1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SDNodeDbgValue.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/PostOrderIterator.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Constants.h" 23 #include "llvm/CallingConv.h" 24 #include "llvm/DerivedTypes.h" 25 #include "llvm/Function.h" 26 #include "llvm/GlobalVariable.h" 27 #include "llvm/InlineAsm.h" 28 #include "llvm/Instructions.h" 29 #include "llvm/Intrinsics.h" 30 #include "llvm/IntrinsicInst.h" 31 #include "llvm/LLVMContext.h" 32 #include "llvm/Module.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/FastISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCStrategy.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineJumpTableInfo.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/CodeGen/MachineRegisterInfo.h" 44 #include "llvm/CodeGen/PseudoSourceValue.h" 45 #include "llvm/CodeGen/SelectionDAG.h" 46 #include "llvm/Analysis/DebugInfo.h" 47 #include "llvm/Target/TargetData.h" 48 #include "llvm/Target/TargetFrameLowering.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetIntrinsicInfo.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetOptions.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include <algorithm> 59 using namespace llvm; 60 61 /// LimitFloatPrecision - Generate low-precision inline sequences for 62 /// some float libcalls (6, 8 or 12 bits). 63 static unsigned LimitFloatPrecision; 64 65 static cl::opt<unsigned, true> 66 LimitFPPrecision("limit-float-precision", 67 cl::desc("Generate low-precision inline sequences " 68 "for some float libcalls"), 69 cl::location(LimitFloatPrecision), 70 cl::init(0)); 71 72 // Limit the width of DAG chains. This is important in general to prevent 73 // prevent DAG-based analysis from blowing up. For example, alias analysis and 74 // load clustering may not complete in reasonable time. It is difficult to 75 // recognize and avoid this situation within each individual analysis, and 76 // future analyses are likely to have the same behavior. Limiting DAG width is 77 // the safe approach, and will be especially important with global DAGs. 78 // 79 // MaxParallelChains default is arbitrarily high to avoid affecting 80 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 81 // sequence over this should have been converted to llvm.memcpy by the 82 // frontend. It easy to induce this behavior with .ll code such as: 83 // %buffer = alloca [4096 x i8] 84 // %data = load [4096 x i8]* %argPtr 85 // store [4096 x i8] %data, [4096 x i8]* %buffer 86 static const unsigned MaxParallelChains = 64; 87 88 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 89 const SDValue *Parts, unsigned NumParts, 90 EVT PartVT, EVT ValueVT); 91 92 /// getCopyFromParts - Create a value that contains the specified legal parts 93 /// combined into the value they represent. If the parts combine to a type 94 /// larger then ValueVT then AssertOp can be used to specify whether the extra 95 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 96 /// (ISD::AssertSext). 97 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL, 98 const SDValue *Parts, 99 unsigned NumParts, EVT PartVT, EVT ValueVT, 100 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 101 if (ValueVT.isVector()) 102 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT); 103 104 assert(NumParts > 0 && "No parts to assemble!"); 105 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 106 SDValue Val = Parts[0]; 107 108 if (NumParts > 1) { 109 // Assemble the value from multiple parts. 110 if (ValueVT.isInteger()) { 111 unsigned PartBits = PartVT.getSizeInBits(); 112 unsigned ValueBits = ValueVT.getSizeInBits(); 113 114 // Assemble the power of 2 part. 115 unsigned RoundParts = NumParts & (NumParts - 1) ? 116 1 << Log2_32(NumParts) : NumParts; 117 unsigned RoundBits = PartBits * RoundParts; 118 EVT RoundVT = RoundBits == ValueBits ? 119 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 120 SDValue Lo, Hi; 121 122 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 123 124 if (RoundParts > 2) { 125 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 126 PartVT, HalfVT); 127 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 128 RoundParts / 2, PartVT, HalfVT); 129 } else { 130 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 131 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 132 } 133 134 if (TLI.isBigEndian()) 135 std::swap(Lo, Hi); 136 137 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 138 139 if (RoundParts < NumParts) { 140 // Assemble the trailing non-power-of-2 part. 141 unsigned OddParts = NumParts - RoundParts; 142 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 143 Hi = getCopyFromParts(DAG, DL, 144 Parts + RoundParts, OddParts, PartVT, OddVT); 145 146 // Combine the round and odd parts. 147 Lo = Val; 148 if (TLI.isBigEndian()) 149 std::swap(Lo, Hi); 150 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 151 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 152 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 153 DAG.getConstant(Lo.getValueType().getSizeInBits(), 154 TLI.getPointerTy())); 155 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 156 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 157 } 158 } else if (PartVT.isFloatingPoint()) { 159 // FP split into multiple FP parts (for ppcf128) 160 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 161 "Unexpected split"); 162 SDValue Lo, Hi; 163 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 164 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 165 if (TLI.isBigEndian()) 166 std::swap(Lo, Hi); 167 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 168 } else { 169 // FP split into integer parts (soft fp) 170 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 171 !PartVT.isVector() && "Unexpected split"); 172 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 173 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT); 174 } 175 } 176 177 // There is now one part, held in Val. Correct it to match ValueVT. 178 PartVT = Val.getValueType(); 179 180 if (PartVT == ValueVT) 181 return Val; 182 183 if (PartVT.isInteger() && ValueVT.isInteger()) { 184 if (ValueVT.bitsLT(PartVT)) { 185 // For a truncate, see if we have any information to 186 // indicate whether the truncated bits will always be 187 // zero or sign-extension. 188 if (AssertOp != ISD::DELETED_NODE) 189 Val = DAG.getNode(AssertOp, DL, PartVT, Val, 190 DAG.getValueType(ValueVT)); 191 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 192 } 193 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 194 } 195 196 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 197 // FP_ROUND's are always exact here. 198 if (ValueVT.bitsLT(Val.getValueType())) 199 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 200 DAG.getIntPtrConstant(1)); 201 202 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 203 } 204 205 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 206 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 207 208 llvm_unreachable("Unknown mismatch!"); 209 return SDValue(); 210 } 211 212 /// getCopyFromParts - Create a value that contains the specified legal parts 213 /// combined into the value they represent. If the parts combine to a type 214 /// larger then ValueVT then AssertOp can be used to specify whether the extra 215 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 216 /// (ISD::AssertSext). 217 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 218 const SDValue *Parts, unsigned NumParts, 219 EVT PartVT, EVT ValueVT) { 220 assert(ValueVT.isVector() && "Not a vector value"); 221 assert(NumParts > 0 && "No parts to assemble!"); 222 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 223 SDValue Val = Parts[0]; 224 225 // Handle a multi-element vector. 226 if (NumParts > 1) { 227 EVT IntermediateVT, RegisterVT; 228 unsigned NumIntermediates; 229 unsigned NumRegs = 230 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 231 NumIntermediates, RegisterVT); 232 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 233 NumParts = NumRegs; // Silence a compiler warning. 234 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 235 assert(RegisterVT == Parts[0].getValueType() && 236 "Part type doesn't match part!"); 237 238 // Assemble the parts into intermediate operands. 239 SmallVector<SDValue, 8> Ops(NumIntermediates); 240 if (NumIntermediates == NumParts) { 241 // If the register was not expanded, truncate or copy the value, 242 // as appropriate. 243 for (unsigned i = 0; i != NumParts; ++i) 244 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 245 PartVT, IntermediateVT); 246 } else if (NumParts > 0) { 247 // If the intermediate type was expanded, build the intermediate 248 // operands from the parts. 249 assert(NumParts % NumIntermediates == 0 && 250 "Must expand into a divisible number of parts!"); 251 unsigned Factor = NumParts / NumIntermediates; 252 for (unsigned i = 0; i != NumIntermediates; ++i) 253 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 254 PartVT, IntermediateVT); 255 } 256 257 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 258 // intermediate operands. 259 Val = DAG.getNode(IntermediateVT.isVector() ? 260 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 261 ValueVT, &Ops[0], NumIntermediates); 262 } 263 264 // There is now one part, held in Val. Correct it to match ValueVT. 265 PartVT = Val.getValueType(); 266 267 if (PartVT == ValueVT) 268 return Val; 269 270 if (PartVT.isVector()) { 271 // If the element type of the source/dest vectors are the same, but the 272 // parts vector has more elements than the value vector, then we have a 273 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 274 // elements we want. 275 if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 276 assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 277 "Cannot narrow, it would be a lossy transformation"); 278 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 279 DAG.getIntPtrConstant(0)); 280 } 281 282 // Vector/Vector bitcast. 283 if (ValueVT.getSizeInBits() == PartVT.getSizeInBits()) 284 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 285 286 assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 287 "Cannot handle this kind of promotion"); 288 // Promoted vector extract 289 bool Smaller = ValueVT.bitsLE(PartVT); 290 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 291 DL, ValueVT, Val); 292 293 } 294 295 // Trivial bitcast if the types are the same size and the destination 296 // vector type is legal. 297 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() && 298 TLI.isTypeLegal(ValueVT)) 299 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 300 301 // Handle cases such as i8 -> <1 x i1> 302 assert(ValueVT.getVectorNumElements() == 1 && 303 "Only trivial scalar-to-vector conversions should get here!"); 304 305 if (ValueVT.getVectorNumElements() == 1 && 306 ValueVT.getVectorElementType() != PartVT) { 307 bool Smaller = ValueVT.bitsLE(PartVT); 308 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 309 DL, ValueVT.getScalarType(), Val); 310 } 311 312 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 313 } 314 315 316 317 318 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl, 319 SDValue Val, SDValue *Parts, unsigned NumParts, 320 EVT PartVT); 321 322 /// getCopyToParts - Create a series of nodes that contain the specified value 323 /// split into legal parts. If the parts contain more bits than Val, then, for 324 /// integers, ExtendKind can be used to specify how to generate the extra bits. 325 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL, 326 SDValue Val, SDValue *Parts, unsigned NumParts, 327 EVT PartVT, 328 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 329 EVT ValueVT = Val.getValueType(); 330 331 // Handle the vector case separately. 332 if (ValueVT.isVector()) 333 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT); 334 335 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 336 unsigned PartBits = PartVT.getSizeInBits(); 337 unsigned OrigNumParts = NumParts; 338 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 339 340 if (NumParts == 0) 341 return; 342 343 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 344 if (PartVT == ValueVT) { 345 assert(NumParts == 1 && "No-op copy with multiple parts!"); 346 Parts[0] = Val; 347 return; 348 } 349 350 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 351 // If the parts cover more bits than the value has, promote the value. 352 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 353 assert(NumParts == 1 && "Do not know what to promote to!"); 354 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 355 } else { 356 assert(PartVT.isInteger() && ValueVT.isInteger() && 357 "Unknown mismatch!"); 358 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 359 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 360 } 361 } else if (PartBits == ValueVT.getSizeInBits()) { 362 // Different types of the same size. 363 assert(NumParts == 1 && PartVT != ValueVT); 364 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 365 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 366 // If the parts cover less bits than value has, truncate the value. 367 assert(PartVT.isInteger() && ValueVT.isInteger() && 368 "Unknown mismatch!"); 369 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 370 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 371 } 372 373 // The value may have changed - recompute ValueVT. 374 ValueVT = Val.getValueType(); 375 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 376 "Failed to tile the value with PartVT!"); 377 378 if (NumParts == 1) { 379 assert(PartVT == ValueVT && "Type conversion failed!"); 380 Parts[0] = Val; 381 return; 382 } 383 384 // Expand the value into multiple parts. 385 if (NumParts & (NumParts - 1)) { 386 // The number of parts is not a power of 2. Split off and copy the tail. 387 assert(PartVT.isInteger() && ValueVT.isInteger() && 388 "Do not know what to expand to!"); 389 unsigned RoundParts = 1 << Log2_32(NumParts); 390 unsigned RoundBits = RoundParts * PartBits; 391 unsigned OddParts = NumParts - RoundParts; 392 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 393 DAG.getIntPtrConstant(RoundBits)); 394 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT); 395 396 if (TLI.isBigEndian()) 397 // The odd parts were reversed by getCopyToParts - unreverse them. 398 std::reverse(Parts + RoundParts, Parts + NumParts); 399 400 NumParts = RoundParts; 401 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 402 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 403 } 404 405 // The number of parts is a power of 2. Repeatedly bisect the value using 406 // EXTRACT_ELEMENT. 407 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 408 EVT::getIntegerVT(*DAG.getContext(), 409 ValueVT.getSizeInBits()), 410 Val); 411 412 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 413 for (unsigned i = 0; i < NumParts; i += StepSize) { 414 unsigned ThisBits = StepSize * PartBits / 2; 415 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 416 SDValue &Part0 = Parts[i]; 417 SDValue &Part1 = Parts[i+StepSize/2]; 418 419 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 420 ThisVT, Part0, DAG.getIntPtrConstant(1)); 421 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 422 ThisVT, Part0, DAG.getIntPtrConstant(0)); 423 424 if (ThisBits == PartBits && ThisVT != PartVT) { 425 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 426 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 427 } 428 } 429 } 430 431 if (TLI.isBigEndian()) 432 std::reverse(Parts, Parts + OrigNumParts); 433 } 434 435 436 /// getCopyToPartsVector - Create a series of nodes that contain the specified 437 /// value split into legal parts. 438 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL, 439 SDValue Val, SDValue *Parts, unsigned NumParts, 440 EVT PartVT) { 441 EVT ValueVT = Val.getValueType(); 442 assert(ValueVT.isVector() && "Not a vector"); 443 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 444 445 if (NumParts == 1) { 446 if (PartVT == ValueVT) { 447 // Nothing to do. 448 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 449 // Bitconvert vector->vector case. 450 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 451 } else if (PartVT.isVector() && 452 PartVT.getVectorElementType() == ValueVT.getVectorElementType() && 453 PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 454 EVT ElementVT = PartVT.getVectorElementType(); 455 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 456 // undef elements. 457 SmallVector<SDValue, 16> Ops; 458 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 459 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 460 ElementVT, Val, DAG.getIntPtrConstant(i))); 461 462 for (unsigned i = ValueVT.getVectorNumElements(), 463 e = PartVT.getVectorNumElements(); i != e; ++i) 464 Ops.push_back(DAG.getUNDEF(ElementVT)); 465 466 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 467 468 // FIXME: Use CONCAT for 2x -> 4x. 469 470 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 471 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 472 } else if (PartVT.isVector() && 473 PartVT.getVectorElementType().bitsGE( 474 ValueVT.getVectorElementType()) && 475 PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 476 477 // Promoted vector extract 478 bool Smaller = PartVT.bitsLE(ValueVT); 479 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 480 DL, PartVT, Val); 481 } else{ 482 // Vector -> scalar conversion. 483 assert(ValueVT.getVectorNumElements() == 1 && 484 "Only trivial vector-to-scalar conversions should get here!"); 485 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 486 PartVT, Val, DAG.getIntPtrConstant(0)); 487 488 bool Smaller = ValueVT.bitsLE(PartVT); 489 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 490 DL, PartVT, Val); 491 } 492 493 Parts[0] = Val; 494 return; 495 } 496 497 // Handle a multi-element vector. 498 EVT IntermediateVT, RegisterVT; 499 unsigned NumIntermediates; 500 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 501 IntermediateVT, 502 NumIntermediates, RegisterVT); 503 unsigned NumElements = ValueVT.getVectorNumElements(); 504 505 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 506 NumParts = NumRegs; // Silence a compiler warning. 507 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 508 509 // Split the vector into intermediate operands. 510 SmallVector<SDValue, 8> Ops(NumIntermediates); 511 for (unsigned i = 0; i != NumIntermediates; ++i) { 512 if (IntermediateVT.isVector()) 513 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 514 IntermediateVT, Val, 515 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates))); 516 else 517 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 518 IntermediateVT, Val, DAG.getIntPtrConstant(i)); 519 } 520 521 // Split the intermediate operands into legal parts. 522 if (NumParts == NumIntermediates) { 523 // If the register was not expanded, promote or copy the value, 524 // as appropriate. 525 for (unsigned i = 0; i != NumParts; ++i) 526 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT); 527 } else if (NumParts > 0) { 528 // If the intermediate type was expanded, split each the value into 529 // legal parts. 530 assert(NumParts % NumIntermediates == 0 && 531 "Must expand into a divisible number of parts!"); 532 unsigned Factor = NumParts / NumIntermediates; 533 for (unsigned i = 0; i != NumIntermediates; ++i) 534 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT); 535 } 536 } 537 538 539 540 541 namespace { 542 /// RegsForValue - This struct represents the registers (physical or virtual) 543 /// that a particular set of values is assigned, and the type information 544 /// about the value. The most common situation is to represent one value at a 545 /// time, but struct or array values are handled element-wise as multiple 546 /// values. The splitting of aggregates is performed recursively, so that we 547 /// never have aggregate-typed registers. The values at this point do not 548 /// necessarily have legal types, so each value may require one or more 549 /// registers of some legal type. 550 /// 551 struct RegsForValue { 552 /// ValueVTs - The value types of the values, which may not be legal, and 553 /// may need be promoted or synthesized from one or more registers. 554 /// 555 SmallVector<EVT, 4> ValueVTs; 556 557 /// RegVTs - The value types of the registers. This is the same size as 558 /// ValueVTs and it records, for each value, what the type of the assigned 559 /// register or registers are. (Individual values are never synthesized 560 /// from more than one type of register.) 561 /// 562 /// With virtual registers, the contents of RegVTs is redundant with TLI's 563 /// getRegisterType member function, however when with physical registers 564 /// it is necessary to have a separate record of the types. 565 /// 566 SmallVector<EVT, 4> RegVTs; 567 568 /// Regs - This list holds the registers assigned to the values. 569 /// Each legal or promoted value requires one register, and each 570 /// expanded value requires multiple registers. 571 /// 572 SmallVector<unsigned, 4> Regs; 573 574 RegsForValue() {} 575 576 RegsForValue(const SmallVector<unsigned, 4> ®s, 577 EVT regvt, EVT valuevt) 578 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 579 580 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 581 unsigned Reg, Type *Ty) { 582 ComputeValueVTs(tli, Ty, ValueVTs); 583 584 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 585 EVT ValueVT = ValueVTs[Value]; 586 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 587 EVT RegisterVT = tli.getRegisterType(Context, ValueVT); 588 for (unsigned i = 0; i != NumRegs; ++i) 589 Regs.push_back(Reg + i); 590 RegVTs.push_back(RegisterVT); 591 Reg += NumRegs; 592 } 593 } 594 595 /// areValueTypesLegal - Return true if types of all the values are legal. 596 bool areValueTypesLegal(const TargetLowering &TLI) { 597 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 598 EVT RegisterVT = RegVTs[Value]; 599 if (!TLI.isTypeLegal(RegisterVT)) 600 return false; 601 } 602 return true; 603 } 604 605 /// append - Add the specified values to this one. 606 void append(const RegsForValue &RHS) { 607 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 608 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 609 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 610 } 611 612 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 613 /// this value and returns the result as a ValueVTs value. This uses 614 /// Chain/Flag as the input and updates them for the output Chain/Flag. 615 /// If the Flag pointer is NULL, no flag is used. 616 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 617 DebugLoc dl, 618 SDValue &Chain, SDValue *Flag) const; 619 620 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 621 /// specified value into the registers specified by this object. This uses 622 /// Chain/Flag as the input and updates them for the output Chain/Flag. 623 /// If the Flag pointer is NULL, no flag is used. 624 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 625 SDValue &Chain, SDValue *Flag) const; 626 627 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 628 /// operand list. This adds the code marker, matching input operand index 629 /// (if applicable), and includes the number of values added into it. 630 void AddInlineAsmOperands(unsigned Kind, 631 bool HasMatching, unsigned MatchingIdx, 632 SelectionDAG &DAG, 633 std::vector<SDValue> &Ops) const; 634 }; 635 } 636 637 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 638 /// this value and returns the result as a ValueVT value. This uses 639 /// Chain/Flag as the input and updates them for the output Chain/Flag. 640 /// If the Flag pointer is NULL, no flag is used. 641 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 642 FunctionLoweringInfo &FuncInfo, 643 DebugLoc dl, 644 SDValue &Chain, SDValue *Flag) const { 645 // A Value with type {} or [0 x %t] needs no registers. 646 if (ValueVTs.empty()) 647 return SDValue(); 648 649 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 650 651 // Assemble the legal parts into the final values. 652 SmallVector<SDValue, 4> Values(ValueVTs.size()); 653 SmallVector<SDValue, 8> Parts; 654 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 655 // Copy the legal parts from the registers. 656 EVT ValueVT = ValueVTs[Value]; 657 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 658 EVT RegisterVT = RegVTs[Value]; 659 660 Parts.resize(NumRegs); 661 for (unsigned i = 0; i != NumRegs; ++i) { 662 SDValue P; 663 if (Flag == 0) { 664 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 665 } else { 666 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 667 *Flag = P.getValue(2); 668 } 669 670 Chain = P.getValue(1); 671 Parts[i] = P; 672 673 // If the source register was virtual and if we know something about it, 674 // add an assert node. 675 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 676 !RegisterVT.isInteger() || RegisterVT.isVector()) 677 continue; 678 679 const FunctionLoweringInfo::LiveOutInfo *LOI = 680 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 681 if (!LOI) 682 continue; 683 684 unsigned RegSize = RegisterVT.getSizeInBits(); 685 unsigned NumSignBits = LOI->NumSignBits; 686 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 687 688 // FIXME: We capture more information than the dag can represent. For 689 // now, just use the tightest assertzext/assertsext possible. 690 bool isSExt = true; 691 EVT FromVT(MVT::Other); 692 if (NumSignBits == RegSize) 693 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 694 else if (NumZeroBits >= RegSize-1) 695 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 696 else if (NumSignBits > RegSize-8) 697 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 698 else if (NumZeroBits >= RegSize-8) 699 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 700 else if (NumSignBits > RegSize-16) 701 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 702 else if (NumZeroBits >= RegSize-16) 703 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 704 else if (NumSignBits > RegSize-32) 705 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 706 else if (NumZeroBits >= RegSize-32) 707 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 708 else 709 continue; 710 711 // Add an assertion node. 712 assert(FromVT != MVT::Other); 713 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 714 RegisterVT, P, DAG.getValueType(FromVT)); 715 } 716 717 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 718 NumRegs, RegisterVT, ValueVT); 719 Part += NumRegs; 720 Parts.clear(); 721 } 722 723 return DAG.getNode(ISD::MERGE_VALUES, dl, 724 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 725 &Values[0], ValueVTs.size()); 726 } 727 728 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 729 /// specified value into the registers specified by this object. This uses 730 /// Chain/Flag as the input and updates them for the output Chain/Flag. 731 /// If the Flag pointer is NULL, no flag is used. 732 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 733 SDValue &Chain, SDValue *Flag) const { 734 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 735 736 // Get the list of the values's legal parts. 737 unsigned NumRegs = Regs.size(); 738 SmallVector<SDValue, 8> Parts(NumRegs); 739 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 740 EVT ValueVT = ValueVTs[Value]; 741 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 742 EVT RegisterVT = RegVTs[Value]; 743 744 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 745 &Parts[Part], NumParts, RegisterVT); 746 Part += NumParts; 747 } 748 749 // Copy the parts into the registers. 750 SmallVector<SDValue, 8> Chains(NumRegs); 751 for (unsigned i = 0; i != NumRegs; ++i) { 752 SDValue Part; 753 if (Flag == 0) { 754 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 755 } else { 756 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 757 *Flag = Part.getValue(1); 758 } 759 760 Chains[i] = Part.getValue(0); 761 } 762 763 if (NumRegs == 1 || Flag) 764 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 765 // flagged to it. That is the CopyToReg nodes and the user are considered 766 // a single scheduling unit. If we create a TokenFactor and return it as 767 // chain, then the TokenFactor is both a predecessor (operand) of the 768 // user as well as a successor (the TF operands are flagged to the user). 769 // c1, f1 = CopyToReg 770 // c2, f2 = CopyToReg 771 // c3 = TokenFactor c1, c2 772 // ... 773 // = op c3, ..., f2 774 Chain = Chains[NumRegs-1]; 775 else 776 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 777 } 778 779 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 780 /// operand list. This adds the code marker and includes the number of 781 /// values added into it. 782 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 783 unsigned MatchingIdx, 784 SelectionDAG &DAG, 785 std::vector<SDValue> &Ops) const { 786 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 787 788 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 789 if (HasMatching) 790 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 791 else if (!Regs.empty() && 792 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 793 // Put the register class of the virtual registers in the flag word. That 794 // way, later passes can recompute register class constraints for inline 795 // assembly as well as normal instructions. 796 // Don't do this for tied operands that can use the regclass information 797 // from the def. 798 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 799 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 800 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 801 } 802 803 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 804 Ops.push_back(Res); 805 806 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 807 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 808 EVT RegisterVT = RegVTs[Value]; 809 for (unsigned i = 0; i != NumRegs; ++i) { 810 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 811 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 812 } 813 } 814 } 815 816 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { 817 AA = &aa; 818 GFI = gfi; 819 TD = DAG.getTarget().getTargetData(); 820 } 821 822 /// clear - Clear out the current SelectionDAG and the associated 823 /// state and prepare this SelectionDAGBuilder object to be used 824 /// for a new block. This doesn't clear out information about 825 /// additional blocks that are needed to complete switch lowering 826 /// or PHI node updating; that information is cleared out as it is 827 /// consumed. 828 void SelectionDAGBuilder::clear() { 829 NodeMap.clear(); 830 UnusedArgNodeMap.clear(); 831 PendingLoads.clear(); 832 PendingExports.clear(); 833 CurDebugLoc = DebugLoc(); 834 HasTailCall = false; 835 } 836 837 /// clearDanglingDebugInfo - Clear the dangling debug information 838 /// map. This function is seperated from the clear so that debug 839 /// information that is dangling in a basic block can be properly 840 /// resolved in a different basic block. This allows the 841 /// SelectionDAG to resolve dangling debug information attached 842 /// to PHI nodes. 843 void SelectionDAGBuilder::clearDanglingDebugInfo() { 844 DanglingDebugInfoMap.clear(); 845 } 846 847 /// getRoot - Return the current virtual root of the Selection DAG, 848 /// flushing any PendingLoad items. This must be done before emitting 849 /// a store or any other node that may need to be ordered after any 850 /// prior load instructions. 851 /// 852 SDValue SelectionDAGBuilder::getRoot() { 853 if (PendingLoads.empty()) 854 return DAG.getRoot(); 855 856 if (PendingLoads.size() == 1) { 857 SDValue Root = PendingLoads[0]; 858 DAG.setRoot(Root); 859 PendingLoads.clear(); 860 return Root; 861 } 862 863 // Otherwise, we have to make a token factor node. 864 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 865 &PendingLoads[0], PendingLoads.size()); 866 PendingLoads.clear(); 867 DAG.setRoot(Root); 868 return Root; 869 } 870 871 /// getControlRoot - Similar to getRoot, but instead of flushing all the 872 /// PendingLoad items, flush all the PendingExports items. It is necessary 873 /// to do this before emitting a terminator instruction. 874 /// 875 SDValue SelectionDAGBuilder::getControlRoot() { 876 SDValue Root = DAG.getRoot(); 877 878 if (PendingExports.empty()) 879 return Root; 880 881 // Turn all of the CopyToReg chains into one factored node. 882 if (Root.getOpcode() != ISD::EntryToken) { 883 unsigned i = 0, e = PendingExports.size(); 884 for (; i != e; ++i) { 885 assert(PendingExports[i].getNode()->getNumOperands() > 1); 886 if (PendingExports[i].getNode()->getOperand(0) == Root) 887 break; // Don't add the root if we already indirectly depend on it. 888 } 889 890 if (i == e) 891 PendingExports.push_back(Root); 892 } 893 894 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 895 &PendingExports[0], 896 PendingExports.size()); 897 PendingExports.clear(); 898 DAG.setRoot(Root); 899 return Root; 900 } 901 902 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 903 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 904 DAG.AssignOrdering(Node, SDNodeOrder); 905 906 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 907 AssignOrderingToNode(Node->getOperand(I).getNode()); 908 } 909 910 void SelectionDAGBuilder::visit(const Instruction &I) { 911 // Set up outgoing PHI node register values before emitting the terminator. 912 if (isa<TerminatorInst>(&I)) 913 HandlePHINodesInSuccessorBlocks(I.getParent()); 914 915 CurDebugLoc = I.getDebugLoc(); 916 917 visit(I.getOpcode(), I); 918 919 if (!isa<TerminatorInst>(&I) && !HasTailCall) 920 CopyToExportRegsIfNeeded(&I); 921 922 CurDebugLoc = DebugLoc(); 923 } 924 925 void SelectionDAGBuilder::visitPHI(const PHINode &) { 926 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 927 } 928 929 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 930 // Note: this doesn't use InstVisitor, because it has to work with 931 // ConstantExpr's in addition to instructions. 932 switch (Opcode) { 933 default: llvm_unreachable("Unknown instruction type encountered!"); 934 // Build the switch statement using the Instruction.def file. 935 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 936 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break; 937 #include "llvm/Instruction.def" 938 } 939 940 // Assign the ordering to the freshly created DAG nodes. 941 if (NodeMap.count(&I)) { 942 ++SDNodeOrder; 943 AssignOrderingToNode(getValue(&I).getNode()); 944 } 945 } 946 947 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 948 // generate the debug data structures now that we've seen its definition. 949 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 950 SDValue Val) { 951 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 952 if (DDI.getDI()) { 953 const DbgValueInst *DI = DDI.getDI(); 954 DebugLoc dl = DDI.getdl(); 955 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 956 MDNode *Variable = DI->getVariable(); 957 uint64_t Offset = DI->getOffset(); 958 SDDbgValue *SDV; 959 if (Val.getNode()) { 960 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 961 SDV = DAG.getDbgValue(Variable, Val.getNode(), 962 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 963 DAG.AddDbgValue(SDV, Val.getNode(), false); 964 } 965 } else 966 DEBUG(dbgs() << "Dropping debug info for " << DI); 967 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 968 } 969 } 970 971 /// getValue - Return an SDValue for the given Value. 972 SDValue SelectionDAGBuilder::getValue(const Value *V) { 973 // If we already have an SDValue for this value, use it. It's important 974 // to do this first, so that we don't create a CopyFromReg if we already 975 // have a regular SDValue. 976 SDValue &N = NodeMap[V]; 977 if (N.getNode()) return N; 978 979 // If there's a virtual register allocated and initialized for this 980 // value, use it. 981 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 982 if (It != FuncInfo.ValueMap.end()) { 983 unsigned InReg = It->second; 984 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 985 SDValue Chain = DAG.getEntryNode(); 986 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 987 resolveDanglingDebugInfo(V, N); 988 return N; 989 } 990 991 // Otherwise create a new SDValue and remember it. 992 SDValue Val = getValueImpl(V); 993 NodeMap[V] = Val; 994 resolveDanglingDebugInfo(V, Val); 995 return Val; 996 } 997 998 /// getNonRegisterValue - Return an SDValue for the given Value, but 999 /// don't look in FuncInfo.ValueMap for a virtual register. 1000 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1001 // If we already have an SDValue for this value, use it. 1002 SDValue &N = NodeMap[V]; 1003 if (N.getNode()) return N; 1004 1005 // Otherwise create a new SDValue and remember it. 1006 SDValue Val = getValueImpl(V); 1007 NodeMap[V] = Val; 1008 resolveDanglingDebugInfo(V, Val); 1009 return Val; 1010 } 1011 1012 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1013 /// Create an SDValue for the given value. 1014 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1015 if (const Constant *C = dyn_cast<Constant>(V)) { 1016 EVT VT = TLI.getValueType(V->getType(), true); 1017 1018 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1019 return DAG.getConstant(*CI, VT); 1020 1021 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1022 return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT); 1023 1024 if (isa<ConstantPointerNull>(C)) 1025 return DAG.getConstant(0, TLI.getPointerTy()); 1026 1027 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1028 return DAG.getConstantFP(*CFP, VT); 1029 1030 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1031 return DAG.getUNDEF(VT); 1032 1033 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1034 visit(CE->getOpcode(), *CE); 1035 SDValue N1 = NodeMap[V]; 1036 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1037 return N1; 1038 } 1039 1040 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1041 SmallVector<SDValue, 4> Constants; 1042 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1043 OI != OE; ++OI) { 1044 SDNode *Val = getValue(*OI).getNode(); 1045 // If the operand is an empty aggregate, there are no values. 1046 if (!Val) continue; 1047 // Add each leaf value from the operand to the Constants list 1048 // to form a flattened list of all the values. 1049 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1050 Constants.push_back(SDValue(Val, i)); 1051 } 1052 1053 return DAG.getMergeValues(&Constants[0], Constants.size(), 1054 getCurDebugLoc()); 1055 } 1056 1057 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1058 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1059 "Unknown struct or array constant!"); 1060 1061 SmallVector<EVT, 4> ValueVTs; 1062 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1063 unsigned NumElts = ValueVTs.size(); 1064 if (NumElts == 0) 1065 return SDValue(); // empty struct 1066 SmallVector<SDValue, 4> Constants(NumElts); 1067 for (unsigned i = 0; i != NumElts; ++i) { 1068 EVT EltVT = ValueVTs[i]; 1069 if (isa<UndefValue>(C)) 1070 Constants[i] = DAG.getUNDEF(EltVT); 1071 else if (EltVT.isFloatingPoint()) 1072 Constants[i] = DAG.getConstantFP(0, EltVT); 1073 else 1074 Constants[i] = DAG.getConstant(0, EltVT); 1075 } 1076 1077 return DAG.getMergeValues(&Constants[0], NumElts, 1078 getCurDebugLoc()); 1079 } 1080 1081 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1082 return DAG.getBlockAddress(BA, VT); 1083 1084 VectorType *VecTy = cast<VectorType>(V->getType()); 1085 unsigned NumElements = VecTy->getNumElements(); 1086 1087 // Now that we know the number and type of the elements, get that number of 1088 // elements into the Ops array based on what kind of constant it is. 1089 SmallVector<SDValue, 16> Ops; 1090 if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) { 1091 for (unsigned i = 0; i != NumElements; ++i) 1092 Ops.push_back(getValue(CP->getOperand(i))); 1093 } else { 1094 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1095 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1096 1097 SDValue Op; 1098 if (EltVT.isFloatingPoint()) 1099 Op = DAG.getConstantFP(0, EltVT); 1100 else 1101 Op = DAG.getConstant(0, EltVT); 1102 Ops.assign(NumElements, Op); 1103 } 1104 1105 // Create a BUILD_VECTOR node. 1106 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1107 VT, &Ops[0], Ops.size()); 1108 } 1109 1110 // If this is a static alloca, generate it as the frameindex instead of 1111 // computation. 1112 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1113 DenseMap<const AllocaInst*, int>::iterator SI = 1114 FuncInfo.StaticAllocaMap.find(AI); 1115 if (SI != FuncInfo.StaticAllocaMap.end()) 1116 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1117 } 1118 1119 // If this is an instruction which fast-isel has deferred, select it now. 1120 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1121 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1122 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1123 SDValue Chain = DAG.getEntryNode(); 1124 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 1125 } 1126 1127 llvm_unreachable("Can't get register for value!"); 1128 return SDValue(); 1129 } 1130 1131 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1132 SDValue Chain = getControlRoot(); 1133 SmallVector<ISD::OutputArg, 8> Outs; 1134 SmallVector<SDValue, 8> OutVals; 1135 1136 if (!FuncInfo.CanLowerReturn) { 1137 unsigned DemoteReg = FuncInfo.DemoteRegister; 1138 const Function *F = I.getParent()->getParent(); 1139 1140 // Emit a store of the return value through the virtual register. 1141 // Leave Outs empty so that LowerReturn won't try to load return 1142 // registers the usual way. 1143 SmallVector<EVT, 1> PtrValueVTs; 1144 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1145 PtrValueVTs); 1146 1147 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1148 SDValue RetOp = getValue(I.getOperand(0)); 1149 1150 SmallVector<EVT, 4> ValueVTs; 1151 SmallVector<uint64_t, 4> Offsets; 1152 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1153 unsigned NumValues = ValueVTs.size(); 1154 1155 SmallVector<SDValue, 4> Chains(NumValues); 1156 for (unsigned i = 0; i != NumValues; ++i) { 1157 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), 1158 RetPtr.getValueType(), RetPtr, 1159 DAG.getIntPtrConstant(Offsets[i])); 1160 Chains[i] = 1161 DAG.getStore(Chain, getCurDebugLoc(), 1162 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1163 // FIXME: better loc info would be nice. 1164 Add, MachinePointerInfo(), false, false, 0); 1165 } 1166 1167 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 1168 MVT::Other, &Chains[0], NumValues); 1169 } else if (I.getNumOperands() != 0) { 1170 SmallVector<EVT, 4> ValueVTs; 1171 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1172 unsigned NumValues = ValueVTs.size(); 1173 if (NumValues) { 1174 SDValue RetOp = getValue(I.getOperand(0)); 1175 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1176 EVT VT = ValueVTs[j]; 1177 1178 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1179 1180 const Function *F = I.getParent()->getParent(); 1181 if (F->paramHasAttr(0, Attribute::SExt)) 1182 ExtendKind = ISD::SIGN_EXTEND; 1183 else if (F->paramHasAttr(0, Attribute::ZExt)) 1184 ExtendKind = ISD::ZERO_EXTEND; 1185 1186 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1187 VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind); 1188 1189 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1190 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1191 SmallVector<SDValue, 4> Parts(NumParts); 1192 getCopyToParts(DAG, getCurDebugLoc(), 1193 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1194 &Parts[0], NumParts, PartVT, ExtendKind); 1195 1196 // 'inreg' on function refers to return value 1197 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1198 if (F->paramHasAttr(0, Attribute::InReg)) 1199 Flags.setInReg(); 1200 1201 // Propagate extension type if any 1202 if (ExtendKind == ISD::SIGN_EXTEND) 1203 Flags.setSExt(); 1204 else if (ExtendKind == ISD::ZERO_EXTEND) 1205 Flags.setZExt(); 1206 1207 for (unsigned i = 0; i < NumParts; ++i) { 1208 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1209 /*isfixed=*/true)); 1210 OutVals.push_back(Parts[i]); 1211 } 1212 } 1213 } 1214 } 1215 1216 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1217 CallingConv::ID CallConv = 1218 DAG.getMachineFunction().getFunction()->getCallingConv(); 1219 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 1220 Outs, OutVals, getCurDebugLoc(), DAG); 1221 1222 // Verify that the target's LowerReturn behaved as expected. 1223 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1224 "LowerReturn didn't return a valid chain!"); 1225 1226 // Update the DAG with the new chain value resulting from return lowering. 1227 DAG.setRoot(Chain); 1228 } 1229 1230 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1231 /// created for it, emit nodes to copy the value into the virtual 1232 /// registers. 1233 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1234 // Skip empty types 1235 if (V->getType()->isEmptyTy()) 1236 return; 1237 1238 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1239 if (VMI != FuncInfo.ValueMap.end()) { 1240 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1241 CopyValueToVirtualRegister(V, VMI->second); 1242 } 1243 } 1244 1245 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1246 /// the current basic block, add it to ValueMap now so that we'll get a 1247 /// CopyTo/FromReg. 1248 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1249 // No need to export constants. 1250 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1251 1252 // Already exported? 1253 if (FuncInfo.isExportedInst(V)) return; 1254 1255 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1256 CopyValueToVirtualRegister(V, Reg); 1257 } 1258 1259 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1260 const BasicBlock *FromBB) { 1261 // The operands of the setcc have to be in this block. We don't know 1262 // how to export them from some other block. 1263 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1264 // Can export from current BB. 1265 if (VI->getParent() == FromBB) 1266 return true; 1267 1268 // Is already exported, noop. 1269 return FuncInfo.isExportedInst(V); 1270 } 1271 1272 // If this is an argument, we can export it if the BB is the entry block or 1273 // if it is already exported. 1274 if (isa<Argument>(V)) { 1275 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1276 return true; 1277 1278 // Otherwise, can only export this if it is already exported. 1279 return FuncInfo.isExportedInst(V); 1280 } 1281 1282 // Otherwise, constants can always be exported. 1283 return true; 1284 } 1285 1286 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1287 uint32_t SelectionDAGBuilder::getEdgeWeight(MachineBasicBlock *Src, 1288 MachineBasicBlock *Dst) { 1289 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1290 if (!BPI) 1291 return 0; 1292 const BasicBlock *SrcBB = Src->getBasicBlock(); 1293 const BasicBlock *DstBB = Dst->getBasicBlock(); 1294 return BPI->getEdgeWeight(SrcBB, DstBB); 1295 } 1296 1297 void SelectionDAGBuilder:: 1298 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1299 uint32_t Weight /* = 0 */) { 1300 if (!Weight) 1301 Weight = getEdgeWeight(Src, Dst); 1302 Src->addSuccessor(Dst, Weight); 1303 } 1304 1305 1306 static bool InBlock(const Value *V, const BasicBlock *BB) { 1307 if (const Instruction *I = dyn_cast<Instruction>(V)) 1308 return I->getParent() == BB; 1309 return true; 1310 } 1311 1312 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1313 /// This function emits a branch and is used at the leaves of an OR or an 1314 /// AND operator tree. 1315 /// 1316 void 1317 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1318 MachineBasicBlock *TBB, 1319 MachineBasicBlock *FBB, 1320 MachineBasicBlock *CurBB, 1321 MachineBasicBlock *SwitchBB) { 1322 const BasicBlock *BB = CurBB->getBasicBlock(); 1323 1324 // If the leaf of the tree is a comparison, merge the condition into 1325 // the caseblock. 1326 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1327 // The operands of the cmp have to be in this block. We don't know 1328 // how to export them from some other block. If this is the first block 1329 // of the sequence, no exporting is needed. 1330 if (CurBB == SwitchBB || 1331 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1332 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1333 ISD::CondCode Condition; 1334 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1335 Condition = getICmpCondCode(IC->getPredicate()); 1336 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1337 Condition = getFCmpCondCode(FC->getPredicate()); 1338 } else { 1339 Condition = ISD::SETEQ; // silence warning. 1340 llvm_unreachable("Unknown compare instruction"); 1341 } 1342 1343 CaseBlock CB(Condition, BOp->getOperand(0), 1344 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1345 SwitchCases.push_back(CB); 1346 return; 1347 } 1348 } 1349 1350 // Create a CaseBlock record representing this branch. 1351 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1352 NULL, TBB, FBB, CurBB); 1353 SwitchCases.push_back(CB); 1354 } 1355 1356 /// FindMergedConditions - If Cond is an expression like 1357 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1358 MachineBasicBlock *TBB, 1359 MachineBasicBlock *FBB, 1360 MachineBasicBlock *CurBB, 1361 MachineBasicBlock *SwitchBB, 1362 unsigned Opc) { 1363 // If this node is not part of the or/and tree, emit it as a branch. 1364 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1365 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1366 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1367 BOp->getParent() != CurBB->getBasicBlock() || 1368 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1369 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1370 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1371 return; 1372 } 1373 1374 // Create TmpBB after CurBB. 1375 MachineFunction::iterator BBI = CurBB; 1376 MachineFunction &MF = DAG.getMachineFunction(); 1377 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1378 CurBB->getParent()->insert(++BBI, TmpBB); 1379 1380 if (Opc == Instruction::Or) { 1381 // Codegen X | Y as: 1382 // jmp_if_X TBB 1383 // jmp TmpBB 1384 // TmpBB: 1385 // jmp_if_Y TBB 1386 // jmp FBB 1387 // 1388 1389 // Emit the LHS condition. 1390 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1391 1392 // Emit the RHS condition into TmpBB. 1393 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1394 } else { 1395 assert(Opc == Instruction::And && "Unknown merge op!"); 1396 // Codegen X & Y as: 1397 // jmp_if_X TmpBB 1398 // jmp FBB 1399 // TmpBB: 1400 // jmp_if_Y TBB 1401 // jmp FBB 1402 // 1403 // This requires creation of TmpBB after CurBB. 1404 1405 // Emit the LHS condition. 1406 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1407 1408 // Emit the RHS condition into TmpBB. 1409 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1410 } 1411 } 1412 1413 /// If the set of cases should be emitted as a series of branches, return true. 1414 /// If we should emit this as a bunch of and/or'd together conditions, return 1415 /// false. 1416 bool 1417 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1418 if (Cases.size() != 2) return true; 1419 1420 // If this is two comparisons of the same values or'd or and'd together, they 1421 // will get folded into a single comparison, so don't emit two blocks. 1422 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1423 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1424 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1425 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1426 return false; 1427 } 1428 1429 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1430 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1431 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1432 Cases[0].CC == Cases[1].CC && 1433 isa<Constant>(Cases[0].CmpRHS) && 1434 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1435 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1436 return false; 1437 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1438 return false; 1439 } 1440 1441 return true; 1442 } 1443 1444 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1445 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1446 1447 // Update machine-CFG edges. 1448 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1449 1450 // Figure out which block is immediately after the current one. 1451 MachineBasicBlock *NextBlock = 0; 1452 MachineFunction::iterator BBI = BrMBB; 1453 if (++BBI != FuncInfo.MF->end()) 1454 NextBlock = BBI; 1455 1456 if (I.isUnconditional()) { 1457 // Update machine-CFG edges. 1458 BrMBB->addSuccessor(Succ0MBB); 1459 1460 // If this is not a fall-through branch, emit the branch. 1461 if (Succ0MBB != NextBlock) 1462 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1463 MVT::Other, getControlRoot(), 1464 DAG.getBasicBlock(Succ0MBB))); 1465 1466 return; 1467 } 1468 1469 // If this condition is one of the special cases we handle, do special stuff 1470 // now. 1471 const Value *CondVal = I.getCondition(); 1472 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1473 1474 // If this is a series of conditions that are or'd or and'd together, emit 1475 // this as a sequence of branches instead of setcc's with and/or operations. 1476 // As long as jumps are not expensive, this should improve performance. 1477 // For example, instead of something like: 1478 // cmp A, B 1479 // C = seteq 1480 // cmp D, E 1481 // F = setle 1482 // or C, F 1483 // jnz foo 1484 // Emit: 1485 // cmp A, B 1486 // je foo 1487 // cmp D, E 1488 // jle foo 1489 // 1490 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1491 if (!TLI.isJumpExpensive() && 1492 BOp->hasOneUse() && 1493 (BOp->getOpcode() == Instruction::And || 1494 BOp->getOpcode() == Instruction::Or)) { 1495 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1496 BOp->getOpcode()); 1497 // If the compares in later blocks need to use values not currently 1498 // exported from this block, export them now. This block should always 1499 // be the first entry. 1500 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1501 1502 // Allow some cases to be rejected. 1503 if (ShouldEmitAsBranches(SwitchCases)) { 1504 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1505 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1506 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1507 } 1508 1509 // Emit the branch for this block. 1510 visitSwitchCase(SwitchCases[0], BrMBB); 1511 SwitchCases.erase(SwitchCases.begin()); 1512 return; 1513 } 1514 1515 // Okay, we decided not to do this, remove any inserted MBB's and clear 1516 // SwitchCases. 1517 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1518 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1519 1520 SwitchCases.clear(); 1521 } 1522 } 1523 1524 // Create a CaseBlock record representing this branch. 1525 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1526 NULL, Succ0MBB, Succ1MBB, BrMBB); 1527 1528 // Use visitSwitchCase to actually insert the fast branch sequence for this 1529 // cond branch. 1530 visitSwitchCase(CB, BrMBB); 1531 } 1532 1533 /// visitSwitchCase - Emits the necessary code to represent a single node in 1534 /// the binary search tree resulting from lowering a switch instruction. 1535 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1536 MachineBasicBlock *SwitchBB) { 1537 SDValue Cond; 1538 SDValue CondLHS = getValue(CB.CmpLHS); 1539 DebugLoc dl = getCurDebugLoc(); 1540 1541 // Build the setcc now. 1542 if (CB.CmpMHS == NULL) { 1543 // Fold "(X == true)" to X and "(X == false)" to !X to 1544 // handle common cases produced by branch lowering. 1545 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1546 CB.CC == ISD::SETEQ) 1547 Cond = CondLHS; 1548 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1549 CB.CC == ISD::SETEQ) { 1550 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1551 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1552 } else 1553 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1554 } else { 1555 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1556 1557 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1558 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1559 1560 SDValue CmpOp = getValue(CB.CmpMHS); 1561 EVT VT = CmpOp.getValueType(); 1562 1563 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1564 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1565 ISD::SETLE); 1566 } else { 1567 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1568 VT, CmpOp, DAG.getConstant(Low, VT)); 1569 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1570 DAG.getConstant(High-Low, VT), ISD::SETULE); 1571 } 1572 } 1573 1574 // Update successor info 1575 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1576 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1577 1578 // Set NextBlock to be the MBB immediately after the current one, if any. 1579 // This is used to avoid emitting unnecessary branches to the next block. 1580 MachineBasicBlock *NextBlock = 0; 1581 MachineFunction::iterator BBI = SwitchBB; 1582 if (++BBI != FuncInfo.MF->end()) 1583 NextBlock = BBI; 1584 1585 // If the lhs block is the next block, invert the condition so that we can 1586 // fall through to the lhs instead of the rhs block. 1587 if (CB.TrueBB == NextBlock) { 1588 std::swap(CB.TrueBB, CB.FalseBB); 1589 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1590 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1591 } 1592 1593 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1594 MVT::Other, getControlRoot(), Cond, 1595 DAG.getBasicBlock(CB.TrueBB)); 1596 1597 // Insert the false branch. Do this even if it's a fall through branch, 1598 // this makes it easier to do DAG optimizations which require inverting 1599 // the branch condition. 1600 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1601 DAG.getBasicBlock(CB.FalseBB)); 1602 1603 DAG.setRoot(BrCond); 1604 } 1605 1606 /// visitJumpTable - Emit JumpTable node in the current MBB 1607 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1608 // Emit the code for the jump table 1609 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1610 EVT PTy = TLI.getPointerTy(); 1611 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1612 JT.Reg, PTy); 1613 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1614 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1615 MVT::Other, Index.getValue(1), 1616 Table, Index); 1617 DAG.setRoot(BrJumpTable); 1618 } 1619 1620 /// visitJumpTableHeader - This function emits necessary code to produce index 1621 /// in the JumpTable from switch case. 1622 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1623 JumpTableHeader &JTH, 1624 MachineBasicBlock *SwitchBB) { 1625 // Subtract the lowest switch case value from the value being switched on and 1626 // conditional branch to default mbb if the result is greater than the 1627 // difference between smallest and largest cases. 1628 SDValue SwitchOp = getValue(JTH.SValue); 1629 EVT VT = SwitchOp.getValueType(); 1630 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1631 DAG.getConstant(JTH.First, VT)); 1632 1633 // The SDNode we just created, which holds the value being switched on minus 1634 // the smallest case value, needs to be copied to a virtual register so it 1635 // can be used as an index into the jump table in a subsequent basic block. 1636 // This value may be smaller or larger than the target's pointer type, and 1637 // therefore require extension or truncating. 1638 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1639 1640 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1641 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1642 JumpTableReg, SwitchOp); 1643 JT.Reg = JumpTableReg; 1644 1645 // Emit the range check for the jump table, and branch to the default block 1646 // for the switch statement if the value being switched on exceeds the largest 1647 // case in the switch. 1648 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1649 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1650 DAG.getConstant(JTH.Last-JTH.First,VT), 1651 ISD::SETUGT); 1652 1653 // Set NextBlock to be the MBB immediately after the current one, if any. 1654 // This is used to avoid emitting unnecessary branches to the next block. 1655 MachineBasicBlock *NextBlock = 0; 1656 MachineFunction::iterator BBI = SwitchBB; 1657 1658 if (++BBI != FuncInfo.MF->end()) 1659 NextBlock = BBI; 1660 1661 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1662 MVT::Other, CopyTo, CMP, 1663 DAG.getBasicBlock(JT.Default)); 1664 1665 if (JT.MBB != NextBlock) 1666 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1667 DAG.getBasicBlock(JT.MBB)); 1668 1669 DAG.setRoot(BrCond); 1670 } 1671 1672 /// visitBitTestHeader - This function emits necessary code to produce value 1673 /// suitable for "bit tests" 1674 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1675 MachineBasicBlock *SwitchBB) { 1676 // Subtract the minimum value 1677 SDValue SwitchOp = getValue(B.SValue); 1678 EVT VT = SwitchOp.getValueType(); 1679 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1680 DAG.getConstant(B.First, VT)); 1681 1682 // Check range 1683 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1684 TLI.getSetCCResultType(Sub.getValueType()), 1685 Sub, DAG.getConstant(B.Range, VT), 1686 ISD::SETUGT); 1687 1688 // Determine the type of the test operands. 1689 bool UsePtrType = false; 1690 if (!TLI.isTypeLegal(VT)) 1691 UsePtrType = true; 1692 else { 1693 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1694 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1695 // Switch table case range are encoded into series of masks. 1696 // Just use pointer type, it's guaranteed to fit. 1697 UsePtrType = true; 1698 break; 1699 } 1700 } 1701 if (UsePtrType) { 1702 VT = TLI.getPointerTy(); 1703 Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT); 1704 } 1705 1706 B.RegVT = VT; 1707 B.Reg = FuncInfo.CreateReg(VT); 1708 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1709 B.Reg, Sub); 1710 1711 // Set NextBlock to be the MBB immediately after the current one, if any. 1712 // This is used to avoid emitting unnecessary branches to the next block. 1713 MachineBasicBlock *NextBlock = 0; 1714 MachineFunction::iterator BBI = SwitchBB; 1715 if (++BBI != FuncInfo.MF->end()) 1716 NextBlock = BBI; 1717 1718 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1719 1720 addSuccessorWithWeight(SwitchBB, B.Default); 1721 addSuccessorWithWeight(SwitchBB, MBB); 1722 1723 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1724 MVT::Other, CopyTo, RangeCmp, 1725 DAG.getBasicBlock(B.Default)); 1726 1727 if (MBB != NextBlock) 1728 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1729 DAG.getBasicBlock(MBB)); 1730 1731 DAG.setRoot(BrRange); 1732 } 1733 1734 /// visitBitTestCase - this function produces one "bit test" 1735 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1736 MachineBasicBlock* NextMBB, 1737 unsigned Reg, 1738 BitTestCase &B, 1739 MachineBasicBlock *SwitchBB) { 1740 EVT VT = BB.RegVT; 1741 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1742 Reg, VT); 1743 SDValue Cmp; 1744 unsigned PopCount = CountPopulation_64(B.Mask); 1745 if (PopCount == 1) { 1746 // Testing for a single bit; just compare the shift count with what it 1747 // would need to be to shift a 1 bit in that position. 1748 Cmp = DAG.getSetCC(getCurDebugLoc(), 1749 TLI.getSetCCResultType(VT), 1750 ShiftOp, 1751 DAG.getConstant(CountTrailingZeros_64(B.Mask), VT), 1752 ISD::SETEQ); 1753 } else if (PopCount == BB.Range) { 1754 // There is only one zero bit in the range, test for it directly. 1755 Cmp = DAG.getSetCC(getCurDebugLoc(), 1756 TLI.getSetCCResultType(VT), 1757 ShiftOp, 1758 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1759 ISD::SETNE); 1760 } else { 1761 // Make desired shift 1762 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT, 1763 DAG.getConstant(1, VT), ShiftOp); 1764 1765 // Emit bit tests and jumps 1766 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1767 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1768 Cmp = DAG.getSetCC(getCurDebugLoc(), 1769 TLI.getSetCCResultType(VT), 1770 AndOp, DAG.getConstant(0, VT), 1771 ISD::SETNE); 1772 } 1773 1774 addSuccessorWithWeight(SwitchBB, B.TargetBB); 1775 addSuccessorWithWeight(SwitchBB, NextMBB); 1776 1777 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1778 MVT::Other, getControlRoot(), 1779 Cmp, DAG.getBasicBlock(B.TargetBB)); 1780 1781 // Set NextBlock to be the MBB immediately after the current one, if any. 1782 // This is used to avoid emitting unnecessary branches to the next block. 1783 MachineBasicBlock *NextBlock = 0; 1784 MachineFunction::iterator BBI = SwitchBB; 1785 if (++BBI != FuncInfo.MF->end()) 1786 NextBlock = BBI; 1787 1788 if (NextMBB != NextBlock) 1789 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1790 DAG.getBasicBlock(NextMBB)); 1791 1792 DAG.setRoot(BrAnd); 1793 } 1794 1795 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1796 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1797 1798 // Retrieve successors. 1799 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1800 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1801 1802 const Value *Callee(I.getCalledValue()); 1803 if (isa<InlineAsm>(Callee)) 1804 visitInlineAsm(&I); 1805 else 1806 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1807 1808 // If the value of the invoke is used outside of its defining block, make it 1809 // available as a virtual register. 1810 CopyToExportRegsIfNeeded(&I); 1811 1812 // Update successor info 1813 InvokeMBB->addSuccessor(Return); 1814 InvokeMBB->addSuccessor(LandingPad); 1815 1816 // Drop into normal successor. 1817 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1818 MVT::Other, getControlRoot(), 1819 DAG.getBasicBlock(Return))); 1820 } 1821 1822 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) { 1823 } 1824 1825 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 1826 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 1827 } 1828 1829 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 1830 assert(FuncInfo.MBB->isLandingPad() && 1831 "Call to landingpad not in landing pad!"); 1832 1833 MachineBasicBlock *MBB = FuncInfo.MBB; 1834 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1835 AddLandingPadInfo(LP, MMI, MBB); 1836 1837 SmallVector<EVT, 2> ValueVTs; 1838 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 1839 1840 // Insert the EXCEPTIONADDR instruction. 1841 assert(FuncInfo.MBB->isLandingPad() && 1842 "Call to eh.exception not in landing pad!"); 1843 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 1844 SDValue Ops[2]; 1845 Ops[0] = DAG.getRoot(); 1846 SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1); 1847 SDValue Chain = Op1.getValue(1); 1848 1849 // Insert the EHSELECTION instruction. 1850 VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 1851 Ops[0] = Op1; 1852 Ops[1] = Chain; 1853 SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2); 1854 Chain = Op2.getValue(1); 1855 Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32); 1856 1857 Ops[0] = Op1; 1858 Ops[1] = Op2; 1859 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 1860 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 1861 &Ops[0], 2); 1862 1863 std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain); 1864 setValue(&LP, RetPair.first); 1865 DAG.setRoot(RetPair.second); 1866 } 1867 1868 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1869 /// small case ranges). 1870 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1871 CaseRecVector& WorkList, 1872 const Value* SV, 1873 MachineBasicBlock *Default, 1874 MachineBasicBlock *SwitchBB) { 1875 Case& BackCase = *(CR.Range.second-1); 1876 1877 // Size is the number of Cases represented by this range. 1878 size_t Size = CR.Range.second - CR.Range.first; 1879 if (Size > 3) 1880 return false; 1881 1882 // Get the MachineFunction which holds the current MBB. This is used when 1883 // inserting any additional MBBs necessary to represent the switch. 1884 MachineFunction *CurMF = FuncInfo.MF; 1885 1886 // Figure out which block is immediately after the current one. 1887 MachineBasicBlock *NextBlock = 0; 1888 MachineFunction::iterator BBI = CR.CaseBB; 1889 1890 if (++BBI != FuncInfo.MF->end()) 1891 NextBlock = BBI; 1892 1893 // If any two of the cases has the same destination, and if one value 1894 // is the same as the other, but has one bit unset that the other has set, 1895 // use bit manipulation to do two compares at once. For example: 1896 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1897 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 1898 // TODO: Handle cases where CR.CaseBB != SwitchBB. 1899 if (Size == 2 && CR.CaseBB == SwitchBB) { 1900 Case &Small = *CR.Range.first; 1901 Case &Big = *(CR.Range.second-1); 1902 1903 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 1904 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 1905 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 1906 1907 // Check that there is only one bit different. 1908 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 1909 (SmallValue | BigValue) == BigValue) { 1910 // Isolate the common bit. 1911 APInt CommonBit = BigValue & ~SmallValue; 1912 assert((SmallValue | CommonBit) == BigValue && 1913 CommonBit.countPopulation() == 1 && "Not a common bit?"); 1914 1915 SDValue CondLHS = getValue(SV); 1916 EVT VT = CondLHS.getValueType(); 1917 DebugLoc DL = getCurDebugLoc(); 1918 1919 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 1920 DAG.getConstant(CommonBit, VT)); 1921 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 1922 Or, DAG.getConstant(BigValue, VT), 1923 ISD::SETEQ); 1924 1925 // Update successor info. 1926 addSuccessorWithWeight(SwitchBB, Small.BB); 1927 addSuccessorWithWeight(SwitchBB, Default); 1928 1929 // Insert the true branch. 1930 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 1931 getControlRoot(), Cond, 1932 DAG.getBasicBlock(Small.BB)); 1933 1934 // Insert the false branch. 1935 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 1936 DAG.getBasicBlock(Default)); 1937 1938 DAG.setRoot(BrCond); 1939 return true; 1940 } 1941 } 1942 } 1943 1944 // Rearrange the case blocks so that the last one falls through if possible. 1945 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1946 // The last case block won't fall through into 'NextBlock' if we emit the 1947 // branches in this order. See if rearranging a case value would help. 1948 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { 1949 if (I->BB == NextBlock) { 1950 std::swap(*I, BackCase); 1951 break; 1952 } 1953 } 1954 } 1955 1956 // Create a CaseBlock record representing a conditional branch to 1957 // the Case's target mbb if the value being switched on SV is equal 1958 // to C. 1959 MachineBasicBlock *CurBlock = CR.CaseBB; 1960 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 1961 MachineBasicBlock *FallThrough; 1962 if (I != E-1) { 1963 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 1964 CurMF->insert(BBI, FallThrough); 1965 1966 // Put SV in a virtual register to make it available from the new blocks. 1967 ExportFromCurrentBlock(SV); 1968 } else { 1969 // If the last case doesn't match, go to the default block. 1970 FallThrough = Default; 1971 } 1972 1973 const Value *RHS, *LHS, *MHS; 1974 ISD::CondCode CC; 1975 if (I->High == I->Low) { 1976 // This is just small small case range :) containing exactly 1 case 1977 CC = ISD::SETEQ; 1978 LHS = SV; RHS = I->High; MHS = NULL; 1979 } else { 1980 CC = ISD::SETLE; 1981 LHS = I->Low; MHS = SV; RHS = I->High; 1982 } 1983 1984 uint32_t ExtraWeight = I->ExtraWeight; 1985 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 1986 /* me */ CurBlock, 1987 /* trueweight */ ExtraWeight / 2, /* falseweight */ ExtraWeight / 2); 1988 1989 // If emitting the first comparison, just call visitSwitchCase to emit the 1990 // code into the current block. Otherwise, push the CaseBlock onto the 1991 // vector to be later processed by SDISel, and insert the node's MBB 1992 // before the next MBB. 1993 if (CurBlock == SwitchBB) 1994 visitSwitchCase(CB, SwitchBB); 1995 else 1996 SwitchCases.push_back(CB); 1997 1998 CurBlock = FallThrough; 1999 } 2000 2001 return true; 2002 } 2003 2004 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2005 return !DisableJumpTables && 2006 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2007 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 2008 } 2009 2010 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2011 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2012 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2013 return (LastExt - FirstExt + 1ULL); 2014 } 2015 2016 /// handleJTSwitchCase - Emit jumptable for current switch case range 2017 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2018 CaseRecVector &WorkList, 2019 const Value *SV, 2020 MachineBasicBlock *Default, 2021 MachineBasicBlock *SwitchBB) { 2022 Case& FrontCase = *CR.Range.first; 2023 Case& BackCase = *(CR.Range.second-1); 2024 2025 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2026 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2027 2028 APInt TSize(First.getBitWidth(), 0); 2029 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2030 TSize += I->size(); 2031 2032 if (!areJTsAllowed(TLI) || TSize.ult(4)) 2033 return false; 2034 2035 APInt Range = ComputeRange(First, Last); 2036 double Density = TSize.roundToDouble() / Range.roundToDouble(); 2037 if (Density < 0.4) 2038 return false; 2039 2040 DEBUG(dbgs() << "Lowering jump table\n" 2041 << "First entry: " << First << ". Last entry: " << Last << '\n' 2042 << "Range: " << Range 2043 << ". Size: " << TSize << ". Density: " << Density << "\n\n"); 2044 2045 // Get the MachineFunction which holds the current MBB. This is used when 2046 // inserting any additional MBBs necessary to represent the switch. 2047 MachineFunction *CurMF = FuncInfo.MF; 2048 2049 // Figure out which block is immediately after the current one. 2050 MachineFunction::iterator BBI = CR.CaseBB; 2051 ++BBI; 2052 2053 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2054 2055 // Create a new basic block to hold the code for loading the address 2056 // of the jump table, and jumping to it. Update successor information; 2057 // we will either branch to the default case for the switch, or the jump 2058 // table. 2059 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2060 CurMF->insert(BBI, JumpTableBB); 2061 2062 addSuccessorWithWeight(CR.CaseBB, Default); 2063 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2064 2065 // Build a vector of destination BBs, corresponding to each target 2066 // of the jump table. If the value of the jump table slot corresponds to 2067 // a case statement, push the case's BB onto the vector, otherwise, push 2068 // the default BB. 2069 std::vector<MachineBasicBlock*> DestBBs; 2070 APInt TEI = First; 2071 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2072 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2073 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2074 2075 if (Low.sle(TEI) && TEI.sle(High)) { 2076 DestBBs.push_back(I->BB); 2077 if (TEI==High) 2078 ++I; 2079 } else { 2080 DestBBs.push_back(Default); 2081 } 2082 } 2083 2084 // Update successor info. Add one edge to each unique successor. 2085 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2086 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2087 E = DestBBs.end(); I != E; ++I) { 2088 if (!SuccsHandled[(*I)->getNumber()]) { 2089 SuccsHandled[(*I)->getNumber()] = true; 2090 addSuccessorWithWeight(JumpTableBB, *I); 2091 } 2092 } 2093 2094 // Create a jump table index for this jump table. 2095 unsigned JTEncoding = TLI.getJumpTableEncoding(); 2096 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2097 ->createJumpTableIndex(DestBBs); 2098 2099 // Set the jump table information so that we can codegen it as a second 2100 // MachineBasicBlock 2101 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2102 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2103 if (CR.CaseBB == SwitchBB) 2104 visitJumpTableHeader(JT, JTH, SwitchBB); 2105 2106 JTCases.push_back(JumpTableBlock(JTH, JT)); 2107 return true; 2108 } 2109 2110 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2111 /// 2 subtrees. 2112 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2113 CaseRecVector& WorkList, 2114 const Value* SV, 2115 MachineBasicBlock *Default, 2116 MachineBasicBlock *SwitchBB) { 2117 // Get the MachineFunction which holds the current MBB. This is used when 2118 // inserting any additional MBBs necessary to represent the switch. 2119 MachineFunction *CurMF = FuncInfo.MF; 2120 2121 // Figure out which block is immediately after the current one. 2122 MachineFunction::iterator BBI = CR.CaseBB; 2123 ++BBI; 2124 2125 Case& FrontCase = *CR.Range.first; 2126 Case& BackCase = *(CR.Range.second-1); 2127 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2128 2129 // Size is the number of Cases represented by this range. 2130 unsigned Size = CR.Range.second - CR.Range.first; 2131 2132 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2133 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2134 double FMetric = 0; 2135 CaseItr Pivot = CR.Range.first + Size/2; 2136 2137 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2138 // (heuristically) allow us to emit JumpTable's later. 2139 APInt TSize(First.getBitWidth(), 0); 2140 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2141 I!=E; ++I) 2142 TSize += I->size(); 2143 2144 APInt LSize = FrontCase.size(); 2145 APInt RSize = TSize-LSize; 2146 DEBUG(dbgs() << "Selecting best pivot: \n" 2147 << "First: " << First << ", Last: " << Last <<'\n' 2148 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2149 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2150 J!=E; ++I, ++J) { 2151 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2152 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2153 APInt Range = ComputeRange(LEnd, RBegin); 2154 assert((Range - 2ULL).isNonNegative() && 2155 "Invalid case distance"); 2156 // Use volatile double here to avoid excess precision issues on some hosts, 2157 // e.g. that use 80-bit X87 registers. 2158 volatile double LDensity = 2159 (double)LSize.roundToDouble() / 2160 (LEnd - First + 1ULL).roundToDouble(); 2161 volatile double RDensity = 2162 (double)RSize.roundToDouble() / 2163 (Last - RBegin + 1ULL).roundToDouble(); 2164 double Metric = Range.logBase2()*(LDensity+RDensity); 2165 // Should always split in some non-trivial place 2166 DEBUG(dbgs() <<"=>Step\n" 2167 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2168 << "LDensity: " << LDensity 2169 << ", RDensity: " << RDensity << '\n' 2170 << "Metric: " << Metric << '\n'); 2171 if (FMetric < Metric) { 2172 Pivot = J; 2173 FMetric = Metric; 2174 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2175 } 2176 2177 LSize += J->size(); 2178 RSize -= J->size(); 2179 } 2180 if (areJTsAllowed(TLI)) { 2181 // If our case is dense we *really* should handle it earlier! 2182 assert((FMetric > 0) && "Should handle dense range earlier!"); 2183 } else { 2184 Pivot = CR.Range.first + Size/2; 2185 } 2186 2187 CaseRange LHSR(CR.Range.first, Pivot); 2188 CaseRange RHSR(Pivot, CR.Range.second); 2189 Constant *C = Pivot->Low; 2190 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 2191 2192 // We know that we branch to the LHS if the Value being switched on is 2193 // less than the Pivot value, C. We use this to optimize our binary 2194 // tree a bit, by recognizing that if SV is greater than or equal to the 2195 // LHS's Case Value, and that Case Value is exactly one less than the 2196 // Pivot's Value, then we can branch directly to the LHS's Target, 2197 // rather than creating a leaf node for it. 2198 if ((LHSR.second - LHSR.first) == 1 && 2199 LHSR.first->High == CR.GE && 2200 cast<ConstantInt>(C)->getValue() == 2201 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2202 TrueBB = LHSR.first->BB; 2203 } else { 2204 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2205 CurMF->insert(BBI, TrueBB); 2206 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2207 2208 // Put SV in a virtual register to make it available from the new blocks. 2209 ExportFromCurrentBlock(SV); 2210 } 2211 2212 // Similar to the optimization above, if the Value being switched on is 2213 // known to be less than the Constant CR.LT, and the current Case Value 2214 // is CR.LT - 1, then we can branch directly to the target block for 2215 // the current Case Value, rather than emitting a RHS leaf node for it. 2216 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2217 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2218 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2219 FalseBB = RHSR.first->BB; 2220 } else { 2221 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2222 CurMF->insert(BBI, FalseBB); 2223 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2224 2225 // Put SV in a virtual register to make it available from the new blocks. 2226 ExportFromCurrentBlock(SV); 2227 } 2228 2229 // Create a CaseBlock record representing a conditional branch to 2230 // the LHS node if the value being switched on SV is less than C. 2231 // Otherwise, branch to LHS. 2232 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2233 2234 if (CR.CaseBB == SwitchBB) 2235 visitSwitchCase(CB, SwitchBB); 2236 else 2237 SwitchCases.push_back(CB); 2238 2239 return true; 2240 } 2241 2242 /// handleBitTestsSwitchCase - if current case range has few destination and 2243 /// range span less, than machine word bitwidth, encode case range into series 2244 /// of masks and emit bit tests with these masks. 2245 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2246 CaseRecVector& WorkList, 2247 const Value* SV, 2248 MachineBasicBlock* Default, 2249 MachineBasicBlock *SwitchBB){ 2250 EVT PTy = TLI.getPointerTy(); 2251 unsigned IntPtrBits = PTy.getSizeInBits(); 2252 2253 Case& FrontCase = *CR.Range.first; 2254 Case& BackCase = *(CR.Range.second-1); 2255 2256 // Get the MachineFunction which holds the current MBB. This is used when 2257 // inserting any additional MBBs necessary to represent the switch. 2258 MachineFunction *CurMF = FuncInfo.MF; 2259 2260 // If target does not have legal shift left, do not emit bit tests at all. 2261 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 2262 return false; 2263 2264 size_t numCmps = 0; 2265 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2266 I!=E; ++I) { 2267 // Single case counts one, case range - two. 2268 numCmps += (I->Low == I->High ? 1 : 2); 2269 } 2270 2271 // Count unique destinations 2272 SmallSet<MachineBasicBlock*, 4> Dests; 2273 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2274 Dests.insert(I->BB); 2275 if (Dests.size() > 3) 2276 // Don't bother the code below, if there are too much unique destinations 2277 return false; 2278 } 2279 DEBUG(dbgs() << "Total number of unique destinations: " 2280 << Dests.size() << '\n' 2281 << "Total number of comparisons: " << numCmps << '\n'); 2282 2283 // Compute span of values. 2284 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2285 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2286 APInt cmpRange = maxValue - minValue; 2287 2288 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2289 << "Low bound: " << minValue << '\n' 2290 << "High bound: " << maxValue << '\n'); 2291 2292 if (cmpRange.uge(IntPtrBits) || 2293 (!(Dests.size() == 1 && numCmps >= 3) && 2294 !(Dests.size() == 2 && numCmps >= 5) && 2295 !(Dests.size() >= 3 && numCmps >= 6))) 2296 return false; 2297 2298 DEBUG(dbgs() << "Emitting bit tests\n"); 2299 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2300 2301 // Optimize the case where all the case values fit in a 2302 // word without having to subtract minValue. In this case, 2303 // we can optimize away the subtraction. 2304 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2305 cmpRange = maxValue; 2306 } else { 2307 lowBound = minValue; 2308 } 2309 2310 CaseBitsVector CasesBits; 2311 unsigned i, count = 0; 2312 2313 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2314 MachineBasicBlock* Dest = I->BB; 2315 for (i = 0; i < count; ++i) 2316 if (Dest == CasesBits[i].BB) 2317 break; 2318 2319 if (i == count) { 2320 assert((count < 3) && "Too much destinations to test!"); 2321 CasesBits.push_back(CaseBits(0, Dest, 0)); 2322 count++; 2323 } 2324 2325 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2326 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2327 2328 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2329 uint64_t hi = (highValue - lowBound).getZExtValue(); 2330 2331 for (uint64_t j = lo; j <= hi; j++) { 2332 CasesBits[i].Mask |= 1ULL << j; 2333 CasesBits[i].Bits++; 2334 } 2335 2336 } 2337 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2338 2339 BitTestInfo BTC; 2340 2341 // Figure out which block is immediately after the current one. 2342 MachineFunction::iterator BBI = CR.CaseBB; 2343 ++BBI; 2344 2345 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2346 2347 DEBUG(dbgs() << "Cases:\n"); 2348 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2349 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2350 << ", Bits: " << CasesBits[i].Bits 2351 << ", BB: " << CasesBits[i].BB << '\n'); 2352 2353 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2354 CurMF->insert(BBI, CaseBB); 2355 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2356 CaseBB, 2357 CasesBits[i].BB)); 2358 2359 // Put SV in a virtual register to make it available from the new blocks. 2360 ExportFromCurrentBlock(SV); 2361 } 2362 2363 BitTestBlock BTB(lowBound, cmpRange, SV, 2364 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2365 CR.CaseBB, Default, BTC); 2366 2367 if (CR.CaseBB == SwitchBB) 2368 visitBitTestHeader(BTB, SwitchBB); 2369 2370 BitTestCases.push_back(BTB); 2371 2372 return true; 2373 } 2374 2375 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2376 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2377 const SwitchInst& SI) { 2378 size_t numCmps = 0; 2379 2380 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2381 // Start with "simple" cases 2382 for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { 2383 BasicBlock *SuccBB = SI.getSuccessor(i); 2384 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2385 2386 uint32_t ExtraWeight = BPI ? BPI->getEdgeWeight(SI.getParent(), SuccBB) : 0; 2387 2388 Cases.push_back(Case(SI.getSuccessorValue(i), 2389 SI.getSuccessorValue(i), 2390 SMBB, ExtraWeight)); 2391 } 2392 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2393 2394 // Merge case into clusters 2395 if (Cases.size() >= 2) 2396 // Must recompute end() each iteration because it may be 2397 // invalidated by erase if we hold on to it 2398 for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin()); 2399 J != Cases.end(); ) { 2400 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2401 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2402 MachineBasicBlock* nextBB = J->BB; 2403 MachineBasicBlock* currentBB = I->BB; 2404 2405 // If the two neighboring cases go to the same destination, merge them 2406 // into a single case. 2407 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2408 I->High = J->High; 2409 J = Cases.erase(J); 2410 2411 if (BranchProbabilityInfo *BPI = FuncInfo.BPI) { 2412 uint32_t CurWeight = currentBB->getBasicBlock() ? 2413 BPI->getEdgeWeight(SI.getParent(), currentBB->getBasicBlock()) : 16; 2414 uint32_t NextWeight = nextBB->getBasicBlock() ? 2415 BPI->getEdgeWeight(SI.getParent(), nextBB->getBasicBlock()) : 16; 2416 2417 BPI->setEdgeWeight(SI.getParent(), currentBB->getBasicBlock(), 2418 CurWeight + NextWeight); 2419 } 2420 } else { 2421 I = J++; 2422 } 2423 } 2424 2425 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2426 if (I->Low != I->High) 2427 // A range counts double, since it requires two compares. 2428 ++numCmps; 2429 } 2430 2431 return numCmps; 2432 } 2433 2434 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2435 MachineBasicBlock *Last) { 2436 // Update JTCases. 2437 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2438 if (JTCases[i].first.HeaderBB == First) 2439 JTCases[i].first.HeaderBB = Last; 2440 2441 // Update BitTestCases. 2442 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2443 if (BitTestCases[i].Parent == First) 2444 BitTestCases[i].Parent = Last; 2445 } 2446 2447 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2448 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2449 2450 // Figure out which block is immediately after the current one. 2451 MachineBasicBlock *NextBlock = 0; 2452 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2453 2454 // If there is only the default destination, branch to it if it is not the 2455 // next basic block. Otherwise, just fall through. 2456 if (SI.getNumCases() == 1) { 2457 // Update machine-CFG edges. 2458 2459 // If this is not a fall-through branch, emit the branch. 2460 SwitchMBB->addSuccessor(Default); 2461 if (Default != NextBlock) 2462 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 2463 MVT::Other, getControlRoot(), 2464 DAG.getBasicBlock(Default))); 2465 2466 return; 2467 } 2468 2469 // If there are any non-default case statements, create a vector of Cases 2470 // representing each one, and sort the vector so that we can efficiently 2471 // create a binary search tree from them. 2472 CaseVector Cases; 2473 size_t numCmps = Clusterify(Cases, SI); 2474 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2475 << ". Total compares: " << numCmps << '\n'); 2476 numCmps = 0; 2477 2478 // Get the Value to be switched on and default basic blocks, which will be 2479 // inserted into CaseBlock records, representing basic blocks in the binary 2480 // search tree. 2481 const Value *SV = SI.getCondition(); 2482 2483 // Push the initial CaseRec onto the worklist 2484 CaseRecVector WorkList; 2485 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2486 CaseRange(Cases.begin(),Cases.end()))); 2487 2488 while (!WorkList.empty()) { 2489 // Grab a record representing a case range to process off the worklist 2490 CaseRec CR = WorkList.back(); 2491 WorkList.pop_back(); 2492 2493 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2494 continue; 2495 2496 // If the range has few cases (two or less) emit a series of specific 2497 // tests. 2498 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2499 continue; 2500 2501 // If the switch has more than 5 blocks, and at least 40% dense, and the 2502 // target supports indirect branches, then emit a jump table rather than 2503 // lowering the switch to a binary tree of conditional branches. 2504 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2505 continue; 2506 2507 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2508 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2509 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2510 } 2511 } 2512 2513 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2514 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2515 2516 // Update machine-CFG edges with unique successors. 2517 SmallVector<BasicBlock*, 32> succs; 2518 succs.reserve(I.getNumSuccessors()); 2519 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2520 succs.push_back(I.getSuccessor(i)); 2521 array_pod_sort(succs.begin(), succs.end()); 2522 succs.erase(std::unique(succs.begin(), succs.end()), succs.end()); 2523 for (unsigned i = 0, e = succs.size(); i != e; ++i) { 2524 MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]]; 2525 addSuccessorWithWeight(IndirectBrMBB, Succ); 2526 } 2527 2528 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2529 MVT::Other, getControlRoot(), 2530 getValue(I.getAddress()))); 2531 } 2532 2533 void SelectionDAGBuilder::visitFSub(const User &I) { 2534 // -0.0 - X --> fneg 2535 Type *Ty = I.getType(); 2536 if (isa<Constant>(I.getOperand(0)) && 2537 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2538 SDValue Op2 = getValue(I.getOperand(1)); 2539 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2540 Op2.getValueType(), Op2)); 2541 return; 2542 } 2543 2544 visitBinary(I, ISD::FSUB); 2545 } 2546 2547 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2548 SDValue Op1 = getValue(I.getOperand(0)); 2549 SDValue Op2 = getValue(I.getOperand(1)); 2550 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2551 Op1.getValueType(), Op1, Op2)); 2552 } 2553 2554 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2555 SDValue Op1 = getValue(I.getOperand(0)); 2556 SDValue Op2 = getValue(I.getOperand(1)); 2557 2558 MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType()); 2559 2560 // Coerce the shift amount to the right type if we can. 2561 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2562 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2563 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2564 DebugLoc DL = getCurDebugLoc(); 2565 2566 // If the operand is smaller than the shift count type, promote it. 2567 if (ShiftSize > Op2Size) 2568 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2569 2570 // If the operand is larger than the shift count type but the shift 2571 // count type has enough bits to represent any shift value, truncate 2572 // it now. This is a common case and it exposes the truncate to 2573 // optimization early. 2574 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2575 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2576 // Otherwise we'll need to temporarily settle for some other convenient 2577 // type. Type legalization will make adjustments once the shiftee is split. 2578 else 2579 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2580 } 2581 2582 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2583 Op1.getValueType(), Op1, Op2)); 2584 } 2585 2586 void SelectionDAGBuilder::visitSDiv(const User &I) { 2587 SDValue Op1 = getValue(I.getOperand(0)); 2588 SDValue Op2 = getValue(I.getOperand(1)); 2589 2590 // Turn exact SDivs into multiplications. 2591 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2592 // exact bit. 2593 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2594 !isa<ConstantSDNode>(Op1) && 2595 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2596 setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG)); 2597 else 2598 setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(), 2599 Op1, Op2)); 2600 } 2601 2602 void SelectionDAGBuilder::visitICmp(const User &I) { 2603 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2604 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2605 predicate = IC->getPredicate(); 2606 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2607 predicate = ICmpInst::Predicate(IC->getPredicate()); 2608 SDValue Op1 = getValue(I.getOperand(0)); 2609 SDValue Op2 = getValue(I.getOperand(1)); 2610 ISD::CondCode Opcode = getICmpCondCode(predicate); 2611 2612 EVT DestVT = TLI.getValueType(I.getType()); 2613 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2614 } 2615 2616 void SelectionDAGBuilder::visitFCmp(const User &I) { 2617 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2618 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2619 predicate = FC->getPredicate(); 2620 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2621 predicate = FCmpInst::Predicate(FC->getPredicate()); 2622 SDValue Op1 = getValue(I.getOperand(0)); 2623 SDValue Op2 = getValue(I.getOperand(1)); 2624 ISD::CondCode Condition = getFCmpCondCode(predicate); 2625 EVT DestVT = TLI.getValueType(I.getType()); 2626 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2627 } 2628 2629 void SelectionDAGBuilder::visitSelect(const User &I) { 2630 SmallVector<EVT, 4> ValueVTs; 2631 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2632 unsigned NumValues = ValueVTs.size(); 2633 if (NumValues == 0) return; 2634 2635 SmallVector<SDValue, 4> Values(NumValues); 2636 SDValue Cond = getValue(I.getOperand(0)); 2637 SDValue TrueVal = getValue(I.getOperand(1)); 2638 SDValue FalseVal = getValue(I.getOperand(2)); 2639 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2640 ISD::VSELECT : ISD::SELECT; 2641 2642 for (unsigned i = 0; i != NumValues; ++i) 2643 Values[i] = DAG.getNode(OpCode, getCurDebugLoc(), 2644 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2645 Cond, 2646 SDValue(TrueVal.getNode(), 2647 TrueVal.getResNo() + i), 2648 SDValue(FalseVal.getNode(), 2649 FalseVal.getResNo() + i)); 2650 2651 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2652 DAG.getVTList(&ValueVTs[0], NumValues), 2653 &Values[0], NumValues)); 2654 } 2655 2656 void SelectionDAGBuilder::visitTrunc(const User &I) { 2657 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2658 SDValue N = getValue(I.getOperand(0)); 2659 EVT DestVT = TLI.getValueType(I.getType()); 2660 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2661 } 2662 2663 void SelectionDAGBuilder::visitZExt(const User &I) { 2664 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2665 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2666 SDValue N = getValue(I.getOperand(0)); 2667 EVT DestVT = TLI.getValueType(I.getType()); 2668 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2669 } 2670 2671 void SelectionDAGBuilder::visitSExt(const User &I) { 2672 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2673 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2674 SDValue N = getValue(I.getOperand(0)); 2675 EVT DestVT = TLI.getValueType(I.getType()); 2676 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2677 } 2678 2679 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2680 // FPTrunc is never a no-op cast, no need to check 2681 SDValue N = getValue(I.getOperand(0)); 2682 EVT DestVT = TLI.getValueType(I.getType()); 2683 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2684 DestVT, N, DAG.getIntPtrConstant(0))); 2685 } 2686 2687 void SelectionDAGBuilder::visitFPExt(const User &I){ 2688 // FPTrunc is never a no-op cast, no need to check 2689 SDValue N = getValue(I.getOperand(0)); 2690 EVT DestVT = TLI.getValueType(I.getType()); 2691 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2692 } 2693 2694 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2695 // FPToUI is never a no-op cast, no need to check 2696 SDValue N = getValue(I.getOperand(0)); 2697 EVT DestVT = TLI.getValueType(I.getType()); 2698 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2699 } 2700 2701 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2702 // FPToSI is never a no-op cast, no need to check 2703 SDValue N = getValue(I.getOperand(0)); 2704 EVT DestVT = TLI.getValueType(I.getType()); 2705 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2706 } 2707 2708 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2709 // UIToFP is never a no-op cast, no need to check 2710 SDValue N = getValue(I.getOperand(0)); 2711 EVT DestVT = TLI.getValueType(I.getType()); 2712 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2713 } 2714 2715 void SelectionDAGBuilder::visitSIToFP(const User &I){ 2716 // SIToFP is never a no-op cast, no need to check 2717 SDValue N = getValue(I.getOperand(0)); 2718 EVT DestVT = TLI.getValueType(I.getType()); 2719 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2720 } 2721 2722 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2723 // What to do depends on the size of the integer and the size of the pointer. 2724 // We can either truncate, zero extend, or no-op, accordingly. 2725 SDValue N = getValue(I.getOperand(0)); 2726 EVT DestVT = TLI.getValueType(I.getType()); 2727 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2728 } 2729 2730 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2731 // What to do depends on the size of the integer and the size of the pointer. 2732 // We can either truncate, zero extend, or no-op, accordingly. 2733 SDValue N = getValue(I.getOperand(0)); 2734 EVT DestVT = TLI.getValueType(I.getType()); 2735 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2736 } 2737 2738 void SelectionDAGBuilder::visitBitCast(const User &I) { 2739 SDValue N = getValue(I.getOperand(0)); 2740 EVT DestVT = TLI.getValueType(I.getType()); 2741 2742 // BitCast assures us that source and destination are the same size so this is 2743 // either a BITCAST or a no-op. 2744 if (DestVT != N.getValueType()) 2745 setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 2746 DestVT, N)); // convert types. 2747 else 2748 setValue(&I, N); // noop cast. 2749 } 2750 2751 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2752 SDValue InVec = getValue(I.getOperand(0)); 2753 SDValue InVal = getValue(I.getOperand(1)); 2754 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2755 TLI.getPointerTy(), 2756 getValue(I.getOperand(2))); 2757 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2758 TLI.getValueType(I.getType()), 2759 InVec, InVal, InIdx)); 2760 } 2761 2762 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2763 SDValue InVec = getValue(I.getOperand(0)); 2764 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2765 TLI.getPointerTy(), 2766 getValue(I.getOperand(1))); 2767 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2768 TLI.getValueType(I.getType()), InVec, InIdx)); 2769 } 2770 2771 // Utility for visitShuffleVector - Returns true if the mask is mask starting 2772 // from SIndx and increasing to the element length (undefs are allowed). 2773 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) { 2774 unsigned MaskNumElts = Mask.size(); 2775 for (unsigned i = 0; i != MaskNumElts; ++i) 2776 if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx))) 2777 return false; 2778 return true; 2779 } 2780 2781 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2782 SmallVector<int, 8> Mask; 2783 SDValue Src1 = getValue(I.getOperand(0)); 2784 SDValue Src2 = getValue(I.getOperand(1)); 2785 2786 // Convert the ConstantVector mask operand into an array of ints, with -1 2787 // representing undef values. 2788 SmallVector<Constant*, 8> MaskElts; 2789 cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts); 2790 unsigned MaskNumElts = MaskElts.size(); 2791 for (unsigned i = 0; i != MaskNumElts; ++i) { 2792 if (isa<UndefValue>(MaskElts[i])) 2793 Mask.push_back(-1); 2794 else 2795 Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue()); 2796 } 2797 2798 EVT VT = TLI.getValueType(I.getType()); 2799 EVT SrcVT = Src1.getValueType(); 2800 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2801 2802 if (SrcNumElts == MaskNumElts) { 2803 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2804 &Mask[0])); 2805 return; 2806 } 2807 2808 // Normalize the shuffle vector since mask and vector length don't match. 2809 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2810 // Mask is longer than the source vectors and is a multiple of the source 2811 // vectors. We can use concatenate vector to make the mask and vectors 2812 // lengths match. 2813 if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { 2814 // The shuffle is concatenating two vectors together. 2815 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2816 VT, Src1, Src2)); 2817 return; 2818 } 2819 2820 // Pad both vectors with undefs to make them the same length as the mask. 2821 unsigned NumConcat = MaskNumElts / SrcNumElts; 2822 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2823 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2824 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2825 2826 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2827 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2828 MOps1[0] = Src1; 2829 MOps2[0] = Src2; 2830 2831 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2832 getCurDebugLoc(), VT, 2833 &MOps1[0], NumConcat); 2834 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2835 getCurDebugLoc(), VT, 2836 &MOps2[0], NumConcat); 2837 2838 // Readjust mask for new input vector length. 2839 SmallVector<int, 8> MappedOps; 2840 for (unsigned i = 0; i != MaskNumElts; ++i) { 2841 int Idx = Mask[i]; 2842 if (Idx < (int)SrcNumElts) 2843 MappedOps.push_back(Idx); 2844 else 2845 MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); 2846 } 2847 2848 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2849 &MappedOps[0])); 2850 return; 2851 } 2852 2853 if (SrcNumElts > MaskNumElts) { 2854 // Analyze the access pattern of the vector to see if we can extract 2855 // two subvectors and do the shuffle. The analysis is done by calculating 2856 // the range of elements the mask access on both vectors. 2857 int MinRange[2] = { static_cast<int>(SrcNumElts+1), 2858 static_cast<int>(SrcNumElts+1)}; 2859 int MaxRange[2] = {-1, -1}; 2860 2861 for (unsigned i = 0; i != MaskNumElts; ++i) { 2862 int Idx = Mask[i]; 2863 int Input = 0; 2864 if (Idx < 0) 2865 continue; 2866 2867 if (Idx >= (int)SrcNumElts) { 2868 Input = 1; 2869 Idx -= SrcNumElts; 2870 } 2871 if (Idx > MaxRange[Input]) 2872 MaxRange[Input] = Idx; 2873 if (Idx < MinRange[Input]) 2874 MinRange[Input] = Idx; 2875 } 2876 2877 // Check if the access is smaller than the vector size and can we find 2878 // a reasonable extract index. 2879 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not 2880 // Extract. 2881 int StartIdx[2]; // StartIdx to extract from 2882 for (int Input=0; Input < 2; ++Input) { 2883 if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { 2884 RangeUse[Input] = 0; // Unused 2885 StartIdx[Input] = 0; 2886 } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { 2887 // Fits within range but we should see if we can find a good 2888 // start index that is a multiple of the mask length. 2889 if (MaxRange[Input] < (int)MaskNumElts) { 2890 RangeUse[Input] = 1; // Extract from beginning of the vector 2891 StartIdx[Input] = 0; 2892 } else { 2893 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2894 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2895 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2896 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2897 } 2898 } 2899 } 2900 2901 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2902 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2903 return; 2904 } 2905 else if (RangeUse[0] < 2 && RangeUse[1] < 2) { 2906 // Extract appropriate subvector and generate a vector shuffle 2907 for (int Input=0; Input < 2; ++Input) { 2908 SDValue &Src = Input == 0 ? Src1 : Src2; 2909 if (RangeUse[Input] == 0) 2910 Src = DAG.getUNDEF(VT); 2911 else 2912 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2913 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2914 } 2915 2916 // Calculate new mask. 2917 SmallVector<int, 8> MappedOps; 2918 for (unsigned i = 0; i != MaskNumElts; ++i) { 2919 int Idx = Mask[i]; 2920 if (Idx < 0) 2921 MappedOps.push_back(Idx); 2922 else if (Idx < (int)SrcNumElts) 2923 MappedOps.push_back(Idx - StartIdx[0]); 2924 else 2925 MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); 2926 } 2927 2928 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2929 &MappedOps[0])); 2930 return; 2931 } 2932 } 2933 2934 // We can't use either concat vectors or extract subvectors so fall back to 2935 // replacing the shuffle with extract and build vector. 2936 // to insert and build vector. 2937 EVT EltVT = VT.getVectorElementType(); 2938 EVT PtrVT = TLI.getPointerTy(); 2939 SmallVector<SDValue,8> Ops; 2940 for (unsigned i = 0; i != MaskNumElts; ++i) { 2941 if (Mask[i] < 0) { 2942 Ops.push_back(DAG.getUNDEF(EltVT)); 2943 } else { 2944 int Idx = Mask[i]; 2945 SDValue Res; 2946 2947 if (Idx < (int)SrcNumElts) 2948 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2949 EltVT, Src1, DAG.getConstant(Idx, PtrVT)); 2950 else 2951 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2952 EltVT, Src2, 2953 DAG.getConstant(Idx - SrcNumElts, PtrVT)); 2954 2955 Ops.push_back(Res); 2956 } 2957 } 2958 2959 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 2960 VT, &Ops[0], Ops.size())); 2961 } 2962 2963 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2964 const Value *Op0 = I.getOperand(0); 2965 const Value *Op1 = I.getOperand(1); 2966 Type *AggTy = I.getType(); 2967 Type *ValTy = Op1->getType(); 2968 bool IntoUndef = isa<UndefValue>(Op0); 2969 bool FromUndef = isa<UndefValue>(Op1); 2970 2971 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2972 2973 SmallVector<EVT, 4> AggValueVTs; 2974 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2975 SmallVector<EVT, 4> ValValueVTs; 2976 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2977 2978 unsigned NumAggValues = AggValueVTs.size(); 2979 unsigned NumValValues = ValValueVTs.size(); 2980 SmallVector<SDValue, 4> Values(NumAggValues); 2981 2982 SDValue Agg = getValue(Op0); 2983 unsigned i = 0; 2984 // Copy the beginning value(s) from the original aggregate. 2985 for (; i != LinearIndex; ++i) 2986 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2987 SDValue(Agg.getNode(), Agg.getResNo() + i); 2988 // Copy values from the inserted value(s). 2989 if (NumValValues) { 2990 SDValue Val = getValue(Op1); 2991 for (; i != LinearIndex + NumValValues; ++i) 2992 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2993 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2994 } 2995 // Copy remaining value(s) from the original aggregate. 2996 for (; i != NumAggValues; ++i) 2997 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2998 SDValue(Agg.getNode(), Agg.getResNo() + i); 2999 3000 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3001 DAG.getVTList(&AggValueVTs[0], NumAggValues), 3002 &Values[0], NumAggValues)); 3003 } 3004 3005 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3006 const Value *Op0 = I.getOperand(0); 3007 Type *AggTy = Op0->getType(); 3008 Type *ValTy = I.getType(); 3009 bool OutOfUndef = isa<UndefValue>(Op0); 3010 3011 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3012 3013 SmallVector<EVT, 4> ValValueVTs; 3014 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3015 3016 unsigned NumValValues = ValValueVTs.size(); 3017 3018 // Ignore a extractvalue that produces an empty object 3019 if (!NumValValues) { 3020 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3021 return; 3022 } 3023 3024 SmallVector<SDValue, 4> Values(NumValValues); 3025 3026 SDValue Agg = getValue(Op0); 3027 // Copy out the selected value(s). 3028 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3029 Values[i - LinearIndex] = 3030 OutOfUndef ? 3031 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3032 SDValue(Agg.getNode(), Agg.getResNo() + i); 3033 3034 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3035 DAG.getVTList(&ValValueVTs[0], NumValValues), 3036 &Values[0], NumValValues)); 3037 } 3038 3039 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3040 SDValue N = getValue(I.getOperand(0)); 3041 Type *Ty = I.getOperand(0)->getType(); 3042 3043 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3044 OI != E; ++OI) { 3045 const Value *Idx = *OI; 3046 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3047 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 3048 if (Field) { 3049 // N = N + Offset 3050 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 3051 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 3052 DAG.getIntPtrConstant(Offset)); 3053 } 3054 3055 Ty = StTy->getElementType(Field); 3056 } else { 3057 Ty = cast<SequentialType>(Ty)->getElementType(); 3058 3059 // If this is a constant subscript, handle it quickly. 3060 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3061 if (CI->isZero()) continue; 3062 uint64_t Offs = 3063 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3064 SDValue OffsVal; 3065 EVT PTy = TLI.getPointerTy(); 3066 unsigned PtrBits = PTy.getSizeInBits(); 3067 if (PtrBits < 64) 3068 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 3069 TLI.getPointerTy(), 3070 DAG.getConstant(Offs, MVT::i64)); 3071 else 3072 OffsVal = DAG.getIntPtrConstant(Offs); 3073 3074 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 3075 OffsVal); 3076 continue; 3077 } 3078 3079 // N = N + Idx * ElementSize; 3080 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 3081 TD->getTypeAllocSize(Ty)); 3082 SDValue IdxN = getValue(Idx); 3083 3084 // If the index is smaller or larger than intptr_t, truncate or extend 3085 // it. 3086 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 3087 3088 // If this is a multiply by a power of two, turn it into a shl 3089 // immediately. This is a very common case. 3090 if (ElementSize != 1) { 3091 if (ElementSize.isPowerOf2()) { 3092 unsigned Amt = ElementSize.logBase2(); 3093 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 3094 N.getValueType(), IdxN, 3095 DAG.getConstant(Amt, TLI.getPointerTy())); 3096 } else { 3097 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 3098 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 3099 N.getValueType(), IdxN, Scale); 3100 } 3101 } 3102 3103 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3104 N.getValueType(), N, IdxN); 3105 } 3106 } 3107 3108 setValue(&I, N); 3109 } 3110 3111 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3112 // If this is a fixed sized alloca in the entry block of the function, 3113 // allocate it statically on the stack. 3114 if (FuncInfo.StaticAllocaMap.count(&I)) 3115 return; // getValue will auto-populate this. 3116 3117 Type *Ty = I.getAllocatedType(); 3118 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 3119 unsigned Align = 3120 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 3121 I.getAlignment()); 3122 3123 SDValue AllocSize = getValue(I.getArraySize()); 3124 3125 EVT IntPtr = TLI.getPointerTy(); 3126 if (AllocSize.getValueType() != IntPtr) 3127 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 3128 3129 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr, 3130 AllocSize, 3131 DAG.getConstant(TySize, IntPtr)); 3132 3133 // Handle alignment. If the requested alignment is less than or equal to 3134 // the stack alignment, ignore it. If the size is greater than or equal to 3135 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3136 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 3137 if (Align <= StackAlign) 3138 Align = 0; 3139 3140 // Round the size of the allocation up to the stack alignment size 3141 // by add SA-1 to the size. 3142 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3143 AllocSize.getValueType(), AllocSize, 3144 DAG.getIntPtrConstant(StackAlign-1)); 3145 3146 // Mask out the low bits for alignment purposes. 3147 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 3148 AllocSize.getValueType(), AllocSize, 3149 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3150 3151 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3152 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3153 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 3154 VTs, Ops, 3); 3155 setValue(&I, DSA); 3156 DAG.setRoot(DSA.getValue(1)); 3157 3158 // Inform the Frame Information that we have just allocated a variable-sized 3159 // object. 3160 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); 3161 } 3162 3163 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3164 if (I.isAtomic()) 3165 return visitAtomicLoad(I); 3166 3167 const Value *SV = I.getOperand(0); 3168 SDValue Ptr = getValue(SV); 3169 3170 Type *Ty = I.getType(); 3171 3172 bool isVolatile = I.isVolatile(); 3173 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3174 unsigned Alignment = I.getAlignment(); 3175 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3176 3177 SmallVector<EVT, 4> ValueVTs; 3178 SmallVector<uint64_t, 4> Offsets; 3179 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3180 unsigned NumValues = ValueVTs.size(); 3181 if (NumValues == 0) 3182 return; 3183 3184 SDValue Root; 3185 bool ConstantMemory = false; 3186 if (I.isVolatile() || NumValues > MaxParallelChains) 3187 // Serialize volatile loads with other side effects. 3188 Root = getRoot(); 3189 else if (AA->pointsToConstantMemory( 3190 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3191 // Do not serialize (non-volatile) loads of constant memory with anything. 3192 Root = DAG.getEntryNode(); 3193 ConstantMemory = true; 3194 } else { 3195 // Do not serialize non-volatile loads against each other. 3196 Root = DAG.getRoot(); 3197 } 3198 3199 SmallVector<SDValue, 4> Values(NumValues); 3200 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3201 NumValues)); 3202 EVT PtrVT = Ptr.getValueType(); 3203 unsigned ChainI = 0; 3204 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3205 // Serializing loads here may result in excessive register pressure, and 3206 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3207 // could recover a bit by hoisting nodes upward in the chain by recognizing 3208 // they are side-effect free or do not alias. The optimizer should really 3209 // avoid this case by converting large object/array copies to llvm.memcpy 3210 // (MaxParallelChains should always remain as failsafe). 3211 if (ChainI == MaxParallelChains) { 3212 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3213 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3214 MVT::Other, &Chains[0], ChainI); 3215 Root = Chain; 3216 ChainI = 0; 3217 } 3218 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3219 PtrVT, Ptr, 3220 DAG.getConstant(Offsets[i], PtrVT)); 3221 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 3222 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3223 isNonTemporal, Alignment, TBAAInfo); 3224 3225 Values[i] = L; 3226 Chains[ChainI] = L.getValue(1); 3227 } 3228 3229 if (!ConstantMemory) { 3230 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3231 MVT::Other, &Chains[0], ChainI); 3232 if (isVolatile) 3233 DAG.setRoot(Chain); 3234 else 3235 PendingLoads.push_back(Chain); 3236 } 3237 3238 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3239 DAG.getVTList(&ValueVTs[0], NumValues), 3240 &Values[0], NumValues)); 3241 } 3242 3243 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3244 if (I.isAtomic()) 3245 return visitAtomicStore(I); 3246 3247 const Value *SrcV = I.getOperand(0); 3248 const Value *PtrV = I.getOperand(1); 3249 3250 SmallVector<EVT, 4> ValueVTs; 3251 SmallVector<uint64_t, 4> Offsets; 3252 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 3253 unsigned NumValues = ValueVTs.size(); 3254 if (NumValues == 0) 3255 return; 3256 3257 // Get the lowered operands. Note that we do this after 3258 // checking if NumResults is zero, because with zero results 3259 // the operands won't have values in the map. 3260 SDValue Src = getValue(SrcV); 3261 SDValue Ptr = getValue(PtrV); 3262 3263 SDValue Root = getRoot(); 3264 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3265 NumValues)); 3266 EVT PtrVT = Ptr.getValueType(); 3267 bool isVolatile = I.isVolatile(); 3268 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3269 unsigned Alignment = I.getAlignment(); 3270 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3271 3272 unsigned ChainI = 0; 3273 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3274 // See visitLoad comments. 3275 if (ChainI == MaxParallelChains) { 3276 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3277 MVT::Other, &Chains[0], ChainI); 3278 Root = Chain; 3279 ChainI = 0; 3280 } 3281 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 3282 DAG.getConstant(Offsets[i], PtrVT)); 3283 SDValue St = DAG.getStore(Root, getCurDebugLoc(), 3284 SDValue(Src.getNode(), Src.getResNo() + i), 3285 Add, MachinePointerInfo(PtrV, Offsets[i]), 3286 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3287 Chains[ChainI] = St; 3288 } 3289 3290 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3291 MVT::Other, &Chains[0], ChainI); 3292 ++SDNodeOrder; 3293 AssignOrderingToNode(StoreNode.getNode()); 3294 DAG.setRoot(StoreNode); 3295 } 3296 3297 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3298 SynchronizationScope Scope, 3299 bool Before, DebugLoc dl, 3300 SelectionDAG &DAG, 3301 const TargetLowering &TLI) { 3302 // Fence, if necessary 3303 if (Before) { 3304 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3305 Order = Release; 3306 else if (Order == Acquire || Order == Monotonic) 3307 return Chain; 3308 } else { 3309 if (Order == AcquireRelease) 3310 Order = Acquire; 3311 else if (Order == Release || Order == Monotonic) 3312 return Chain; 3313 } 3314 SDValue Ops[3]; 3315 Ops[0] = Chain; 3316 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3317 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3318 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3); 3319 } 3320 3321 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3322 DebugLoc dl = getCurDebugLoc(); 3323 AtomicOrdering Order = I.getOrdering(); 3324 SynchronizationScope Scope = I.getSynchScope(); 3325 3326 SDValue InChain = getRoot(); 3327 3328 if (TLI.getInsertFencesForAtomic()) 3329 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3330 DAG, TLI); 3331 3332 SDValue L = 3333 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 3334 getValue(I.getCompareOperand()).getValueType().getSimpleVT(), 3335 InChain, 3336 getValue(I.getPointerOperand()), 3337 getValue(I.getCompareOperand()), 3338 getValue(I.getNewValOperand()), 3339 MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */, 3340 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3341 Scope); 3342 3343 SDValue OutChain = L.getValue(1); 3344 3345 if (TLI.getInsertFencesForAtomic()) 3346 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3347 DAG, TLI); 3348 3349 setValue(&I, L); 3350 DAG.setRoot(OutChain); 3351 } 3352 3353 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3354 DebugLoc dl = getCurDebugLoc(); 3355 ISD::NodeType NT; 3356 switch (I.getOperation()) { 3357 default: llvm_unreachable("Unknown atomicrmw operation"); return; 3358 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3359 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3360 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3361 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3362 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3363 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3364 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3365 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3366 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3367 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3368 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3369 } 3370 AtomicOrdering Order = I.getOrdering(); 3371 SynchronizationScope Scope = I.getSynchScope(); 3372 3373 SDValue InChain = getRoot(); 3374 3375 if (TLI.getInsertFencesForAtomic()) 3376 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3377 DAG, TLI); 3378 3379 SDValue L = 3380 DAG.getAtomic(NT, dl, 3381 getValue(I.getValOperand()).getValueType().getSimpleVT(), 3382 InChain, 3383 getValue(I.getPointerOperand()), 3384 getValue(I.getValOperand()), 3385 I.getPointerOperand(), 0 /* Alignment */, 3386 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3387 Scope); 3388 3389 SDValue OutChain = L.getValue(1); 3390 3391 if (TLI.getInsertFencesForAtomic()) 3392 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3393 DAG, TLI); 3394 3395 setValue(&I, L); 3396 DAG.setRoot(OutChain); 3397 } 3398 3399 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3400 DebugLoc dl = getCurDebugLoc(); 3401 SDValue Ops[3]; 3402 Ops[0] = getRoot(); 3403 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); 3404 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); 3405 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3)); 3406 } 3407 3408 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3409 DebugLoc dl = getCurDebugLoc(); 3410 AtomicOrdering Order = I.getOrdering(); 3411 SynchronizationScope Scope = I.getSynchScope(); 3412 3413 SDValue InChain = getRoot(); 3414 3415 EVT VT = EVT::getEVT(I.getType()); 3416 3417 if (I.getAlignment() * 8 < VT.getSizeInBits()) 3418 report_fatal_error("Cannot generate unaligned atomic load"); 3419 3420 SDValue L = 3421 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3422 getValue(I.getPointerOperand()), 3423 I.getPointerOperand(), I.getAlignment(), 3424 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3425 Scope); 3426 3427 SDValue OutChain = L.getValue(1); 3428 3429 if (TLI.getInsertFencesForAtomic()) 3430 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3431 DAG, TLI); 3432 3433 setValue(&I, L); 3434 DAG.setRoot(OutChain); 3435 } 3436 3437 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3438 DebugLoc dl = getCurDebugLoc(); 3439 3440 AtomicOrdering Order = I.getOrdering(); 3441 SynchronizationScope Scope = I.getSynchScope(); 3442 3443 SDValue InChain = getRoot(); 3444 3445 EVT VT = EVT::getEVT(I.getValueOperand()->getType()); 3446 3447 if (I.getAlignment() * 8 < VT.getSizeInBits()) 3448 report_fatal_error("Cannot generate unaligned atomic store"); 3449 3450 if (TLI.getInsertFencesForAtomic()) 3451 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3452 DAG, TLI); 3453 3454 SDValue OutChain = 3455 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3456 InChain, 3457 getValue(I.getPointerOperand()), 3458 getValue(I.getValueOperand()), 3459 I.getPointerOperand(), I.getAlignment(), 3460 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3461 Scope); 3462 3463 if (TLI.getInsertFencesForAtomic()) 3464 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3465 DAG, TLI); 3466 3467 DAG.setRoot(OutChain); 3468 } 3469 3470 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3471 /// node. 3472 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3473 unsigned Intrinsic) { 3474 bool HasChain = !I.doesNotAccessMemory(); 3475 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3476 3477 // Build the operand list. 3478 SmallVector<SDValue, 8> Ops; 3479 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3480 if (OnlyLoad) { 3481 // We don't need to serialize loads against other loads. 3482 Ops.push_back(DAG.getRoot()); 3483 } else { 3484 Ops.push_back(getRoot()); 3485 } 3486 } 3487 3488 // Info is set by getTgtMemInstrinsic 3489 TargetLowering::IntrinsicInfo Info; 3490 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3491 3492 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3493 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3494 Info.opc == ISD::INTRINSIC_W_CHAIN) 3495 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); 3496 3497 // Add all operands of the call to the operand list. 3498 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3499 SDValue Op = getValue(I.getArgOperand(i)); 3500 assert(TLI.isTypeLegal(Op.getValueType()) && 3501 "Intrinsic uses a non-legal type?"); 3502 Ops.push_back(Op); 3503 } 3504 3505 SmallVector<EVT, 4> ValueVTs; 3506 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3507 #ifndef NDEBUG 3508 for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) { 3509 assert(TLI.isTypeLegal(ValueVTs[Val]) && 3510 "Intrinsic uses a non-legal type?"); 3511 } 3512 #endif // NDEBUG 3513 3514 if (HasChain) 3515 ValueVTs.push_back(MVT::Other); 3516 3517 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3518 3519 // Create the node. 3520 SDValue Result; 3521 if (IsTgtIntrinsic) { 3522 // This is target intrinsic that touches memory 3523 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 3524 VTs, &Ops[0], Ops.size(), 3525 Info.memVT, 3526 MachinePointerInfo(Info.ptrVal, Info.offset), 3527 Info.align, Info.vol, 3528 Info.readMem, Info.writeMem); 3529 } else if (!HasChain) { 3530 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 3531 VTs, &Ops[0], Ops.size()); 3532 } else if (!I.getType()->isVoidTy()) { 3533 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 3534 VTs, &Ops[0], Ops.size()); 3535 } else { 3536 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 3537 VTs, &Ops[0], Ops.size()); 3538 } 3539 3540 if (HasChain) { 3541 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3542 if (OnlyLoad) 3543 PendingLoads.push_back(Chain); 3544 else 3545 DAG.setRoot(Chain); 3546 } 3547 3548 if (!I.getType()->isVoidTy()) { 3549 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3550 EVT VT = TLI.getValueType(PTy); 3551 Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result); 3552 } 3553 3554 setValue(&I, Result); 3555 } 3556 } 3557 3558 /// GetSignificand - Get the significand and build it into a floating-point 3559 /// number with exponent of 1: 3560 /// 3561 /// Op = (Op & 0x007fffff) | 0x3f800000; 3562 /// 3563 /// where Op is the hexidecimal representation of floating point value. 3564 static SDValue 3565 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 3566 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3567 DAG.getConstant(0x007fffff, MVT::i32)); 3568 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3569 DAG.getConstant(0x3f800000, MVT::i32)); 3570 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3571 } 3572 3573 /// GetExponent - Get the exponent: 3574 /// 3575 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3576 /// 3577 /// where Op is the hexidecimal representation of floating point value. 3578 static SDValue 3579 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3580 DebugLoc dl) { 3581 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3582 DAG.getConstant(0x7f800000, MVT::i32)); 3583 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3584 DAG.getConstant(23, TLI.getPointerTy())); 3585 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3586 DAG.getConstant(127, MVT::i32)); 3587 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3588 } 3589 3590 /// getF32Constant - Get 32-bit floating point constant. 3591 static SDValue 3592 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3593 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 3594 } 3595 3596 // implVisitAluOverflow - Lower arithmetic overflow instrinsics. 3597 const char * 3598 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) { 3599 SDValue Op1 = getValue(I.getArgOperand(0)); 3600 SDValue Op2 = getValue(I.getArgOperand(1)); 3601 3602 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 3603 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); 3604 return 0; 3605 } 3606 3607 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 3608 /// limited-precision mode. 3609 void 3610 SelectionDAGBuilder::visitExp(const CallInst &I) { 3611 SDValue result; 3612 DebugLoc dl = getCurDebugLoc(); 3613 3614 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3615 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3616 SDValue Op = getValue(I.getArgOperand(0)); 3617 3618 // Put the exponent in the right bit position for later addition to the 3619 // final result: 3620 // 3621 // #define LOG2OFe 1.4426950f 3622 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3623 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3624 getF32Constant(DAG, 0x3fb8aa3b)); 3625 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3626 3627 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3628 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3629 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3630 3631 // IntegerPartOfX <<= 23; 3632 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3633 DAG.getConstant(23, TLI.getPointerTy())); 3634 3635 if (LimitFloatPrecision <= 6) { 3636 // For floating-point precision of 6: 3637 // 3638 // TwoToFractionalPartOfX = 3639 // 0.997535578f + 3640 // (0.735607626f + 0.252464424f * x) * x; 3641 // 3642 // error 0.0144103317, which is 6 bits 3643 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3644 getF32Constant(DAG, 0x3e814304)); 3645 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3646 getF32Constant(DAG, 0x3f3c50c8)); 3647 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3648 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3649 getF32Constant(DAG, 0x3f7f5e7e)); 3650 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5); 3651 3652 // Add the exponent into the result in integer domain. 3653 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3654 TwoToFracPartOfX, IntegerPartOfX); 3655 3656 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6); 3657 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3658 // For floating-point precision of 12: 3659 // 3660 // TwoToFractionalPartOfX = 3661 // 0.999892986f + 3662 // (0.696457318f + 3663 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3664 // 3665 // 0.000107046256 error, which is 13 to 14 bits 3666 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3667 getF32Constant(DAG, 0x3da235e3)); 3668 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3669 getF32Constant(DAG, 0x3e65b8f3)); 3670 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3671 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3672 getF32Constant(DAG, 0x3f324b07)); 3673 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3674 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3675 getF32Constant(DAG, 0x3f7ff8fd)); 3676 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7); 3677 3678 // Add the exponent into the result in integer domain. 3679 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3680 TwoToFracPartOfX, IntegerPartOfX); 3681 3682 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8); 3683 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3684 // For floating-point precision of 18: 3685 // 3686 // TwoToFractionalPartOfX = 3687 // 0.999999982f + 3688 // (0.693148872f + 3689 // (0.240227044f + 3690 // (0.554906021e-1f + 3691 // (0.961591928e-2f + 3692 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3693 // 3694 // error 2.47208000*10^(-7), which is better than 18 bits 3695 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3696 getF32Constant(DAG, 0x3924b03e)); 3697 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3698 getF32Constant(DAG, 0x3ab24b87)); 3699 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3700 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3701 getF32Constant(DAG, 0x3c1d8c17)); 3702 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3703 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3704 getF32Constant(DAG, 0x3d634a1d)); 3705 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3706 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3707 getF32Constant(DAG, 0x3e75fe14)); 3708 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3709 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3710 getF32Constant(DAG, 0x3f317234)); 3711 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3712 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3713 getF32Constant(DAG, 0x3f800000)); 3714 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl, 3715 MVT::i32, t13); 3716 3717 // Add the exponent into the result in integer domain. 3718 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3719 TwoToFracPartOfX, IntegerPartOfX); 3720 3721 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14); 3722 } 3723 } else { 3724 // No special expansion. 3725 result = DAG.getNode(ISD::FEXP, dl, 3726 getValue(I.getArgOperand(0)).getValueType(), 3727 getValue(I.getArgOperand(0))); 3728 } 3729 3730 setValue(&I, result); 3731 } 3732 3733 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3734 /// limited-precision mode. 3735 void 3736 SelectionDAGBuilder::visitLog(const CallInst &I) { 3737 SDValue result; 3738 DebugLoc dl = getCurDebugLoc(); 3739 3740 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3741 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3742 SDValue Op = getValue(I.getArgOperand(0)); 3743 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3744 3745 // Scale the exponent by log(2) [0.69314718f]. 3746 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3747 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3748 getF32Constant(DAG, 0x3f317218)); 3749 3750 // Get the significand and build it into a floating-point number with 3751 // exponent of 1. 3752 SDValue X = GetSignificand(DAG, Op1, dl); 3753 3754 if (LimitFloatPrecision <= 6) { 3755 // For floating-point precision of 6: 3756 // 3757 // LogofMantissa = 3758 // -1.1609546f + 3759 // (1.4034025f - 0.23903021f * x) * x; 3760 // 3761 // error 0.0034276066, which is better than 8 bits 3762 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3763 getF32Constant(DAG, 0xbe74c456)); 3764 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3765 getF32Constant(DAG, 0x3fb3a2b1)); 3766 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3767 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3768 getF32Constant(DAG, 0x3f949a29)); 3769 3770 result = DAG.getNode(ISD::FADD, dl, 3771 MVT::f32, LogOfExponent, LogOfMantissa); 3772 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3773 // For floating-point precision of 12: 3774 // 3775 // LogOfMantissa = 3776 // -1.7417939f + 3777 // (2.8212026f + 3778 // (-1.4699568f + 3779 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3780 // 3781 // error 0.000061011436, which is 14 bits 3782 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3783 getF32Constant(DAG, 0xbd67b6d6)); 3784 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3785 getF32Constant(DAG, 0x3ee4f4b8)); 3786 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3787 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3788 getF32Constant(DAG, 0x3fbc278b)); 3789 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3790 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3791 getF32Constant(DAG, 0x40348e95)); 3792 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3793 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3794 getF32Constant(DAG, 0x3fdef31a)); 3795 3796 result = DAG.getNode(ISD::FADD, dl, 3797 MVT::f32, LogOfExponent, LogOfMantissa); 3798 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3799 // For floating-point precision of 18: 3800 // 3801 // LogOfMantissa = 3802 // -2.1072184f + 3803 // (4.2372794f + 3804 // (-3.7029485f + 3805 // (2.2781945f + 3806 // (-0.87823314f + 3807 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3808 // 3809 // error 0.0000023660568, which is better than 18 bits 3810 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3811 getF32Constant(DAG, 0xbc91e5ac)); 3812 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3813 getF32Constant(DAG, 0x3e4350aa)); 3814 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3815 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3816 getF32Constant(DAG, 0x3f60d3e3)); 3817 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3818 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3819 getF32Constant(DAG, 0x4011cdf0)); 3820 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3821 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3822 getF32Constant(DAG, 0x406cfd1c)); 3823 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3824 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3825 getF32Constant(DAG, 0x408797cb)); 3826 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3827 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3828 getF32Constant(DAG, 0x4006dcab)); 3829 3830 result = DAG.getNode(ISD::FADD, dl, 3831 MVT::f32, LogOfExponent, LogOfMantissa); 3832 } 3833 } else { 3834 // No special expansion. 3835 result = DAG.getNode(ISD::FLOG, dl, 3836 getValue(I.getArgOperand(0)).getValueType(), 3837 getValue(I.getArgOperand(0))); 3838 } 3839 3840 setValue(&I, result); 3841 } 3842 3843 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3844 /// limited-precision mode. 3845 void 3846 SelectionDAGBuilder::visitLog2(const CallInst &I) { 3847 SDValue result; 3848 DebugLoc dl = getCurDebugLoc(); 3849 3850 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3851 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3852 SDValue Op = getValue(I.getArgOperand(0)); 3853 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3854 3855 // Get the exponent. 3856 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3857 3858 // Get the significand and build it into a floating-point number with 3859 // exponent of 1. 3860 SDValue X = GetSignificand(DAG, Op1, dl); 3861 3862 // Different possible minimax approximations of significand in 3863 // floating-point for various degrees of accuracy over [1,2]. 3864 if (LimitFloatPrecision <= 6) { 3865 // For floating-point precision of 6: 3866 // 3867 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3868 // 3869 // error 0.0049451742, which is more than 7 bits 3870 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3871 getF32Constant(DAG, 0xbeb08fe0)); 3872 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3873 getF32Constant(DAG, 0x40019463)); 3874 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3875 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3876 getF32Constant(DAG, 0x3fd6633d)); 3877 3878 result = DAG.getNode(ISD::FADD, dl, 3879 MVT::f32, LogOfExponent, Log2ofMantissa); 3880 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3881 // For floating-point precision of 12: 3882 // 3883 // Log2ofMantissa = 3884 // -2.51285454f + 3885 // (4.07009056f + 3886 // (-2.12067489f + 3887 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3888 // 3889 // error 0.0000876136000, which is better than 13 bits 3890 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3891 getF32Constant(DAG, 0xbda7262e)); 3892 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3893 getF32Constant(DAG, 0x3f25280b)); 3894 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3895 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3896 getF32Constant(DAG, 0x4007b923)); 3897 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3898 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3899 getF32Constant(DAG, 0x40823e2f)); 3900 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3901 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3902 getF32Constant(DAG, 0x4020d29c)); 3903 3904 result = DAG.getNode(ISD::FADD, dl, 3905 MVT::f32, LogOfExponent, Log2ofMantissa); 3906 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3907 // For floating-point precision of 18: 3908 // 3909 // Log2ofMantissa = 3910 // -3.0400495f + 3911 // (6.1129976f + 3912 // (-5.3420409f + 3913 // (3.2865683f + 3914 // (-1.2669343f + 3915 // (0.27515199f - 3916 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3917 // 3918 // error 0.0000018516, which is better than 18 bits 3919 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3920 getF32Constant(DAG, 0xbcd2769e)); 3921 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3922 getF32Constant(DAG, 0x3e8ce0b9)); 3923 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3924 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3925 getF32Constant(DAG, 0x3fa22ae7)); 3926 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3927 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3928 getF32Constant(DAG, 0x40525723)); 3929 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3930 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3931 getF32Constant(DAG, 0x40aaf200)); 3932 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3933 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3934 getF32Constant(DAG, 0x40c39dad)); 3935 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3936 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3937 getF32Constant(DAG, 0x4042902c)); 3938 3939 result = DAG.getNode(ISD::FADD, dl, 3940 MVT::f32, LogOfExponent, Log2ofMantissa); 3941 } 3942 } else { 3943 // No special expansion. 3944 result = DAG.getNode(ISD::FLOG2, dl, 3945 getValue(I.getArgOperand(0)).getValueType(), 3946 getValue(I.getArgOperand(0))); 3947 } 3948 3949 setValue(&I, result); 3950 } 3951 3952 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3953 /// limited-precision mode. 3954 void 3955 SelectionDAGBuilder::visitLog10(const CallInst &I) { 3956 SDValue result; 3957 DebugLoc dl = getCurDebugLoc(); 3958 3959 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3960 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3961 SDValue Op = getValue(I.getArgOperand(0)); 3962 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3963 3964 // Scale the exponent by log10(2) [0.30102999f]. 3965 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3966 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3967 getF32Constant(DAG, 0x3e9a209a)); 3968 3969 // Get the significand and build it into a floating-point number with 3970 // exponent of 1. 3971 SDValue X = GetSignificand(DAG, Op1, dl); 3972 3973 if (LimitFloatPrecision <= 6) { 3974 // For floating-point precision of 6: 3975 // 3976 // Log10ofMantissa = 3977 // -0.50419619f + 3978 // (0.60948995f - 0.10380950f * x) * x; 3979 // 3980 // error 0.0014886165, which is 6 bits 3981 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3982 getF32Constant(DAG, 0xbdd49a13)); 3983 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3984 getF32Constant(DAG, 0x3f1c0789)); 3985 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3986 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3987 getF32Constant(DAG, 0x3f011300)); 3988 3989 result = DAG.getNode(ISD::FADD, dl, 3990 MVT::f32, LogOfExponent, Log10ofMantissa); 3991 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3992 // For floating-point precision of 12: 3993 // 3994 // Log10ofMantissa = 3995 // -0.64831180f + 3996 // (0.91751397f + 3997 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3998 // 3999 // error 0.00019228036, which is better than 12 bits 4000 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4001 getF32Constant(DAG, 0x3d431f31)); 4002 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4003 getF32Constant(DAG, 0x3ea21fb2)); 4004 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4005 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4006 getF32Constant(DAG, 0x3f6ae232)); 4007 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4008 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4009 getF32Constant(DAG, 0x3f25f7c3)); 4010 4011 result = DAG.getNode(ISD::FADD, dl, 4012 MVT::f32, LogOfExponent, Log10ofMantissa); 4013 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4014 // For floating-point precision of 18: 4015 // 4016 // Log10ofMantissa = 4017 // -0.84299375f + 4018 // (1.5327582f + 4019 // (-1.0688956f + 4020 // (0.49102474f + 4021 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4022 // 4023 // error 0.0000037995730, which is better than 18 bits 4024 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4025 getF32Constant(DAG, 0x3c5d51ce)); 4026 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4027 getF32Constant(DAG, 0x3e00685a)); 4028 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4029 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4030 getF32Constant(DAG, 0x3efb6798)); 4031 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4032 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4033 getF32Constant(DAG, 0x3f88d192)); 4034 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4035 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4036 getF32Constant(DAG, 0x3fc4316c)); 4037 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4038 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4039 getF32Constant(DAG, 0x3f57ce70)); 4040 4041 result = DAG.getNode(ISD::FADD, dl, 4042 MVT::f32, LogOfExponent, Log10ofMantissa); 4043 } 4044 } else { 4045 // No special expansion. 4046 result = DAG.getNode(ISD::FLOG10, dl, 4047 getValue(I.getArgOperand(0)).getValueType(), 4048 getValue(I.getArgOperand(0))); 4049 } 4050 4051 setValue(&I, result); 4052 } 4053 4054 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4055 /// limited-precision mode. 4056 void 4057 SelectionDAGBuilder::visitExp2(const CallInst &I) { 4058 SDValue result; 4059 DebugLoc dl = getCurDebugLoc(); 4060 4061 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 4062 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4063 SDValue Op = getValue(I.getArgOperand(0)); 4064 4065 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4066 4067 // FractionalPartOfX = x - (float)IntegerPartOfX; 4068 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4069 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4070 4071 // IntegerPartOfX <<= 23; 4072 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4073 DAG.getConstant(23, TLI.getPointerTy())); 4074 4075 if (LimitFloatPrecision <= 6) { 4076 // For floating-point precision of 6: 4077 // 4078 // TwoToFractionalPartOfX = 4079 // 0.997535578f + 4080 // (0.735607626f + 0.252464424f * x) * x; 4081 // 4082 // error 0.0144103317, which is 6 bits 4083 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4084 getF32Constant(DAG, 0x3e814304)); 4085 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4086 getF32Constant(DAG, 0x3f3c50c8)); 4087 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4088 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4089 getF32Constant(DAG, 0x3f7f5e7e)); 4090 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 4091 SDValue TwoToFractionalPartOfX = 4092 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 4093 4094 result = DAG.getNode(ISD::BITCAST, dl, 4095 MVT::f32, TwoToFractionalPartOfX); 4096 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4097 // For floating-point precision of 12: 4098 // 4099 // TwoToFractionalPartOfX = 4100 // 0.999892986f + 4101 // (0.696457318f + 4102 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4103 // 4104 // error 0.000107046256, which is 13 to 14 bits 4105 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4106 getF32Constant(DAG, 0x3da235e3)); 4107 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4108 getF32Constant(DAG, 0x3e65b8f3)); 4109 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4110 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4111 getF32Constant(DAG, 0x3f324b07)); 4112 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4113 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4114 getF32Constant(DAG, 0x3f7ff8fd)); 4115 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 4116 SDValue TwoToFractionalPartOfX = 4117 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 4118 4119 result = DAG.getNode(ISD::BITCAST, dl, 4120 MVT::f32, TwoToFractionalPartOfX); 4121 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4122 // For floating-point precision of 18: 4123 // 4124 // TwoToFractionalPartOfX = 4125 // 0.999999982f + 4126 // (0.693148872f + 4127 // (0.240227044f + 4128 // (0.554906021e-1f + 4129 // (0.961591928e-2f + 4130 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4131 // error 2.47208000*10^(-7), which is better than 18 bits 4132 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4133 getF32Constant(DAG, 0x3924b03e)); 4134 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4135 getF32Constant(DAG, 0x3ab24b87)); 4136 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4137 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4138 getF32Constant(DAG, 0x3c1d8c17)); 4139 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4140 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4141 getF32Constant(DAG, 0x3d634a1d)); 4142 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4143 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4144 getF32Constant(DAG, 0x3e75fe14)); 4145 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4146 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4147 getF32Constant(DAG, 0x3f317234)); 4148 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4149 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4150 getF32Constant(DAG, 0x3f800000)); 4151 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 4152 SDValue TwoToFractionalPartOfX = 4153 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 4154 4155 result = DAG.getNode(ISD::BITCAST, dl, 4156 MVT::f32, TwoToFractionalPartOfX); 4157 } 4158 } else { 4159 // No special expansion. 4160 result = DAG.getNode(ISD::FEXP2, dl, 4161 getValue(I.getArgOperand(0)).getValueType(), 4162 getValue(I.getArgOperand(0))); 4163 } 4164 4165 setValue(&I, result); 4166 } 4167 4168 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4169 /// limited-precision mode with x == 10.0f. 4170 void 4171 SelectionDAGBuilder::visitPow(const CallInst &I) { 4172 SDValue result; 4173 const Value *Val = I.getArgOperand(0); 4174 DebugLoc dl = getCurDebugLoc(); 4175 bool IsExp10 = false; 4176 4177 if (getValue(Val).getValueType() == MVT::f32 && 4178 getValue(I.getArgOperand(1)).getValueType() == MVT::f32 && 4179 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4180 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 4181 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 4182 APFloat Ten(10.0f); 4183 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 4184 } 4185 } 4186 } 4187 4188 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4189 SDValue Op = getValue(I.getArgOperand(1)); 4190 4191 // Put the exponent in the right bit position for later addition to the 4192 // final result: 4193 // 4194 // #define LOG2OF10 3.3219281f 4195 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4196 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4197 getF32Constant(DAG, 0x40549a78)); 4198 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4199 4200 // FractionalPartOfX = x - (float)IntegerPartOfX; 4201 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4202 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4203 4204 // IntegerPartOfX <<= 23; 4205 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4206 DAG.getConstant(23, TLI.getPointerTy())); 4207 4208 if (LimitFloatPrecision <= 6) { 4209 // For floating-point precision of 6: 4210 // 4211 // twoToFractionalPartOfX = 4212 // 0.997535578f + 4213 // (0.735607626f + 0.252464424f * x) * x; 4214 // 4215 // error 0.0144103317, which is 6 bits 4216 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4217 getF32Constant(DAG, 0x3e814304)); 4218 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4219 getF32Constant(DAG, 0x3f3c50c8)); 4220 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4221 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4222 getF32Constant(DAG, 0x3f7f5e7e)); 4223 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 4224 SDValue TwoToFractionalPartOfX = 4225 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 4226 4227 result = DAG.getNode(ISD::BITCAST, dl, 4228 MVT::f32, TwoToFractionalPartOfX); 4229 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4230 // For floating-point precision of 12: 4231 // 4232 // TwoToFractionalPartOfX = 4233 // 0.999892986f + 4234 // (0.696457318f + 4235 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4236 // 4237 // error 0.000107046256, which is 13 to 14 bits 4238 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4239 getF32Constant(DAG, 0x3da235e3)); 4240 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4241 getF32Constant(DAG, 0x3e65b8f3)); 4242 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4243 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4244 getF32Constant(DAG, 0x3f324b07)); 4245 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4246 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4247 getF32Constant(DAG, 0x3f7ff8fd)); 4248 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 4249 SDValue TwoToFractionalPartOfX = 4250 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 4251 4252 result = DAG.getNode(ISD::BITCAST, dl, 4253 MVT::f32, TwoToFractionalPartOfX); 4254 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4255 // For floating-point precision of 18: 4256 // 4257 // TwoToFractionalPartOfX = 4258 // 0.999999982f + 4259 // (0.693148872f + 4260 // (0.240227044f + 4261 // (0.554906021e-1f + 4262 // (0.961591928e-2f + 4263 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4264 // error 2.47208000*10^(-7), which is better than 18 bits 4265 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4266 getF32Constant(DAG, 0x3924b03e)); 4267 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4268 getF32Constant(DAG, 0x3ab24b87)); 4269 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4270 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4271 getF32Constant(DAG, 0x3c1d8c17)); 4272 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4273 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4274 getF32Constant(DAG, 0x3d634a1d)); 4275 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4276 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4277 getF32Constant(DAG, 0x3e75fe14)); 4278 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4279 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4280 getF32Constant(DAG, 0x3f317234)); 4281 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4282 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4283 getF32Constant(DAG, 0x3f800000)); 4284 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 4285 SDValue TwoToFractionalPartOfX = 4286 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 4287 4288 result = DAG.getNode(ISD::BITCAST, dl, 4289 MVT::f32, TwoToFractionalPartOfX); 4290 } 4291 } else { 4292 // No special expansion. 4293 result = DAG.getNode(ISD::FPOW, dl, 4294 getValue(I.getArgOperand(0)).getValueType(), 4295 getValue(I.getArgOperand(0)), 4296 getValue(I.getArgOperand(1))); 4297 } 4298 4299 setValue(&I, result); 4300 } 4301 4302 4303 /// ExpandPowI - Expand a llvm.powi intrinsic. 4304 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 4305 SelectionDAG &DAG) { 4306 // If RHS is a constant, we can expand this out to a multiplication tree, 4307 // otherwise we end up lowering to a call to __powidf2 (for example). When 4308 // optimizing for size, we only want to do this if the expansion would produce 4309 // a small number of multiplies, otherwise we do the full expansion. 4310 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4311 // Get the exponent as a positive value. 4312 unsigned Val = RHSC->getSExtValue(); 4313 if ((int)Val < 0) Val = -Val; 4314 4315 // powi(x, 0) -> 1.0 4316 if (Val == 0) 4317 return DAG.getConstantFP(1.0, LHS.getValueType()); 4318 4319 const Function *F = DAG.getMachineFunction().getFunction(); 4320 if (!F->hasFnAttr(Attribute::OptimizeForSize) || 4321 // If optimizing for size, don't insert too many multiplies. This 4322 // inserts up to 5 multiplies. 4323 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4324 // We use the simple binary decomposition method to generate the multiply 4325 // sequence. There are more optimal ways to do this (for example, 4326 // powi(x,15) generates one more multiply than it should), but this has 4327 // the benefit of being both really simple and much better than a libcall. 4328 SDValue Res; // Logically starts equal to 1.0 4329 SDValue CurSquare = LHS; 4330 while (Val) { 4331 if (Val & 1) { 4332 if (Res.getNode()) 4333 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4334 else 4335 Res = CurSquare; // 1.0*CurSquare. 4336 } 4337 4338 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4339 CurSquare, CurSquare); 4340 Val >>= 1; 4341 } 4342 4343 // If the original was negative, invert the result, producing 1/(x*x*x). 4344 if (RHSC->getSExtValue() < 0) 4345 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4346 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4347 return Res; 4348 } 4349 } 4350 4351 // Otherwise, expand to a libcall. 4352 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4353 } 4354 4355 // getTruncatedArgReg - Find underlying register used for an truncated 4356 // argument. 4357 static unsigned getTruncatedArgReg(const SDValue &N) { 4358 if (N.getOpcode() != ISD::TRUNCATE) 4359 return 0; 4360 4361 const SDValue &Ext = N.getOperand(0); 4362 if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){ 4363 const SDValue &CFR = Ext.getOperand(0); 4364 if (CFR.getOpcode() == ISD::CopyFromReg) 4365 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4366 else 4367 if (CFR.getOpcode() == ISD::TRUNCATE) 4368 return getTruncatedArgReg(CFR); 4369 } 4370 return 0; 4371 } 4372 4373 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4374 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4375 /// At the end of instruction selection, they will be inserted to the entry BB. 4376 bool 4377 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4378 int64_t Offset, 4379 const SDValue &N) { 4380 const Argument *Arg = dyn_cast<Argument>(V); 4381 if (!Arg) 4382 return false; 4383 4384 MachineFunction &MF = DAG.getMachineFunction(); 4385 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4386 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 4387 4388 // Ignore inlined function arguments here. 4389 DIVariable DV(Variable); 4390 if (DV.isInlinedFnArgument(MF.getFunction())) 4391 return false; 4392 4393 unsigned Reg = 0; 4394 // Some arguments' frame index is recorded during argument lowering. 4395 Offset = FuncInfo.getArgumentFrameIndex(Arg); 4396 if (Offset) 4397 Reg = TRI->getFrameRegister(MF); 4398 4399 if (!Reg && N.getNode()) { 4400 if (N.getOpcode() == ISD::CopyFromReg) 4401 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4402 else 4403 Reg = getTruncatedArgReg(N); 4404 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4405 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4406 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4407 if (PR) 4408 Reg = PR; 4409 } 4410 } 4411 4412 if (!Reg) { 4413 // Check if ValueMap has reg number. 4414 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4415 if (VMI != FuncInfo.ValueMap.end()) 4416 Reg = VMI->second; 4417 } 4418 4419 if (!Reg && N.getNode()) { 4420 // Check if frame index is available. 4421 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4422 if (FrameIndexSDNode *FINode = 4423 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) { 4424 Reg = TRI->getFrameRegister(MF); 4425 Offset = FINode->getIndex(); 4426 } 4427 } 4428 4429 if (!Reg) 4430 return false; 4431 4432 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(), 4433 TII->get(TargetOpcode::DBG_VALUE)) 4434 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable); 4435 FuncInfo.ArgDbgValues.push_back(&*MIB); 4436 return true; 4437 } 4438 4439 // VisualStudio defines setjmp as _setjmp 4440 #if defined(_MSC_VER) && defined(setjmp) && \ 4441 !defined(setjmp_undefined_for_msvc) 4442 # pragma push_macro("setjmp") 4443 # undef setjmp 4444 # define setjmp_undefined_for_msvc 4445 #endif 4446 4447 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4448 /// we want to emit this as a call to a named external function, return the name 4449 /// otherwise lower it and return null. 4450 const char * 4451 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4452 DebugLoc dl = getCurDebugLoc(); 4453 SDValue Res; 4454 4455 switch (Intrinsic) { 4456 default: 4457 // By default, turn this into a target intrinsic node. 4458 visitTargetIntrinsic(I, Intrinsic); 4459 return 0; 4460 case Intrinsic::vastart: visitVAStart(I); return 0; 4461 case Intrinsic::vaend: visitVAEnd(I); return 0; 4462 case Intrinsic::vacopy: visitVACopy(I); return 0; 4463 case Intrinsic::returnaddress: 4464 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 4465 getValue(I.getArgOperand(0)))); 4466 return 0; 4467 case Intrinsic::frameaddress: 4468 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 4469 getValue(I.getArgOperand(0)))); 4470 return 0; 4471 case Intrinsic::setjmp: 4472 return "_setjmp"+!TLI.usesUnderscoreSetJmp(); 4473 case Intrinsic::longjmp: 4474 return "_longjmp"+!TLI.usesUnderscoreLongJmp(); 4475 case Intrinsic::memcpy: { 4476 // Assert for address < 256 since we support only user defined address 4477 // spaces. 4478 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4479 < 256 && 4480 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4481 < 256 && 4482 "Unknown address space"); 4483 SDValue Op1 = getValue(I.getArgOperand(0)); 4484 SDValue Op2 = getValue(I.getArgOperand(1)); 4485 SDValue Op3 = getValue(I.getArgOperand(2)); 4486 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4487 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4488 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, 4489 MachinePointerInfo(I.getArgOperand(0)), 4490 MachinePointerInfo(I.getArgOperand(1)))); 4491 return 0; 4492 } 4493 case Intrinsic::memset: { 4494 // Assert for address < 256 since we support only user defined address 4495 // spaces. 4496 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4497 < 256 && 4498 "Unknown address space"); 4499 SDValue Op1 = getValue(I.getArgOperand(0)); 4500 SDValue Op2 = getValue(I.getArgOperand(1)); 4501 SDValue Op3 = getValue(I.getArgOperand(2)); 4502 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4503 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4504 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4505 MachinePointerInfo(I.getArgOperand(0)))); 4506 return 0; 4507 } 4508 case Intrinsic::memmove: { 4509 // Assert for address < 256 since we support only user defined address 4510 // spaces. 4511 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4512 < 256 && 4513 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4514 < 256 && 4515 "Unknown address space"); 4516 SDValue Op1 = getValue(I.getArgOperand(0)); 4517 SDValue Op2 = getValue(I.getArgOperand(1)); 4518 SDValue Op3 = getValue(I.getArgOperand(2)); 4519 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4520 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4521 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4522 MachinePointerInfo(I.getArgOperand(0)), 4523 MachinePointerInfo(I.getArgOperand(1)))); 4524 return 0; 4525 } 4526 case Intrinsic::dbg_declare: { 4527 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4528 MDNode *Variable = DI.getVariable(); 4529 const Value *Address = DI.getAddress(); 4530 if (!Address || !DIVariable(Variable).Verify()) 4531 return 0; 4532 4533 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4534 // but do not always have a corresponding SDNode built. The SDNodeOrder 4535 // absolute, but not relative, values are different depending on whether 4536 // debug info exists. 4537 ++SDNodeOrder; 4538 4539 // Check if address has undef value. 4540 if (isa<UndefValue>(Address) || 4541 (Address->use_empty() && !isa<Argument>(Address))) { 4542 DEBUG(dbgs() << "Dropping debug info for " << DI); 4543 return 0; 4544 } 4545 4546 SDValue &N = NodeMap[Address]; 4547 if (!N.getNode() && isa<Argument>(Address)) 4548 // Check unused arguments map. 4549 N = UnusedArgNodeMap[Address]; 4550 SDDbgValue *SDV; 4551 if (N.getNode()) { 4552 // Parameters are handled specially. 4553 bool isParameter = 4554 DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable; 4555 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4556 Address = BCI->getOperand(0); 4557 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4558 4559 if (isParameter && !AI) { 4560 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4561 if (FINode) 4562 // Byval parameter. We have a frame index at this point. 4563 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4564 0, dl, SDNodeOrder); 4565 else { 4566 // Address is an argument, so try to emit its dbg value using 4567 // virtual register info from the FuncInfo.ValueMap. 4568 EmitFuncArgumentDbgValue(Address, Variable, 0, N); 4569 return 0; 4570 } 4571 } else if (AI) 4572 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4573 0, dl, SDNodeOrder); 4574 else { 4575 // Can't do anything with other non-AI cases yet. 4576 DEBUG(dbgs() << "Dropping debug info for " << DI); 4577 return 0; 4578 } 4579 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4580 } else { 4581 // If Address is an argument then try to emit its dbg value using 4582 // virtual register info from the FuncInfo.ValueMap. 4583 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { 4584 // If variable is pinned by a alloca in dominating bb then 4585 // use StaticAllocaMap. 4586 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4587 if (AI->getParent() != DI.getParent()) { 4588 DenseMap<const AllocaInst*, int>::iterator SI = 4589 FuncInfo.StaticAllocaMap.find(AI); 4590 if (SI != FuncInfo.StaticAllocaMap.end()) { 4591 SDV = DAG.getDbgValue(Variable, SI->second, 4592 0, dl, SDNodeOrder); 4593 DAG.AddDbgValue(SDV, 0, false); 4594 return 0; 4595 } 4596 } 4597 } 4598 DEBUG(dbgs() << "Dropping debug info for " << DI); 4599 } 4600 } 4601 return 0; 4602 } 4603 case Intrinsic::dbg_value: { 4604 const DbgValueInst &DI = cast<DbgValueInst>(I); 4605 if (!DIVariable(DI.getVariable()).Verify()) 4606 return 0; 4607 4608 MDNode *Variable = DI.getVariable(); 4609 uint64_t Offset = DI.getOffset(); 4610 const Value *V = DI.getValue(); 4611 if (!V) 4612 return 0; 4613 4614 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4615 // but do not always have a corresponding SDNode built. The SDNodeOrder 4616 // absolute, but not relative, values are different depending on whether 4617 // debug info exists. 4618 ++SDNodeOrder; 4619 SDDbgValue *SDV; 4620 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4621 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4622 DAG.AddDbgValue(SDV, 0, false); 4623 } else { 4624 // Do not use getValue() in here; we don't want to generate code at 4625 // this point if it hasn't been done yet. 4626 SDValue N = NodeMap[V]; 4627 if (!N.getNode() && isa<Argument>(V)) 4628 // Check unused arguments map. 4629 N = UnusedArgNodeMap[V]; 4630 if (N.getNode()) { 4631 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4632 SDV = DAG.getDbgValue(Variable, N.getNode(), 4633 N.getResNo(), Offset, dl, SDNodeOrder); 4634 DAG.AddDbgValue(SDV, N.getNode(), false); 4635 } 4636 } else if (!V->use_empty() ) { 4637 // Do not call getValue(V) yet, as we don't want to generate code. 4638 // Remember it for later. 4639 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4640 DanglingDebugInfoMap[V] = DDI; 4641 } else { 4642 // We may expand this to cover more cases. One case where we have no 4643 // data available is an unreferenced parameter. 4644 DEBUG(dbgs() << "Dropping debug info for " << DI); 4645 } 4646 } 4647 4648 // Build a debug info table entry. 4649 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4650 V = BCI->getOperand(0); 4651 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4652 // Don't handle byval struct arguments or VLAs, for example. 4653 if (!AI) 4654 return 0; 4655 DenseMap<const AllocaInst*, int>::iterator SI = 4656 FuncInfo.StaticAllocaMap.find(AI); 4657 if (SI == FuncInfo.StaticAllocaMap.end()) 4658 return 0; // VLAs. 4659 int FI = SI->second; 4660 4661 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4662 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4663 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4664 return 0; 4665 } 4666 case Intrinsic::eh_exception: { 4667 // Insert the EXCEPTIONADDR instruction. 4668 assert(FuncInfo.MBB->isLandingPad() && 4669 "Call to eh.exception not in landing pad!"); 4670 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4671 SDValue Ops[1]; 4672 Ops[0] = DAG.getRoot(); 4673 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); 4674 setValue(&I, Op); 4675 DAG.setRoot(Op.getValue(1)); 4676 return 0; 4677 } 4678 4679 case Intrinsic::eh_selector: { 4680 MachineBasicBlock *CallMBB = FuncInfo.MBB; 4681 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4682 if (CallMBB->isLandingPad()) 4683 AddCatchInfo(I, &MMI, CallMBB); 4684 else { 4685 #ifndef NDEBUG 4686 FuncInfo.CatchInfoLost.insert(&I); 4687 #endif 4688 // FIXME: Mark exception selector register as live in. Hack for PR1508. 4689 unsigned Reg = TLI.getExceptionSelectorRegister(); 4690 if (Reg) FuncInfo.MBB->addLiveIn(Reg); 4691 } 4692 4693 // Insert the EHSELECTION instruction. 4694 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4695 SDValue Ops[2]; 4696 Ops[0] = getValue(I.getArgOperand(0)); 4697 Ops[1] = getRoot(); 4698 SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); 4699 DAG.setRoot(Op.getValue(1)); 4700 setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32)); 4701 return 0; 4702 } 4703 4704 case Intrinsic::eh_typeid_for: { 4705 // Find the type id for the given typeinfo. 4706 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4707 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4708 Res = DAG.getConstant(TypeID, MVT::i32); 4709 setValue(&I, Res); 4710 return 0; 4711 } 4712 4713 case Intrinsic::eh_return_i32: 4714 case Intrinsic::eh_return_i64: 4715 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4716 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 4717 MVT::Other, 4718 getControlRoot(), 4719 getValue(I.getArgOperand(0)), 4720 getValue(I.getArgOperand(1)))); 4721 return 0; 4722 case Intrinsic::eh_unwind_init: 4723 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4724 return 0; 4725 case Intrinsic::eh_dwarf_cfa: { 4726 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl, 4727 TLI.getPointerTy()); 4728 SDValue Offset = DAG.getNode(ISD::ADD, dl, 4729 TLI.getPointerTy(), 4730 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 4731 TLI.getPointerTy()), 4732 CfaArg); 4733 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 4734 TLI.getPointerTy(), 4735 DAG.getConstant(0, TLI.getPointerTy())); 4736 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 4737 FA, Offset)); 4738 return 0; 4739 } 4740 case Intrinsic::eh_sjlj_callsite: { 4741 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4742 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4743 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4744 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4745 4746 MMI.setCurrentCallSite(CI->getZExtValue()); 4747 return 0; 4748 } 4749 case Intrinsic::eh_sjlj_functioncontext: { 4750 // Get and store the index of the function context. 4751 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4752 AllocaInst *FnCtx = 4753 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4754 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4755 MFI->setFunctionContextIndex(FI); 4756 return 0; 4757 } 4758 case Intrinsic::eh_sjlj_setjmp: { 4759 SDValue Ops[2]; 4760 Ops[0] = getRoot(); 4761 Ops[1] = getValue(I.getArgOperand(0)); 4762 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, 4763 DAG.getVTList(MVT::i32, MVT::Other), 4764 Ops, 2); 4765 setValue(&I, Op.getValue(0)); 4766 DAG.setRoot(Op.getValue(1)); 4767 return 0; 4768 } 4769 case Intrinsic::eh_sjlj_longjmp: { 4770 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other, 4771 getRoot(), getValue(I.getArgOperand(0)))); 4772 return 0; 4773 } 4774 case Intrinsic::eh_sjlj_dispatch_setup: { 4775 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other, 4776 getRoot(), getValue(I.getArgOperand(0)))); 4777 return 0; 4778 } 4779 4780 case Intrinsic::x86_mmx_pslli_w: 4781 case Intrinsic::x86_mmx_pslli_d: 4782 case Intrinsic::x86_mmx_pslli_q: 4783 case Intrinsic::x86_mmx_psrli_w: 4784 case Intrinsic::x86_mmx_psrli_d: 4785 case Intrinsic::x86_mmx_psrli_q: 4786 case Intrinsic::x86_mmx_psrai_w: 4787 case Intrinsic::x86_mmx_psrai_d: { 4788 SDValue ShAmt = getValue(I.getArgOperand(1)); 4789 if (isa<ConstantSDNode>(ShAmt)) { 4790 visitTargetIntrinsic(I, Intrinsic); 4791 return 0; 4792 } 4793 unsigned NewIntrinsic = 0; 4794 EVT ShAmtVT = MVT::v2i32; 4795 switch (Intrinsic) { 4796 case Intrinsic::x86_mmx_pslli_w: 4797 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4798 break; 4799 case Intrinsic::x86_mmx_pslli_d: 4800 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4801 break; 4802 case Intrinsic::x86_mmx_pslli_q: 4803 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4804 break; 4805 case Intrinsic::x86_mmx_psrli_w: 4806 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4807 break; 4808 case Intrinsic::x86_mmx_psrli_d: 4809 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4810 break; 4811 case Intrinsic::x86_mmx_psrli_q: 4812 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4813 break; 4814 case Intrinsic::x86_mmx_psrai_w: 4815 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4816 break; 4817 case Intrinsic::x86_mmx_psrai_d: 4818 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4819 break; 4820 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4821 } 4822 4823 // The vector shift intrinsics with scalars uses 32b shift amounts but 4824 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4825 // to be zero. 4826 // We must do this early because v2i32 is not a legal type. 4827 DebugLoc dl = getCurDebugLoc(); 4828 SDValue ShOps[2]; 4829 ShOps[0] = ShAmt; 4830 ShOps[1] = DAG.getConstant(0, MVT::i32); 4831 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2); 4832 EVT DestVT = TLI.getValueType(I.getType()); 4833 ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt); 4834 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 4835 DAG.getConstant(NewIntrinsic, MVT::i32), 4836 getValue(I.getArgOperand(0)), ShAmt); 4837 setValue(&I, Res); 4838 return 0; 4839 } 4840 case Intrinsic::convertff: 4841 case Intrinsic::convertfsi: 4842 case Intrinsic::convertfui: 4843 case Intrinsic::convertsif: 4844 case Intrinsic::convertuif: 4845 case Intrinsic::convertss: 4846 case Intrinsic::convertsu: 4847 case Intrinsic::convertus: 4848 case Intrinsic::convertuu: { 4849 ISD::CvtCode Code = ISD::CVT_INVALID; 4850 switch (Intrinsic) { 4851 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4852 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4853 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4854 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4855 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4856 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4857 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4858 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4859 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4860 } 4861 EVT DestVT = TLI.getValueType(I.getType()); 4862 const Value *Op1 = I.getArgOperand(0); 4863 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 4864 DAG.getValueType(DestVT), 4865 DAG.getValueType(getValue(Op1).getValueType()), 4866 getValue(I.getArgOperand(1)), 4867 getValue(I.getArgOperand(2)), 4868 Code); 4869 setValue(&I, Res); 4870 return 0; 4871 } 4872 case Intrinsic::sqrt: 4873 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 4874 getValue(I.getArgOperand(0)).getValueType(), 4875 getValue(I.getArgOperand(0)))); 4876 return 0; 4877 case Intrinsic::powi: 4878 setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)), 4879 getValue(I.getArgOperand(1)), DAG)); 4880 return 0; 4881 case Intrinsic::sin: 4882 setValue(&I, DAG.getNode(ISD::FSIN, dl, 4883 getValue(I.getArgOperand(0)).getValueType(), 4884 getValue(I.getArgOperand(0)))); 4885 return 0; 4886 case Intrinsic::cos: 4887 setValue(&I, DAG.getNode(ISD::FCOS, dl, 4888 getValue(I.getArgOperand(0)).getValueType(), 4889 getValue(I.getArgOperand(0)))); 4890 return 0; 4891 case Intrinsic::log: 4892 visitLog(I); 4893 return 0; 4894 case Intrinsic::log2: 4895 visitLog2(I); 4896 return 0; 4897 case Intrinsic::log10: 4898 visitLog10(I); 4899 return 0; 4900 case Intrinsic::exp: 4901 visitExp(I); 4902 return 0; 4903 case Intrinsic::exp2: 4904 visitExp2(I); 4905 return 0; 4906 case Intrinsic::pow: 4907 visitPow(I); 4908 return 0; 4909 case Intrinsic::fma: 4910 setValue(&I, DAG.getNode(ISD::FMA, dl, 4911 getValue(I.getArgOperand(0)).getValueType(), 4912 getValue(I.getArgOperand(0)), 4913 getValue(I.getArgOperand(1)), 4914 getValue(I.getArgOperand(2)))); 4915 return 0; 4916 case Intrinsic::convert_to_fp16: 4917 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 4918 MVT::i16, getValue(I.getArgOperand(0)))); 4919 return 0; 4920 case Intrinsic::convert_from_fp16: 4921 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 4922 MVT::f32, getValue(I.getArgOperand(0)))); 4923 return 0; 4924 case Intrinsic::pcmarker: { 4925 SDValue Tmp = getValue(I.getArgOperand(0)); 4926 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 4927 return 0; 4928 } 4929 case Intrinsic::readcyclecounter: { 4930 SDValue Op = getRoot(); 4931 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 4932 DAG.getVTList(MVT::i64, MVT::Other), 4933 &Op, 1); 4934 setValue(&I, Res); 4935 DAG.setRoot(Res.getValue(1)); 4936 return 0; 4937 } 4938 case Intrinsic::bswap: 4939 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 4940 getValue(I.getArgOperand(0)).getValueType(), 4941 getValue(I.getArgOperand(0)))); 4942 return 0; 4943 case Intrinsic::cttz: { 4944 SDValue Arg = getValue(I.getArgOperand(0)); 4945 EVT Ty = Arg.getValueType(); 4946 setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg)); 4947 return 0; 4948 } 4949 case Intrinsic::ctlz: { 4950 SDValue Arg = getValue(I.getArgOperand(0)); 4951 EVT Ty = Arg.getValueType(); 4952 setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg)); 4953 return 0; 4954 } 4955 case Intrinsic::ctpop: { 4956 SDValue Arg = getValue(I.getArgOperand(0)); 4957 EVT Ty = Arg.getValueType(); 4958 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 4959 return 0; 4960 } 4961 case Intrinsic::stacksave: { 4962 SDValue Op = getRoot(); 4963 Res = DAG.getNode(ISD::STACKSAVE, dl, 4964 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 4965 setValue(&I, Res); 4966 DAG.setRoot(Res.getValue(1)); 4967 return 0; 4968 } 4969 case Intrinsic::stackrestore: { 4970 Res = getValue(I.getArgOperand(0)); 4971 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 4972 return 0; 4973 } 4974 case Intrinsic::stackprotector: { 4975 // Emit code into the DAG to store the stack guard onto the stack. 4976 MachineFunction &MF = DAG.getMachineFunction(); 4977 MachineFrameInfo *MFI = MF.getFrameInfo(); 4978 EVT PtrTy = TLI.getPointerTy(); 4979 4980 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 4981 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4982 4983 int FI = FuncInfo.StaticAllocaMap[Slot]; 4984 MFI->setStackProtectorIndex(FI); 4985 4986 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4987 4988 // Store the stack protector onto the stack. 4989 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 4990 MachinePointerInfo::getFixedStack(FI), 4991 true, false, 0); 4992 setValue(&I, Res); 4993 DAG.setRoot(Res); 4994 return 0; 4995 } 4996 case Intrinsic::objectsize: { 4997 // If we don't know by now, we're never going to know. 4998 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4999 5000 assert(CI && "Non-constant type in __builtin_object_size?"); 5001 5002 SDValue Arg = getValue(I.getCalledValue()); 5003 EVT Ty = Arg.getValueType(); 5004 5005 if (CI->isZero()) 5006 Res = DAG.getConstant(-1ULL, Ty); 5007 else 5008 Res = DAG.getConstant(0, Ty); 5009 5010 setValue(&I, Res); 5011 return 0; 5012 } 5013 case Intrinsic::var_annotation: 5014 // Discard annotate attributes 5015 return 0; 5016 5017 case Intrinsic::init_trampoline: { 5018 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5019 5020 SDValue Ops[6]; 5021 Ops[0] = getRoot(); 5022 Ops[1] = getValue(I.getArgOperand(0)); 5023 Ops[2] = getValue(I.getArgOperand(1)); 5024 Ops[3] = getValue(I.getArgOperand(2)); 5025 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5026 Ops[5] = DAG.getSrcValue(F); 5027 5028 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6); 5029 5030 DAG.setRoot(Res); 5031 return 0; 5032 } 5033 case Intrinsic::adjust_trampoline: { 5034 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl, 5035 TLI.getPointerTy(), 5036 getValue(I.getArgOperand(0)))); 5037 return 0; 5038 } 5039 case Intrinsic::gcroot: 5040 if (GFI) { 5041 const Value *Alloca = I.getArgOperand(0); 5042 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5043 5044 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5045 GFI->addStackRoot(FI->getIndex(), TypeMap); 5046 } 5047 return 0; 5048 case Intrinsic::gcread: 5049 case Intrinsic::gcwrite: 5050 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5051 return 0; 5052 case Intrinsic::flt_rounds: 5053 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 5054 return 0; 5055 5056 case Intrinsic::expect: { 5057 // Just replace __builtin_expect(exp, c) with EXP. 5058 setValue(&I, getValue(I.getArgOperand(0))); 5059 return 0; 5060 } 5061 5062 case Intrinsic::trap: { 5063 StringRef TrapFuncName = getTrapFunctionName(); 5064 if (TrapFuncName.empty()) { 5065 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 5066 return 0; 5067 } 5068 TargetLowering::ArgListTy Args; 5069 std::pair<SDValue, SDValue> Result = 5070 TLI.LowerCallTo(getRoot(), I.getType(), 5071 false, false, false, false, 0, CallingConv::C, 5072 /*isTailCall=*/false, /*isReturnValueUsed=*/true, 5073 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 5074 Args, DAG, getCurDebugLoc()); 5075 DAG.setRoot(Result.second); 5076 return 0; 5077 } 5078 case Intrinsic::uadd_with_overflow: 5079 return implVisitAluOverflow(I, ISD::UADDO); 5080 case Intrinsic::sadd_with_overflow: 5081 return implVisitAluOverflow(I, ISD::SADDO); 5082 case Intrinsic::usub_with_overflow: 5083 return implVisitAluOverflow(I, ISD::USUBO); 5084 case Intrinsic::ssub_with_overflow: 5085 return implVisitAluOverflow(I, ISD::SSUBO); 5086 case Intrinsic::umul_with_overflow: 5087 return implVisitAluOverflow(I, ISD::UMULO); 5088 case Intrinsic::smul_with_overflow: 5089 return implVisitAluOverflow(I, ISD::SMULO); 5090 5091 case Intrinsic::prefetch: { 5092 SDValue Ops[5]; 5093 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5094 Ops[0] = getRoot(); 5095 Ops[1] = getValue(I.getArgOperand(0)); 5096 Ops[2] = getValue(I.getArgOperand(1)); 5097 Ops[3] = getValue(I.getArgOperand(2)); 5098 Ops[4] = getValue(I.getArgOperand(3)); 5099 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl, 5100 DAG.getVTList(MVT::Other), 5101 &Ops[0], 5, 5102 EVT::getIntegerVT(*Context, 8), 5103 MachinePointerInfo(I.getArgOperand(0)), 5104 0, /* align */ 5105 false, /* volatile */ 5106 rw==0, /* read */ 5107 rw==1)); /* write */ 5108 return 0; 5109 } 5110 5111 case Intrinsic::invariant_start: 5112 case Intrinsic::lifetime_start: 5113 // Discard region information. 5114 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 5115 return 0; 5116 case Intrinsic::invariant_end: 5117 case Intrinsic::lifetime_end: 5118 // Discard region information. 5119 return 0; 5120 } 5121 } 5122 5123 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5124 bool isTailCall, 5125 MachineBasicBlock *LandingPad) { 5126 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5127 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5128 Type *RetTy = FTy->getReturnType(); 5129 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5130 MCSymbol *BeginLabel = 0; 5131 5132 TargetLowering::ArgListTy Args; 5133 TargetLowering::ArgListEntry Entry; 5134 Args.reserve(CS.arg_size()); 5135 5136 // Check whether the function can return without sret-demotion. 5137 SmallVector<ISD::OutputArg, 4> Outs; 5138 SmallVector<uint64_t, 4> Offsets; 5139 GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 5140 Outs, TLI, &Offsets); 5141 5142 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 5143 DAG.getMachineFunction(), 5144 FTy->isVarArg(), Outs, 5145 FTy->getContext()); 5146 5147 SDValue DemoteStackSlot; 5148 int DemoteStackIdx = -100; 5149 5150 if (!CanLowerReturn) { 5151 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 5152 FTy->getReturnType()); 5153 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 5154 FTy->getReturnType()); 5155 MachineFunction &MF = DAG.getMachineFunction(); 5156 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5157 Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 5158 5159 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy()); 5160 Entry.Node = DemoteStackSlot; 5161 Entry.Ty = StackSlotPtrType; 5162 Entry.isSExt = false; 5163 Entry.isZExt = false; 5164 Entry.isInReg = false; 5165 Entry.isSRet = true; 5166 Entry.isNest = false; 5167 Entry.isByVal = false; 5168 Entry.Alignment = Align; 5169 Args.push_back(Entry); 5170 RetTy = Type::getVoidTy(FTy->getContext()); 5171 } 5172 5173 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5174 i != e; ++i) { 5175 const Value *V = *i; 5176 5177 // Skip empty types 5178 if (V->getType()->isEmptyTy()) 5179 continue; 5180 5181 SDValue ArgNode = getValue(V); 5182 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5183 5184 unsigned attrInd = i - CS.arg_begin() + 1; 5185 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 5186 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 5187 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 5188 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 5189 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 5190 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 5191 Entry.Alignment = CS.getParamAlignment(attrInd); 5192 Args.push_back(Entry); 5193 } 5194 5195 if (LandingPad) { 5196 // Insert a label before the invoke call to mark the try range. This can be 5197 // used to detect deletion of the invoke via the MachineModuleInfo. 5198 BeginLabel = MMI.getContext().CreateTempSymbol(); 5199 5200 // For SjLj, keep track of which landing pads go with which invokes 5201 // so as to maintain the ordering of pads in the LSDA. 5202 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5203 if (CallSiteIndex) { 5204 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5205 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5206 5207 // Now that the call site is handled, stop tracking it. 5208 MMI.setCurrentCallSite(0); 5209 } 5210 5211 // Both PendingLoads and PendingExports must be flushed here; 5212 // this call might not return. 5213 (void)getRoot(); 5214 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 5215 } 5216 5217 // Check if target-independent constraints permit a tail call here. 5218 // Target-dependent constraints are checked within TLI.LowerCallTo. 5219 if (isTailCall && 5220 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 5221 isTailCall = false; 5222 5223 // If there's a possibility that fast-isel has already selected some amount 5224 // of the current basic block, don't emit a tail call. 5225 if (isTailCall && EnableFastISel) 5226 isTailCall = false; 5227 5228 std::pair<SDValue,SDValue> Result = 5229 TLI.LowerCallTo(getRoot(), RetTy, 5230 CS.paramHasAttr(0, Attribute::SExt), 5231 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), 5232 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), 5233 CS.getCallingConv(), 5234 isTailCall, 5235 !CS.getInstruction()->use_empty(), 5236 Callee, Args, DAG, getCurDebugLoc()); 5237 assert((isTailCall || Result.second.getNode()) && 5238 "Non-null chain expected with non-tail call!"); 5239 assert((Result.second.getNode() || !Result.first.getNode()) && 5240 "Null value expected with tail call!"); 5241 if (Result.first.getNode()) { 5242 setValue(CS.getInstruction(), Result.first); 5243 } else if (!CanLowerReturn && Result.second.getNode()) { 5244 // The instruction result is the result of loading from the 5245 // hidden sret parameter. 5246 SmallVector<EVT, 1> PVTs; 5247 Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 5248 5249 ComputeValueVTs(TLI, PtrRetTy, PVTs); 5250 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 5251 EVT PtrVT = PVTs[0]; 5252 unsigned NumValues = Outs.size(); 5253 SmallVector<SDValue, 4> Values(NumValues); 5254 SmallVector<SDValue, 4> Chains(NumValues); 5255 5256 for (unsigned i = 0; i < NumValues; ++i) { 5257 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 5258 DemoteStackSlot, 5259 DAG.getConstant(Offsets[i], PtrVT)); 5260 SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second, 5261 Add, 5262 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 5263 false, false, 1); 5264 Values[i] = L; 5265 Chains[i] = L.getValue(1); 5266 } 5267 5268 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 5269 MVT::Other, &Chains[0], NumValues); 5270 PendingLoads.push_back(Chain); 5271 5272 // Collect the legal value parts into potentially illegal values 5273 // that correspond to the original function's return values. 5274 SmallVector<EVT, 4> RetTys; 5275 RetTy = FTy->getReturnType(); 5276 ComputeValueVTs(TLI, RetTy, RetTys); 5277 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5278 SmallVector<SDValue, 4> ReturnValues; 5279 unsigned CurReg = 0; 5280 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5281 EVT VT = RetTys[I]; 5282 EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT); 5283 unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT); 5284 5285 SDValue ReturnValue = 5286 getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs, 5287 RegisterVT, VT, AssertOp); 5288 ReturnValues.push_back(ReturnValue); 5289 CurReg += NumRegs; 5290 } 5291 5292 setValue(CS.getInstruction(), 5293 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 5294 DAG.getVTList(&RetTys[0], RetTys.size()), 5295 &ReturnValues[0], ReturnValues.size())); 5296 } 5297 5298 // Assign order to nodes here. If the call does not produce a result, it won't 5299 // be mapped to a SDNode and visit() will not assign it an order number. 5300 if (!Result.second.getNode()) { 5301 // As a special case, a null chain means that a tail call has been emitted and 5302 // the DAG root is already updated. 5303 HasTailCall = true; 5304 ++SDNodeOrder; 5305 AssignOrderingToNode(DAG.getRoot().getNode()); 5306 } else { 5307 DAG.setRoot(Result.second); 5308 ++SDNodeOrder; 5309 AssignOrderingToNode(Result.second.getNode()); 5310 } 5311 5312 if (LandingPad) { 5313 // Insert a label at the end of the invoke call to mark the try range. This 5314 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5315 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5316 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 5317 5318 // Inform MachineModuleInfo of range. 5319 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5320 } 5321 } 5322 5323 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5324 /// value is equal or not-equal to zero. 5325 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5326 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 5327 UI != E; ++UI) { 5328 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 5329 if (IC->isEquality()) 5330 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5331 if (C->isNullValue()) 5332 continue; 5333 // Unknown instruction. 5334 return false; 5335 } 5336 return true; 5337 } 5338 5339 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5340 Type *LoadTy, 5341 SelectionDAGBuilder &Builder) { 5342 5343 // Check to see if this load can be trivially constant folded, e.g. if the 5344 // input is from a string literal. 5345 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5346 // Cast pointer to the type we really want to load. 5347 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5348 PointerType::getUnqual(LoadTy)); 5349 5350 if (const Constant *LoadCst = 5351 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5352 Builder.TD)) 5353 return Builder.getValue(LoadCst); 5354 } 5355 5356 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5357 // still constant memory, the input chain can be the entry node. 5358 SDValue Root; 5359 bool ConstantMemory = false; 5360 5361 // Do not serialize (non-volatile) loads of constant memory with anything. 5362 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5363 Root = Builder.DAG.getEntryNode(); 5364 ConstantMemory = true; 5365 } else { 5366 // Do not serialize non-volatile loads against each other. 5367 Root = Builder.DAG.getRoot(); 5368 } 5369 5370 SDValue Ptr = Builder.getValue(PtrVal); 5371 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 5372 Ptr, MachinePointerInfo(PtrVal), 5373 false /*volatile*/, 5374 false /*nontemporal*/, 1 /* align=1 */); 5375 5376 if (!ConstantMemory) 5377 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5378 return LoadVal; 5379 } 5380 5381 5382 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5383 /// If so, return true and lower it, otherwise return false and it will be 5384 /// lowered like a normal call. 5385 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5386 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5387 if (I.getNumArgOperands() != 3) 5388 return false; 5389 5390 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5391 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5392 !I.getArgOperand(2)->getType()->isIntegerTy() || 5393 !I.getType()->isIntegerTy()) 5394 return false; 5395 5396 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); 5397 5398 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5399 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5400 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 5401 bool ActuallyDoIt = true; 5402 MVT LoadVT; 5403 Type *LoadTy; 5404 switch (Size->getZExtValue()) { 5405 default: 5406 LoadVT = MVT::Other; 5407 LoadTy = 0; 5408 ActuallyDoIt = false; 5409 break; 5410 case 2: 5411 LoadVT = MVT::i16; 5412 LoadTy = Type::getInt16Ty(Size->getContext()); 5413 break; 5414 case 4: 5415 LoadVT = MVT::i32; 5416 LoadTy = Type::getInt32Ty(Size->getContext()); 5417 break; 5418 case 8: 5419 LoadVT = MVT::i64; 5420 LoadTy = Type::getInt64Ty(Size->getContext()); 5421 break; 5422 /* 5423 case 16: 5424 LoadVT = MVT::v4i32; 5425 LoadTy = Type::getInt32Ty(Size->getContext()); 5426 LoadTy = VectorType::get(LoadTy, 4); 5427 break; 5428 */ 5429 } 5430 5431 // This turns into unaligned loads. We only do this if the target natively 5432 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5433 // we'll only produce a small number of byte loads. 5434 5435 // Require that we can find a legal MVT, and only do this if the target 5436 // supports unaligned loads of that type. Expanding into byte loads would 5437 // bloat the code. 5438 if (ActuallyDoIt && Size->getZExtValue() > 4) { 5439 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5440 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5441 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 5442 ActuallyDoIt = false; 5443 } 5444 5445 if (ActuallyDoIt) { 5446 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5447 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5448 5449 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 5450 ISD::SETNE); 5451 EVT CallVT = TLI.getValueType(I.getType(), true); 5452 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 5453 return true; 5454 } 5455 } 5456 5457 5458 return false; 5459 } 5460 5461 5462 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5463 // Handle inline assembly differently. 5464 if (isa<InlineAsm>(I.getCalledValue())) { 5465 visitInlineAsm(&I); 5466 return; 5467 } 5468 5469 // See if any floating point values are being passed to this function. This is 5470 // used to emit an undefined reference to fltused on Windows. 5471 FunctionType *FT = 5472 cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0)); 5473 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5474 if (FT->isVarArg() && 5475 !MMI.callsExternalVAFunctionWithFloatingPointArguments()) { 5476 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 5477 Type* T = I.getArgOperand(i)->getType(); 5478 for (po_iterator<Type*> i = po_begin(T), e = po_end(T); 5479 i != e; ++i) { 5480 if (!i->isFloatingPointTy()) continue; 5481 MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true); 5482 break; 5483 } 5484 } 5485 } 5486 5487 const char *RenameFn = 0; 5488 if (Function *F = I.getCalledFunction()) { 5489 if (F->isDeclaration()) { 5490 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5491 if (unsigned IID = II->getIntrinsicID(F)) { 5492 RenameFn = visitIntrinsicCall(I, IID); 5493 if (!RenameFn) 5494 return; 5495 } 5496 } 5497 if (unsigned IID = F->getIntrinsicID()) { 5498 RenameFn = visitIntrinsicCall(I, IID); 5499 if (!RenameFn) 5500 return; 5501 } 5502 } 5503 5504 // Check for well-known libc/libm calls. If the function is internal, it 5505 // can't be a library call. 5506 if (!F->hasLocalLinkage() && F->hasName()) { 5507 StringRef Name = F->getName(); 5508 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") { 5509 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5510 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5511 I.getType() == I.getArgOperand(0)->getType() && 5512 I.getType() == I.getArgOperand(1)->getType()) { 5513 SDValue LHS = getValue(I.getArgOperand(0)); 5514 SDValue RHS = getValue(I.getArgOperand(1)); 5515 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 5516 LHS.getValueType(), LHS, RHS)); 5517 return; 5518 } 5519 } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") { 5520 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5521 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5522 I.getType() == I.getArgOperand(0)->getType()) { 5523 SDValue Tmp = getValue(I.getArgOperand(0)); 5524 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), 5525 Tmp.getValueType(), Tmp)); 5526 return; 5527 } 5528 } else if (Name == "sin" || Name == "sinf" || Name == "sinl") { 5529 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5530 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5531 I.getType() == I.getArgOperand(0)->getType() && 5532 I.onlyReadsMemory()) { 5533 SDValue Tmp = getValue(I.getArgOperand(0)); 5534 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), 5535 Tmp.getValueType(), Tmp)); 5536 return; 5537 } 5538 } else if (Name == "cos" || Name == "cosf" || Name == "cosl") { 5539 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5540 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5541 I.getType() == I.getArgOperand(0)->getType() && 5542 I.onlyReadsMemory()) { 5543 SDValue Tmp = getValue(I.getArgOperand(0)); 5544 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), 5545 Tmp.getValueType(), Tmp)); 5546 return; 5547 } 5548 } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") { 5549 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5550 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5551 I.getType() == I.getArgOperand(0)->getType() && 5552 I.onlyReadsMemory()) { 5553 SDValue Tmp = getValue(I.getArgOperand(0)); 5554 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), 5555 Tmp.getValueType(), Tmp)); 5556 return; 5557 } 5558 } else if (Name == "memcmp") { 5559 if (visitMemCmpCall(I)) 5560 return; 5561 } 5562 } 5563 } 5564 5565 SDValue Callee; 5566 if (!RenameFn) 5567 Callee = getValue(I.getCalledValue()); 5568 else 5569 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 5570 5571 // Check if we can potentially perform a tail call. More detailed checking is 5572 // be done within LowerCallTo, after more information about the call is known. 5573 LowerCallTo(&I, Callee, I.isTailCall()); 5574 } 5575 5576 namespace { 5577 5578 /// AsmOperandInfo - This contains information for each constraint that we are 5579 /// lowering. 5580 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5581 public: 5582 /// CallOperand - If this is the result output operand or a clobber 5583 /// this is null, otherwise it is the incoming operand to the CallInst. 5584 /// This gets modified as the asm is processed. 5585 SDValue CallOperand; 5586 5587 /// AssignedRegs - If this is a register or register class operand, this 5588 /// contains the set of register corresponding to the operand. 5589 RegsForValue AssignedRegs; 5590 5591 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5592 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 5593 } 5594 5595 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers 5596 /// busy in OutputRegs/InputRegs. 5597 void MarkAllocatedRegs(bool isOutReg, bool isInReg, 5598 std::set<unsigned> &OutputRegs, 5599 std::set<unsigned> &InputRegs, 5600 const TargetRegisterInfo &TRI) const { 5601 if (isOutReg) { 5602 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5603 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); 5604 } 5605 if (isInReg) { 5606 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5607 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); 5608 } 5609 } 5610 5611 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5612 /// corresponds to. If there is no Value* for this operand, it returns 5613 /// MVT::Other. 5614 EVT getCallOperandValEVT(LLVMContext &Context, 5615 const TargetLowering &TLI, 5616 const TargetData *TD) const { 5617 if (CallOperandVal == 0) return MVT::Other; 5618 5619 if (isa<BasicBlock>(CallOperandVal)) 5620 return TLI.getPointerTy(); 5621 5622 llvm::Type *OpTy = CallOperandVal->getType(); 5623 5624 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5625 // If this is an indirect operand, the operand is a pointer to the 5626 // accessed type. 5627 if (isIndirect) { 5628 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5629 if (!PtrTy) 5630 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5631 OpTy = PtrTy->getElementType(); 5632 } 5633 5634 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5635 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5636 if (STy->getNumElements() == 1) 5637 OpTy = STy->getElementType(0); 5638 5639 // If OpTy is not a single value, it may be a struct/union that we 5640 // can tile with integers. 5641 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5642 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5643 switch (BitSize) { 5644 default: break; 5645 case 1: 5646 case 8: 5647 case 16: 5648 case 32: 5649 case 64: 5650 case 128: 5651 OpTy = IntegerType::get(Context, BitSize); 5652 break; 5653 } 5654 } 5655 5656 return TLI.getValueType(OpTy, true); 5657 } 5658 5659 private: 5660 /// MarkRegAndAliases - Mark the specified register and all aliases in the 5661 /// specified set. 5662 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, 5663 const TargetRegisterInfo &TRI) { 5664 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); 5665 Regs.insert(Reg); 5666 if (const unsigned *Aliases = TRI.getAliasSet(Reg)) 5667 for (; *Aliases; ++Aliases) 5668 Regs.insert(*Aliases); 5669 } 5670 }; 5671 5672 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5673 5674 } // end anonymous namespace 5675 5676 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5677 /// specified operand. We prefer to assign virtual registers, to allow the 5678 /// register allocator to handle the assignment process. However, if the asm 5679 /// uses features that we can't model on machineinstrs, we have SDISel do the 5680 /// allocation. This produces generally horrible, but correct, code. 5681 /// 5682 /// OpInfo describes the operand. 5683 /// Input and OutputRegs are the set of already allocated physical registers. 5684 /// 5685 static void GetRegistersForValue(SelectionDAG &DAG, 5686 const TargetLowering &TLI, 5687 DebugLoc DL, 5688 SDISelAsmOperandInfo &OpInfo, 5689 std::set<unsigned> &OutputRegs, 5690 std::set<unsigned> &InputRegs) { 5691 LLVMContext &Context = *DAG.getContext(); 5692 5693 // Compute whether this value requires an input register, an output register, 5694 // or both. 5695 bool isOutReg = false; 5696 bool isInReg = false; 5697 switch (OpInfo.Type) { 5698 case InlineAsm::isOutput: 5699 isOutReg = true; 5700 5701 // If there is an input constraint that matches this, we need to reserve 5702 // the input register so no other inputs allocate to it. 5703 isInReg = OpInfo.hasMatchingInput(); 5704 break; 5705 case InlineAsm::isInput: 5706 isInReg = true; 5707 isOutReg = false; 5708 break; 5709 case InlineAsm::isClobber: 5710 isOutReg = true; 5711 isInReg = true; 5712 break; 5713 } 5714 5715 5716 MachineFunction &MF = DAG.getMachineFunction(); 5717 SmallVector<unsigned, 4> Regs; 5718 5719 // If this is a constraint for a single physreg, or a constraint for a 5720 // register class, find it. 5721 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5722 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5723 OpInfo.ConstraintVT); 5724 5725 unsigned NumRegs = 1; 5726 if (OpInfo.ConstraintVT != MVT::Other) { 5727 // If this is a FP input in an integer register (or visa versa) insert a bit 5728 // cast of the input value. More generally, handle any case where the input 5729 // value disagrees with the register class we plan to stick this in. 5730 if (OpInfo.Type == InlineAsm::isInput && 5731 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5732 // Try to convert to the first EVT that the reg class contains. If the 5733 // types are identical size, use a bitcast to convert (e.g. two differing 5734 // vector types). 5735 EVT RegVT = *PhysReg.second->vt_begin(); 5736 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5737 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5738 RegVT, OpInfo.CallOperand); 5739 OpInfo.ConstraintVT = RegVT; 5740 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5741 // If the input is a FP value and we want it in FP registers, do a 5742 // bitcast to the corresponding integer type. This turns an f64 value 5743 // into i64, which can be passed with two i32 values on a 32-bit 5744 // machine. 5745 RegVT = EVT::getIntegerVT(Context, 5746 OpInfo.ConstraintVT.getSizeInBits()); 5747 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5748 RegVT, OpInfo.CallOperand); 5749 OpInfo.ConstraintVT = RegVT; 5750 } 5751 } 5752 5753 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5754 } 5755 5756 EVT RegVT; 5757 EVT ValueVT = OpInfo.ConstraintVT; 5758 5759 // If this is a constraint for a specific physical register, like {r17}, 5760 // assign it now. 5761 if (unsigned AssignedReg = PhysReg.first) { 5762 const TargetRegisterClass *RC = PhysReg.second; 5763 if (OpInfo.ConstraintVT == MVT::Other) 5764 ValueVT = *RC->vt_begin(); 5765 5766 // Get the actual register value type. This is important, because the user 5767 // may have asked for (e.g.) the AX register in i32 type. We need to 5768 // remember that AX is actually i16 to get the right extension. 5769 RegVT = *RC->vt_begin(); 5770 5771 // This is a explicit reference to a physical register. 5772 Regs.push_back(AssignedReg); 5773 5774 // If this is an expanded reference, add the rest of the regs to Regs. 5775 if (NumRegs != 1) { 5776 TargetRegisterClass::iterator I = RC->begin(); 5777 for (; *I != AssignedReg; ++I) 5778 assert(I != RC->end() && "Didn't find reg!"); 5779 5780 // Already added the first reg. 5781 --NumRegs; ++I; 5782 for (; NumRegs; --NumRegs, ++I) { 5783 assert(I != RC->end() && "Ran out of registers to allocate!"); 5784 Regs.push_back(*I); 5785 } 5786 } 5787 5788 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5789 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5790 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5791 return; 5792 } 5793 5794 // Otherwise, if this was a reference to an LLVM register class, create vregs 5795 // for this reference. 5796 if (const TargetRegisterClass *RC = PhysReg.second) { 5797 RegVT = *RC->vt_begin(); 5798 if (OpInfo.ConstraintVT == MVT::Other) 5799 ValueVT = RegVT; 5800 5801 // Create the appropriate number of virtual registers. 5802 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5803 for (; NumRegs; --NumRegs) 5804 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5805 5806 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5807 return; 5808 } 5809 5810 // Otherwise, we couldn't allocate enough registers for this. 5811 } 5812 5813 /// visitInlineAsm - Handle a call to an InlineAsm object. 5814 /// 5815 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5816 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5817 5818 /// ConstraintOperands - Information about all of the constraints. 5819 SDISelAsmOperandInfoVector ConstraintOperands; 5820 5821 std::set<unsigned> OutputRegs, InputRegs; 5822 5823 TargetLowering::AsmOperandInfoVector 5824 TargetConstraints = TLI.ParseConstraints(CS); 5825 5826 bool hasMemory = false; 5827 5828 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5829 unsigned ResNo = 0; // ResNo - The result number of the next output. 5830 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5831 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5832 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5833 5834 EVT OpVT = MVT::Other; 5835 5836 // Compute the value type for each operand. 5837 switch (OpInfo.Type) { 5838 case InlineAsm::isOutput: 5839 // Indirect outputs just consume an argument. 5840 if (OpInfo.isIndirect) { 5841 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5842 break; 5843 } 5844 5845 // The return value of the call is this value. As such, there is no 5846 // corresponding argument. 5847 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5848 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5849 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5850 } else { 5851 assert(ResNo == 0 && "Asm only has one result!"); 5852 OpVT = TLI.getValueType(CS.getType()); 5853 } 5854 ++ResNo; 5855 break; 5856 case InlineAsm::isInput: 5857 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5858 break; 5859 case InlineAsm::isClobber: 5860 // Nothing to do. 5861 break; 5862 } 5863 5864 // If this is an input or an indirect output, process the call argument. 5865 // BasicBlocks are labels, currently appearing only in asm's. 5866 if (OpInfo.CallOperandVal) { 5867 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5868 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5869 } else { 5870 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5871 } 5872 5873 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5874 } 5875 5876 OpInfo.ConstraintVT = OpVT; 5877 5878 // Indirect operand accesses access memory. 5879 if (OpInfo.isIndirect) 5880 hasMemory = true; 5881 else { 5882 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5883 TargetLowering::ConstraintType 5884 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5885 if (CType == TargetLowering::C_Memory) { 5886 hasMemory = true; 5887 break; 5888 } 5889 } 5890 } 5891 } 5892 5893 SDValue Chain, Flag; 5894 5895 // We won't need to flush pending loads if this asm doesn't touch 5896 // memory and is nonvolatile. 5897 if (hasMemory || IA->hasSideEffects()) 5898 Chain = getRoot(); 5899 else 5900 Chain = DAG.getRoot(); 5901 5902 // Second pass over the constraints: compute which constraint option to use 5903 // and assign registers to constraints that want a specific physreg. 5904 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5905 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5906 5907 // If this is an output operand with a matching input operand, look up the 5908 // matching input. If their types mismatch, e.g. one is an integer, the 5909 // other is floating point, or their sizes are different, flag it as an 5910 // error. 5911 if (OpInfo.hasMatchingInput()) { 5912 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5913 5914 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5915 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 5916 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5917 OpInfo.ConstraintVT); 5918 std::pair<unsigned, const TargetRegisterClass*> InputRC = 5919 TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, 5920 Input.ConstraintVT); 5921 if ((OpInfo.ConstraintVT.isInteger() != 5922 Input.ConstraintVT.isInteger()) || 5923 (MatchRC.second != InputRC.second)) { 5924 report_fatal_error("Unsupported asm: input constraint" 5925 " with a matching output constraint of" 5926 " incompatible type!"); 5927 } 5928 Input.ConstraintVT = OpInfo.ConstraintVT; 5929 } 5930 } 5931 5932 // Compute the constraint code and ConstraintType to use. 5933 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5934 5935 // If this is a memory input, and if the operand is not indirect, do what we 5936 // need to to provide an address for the memory input. 5937 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5938 !OpInfo.isIndirect) { 5939 assert((OpInfo.isMultipleAlternative || 5940 (OpInfo.Type == InlineAsm::isInput)) && 5941 "Can only indirectify direct input operands!"); 5942 5943 // Memory operands really want the address of the value. If we don't have 5944 // an indirect input, put it in the constpool if we can, otherwise spill 5945 // it to a stack slot. 5946 // TODO: This isn't quite right. We need to handle these according to 5947 // the addressing mode that the constraint wants. Also, this may take 5948 // an additional register for the computation and we don't want that 5949 // either. 5950 5951 // If the operand is a float, integer, or vector constant, spill to a 5952 // constant pool entry to get its address. 5953 const Value *OpVal = OpInfo.CallOperandVal; 5954 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5955 isa<ConstantVector>(OpVal)) { 5956 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5957 TLI.getPointerTy()); 5958 } else { 5959 // Otherwise, create a stack slot and emit a store to it before the 5960 // asm. 5961 Type *Ty = OpVal->getType(); 5962 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 5963 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 5964 MachineFunction &MF = DAG.getMachineFunction(); 5965 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5966 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5967 Chain = DAG.getStore(Chain, getCurDebugLoc(), 5968 OpInfo.CallOperand, StackSlot, 5969 MachinePointerInfo::getFixedStack(SSFI), 5970 false, false, 0); 5971 OpInfo.CallOperand = StackSlot; 5972 } 5973 5974 // There is no longer a Value* corresponding to this operand. 5975 OpInfo.CallOperandVal = 0; 5976 5977 // It is now an indirect operand. 5978 OpInfo.isIndirect = true; 5979 } 5980 5981 // If this constraint is for a specific register, allocate it before 5982 // anything else. 5983 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5984 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs, 5985 InputRegs); 5986 } 5987 5988 // Second pass - Loop over all of the operands, assigning virtual or physregs 5989 // to register class operands. 5990 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5991 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5992 5993 // C_Register operands have already been allocated, Other/Memory don't need 5994 // to be. 5995 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 5996 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs, 5997 InputRegs); 5998 } 5999 6000 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6001 std::vector<SDValue> AsmNodeOperands; 6002 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6003 AsmNodeOperands.push_back( 6004 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6005 TLI.getPointerTy())); 6006 6007 // If we have a !srcloc metadata node associated with it, we want to attach 6008 // this to the ultimately generated inline asm machineinstr. To do this, we 6009 // pass in the third operand as this (potentially null) inline asm MDNode. 6010 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6011 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6012 6013 // Remember the HasSideEffect and AlignStack bits as operand 3. 6014 unsigned ExtraInfo = 0; 6015 if (IA->hasSideEffects()) 6016 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6017 if (IA->isAlignStack()) 6018 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6019 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6020 TLI.getPointerTy())); 6021 6022 // Loop over all of the inputs, copying the operand values into the 6023 // appropriate registers and processing the output regs. 6024 RegsForValue RetValRegs; 6025 6026 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6027 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6028 6029 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6030 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6031 6032 switch (OpInfo.Type) { 6033 case InlineAsm::isOutput: { 6034 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6035 OpInfo.ConstraintType != TargetLowering::C_Register) { 6036 // Memory output, or 'other' output (e.g. 'X' constraint). 6037 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6038 6039 // Add information to the INLINEASM node to know about this output. 6040 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6041 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6042 TLI.getPointerTy())); 6043 AsmNodeOperands.push_back(OpInfo.CallOperand); 6044 break; 6045 } 6046 6047 // Otherwise, this is a register or register class output. 6048 6049 // Copy the output from the appropriate register. Find a register that 6050 // we can use. 6051 if (OpInfo.AssignedRegs.Regs.empty()) 6052 report_fatal_error("Couldn't allocate output reg for constraint '" + 6053 Twine(OpInfo.ConstraintCode) + "'!"); 6054 6055 // If this is an indirect operand, store through the pointer after the 6056 // asm. 6057 if (OpInfo.isIndirect) { 6058 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6059 OpInfo.CallOperandVal)); 6060 } else { 6061 // This is the result value of the call. 6062 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6063 // Concatenate this output onto the outputs list. 6064 RetValRegs.append(OpInfo.AssignedRegs); 6065 } 6066 6067 // Add information to the INLINEASM node to know that this register is 6068 // set. 6069 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 6070 InlineAsm::Kind_RegDefEarlyClobber : 6071 InlineAsm::Kind_RegDef, 6072 false, 6073 0, 6074 DAG, 6075 AsmNodeOperands); 6076 break; 6077 } 6078 case InlineAsm::isInput: { 6079 SDValue InOperandVal = OpInfo.CallOperand; 6080 6081 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6082 // If this is required to match an output register we have already set, 6083 // just use its register. 6084 unsigned OperandNo = OpInfo.getMatchedOperand(); 6085 6086 // Scan until we find the definition we already emitted of this operand. 6087 // When we find it, create a RegsForValue operand. 6088 unsigned CurOp = InlineAsm::Op_FirstOperand; 6089 for (; OperandNo; --OperandNo) { 6090 // Advance to the next operand. 6091 unsigned OpFlag = 6092 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6093 assert((InlineAsm::isRegDefKind(OpFlag) || 6094 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6095 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6096 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6097 } 6098 6099 unsigned OpFlag = 6100 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6101 if (InlineAsm::isRegDefKind(OpFlag) || 6102 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6103 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6104 if (OpInfo.isIndirect) { 6105 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6106 LLVMContext &Ctx = *DAG.getContext(); 6107 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6108 " don't know how to handle tied " 6109 "indirect register inputs"); 6110 } 6111 6112 RegsForValue MatchedRegs; 6113 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6114 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 6115 MatchedRegs.RegVTs.push_back(RegVT); 6116 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6117 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6118 i != e; ++i) 6119 MatchedRegs.Regs.push_back 6120 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 6121 6122 // Use the produced MatchedRegs object to 6123 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 6124 Chain, &Flag); 6125 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6126 true, OpInfo.getMatchedOperand(), 6127 DAG, AsmNodeOperands); 6128 break; 6129 } 6130 6131 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6132 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6133 "Unexpected number of operands"); 6134 // Add information to the INLINEASM node to know about this input. 6135 // See InlineAsm.h isUseOperandTiedToDef. 6136 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6137 OpInfo.getMatchedOperand()); 6138 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6139 TLI.getPointerTy())); 6140 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6141 break; 6142 } 6143 6144 // Treat indirect 'X' constraint as memory. 6145 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6146 OpInfo.isIndirect) 6147 OpInfo.ConstraintType = TargetLowering::C_Memory; 6148 6149 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6150 std::vector<SDValue> Ops; 6151 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6152 Ops, DAG); 6153 if (Ops.empty()) 6154 report_fatal_error("Invalid operand for inline asm constraint '" + 6155 Twine(OpInfo.ConstraintCode) + "'!"); 6156 6157 // Add information to the INLINEASM node to know about this input. 6158 unsigned ResOpType = 6159 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6160 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6161 TLI.getPointerTy())); 6162 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6163 break; 6164 } 6165 6166 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6167 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6168 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6169 "Memory operands expect pointer values"); 6170 6171 // Add information to the INLINEASM node to know about this input. 6172 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6173 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6174 TLI.getPointerTy())); 6175 AsmNodeOperands.push_back(InOperandVal); 6176 break; 6177 } 6178 6179 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6180 OpInfo.ConstraintType == TargetLowering::C_Register) && 6181 "Unknown constraint type!"); 6182 assert(!OpInfo.isIndirect && 6183 "Don't know how to handle indirect register inputs yet!"); 6184 6185 // Copy the input into the appropriate registers. 6186 if (OpInfo.AssignedRegs.Regs.empty()) 6187 report_fatal_error("Couldn't allocate input reg for constraint '" + 6188 Twine(OpInfo.ConstraintCode) + "'!"); 6189 6190 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 6191 Chain, &Flag); 6192 6193 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6194 DAG, AsmNodeOperands); 6195 break; 6196 } 6197 case InlineAsm::isClobber: { 6198 // Add the clobbered value to the operand list, so that the register 6199 // allocator is aware that the physreg got clobbered. 6200 if (!OpInfo.AssignedRegs.Regs.empty()) 6201 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6202 false, 0, DAG, 6203 AsmNodeOperands); 6204 break; 6205 } 6206 } 6207 } 6208 6209 // Finish up input operands. Set the input chain and add the flag last. 6210 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6211 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6212 6213 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 6214 DAG.getVTList(MVT::Other, MVT::Glue), 6215 &AsmNodeOperands[0], AsmNodeOperands.size()); 6216 Flag = Chain.getValue(1); 6217 6218 // If this asm returns a register value, copy the result from that register 6219 // and set it as the value of the call. 6220 if (!RetValRegs.Regs.empty()) { 6221 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6222 Chain, &Flag); 6223 6224 // FIXME: Why don't we do this for inline asms with MRVs? 6225 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6226 EVT ResultType = TLI.getValueType(CS.getType()); 6227 6228 // If any of the results of the inline asm is a vector, it may have the 6229 // wrong width/num elts. This can happen for register classes that can 6230 // contain multiple different value types. The preg or vreg allocated may 6231 // not have the same VT as was expected. Convert it to the right type 6232 // with bit_convert. 6233 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6234 Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 6235 ResultType, Val); 6236 6237 } else if (ResultType != Val.getValueType() && 6238 ResultType.isInteger() && Val.getValueType().isInteger()) { 6239 // If a result value was tied to an input value, the computed result may 6240 // have a wider width than the expected result. Extract the relevant 6241 // portion. 6242 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 6243 } 6244 6245 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6246 } 6247 6248 setValue(CS.getInstruction(), Val); 6249 // Don't need to use this as a chain in this case. 6250 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6251 return; 6252 } 6253 6254 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6255 6256 // Process indirect outputs, first output all of the flagged copies out of 6257 // physregs. 6258 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6259 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6260 const Value *Ptr = IndirectStoresToEmit[i].second; 6261 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6262 Chain, &Flag); 6263 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6264 } 6265 6266 // Emit the non-flagged stores from the physregs. 6267 SmallVector<SDValue, 8> OutChains; 6268 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6269 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 6270 StoresToEmit[i].first, 6271 getValue(StoresToEmit[i].second), 6272 MachinePointerInfo(StoresToEmit[i].second), 6273 false, false, 0); 6274 OutChains.push_back(Val); 6275 } 6276 6277 if (!OutChains.empty()) 6278 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 6279 &OutChains[0], OutChains.size()); 6280 6281 DAG.setRoot(Chain); 6282 } 6283 6284 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6285 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 6286 MVT::Other, getRoot(), 6287 getValue(I.getArgOperand(0)), 6288 DAG.getSrcValue(I.getArgOperand(0)))); 6289 } 6290 6291 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6292 const TargetData &TD = *TLI.getTargetData(); 6293 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 6294 getRoot(), getValue(I.getOperand(0)), 6295 DAG.getSrcValue(I.getOperand(0)), 6296 TD.getABITypeAlignment(I.getType())); 6297 setValue(&I, V); 6298 DAG.setRoot(V.getValue(1)); 6299 } 6300 6301 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6302 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 6303 MVT::Other, getRoot(), 6304 getValue(I.getArgOperand(0)), 6305 DAG.getSrcValue(I.getArgOperand(0)))); 6306 } 6307 6308 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6309 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 6310 MVT::Other, getRoot(), 6311 getValue(I.getArgOperand(0)), 6312 getValue(I.getArgOperand(1)), 6313 DAG.getSrcValue(I.getArgOperand(0)), 6314 DAG.getSrcValue(I.getArgOperand(1)))); 6315 } 6316 6317 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6318 /// implementation, which just calls LowerCall. 6319 /// FIXME: When all targets are 6320 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6321 std::pair<SDValue, SDValue> 6322 TargetLowering::LowerCallTo(SDValue Chain, Type *RetTy, 6323 bool RetSExt, bool RetZExt, bool isVarArg, 6324 bool isInreg, unsigned NumFixedArgs, 6325 CallingConv::ID CallConv, bool isTailCall, 6326 bool isReturnValueUsed, 6327 SDValue Callee, 6328 ArgListTy &Args, SelectionDAG &DAG, 6329 DebugLoc dl) const { 6330 // Handle all of the outgoing arguments. 6331 SmallVector<ISD::OutputArg, 32> Outs; 6332 SmallVector<SDValue, 32> OutVals; 6333 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6334 SmallVector<EVT, 4> ValueVTs; 6335 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6336 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6337 Value != NumValues; ++Value) { 6338 EVT VT = ValueVTs[Value]; 6339 Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); 6340 SDValue Op = SDValue(Args[i].Node.getNode(), 6341 Args[i].Node.getResNo() + Value); 6342 ISD::ArgFlagsTy Flags; 6343 unsigned OriginalAlignment = 6344 getTargetData()->getABITypeAlignment(ArgTy); 6345 6346 if (Args[i].isZExt) 6347 Flags.setZExt(); 6348 if (Args[i].isSExt) 6349 Flags.setSExt(); 6350 if (Args[i].isInReg) 6351 Flags.setInReg(); 6352 if (Args[i].isSRet) 6353 Flags.setSRet(); 6354 if (Args[i].isByVal) { 6355 Flags.setByVal(); 6356 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6357 Type *ElementTy = Ty->getElementType(); 6358 Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy)); 6359 // For ByVal, alignment should come from FE. BE will guess if this 6360 // info is not there but there are cases it cannot get right. 6361 unsigned FrameAlign; 6362 if (Args[i].Alignment) 6363 FrameAlign = Args[i].Alignment; 6364 else 6365 FrameAlign = getByValTypeAlignment(ElementTy); 6366 Flags.setByValAlign(FrameAlign); 6367 } 6368 if (Args[i].isNest) 6369 Flags.setNest(); 6370 Flags.setOrigAlign(OriginalAlignment); 6371 6372 EVT PartVT = getRegisterType(RetTy->getContext(), VT); 6373 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); 6374 SmallVector<SDValue, 4> Parts(NumParts); 6375 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6376 6377 if (Args[i].isSExt) 6378 ExtendKind = ISD::SIGN_EXTEND; 6379 else if (Args[i].isZExt) 6380 ExtendKind = ISD::ZERO_EXTEND; 6381 6382 getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, 6383 PartVT, ExtendKind); 6384 6385 for (unsigned j = 0; j != NumParts; ++j) { 6386 // if it isn't first piece, alignment must be 1 6387 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), 6388 i < NumFixedArgs); 6389 if (NumParts > 1 && j == 0) 6390 MyFlags.Flags.setSplit(); 6391 else if (j != 0) 6392 MyFlags.Flags.setOrigAlign(1); 6393 6394 Outs.push_back(MyFlags); 6395 OutVals.push_back(Parts[j]); 6396 } 6397 } 6398 } 6399 6400 // Handle the incoming return values from the call. 6401 SmallVector<ISD::InputArg, 32> Ins; 6402 SmallVector<EVT, 4> RetTys; 6403 ComputeValueVTs(*this, RetTy, RetTys); 6404 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6405 EVT VT = RetTys[I]; 6406 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 6407 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 6408 for (unsigned i = 0; i != NumRegs; ++i) { 6409 ISD::InputArg MyFlags; 6410 MyFlags.VT = RegisterVT.getSimpleVT(); 6411 MyFlags.Used = isReturnValueUsed; 6412 if (RetSExt) 6413 MyFlags.Flags.setSExt(); 6414 if (RetZExt) 6415 MyFlags.Flags.setZExt(); 6416 if (isInreg) 6417 MyFlags.Flags.setInReg(); 6418 Ins.push_back(MyFlags); 6419 } 6420 } 6421 6422 SmallVector<SDValue, 4> InVals; 6423 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, 6424 Outs, OutVals, Ins, dl, DAG, InVals); 6425 6426 // Verify that the target's LowerCall behaved as expected. 6427 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 6428 "LowerCall didn't return a valid chain!"); 6429 assert((!isTailCall || InVals.empty()) && 6430 "LowerCall emitted a return value for a tail call!"); 6431 assert((isTailCall || InVals.size() == Ins.size()) && 6432 "LowerCall didn't emit the correct number of values!"); 6433 6434 // For a tail call, the return value is merely live-out and there aren't 6435 // any nodes in the DAG representing it. Return a special value to 6436 // indicate that a tail call has been emitted and no more Instructions 6437 // should be processed in the current block. 6438 if (isTailCall) { 6439 DAG.setRoot(Chain); 6440 return std::make_pair(SDValue(), SDValue()); 6441 } 6442 6443 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6444 assert(InVals[i].getNode() && 6445 "LowerCall emitted a null value!"); 6446 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6447 "LowerCall emitted a value with the wrong type!"); 6448 }); 6449 6450 // Collect the legal value parts into potentially illegal values 6451 // that correspond to the original function's return values. 6452 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6453 if (RetSExt) 6454 AssertOp = ISD::AssertSext; 6455 else if (RetZExt) 6456 AssertOp = ISD::AssertZext; 6457 SmallVector<SDValue, 4> ReturnValues; 6458 unsigned CurReg = 0; 6459 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6460 EVT VT = RetTys[I]; 6461 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 6462 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 6463 6464 ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg], 6465 NumRegs, RegisterVT, VT, 6466 AssertOp)); 6467 CurReg += NumRegs; 6468 } 6469 6470 // For a function returning void, there is no return value. We can't create 6471 // such a node, so we just return a null return value in that case. In 6472 // that case, nothing will actually look at the value. 6473 if (ReturnValues.empty()) 6474 return std::make_pair(SDValue(), Chain); 6475 6476 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 6477 DAG.getVTList(&RetTys[0], RetTys.size()), 6478 &ReturnValues[0], ReturnValues.size()); 6479 return std::make_pair(Res, Chain); 6480 } 6481 6482 void TargetLowering::LowerOperationWrapper(SDNode *N, 6483 SmallVectorImpl<SDValue> &Results, 6484 SelectionDAG &DAG) const { 6485 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6486 if (Res.getNode()) 6487 Results.push_back(Res); 6488 } 6489 6490 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6491 llvm_unreachable("LowerOperation not implemented for this target!"); 6492 return SDValue(); 6493 } 6494 6495 void 6496 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6497 SDValue Op = getNonRegisterValue(V); 6498 assert((Op.getOpcode() != ISD::CopyFromReg || 6499 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6500 "Copy from a reg to the same reg!"); 6501 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6502 6503 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6504 SDValue Chain = DAG.getEntryNode(); 6505 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 6506 PendingExports.push_back(Chain); 6507 } 6508 6509 #include "llvm/CodeGen/SelectionDAGISel.h" 6510 6511 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 6512 /// entry block, return true. This includes arguments used by switches, since 6513 /// the switch may expand into multiple basic blocks. 6514 static bool isOnlyUsedInEntryBlock(const Argument *A) { 6515 // With FastISel active, we may be splitting blocks, so force creation 6516 // of virtual registers for all non-dead arguments. 6517 if (EnableFastISel) 6518 return A->use_empty(); 6519 6520 const BasicBlock *Entry = A->getParent()->begin(); 6521 for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end(); 6522 UI != E; ++UI) { 6523 const User *U = *UI; 6524 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 6525 return false; // Use not in entry block. 6526 } 6527 return true; 6528 } 6529 6530 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { 6531 // If this is the entry block, emit arguments. 6532 const Function &F = *LLVMBB->getParent(); 6533 SelectionDAG &DAG = SDB->DAG; 6534 DebugLoc dl = SDB->getCurDebugLoc(); 6535 const TargetData *TD = TLI.getTargetData(); 6536 SmallVector<ISD::InputArg, 16> Ins; 6537 6538 // Check whether the function can return without sret-demotion. 6539 SmallVector<ISD::OutputArg, 4> Outs; 6540 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 6541 Outs, TLI); 6542 6543 if (!FuncInfo->CanLowerReturn) { 6544 // Put in an sret pointer parameter before all the other parameters. 6545 SmallVector<EVT, 1> ValueVTs; 6546 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6547 6548 // NOTE: Assuming that a pointer will never break down to more than one VT 6549 // or one register. 6550 ISD::ArgFlagsTy Flags; 6551 Flags.setSRet(); 6552 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]); 6553 ISD::InputArg RetArg(Flags, RegisterVT, true); 6554 Ins.push_back(RetArg); 6555 } 6556 6557 // Set up the incoming argument description vector. 6558 unsigned Idx = 1; 6559 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 6560 I != E; ++I, ++Idx) { 6561 SmallVector<EVT, 4> ValueVTs; 6562 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6563 bool isArgValueUsed = !I->use_empty(); 6564 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6565 Value != NumValues; ++Value) { 6566 EVT VT = ValueVTs[Value]; 6567 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6568 ISD::ArgFlagsTy Flags; 6569 unsigned OriginalAlignment = 6570 TD->getABITypeAlignment(ArgTy); 6571 6572 if (F.paramHasAttr(Idx, Attribute::ZExt)) 6573 Flags.setZExt(); 6574 if (F.paramHasAttr(Idx, Attribute::SExt)) 6575 Flags.setSExt(); 6576 if (F.paramHasAttr(Idx, Attribute::InReg)) 6577 Flags.setInReg(); 6578 if (F.paramHasAttr(Idx, Attribute::StructRet)) 6579 Flags.setSRet(); 6580 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 6581 Flags.setByVal(); 6582 PointerType *Ty = cast<PointerType>(I->getType()); 6583 Type *ElementTy = Ty->getElementType(); 6584 Flags.setByValSize(TD->getTypeAllocSize(ElementTy)); 6585 // For ByVal, alignment should be passed from FE. BE will guess if 6586 // this info is not there but there are cases it cannot get right. 6587 unsigned FrameAlign; 6588 if (F.getParamAlignment(Idx)) 6589 FrameAlign = F.getParamAlignment(Idx); 6590 else 6591 FrameAlign = TLI.getByValTypeAlignment(ElementTy); 6592 Flags.setByValAlign(FrameAlign); 6593 } 6594 if (F.paramHasAttr(Idx, Attribute::Nest)) 6595 Flags.setNest(); 6596 Flags.setOrigAlign(OriginalAlignment); 6597 6598 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6599 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6600 for (unsigned i = 0; i != NumRegs; ++i) { 6601 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 6602 if (NumRegs > 1 && i == 0) 6603 MyFlags.Flags.setSplit(); 6604 // if it isn't first piece, alignment must be 1 6605 else if (i > 0) 6606 MyFlags.Flags.setOrigAlign(1); 6607 Ins.push_back(MyFlags); 6608 } 6609 } 6610 } 6611 6612 // Call the target to set up the argument values. 6613 SmallVector<SDValue, 8> InVals; 6614 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6615 F.isVarArg(), Ins, 6616 dl, DAG, InVals); 6617 6618 // Verify that the target's LowerFormalArguments behaved as expected. 6619 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6620 "LowerFormalArguments didn't return a valid chain!"); 6621 assert(InVals.size() == Ins.size() && 6622 "LowerFormalArguments didn't emit the correct number of values!"); 6623 DEBUG({ 6624 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6625 assert(InVals[i].getNode() && 6626 "LowerFormalArguments emitted a null value!"); 6627 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6628 "LowerFormalArguments emitted a value with the wrong type!"); 6629 } 6630 }); 6631 6632 // Update the DAG with the new chain value resulting from argument lowering. 6633 DAG.setRoot(NewRoot); 6634 6635 // Set up the argument values. 6636 unsigned i = 0; 6637 Idx = 1; 6638 if (!FuncInfo->CanLowerReturn) { 6639 // Create a virtual register for the sret pointer, and put in a copy 6640 // from the sret argument into it. 6641 SmallVector<EVT, 1> ValueVTs; 6642 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6643 EVT VT = ValueVTs[0]; 6644 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6645 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6646 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6647 RegVT, VT, AssertOp); 6648 6649 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6650 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6651 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 6652 FuncInfo->DemoteRegister = SRetReg; 6653 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 6654 SRetReg, ArgValue); 6655 DAG.setRoot(NewRoot); 6656 6657 // i indexes lowered arguments. Bump it past the hidden sret argument. 6658 // Idx indexes LLVM arguments. Don't touch it. 6659 ++i; 6660 } 6661 6662 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6663 ++I, ++Idx) { 6664 SmallVector<SDValue, 4> ArgValues; 6665 SmallVector<EVT, 4> ValueVTs; 6666 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6667 unsigned NumValues = ValueVTs.size(); 6668 6669 // If this argument is unused then remember its value. It is used to generate 6670 // debugging information. 6671 if (I->use_empty() && NumValues) 6672 SDB->setUnusedArgValue(I, InVals[i]); 6673 6674 for (unsigned Val = 0; Val != NumValues; ++Val) { 6675 EVT VT = ValueVTs[Val]; 6676 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6677 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6678 6679 if (!I->use_empty()) { 6680 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6681 if (F.paramHasAttr(Idx, Attribute::SExt)) 6682 AssertOp = ISD::AssertSext; 6683 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 6684 AssertOp = ISD::AssertZext; 6685 6686 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6687 NumParts, PartVT, VT, 6688 AssertOp)); 6689 } 6690 6691 i += NumParts; 6692 } 6693 6694 // We don't need to do anything else for unused arguments. 6695 if (ArgValues.empty()) 6696 continue; 6697 6698 // Note down frame index. 6699 if (FrameIndexSDNode *FI = 6700 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 6701 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6702 6703 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6704 SDB->getCurDebugLoc()); 6705 6706 SDB->setValue(I, Res); 6707 if (!EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 6708 if (LoadSDNode *LNode = 6709 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 6710 if (FrameIndexSDNode *FI = 6711 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 6712 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6713 } 6714 6715 // If this argument is live outside of the entry block, insert a copy from 6716 // wherever we got it to the vreg that other BB's will reference it as. 6717 if (!EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 6718 // If we can, though, try to skip creating an unnecessary vreg. 6719 // FIXME: This isn't very clean... it would be nice to make this more 6720 // general. It's also subtly incompatible with the hacks FastISel 6721 // uses with vregs. 6722 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 6723 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 6724 FuncInfo->ValueMap[I] = Reg; 6725 continue; 6726 } 6727 } 6728 if (!isOnlyUsedInEntryBlock(I)) { 6729 FuncInfo->InitializeRegForValue(I); 6730 SDB->CopyToExportRegsIfNeeded(I); 6731 } 6732 } 6733 6734 assert(i == InVals.size() && "Argument register count mismatch!"); 6735 6736 // Finally, if the target has anything special to do, allow it to do so. 6737 // FIXME: this should insert code into the DAG! 6738 EmitFunctionEntryCode(); 6739 } 6740 6741 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6742 /// ensure constants are generated when needed. Remember the virtual registers 6743 /// that need to be added to the Machine PHI nodes as input. We cannot just 6744 /// directly add them, because expansion might result in multiple MBB's for one 6745 /// BB. As such, the start of the BB might correspond to a different MBB than 6746 /// the end. 6747 /// 6748 void 6749 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 6750 const TerminatorInst *TI = LLVMBB->getTerminator(); 6751 6752 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6753 6754 // Check successor nodes' PHI nodes that expect a constant to be available 6755 // from this block. 6756 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6757 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6758 if (!isa<PHINode>(SuccBB->begin())) continue; 6759 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 6760 6761 // If this terminator has multiple identical successors (common for 6762 // switches), only handle each succ once. 6763 if (!SuccsHandled.insert(SuccMBB)) continue; 6764 6765 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6766 6767 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6768 // nodes and Machine PHI nodes, but the incoming operands have not been 6769 // emitted yet. 6770 for (BasicBlock::const_iterator I = SuccBB->begin(); 6771 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6772 // Ignore dead phi's. 6773 if (PN->use_empty()) continue; 6774 6775 // Skip empty types 6776 if (PN->getType()->isEmptyTy()) 6777 continue; 6778 6779 unsigned Reg; 6780 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6781 6782 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 6783 unsigned &RegOut = ConstantsOut[C]; 6784 if (RegOut == 0) { 6785 RegOut = FuncInfo.CreateRegs(C->getType()); 6786 CopyValueToVirtualRegister(C, RegOut); 6787 } 6788 Reg = RegOut; 6789 } else { 6790 DenseMap<const Value *, unsigned>::iterator I = 6791 FuncInfo.ValueMap.find(PHIOp); 6792 if (I != FuncInfo.ValueMap.end()) 6793 Reg = I->second; 6794 else { 6795 assert(isa<AllocaInst>(PHIOp) && 6796 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6797 "Didn't codegen value into a register!??"); 6798 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 6799 CopyValueToVirtualRegister(PHIOp, Reg); 6800 } 6801 } 6802 6803 // Remember that this register needs to added to the machine PHI node as 6804 // the input for this MBB. 6805 SmallVector<EVT, 4> ValueVTs; 6806 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6807 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6808 EVT VT = ValueVTs[vti]; 6809 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 6810 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6811 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6812 Reg += NumRegisters; 6813 } 6814 } 6815 } 6816 ConstantsOut.clear(); 6817 } 6818