344 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7345 FinalType, F.getCallingConv(), F.isVarArg()); 7346 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7347 Value != NumValues; ++Value) { 7348 EVT VT = ValueVTs[Value]; 7349 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7350 ISD::ArgFlagsTy Flags; 7351 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7352 7353 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7354 Flags.setZExt(); 7355 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7356 Flags.setSExt(); 7357 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7358 Flags.setInReg(); 7359 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7360 Flags.setSRet(); 7361 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7362 Flags.setByVal(); 7363 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7364 Flags.setInAlloca(); 7365 // Set the byval flag for CCAssignFn callbacks that don't know about 7366 // inalloca. This way we can know how many bytes we should've allocated 7367 // and how many bytes a callee cleanup function will pop. If we port 7368 // inalloca to more targets, we'll have to add custom inalloca handling 7369 // in the various CC lowering callbacks. 7370 Flags.setByVal(); 7371 } 7372 if (Flags.isByVal() || Flags.isInAlloca()) { 7373 PointerType *Ty = cast<PointerType>(I->getType()); 7374 Type *ElementTy = Ty->getElementType(); 7375 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7376 // For ByVal, alignment should be passed from FE. BE will guess if 7377 // this info is not there but there are cases it cannot get right. 7378 unsigned FrameAlign; 7379 if (F.getParamAlignment(Idx)) 7380 FrameAlign = F.getParamAlignment(Idx); 7381 else 7382 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7383 Flags.setByValAlign(FrameAlign); 7384 } 7385 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7386 Flags.setNest(); 7387 if (NeedsRegBlock) 7388 Flags.setInConsecutiveRegs(); 7389 Flags.setOrigAlign(OriginalAlignment); 7390 7391 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7392 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7393 for (unsigned i = 0; i != NumRegs; ++i) { 7394 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7395 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7396 if (NumRegs > 1 && i == 0) 7397 MyFlags.Flags.setSplit(); 7398 // if it isn't first piece, alignment must be 1 7399 else if (i > 0) 7400 MyFlags.Flags.setOrigAlign(1); 7401 Ins.push_back(MyFlags); 7402 } 7403 if (NeedsRegBlock && Value == NumValues - 1) 7404 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7405 PartBase += VT.getStoreSize(); 7406 } 7407 } 7408 7409 // Call the target to set up the argument values. 7410 SmallVector<SDValue, 8> InVals; 7411 SDValue NewRoot = TLI->LowerFormalArguments( 7412 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7413 7414 // Verify that the target's LowerFormalArguments behaved as expected. 7415 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7416 "LowerFormalArguments didn't return a valid chain!"); 7417 assert(InVals.size() == Ins.size() && 7418 "LowerFormalArguments didn't emit the correct number of values!"); 7419 DEBUG({ 7420 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7421 assert(InVals[i].getNode() && 7422 "LowerFormalArguments emitted a null value!"); 7423 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7424 "LowerFormalArguments emitted a value with the wrong type!"); 7425 } 7426 }); 7427 7428 // Update the DAG with the new chain value resulting from argument lowering. 7429 DAG.setRoot(NewRoot); 7430 7431 // Set up the argument values. 7432 unsigned i = 0; 7433 Idx = 1; 7434 if (!FuncInfo->CanLowerReturn) { 7435 // Create a virtual register for the sret pointer, and put in a copy 7436 // from the sret argument into it. 7437 SmallVector<EVT, 1> ValueVTs; 7438 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7439 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7440 MVT VT = ValueVTs[0].getSimpleVT(); 7441 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7442 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7443 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7444 RegVT, VT, nullptr, AssertOp); 7445 7446 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7447 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7448 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7449 FuncInfo->DemoteRegister = SRetReg; 7450 NewRoot = 7451 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7452 DAG.setRoot(NewRoot); 7453 7454 // i indexes lowered arguments. Bump it past the hidden sret argument. 7455 // Idx indexes LLVM arguments. Don't touch it. 7456 ++i; 7457 } 7458 7459 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7460 ++I, ++Idx) { 7461 SmallVector<SDValue, 4> ArgValues; 7462 SmallVector<EVT, 4> ValueVTs; 7463 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7464 unsigned NumValues = ValueVTs.size(); 7465 7466 // If this argument is unused then remember its value. It is used to generate 7467 // debugging information. 7468 if (I->use_empty() && NumValues) { 7469 SDB->setUnusedArgValue(&*I, InVals[i]); 7470 7471 // Also remember any frame index for use in FastISel. 7472 if (FrameIndexSDNode *FI = 7473 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7474 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7475 } 7476 7477 for (unsigned Val = 0; Val != NumValues; ++Val) { 7478 EVT VT = ValueVTs[Val]; 7479 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7480 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7481 7482 if (!I->use_empty()) { 7483 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7484 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7485 AssertOp = ISD::AssertSext; 7486 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7487 AssertOp = ISD::AssertZext; 7488 7489 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7490 NumParts, PartVT, VT, 7491 nullptr, AssertOp)); 7492 } 7493 7494 i += NumParts; 7495 } 7496 7497 // We don't need to do anything else for unused arguments. 7498 if (ArgValues.empty()) 7499 continue; 7500 7501 // Note down frame index. 7502 if (FrameIndexSDNode *FI = 7503 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7504 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7505 7506 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7507 SDB->getCurSDLoc()); 7508 7509 SDB->setValue(&*I, Res); 7510 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7511 if (LoadSDNode *LNode = 7512 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7513 if (FrameIndexSDNode *FI = 7514 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7515 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7516 } 7517 7518 // If this argument is live outside of the entry block, insert a copy from 7519 // wherever we got it to the vreg that other BB's will reference it as. 7520 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7521 // If we can, though, try to skip creating an unnecessary vreg. 7522 // FIXME: This isn't very clean... it would be nice to make this more 7523 // general. It's also subtly incompatible with the hacks FastISel 7524 // uses with vregs. 7525 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7526 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7527 FuncInfo->ValueMap[&*I] = Reg; 7528 continue; 7529 } 7530 } 7531 if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) { 7532 FuncInfo->InitializeRegForValue(&*I); 7533 SDB->CopyToExportRegsIfNeeded(&*I); 7534 } 7535 } 7536 7537 assert(i == InVals.size() && "Argument register count mismatch!"); 7538 7539 // Finally, if the target has anything special to do, allow it to do so. 7540 EmitFunctionEntryCode(); 7541 } 7542 7543 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7544 /// ensure constants are generated when needed. Remember the virtual registers 7545 /// that need to be added to the Machine PHI nodes as input. We cannot just 7546 /// directly add them, because expansion might result in multiple MBB's for one 7547 /// BB. As such, the start of the BB might correspond to a different MBB than 7548 /// the end. 7549 /// 7550 void 7551 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7552 const TerminatorInst *TI = LLVMBB->getTerminator(); 7553 7554 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7555 7556 // Check PHI nodes in successors that expect a value to be available from this 7557 // block. 7558 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7559 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7560 if (!isa<PHINode>(SuccBB->begin())) continue; 7561 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7562 7563 // If this terminator has multiple identical successors (common for 7564 // switches), only handle each succ once. 7565 if (!SuccsHandled.insert(SuccMBB).second) 7566 continue; 7567 7568 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7569 7570 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7571 // nodes and Machine PHI nodes, but the incoming operands have not been 7572 // emitted yet. 7573 for (BasicBlock::const_iterator I = SuccBB->begin(); 7574 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7575 // Ignore dead phi's. 7576 if (PN->use_empty()) continue; 7577 7578 // Skip empty types 7579 if (PN->getType()->isEmptyTy()) 7580 continue; 7581 7582 unsigned Reg; 7583 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7584 7585 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7586 unsigned &RegOut = ConstantsOut[C]; 7587 if (RegOut == 0) { 7588 RegOut = FuncInfo.CreateRegs(C->getType()); 7589 CopyValueToVirtualRegister(C, RegOut); 7590 } 7591 Reg = RegOut; 7592 } else { 7593 DenseMap<const Value *, unsigned>::iterator I = 7594 FuncInfo.ValueMap.find(PHIOp); 7595 if (I != FuncInfo.ValueMap.end()) 7596 Reg = I->second; 7597 else { 7598 assert(isa<AllocaInst>(PHIOp) && 7599 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7600 "Didn't codegen value into a register!??"); 7601 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7602 CopyValueToVirtualRegister(PHIOp, Reg); 7603 } 7604 } 7605 7606 // Remember that this register needs to added to the machine PHI node as 7607 // the input for this MBB. 7608 SmallVector<EVT, 4> ValueVTs; 7609 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7610 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7611 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7612 EVT VT = ValueVTs[vti]; 7613 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7614 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7615 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7616 Reg += NumRegisters; 7617 } 7618 } 7619 } 7620 7621 ConstantsOut.clear(); 7622 } 7623 7624 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7625 /// is 0. 7626 MachineBasicBlock * 7627 SelectionDAGBuilder::StackProtectorDescriptor:: 7628 AddSuccessorMBB(const BasicBlock *BB, 7629 MachineBasicBlock *ParentMBB, 7630 bool IsLikely, 7631 MachineBasicBlock *SuccMBB) { 7632 // If SuccBB has not been created yet, create it. 7633 if (!SuccMBB) { 7634 MachineFunction *MF = ParentMBB->getParent(); 7635 MachineFunction::iterator BBI(ParentMBB); 7636 SuccMBB = MF->CreateMachineBasicBlock(BB); 7637 MF->insert(++BBI, SuccMBB); 7638 } 7639 // Add it as a successor of ParentMBB. 7640 ParentMBB->addSuccessor( 7641 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7642 return SuccMBB; 7643 } 7644 7645 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7646 MachineFunction::iterator I(MBB); 7647 if (++I == FuncInfo.MF->end()) 7648 return nullptr; 7649 return &*I; 7650 } 7651 7652 /// During lowering new call nodes can be created (such as memset, etc.). 7653 /// Those will become new roots of the current DAG, but complications arise 7654 /// when they are tail calls. In such cases, the call lowering will update 7655 /// the root, but the builder still needs to know that a tail call has been 7656 /// lowered in order to avoid generating an additional return. 7657 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7658 // If the node is null, we do have a tail call. 7659 if (MaybeTC.getNode() != nullptr) 7660 DAG.setRoot(MaybeTC); 7661 else 7662 HasTailCall = true; 7663 } 7664 7665 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7666 unsigned *TotalCases, unsigned First, 7667 unsigned Last) { 7668 assert(Last >= First); 7669 assert(TotalCases[Last] >= TotalCases[First]); 7670 7671 APInt LowCase = Clusters[First].Low->getValue(); 7672 APInt HighCase = Clusters[Last].High->getValue(); 7673 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7674 7675 // FIXME: A range of consecutive cases has 100% density, but only requires one 7676 // comparison to lower. We should discriminate against such consecutive ranges 7677 // in jump tables. 7678 7679 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7680 uint64_t Range = Diff + 1; 7681 7682 uint64_t NumCases = 7683 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7684 7685 assert(NumCases < UINT64_MAX / 100); 7686 assert(Range >= NumCases); 7687 7688 return NumCases * 100 >= Range * MinJumpTableDensity; 7689 } 7690 7691 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7692 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7693 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7694 } 7695 7696 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7697 unsigned First, unsigned Last, 7698 const SwitchInst *SI, 7699 MachineBasicBlock *DefaultMBB, 7700 CaseCluster &JTCluster) { 7701 assert(First <= Last); 7702 7703 uint32_t Weight = 0; 7704 unsigned NumCmps = 0; 7705 std::vector<MachineBasicBlock*> Table; 7706 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7707 for (unsigned I = First; I <= Last; ++I) { 7708 assert(Clusters[I].Kind == CC_Range); 7709 Weight += Clusters[I].Weight; 7710 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7711 APInt Low = Clusters[I].Low->getValue(); 7712 APInt High = Clusters[I].High->getValue(); 7713 NumCmps += (Low == High) ? 1 : 2; 7714 if (I != First) { 7715 // Fill the gap between this and the previous cluster. 7716 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7717 assert(PreviousHigh.slt(Low)); 7718 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7719 for (uint64_t J = 0; J < Gap; J++) 7720 Table.push_back(DefaultMBB); 7721 } 7722 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7723 for (uint64_t J = 0; J < ClusterSize; ++J) 7724 Table.push_back(Clusters[I].MBB); 7725 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7726 } 7727 7728 unsigned NumDests = JTWeights.size(); 7729 if (isSuitableForBitTests(NumDests, NumCmps, 7730 Clusters[First].Low->getValue(), 7731 Clusters[Last].High->getValue())) { 7732 // Clusters[First..Last] should be lowered as bit tests instead. 7733 return false; 7734 } 7735 7736 // Create the MBB that will load from and jump through the table. 7737 // Note: We create it here, but it's not inserted into the function yet. 7738 MachineFunction *CurMF = FuncInfo.MF; 7739 MachineBasicBlock *JumpTableMBB = 7740 CurMF->CreateMachineBasicBlock(SI->getParent()); 7741 7742 // Add successors. Note: use table order for determinism. 7743 SmallPtrSet<MachineBasicBlock *, 8> Done; 7744 for (MachineBasicBlock *Succ : Table) { 7745 if (Done.count(Succ)) 7746 continue; 7747 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7748 Done.insert(Succ); 7749 } 7750 7751 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7752 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7753 ->createJumpTableIndex(Table); 7754 7755 // Set up the jump table info. 7756 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7757 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7758 Clusters[Last].High->getValue(), SI->getCondition(), 7759 nullptr, false); 7760 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7761 7762 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7763 JTCases.size() - 1, Weight); 7764 return true; 7765 } 7766 7767 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7768 const SwitchInst *SI, 7769 MachineBasicBlock *DefaultMBB) { 7770 #ifndef NDEBUG 7771 // Clusters must be non-empty, sorted, and only contain Range clusters. 7772 assert(!Clusters.empty()); 7773 for (CaseCluster &C : Clusters) 7774 assert(C.Kind == CC_Range); 7775 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7776 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7777 #endif 7778 7779 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7780 if (!areJTsAllowed(TLI)) 7781 return; 7782 7783 const int64_t N = Clusters.size(); 7784 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7785 7786 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7787 SmallVector<unsigned, 8> TotalCases(N); 7788 7789 for (unsigned i = 0; i < N; ++i) { 7790 APInt Hi = Clusters[i].High->getValue(); 7791 APInt Lo = Clusters[i].Low->getValue(); 7792 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7793 if (i != 0) 7794 TotalCases[i] += TotalCases[i - 1]; 7795 } 7796 7797 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7798 // Cheap case: the whole range might be suitable for jump table. 7799 CaseCluster JTCluster; 7800 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7801 Clusters[0] = JTCluster; 7802 Clusters.resize(1); 7803 return; 7804 } 7805 } 7806 7807 // The algorithm below is not suitable for -O0. 7808 if (TM.getOptLevel() == CodeGenOpt::None) 7809 return; 7810 7811 // Split Clusters into minimum number of dense partitions. The algorithm uses 7812 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7813 // for the Case Statement'" (1994), but builds the MinPartitions array in 7814 // reverse order to make it easier to reconstruct the partitions in ascending 7815 // order. In the choice between two optimal partitionings, it picks the one 7816 // which yields more jump tables. 7817 7818 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7819 SmallVector<unsigned, 8> MinPartitions(N); 7820 // LastElement[i] is the last element of the partition starting at i. 7821 SmallVector<unsigned, 8> LastElement(N); 7822 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7823 SmallVector<unsigned, 8> NumTables(N); 7824 7825 // Base case: There is only one way to partition Clusters[N-1]. 7826 MinPartitions[N - 1] = 1; 7827 LastElement[N - 1] = N - 1; 7828 assert(MinJumpTableSize > 1); 7829 NumTables[N - 1] = 0; 7830 7831 // Note: loop indexes are signed to avoid underflow. 7832 for (int64_t i = N - 2; i >= 0; i--) { 7833 // Find optimal partitioning of Clusters[i..N-1]. 7834 // Baseline: Put Clusters[i] into a partition on its own. 7835 MinPartitions[i] = MinPartitions[i + 1] + 1; 7836 LastElement[i] = i; 7837 NumTables[i] = NumTables[i + 1]; 7838 7839 // Search for a solution that results in fewer partitions. 7840 for (int64_t j = N - 1; j > i; j--) { 7841 // Try building a partition from Clusters[i..j]. 7842 if (isDense(Clusters, &TotalCases[0], i, j)) { 7843 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7844 bool IsTable = j - i + 1 >= MinJumpTableSize; 7845 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7846 7847 // If this j leads to fewer partitions, or same number of partitions 7848 // with more lookup tables, it is a better partitioning. 7849 if (NumPartitions < MinPartitions[i] || 7850 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7851 MinPartitions[i] = NumPartitions; 7852 LastElement[i] = j; 7853 NumTables[i] = Tables; 7854 } 7855 } 7856 } 7857 } 7858 7859 // Iterate over the partitions, replacing some with jump tables in-place. 7860 unsigned DstIndex = 0; 7861 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7862 Last = LastElement[First]; 7863 assert(Last >= First); 7864 assert(DstIndex <= First); 7865 unsigned NumClusters = Last - First + 1; 7866 7867 CaseCluster JTCluster; 7868 if (NumClusters >= MinJumpTableSize && 7869 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7870 Clusters[DstIndex++] = JTCluster; 7871 } else { 7872 for (unsigned I = First; I <= Last; ++I) 7873 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7874 } 7875 } 7876 Clusters.resize(DstIndex); 7877 } 7878 7879 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7880 // FIXME: Using the pointer type doesn't seem ideal. 7881 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7882 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7883 return Range <= BW; 7884 } 7885 7886 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7887 unsigned NumCmps, 7888 const APInt &Low, 7889 const APInt &High) { 7890 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7891 // range of cases both require only one branch to lower. Just looking at the 7892 // number of clusters and destinations should be enough to decide whether to 7893 // build bit tests. 7894 7895 // To lower a range with bit tests, the range must fit the bitwidth of a 7896 // machine word. 7897 if (!rangeFitsInWord(Low, High)) 7898 return false; 7899 7900 // Decide whether it's profitable to lower this range with bit tests. Each 7901 // destination requires a bit test and branch, and there is an overall range 7902 // check branch. For a small number of clusters, separate comparisons might be 7903 // cheaper, and for many destinations, splitting the range might be better. 7904 return (NumDests == 1 && NumCmps >= 3) || 7905 (NumDests == 2 && NumCmps >= 5) || 7906 (NumDests == 3 && NumCmps >= 6); 7907 } 7908 7909 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7910 unsigned First, unsigned Last, 7911 const SwitchInst *SI, 7912 CaseCluster &BTCluster) { 7913 assert(First <= Last); 7914 if (First == Last) 7915 return false; 7916 7917 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7918 unsigned NumCmps = 0; 7919 for (int64_t I = First; I <= Last; ++I) { 7920 assert(Clusters[I].Kind == CC_Range); 7921 Dests.set(Clusters[I].MBB->getNumber()); 7922 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7923 } 7924 unsigned NumDests = Dests.count(); 7925 7926 APInt Low = Clusters[First].Low->getValue(); 7927 APInt High = Clusters[Last].High->getValue(); 7928 assert(Low.slt(High)); 7929 7930 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7931 return false; 7932 7933 APInt LowBound; 7934 APInt CmpRange; 7935 7936 const int BitWidth = DAG.getTargetLoweringInfo() 7937 .getPointerTy(DAG.getDataLayout()) 7938 .getSizeInBits(); 7939 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7940 7941 // Check if the clusters cover a contiguous range such that no value in the 7942 // range will jump to the default statement. 7943 bool ContiguousRange = true; 7944 for (int64_t I = First + 1; I <= Last; ++I) { 7945 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 7946 ContiguousRange = false; 7947 break; 7948 } 7949 } 7950 7951 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 7952 // Optimize the case where all the case values fit in a word without having 7953 // to subtract minValue. In this case, we can optimize away the subtraction. 7954 LowBound = APInt::getNullValue(Low.getBitWidth()); 7955 CmpRange = High; 7956 ContiguousRange = false; 7957 } else { 7958 LowBound = Low; 7959 CmpRange = High - Low; 7960 } 7961 7962 CaseBitsVector CBV; 7963 uint32_t TotalWeight = 0; 7964 for (unsigned i = First; i <= Last; ++i) { 7965 // Find the CaseBits for this destination. 7966 unsigned j; 7967 for (j = 0; j < CBV.size(); ++j) 7968 if (CBV[j].BB == Clusters[i].MBB) 7969 break; 7970 if (j == CBV.size()) 7971 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7972 CaseBits *CB = &CBV[j]; 7973 7974 // Update Mask, Bits and ExtraWeight. 7975 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7976 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7977 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7978 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7979 CB->Bits += Hi - Lo + 1; 7980 CB->ExtraWeight += Clusters[i].Weight; 7981 TotalWeight += Clusters[i].Weight; 7982 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7983 } 7984 7985 BitTestInfo BTI; 7986 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7987 // Sort by weight first, number of bits second. 7988 if (a.ExtraWeight != b.ExtraWeight) 7989 return a.ExtraWeight > b.ExtraWeight; 7990 return a.Bits > b.Bits; 7991 }); 7992 7993 for (auto &CB : CBV) { 7994 MachineBasicBlock *BitTestBB = 7995 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7996 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7997 } 7998 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 7999 SI->getCondition(), -1U, MVT::Other, false, 8000 ContiguousRange, nullptr, nullptr, std::move(BTI), 8001 TotalWeight); 8002 8003 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 8004 BitTestCases.size() - 1, TotalWeight); 8005 return true; 8006 } 8007 8008 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8009 const SwitchInst *SI) { 8010 // Partition Clusters into as few subsets as possible, where each subset has a 8011 // range that fits in a machine word and has <= 3 unique destinations. 8012 8013 #ifndef NDEBUG 8014 // Clusters must be sorted and contain Range or JumpTable clusters. 8015 assert(!Clusters.empty()); 8016 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8017 for (const CaseCluster &C : Clusters) 8018 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8019 for (unsigned i = 1; i < Clusters.size(); ++i) 8020 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8021 #endif 8022 8023 // The algorithm below is not suitable for -O0. 8024 if (TM.getOptLevel() == CodeGenOpt::None) 8025 return; 8026 8027 // If target does not have legal shift left, do not emit bit tests at all. 8028 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8029 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 8030 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 8031 return; 8032 8033 int BitWidth = PTy.getSizeInBits(); 8034 const int64_t N = Clusters.size(); 8035 8036 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8037 SmallVector<unsigned, 8> MinPartitions(N); 8038 // LastElement[i] is the last element of the partition starting at i. 8039 SmallVector<unsigned, 8> LastElement(N); 8040 8041 // FIXME: This might not be the best algorithm for finding bit test clusters. 8042 8043 // Base case: There is only one way to partition Clusters[N-1]. 8044 MinPartitions[N - 1] = 1; 8045 LastElement[N - 1] = N - 1; 8046 8047 // Note: loop indexes are signed to avoid underflow. 8048 for (int64_t i = N - 2; i >= 0; --i) { 8049 // Find optimal partitioning of Clusters[i..N-1]. 8050 // Baseline: Put Clusters[i] into a partition on its own. 8051 MinPartitions[i] = MinPartitions[i + 1] + 1; 8052 LastElement[i] = i; 8053 8054 // Search for a solution that results in fewer partitions. 8055 // Note: the search is limited by BitWidth, reducing time complexity. 8056 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 8057 // Try building a partition from Clusters[i..j]. 8058 8059 // Check the range. 8060 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 8061 Clusters[j].High->getValue())) 8062 continue; 8063 8064 // Check nbr of destinations and cluster types. 8065 // FIXME: This works, but doesn't seem very efficient. 8066 bool RangesOnly = true; 8067 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8068 for (int64_t k = i; k <= j; k++) { 8069 if (Clusters[k].Kind != CC_Range) { 8070 RangesOnly = false; 8071 break; 8072 } 8073 Dests.set(Clusters[k].MBB->getNumber()); 8074 } 8075 if (!RangesOnly || Dests.count() > 3) 8076 break; 8077 8078 // Check if it's a better partition. 8079 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8080 if (NumPartitions < MinPartitions[i]) { 8081 // Found a better partition. 8082 MinPartitions[i] = NumPartitions; 8083 LastElement[i] = j; 8084 } 8085 } 8086 } 8087 8088 // Iterate over the partitions, replacing with bit-test clusters in-place. 8089 unsigned DstIndex = 0; 8090 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8091 Last = LastElement[First]; 8092 assert(First <= Last); 8093 assert(DstIndex <= First); 8094 8095 CaseCluster BitTestCluster; 8096 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8097 Clusters[DstIndex++] = BitTestCluster; 8098 } else { 8099 size_t NumClusters = Last - First + 1; 8100 std::memmove(&Clusters[DstIndex], &Clusters[First], 8101 sizeof(Clusters[0]) * NumClusters); 8102 DstIndex += NumClusters; 8103 } 8104 } 8105 Clusters.resize(DstIndex); 8106 } 8107 8108 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8109 MachineBasicBlock *SwitchMBB, 8110 MachineBasicBlock *DefaultMBB) { 8111 MachineFunction *CurMF = FuncInfo.MF; 8112 MachineBasicBlock *NextMBB = nullptr; 8113 MachineFunction::iterator BBI(W.MBB); 8114 if (++BBI != FuncInfo.MF->end()) 8115 NextMBB = &*BBI; 8116 8117 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8118 8119 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8120 8121 if (Size == 2 && W.MBB == SwitchMBB) { 8122 // If any two of the cases has the same destination, and if one value 8123 // is the same as the other, but has one bit unset that the other has set, 8124 // use bit manipulation to do two compares at once. For example: 8125 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8126 // TODO: This could be extended to merge any 2 cases in switches with 3 8127 // cases. 8128 // TODO: Handle cases where W.CaseBB != SwitchBB. 8129 CaseCluster &Small = *W.FirstCluster; 8130 CaseCluster &Big = *W.LastCluster; 8131 8132 if (Small.Low == Small.High && Big.Low == Big.High && 8133 Small.MBB == Big.MBB) { 8134 const APInt &SmallValue = Small.Low->getValue(); 8135 const APInt &BigValue = Big.Low->getValue(); 8136 8137 // Check that there is only one bit different. 8138 APInt CommonBit = BigValue ^ SmallValue; 8139 if (CommonBit.isPowerOf2()) { 8140 SDValue CondLHS = getValue(Cond); 8141 EVT VT = CondLHS.getValueType(); 8142 SDLoc DL = getCurSDLoc(); 8143 8144 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8145 DAG.getConstant(CommonBit, DL, VT)); 8146 SDValue Cond = DAG.getSetCC( 8147 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8148 ISD::SETEQ); 8149 8150 // Update successor info. 8151 // Both Small and Big will jump to Small.BB, so we sum up the weights. 8152 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 8153 addSuccessorWithWeight( 8154 SwitchMBB, DefaultMBB, 8155 // The default destination is the first successor in IR. 8156 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 8157 : 0); 8158 8159 // Insert the true branch. 8160 SDValue BrCond = 8161 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8162 DAG.getBasicBlock(Small.MBB)); 8163 // Insert the false branch. 8164 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8165 DAG.getBasicBlock(DefaultMBB)); 8166 8167 DAG.setRoot(BrCond); 8168 return; 8169 } 8170 } 8171 } 8172 8173 if (TM.getOptLevel() != CodeGenOpt::None) { 8174 // Order cases by weight so the most likely case will be checked first. 8175 std::sort(W.FirstCluster, W.LastCluster + 1, 8176 [](const CaseCluster &a, const CaseCluster &b) { 8177 return a.Weight > b.Weight; 8178 }); 8179 8180 // Rearrange the case blocks so that the last one falls through if possible 8181 // without without changing the order of weights. 8182 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8183 --I; 8184 if (I->Weight > W.LastCluster->Weight) 8185 break; 8186 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8187 std::swap(*I, *W.LastCluster); 8188 break; 8189 } 8190 } 8191 } 8192 8193 // Compute total weight. 8194 uint32_t DefaultWeight = W.DefaultWeight; 8195 uint32_t UnhandledWeights = DefaultWeight; 8196 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 8197 UnhandledWeights += I->Weight; 8198 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 8199 } 8200 8201 MachineBasicBlock *CurMBB = W.MBB; 8202 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8203 MachineBasicBlock *Fallthrough; 8204 if (I == W.LastCluster) { 8205 // For the last cluster, fall through to the default destination. 8206 Fallthrough = DefaultMBB; 8207 } else { 8208 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8209 CurMF->insert(BBI, Fallthrough); 8210 // Put Cond in a virtual register to make it available from the new blocks. 8211 ExportFromCurrentBlock(Cond); 8212 } 8213 UnhandledWeights -= I->Weight; 8214 8215 switch (I->Kind) { 8216 case CC_JumpTable: { 8217 // FIXME: Optimize away range check based on pivot comparisons. 8218 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8219 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8220 8221 // The jump block hasn't been inserted yet; insert it here. 8222 MachineBasicBlock *JumpMBB = JT->MBB; 8223 CurMF->insert(BBI, JumpMBB); 8224 8225 uint32_t JumpWeight = I->Weight; 8226 uint32_t FallthroughWeight = UnhandledWeights; 8227 8228 // If the default statement is a target of the jump table, we evenly 8229 // distribute the default weight to successors of CurMBB. Also update 8230 // the weight on the edge from JumpMBB to Fallthrough. 8231 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8232 SE = JumpMBB->succ_end(); 8233 SI != SE; ++SI) { 8234 if (*SI == DefaultMBB) { 8235 JumpWeight += DefaultWeight / 2; 8236 FallthroughWeight -= DefaultWeight / 2; 8237 JumpMBB->setSuccWeight(SI, DefaultWeight / 2); 8238 break; 8239 } 8240 } 8241 8242 addSuccessorWithWeight(CurMBB, Fallthrough, FallthroughWeight); 8243 addSuccessorWithWeight(CurMBB, JumpMBB, JumpWeight); 8244 8245 // The jump table header will be inserted in our current block, do the 8246 // range check, and fall through to our fallthrough block. 8247 JTH->HeaderBB = CurMBB; 8248 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8249 8250 // If we're in the right place, emit the jump table header right now. 8251 if (CurMBB == SwitchMBB) { 8252 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8253 JTH->Emitted = true; 8254 } 8255 break; 8256 } 8257 case CC_BitTests: { 8258 // FIXME: Optimize away range check based on pivot comparisons. 8259 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8260 8261 // The bit test blocks haven't been inserted yet; insert them here. 8262 for (BitTestCase &BTC : BTB->Cases) 8263 CurMF->insert(BBI, BTC.ThisBB); 8264 8265 // Fill in fields of the BitTestBlock. 8266 BTB->Parent = CurMBB; 8267 BTB->Default = Fallthrough; 8268 8269 BTB->DefaultWeight = UnhandledWeights; 8270 // If the cases in bit test don't form a contiguous range, we evenly 8271 // distribute the weight on the edge to Fallthrough to two successors 8272 // of CurMBB. 8273 if (!BTB->ContiguousRange) { 8274 BTB->Weight += DefaultWeight / 2; 8275 BTB->DefaultWeight -= DefaultWeight / 2; 8276 } 8277 8278 // If we're in the right place, emit the bit test header right now. 8279 if (CurMBB == SwitchMBB) { 8280 visitBitTestHeader(*BTB, SwitchMBB); 8281 BTB->Emitted = true; 8282 } 8283 break; 8284 } 8285 case CC_Range: { 8286 const Value *RHS, *LHS, *MHS; 8287 ISD::CondCode CC; 8288 if (I->Low == I->High) { 8289 // Check Cond == I->Low. 8290 CC = ISD::SETEQ; 8291 LHS = Cond; 8292 RHS=I->Low; 8293 MHS = nullptr; 8294 } else { 8295 // Check I->Low <= Cond <= I->High. 8296 CC = ISD::SETLE; 8297 LHS = I->Low; 8298 MHS = Cond; 8299 RHS = I->High; 8300 } 8301 8302 // The false weight is the sum of all unhandled cases. 8303 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 8304 UnhandledWeights); 8305 8306 if (CurMBB == SwitchMBB) 8307 visitSwitchCase(CB, SwitchMBB); 8308 else 8309 SwitchCases.push_back(CB); 8310 8311 break; 8312 } 8313 } 8314 CurMBB = Fallthrough; 8315 } 8316 } 8317 8318 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8319 CaseClusterIt First, 8320 CaseClusterIt Last) { 8321 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8322 if (X.Weight != CC.Weight) 8323 return X.Weight > CC.Weight; 8324 8325 // Ties are broken by comparing the case value. 8326 return X.Low->getValue().slt(CC.Low->getValue()); 8327 }); 8328 } 8329 8330 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8331 const SwitchWorkListItem &W, 8332 Value *Cond, 8333 MachineBasicBlock *SwitchMBB) { 8334 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8335 "Clusters not sorted?"); 8336 8337 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8338 8339 // Balance the tree based on branch weights to create a near-optimal (in terms 8340 // of search time given key frequency) binary search tree. See e.g. Kurt 8341 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8342 CaseClusterIt LastLeft = W.FirstCluster; 8343 CaseClusterIt FirstRight = W.LastCluster; 8344 uint32_t LeftWeight = LastLeft->Weight + W.DefaultWeight / 2; 8345 uint32_t RightWeight = FirstRight->Weight + W.DefaultWeight / 2; 8346 8347 // Move LastLeft and FirstRight towards each other from opposite directions to 8348 // find a partitioning of the clusters which balances the weight on both 8349 // sides. If LeftWeight and RightWeight are equal, alternate which side is 8350 // taken to ensure 0-weight nodes are distributed evenly. 8351 unsigned I = 0; 8352 while (LastLeft + 1 < FirstRight) { 8353 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 8354 LeftWeight += (++LastLeft)->Weight; 8355 else 8356 RightWeight += (--FirstRight)->Weight; 8357 I++; 8358 } 8359 8360 for (;;) { 8361 // Our binary search tree differs from a typical BST in that ours can have up 8362 // to three values in each leaf. The pivot selection above doesn't take that 8363 // into account, which means the tree might require more nodes and be less 8364 // efficient. We compensate for this here. 8365 8366 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8367 unsigned NumRight = W.LastCluster - FirstRight + 1; 8368 8369 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8370 // If one side has less than 3 clusters, and the other has more than 3, 8371 // consider taking a cluster from the other side. 8372 8373 if (NumLeft < NumRight) { 8374 // Consider moving the first cluster on the right to the left side. 8375 CaseCluster &CC = *FirstRight; 8376 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8377 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8378 if (LeftSideRank <= RightSideRank) { 8379 // Moving the cluster to the left does not demote it. 8380 ++LastLeft; 8381 ++FirstRight; 8382 continue; 8383 } 8384 } else { 8385 assert(NumRight < NumLeft); 8386 // Consider moving the last element on the left to the right side. 8387 CaseCluster &CC = *LastLeft; 8388 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8389 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8390 if (RightSideRank <= LeftSideRank) { 8391 // Moving the cluster to the right does not demot it. 8392 --LastLeft; 8393 --FirstRight; 8394 continue; 8395 } 8396 } 8397 } 8398 break; 8399 } 8400 8401 assert(LastLeft + 1 == FirstRight); 8402 assert(LastLeft >= W.FirstCluster); 8403 assert(FirstRight <= W.LastCluster); 8404 8405 // Use the first element on the right as pivot since we will make less-than 8406 // comparisons against it. 8407 CaseClusterIt PivotCluster = FirstRight; 8408 assert(PivotCluster > W.FirstCluster); 8409 assert(PivotCluster <= W.LastCluster); 8410 8411 CaseClusterIt FirstLeft = W.FirstCluster; 8412 CaseClusterIt LastRight = W.LastCluster; 8413 8414 const ConstantInt *Pivot = PivotCluster->Low; 8415 8416 // New blocks will be inserted immediately after the current one. 8417 MachineFunction::iterator BBI(W.MBB); 8418 ++BBI; 8419 8420 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8421 // we can branch to its destination directly if it's squeezed exactly in 8422 // between the known lower bound and Pivot - 1. 8423 MachineBasicBlock *LeftMBB; 8424 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8425 FirstLeft->Low == W.GE && 8426 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8427 LeftMBB = FirstLeft->MBB; 8428 } else { 8429 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8430 FuncInfo.MF->insert(BBI, LeftMBB); 8431 WorkList.push_back( 8432 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultWeight / 2}); 8433 // Put Cond in a virtual register to make it available from the new blocks. 8434 ExportFromCurrentBlock(Cond); 8435 } 8436 8437 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8438 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8439 // directly if RHS.High equals the current upper bound. 8440 MachineBasicBlock *RightMBB; 8441 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8442 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8443 RightMBB = FirstRight->MBB; 8444 } else { 8445 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8446 FuncInfo.MF->insert(BBI, RightMBB); 8447 WorkList.push_back( 8448 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultWeight / 2}); 8449 // Put Cond in a virtual register to make it available from the new blocks. 8450 ExportFromCurrentBlock(Cond); 8451 } 8452 8453 // Create the CaseBlock record that will be used to lower the branch. 8454 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8455 LeftWeight, RightWeight); 8456 8457 if (W.MBB == SwitchMBB) 8458 visitSwitchCase(CB, SwitchMBB); 8459 else 8460 SwitchCases.push_back(CB); 8461 } 8462 8463 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8464 // Extract cases from the switch. 8465 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8466 CaseClusterVector Clusters; 8467 Clusters.reserve(SI.getNumCases()); 8468 for (auto I : SI.cases()) { 8469 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8470 const ConstantInt *CaseVal = I.getCaseValue(); 8471 uint32_t Weight = 8472 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8473 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8474 } 8475 8476 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8477 8478 // Cluster adjacent cases with the same destination. We do this at all 8479 // optimization levels because it's cheap to do and will make codegen faster 8480 // if there are many clusters. 8481 sortAndRangeify(Clusters); 8482 8483 if (TM.getOptLevel() != CodeGenOpt::None) { 8484 // Replace an unreachable default with the most popular destination. 8485 // FIXME: Exploit unreachable default more aggressively. 8486 bool UnreachableDefault = 8487 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8488 if (UnreachableDefault && !Clusters.empty()) { 8489 DenseMap<const BasicBlock *, unsigned> Popularity; 8490 unsigned MaxPop = 0; 8491 const BasicBlock *MaxBB = nullptr; 8492 for (auto I : SI.cases()) { 8493 const BasicBlock *BB = I.getCaseSuccessor(); 8494 if (++Popularity[BB] > MaxPop) { 8495 MaxPop = Popularity[BB]; 8496 MaxBB = BB; 8497 } 8498 } 8499 // Set new default. 8500 assert(MaxPop > 0 && MaxBB); 8501 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8502 8503 // Remove cases that were pointing to the destination that is now the 8504 // default. 8505 CaseClusterVector New; 8506 New.reserve(Clusters.size()); 8507 for (CaseCluster &CC : Clusters) { 8508 if (CC.MBB != DefaultMBB) 8509 New.push_back(CC); 8510 } 8511 Clusters = std::move(New); 8512 } 8513 } 8514 8515 // If there is only the default destination, jump there directly. 8516 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8517 if (Clusters.empty()) { 8518 SwitchMBB->addSuccessor(DefaultMBB); 8519 if (DefaultMBB != NextBlock(SwitchMBB)) { 8520 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8521 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8522 } 8523 return; 8524 } 8525 8526 findJumpTables(Clusters, &SI, DefaultMBB); 8527 findBitTestClusters(Clusters, &SI); 8528 8529 DEBUG({ 8530 dbgs() << "Case clusters: "; 8531 for (const CaseCluster &C : Clusters) { 8532 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8533 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8534 8535 C.Low->getValue().print(dbgs(), true); 8536 if (C.Low != C.High) { 8537 dbgs() << '-'; 8538 C.High->getValue().print(dbgs(), true); 8539 } 8540 dbgs() << ' '; 8541 } 8542 dbgs() << '\n'; 8543 }); 8544 8545 assert(!Clusters.empty()); 8546 SwitchWorkList WorkList; 8547 CaseClusterIt First = Clusters.begin(); 8548 CaseClusterIt Last = Clusters.end() - 1; 8549 uint32_t DefaultWeight = getEdgeWeight(SwitchMBB, DefaultMBB); 8550 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultWeight}); 8551 8552 while (!WorkList.empty()) { 8553 SwitchWorkListItem W = WorkList.back(); 8554 WorkList.pop_back(); 8555 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8556 8557 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8558 // For optimized builds, lower large range as a balanced binary tree. 8559 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8560 continue; 8561 } 8562 8563 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8564 } 8565 } 8566