1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/Analysis/VectorUtils.h" 32 #include "llvm/CodeGen/Analysis.h" 33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 34 #include "llvm/CodeGen/CodeGenCommonISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/ISDOpcodes.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 43 #include "llvm/CodeGen/MachineMemOperand.h" 44 #include "llvm/CodeGen/MachineModuleInfo.h" 45 #include "llvm/CodeGen/MachineOperand.h" 46 #include "llvm/CodeGen/MachineRegisterInfo.h" 47 #include "llvm/CodeGen/RuntimeLibcalls.h" 48 #include "llvm/CodeGen/SelectionDAG.h" 49 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 50 #include "llvm/CodeGen/StackMaps.h" 51 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 52 #include "llvm/CodeGen/TargetFrameLowering.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetOpcodes.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/TargetSubtargetInfo.h" 57 #include "llvm/CodeGen/WinEHFuncInfo.h" 58 #include "llvm/IR/Argument.h" 59 #include "llvm/IR/Attributes.h" 60 #include "llvm/IR/BasicBlock.h" 61 #include "llvm/IR/CFG.h" 62 #include "llvm/IR/CallingConv.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/ConstantRange.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DebugInfo.h" 68 #include "llvm/IR/DebugInfoMetadata.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/DiagnosticInfo.h" 71 #include "llvm/IR/EHPersonalities.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/GetElementPtrTypeIterator.h" 74 #include "llvm/IR/InlineAsm.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/IntrinsicsAArch64.h" 80 #include "llvm/IR/IntrinsicsAMDGPU.h" 81 #include "llvm/IR/IntrinsicsWebAssembly.h" 82 #include "llvm/IR/LLVMContext.h" 83 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Module.h" 86 #include "llvm/IR/Operator.h" 87 #include "llvm/IR/PatternMatch.h" 88 #include "llvm/IR/Statepoint.h" 89 #include "llvm/IR/Type.h" 90 #include "llvm/IR/User.h" 91 #include "llvm/IR/Value.h" 92 #include "llvm/MC/MCContext.h" 93 #include "llvm/Support/AtomicOrdering.h" 94 #include "llvm/Support/Casting.h" 95 #include "llvm/Support/CommandLine.h" 96 #include "llvm/Support/Compiler.h" 97 #include "llvm/Support/Debug.h" 98 #include "llvm/Support/InstructionCost.h" 99 #include "llvm/Support/MathExtras.h" 100 #include "llvm/Support/raw_ostream.h" 101 #include "llvm/Target/TargetIntrinsicInfo.h" 102 #include "llvm/Target/TargetMachine.h" 103 #include "llvm/Target/TargetOptions.h" 104 #include "llvm/TargetParser/Triple.h" 105 #include "llvm/Transforms/Utils/Local.h" 106 #include <cstddef> 107 #include <iterator> 108 #include <limits> 109 #include <optional> 110 #include <tuple> 111 112 using namespace llvm; 113 using namespace PatternMatch; 114 using namespace SwitchCG; 115 116 #define DEBUG_TYPE "isel" 117 118 /// LimitFloatPrecision - Generate low-precision inline sequences for 119 /// some float libcalls (6, 8 or 12 bits). 120 static unsigned LimitFloatPrecision; 121 122 static cl::opt<bool> 123 InsertAssertAlign("insert-assert-align", cl::init(true), 124 cl::desc("Insert the experimental `assertalign` node."), 125 cl::ReallyHidden); 126 127 static cl::opt<unsigned, true> 128 LimitFPPrecision("limit-float-precision", 129 cl::desc("Generate low-precision inline sequences " 130 "for some float libcalls"), 131 cl::location(LimitFloatPrecision), cl::Hidden, 132 cl::init(0)); 133 134 static cl::opt<unsigned> SwitchPeelThreshold( 135 "switch-peel-threshold", cl::Hidden, cl::init(66), 136 cl::desc("Set the case probability threshold for peeling the case from a " 137 "switch statement. A value greater than 100 will void this " 138 "optimization")); 139 140 // Limit the width of DAG chains. This is important in general to prevent 141 // DAG-based analysis from blowing up. For example, alias analysis and 142 // load clustering may not complete in reasonable time. It is difficult to 143 // recognize and avoid this situation within each individual analysis, and 144 // future analyses are likely to have the same behavior. Limiting DAG width is 145 // the safe approach and will be especially important with global DAGs. 146 // 147 // MaxParallelChains default is arbitrarily high to avoid affecting 148 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 149 // sequence over this should have been converted to llvm.memcpy by the 150 // frontend. It is easy to induce this behavior with .ll code such as: 151 // %buffer = alloca [4096 x i8] 152 // %data = load [4096 x i8]* %argPtr 153 // store [4096 x i8] %data, [4096 x i8]* %buffer 154 static const unsigned MaxParallelChains = 64; 155 156 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 157 const SDValue *Parts, unsigned NumParts, 158 MVT PartVT, EVT ValueVT, const Value *V, 159 SDValue InChain, 160 std::optional<CallingConv::ID> CC); 161 162 /// getCopyFromParts - Create a value that contains the specified legal parts 163 /// combined into the value they represent. If the parts combine to a type 164 /// larger than ValueVT then AssertOp can be used to specify whether the extra 165 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 166 /// (ISD::AssertSext). 167 static SDValue 168 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, 169 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, 170 SDValue InChain, 171 std::optional<CallingConv::ID> CC = std::nullopt, 172 std::optional<ISD::NodeType> AssertOp = std::nullopt) { 173 // Let the target assemble the parts if it wants to 174 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 175 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 176 PartVT, ValueVT, CC)) 177 return Val; 178 179 if (ValueVT.isVector()) 180 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 181 InChain, CC); 182 183 assert(NumParts > 0 && "No parts to assemble!"); 184 SDValue Val = Parts[0]; 185 186 if (NumParts > 1) { 187 // Assemble the value from multiple parts. 188 if (ValueVT.isInteger()) { 189 unsigned PartBits = PartVT.getSizeInBits(); 190 unsigned ValueBits = ValueVT.getSizeInBits(); 191 192 // Assemble the power of 2 part. 193 unsigned RoundParts = llvm::bit_floor(NumParts); 194 unsigned RoundBits = PartBits * RoundParts; 195 EVT RoundVT = RoundBits == ValueBits ? 196 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 197 SDValue Lo, Hi; 198 199 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 200 201 if (RoundParts > 2) { 202 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V, 203 InChain); 204 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2, 205 PartVT, HalfVT, V, InChain); 206 } else { 207 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 208 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 209 } 210 211 if (DAG.getDataLayout().isBigEndian()) 212 std::swap(Lo, Hi); 213 214 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 215 216 if (RoundParts < NumParts) { 217 // Assemble the trailing non-power-of-2 part. 218 unsigned OddParts = NumParts - RoundParts; 219 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 220 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 221 OddVT, V, InChain, CC); 222 223 // Combine the round and odd parts. 224 Lo = Val; 225 if (DAG.getDataLayout().isBigEndian()) 226 std::swap(Lo, Hi); 227 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 228 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 229 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 230 DAG.getConstant(Lo.getValueSizeInBits(), DL, 231 TLI.getShiftAmountTy( 232 TotalVT, DAG.getDataLayout()))); 233 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 234 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 235 } 236 } else if (PartVT.isFloatingPoint()) { 237 // FP split into multiple FP parts (for ppcf128) 238 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 239 "Unexpected split"); 240 SDValue Lo, Hi; 241 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 242 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 243 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 244 std::swap(Lo, Hi); 245 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 246 } else { 247 // FP split into integer parts (soft fp) 248 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 249 !PartVT.isVector() && "Unexpected split"); 250 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 251 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, 252 InChain, CC); 253 } 254 } 255 256 // There is now one part, held in Val. Correct it to match ValueVT. 257 // PartEVT is the type of the register class that holds the value. 258 // ValueVT is the type of the inline asm operation. 259 EVT PartEVT = Val.getValueType(); 260 261 if (PartEVT == ValueVT) 262 return Val; 263 264 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 265 ValueVT.bitsLT(PartEVT)) { 266 // For an FP value in an integer part, we need to truncate to the right 267 // width first. 268 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 269 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 270 } 271 272 // Handle types that have the same size. 273 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 274 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 275 276 // Handle types with different sizes. 277 if (PartEVT.isInteger() && ValueVT.isInteger()) { 278 if (ValueVT.bitsLT(PartEVT)) { 279 // For a truncate, see if we have any information to 280 // indicate whether the truncated bits will always be 281 // zero or sign-extension. 282 if (AssertOp) 283 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 284 DAG.getValueType(ValueVT)); 285 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 286 } 287 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 288 } 289 290 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 291 // FP_ROUND's are always exact here. 292 if (ValueVT.bitsLT(Val.getValueType())) { 293 294 SDValue NoChange = 295 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 296 297 if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr( 298 llvm::Attribute::StrictFP)) { 299 return DAG.getNode(ISD::STRICT_FP_ROUND, DL, 300 DAG.getVTList(ValueVT, MVT::Other), InChain, Val, 301 NoChange); 302 } 303 304 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange); 305 } 306 307 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 308 } 309 310 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 311 // then truncating. 312 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 313 ValueVT.bitsLT(PartEVT)) { 314 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 315 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 316 } 317 318 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 319 } 320 321 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 322 const Twine &ErrMsg) { 323 const Instruction *I = dyn_cast_or_null<Instruction>(V); 324 if (!V) 325 return Ctx.emitError(ErrMsg); 326 327 const char *AsmError = ", possible invalid constraint for vector type"; 328 if (const CallInst *CI = dyn_cast<CallInst>(I)) 329 if (CI->isInlineAsm()) 330 return Ctx.emitError(I, ErrMsg + AsmError); 331 332 return Ctx.emitError(I, ErrMsg); 333 } 334 335 /// getCopyFromPartsVector - Create a value that contains the specified legal 336 /// parts combined into the value they represent. If the parts combine to a 337 /// type larger than ValueVT then AssertOp can be used to specify whether the 338 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 339 /// ValueVT (ISD::AssertSext). 340 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 341 const SDValue *Parts, unsigned NumParts, 342 MVT PartVT, EVT ValueVT, const Value *V, 343 SDValue InChain, 344 std::optional<CallingConv::ID> CallConv) { 345 assert(ValueVT.isVector() && "Not a vector value"); 346 assert(NumParts > 0 && "No parts to assemble!"); 347 const bool IsABIRegCopy = CallConv.has_value(); 348 349 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 350 SDValue Val = Parts[0]; 351 352 // Handle a multi-element vector. 353 if (NumParts > 1) { 354 EVT IntermediateVT; 355 MVT RegisterVT; 356 unsigned NumIntermediates; 357 unsigned NumRegs; 358 359 if (IsABIRegCopy) { 360 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 361 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 362 NumIntermediates, RegisterVT); 363 } else { 364 NumRegs = 365 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 366 NumIntermediates, RegisterVT); 367 } 368 369 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 370 NumParts = NumRegs; // Silence a compiler warning. 371 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 372 assert(RegisterVT.getSizeInBits() == 373 Parts[0].getSimpleValueType().getSizeInBits() && 374 "Part type sizes don't match!"); 375 376 // Assemble the parts into intermediate operands. 377 SmallVector<SDValue, 8> Ops(NumIntermediates); 378 if (NumIntermediates == NumParts) { 379 // If the register was not expanded, truncate or copy the value, 380 // as appropriate. 381 for (unsigned i = 0; i != NumParts; ++i) 382 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT, 383 V, InChain, CallConv); 384 } else if (NumParts > 0) { 385 // If the intermediate type was expanded, build the intermediate 386 // operands from the parts. 387 assert(NumParts % NumIntermediates == 0 && 388 "Must expand into a divisible number of parts!"); 389 unsigned Factor = NumParts / NumIntermediates; 390 for (unsigned i = 0; i != NumIntermediates; ++i) 391 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT, 392 IntermediateVT, V, InChain, CallConv); 393 } 394 395 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 396 // intermediate operands. 397 EVT BuiltVectorTy = 398 IntermediateVT.isVector() 399 ? EVT::getVectorVT( 400 *DAG.getContext(), IntermediateVT.getScalarType(), 401 IntermediateVT.getVectorElementCount() * NumParts) 402 : EVT::getVectorVT(*DAG.getContext(), 403 IntermediateVT.getScalarType(), 404 NumIntermediates); 405 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 406 : ISD::BUILD_VECTOR, 407 DL, BuiltVectorTy, Ops); 408 } 409 410 // There is now one part, held in Val. Correct it to match ValueVT. 411 EVT PartEVT = Val.getValueType(); 412 413 if (PartEVT == ValueVT) 414 return Val; 415 416 if (PartEVT.isVector()) { 417 // Vector/Vector bitcast. 418 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 419 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 420 421 // If the parts vector has more elements than the value vector, then we 422 // have a vector widening case (e.g. <2 x float> -> <4 x float>). 423 // Extract the elements we want. 424 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 425 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 426 ValueVT.getVectorElementCount().getKnownMinValue()) && 427 (PartEVT.getVectorElementCount().isScalable() == 428 ValueVT.getVectorElementCount().isScalable()) && 429 "Cannot narrow, it would be a lossy transformation"); 430 PartEVT = 431 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 432 ValueVT.getVectorElementCount()); 433 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 434 DAG.getVectorIdxConstant(0, DL)); 435 if (PartEVT == ValueVT) 436 return Val; 437 if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) 438 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 439 440 // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>). 441 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 442 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 443 } 444 445 // Promoted vector extract 446 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 447 } 448 449 // Trivial bitcast if the types are the same size and the destination 450 // vector type is legal. 451 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 452 TLI.isTypeLegal(ValueVT)) 453 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 454 455 if (ValueVT.getVectorNumElements() != 1) { 456 // Certain ABIs require that vectors are passed as integers. For vectors 457 // are the same size, this is an obvious bitcast. 458 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 459 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 460 } else if (ValueVT.bitsLT(PartEVT)) { 461 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 462 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 463 // Drop the extra bits. 464 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 465 return DAG.getBitcast(ValueVT, Val); 466 } 467 468 diagnosePossiblyInvalidConstraint( 469 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 470 return DAG.getUNDEF(ValueVT); 471 } 472 473 // Handle cases such as i8 -> <1 x i1> 474 EVT ValueSVT = ValueVT.getVectorElementType(); 475 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 476 unsigned ValueSize = ValueSVT.getSizeInBits(); 477 if (ValueSize == PartEVT.getSizeInBits()) { 478 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 479 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 480 // It's possible a scalar floating point type gets softened to integer and 481 // then promoted to a larger integer. If PartEVT is the larger integer 482 // we need to truncate it and then bitcast to the FP type. 483 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 484 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 485 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 486 Val = DAG.getBitcast(ValueSVT, Val); 487 } else { 488 Val = ValueVT.isFloatingPoint() 489 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 490 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 491 } 492 } 493 494 return DAG.getBuildVector(ValueVT, DL, Val); 495 } 496 497 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 498 SDValue Val, SDValue *Parts, unsigned NumParts, 499 MVT PartVT, const Value *V, 500 std::optional<CallingConv::ID> CallConv); 501 502 /// getCopyToParts - Create a series of nodes that contain the specified value 503 /// split into legal parts. If the parts contain more bits than Val, then, for 504 /// integers, ExtendKind can be used to specify how to generate the extra bits. 505 static void 506 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 507 unsigned NumParts, MVT PartVT, const Value *V, 508 std::optional<CallingConv::ID> CallConv = std::nullopt, 509 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 510 // Let the target split the parts if it wants to 511 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 512 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 513 CallConv)) 514 return; 515 EVT ValueVT = Val.getValueType(); 516 517 // Handle the vector case separately. 518 if (ValueVT.isVector()) 519 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 520 CallConv); 521 522 unsigned OrigNumParts = NumParts; 523 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 524 "Copying to an illegal type!"); 525 526 if (NumParts == 0) 527 return; 528 529 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 530 EVT PartEVT = PartVT; 531 if (PartEVT == ValueVT) { 532 assert(NumParts == 1 && "No-op copy with multiple parts!"); 533 Parts[0] = Val; 534 return; 535 } 536 537 unsigned PartBits = PartVT.getSizeInBits(); 538 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 539 // If the parts cover more bits than the value has, promote the value. 540 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 541 assert(NumParts == 1 && "Do not know what to promote to!"); 542 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 543 } else { 544 if (ValueVT.isFloatingPoint()) { 545 // FP values need to be bitcast, then extended if they are being put 546 // into a larger container. 547 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 548 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 549 } 550 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 551 ValueVT.isInteger() && 552 "Unknown mismatch!"); 553 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 554 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 555 if (PartVT == MVT::x86mmx) 556 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 557 } 558 } else if (PartBits == ValueVT.getSizeInBits()) { 559 // Different types of the same size. 560 assert(NumParts == 1 && PartEVT != ValueVT); 561 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 562 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 563 // If the parts cover less bits than value has, truncate the value. 564 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 565 ValueVT.isInteger() && 566 "Unknown mismatch!"); 567 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 568 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 569 if (PartVT == MVT::x86mmx) 570 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 571 } 572 573 // The value may have changed - recompute ValueVT. 574 ValueVT = Val.getValueType(); 575 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 576 "Failed to tile the value with PartVT!"); 577 578 if (NumParts == 1) { 579 if (PartEVT != ValueVT) { 580 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 581 "scalar-to-vector conversion failed"); 582 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 583 } 584 585 Parts[0] = Val; 586 return; 587 } 588 589 // Expand the value into multiple parts. 590 if (NumParts & (NumParts - 1)) { 591 // The number of parts is not a power of 2. Split off and copy the tail. 592 assert(PartVT.isInteger() && ValueVT.isInteger() && 593 "Do not know what to expand to!"); 594 unsigned RoundParts = llvm::bit_floor(NumParts); 595 unsigned RoundBits = RoundParts * PartBits; 596 unsigned OddParts = NumParts - RoundParts; 597 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 598 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 599 600 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 601 CallConv); 602 603 if (DAG.getDataLayout().isBigEndian()) 604 // The odd parts were reversed by getCopyToParts - unreverse them. 605 std::reverse(Parts + RoundParts, Parts + NumParts); 606 607 NumParts = RoundParts; 608 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 609 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 610 } 611 612 // The number of parts is a power of 2. Repeatedly bisect the value using 613 // EXTRACT_ELEMENT. 614 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 615 EVT::getIntegerVT(*DAG.getContext(), 616 ValueVT.getSizeInBits()), 617 Val); 618 619 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 620 for (unsigned i = 0; i < NumParts; i += StepSize) { 621 unsigned ThisBits = StepSize * PartBits / 2; 622 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 623 SDValue &Part0 = Parts[i]; 624 SDValue &Part1 = Parts[i+StepSize/2]; 625 626 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 627 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 628 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 629 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 630 631 if (ThisBits == PartBits && ThisVT != PartVT) { 632 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 633 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 634 } 635 } 636 } 637 638 if (DAG.getDataLayout().isBigEndian()) 639 std::reverse(Parts, Parts + OrigNumParts); 640 } 641 642 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 643 const SDLoc &DL, EVT PartVT) { 644 if (!PartVT.isVector()) 645 return SDValue(); 646 647 EVT ValueVT = Val.getValueType(); 648 EVT PartEVT = PartVT.getVectorElementType(); 649 EVT ValueEVT = ValueVT.getVectorElementType(); 650 ElementCount PartNumElts = PartVT.getVectorElementCount(); 651 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 652 653 // We only support widening vectors with equivalent element types and 654 // fixed/scalable properties. If a target needs to widen a fixed-length type 655 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 656 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 657 PartNumElts.isScalable() != ValueNumElts.isScalable()) 658 return SDValue(); 659 660 // Have a try for bf16 because some targets share its ABI with fp16. 661 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) { 662 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 663 "Cannot widen to illegal type"); 664 Val = DAG.getNode(ISD::BITCAST, DL, 665 ValueVT.changeVectorElementType(MVT::f16), Val); 666 } else if (PartEVT != ValueEVT) { 667 return SDValue(); 668 } 669 670 // Widening a scalable vector to another scalable vector is done by inserting 671 // the vector into a larger undef one. 672 if (PartNumElts.isScalable()) 673 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 674 Val, DAG.getVectorIdxConstant(0, DL)); 675 676 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 677 // undef elements. 678 SmallVector<SDValue, 16> Ops; 679 DAG.ExtractVectorElements(Val, Ops); 680 SDValue EltUndef = DAG.getUNDEF(PartEVT); 681 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 682 683 // FIXME: Use CONCAT for 2x -> 4x. 684 return DAG.getBuildVector(PartVT, DL, Ops); 685 } 686 687 /// getCopyToPartsVector - Create a series of nodes that contain the specified 688 /// value split into legal parts. 689 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 690 SDValue Val, SDValue *Parts, unsigned NumParts, 691 MVT PartVT, const Value *V, 692 std::optional<CallingConv::ID> CallConv) { 693 EVT ValueVT = Val.getValueType(); 694 assert(ValueVT.isVector() && "Not a vector"); 695 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 696 const bool IsABIRegCopy = CallConv.has_value(); 697 698 if (NumParts == 1) { 699 EVT PartEVT = PartVT; 700 if (PartEVT == ValueVT) { 701 // Nothing to do. 702 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 703 // Bitconvert vector->vector case. 704 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 705 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 706 Val = Widened; 707 } else if (PartVT.isVector() && 708 PartEVT.getVectorElementType().bitsGE( 709 ValueVT.getVectorElementType()) && 710 PartEVT.getVectorElementCount() == 711 ValueVT.getVectorElementCount()) { 712 713 // Promoted vector extract 714 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 715 } else if (PartEVT.isVector() && 716 PartEVT.getVectorElementType() != 717 ValueVT.getVectorElementType() && 718 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 719 TargetLowering::TypeWidenVector) { 720 // Combination of widening and promotion. 721 EVT WidenVT = 722 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 723 PartVT.getVectorElementCount()); 724 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 725 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 726 } else { 727 // Don't extract an integer from a float vector. This can happen if the 728 // FP type gets softened to integer and then promoted. The promotion 729 // prevents it from being picked up by the earlier bitcast case. 730 if (ValueVT.getVectorElementCount().isScalar() && 731 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 732 // If we reach this condition and PartVT is FP, this means that 733 // ValueVT is also FP and both have a different size, otherwise we 734 // would have bitcasted them. Producing an EXTRACT_VECTOR_ELT here 735 // would be invalid since that would mean the smaller FP type has to 736 // be extended to the larger one. 737 if (PartVT.isFloatingPoint()) { 738 Val = DAG.getBitcast(ValueVT.getScalarType(), Val); 739 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 740 } else 741 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 742 DAG.getVectorIdxConstant(0, DL)); 743 } else { 744 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 745 assert(PartVT.getFixedSizeInBits() > ValueSize && 746 "lossy conversion of vector to scalar type"); 747 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 748 Val = DAG.getBitcast(IntermediateType, Val); 749 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 750 } 751 } 752 753 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 754 Parts[0] = Val; 755 return; 756 } 757 758 // Handle a multi-element vector. 759 EVT IntermediateVT; 760 MVT RegisterVT; 761 unsigned NumIntermediates; 762 unsigned NumRegs; 763 if (IsABIRegCopy) { 764 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 765 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates, 766 RegisterVT); 767 } else { 768 NumRegs = 769 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 770 NumIntermediates, RegisterVT); 771 } 772 773 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 774 NumParts = NumRegs; // Silence a compiler warning. 775 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 776 777 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 778 "Mixing scalable and fixed vectors when copying in parts"); 779 780 std::optional<ElementCount> DestEltCnt; 781 782 if (IntermediateVT.isVector()) 783 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 784 else 785 DestEltCnt = ElementCount::getFixed(NumIntermediates); 786 787 EVT BuiltVectorTy = EVT::getVectorVT( 788 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 789 790 if (ValueVT == BuiltVectorTy) { 791 // Nothing to do. 792 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 793 // Bitconvert vector->vector case. 794 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 795 } else { 796 if (BuiltVectorTy.getVectorElementType().bitsGT( 797 ValueVT.getVectorElementType())) { 798 // Integer promotion. 799 ValueVT = EVT::getVectorVT(*DAG.getContext(), 800 BuiltVectorTy.getVectorElementType(), 801 ValueVT.getVectorElementCount()); 802 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 803 } 804 805 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 806 Val = Widened; 807 } 808 } 809 810 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 811 812 // Split the vector into intermediate operands. 813 SmallVector<SDValue, 8> Ops(NumIntermediates); 814 for (unsigned i = 0; i != NumIntermediates; ++i) { 815 if (IntermediateVT.isVector()) { 816 // This does something sensible for scalable vectors - see the 817 // definition of EXTRACT_SUBVECTOR for further details. 818 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 819 Ops[i] = 820 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 821 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 822 } else { 823 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 824 DAG.getVectorIdxConstant(i, DL)); 825 } 826 } 827 828 // Split the intermediate operands into legal parts. 829 if (NumParts == NumIntermediates) { 830 // If the register was not expanded, promote or copy the value, 831 // as appropriate. 832 for (unsigned i = 0; i != NumParts; ++i) 833 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 834 } else if (NumParts > 0) { 835 // If the intermediate type was expanded, split each the value into 836 // legal parts. 837 assert(NumIntermediates != 0 && "division by zero"); 838 assert(NumParts % NumIntermediates == 0 && 839 "Must expand into a divisible number of parts!"); 840 unsigned Factor = NumParts / NumIntermediates; 841 for (unsigned i = 0; i != NumIntermediates; ++i) 842 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 843 CallConv); 844 } 845 } 846 847 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 848 EVT valuevt, std::optional<CallingConv::ID> CC) 849 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 850 RegCount(1, regs.size()), CallConv(CC) {} 851 852 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 853 const DataLayout &DL, unsigned Reg, Type *Ty, 854 std::optional<CallingConv::ID> CC) { 855 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 856 857 CallConv = CC; 858 859 for (EVT ValueVT : ValueVTs) { 860 unsigned NumRegs = 861 isABIMangled() 862 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT) 863 : TLI.getNumRegisters(Context, ValueVT); 864 MVT RegisterVT = 865 isABIMangled() 866 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT) 867 : TLI.getRegisterType(Context, ValueVT); 868 for (unsigned i = 0; i != NumRegs; ++i) 869 Regs.push_back(Reg + i); 870 RegVTs.push_back(RegisterVT); 871 RegCount.push_back(NumRegs); 872 Reg += NumRegs; 873 } 874 } 875 876 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 877 FunctionLoweringInfo &FuncInfo, 878 const SDLoc &dl, SDValue &Chain, 879 SDValue *Glue, const Value *V) const { 880 // A Value with type {} or [0 x %t] needs no registers. 881 if (ValueVTs.empty()) 882 return SDValue(); 883 884 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 885 886 // Assemble the legal parts into the final values. 887 SmallVector<SDValue, 4> Values(ValueVTs.size()); 888 SmallVector<SDValue, 8> Parts; 889 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 890 // Copy the legal parts from the registers. 891 EVT ValueVT = ValueVTs[Value]; 892 unsigned NumRegs = RegCount[Value]; 893 MVT RegisterVT = isABIMangled() 894 ? TLI.getRegisterTypeForCallingConv( 895 *DAG.getContext(), *CallConv, RegVTs[Value]) 896 : RegVTs[Value]; 897 898 Parts.resize(NumRegs); 899 for (unsigned i = 0; i != NumRegs; ++i) { 900 SDValue P; 901 if (!Glue) { 902 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 903 } else { 904 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue); 905 *Glue = P.getValue(2); 906 } 907 908 Chain = P.getValue(1); 909 Parts[i] = P; 910 911 // If the source register was virtual and if we know something about it, 912 // add an assert node. 913 if (!Register::isVirtualRegister(Regs[Part + i]) || 914 !RegisterVT.isInteger()) 915 continue; 916 917 const FunctionLoweringInfo::LiveOutInfo *LOI = 918 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 919 if (!LOI) 920 continue; 921 922 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 923 unsigned NumSignBits = LOI->NumSignBits; 924 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 925 926 if (NumZeroBits == RegSize) { 927 // The current value is a zero. 928 // Explicitly express that as it would be easier for 929 // optimizations to kick in. 930 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 931 continue; 932 } 933 934 // FIXME: We capture more information than the dag can represent. For 935 // now, just use the tightest assertzext/assertsext possible. 936 bool isSExt; 937 EVT FromVT(MVT::Other); 938 if (NumZeroBits) { 939 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 940 isSExt = false; 941 } else if (NumSignBits > 1) { 942 FromVT = 943 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 944 isSExt = true; 945 } else { 946 continue; 947 } 948 // Add an assertion node. 949 assert(FromVT != MVT::Other); 950 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 951 RegisterVT, P, DAG.getValueType(FromVT)); 952 } 953 954 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 955 RegisterVT, ValueVT, V, Chain, CallConv); 956 Part += NumRegs; 957 Parts.clear(); 958 } 959 960 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 961 } 962 963 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 964 const SDLoc &dl, SDValue &Chain, SDValue *Glue, 965 const Value *V, 966 ISD::NodeType PreferredExtendType) const { 967 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 968 ISD::NodeType ExtendKind = PreferredExtendType; 969 970 // Get the list of the values's legal parts. 971 unsigned NumRegs = Regs.size(); 972 SmallVector<SDValue, 8> Parts(NumRegs); 973 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 974 unsigned NumParts = RegCount[Value]; 975 976 MVT RegisterVT = isABIMangled() 977 ? TLI.getRegisterTypeForCallingConv( 978 *DAG.getContext(), *CallConv, RegVTs[Value]) 979 : RegVTs[Value]; 980 981 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 982 ExtendKind = ISD::ZERO_EXTEND; 983 984 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 985 NumParts, RegisterVT, V, CallConv, ExtendKind); 986 Part += NumParts; 987 } 988 989 // Copy the parts into the registers. 990 SmallVector<SDValue, 8> Chains(NumRegs); 991 for (unsigned i = 0; i != NumRegs; ++i) { 992 SDValue Part; 993 if (!Glue) { 994 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 995 } else { 996 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue); 997 *Glue = Part.getValue(1); 998 } 999 1000 Chains[i] = Part.getValue(0); 1001 } 1002 1003 if (NumRegs == 1 || Glue) 1004 // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is 1005 // flagged to it. That is the CopyToReg nodes and the user are considered 1006 // a single scheduling unit. If we create a TokenFactor and return it as 1007 // chain, then the TokenFactor is both a predecessor (operand) of the 1008 // user as well as a successor (the TF operands are flagged to the user). 1009 // c1, f1 = CopyToReg 1010 // c2, f2 = CopyToReg 1011 // c3 = TokenFactor c1, c2 1012 // ... 1013 // = op c3, ..., f2 1014 Chain = Chains[NumRegs-1]; 1015 else 1016 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 1017 } 1018 1019 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching, 1020 unsigned MatchingIdx, const SDLoc &dl, 1021 SelectionDAG &DAG, 1022 std::vector<SDValue> &Ops) const { 1023 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1024 1025 InlineAsm::Flag Flag(Code, Regs.size()); 1026 if (HasMatching) 1027 Flag.setMatchingOp(MatchingIdx); 1028 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 1029 // Put the register class of the virtual registers in the flag word. That 1030 // way, later passes can recompute register class constraints for inline 1031 // assembly as well as normal instructions. 1032 // Don't do this for tied operands that can use the regclass information 1033 // from the def. 1034 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1035 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 1036 Flag.setRegClass(RC->getID()); 1037 } 1038 1039 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 1040 Ops.push_back(Res); 1041 1042 if (Code == InlineAsm::Kind::Clobber) { 1043 // Clobbers should always have a 1:1 mapping with registers, and may 1044 // reference registers that have illegal (e.g. vector) types. Hence, we 1045 // shouldn't try to apply any sort of splitting logic to them. 1046 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1047 "No 1:1 mapping from clobbers to regs?"); 1048 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1049 (void)SP; 1050 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1051 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1052 assert( 1053 (Regs[I] != SP || 1054 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1055 "If we clobbered the stack pointer, MFI should know about it."); 1056 } 1057 return; 1058 } 1059 1060 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1061 MVT RegisterVT = RegVTs[Value]; 1062 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1063 RegisterVT); 1064 for (unsigned i = 0; i != NumRegs; ++i) { 1065 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1066 unsigned TheReg = Regs[Reg++]; 1067 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1068 } 1069 } 1070 } 1071 1072 SmallVector<std::pair<unsigned, TypeSize>, 4> 1073 RegsForValue::getRegsAndSizes() const { 1074 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1075 unsigned I = 0; 1076 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1077 unsigned RegCount = std::get<0>(CountAndVT); 1078 MVT RegisterVT = std::get<1>(CountAndVT); 1079 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1080 for (unsigned E = I + RegCount; I != E; ++I) 1081 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1082 } 1083 return OutVec; 1084 } 1085 1086 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1087 AssumptionCache *ac, 1088 const TargetLibraryInfo *li) { 1089 AA = aa; 1090 AC = ac; 1091 GFI = gfi; 1092 LibInfo = li; 1093 Context = DAG.getContext(); 1094 LPadToCallSiteMap.clear(); 1095 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1096 AssignmentTrackingEnabled = isAssignmentTrackingEnabled( 1097 *DAG.getMachineFunction().getFunction().getParent()); 1098 } 1099 1100 void SelectionDAGBuilder::clear() { 1101 NodeMap.clear(); 1102 UnusedArgNodeMap.clear(); 1103 PendingLoads.clear(); 1104 PendingExports.clear(); 1105 PendingConstrainedFP.clear(); 1106 PendingConstrainedFPStrict.clear(); 1107 CurInst = nullptr; 1108 HasTailCall = false; 1109 SDNodeOrder = LowestSDNodeOrder; 1110 StatepointLowering.clear(); 1111 } 1112 1113 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1114 DanglingDebugInfoMap.clear(); 1115 } 1116 1117 // Update DAG root to include dependencies on Pending chains. 1118 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1119 SDValue Root = DAG.getRoot(); 1120 1121 if (Pending.empty()) 1122 return Root; 1123 1124 // Add current root to PendingChains, unless we already indirectly 1125 // depend on it. 1126 if (Root.getOpcode() != ISD::EntryToken) { 1127 unsigned i = 0, e = Pending.size(); 1128 for (; i != e; ++i) { 1129 assert(Pending[i].getNode()->getNumOperands() > 1); 1130 if (Pending[i].getNode()->getOperand(0) == Root) 1131 break; // Don't add the root if we already indirectly depend on it. 1132 } 1133 1134 if (i == e) 1135 Pending.push_back(Root); 1136 } 1137 1138 if (Pending.size() == 1) 1139 Root = Pending[0]; 1140 else 1141 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1142 1143 DAG.setRoot(Root); 1144 Pending.clear(); 1145 return Root; 1146 } 1147 1148 SDValue SelectionDAGBuilder::getMemoryRoot() { 1149 return updateRoot(PendingLoads); 1150 } 1151 1152 SDValue SelectionDAGBuilder::getRoot() { 1153 // Chain up all pending constrained intrinsics together with all 1154 // pending loads, by simply appending them to PendingLoads and 1155 // then calling getMemoryRoot(). 1156 PendingLoads.reserve(PendingLoads.size() + 1157 PendingConstrainedFP.size() + 1158 PendingConstrainedFPStrict.size()); 1159 PendingLoads.append(PendingConstrainedFP.begin(), 1160 PendingConstrainedFP.end()); 1161 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1162 PendingConstrainedFPStrict.end()); 1163 PendingConstrainedFP.clear(); 1164 PendingConstrainedFPStrict.clear(); 1165 return getMemoryRoot(); 1166 } 1167 1168 SDValue SelectionDAGBuilder::getControlRoot() { 1169 // We need to emit pending fpexcept.strict constrained intrinsics, 1170 // so append them to the PendingExports list. 1171 PendingExports.append(PendingConstrainedFPStrict.begin(), 1172 PendingConstrainedFPStrict.end()); 1173 PendingConstrainedFPStrict.clear(); 1174 return updateRoot(PendingExports); 1175 } 1176 1177 void SelectionDAGBuilder::handleDebugDeclare(Value *Address, 1178 DILocalVariable *Variable, 1179 DIExpression *Expression, 1180 DebugLoc DL) { 1181 assert(Variable && "Missing variable"); 1182 1183 // Check if address has undef value. 1184 if (!Address || isa<UndefValue>(Address) || 1185 (Address->use_empty() && !isa<Argument>(Address))) { 1186 LLVM_DEBUG( 1187 dbgs() 1188 << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n"); 1189 return; 1190 } 1191 1192 bool IsParameter = Variable->isParameter() || isa<Argument>(Address); 1193 1194 SDValue &N = NodeMap[Address]; 1195 if (!N.getNode() && isa<Argument>(Address)) 1196 // Check unused arguments map. 1197 N = UnusedArgNodeMap[Address]; 1198 SDDbgValue *SDV; 1199 if (N.getNode()) { 1200 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 1201 Address = BCI->getOperand(0); 1202 // Parameters are handled specially. 1203 auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 1204 if (IsParameter && FINode) { 1205 // Byval parameter. We have a frame index at this point. 1206 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 1207 /*IsIndirect*/ true, DL, SDNodeOrder); 1208 } else if (isa<Argument>(Address)) { 1209 // Address is an argument, so try to emit its dbg value using 1210 // virtual register info from the FuncInfo.ValueMap. 1211 EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1212 FuncArgumentDbgValueKind::Declare, N); 1213 return; 1214 } else { 1215 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 1216 true, DL, SDNodeOrder); 1217 } 1218 DAG.AddDbgValue(SDV, IsParameter); 1219 } else { 1220 // If Address is an argument then try to emit its dbg value using 1221 // virtual register info from the FuncInfo.ValueMap. 1222 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1223 FuncArgumentDbgValueKind::Declare, N)) { 1224 LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info" 1225 << " (could not emit func-arg dbg_value)\n"); 1226 } 1227 } 1228 return; 1229 } 1230 1231 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) { 1232 // Add SDDbgValue nodes for any var locs here. Do so before updating 1233 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1234 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) { 1235 // Add SDDbgValue nodes for any var locs here. Do so before updating 1236 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1237 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I); 1238 It != End; ++It) { 1239 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID); 1240 dropDanglingDebugInfo(Var, It->Expr); 1241 if (It->Values.isKillLocation(It->Expr)) { 1242 handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder); 1243 continue; 1244 } 1245 SmallVector<Value *> Values(It->Values.location_ops()); 1246 if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder, 1247 It->Values.hasArgList())) { 1248 SmallVector<Value *, 4> Vals; 1249 for (Value *V : It->Values.location_ops()) 1250 Vals.push_back(V); 1251 addDanglingDebugInfo(Vals, 1252 FnVarLocs->getDILocalVariable(It->VariableID), 1253 It->Expr, Vals.size() > 1, It->DL, SDNodeOrder); 1254 } 1255 } 1256 } 1257 1258 // We must skip DbgVariableRecords if they've already been processed above as 1259 // we have just emitted the debug values resulting from assignment tracking 1260 // analysis, making any existing DbgVariableRecords redundant (and probably 1261 // less correct). We still need to process DbgLabelRecords. This does sink 1262 // DbgLabelRecords to the bottom of the group of debug records. That sholdn't 1263 // be important as it does so deterministcally and ordering between 1264 // DbgLabelRecords and DbgVariableRecords is immaterial (other than for MIR/IR 1265 // printing). 1266 bool SkipDbgVariableRecords = DAG.getFunctionVarLocs(); 1267 // Is there is any debug-info attached to this instruction, in the form of 1268 // DbgRecord non-instruction debug-info records. 1269 for (DbgRecord &DR : I.getDbgRecordRange()) { 1270 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 1271 assert(DLR->getLabel() && "Missing label"); 1272 SDDbgLabel *SDV = 1273 DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder); 1274 DAG.AddDbgLabel(SDV); 1275 continue; 1276 } 1277 1278 if (SkipDbgVariableRecords) 1279 continue; 1280 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 1281 DILocalVariable *Variable = DVR.getVariable(); 1282 DIExpression *Expression = DVR.getExpression(); 1283 dropDanglingDebugInfo(Variable, Expression); 1284 1285 if (DVR.getType() == DbgVariableRecord::LocationType::Declare) { 1286 if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR)) 1287 continue; 1288 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DVR 1289 << "\n"); 1290 handleDebugDeclare(DVR.getVariableLocationOp(0), Variable, Expression, 1291 DVR.getDebugLoc()); 1292 continue; 1293 } 1294 1295 // A DbgVariableRecord with no locations is a kill location. 1296 SmallVector<Value *, 4> Values(DVR.location_ops()); 1297 if (Values.empty()) { 1298 handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(), 1299 SDNodeOrder); 1300 continue; 1301 } 1302 1303 // A DbgVariableRecord with an undef or absent location is also a kill 1304 // location. 1305 if (llvm::any_of(Values, 1306 [](Value *V) { return !V || isa<UndefValue>(V); })) { 1307 handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(), 1308 SDNodeOrder); 1309 continue; 1310 } 1311 1312 bool IsVariadic = DVR.hasArgList(); 1313 if (!handleDebugValue(Values, Variable, Expression, DVR.getDebugLoc(), 1314 SDNodeOrder, IsVariadic)) { 1315 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 1316 DVR.getDebugLoc(), SDNodeOrder); 1317 } 1318 } 1319 } 1320 1321 void SelectionDAGBuilder::visit(const Instruction &I) { 1322 visitDbgInfo(I); 1323 1324 // Set up outgoing PHI node register values before emitting the terminator. 1325 if (I.isTerminator()) { 1326 HandlePHINodesInSuccessorBlocks(I.getParent()); 1327 } 1328 1329 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1330 if (!isa<DbgInfoIntrinsic>(I)) 1331 ++SDNodeOrder; 1332 1333 CurInst = &I; 1334 1335 // Set inserted listener only if required. 1336 bool NodeInserted = false; 1337 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1338 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1339 MDNode *MMRA = I.getMetadata(LLVMContext::MD_mmra); 1340 if (PCSectionsMD || MMRA) { 1341 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1342 DAG, [&](SDNode *) { NodeInserted = true; }); 1343 } 1344 1345 visit(I.getOpcode(), I); 1346 1347 if (!I.isTerminator() && !HasTailCall && 1348 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1349 CopyToExportRegsIfNeeded(&I); 1350 1351 // Handle metadata. 1352 if (PCSectionsMD || MMRA) { 1353 auto It = NodeMap.find(&I); 1354 if (It != NodeMap.end()) { 1355 if (PCSectionsMD) 1356 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1357 if (MMRA) 1358 DAG.addMMRAMetadata(It->second.getNode(), MMRA); 1359 } else if (NodeInserted) { 1360 // This should not happen; if it does, don't let it go unnoticed so we can 1361 // fix it. Relevant visit*() function is probably missing a setValue(). 1362 errs() << "warning: loosing !pcsections and/or !mmra metadata [" 1363 << I.getModule()->getName() << "]\n"; 1364 LLVM_DEBUG(I.dump()); 1365 assert(false); 1366 } 1367 } 1368 1369 CurInst = nullptr; 1370 } 1371 1372 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1373 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1374 } 1375 1376 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1377 // Note: this doesn't use InstVisitor, because it has to work with 1378 // ConstantExpr's in addition to instructions. 1379 switch (Opcode) { 1380 default: llvm_unreachable("Unknown instruction type encountered!"); 1381 // Build the switch statement using the Instruction.def file. 1382 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1383 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1384 #include "llvm/IR/Instruction.def" 1385 } 1386 } 1387 1388 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, 1389 DILocalVariable *Variable, 1390 DebugLoc DL, unsigned Order, 1391 SmallVectorImpl<Value *> &Values, 1392 DIExpression *Expression) { 1393 // For variadic dbg_values we will now insert an undef. 1394 // FIXME: We can potentially recover these! 1395 SmallVector<SDDbgOperand, 2> Locs; 1396 for (const Value *V : Values) { 1397 auto *Undef = UndefValue::get(V->getType()); 1398 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1399 } 1400 SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {}, 1401 /*IsIndirect=*/false, DL, Order, 1402 /*IsVariadic=*/true); 1403 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1404 return true; 1405 } 1406 1407 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values, 1408 DILocalVariable *Var, 1409 DIExpression *Expr, 1410 bool IsVariadic, DebugLoc DL, 1411 unsigned Order) { 1412 if (IsVariadic) { 1413 handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr); 1414 return; 1415 } 1416 // TODO: Dangling debug info will eventually either be resolved or produce 1417 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1418 // between the original dbg.value location and its resolved DBG_VALUE, 1419 // which we should ideally fill with an extra Undef DBG_VALUE. 1420 assert(Values.size() == 1); 1421 DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order); 1422 } 1423 1424 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1425 const DIExpression *Expr) { 1426 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1427 DIVariable *DanglingVariable = DDI.getVariable(); 1428 DIExpression *DanglingExpr = DDI.getExpression(); 1429 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1430 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " 1431 << printDDI(nullptr, DDI) << "\n"); 1432 return true; 1433 } 1434 return false; 1435 }; 1436 1437 for (auto &DDIMI : DanglingDebugInfoMap) { 1438 DanglingDebugInfoVector &DDIV = DDIMI.second; 1439 1440 // If debug info is to be dropped, run it through final checks to see 1441 // whether it can be salvaged. 1442 for (auto &DDI : DDIV) 1443 if (isMatchingDbgValue(DDI)) 1444 salvageUnresolvedDbgValue(DDIMI.first, DDI); 1445 1446 erase_if(DDIV, isMatchingDbgValue); 1447 } 1448 } 1449 1450 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1451 // generate the debug data structures now that we've seen its definition. 1452 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1453 SDValue Val) { 1454 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1455 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1456 return; 1457 1458 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1459 for (auto &DDI : DDIV) { 1460 DebugLoc DL = DDI.getDebugLoc(); 1461 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1462 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1463 DILocalVariable *Variable = DDI.getVariable(); 1464 DIExpression *Expr = DDI.getExpression(); 1465 assert(Variable->isValidLocationForIntrinsic(DL) && 1466 "Expected inlined-at fields to agree"); 1467 SDDbgValue *SDV; 1468 if (Val.getNode()) { 1469 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1470 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1471 // we couldn't resolve it directly when examining the DbgValue intrinsic 1472 // in the first place we should not be more successful here). Unless we 1473 // have some test case that prove this to be correct we should avoid 1474 // calling EmitFuncArgumentDbgValue here. 1475 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL, 1476 FuncArgumentDbgValueKind::Value, Val)) { 1477 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " 1478 << printDDI(V, DDI) << "\n"); 1479 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1480 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1481 // inserted after the definition of Val when emitting the instructions 1482 // after ISel. An alternative could be to teach 1483 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1484 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1485 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1486 << ValSDNodeOrder << "\n"); 1487 SDV = getDbgValue(Val, Variable, Expr, DL, 1488 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1489 DAG.AddDbgValue(SDV, false); 1490 } else 1491 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " 1492 << printDDI(V, DDI) 1493 << " in EmitFuncArgumentDbgValue\n"); 1494 } else { 1495 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI) 1496 << "\n"); 1497 auto Undef = UndefValue::get(V->getType()); 1498 auto SDV = 1499 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder); 1500 DAG.AddDbgValue(SDV, false); 1501 } 1502 } 1503 DDIV.clear(); 1504 } 1505 1506 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V, 1507 DanglingDebugInfo &DDI) { 1508 // TODO: For the variadic implementation, instead of only checking the fail 1509 // state of `handleDebugValue`, we need know specifically which values were 1510 // invalid, so that we attempt to salvage only those values when processing 1511 // a DIArgList. 1512 const Value *OrigV = V; 1513 DILocalVariable *Var = DDI.getVariable(); 1514 DIExpression *Expr = DDI.getExpression(); 1515 DebugLoc DL = DDI.getDebugLoc(); 1516 unsigned SDOrder = DDI.getSDNodeOrder(); 1517 1518 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1519 // that DW_OP_stack_value is desired. 1520 bool StackValue = true; 1521 1522 // Can this Value can be encoded without any further work? 1523 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) 1524 return; 1525 1526 // Attempt to salvage back through as many instructions as possible. Bail if 1527 // a non-instruction is seen, such as a constant expression or global 1528 // variable. FIXME: Further work could recover those too. 1529 while (isa<Instruction>(V)) { 1530 const Instruction &VAsInst = *cast<const Instruction>(V); 1531 // Temporary "0", awaiting real implementation. 1532 SmallVector<uint64_t, 16> Ops; 1533 SmallVector<Value *, 4> AdditionalValues; 1534 V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst), 1535 Expr->getNumLocationOperands(), Ops, 1536 AdditionalValues); 1537 // If we cannot salvage any further, and haven't yet found a suitable debug 1538 // expression, bail out. 1539 if (!V) 1540 break; 1541 1542 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1543 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1544 // here for variadic dbg_values, remove that condition. 1545 if (!AdditionalValues.empty()) 1546 break; 1547 1548 // New value and expr now represent this debuginfo. 1549 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1550 1551 // Some kind of simplification occurred: check whether the operand of the 1552 // salvaged debug expression can be encoded in this DAG. 1553 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { 1554 LLVM_DEBUG( 1555 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" 1556 << *OrigV << "\nBy stripping back to:\n " << *V << "\n"); 1557 return; 1558 } 1559 } 1560 1561 // This was the final opportunity to salvage this debug information, and it 1562 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1563 // any earlier variable location. 1564 assert(OrigV && "V shouldn't be null"); 1565 auto *Undef = UndefValue::get(OrigV->getType()); 1566 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1567 DAG.AddDbgValue(SDV, false); 1568 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " 1569 << printDDI(OrigV, DDI) << "\n"); 1570 } 1571 1572 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var, 1573 DIExpression *Expr, 1574 DebugLoc DbgLoc, 1575 unsigned Order) { 1576 Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context)); 1577 DIExpression *NewExpr = 1578 const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr)); 1579 handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order, 1580 /*IsVariadic*/ false); 1581 } 1582 1583 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1584 DILocalVariable *Var, 1585 DIExpression *Expr, DebugLoc DbgLoc, 1586 unsigned Order, bool IsVariadic) { 1587 if (Values.empty()) 1588 return true; 1589 1590 // Filter EntryValue locations out early. 1591 if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc)) 1592 return true; 1593 1594 SmallVector<SDDbgOperand> LocationOps; 1595 SmallVector<SDNode *> Dependencies; 1596 for (const Value *V : Values) { 1597 // Constant value. 1598 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1599 isa<ConstantPointerNull>(V)) { 1600 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1601 continue; 1602 } 1603 1604 // Look through IntToPtr constants. 1605 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1606 if (CE->getOpcode() == Instruction::IntToPtr) { 1607 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1608 continue; 1609 } 1610 1611 // If the Value is a frame index, we can create a FrameIndex debug value 1612 // without relying on the DAG at all. 1613 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1614 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1615 if (SI != FuncInfo.StaticAllocaMap.end()) { 1616 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1617 continue; 1618 } 1619 } 1620 1621 // Do not use getValue() in here; we don't want to generate code at 1622 // this point if it hasn't been done yet. 1623 SDValue N = NodeMap[V]; 1624 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1625 N = UnusedArgNodeMap[V]; 1626 if (N.getNode()) { 1627 // Only emit func arg dbg value for non-variadic dbg.values for now. 1628 if (!IsVariadic && 1629 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, 1630 FuncArgumentDbgValueKind::Value, N)) 1631 return true; 1632 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1633 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1634 // describe stack slot locations. 1635 // 1636 // Consider "int x = 0; int *px = &x;". There are two kinds of 1637 // interesting debug values here after optimization: 1638 // 1639 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1640 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1641 // 1642 // Both describe the direct values of their associated variables. 1643 Dependencies.push_back(N.getNode()); 1644 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1645 continue; 1646 } 1647 LocationOps.emplace_back( 1648 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1649 continue; 1650 } 1651 1652 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1653 // Special rules apply for the first dbg.values of parameter variables in a 1654 // function. Identify them by the fact they reference Argument Values, that 1655 // they're parameters, and they are parameters of the current function. We 1656 // need to let them dangle until they get an SDNode. 1657 bool IsParamOfFunc = 1658 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); 1659 if (IsParamOfFunc) 1660 return false; 1661 1662 // The value is not used in this block yet (or it would have an SDNode). 1663 // We still want the value to appear for the user if possible -- if it has 1664 // an associated VReg, we can refer to that instead. 1665 auto VMI = FuncInfo.ValueMap.find(V); 1666 if (VMI != FuncInfo.ValueMap.end()) { 1667 unsigned Reg = VMI->second; 1668 // If this is a PHI node, it may be split up into several MI PHI nodes 1669 // (in FunctionLoweringInfo::set). 1670 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1671 V->getType(), std::nullopt); 1672 if (RFV.occupiesMultipleRegs()) { 1673 // FIXME: We could potentially support variadic dbg_values here. 1674 if (IsVariadic) 1675 return false; 1676 unsigned Offset = 0; 1677 unsigned BitsToDescribe = 0; 1678 if (auto VarSize = Var->getSizeInBits()) 1679 BitsToDescribe = *VarSize; 1680 if (auto Fragment = Expr->getFragmentInfo()) 1681 BitsToDescribe = Fragment->SizeInBits; 1682 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1683 // Bail out if all bits are described already. 1684 if (Offset >= BitsToDescribe) 1685 break; 1686 // TODO: handle scalable vectors. 1687 unsigned RegisterSize = RegAndSize.second; 1688 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1689 ? BitsToDescribe - Offset 1690 : RegisterSize; 1691 auto FragmentExpr = DIExpression::createFragmentExpression( 1692 Expr, Offset, FragmentSize); 1693 if (!FragmentExpr) 1694 continue; 1695 SDDbgValue *SDV = DAG.getVRegDbgValue( 1696 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, Order); 1697 DAG.AddDbgValue(SDV, false); 1698 Offset += RegisterSize; 1699 } 1700 return true; 1701 } 1702 // We can use simple vreg locations for variadic dbg_values as well. 1703 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1704 continue; 1705 } 1706 // We failed to create a SDDbgOperand for V. 1707 return false; 1708 } 1709 1710 // We have created a SDDbgOperand for each Value in Values. 1711 assert(!LocationOps.empty()); 1712 SDDbgValue *SDV = 1713 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1714 /*IsIndirect=*/false, DbgLoc, Order, IsVariadic); 1715 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1716 return true; 1717 } 1718 1719 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1720 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1721 for (auto &Pair : DanglingDebugInfoMap) 1722 for (auto &DDI : Pair.second) 1723 salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI); 1724 clearDanglingDebugInfo(); 1725 } 1726 1727 /// getCopyFromRegs - If there was virtual register allocated for the value V 1728 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1729 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1730 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1731 SDValue Result; 1732 1733 if (It != FuncInfo.ValueMap.end()) { 1734 Register InReg = It->second; 1735 1736 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1737 DAG.getDataLayout(), InReg, Ty, 1738 std::nullopt); // This is not an ABI copy. 1739 SDValue Chain = DAG.getEntryNode(); 1740 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1741 V); 1742 resolveDanglingDebugInfo(V, Result); 1743 } 1744 1745 return Result; 1746 } 1747 1748 /// getValue - Return an SDValue for the given Value. 1749 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1750 // If we already have an SDValue for this value, use it. It's important 1751 // to do this first, so that we don't create a CopyFromReg if we already 1752 // have a regular SDValue. 1753 SDValue &N = NodeMap[V]; 1754 if (N.getNode()) return N; 1755 1756 // If there's a virtual register allocated and initialized for this 1757 // value, use it. 1758 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1759 return copyFromReg; 1760 1761 // Otherwise create a new SDValue and remember it. 1762 SDValue Val = getValueImpl(V); 1763 NodeMap[V] = Val; 1764 resolveDanglingDebugInfo(V, Val); 1765 return Val; 1766 } 1767 1768 /// getNonRegisterValue - Return an SDValue for the given Value, but 1769 /// don't look in FuncInfo.ValueMap for a virtual register. 1770 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1771 // If we already have an SDValue for this value, use it. 1772 SDValue &N = NodeMap[V]; 1773 if (N.getNode()) { 1774 if (isIntOrFPConstant(N)) { 1775 // Remove the debug location from the node as the node is about to be used 1776 // in a location which may differ from the original debug location. This 1777 // is relevant to Constant and ConstantFP nodes because they can appear 1778 // as constant expressions inside PHI nodes. 1779 N->setDebugLoc(DebugLoc()); 1780 } 1781 return N; 1782 } 1783 1784 // Otherwise create a new SDValue and remember it. 1785 SDValue Val = getValueImpl(V); 1786 NodeMap[V] = Val; 1787 resolveDanglingDebugInfo(V, Val); 1788 return Val; 1789 } 1790 1791 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1792 /// Create an SDValue for the given value. 1793 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1794 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1795 1796 if (const Constant *C = dyn_cast<Constant>(V)) { 1797 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1798 1799 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1800 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1801 1802 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1803 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1804 1805 if (const ConstantPtrAuth *CPA = dyn_cast<ConstantPtrAuth>(C)) { 1806 return DAG.getNode(ISD::PtrAuthGlobalAddress, getCurSDLoc(), VT, 1807 getValue(CPA->getPointer()), getValue(CPA->getKey()), 1808 getValue(CPA->getAddrDiscriminator()), 1809 getValue(CPA->getDiscriminator())); 1810 } 1811 1812 if (isa<ConstantPointerNull>(C)) { 1813 unsigned AS = V->getType()->getPointerAddressSpace(); 1814 return DAG.getConstant(0, getCurSDLoc(), 1815 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1816 } 1817 1818 if (match(C, m_VScale())) 1819 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1820 1821 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1822 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1823 1824 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1825 return DAG.getUNDEF(VT); 1826 1827 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1828 visit(CE->getOpcode(), *CE); 1829 SDValue N1 = NodeMap[V]; 1830 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1831 return N1; 1832 } 1833 1834 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1835 SmallVector<SDValue, 4> Constants; 1836 for (const Use &U : C->operands()) { 1837 SDNode *Val = getValue(U).getNode(); 1838 // If the operand is an empty aggregate, there are no values. 1839 if (!Val) continue; 1840 // Add each leaf value from the operand to the Constants list 1841 // to form a flattened list of all the values. 1842 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1843 Constants.push_back(SDValue(Val, i)); 1844 } 1845 1846 return DAG.getMergeValues(Constants, getCurSDLoc()); 1847 } 1848 1849 if (const ConstantDataSequential *CDS = 1850 dyn_cast<ConstantDataSequential>(C)) { 1851 SmallVector<SDValue, 4> Ops; 1852 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1853 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1854 // Add each leaf value from the operand to the Constants list 1855 // to form a flattened list of all the values. 1856 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1857 Ops.push_back(SDValue(Val, i)); 1858 } 1859 1860 if (isa<ArrayType>(CDS->getType())) 1861 return DAG.getMergeValues(Ops, getCurSDLoc()); 1862 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1863 } 1864 1865 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1866 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1867 "Unknown struct or array constant!"); 1868 1869 SmallVector<EVT, 4> ValueVTs; 1870 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1871 unsigned NumElts = ValueVTs.size(); 1872 if (NumElts == 0) 1873 return SDValue(); // empty struct 1874 SmallVector<SDValue, 4> Constants(NumElts); 1875 for (unsigned i = 0; i != NumElts; ++i) { 1876 EVT EltVT = ValueVTs[i]; 1877 if (isa<UndefValue>(C)) 1878 Constants[i] = DAG.getUNDEF(EltVT); 1879 else if (EltVT.isFloatingPoint()) 1880 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1881 else 1882 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1883 } 1884 1885 return DAG.getMergeValues(Constants, getCurSDLoc()); 1886 } 1887 1888 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1889 return DAG.getBlockAddress(BA, VT); 1890 1891 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1892 return getValue(Equiv->getGlobalValue()); 1893 1894 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1895 return getValue(NC->getGlobalValue()); 1896 1897 if (VT == MVT::aarch64svcount) { 1898 assert(C->isNullValue() && "Can only zero this target type!"); 1899 return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, 1900 DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1)); 1901 } 1902 1903 VectorType *VecTy = cast<VectorType>(V->getType()); 1904 1905 // Now that we know the number and type of the elements, get that number of 1906 // elements into the Ops array based on what kind of constant it is. 1907 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1908 SmallVector<SDValue, 16> Ops; 1909 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1910 for (unsigned i = 0; i != NumElements; ++i) 1911 Ops.push_back(getValue(CV->getOperand(i))); 1912 1913 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1914 } 1915 1916 if (isa<ConstantAggregateZero>(C)) { 1917 EVT EltVT = 1918 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1919 1920 SDValue Op; 1921 if (EltVT.isFloatingPoint()) 1922 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1923 else 1924 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1925 1926 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); 1927 } 1928 1929 llvm_unreachable("Unknown vector constant"); 1930 } 1931 1932 // If this is a static alloca, generate it as the frameindex instead of 1933 // computation. 1934 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1935 DenseMap<const AllocaInst*, int>::iterator SI = 1936 FuncInfo.StaticAllocaMap.find(AI); 1937 if (SI != FuncInfo.StaticAllocaMap.end()) 1938 return DAG.getFrameIndex( 1939 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType())); 1940 } 1941 1942 // If this is an instruction which fast-isel has deferred, select it now. 1943 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1944 Register InReg = FuncInfo.InitializeRegForValue(Inst); 1945 1946 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1947 Inst->getType(), std::nullopt); 1948 SDValue Chain = DAG.getEntryNode(); 1949 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1950 } 1951 1952 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1953 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1954 1955 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1956 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1957 1958 llvm_unreachable("Can't get register for value!"); 1959 } 1960 1961 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1962 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1963 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1964 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1965 bool IsSEH = isAsynchronousEHPersonality(Pers); 1966 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1967 if (!IsSEH) 1968 CatchPadMBB->setIsEHScopeEntry(); 1969 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1970 if (IsMSVCCXX || IsCoreCLR) 1971 CatchPadMBB->setIsEHFuncletEntry(); 1972 } 1973 1974 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1975 // Update machine-CFG edge. 1976 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1977 FuncInfo.MBB->addSuccessor(TargetMBB); 1978 TargetMBB->setIsEHCatchretTarget(true); 1979 DAG.getMachineFunction().setHasEHCatchret(true); 1980 1981 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1982 bool IsSEH = isAsynchronousEHPersonality(Pers); 1983 if (IsSEH) { 1984 // If this is not a fall-through branch or optimizations are switched off, 1985 // emit the branch. 1986 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1987 TM.getOptLevel() == CodeGenOptLevel::None) 1988 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1989 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1990 return; 1991 } 1992 1993 // Figure out the funclet membership for the catchret's successor. 1994 // This will be used by the FuncletLayout pass to determine how to order the 1995 // BB's. 1996 // A 'catchret' returns to the outer scope's color. 1997 Value *ParentPad = I.getCatchSwitchParentPad(); 1998 const BasicBlock *SuccessorColor; 1999 if (isa<ConstantTokenNone>(ParentPad)) 2000 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 2001 else 2002 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 2003 assert(SuccessorColor && "No parent funclet for catchret!"); 2004 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 2005 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 2006 2007 // Create the terminator node. 2008 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 2009 getControlRoot(), DAG.getBasicBlock(TargetMBB), 2010 DAG.getBasicBlock(SuccessorColorMBB)); 2011 DAG.setRoot(Ret); 2012 } 2013 2014 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 2015 // Don't emit any special code for the cleanuppad instruction. It just marks 2016 // the start of an EH scope/funclet. 2017 FuncInfo.MBB->setIsEHScopeEntry(); 2018 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 2019 if (Pers != EHPersonality::Wasm_CXX) { 2020 FuncInfo.MBB->setIsEHFuncletEntry(); 2021 FuncInfo.MBB->setIsCleanupFuncletEntry(); 2022 } 2023 } 2024 2025 // In wasm EH, even though a catchpad may not catch an exception if a tag does 2026 // not match, it is OK to add only the first unwind destination catchpad to the 2027 // successors, because there will be at least one invoke instruction within the 2028 // catch scope that points to the next unwind destination, if one exists, so 2029 // CFGSort cannot mess up with BB sorting order. 2030 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 2031 // call within them, and catchpads only consisting of 'catch (...)' have a 2032 // '__cxa_end_catch' call within them, both of which generate invokes in case 2033 // the next unwind destination exists, i.e., the next unwind destination is not 2034 // the caller.) 2035 // 2036 // Having at most one EH pad successor is also simpler and helps later 2037 // transformations. 2038 // 2039 // For example, 2040 // current: 2041 // invoke void @foo to ... unwind label %catch.dispatch 2042 // catch.dispatch: 2043 // %0 = catchswitch within ... [label %catch.start] unwind label %next 2044 // catch.start: 2045 // ... 2046 // ... in this BB or some other child BB dominated by this BB there will be an 2047 // invoke that points to 'next' BB as an unwind destination 2048 // 2049 // next: ; We don't need to add this to 'current' BB's successor 2050 // ... 2051 static void findWasmUnwindDestinations( 2052 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2053 BranchProbability Prob, 2054 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2055 &UnwindDests) { 2056 while (EHPadBB) { 2057 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2058 if (isa<CleanupPadInst>(Pad)) { 2059 // Stop on cleanup pads. 2060 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2061 UnwindDests.back().first->setIsEHScopeEntry(); 2062 break; 2063 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2064 // Add the catchpad handlers to the possible destinations. We don't 2065 // continue to the unwind destination of the catchswitch for wasm. 2066 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2067 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 2068 UnwindDests.back().first->setIsEHScopeEntry(); 2069 } 2070 break; 2071 } else { 2072 continue; 2073 } 2074 } 2075 } 2076 2077 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 2078 /// many places it could ultimately go. In the IR, we have a single unwind 2079 /// destination, but in the machine CFG, we enumerate all the possible blocks. 2080 /// This function skips over imaginary basic blocks that hold catchswitch 2081 /// instructions, and finds all the "real" machine 2082 /// basic block destinations. As those destinations may not be successors of 2083 /// EHPadBB, here we also calculate the edge probability to those destinations. 2084 /// The passed-in Prob is the edge probability to EHPadBB. 2085 static void findUnwindDestinations( 2086 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2087 BranchProbability Prob, 2088 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2089 &UnwindDests) { 2090 EHPersonality Personality = 2091 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 2092 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 2093 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 2094 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 2095 bool IsSEH = isAsynchronousEHPersonality(Personality); 2096 2097 if (IsWasmCXX) { 2098 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 2099 assert(UnwindDests.size() <= 1 && 2100 "There should be at most one unwind destination for wasm"); 2101 return; 2102 } 2103 2104 while (EHPadBB) { 2105 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2106 BasicBlock *NewEHPadBB = nullptr; 2107 if (isa<LandingPadInst>(Pad)) { 2108 // Stop on landingpads. They are not funclets. 2109 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2110 break; 2111 } else if (isa<CleanupPadInst>(Pad)) { 2112 // Stop on cleanup pads. Cleanups are always funclet entries for all known 2113 // personalities. 2114 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2115 UnwindDests.back().first->setIsEHScopeEntry(); 2116 UnwindDests.back().first->setIsEHFuncletEntry(); 2117 break; 2118 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2119 // Add the catchpad handlers to the possible destinations. 2120 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2121 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 2122 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 2123 if (IsMSVCCXX || IsCoreCLR) 2124 UnwindDests.back().first->setIsEHFuncletEntry(); 2125 if (!IsSEH) 2126 UnwindDests.back().first->setIsEHScopeEntry(); 2127 } 2128 NewEHPadBB = CatchSwitch->getUnwindDest(); 2129 } else { 2130 continue; 2131 } 2132 2133 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2134 if (BPI && NewEHPadBB) 2135 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 2136 EHPadBB = NewEHPadBB; 2137 } 2138 } 2139 2140 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 2141 // Update successor info. 2142 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2143 auto UnwindDest = I.getUnwindDest(); 2144 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2145 BranchProbability UnwindDestProb = 2146 (BPI && UnwindDest) 2147 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 2148 : BranchProbability::getZero(); 2149 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 2150 for (auto &UnwindDest : UnwindDests) { 2151 UnwindDest.first->setIsEHPad(); 2152 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 2153 } 2154 FuncInfo.MBB->normalizeSuccProbs(); 2155 2156 // Create the terminator node. 2157 SDValue Ret = 2158 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 2159 DAG.setRoot(Ret); 2160 } 2161 2162 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 2163 report_fatal_error("visitCatchSwitch not yet implemented!"); 2164 } 2165 2166 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 2167 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2168 auto &DL = DAG.getDataLayout(); 2169 SDValue Chain = getControlRoot(); 2170 SmallVector<ISD::OutputArg, 8> Outs; 2171 SmallVector<SDValue, 8> OutVals; 2172 2173 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 2174 // lower 2175 // 2176 // %val = call <ty> @llvm.experimental.deoptimize() 2177 // ret <ty> %val 2178 // 2179 // differently. 2180 if (I.getParent()->getTerminatingDeoptimizeCall()) { 2181 LowerDeoptimizingReturn(); 2182 return; 2183 } 2184 2185 if (!FuncInfo.CanLowerReturn) { 2186 unsigned DemoteReg = FuncInfo.DemoteRegister; 2187 const Function *F = I.getParent()->getParent(); 2188 2189 // Emit a store of the return value through the virtual register. 2190 // Leave Outs empty so that LowerReturn won't try to load return 2191 // registers the usual way. 2192 SmallVector<EVT, 1> PtrValueVTs; 2193 ComputeValueVTs(TLI, DL, 2194 PointerType::get(F->getContext(), 2195 DAG.getDataLayout().getAllocaAddrSpace()), 2196 PtrValueVTs); 2197 2198 SDValue RetPtr = 2199 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 2200 SDValue RetOp = getValue(I.getOperand(0)); 2201 2202 SmallVector<EVT, 4> ValueVTs, MemVTs; 2203 SmallVector<uint64_t, 4> Offsets; 2204 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 2205 &Offsets, 0); 2206 unsigned NumValues = ValueVTs.size(); 2207 2208 SmallVector<SDValue, 4> Chains(NumValues); 2209 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 2210 for (unsigned i = 0; i != NumValues; ++i) { 2211 // An aggregate return value cannot wrap around the address space, so 2212 // offsets to its parts don't wrap either. 2213 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 2214 TypeSize::getFixed(Offsets[i])); 2215 2216 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 2217 if (MemVTs[i] != ValueVTs[i]) 2218 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 2219 Chains[i] = DAG.getStore( 2220 Chain, getCurSDLoc(), Val, 2221 // FIXME: better loc info would be nice. 2222 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 2223 commonAlignment(BaseAlign, Offsets[i])); 2224 } 2225 2226 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 2227 MVT::Other, Chains); 2228 } else if (I.getNumOperands() != 0) { 2229 SmallVector<EVT, 4> ValueVTs; 2230 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 2231 unsigned NumValues = ValueVTs.size(); 2232 if (NumValues) { 2233 SDValue RetOp = getValue(I.getOperand(0)); 2234 2235 const Function *F = I.getParent()->getParent(); 2236 2237 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2238 I.getOperand(0)->getType(), F->getCallingConv(), 2239 /*IsVarArg*/ false, DL); 2240 2241 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2242 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2243 ExtendKind = ISD::SIGN_EXTEND; 2244 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2245 ExtendKind = ISD::ZERO_EXTEND; 2246 2247 LLVMContext &Context = F->getContext(); 2248 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2249 2250 for (unsigned j = 0; j != NumValues; ++j) { 2251 EVT VT = ValueVTs[j]; 2252 2253 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2254 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2255 2256 CallingConv::ID CC = F->getCallingConv(); 2257 2258 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2259 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2260 SmallVector<SDValue, 4> Parts(NumParts); 2261 getCopyToParts(DAG, getCurSDLoc(), 2262 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2263 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2264 2265 // 'inreg' on function refers to return value 2266 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2267 if (RetInReg) 2268 Flags.setInReg(); 2269 2270 if (I.getOperand(0)->getType()->isPointerTy()) { 2271 Flags.setPointer(); 2272 Flags.setPointerAddrSpace( 2273 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2274 } 2275 2276 if (NeedsRegBlock) { 2277 Flags.setInConsecutiveRegs(); 2278 if (j == NumValues - 1) 2279 Flags.setInConsecutiveRegsLast(); 2280 } 2281 2282 // Propagate extension type if any 2283 if (ExtendKind == ISD::SIGN_EXTEND) 2284 Flags.setSExt(); 2285 else if (ExtendKind == ISD::ZERO_EXTEND) 2286 Flags.setZExt(); 2287 2288 for (unsigned i = 0; i < NumParts; ++i) { 2289 Outs.push_back(ISD::OutputArg(Flags, 2290 Parts[i].getValueType().getSimpleVT(), 2291 VT, /*isfixed=*/true, 0, 0)); 2292 OutVals.push_back(Parts[i]); 2293 } 2294 } 2295 } 2296 } 2297 2298 // Push in swifterror virtual register as the last element of Outs. This makes 2299 // sure swifterror virtual register will be returned in the swifterror 2300 // physical register. 2301 const Function *F = I.getParent()->getParent(); 2302 if (TLI.supportSwiftError() && 2303 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2304 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2305 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2306 Flags.setSwiftError(); 2307 Outs.push_back(ISD::OutputArg( 2308 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2309 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2310 // Create SDNode for the swifterror virtual register. 2311 OutVals.push_back( 2312 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2313 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2314 EVT(TLI.getPointerTy(DL)))); 2315 } 2316 2317 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2318 CallingConv::ID CallConv = 2319 DAG.getMachineFunction().getFunction().getCallingConv(); 2320 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2321 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2322 2323 // Verify that the target's LowerReturn behaved as expected. 2324 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2325 "LowerReturn didn't return a valid chain!"); 2326 2327 // Update the DAG with the new chain value resulting from return lowering. 2328 DAG.setRoot(Chain); 2329 } 2330 2331 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2332 /// created for it, emit nodes to copy the value into the virtual 2333 /// registers. 2334 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2335 // Skip empty types 2336 if (V->getType()->isEmptyTy()) 2337 return; 2338 2339 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2340 if (VMI != FuncInfo.ValueMap.end()) { 2341 assert((!V->use_empty() || isa<CallBrInst>(V)) && 2342 "Unused value assigned virtual registers!"); 2343 CopyValueToVirtualRegister(V, VMI->second); 2344 } 2345 } 2346 2347 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2348 /// the current basic block, add it to ValueMap now so that we'll get a 2349 /// CopyTo/FromReg. 2350 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2351 // No need to export constants. 2352 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2353 2354 // Already exported? 2355 if (FuncInfo.isExportedInst(V)) return; 2356 2357 Register Reg = FuncInfo.InitializeRegForValue(V); 2358 CopyValueToVirtualRegister(V, Reg); 2359 } 2360 2361 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2362 const BasicBlock *FromBB) { 2363 // The operands of the setcc have to be in this block. We don't know 2364 // how to export them from some other block. 2365 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2366 // Can export from current BB. 2367 if (VI->getParent() == FromBB) 2368 return true; 2369 2370 // Is already exported, noop. 2371 return FuncInfo.isExportedInst(V); 2372 } 2373 2374 // If this is an argument, we can export it if the BB is the entry block or 2375 // if it is already exported. 2376 if (isa<Argument>(V)) { 2377 if (FromBB->isEntryBlock()) 2378 return true; 2379 2380 // Otherwise, can only export this if it is already exported. 2381 return FuncInfo.isExportedInst(V); 2382 } 2383 2384 // Otherwise, constants can always be exported. 2385 return true; 2386 } 2387 2388 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2389 BranchProbability 2390 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2391 const MachineBasicBlock *Dst) const { 2392 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2393 const BasicBlock *SrcBB = Src->getBasicBlock(); 2394 const BasicBlock *DstBB = Dst->getBasicBlock(); 2395 if (!BPI) { 2396 // If BPI is not available, set the default probability as 1 / N, where N is 2397 // the number of successors. 2398 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2399 return BranchProbability(1, SuccSize); 2400 } 2401 return BPI->getEdgeProbability(SrcBB, DstBB); 2402 } 2403 2404 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2405 MachineBasicBlock *Dst, 2406 BranchProbability Prob) { 2407 if (!FuncInfo.BPI) 2408 Src->addSuccessorWithoutProb(Dst); 2409 else { 2410 if (Prob.isUnknown()) 2411 Prob = getEdgeProbability(Src, Dst); 2412 Src->addSuccessor(Dst, Prob); 2413 } 2414 } 2415 2416 static bool InBlock(const Value *V, const BasicBlock *BB) { 2417 if (const Instruction *I = dyn_cast<Instruction>(V)) 2418 return I->getParent() == BB; 2419 return true; 2420 } 2421 2422 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2423 /// This function emits a branch and is used at the leaves of an OR or an 2424 /// AND operator tree. 2425 void 2426 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2427 MachineBasicBlock *TBB, 2428 MachineBasicBlock *FBB, 2429 MachineBasicBlock *CurBB, 2430 MachineBasicBlock *SwitchBB, 2431 BranchProbability TProb, 2432 BranchProbability FProb, 2433 bool InvertCond) { 2434 const BasicBlock *BB = CurBB->getBasicBlock(); 2435 2436 // If the leaf of the tree is a comparison, merge the condition into 2437 // the caseblock. 2438 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2439 // The operands of the cmp have to be in this block. We don't know 2440 // how to export them from some other block. If this is the first block 2441 // of the sequence, no exporting is needed. 2442 if (CurBB == SwitchBB || 2443 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2444 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2445 ISD::CondCode Condition; 2446 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2447 ICmpInst::Predicate Pred = 2448 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2449 Condition = getICmpCondCode(Pred); 2450 } else { 2451 const FCmpInst *FC = cast<FCmpInst>(Cond); 2452 FCmpInst::Predicate Pred = 2453 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2454 Condition = getFCmpCondCode(Pred); 2455 if (TM.Options.NoNaNsFPMath) 2456 Condition = getFCmpCodeWithoutNaN(Condition); 2457 } 2458 2459 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2460 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2461 SL->SwitchCases.push_back(CB); 2462 return; 2463 } 2464 } 2465 2466 // Create a CaseBlock record representing this branch. 2467 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2468 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2469 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2470 SL->SwitchCases.push_back(CB); 2471 } 2472 2473 // Collect dependencies on V recursively. This is used for the cost analysis in 2474 // `shouldKeepJumpConditionsTogether`. 2475 static bool collectInstructionDeps( 2476 SmallMapVector<const Instruction *, bool, 8> *Deps, const Value *V, 2477 SmallMapVector<const Instruction *, bool, 8> *Necessary = nullptr, 2478 unsigned Depth = 0) { 2479 // Return false if we have an incomplete count. 2480 if (Depth >= SelectionDAG::MaxRecursionDepth) 2481 return false; 2482 2483 auto *I = dyn_cast<Instruction>(V); 2484 if (I == nullptr) 2485 return true; 2486 2487 if (Necessary != nullptr) { 2488 // This instruction is necessary for the other side of the condition so 2489 // don't count it. 2490 if (Necessary->contains(I)) 2491 return true; 2492 } 2493 2494 // Already added this dep. 2495 if (!Deps->try_emplace(I, false).second) 2496 return true; 2497 2498 for (unsigned OpIdx = 0, E = I->getNumOperands(); OpIdx < E; ++OpIdx) 2499 if (!collectInstructionDeps(Deps, I->getOperand(OpIdx), Necessary, 2500 Depth + 1)) 2501 return false; 2502 return true; 2503 } 2504 2505 bool SelectionDAGBuilder::shouldKeepJumpConditionsTogether( 2506 const FunctionLoweringInfo &FuncInfo, const BranchInst &I, 2507 Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs, 2508 TargetLoweringBase::CondMergingParams Params) const { 2509 if (I.getNumSuccessors() != 2) 2510 return false; 2511 2512 if (!I.isConditional()) 2513 return false; 2514 2515 if (Params.BaseCost < 0) 2516 return false; 2517 2518 // Baseline cost. 2519 InstructionCost CostThresh = Params.BaseCost; 2520 2521 BranchProbabilityInfo *BPI = nullptr; 2522 if (Params.LikelyBias || Params.UnlikelyBias) 2523 BPI = FuncInfo.BPI; 2524 if (BPI != nullptr) { 2525 // See if we are either likely to get an early out or compute both lhs/rhs 2526 // of the condition. 2527 BasicBlock *IfFalse = I.getSuccessor(0); 2528 BasicBlock *IfTrue = I.getSuccessor(1); 2529 2530 std::optional<bool> Likely; 2531 if (BPI->isEdgeHot(I.getParent(), IfTrue)) 2532 Likely = true; 2533 else if (BPI->isEdgeHot(I.getParent(), IfFalse)) 2534 Likely = false; 2535 2536 if (Likely) { 2537 if (Opc == (*Likely ? Instruction::And : Instruction::Or)) 2538 // Its likely we will have to compute both lhs and rhs of condition 2539 CostThresh += Params.LikelyBias; 2540 else { 2541 if (Params.UnlikelyBias < 0) 2542 return false; 2543 // Its likely we will get an early out. 2544 CostThresh -= Params.UnlikelyBias; 2545 } 2546 } 2547 } 2548 2549 if (CostThresh <= 0) 2550 return false; 2551 2552 // Collect "all" instructions that lhs condition is dependent on. 2553 // Use map for stable iteration (to avoid non-determanism of iteration of 2554 // SmallPtrSet). The `bool` value is just a dummy. 2555 SmallMapVector<const Instruction *, bool, 8> LhsDeps, RhsDeps; 2556 collectInstructionDeps(&LhsDeps, Lhs); 2557 // Collect "all" instructions that rhs condition is dependent on AND are 2558 // dependencies of lhs. This gives us an estimate on which instructions we 2559 // stand to save by splitting the condition. 2560 if (!collectInstructionDeps(&RhsDeps, Rhs, &LhsDeps)) 2561 return false; 2562 // Add the compare instruction itself unless its a dependency on the LHS. 2563 if (const auto *RhsI = dyn_cast<Instruction>(Rhs)) 2564 if (!LhsDeps.contains(RhsI)) 2565 RhsDeps.try_emplace(RhsI, false); 2566 2567 const auto &TLI = DAG.getTargetLoweringInfo(); 2568 const auto &TTI = 2569 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 2570 2571 InstructionCost CostOfIncluding = 0; 2572 // See if this instruction will need to computed independently of whether RHS 2573 // is. 2574 Value *BrCond = I.getCondition(); 2575 auto ShouldCountInsn = [&RhsDeps, &BrCond](const Instruction *Ins) { 2576 for (const auto *U : Ins->users()) { 2577 // If user is independent of RHS calculation we don't need to count it. 2578 if (auto *UIns = dyn_cast<Instruction>(U)) 2579 if (UIns != BrCond && !RhsDeps.contains(UIns)) 2580 return false; 2581 } 2582 return true; 2583 }; 2584 2585 // Prune instructions from RHS Deps that are dependencies of unrelated 2586 // instructions. The value (SelectionDAG::MaxRecursionDepth) is fairly 2587 // arbitrary and just meant to cap the how much time we spend in the pruning 2588 // loop. Its highly unlikely to come into affect. 2589 const unsigned MaxPruneIters = SelectionDAG::MaxRecursionDepth; 2590 // Stop after a certain point. No incorrectness from including too many 2591 // instructions. 2592 for (unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) { 2593 const Instruction *ToDrop = nullptr; 2594 for (const auto &InsPair : RhsDeps) { 2595 if (!ShouldCountInsn(InsPair.first)) { 2596 ToDrop = InsPair.first; 2597 break; 2598 } 2599 } 2600 if (ToDrop == nullptr) 2601 break; 2602 RhsDeps.erase(ToDrop); 2603 } 2604 2605 for (const auto &InsPair : RhsDeps) { 2606 // Finally accumulate latency that we can only attribute to computing the 2607 // RHS condition. Use latency because we are essentially trying to calculate 2608 // the cost of the dependency chain. 2609 // Possible TODO: We could try to estimate ILP and make this more precise. 2610 CostOfIncluding += 2611 TTI.getInstructionCost(InsPair.first, TargetTransformInfo::TCK_Latency); 2612 2613 if (CostOfIncluding > CostThresh) 2614 return false; 2615 } 2616 return true; 2617 } 2618 2619 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2620 MachineBasicBlock *TBB, 2621 MachineBasicBlock *FBB, 2622 MachineBasicBlock *CurBB, 2623 MachineBasicBlock *SwitchBB, 2624 Instruction::BinaryOps Opc, 2625 BranchProbability TProb, 2626 BranchProbability FProb, 2627 bool InvertCond) { 2628 // Skip over not part of the tree and remember to invert op and operands at 2629 // next level. 2630 Value *NotCond; 2631 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2632 InBlock(NotCond, CurBB->getBasicBlock())) { 2633 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2634 !InvertCond); 2635 return; 2636 } 2637 2638 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2639 const Value *BOpOp0, *BOpOp1; 2640 // Compute the effective opcode for Cond, taking into account whether it needs 2641 // to be inverted, e.g. 2642 // and (not (or A, B)), C 2643 // gets lowered as 2644 // and (and (not A, not B), C) 2645 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2646 if (BOp) { 2647 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2648 ? Instruction::And 2649 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2650 ? Instruction::Or 2651 : (Instruction::BinaryOps)0); 2652 if (InvertCond) { 2653 if (BOpc == Instruction::And) 2654 BOpc = Instruction::Or; 2655 else if (BOpc == Instruction::Or) 2656 BOpc = Instruction::And; 2657 } 2658 } 2659 2660 // If this node is not part of the or/and tree, emit it as a branch. 2661 // Note that all nodes in the tree should have same opcode. 2662 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2663 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2664 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2665 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2666 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2667 TProb, FProb, InvertCond); 2668 return; 2669 } 2670 2671 // Create TmpBB after CurBB. 2672 MachineFunction::iterator BBI(CurBB); 2673 MachineFunction &MF = DAG.getMachineFunction(); 2674 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2675 CurBB->getParent()->insert(++BBI, TmpBB); 2676 2677 if (Opc == Instruction::Or) { 2678 // Codegen X | Y as: 2679 // BB1: 2680 // jmp_if_X TBB 2681 // jmp TmpBB 2682 // TmpBB: 2683 // jmp_if_Y TBB 2684 // jmp FBB 2685 // 2686 2687 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2688 // The requirement is that 2689 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2690 // = TrueProb for original BB. 2691 // Assuming the original probabilities are A and B, one choice is to set 2692 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2693 // A/(1+B) and 2B/(1+B). This choice assumes that 2694 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2695 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2696 // TmpBB, but the math is more complicated. 2697 2698 auto NewTrueProb = TProb / 2; 2699 auto NewFalseProb = TProb / 2 + FProb; 2700 // Emit the LHS condition. 2701 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2702 NewFalseProb, InvertCond); 2703 2704 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2705 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2706 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2707 // Emit the RHS condition into TmpBB. 2708 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2709 Probs[1], InvertCond); 2710 } else { 2711 assert(Opc == Instruction::And && "Unknown merge op!"); 2712 // Codegen X & Y as: 2713 // BB1: 2714 // jmp_if_X TmpBB 2715 // jmp FBB 2716 // TmpBB: 2717 // jmp_if_Y TBB 2718 // jmp FBB 2719 // 2720 // This requires creation of TmpBB after CurBB. 2721 2722 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2723 // The requirement is that 2724 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2725 // = FalseProb for original BB. 2726 // Assuming the original probabilities are A and B, one choice is to set 2727 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2728 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2729 // TrueProb for BB1 * FalseProb for TmpBB. 2730 2731 auto NewTrueProb = TProb + FProb / 2; 2732 auto NewFalseProb = FProb / 2; 2733 // Emit the LHS condition. 2734 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2735 NewFalseProb, InvertCond); 2736 2737 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2738 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2739 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2740 // Emit the RHS condition into TmpBB. 2741 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2742 Probs[1], InvertCond); 2743 } 2744 } 2745 2746 /// If the set of cases should be emitted as a series of branches, return true. 2747 /// If we should emit this as a bunch of and/or'd together conditions, return 2748 /// false. 2749 bool 2750 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2751 if (Cases.size() != 2) return true; 2752 2753 // If this is two comparisons of the same values or'd or and'd together, they 2754 // will get folded into a single comparison, so don't emit two blocks. 2755 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2756 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2757 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2758 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2759 return false; 2760 } 2761 2762 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2763 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2764 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2765 Cases[0].CC == Cases[1].CC && 2766 isa<Constant>(Cases[0].CmpRHS) && 2767 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2768 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2769 return false; 2770 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2771 return false; 2772 } 2773 2774 return true; 2775 } 2776 2777 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2778 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2779 2780 // Update machine-CFG edges. 2781 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2782 2783 if (I.isUnconditional()) { 2784 // Update machine-CFG edges. 2785 BrMBB->addSuccessor(Succ0MBB); 2786 2787 // If this is not a fall-through branch or optimizations are switched off, 2788 // emit the branch. 2789 if (Succ0MBB != NextBlock(BrMBB) || 2790 TM.getOptLevel() == CodeGenOptLevel::None) { 2791 auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2792 getControlRoot(), DAG.getBasicBlock(Succ0MBB)); 2793 setValue(&I, Br); 2794 DAG.setRoot(Br); 2795 } 2796 2797 return; 2798 } 2799 2800 // If this condition is one of the special cases we handle, do special stuff 2801 // now. 2802 const Value *CondVal = I.getCondition(); 2803 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2804 2805 // If this is a series of conditions that are or'd or and'd together, emit 2806 // this as a sequence of branches instead of setcc's with and/or operations. 2807 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2808 // unpredictable branches, and vector extracts because those jumps are likely 2809 // expensive for any target), this should improve performance. 2810 // For example, instead of something like: 2811 // cmp A, B 2812 // C = seteq 2813 // cmp D, E 2814 // F = setle 2815 // or C, F 2816 // jnz foo 2817 // Emit: 2818 // cmp A, B 2819 // je foo 2820 // cmp D, E 2821 // jle foo 2822 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2823 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2824 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2825 Value *Vec; 2826 const Value *BOp0, *BOp1; 2827 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2828 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2829 Opcode = Instruction::And; 2830 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2831 Opcode = Instruction::Or; 2832 2833 if (Opcode && 2834 !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2835 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value()))) && 2836 !shouldKeepJumpConditionsTogether( 2837 FuncInfo, I, Opcode, BOp0, BOp1, 2838 DAG.getTargetLoweringInfo().getJumpConditionMergingParams( 2839 Opcode, BOp0, BOp1))) { 2840 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2841 getEdgeProbability(BrMBB, Succ0MBB), 2842 getEdgeProbability(BrMBB, Succ1MBB), 2843 /*InvertCond=*/false); 2844 // If the compares in later blocks need to use values not currently 2845 // exported from this block, export them now. This block should always 2846 // be the first entry. 2847 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2848 2849 // Allow some cases to be rejected. 2850 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2851 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2852 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2853 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2854 } 2855 2856 // Emit the branch for this block. 2857 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2858 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2859 return; 2860 } 2861 2862 // Okay, we decided not to do this, remove any inserted MBB's and clear 2863 // SwitchCases. 2864 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2865 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2866 2867 SL->SwitchCases.clear(); 2868 } 2869 } 2870 2871 // Create a CaseBlock record representing this branch. 2872 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2873 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2874 2875 // Use visitSwitchCase to actually insert the fast branch sequence for this 2876 // cond branch. 2877 visitSwitchCase(CB, BrMBB); 2878 } 2879 2880 /// visitSwitchCase - Emits the necessary code to represent a single node in 2881 /// the binary search tree resulting from lowering a switch instruction. 2882 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2883 MachineBasicBlock *SwitchBB) { 2884 SDValue Cond; 2885 SDValue CondLHS = getValue(CB.CmpLHS); 2886 SDLoc dl = CB.DL; 2887 2888 if (CB.CC == ISD::SETTRUE) { 2889 // Branch or fall through to TrueBB. 2890 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2891 SwitchBB->normalizeSuccProbs(); 2892 if (CB.TrueBB != NextBlock(SwitchBB)) { 2893 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2894 DAG.getBasicBlock(CB.TrueBB))); 2895 } 2896 return; 2897 } 2898 2899 auto &TLI = DAG.getTargetLoweringInfo(); 2900 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2901 2902 // Build the setcc now. 2903 if (!CB.CmpMHS) { 2904 // Fold "(X == true)" to X and "(X == false)" to !X to 2905 // handle common cases produced by branch lowering. 2906 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2907 CB.CC == ISD::SETEQ) 2908 Cond = CondLHS; 2909 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2910 CB.CC == ISD::SETEQ) { 2911 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2912 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2913 } else { 2914 SDValue CondRHS = getValue(CB.CmpRHS); 2915 2916 // If a pointer's DAG type is larger than its memory type then the DAG 2917 // values are zero-extended. This breaks signed comparisons so truncate 2918 // back to the underlying type before doing the compare. 2919 if (CondLHS.getValueType() != MemVT) { 2920 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2921 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2922 } 2923 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2924 } 2925 } else { 2926 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2927 2928 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2929 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2930 2931 SDValue CmpOp = getValue(CB.CmpMHS); 2932 EVT VT = CmpOp.getValueType(); 2933 2934 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2935 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2936 ISD::SETLE); 2937 } else { 2938 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2939 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2940 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2941 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2942 } 2943 } 2944 2945 // Update successor info 2946 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2947 // TrueBB and FalseBB are always different unless the incoming IR is 2948 // degenerate. This only happens when running llc on weird IR. 2949 if (CB.TrueBB != CB.FalseBB) 2950 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2951 SwitchBB->normalizeSuccProbs(); 2952 2953 // If the lhs block is the next block, invert the condition so that we can 2954 // fall through to the lhs instead of the rhs block. 2955 if (CB.TrueBB == NextBlock(SwitchBB)) { 2956 std::swap(CB.TrueBB, CB.FalseBB); 2957 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2958 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2959 } 2960 2961 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2962 MVT::Other, getControlRoot(), Cond, 2963 DAG.getBasicBlock(CB.TrueBB)); 2964 2965 setValue(CurInst, BrCond); 2966 2967 // Insert the false branch. Do this even if it's a fall through branch, 2968 // this makes it easier to do DAG optimizations which require inverting 2969 // the branch condition. 2970 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2971 DAG.getBasicBlock(CB.FalseBB)); 2972 2973 DAG.setRoot(BrCond); 2974 } 2975 2976 /// visitJumpTable - Emit JumpTable node in the current MBB 2977 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2978 // Emit the code for the jump table 2979 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2980 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2981 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2982 SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy); 2983 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2984 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other, 2985 Index.getValue(1), Table, Index); 2986 DAG.setRoot(BrJumpTable); 2987 } 2988 2989 /// visitJumpTableHeader - This function emits necessary code to produce index 2990 /// in the JumpTable from switch case. 2991 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2992 JumpTableHeader &JTH, 2993 MachineBasicBlock *SwitchBB) { 2994 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2995 const SDLoc &dl = *JT.SL; 2996 2997 // Subtract the lowest switch case value from the value being switched on. 2998 SDValue SwitchOp = getValue(JTH.SValue); 2999 EVT VT = SwitchOp.getValueType(); 3000 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 3001 DAG.getConstant(JTH.First, dl, VT)); 3002 3003 // The SDNode we just created, which holds the value being switched on minus 3004 // the smallest case value, needs to be copied to a virtual register so it 3005 // can be used as an index into the jump table in a subsequent basic block. 3006 // This value may be smaller or larger than the target's pointer type, and 3007 // therefore require extension or truncating. 3008 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3009 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 3010 3011 unsigned JumpTableReg = 3012 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 3013 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 3014 JumpTableReg, SwitchOp); 3015 JT.Reg = JumpTableReg; 3016 3017 if (!JTH.FallthroughUnreachable) { 3018 // Emit the range check for the jump table, and branch to the default block 3019 // for the switch statement if the value being switched on exceeds the 3020 // largest case in the switch. 3021 SDValue CMP = DAG.getSetCC( 3022 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 3023 Sub.getValueType()), 3024 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 3025 3026 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 3027 MVT::Other, CopyTo, CMP, 3028 DAG.getBasicBlock(JT.Default)); 3029 3030 // Avoid emitting unnecessary branches to the next block. 3031 if (JT.MBB != NextBlock(SwitchBB)) 3032 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 3033 DAG.getBasicBlock(JT.MBB)); 3034 3035 DAG.setRoot(BrCond); 3036 } else { 3037 // Avoid emitting unnecessary branches to the next block. 3038 if (JT.MBB != NextBlock(SwitchBB)) 3039 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 3040 DAG.getBasicBlock(JT.MBB))); 3041 else 3042 DAG.setRoot(CopyTo); 3043 } 3044 } 3045 3046 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 3047 /// variable if there exists one. 3048 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 3049 SDValue &Chain) { 3050 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3051 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 3052 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 3053 MachineFunction &MF = DAG.getMachineFunction(); 3054 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 3055 MachineSDNode *Node = 3056 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 3057 if (Global) { 3058 MachinePointerInfo MPInfo(Global); 3059 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 3060 MachineMemOperand::MODereferenceable; 3061 MachineMemOperand *MemRef = MF.getMachineMemOperand( 3062 MPInfo, Flags, LocationSize::precise(PtrTy.getSizeInBits() / 8), 3063 DAG.getEVTAlign(PtrTy)); 3064 DAG.setNodeMemRefs(Node, {MemRef}); 3065 } 3066 if (PtrTy != PtrMemTy) 3067 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 3068 return SDValue(Node, 0); 3069 } 3070 3071 /// Codegen a new tail for a stack protector check ParentMBB which has had its 3072 /// tail spliced into a stack protector check success bb. 3073 /// 3074 /// For a high level explanation of how this fits into the stack protector 3075 /// generation see the comment on the declaration of class 3076 /// StackProtectorDescriptor. 3077 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 3078 MachineBasicBlock *ParentBB) { 3079 3080 // First create the loads to the guard/stack slot for the comparison. 3081 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3082 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 3083 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 3084 3085 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 3086 int FI = MFI.getStackProtectorIndex(); 3087 3088 SDValue Guard; 3089 SDLoc dl = getCurSDLoc(); 3090 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 3091 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 3092 Align Align = 3093 DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0)); 3094 3095 // Generate code to load the content of the guard slot. 3096 SDValue GuardVal = DAG.getLoad( 3097 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 3098 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 3099 MachineMemOperand::MOVolatile); 3100 3101 if (TLI.useStackGuardXorFP()) 3102 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 3103 3104 // Retrieve guard check function, nullptr if instrumentation is inlined. 3105 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 3106 // The target provides a guard check function to validate the guard value. 3107 // Generate a call to that function with the content of the guard slot as 3108 // argument. 3109 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 3110 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 3111 3112 TargetLowering::ArgListTy Args; 3113 TargetLowering::ArgListEntry Entry; 3114 Entry.Node = GuardVal; 3115 Entry.Ty = FnTy->getParamType(0); 3116 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 3117 Entry.IsInReg = true; 3118 Args.push_back(Entry); 3119 3120 TargetLowering::CallLoweringInfo CLI(DAG); 3121 CLI.setDebugLoc(getCurSDLoc()) 3122 .setChain(DAG.getEntryNode()) 3123 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 3124 getValue(GuardCheckFn), std::move(Args)); 3125 3126 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 3127 DAG.setRoot(Result.second); 3128 return; 3129 } 3130 3131 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 3132 // Otherwise, emit a volatile load to retrieve the stack guard value. 3133 SDValue Chain = DAG.getEntryNode(); 3134 if (TLI.useLoadStackGuardNode()) { 3135 Guard = getLoadStackGuard(DAG, dl, Chain); 3136 } else { 3137 const Value *IRGuard = TLI.getSDagStackGuard(M); 3138 SDValue GuardPtr = getValue(IRGuard); 3139 3140 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 3141 MachinePointerInfo(IRGuard, 0), Align, 3142 MachineMemOperand::MOVolatile); 3143 } 3144 3145 // Perform the comparison via a getsetcc. 3146 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 3147 *DAG.getContext(), 3148 Guard.getValueType()), 3149 Guard, GuardVal, ISD::SETNE); 3150 3151 // If the guard/stackslot do not equal, branch to failure MBB. 3152 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 3153 MVT::Other, GuardVal.getOperand(0), 3154 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 3155 // Otherwise branch to success MBB. 3156 SDValue Br = DAG.getNode(ISD::BR, dl, 3157 MVT::Other, BrCond, 3158 DAG.getBasicBlock(SPD.getSuccessMBB())); 3159 3160 DAG.setRoot(Br); 3161 } 3162 3163 /// Codegen the failure basic block for a stack protector check. 3164 /// 3165 /// A failure stack protector machine basic block consists simply of a call to 3166 /// __stack_chk_fail(). 3167 /// 3168 /// For a high level explanation of how this fits into the stack protector 3169 /// generation see the comment on the declaration of class 3170 /// StackProtectorDescriptor. 3171 void 3172 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 3173 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3174 TargetLowering::MakeLibCallOptions CallOptions; 3175 CallOptions.setDiscardResult(true); 3176 SDValue Chain = 3177 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 3178 std::nullopt, CallOptions, getCurSDLoc()) 3179 .second; 3180 // On PS4/PS5, the "return address" must still be within the calling 3181 // function, even if it's at the very end, so emit an explicit TRAP here. 3182 // Passing 'true' for doesNotReturn above won't generate the trap for us. 3183 if (TM.getTargetTriple().isPS()) 3184 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 3185 // WebAssembly needs an unreachable instruction after a non-returning call, 3186 // because the function return type can be different from __stack_chk_fail's 3187 // return type (void). 3188 if (TM.getTargetTriple().isWasm()) 3189 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 3190 3191 DAG.setRoot(Chain); 3192 } 3193 3194 /// visitBitTestHeader - This function emits necessary code to produce value 3195 /// suitable for "bit tests" 3196 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 3197 MachineBasicBlock *SwitchBB) { 3198 SDLoc dl = getCurSDLoc(); 3199 3200 // Subtract the minimum value. 3201 SDValue SwitchOp = getValue(B.SValue); 3202 EVT VT = SwitchOp.getValueType(); 3203 SDValue RangeSub = 3204 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 3205 3206 // Determine the type of the test operands. 3207 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3208 bool UsePtrType = false; 3209 if (!TLI.isTypeLegal(VT)) { 3210 UsePtrType = true; 3211 } else { 3212 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 3213 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 3214 // Switch table case range are encoded into series of masks. 3215 // Just use pointer type, it's guaranteed to fit. 3216 UsePtrType = true; 3217 break; 3218 } 3219 } 3220 SDValue Sub = RangeSub; 3221 if (UsePtrType) { 3222 VT = TLI.getPointerTy(DAG.getDataLayout()); 3223 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 3224 } 3225 3226 B.RegVT = VT.getSimpleVT(); 3227 B.Reg = FuncInfo.CreateReg(B.RegVT); 3228 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 3229 3230 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 3231 3232 if (!B.FallthroughUnreachable) 3233 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 3234 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 3235 SwitchBB->normalizeSuccProbs(); 3236 3237 SDValue Root = CopyTo; 3238 if (!B.FallthroughUnreachable) { 3239 // Conditional branch to the default block. 3240 SDValue RangeCmp = DAG.getSetCC(dl, 3241 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 3242 RangeSub.getValueType()), 3243 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 3244 ISD::SETUGT); 3245 3246 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 3247 DAG.getBasicBlock(B.Default)); 3248 } 3249 3250 // Avoid emitting unnecessary branches to the next block. 3251 if (MBB != NextBlock(SwitchBB)) 3252 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 3253 3254 DAG.setRoot(Root); 3255 } 3256 3257 /// visitBitTestCase - this function produces one "bit test" 3258 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 3259 MachineBasicBlock* NextMBB, 3260 BranchProbability BranchProbToNext, 3261 unsigned Reg, 3262 BitTestCase &B, 3263 MachineBasicBlock *SwitchBB) { 3264 SDLoc dl = getCurSDLoc(); 3265 MVT VT = BB.RegVT; 3266 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 3267 SDValue Cmp; 3268 unsigned PopCount = llvm::popcount(B.Mask); 3269 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3270 if (PopCount == 1) { 3271 // Testing for a single bit; just compare the shift count with what it 3272 // would need to be to shift a 1 bit in that position. 3273 Cmp = DAG.getSetCC( 3274 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3275 ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT), 3276 ISD::SETEQ); 3277 } else if (PopCount == BB.Range) { 3278 // There is only one zero bit in the range, test for it directly. 3279 Cmp = DAG.getSetCC( 3280 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3281 ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE); 3282 } else { 3283 // Make desired shift 3284 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 3285 DAG.getConstant(1, dl, VT), ShiftOp); 3286 3287 // Emit bit tests and jumps 3288 SDValue AndOp = DAG.getNode(ISD::AND, dl, 3289 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 3290 Cmp = DAG.getSetCC( 3291 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3292 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 3293 } 3294 3295 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 3296 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 3297 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 3298 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 3299 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 3300 // one as they are relative probabilities (and thus work more like weights), 3301 // and hence we need to normalize them to let the sum of them become one. 3302 SwitchBB->normalizeSuccProbs(); 3303 3304 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 3305 MVT::Other, getControlRoot(), 3306 Cmp, DAG.getBasicBlock(B.TargetBB)); 3307 3308 // Avoid emitting unnecessary branches to the next block. 3309 if (NextMBB != NextBlock(SwitchBB)) 3310 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 3311 DAG.getBasicBlock(NextMBB)); 3312 3313 DAG.setRoot(BrAnd); 3314 } 3315 3316 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 3317 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 3318 3319 // Retrieve successors. Look through artificial IR level blocks like 3320 // catchswitch for successors. 3321 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 3322 const BasicBlock *EHPadBB = I.getSuccessor(1); 3323 MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB]; 3324 3325 // Deopt and ptrauth bundles are lowered in helper functions, and we don't 3326 // have to do anything here to lower funclet bundles. 3327 assert(!I.hasOperandBundlesOtherThan( 3328 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 3329 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 3330 LLVMContext::OB_cfguardtarget, LLVMContext::OB_ptrauth, 3331 LLVMContext::OB_clang_arc_attachedcall}) && 3332 "Cannot lower invokes with arbitrary operand bundles yet!"); 3333 3334 const Value *Callee(I.getCalledOperand()); 3335 const Function *Fn = dyn_cast<Function>(Callee); 3336 if (isa<InlineAsm>(Callee)) 3337 visitInlineAsm(I, EHPadBB); 3338 else if (Fn && Fn->isIntrinsic()) { 3339 switch (Fn->getIntrinsicID()) { 3340 default: 3341 llvm_unreachable("Cannot invoke this intrinsic"); 3342 case Intrinsic::donothing: 3343 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 3344 case Intrinsic::seh_try_begin: 3345 case Intrinsic::seh_scope_begin: 3346 case Intrinsic::seh_try_end: 3347 case Intrinsic::seh_scope_end: 3348 if (EHPadMBB) 3349 // a block referenced by EH table 3350 // so dtor-funclet not removed by opts 3351 EHPadMBB->setMachineBlockAddressTaken(); 3352 break; 3353 case Intrinsic::experimental_patchpoint_void: 3354 case Intrinsic::experimental_patchpoint: 3355 visitPatchpoint(I, EHPadBB); 3356 break; 3357 case Intrinsic::experimental_gc_statepoint: 3358 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 3359 break; 3360 case Intrinsic::wasm_rethrow: { 3361 // This is usually done in visitTargetIntrinsic, but this intrinsic is 3362 // special because it can be invoked, so we manually lower it to a DAG 3363 // node here. 3364 SmallVector<SDValue, 8> Ops; 3365 Ops.push_back(getControlRoot()); // inchain for the terminator node 3366 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3367 Ops.push_back( 3368 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 3369 TLI.getPointerTy(DAG.getDataLayout()))); 3370 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 3371 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 3372 break; 3373 } 3374 } 3375 } else if (I.hasDeoptState()) { 3376 // Currently we do not lower any intrinsic calls with deopt operand bundles. 3377 // Eventually we will support lowering the @llvm.experimental.deoptimize 3378 // intrinsic, and right now there are no plans to support other intrinsics 3379 // with deopt state. 3380 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 3381 } else if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) { 3382 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), EHPadBB); 3383 } else { 3384 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 3385 } 3386 3387 // If the value of the invoke is used outside of its defining block, make it 3388 // available as a virtual register. 3389 // We already took care of the exported value for the statepoint instruction 3390 // during call to the LowerStatepoint. 3391 if (!isa<GCStatepointInst>(I)) { 3392 CopyToExportRegsIfNeeded(&I); 3393 } 3394 3395 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 3396 BranchProbabilityInfo *BPI = FuncInfo.BPI; 3397 BranchProbability EHPadBBProb = 3398 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 3399 : BranchProbability::getZero(); 3400 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3401 3402 // Update successor info. 3403 addSuccessorWithProb(InvokeMBB, Return); 3404 for (auto &UnwindDest : UnwindDests) { 3405 UnwindDest.first->setIsEHPad(); 3406 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3407 } 3408 InvokeMBB->normalizeSuccProbs(); 3409 3410 // Drop into normal successor. 3411 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3412 DAG.getBasicBlock(Return))); 3413 } 3414 3415 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3416 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3417 3418 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3419 // have to do anything here to lower funclet bundles. 3420 assert(!I.hasOperandBundlesOtherThan( 3421 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3422 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3423 3424 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3425 visitInlineAsm(I); 3426 CopyToExportRegsIfNeeded(&I); 3427 3428 // Retrieve successors. 3429 SmallPtrSet<BasicBlock *, 8> Dests; 3430 Dests.insert(I.getDefaultDest()); 3431 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 3432 3433 // Update successor info. 3434 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3435 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3436 BasicBlock *Dest = I.getIndirectDest(i); 3437 MachineBasicBlock *Target = FuncInfo.MBBMap[Dest]; 3438 Target->setIsInlineAsmBrIndirectTarget(); 3439 Target->setMachineBlockAddressTaken(); 3440 Target->setLabelMustBeEmitted(); 3441 // Don't add duplicate machine successors. 3442 if (Dests.insert(Dest).second) 3443 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3444 } 3445 CallBrMBB->normalizeSuccProbs(); 3446 3447 // Drop into default successor. 3448 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3449 MVT::Other, getControlRoot(), 3450 DAG.getBasicBlock(Return))); 3451 } 3452 3453 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3454 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3455 } 3456 3457 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3458 assert(FuncInfo.MBB->isEHPad() && 3459 "Call to landingpad not in landing pad!"); 3460 3461 // If there aren't registers to copy the values into (e.g., during SjLj 3462 // exceptions), then don't bother to create these DAG nodes. 3463 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3464 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3465 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3466 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3467 return; 3468 3469 // If landingpad's return type is token type, we don't create DAG nodes 3470 // for its exception pointer and selector value. The extraction of exception 3471 // pointer or selector value from token type landingpads is not currently 3472 // supported. 3473 if (LP.getType()->isTokenTy()) 3474 return; 3475 3476 SmallVector<EVT, 2> ValueVTs; 3477 SDLoc dl = getCurSDLoc(); 3478 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3479 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3480 3481 // Get the two live-in registers as SDValues. The physregs have already been 3482 // copied into virtual registers. 3483 SDValue Ops[2]; 3484 if (FuncInfo.ExceptionPointerVirtReg) { 3485 Ops[0] = DAG.getZExtOrTrunc( 3486 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3487 FuncInfo.ExceptionPointerVirtReg, 3488 TLI.getPointerTy(DAG.getDataLayout())), 3489 dl, ValueVTs[0]); 3490 } else { 3491 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3492 } 3493 Ops[1] = DAG.getZExtOrTrunc( 3494 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3495 FuncInfo.ExceptionSelectorVirtReg, 3496 TLI.getPointerTy(DAG.getDataLayout())), 3497 dl, ValueVTs[1]); 3498 3499 // Merge into one. 3500 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3501 DAG.getVTList(ValueVTs), Ops); 3502 setValue(&LP, Res); 3503 } 3504 3505 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3506 MachineBasicBlock *Last) { 3507 // Update JTCases. 3508 for (JumpTableBlock &JTB : SL->JTCases) 3509 if (JTB.first.HeaderBB == First) 3510 JTB.first.HeaderBB = Last; 3511 3512 // Update BitTestCases. 3513 for (BitTestBlock &BTB : SL->BitTestCases) 3514 if (BTB.Parent == First) 3515 BTB.Parent = Last; 3516 } 3517 3518 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3519 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3520 3521 // Update machine-CFG edges with unique successors. 3522 SmallSet<BasicBlock*, 32> Done; 3523 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3524 BasicBlock *BB = I.getSuccessor(i); 3525 bool Inserted = Done.insert(BB).second; 3526 if (!Inserted) 3527 continue; 3528 3529 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3530 addSuccessorWithProb(IndirectBrMBB, Succ); 3531 } 3532 IndirectBrMBB->normalizeSuccProbs(); 3533 3534 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3535 MVT::Other, getControlRoot(), 3536 getValue(I.getAddress()))); 3537 } 3538 3539 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3540 if (!DAG.getTarget().Options.TrapUnreachable) 3541 return; 3542 3543 // We may be able to ignore unreachable behind a noreturn call. 3544 if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode()); 3545 Call && Call->doesNotReturn()) { 3546 if (DAG.getTarget().Options.NoTrapAfterNoreturn) 3547 return; 3548 // Do not emit an additional trap instruction. 3549 if (Call->isNonContinuableTrap()) 3550 return; 3551 } 3552 3553 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3554 } 3555 3556 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3557 SDNodeFlags Flags; 3558 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3559 Flags.copyFMF(*FPOp); 3560 3561 SDValue Op = getValue(I.getOperand(0)); 3562 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3563 Op, Flags); 3564 setValue(&I, UnNodeValue); 3565 } 3566 3567 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3568 SDNodeFlags Flags; 3569 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3570 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3571 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3572 } 3573 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3574 Flags.setExact(ExactOp->isExact()); 3575 if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I)) 3576 Flags.setDisjoint(DisjointOp->isDisjoint()); 3577 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3578 Flags.copyFMF(*FPOp); 3579 3580 SDValue Op1 = getValue(I.getOperand(0)); 3581 SDValue Op2 = getValue(I.getOperand(1)); 3582 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3583 Op1, Op2, Flags); 3584 setValue(&I, BinNodeValue); 3585 } 3586 3587 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3588 SDValue Op1 = getValue(I.getOperand(0)); 3589 SDValue Op2 = getValue(I.getOperand(1)); 3590 3591 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3592 Op1.getValueType(), DAG.getDataLayout()); 3593 3594 // Coerce the shift amount to the right type if we can. This exposes the 3595 // truncate or zext to optimization early. 3596 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3597 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3598 "Unexpected shift type"); 3599 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3600 } 3601 3602 bool nuw = false; 3603 bool nsw = false; 3604 bool exact = false; 3605 3606 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3607 3608 if (const OverflowingBinaryOperator *OFBinOp = 3609 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3610 nuw = OFBinOp->hasNoUnsignedWrap(); 3611 nsw = OFBinOp->hasNoSignedWrap(); 3612 } 3613 if (const PossiblyExactOperator *ExactOp = 3614 dyn_cast<const PossiblyExactOperator>(&I)) 3615 exact = ExactOp->isExact(); 3616 } 3617 SDNodeFlags Flags; 3618 Flags.setExact(exact); 3619 Flags.setNoSignedWrap(nsw); 3620 Flags.setNoUnsignedWrap(nuw); 3621 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3622 Flags); 3623 setValue(&I, Res); 3624 } 3625 3626 void SelectionDAGBuilder::visitSDiv(const User &I) { 3627 SDValue Op1 = getValue(I.getOperand(0)); 3628 SDValue Op2 = getValue(I.getOperand(1)); 3629 3630 SDNodeFlags Flags; 3631 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3632 cast<PossiblyExactOperator>(&I)->isExact()); 3633 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3634 Op2, Flags)); 3635 } 3636 3637 void SelectionDAGBuilder::visitICmp(const ICmpInst &I) { 3638 ICmpInst::Predicate predicate = I.getPredicate(); 3639 SDValue Op1 = getValue(I.getOperand(0)); 3640 SDValue Op2 = getValue(I.getOperand(1)); 3641 ISD::CondCode Opcode = getICmpCondCode(predicate); 3642 3643 auto &TLI = DAG.getTargetLoweringInfo(); 3644 EVT MemVT = 3645 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3646 3647 // If a pointer's DAG type is larger than its memory type then the DAG values 3648 // are zero-extended. This breaks signed comparisons so truncate back to the 3649 // underlying type before doing the compare. 3650 if (Op1.getValueType() != MemVT) { 3651 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3652 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3653 } 3654 3655 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3656 I.getType()); 3657 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3658 } 3659 3660 void SelectionDAGBuilder::visitFCmp(const FCmpInst &I) { 3661 FCmpInst::Predicate predicate = I.getPredicate(); 3662 SDValue Op1 = getValue(I.getOperand(0)); 3663 SDValue Op2 = getValue(I.getOperand(1)); 3664 3665 ISD::CondCode Condition = getFCmpCondCode(predicate); 3666 auto *FPMO = cast<FPMathOperator>(&I); 3667 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3668 Condition = getFCmpCodeWithoutNaN(Condition); 3669 3670 SDNodeFlags Flags; 3671 Flags.copyFMF(*FPMO); 3672 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3673 3674 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3675 I.getType()); 3676 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3677 } 3678 3679 // Check if the condition of the select has one use or two users that are both 3680 // selects with the same condition. 3681 static bool hasOnlySelectUsers(const Value *Cond) { 3682 return llvm::all_of(Cond->users(), [](const Value *V) { 3683 return isa<SelectInst>(V); 3684 }); 3685 } 3686 3687 void SelectionDAGBuilder::visitSelect(const User &I) { 3688 SmallVector<EVT, 4> ValueVTs; 3689 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3690 ValueVTs); 3691 unsigned NumValues = ValueVTs.size(); 3692 if (NumValues == 0) return; 3693 3694 SmallVector<SDValue, 4> Values(NumValues); 3695 SDValue Cond = getValue(I.getOperand(0)); 3696 SDValue LHSVal = getValue(I.getOperand(1)); 3697 SDValue RHSVal = getValue(I.getOperand(2)); 3698 SmallVector<SDValue, 1> BaseOps(1, Cond); 3699 ISD::NodeType OpCode = 3700 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3701 3702 bool IsUnaryAbs = false; 3703 bool Negate = false; 3704 3705 SDNodeFlags Flags; 3706 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3707 Flags.copyFMF(*FPOp); 3708 3709 Flags.setUnpredictable( 3710 cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable)); 3711 3712 // Min/max matching is only viable if all output VTs are the same. 3713 if (all_equal(ValueVTs)) { 3714 EVT VT = ValueVTs[0]; 3715 LLVMContext &Ctx = *DAG.getContext(); 3716 auto &TLI = DAG.getTargetLoweringInfo(); 3717 3718 // We care about the legality of the operation after it has been type 3719 // legalized. 3720 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3721 VT = TLI.getTypeToTransformTo(Ctx, VT); 3722 3723 // If the vselect is legal, assume we want to leave this as a vector setcc + 3724 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3725 // min/max is legal on the scalar type. 3726 bool UseScalarMinMax = VT.isVector() && 3727 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3728 3729 // ValueTracking's select pattern matching does not account for -0.0, 3730 // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that 3731 // -0.0 is less than +0.0. 3732 Value *LHS, *RHS; 3733 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3734 ISD::NodeType Opc = ISD::DELETED_NODE; 3735 switch (SPR.Flavor) { 3736 case SPF_UMAX: Opc = ISD::UMAX; break; 3737 case SPF_UMIN: Opc = ISD::UMIN; break; 3738 case SPF_SMAX: Opc = ISD::SMAX; break; 3739 case SPF_SMIN: Opc = ISD::SMIN; break; 3740 case SPF_FMINNUM: 3741 switch (SPR.NaNBehavior) { 3742 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3743 case SPNB_RETURNS_NAN: break; 3744 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3745 case SPNB_RETURNS_ANY: 3746 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) || 3747 (UseScalarMinMax && 3748 TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()))) 3749 Opc = ISD::FMINNUM; 3750 break; 3751 } 3752 break; 3753 case SPF_FMAXNUM: 3754 switch (SPR.NaNBehavior) { 3755 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3756 case SPNB_RETURNS_NAN: break; 3757 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3758 case SPNB_RETURNS_ANY: 3759 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) || 3760 (UseScalarMinMax && 3761 TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()))) 3762 Opc = ISD::FMAXNUM; 3763 break; 3764 } 3765 break; 3766 case SPF_NABS: 3767 Negate = true; 3768 [[fallthrough]]; 3769 case SPF_ABS: 3770 IsUnaryAbs = true; 3771 Opc = ISD::ABS; 3772 break; 3773 default: break; 3774 } 3775 3776 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3777 (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) || 3778 (UseScalarMinMax && 3779 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3780 // If the underlying comparison instruction is used by any other 3781 // instruction, the consumed instructions won't be destroyed, so it is 3782 // not profitable to convert to a min/max. 3783 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3784 OpCode = Opc; 3785 LHSVal = getValue(LHS); 3786 RHSVal = getValue(RHS); 3787 BaseOps.clear(); 3788 } 3789 3790 if (IsUnaryAbs) { 3791 OpCode = Opc; 3792 LHSVal = getValue(LHS); 3793 BaseOps.clear(); 3794 } 3795 } 3796 3797 if (IsUnaryAbs) { 3798 for (unsigned i = 0; i != NumValues; ++i) { 3799 SDLoc dl = getCurSDLoc(); 3800 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3801 Values[i] = 3802 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3803 if (Negate) 3804 Values[i] = DAG.getNegative(Values[i], dl, VT); 3805 } 3806 } else { 3807 for (unsigned i = 0; i != NumValues; ++i) { 3808 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3809 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3810 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3811 Values[i] = DAG.getNode( 3812 OpCode, getCurSDLoc(), 3813 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3814 } 3815 } 3816 3817 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3818 DAG.getVTList(ValueVTs), Values)); 3819 } 3820 3821 void SelectionDAGBuilder::visitTrunc(const User &I) { 3822 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3823 SDValue N = getValue(I.getOperand(0)); 3824 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3825 I.getType()); 3826 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3827 } 3828 3829 void SelectionDAGBuilder::visitZExt(const User &I) { 3830 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3831 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3832 SDValue N = getValue(I.getOperand(0)); 3833 auto &TLI = DAG.getTargetLoweringInfo(); 3834 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3835 3836 SDNodeFlags Flags; 3837 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3838 Flags.setNonNeg(PNI->hasNonNeg()); 3839 3840 // Eagerly use nonneg information to canonicalize towards sign_extend if 3841 // that is the target's preference. 3842 // TODO: Let the target do this later. 3843 if (Flags.hasNonNeg() && 3844 TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) { 3845 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3846 return; 3847 } 3848 3849 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags)); 3850 } 3851 3852 void SelectionDAGBuilder::visitSExt(const User &I) { 3853 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3854 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3855 SDValue N = getValue(I.getOperand(0)); 3856 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3857 I.getType()); 3858 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3859 } 3860 3861 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3862 // FPTrunc is never a no-op cast, no need to check 3863 SDValue N = getValue(I.getOperand(0)); 3864 SDLoc dl = getCurSDLoc(); 3865 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3866 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3867 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3868 DAG.getTargetConstant( 3869 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3870 } 3871 3872 void SelectionDAGBuilder::visitFPExt(const User &I) { 3873 // FPExt is never a no-op cast, no need to check 3874 SDValue N = getValue(I.getOperand(0)); 3875 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3876 I.getType()); 3877 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3878 } 3879 3880 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3881 // FPToUI is never a no-op cast, no need to check 3882 SDValue N = getValue(I.getOperand(0)); 3883 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3884 I.getType()); 3885 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3886 } 3887 3888 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3889 // FPToSI is never a no-op cast, no need to check 3890 SDValue N = getValue(I.getOperand(0)); 3891 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3892 I.getType()); 3893 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3894 } 3895 3896 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3897 // UIToFP is never a no-op cast, no need to check 3898 SDValue N = getValue(I.getOperand(0)); 3899 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3900 I.getType()); 3901 SDNodeFlags Flags; 3902 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3903 Flags.setNonNeg(PNI->hasNonNeg()); 3904 3905 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N, Flags)); 3906 } 3907 3908 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3909 // SIToFP is never a no-op cast, no need to check 3910 SDValue N = getValue(I.getOperand(0)); 3911 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3912 I.getType()); 3913 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3914 } 3915 3916 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3917 // What to do depends on the size of the integer and the size of the pointer. 3918 // We can either truncate, zero extend, or no-op, accordingly. 3919 SDValue N = getValue(I.getOperand(0)); 3920 auto &TLI = DAG.getTargetLoweringInfo(); 3921 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3922 I.getType()); 3923 EVT PtrMemVT = 3924 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3925 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3926 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3927 setValue(&I, N); 3928 } 3929 3930 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3931 // What to do depends on the size of the integer and the size of the pointer. 3932 // We can either truncate, zero extend, or no-op, accordingly. 3933 SDValue N = getValue(I.getOperand(0)); 3934 auto &TLI = DAG.getTargetLoweringInfo(); 3935 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3936 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3937 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3938 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3939 setValue(&I, N); 3940 } 3941 3942 void SelectionDAGBuilder::visitBitCast(const User &I) { 3943 SDValue N = getValue(I.getOperand(0)); 3944 SDLoc dl = getCurSDLoc(); 3945 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3946 I.getType()); 3947 3948 // BitCast assures us that source and destination are the same size so this is 3949 // either a BITCAST or a no-op. 3950 if (DestVT != N.getValueType()) 3951 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3952 DestVT, N)); // convert types. 3953 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3954 // might fold any kind of constant expression to an integer constant and that 3955 // is not what we are looking for. Only recognize a bitcast of a genuine 3956 // constant integer as an opaque constant. 3957 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3958 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3959 /*isOpaque*/true)); 3960 else 3961 setValue(&I, N); // noop cast. 3962 } 3963 3964 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3965 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3966 const Value *SV = I.getOperand(0); 3967 SDValue N = getValue(SV); 3968 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3969 3970 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3971 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3972 3973 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3974 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3975 3976 setValue(&I, N); 3977 } 3978 3979 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3980 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3981 SDValue InVec = getValue(I.getOperand(0)); 3982 SDValue InVal = getValue(I.getOperand(1)); 3983 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3984 TLI.getVectorIdxTy(DAG.getDataLayout())); 3985 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3986 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3987 InVec, InVal, InIdx)); 3988 } 3989 3990 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3991 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3992 SDValue InVec = getValue(I.getOperand(0)); 3993 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3994 TLI.getVectorIdxTy(DAG.getDataLayout())); 3995 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3996 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3997 InVec, InIdx)); 3998 } 3999 4000 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 4001 SDValue Src1 = getValue(I.getOperand(0)); 4002 SDValue Src2 = getValue(I.getOperand(1)); 4003 ArrayRef<int> Mask; 4004 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 4005 Mask = SVI->getShuffleMask(); 4006 else 4007 Mask = cast<ConstantExpr>(I).getShuffleMask(); 4008 SDLoc DL = getCurSDLoc(); 4009 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4010 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4011 EVT SrcVT = Src1.getValueType(); 4012 4013 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 4014 VT.isScalableVector()) { 4015 // Canonical splat form of first element of first input vector. 4016 SDValue FirstElt = 4017 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 4018 DAG.getVectorIdxConstant(0, DL)); 4019 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 4020 return; 4021 } 4022 4023 // For now, we only handle splats for scalable vectors. 4024 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 4025 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 4026 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 4027 4028 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 4029 unsigned MaskNumElts = Mask.size(); 4030 4031 if (SrcNumElts == MaskNumElts) { 4032 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 4033 return; 4034 } 4035 4036 // Normalize the shuffle vector since mask and vector length don't match. 4037 if (SrcNumElts < MaskNumElts) { 4038 // Mask is longer than the source vectors. We can use concatenate vector to 4039 // make the mask and vectors lengths match. 4040 4041 if (MaskNumElts % SrcNumElts == 0) { 4042 // Mask length is a multiple of the source vector length. 4043 // Check if the shuffle is some kind of concatenation of the input 4044 // vectors. 4045 unsigned NumConcat = MaskNumElts / SrcNumElts; 4046 bool IsConcat = true; 4047 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 4048 for (unsigned i = 0; i != MaskNumElts; ++i) { 4049 int Idx = Mask[i]; 4050 if (Idx < 0) 4051 continue; 4052 // Ensure the indices in each SrcVT sized piece are sequential and that 4053 // the same source is used for the whole piece. 4054 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 4055 (ConcatSrcs[i / SrcNumElts] >= 0 && 4056 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 4057 IsConcat = false; 4058 break; 4059 } 4060 // Remember which source this index came from. 4061 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 4062 } 4063 4064 // The shuffle is concatenating multiple vectors together. Just emit 4065 // a CONCAT_VECTORS operation. 4066 if (IsConcat) { 4067 SmallVector<SDValue, 8> ConcatOps; 4068 for (auto Src : ConcatSrcs) { 4069 if (Src < 0) 4070 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 4071 else if (Src == 0) 4072 ConcatOps.push_back(Src1); 4073 else 4074 ConcatOps.push_back(Src2); 4075 } 4076 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 4077 return; 4078 } 4079 } 4080 4081 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 4082 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 4083 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 4084 PaddedMaskNumElts); 4085 4086 // Pad both vectors with undefs to make them the same length as the mask. 4087 SDValue UndefVal = DAG.getUNDEF(SrcVT); 4088 4089 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 4090 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 4091 MOps1[0] = Src1; 4092 MOps2[0] = Src2; 4093 4094 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 4095 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 4096 4097 // Readjust mask for new input vector length. 4098 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 4099 for (unsigned i = 0; i != MaskNumElts; ++i) { 4100 int Idx = Mask[i]; 4101 if (Idx >= (int)SrcNumElts) 4102 Idx -= SrcNumElts - PaddedMaskNumElts; 4103 MappedOps[i] = Idx; 4104 } 4105 4106 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 4107 4108 // If the concatenated vector was padded, extract a subvector with the 4109 // correct number of elements. 4110 if (MaskNumElts != PaddedMaskNumElts) 4111 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 4112 DAG.getVectorIdxConstant(0, DL)); 4113 4114 setValue(&I, Result); 4115 return; 4116 } 4117 4118 if (SrcNumElts > MaskNumElts) { 4119 // Analyze the access pattern of the vector to see if we can extract 4120 // two subvectors and do the shuffle. 4121 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 4122 bool CanExtract = true; 4123 for (int Idx : Mask) { 4124 unsigned Input = 0; 4125 if (Idx < 0) 4126 continue; 4127 4128 if (Idx >= (int)SrcNumElts) { 4129 Input = 1; 4130 Idx -= SrcNumElts; 4131 } 4132 4133 // If all the indices come from the same MaskNumElts sized portion of 4134 // the sources we can use extract. Also make sure the extract wouldn't 4135 // extract past the end of the source. 4136 int NewStartIdx = alignDown(Idx, MaskNumElts); 4137 if (NewStartIdx + MaskNumElts > SrcNumElts || 4138 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 4139 CanExtract = false; 4140 // Make sure we always update StartIdx as we use it to track if all 4141 // elements are undef. 4142 StartIdx[Input] = NewStartIdx; 4143 } 4144 4145 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 4146 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 4147 return; 4148 } 4149 if (CanExtract) { 4150 // Extract appropriate subvector and generate a vector shuffle 4151 for (unsigned Input = 0; Input < 2; ++Input) { 4152 SDValue &Src = Input == 0 ? Src1 : Src2; 4153 if (StartIdx[Input] < 0) 4154 Src = DAG.getUNDEF(VT); 4155 else { 4156 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 4157 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 4158 } 4159 } 4160 4161 // Calculate new mask. 4162 SmallVector<int, 8> MappedOps(Mask); 4163 for (int &Idx : MappedOps) { 4164 if (Idx >= (int)SrcNumElts) 4165 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 4166 else if (Idx >= 0) 4167 Idx -= StartIdx[0]; 4168 } 4169 4170 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 4171 return; 4172 } 4173 } 4174 4175 // We can't use either concat vectors or extract subvectors so fall back to 4176 // replacing the shuffle with extract and build vector. 4177 // to insert and build vector. 4178 EVT EltVT = VT.getVectorElementType(); 4179 SmallVector<SDValue,8> Ops; 4180 for (int Idx : Mask) { 4181 SDValue Res; 4182 4183 if (Idx < 0) { 4184 Res = DAG.getUNDEF(EltVT); 4185 } else { 4186 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 4187 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 4188 4189 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 4190 DAG.getVectorIdxConstant(Idx, DL)); 4191 } 4192 4193 Ops.push_back(Res); 4194 } 4195 4196 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 4197 } 4198 4199 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 4200 ArrayRef<unsigned> Indices = I.getIndices(); 4201 const Value *Op0 = I.getOperand(0); 4202 const Value *Op1 = I.getOperand(1); 4203 Type *AggTy = I.getType(); 4204 Type *ValTy = Op1->getType(); 4205 bool IntoUndef = isa<UndefValue>(Op0); 4206 bool FromUndef = isa<UndefValue>(Op1); 4207 4208 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4209 4210 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4211 SmallVector<EVT, 4> AggValueVTs; 4212 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 4213 SmallVector<EVT, 4> ValValueVTs; 4214 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4215 4216 unsigned NumAggValues = AggValueVTs.size(); 4217 unsigned NumValValues = ValValueVTs.size(); 4218 SmallVector<SDValue, 4> Values(NumAggValues); 4219 4220 // Ignore an insertvalue that produces an empty object 4221 if (!NumAggValues) { 4222 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4223 return; 4224 } 4225 4226 SDValue Agg = getValue(Op0); 4227 unsigned i = 0; 4228 // Copy the beginning value(s) from the original aggregate. 4229 for (; i != LinearIndex; ++i) 4230 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4231 SDValue(Agg.getNode(), Agg.getResNo() + i); 4232 // Copy values from the inserted value(s). 4233 if (NumValValues) { 4234 SDValue Val = getValue(Op1); 4235 for (; i != LinearIndex + NumValValues; ++i) 4236 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4237 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 4238 } 4239 // Copy remaining value(s) from the original aggregate. 4240 for (; i != NumAggValues; ++i) 4241 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4242 SDValue(Agg.getNode(), Agg.getResNo() + i); 4243 4244 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4245 DAG.getVTList(AggValueVTs), Values)); 4246 } 4247 4248 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 4249 ArrayRef<unsigned> Indices = I.getIndices(); 4250 const Value *Op0 = I.getOperand(0); 4251 Type *AggTy = Op0->getType(); 4252 Type *ValTy = I.getType(); 4253 bool OutOfUndef = isa<UndefValue>(Op0); 4254 4255 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4256 4257 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4258 SmallVector<EVT, 4> ValValueVTs; 4259 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4260 4261 unsigned NumValValues = ValValueVTs.size(); 4262 4263 // Ignore a extractvalue that produces an empty object 4264 if (!NumValValues) { 4265 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4266 return; 4267 } 4268 4269 SmallVector<SDValue, 4> Values(NumValValues); 4270 4271 SDValue Agg = getValue(Op0); 4272 // Copy out the selected value(s). 4273 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 4274 Values[i - LinearIndex] = 4275 OutOfUndef ? 4276 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 4277 SDValue(Agg.getNode(), Agg.getResNo() + i); 4278 4279 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4280 DAG.getVTList(ValValueVTs), Values)); 4281 } 4282 4283 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 4284 Value *Op0 = I.getOperand(0); 4285 // Note that the pointer operand may be a vector of pointers. Take the scalar 4286 // element which holds a pointer. 4287 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 4288 SDValue N = getValue(Op0); 4289 SDLoc dl = getCurSDLoc(); 4290 auto &TLI = DAG.getTargetLoweringInfo(); 4291 4292 // Normalize Vector GEP - all scalar operands should be converted to the 4293 // splat vector. 4294 bool IsVectorGEP = I.getType()->isVectorTy(); 4295 ElementCount VectorElementCount = 4296 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 4297 : ElementCount::getFixed(0); 4298 4299 if (IsVectorGEP && !N.getValueType().isVector()) { 4300 LLVMContext &Context = *DAG.getContext(); 4301 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 4302 N = DAG.getSplat(VT, dl, N); 4303 } 4304 4305 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 4306 GTI != E; ++GTI) { 4307 const Value *Idx = GTI.getOperand(); 4308 if (StructType *StTy = GTI.getStructTypeOrNull()) { 4309 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 4310 if (Field) { 4311 // N = N + Offset 4312 uint64_t Offset = 4313 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 4314 4315 // In an inbounds GEP with an offset that is nonnegative even when 4316 // interpreted as signed, assume there is no unsigned overflow. 4317 SDNodeFlags Flags; 4318 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 4319 Flags.setNoUnsignedWrap(true); 4320 4321 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 4322 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 4323 } 4324 } else { 4325 // IdxSize is the width of the arithmetic according to IR semantics. 4326 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 4327 // (and fix up the result later). 4328 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 4329 MVT IdxTy = MVT::getIntegerVT(IdxSize); 4330 TypeSize ElementSize = 4331 GTI.getSequentialElementStride(DAG.getDataLayout()); 4332 // We intentionally mask away the high bits here; ElementSize may not 4333 // fit in IdxTy. 4334 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue()); 4335 bool ElementScalable = ElementSize.isScalable(); 4336 4337 // If this is a scalar constant or a splat vector of constants, 4338 // handle it quickly. 4339 const auto *C = dyn_cast<Constant>(Idx); 4340 if (C && isa<VectorType>(C->getType())) 4341 C = C->getSplatValue(); 4342 4343 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 4344 if (CI && CI->isZero()) 4345 continue; 4346 if (CI && !ElementScalable) { 4347 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 4348 LLVMContext &Context = *DAG.getContext(); 4349 SDValue OffsVal; 4350 if (IsVectorGEP) 4351 OffsVal = DAG.getConstant( 4352 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 4353 else 4354 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 4355 4356 // In an inbounds GEP with an offset that is nonnegative even when 4357 // interpreted as signed, assume there is no unsigned overflow. 4358 SDNodeFlags Flags; 4359 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 4360 Flags.setNoUnsignedWrap(true); 4361 4362 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 4363 4364 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 4365 continue; 4366 } 4367 4368 // N = N + Idx * ElementMul; 4369 SDValue IdxN = getValue(Idx); 4370 4371 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 4372 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 4373 VectorElementCount); 4374 IdxN = DAG.getSplat(VT, dl, IdxN); 4375 } 4376 4377 // If the index is smaller or larger than intptr_t, truncate or extend 4378 // it. 4379 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 4380 4381 if (ElementScalable) { 4382 EVT VScaleTy = N.getValueType().getScalarType(); 4383 SDValue VScale = DAG.getNode( 4384 ISD::VSCALE, dl, VScaleTy, 4385 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 4386 if (IsVectorGEP) 4387 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 4388 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 4389 } else { 4390 // If this is a multiply by a power of two, turn it into a shl 4391 // immediately. This is a very common case. 4392 if (ElementMul != 1) { 4393 if (ElementMul.isPowerOf2()) { 4394 unsigned Amt = ElementMul.logBase2(); 4395 IdxN = DAG.getNode(ISD::SHL, dl, 4396 N.getValueType(), IdxN, 4397 DAG.getConstant(Amt, dl, IdxN.getValueType())); 4398 } else { 4399 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 4400 IdxN.getValueType()); 4401 IdxN = DAG.getNode(ISD::MUL, dl, 4402 N.getValueType(), IdxN, Scale); 4403 } 4404 } 4405 } 4406 4407 N = DAG.getNode(ISD::ADD, dl, 4408 N.getValueType(), N, IdxN); 4409 } 4410 } 4411 4412 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4413 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4414 if (IsVectorGEP) { 4415 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4416 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4417 } 4418 4419 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4420 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4421 4422 setValue(&I, N); 4423 } 4424 4425 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4426 // If this is a fixed sized alloca in the entry block of the function, 4427 // allocate it statically on the stack. 4428 if (FuncInfo.StaticAllocaMap.count(&I)) 4429 return; // getValue will auto-populate this. 4430 4431 SDLoc dl = getCurSDLoc(); 4432 Type *Ty = I.getAllocatedType(); 4433 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4434 auto &DL = DAG.getDataLayout(); 4435 TypeSize TySize = DL.getTypeAllocSize(Ty); 4436 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4437 4438 SDValue AllocSize = getValue(I.getArraySize()); 4439 4440 EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace()); 4441 if (AllocSize.getValueType() != IntPtr) 4442 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4443 4444 if (TySize.isScalable()) 4445 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4446 DAG.getVScale(dl, IntPtr, 4447 APInt(IntPtr.getScalarSizeInBits(), 4448 TySize.getKnownMinValue()))); 4449 else { 4450 SDValue TySizeValue = 4451 DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64)); 4452 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4453 DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr)); 4454 } 4455 4456 // Handle alignment. If the requested alignment is less than or equal to 4457 // the stack alignment, ignore it. If the size is greater than or equal to 4458 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4459 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4460 if (*Alignment <= StackAlign) 4461 Alignment = std::nullopt; 4462 4463 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4464 // Round the size of the allocation up to the stack alignment size 4465 // by add SA-1 to the size. This doesn't overflow because we're computing 4466 // an address inside an alloca. 4467 SDNodeFlags Flags; 4468 Flags.setNoUnsignedWrap(true); 4469 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4470 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4471 4472 // Mask out the low bits for alignment purposes. 4473 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4474 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4475 4476 SDValue Ops[] = { 4477 getRoot(), AllocSize, 4478 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4479 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4480 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4481 setValue(&I, DSA); 4482 DAG.setRoot(DSA.getValue(1)); 4483 4484 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4485 } 4486 4487 static const MDNode *getRangeMetadata(const Instruction &I) { 4488 // If !noundef is not present, then !range violation results in a poison 4489 // value rather than immediate undefined behavior. In theory, transferring 4490 // these annotations to SDAG is fine, but in practice there are key SDAG 4491 // transforms that are known not to be poison-safe, such as folding logical 4492 // and/or to bitwise and/or. For now, only transfer !range if !noundef is 4493 // also present. 4494 if (!I.hasMetadata(LLVMContext::MD_noundef)) 4495 return nullptr; 4496 return I.getMetadata(LLVMContext::MD_range); 4497 } 4498 4499 static std::optional<ConstantRange> getRange(const Instruction &I) { 4500 if (const auto *CB = dyn_cast<CallBase>(&I)) { 4501 // see comment in getRangeMetadata about this check 4502 if (CB->hasRetAttr(Attribute::NoUndef)) 4503 return CB->getRange(); 4504 } 4505 if (const MDNode *Range = getRangeMetadata(I)) 4506 return getConstantRangeFromMetadata(*Range); 4507 return std::nullopt; 4508 } 4509 4510 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4511 if (I.isAtomic()) 4512 return visitAtomicLoad(I); 4513 4514 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4515 const Value *SV = I.getOperand(0); 4516 if (TLI.supportSwiftError()) { 4517 // Swifterror values can come from either a function parameter with 4518 // swifterror attribute or an alloca with swifterror attribute. 4519 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4520 if (Arg->hasSwiftErrorAttr()) 4521 return visitLoadFromSwiftError(I); 4522 } 4523 4524 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4525 if (Alloca->isSwiftError()) 4526 return visitLoadFromSwiftError(I); 4527 } 4528 } 4529 4530 SDValue Ptr = getValue(SV); 4531 4532 Type *Ty = I.getType(); 4533 SmallVector<EVT, 4> ValueVTs, MemVTs; 4534 SmallVector<TypeSize, 4> Offsets; 4535 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4536 unsigned NumValues = ValueVTs.size(); 4537 if (NumValues == 0) 4538 return; 4539 4540 Align Alignment = I.getAlign(); 4541 AAMDNodes AAInfo = I.getAAMetadata(); 4542 const MDNode *Ranges = getRangeMetadata(I); 4543 bool isVolatile = I.isVolatile(); 4544 MachineMemOperand::Flags MMOFlags = 4545 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4546 4547 SDValue Root; 4548 bool ConstantMemory = false; 4549 if (isVolatile) 4550 // Serialize volatile loads with other side effects. 4551 Root = getRoot(); 4552 else if (NumValues > MaxParallelChains) 4553 Root = getMemoryRoot(); 4554 else if (AA && 4555 AA->pointsToConstantMemory(MemoryLocation( 4556 SV, 4557 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4558 AAInfo))) { 4559 // Do not serialize (non-volatile) loads of constant memory with anything. 4560 Root = DAG.getEntryNode(); 4561 ConstantMemory = true; 4562 MMOFlags |= MachineMemOperand::MOInvariant; 4563 } else { 4564 // Do not serialize non-volatile loads against each other. 4565 Root = DAG.getRoot(); 4566 } 4567 4568 SDLoc dl = getCurSDLoc(); 4569 4570 if (isVolatile) 4571 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4572 4573 SmallVector<SDValue, 4> Values(NumValues); 4574 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4575 4576 unsigned ChainI = 0; 4577 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4578 // Serializing loads here may result in excessive register pressure, and 4579 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4580 // could recover a bit by hoisting nodes upward in the chain by recognizing 4581 // they are side-effect free or do not alias. The optimizer should really 4582 // avoid this case by converting large object/array copies to llvm.memcpy 4583 // (MaxParallelChains should always remain as failsafe). 4584 if (ChainI == MaxParallelChains) { 4585 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4586 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4587 ArrayRef(Chains.data(), ChainI)); 4588 Root = Chain; 4589 ChainI = 0; 4590 } 4591 4592 // TODO: MachinePointerInfo only supports a fixed length offset. 4593 MachinePointerInfo PtrInfo = 4594 !Offsets[i].isScalable() || Offsets[i].isZero() 4595 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue()) 4596 : MachinePointerInfo(); 4597 4598 SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4599 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment, 4600 MMOFlags, AAInfo, Ranges); 4601 Chains[ChainI] = L.getValue(1); 4602 4603 if (MemVTs[i] != ValueVTs[i]) 4604 L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]); 4605 4606 Values[i] = L; 4607 } 4608 4609 if (!ConstantMemory) { 4610 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4611 ArrayRef(Chains.data(), ChainI)); 4612 if (isVolatile) 4613 DAG.setRoot(Chain); 4614 else 4615 PendingLoads.push_back(Chain); 4616 } 4617 4618 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4619 DAG.getVTList(ValueVTs), Values)); 4620 } 4621 4622 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4623 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4624 "call visitStoreToSwiftError when backend supports swifterror"); 4625 4626 SmallVector<EVT, 4> ValueVTs; 4627 SmallVector<uint64_t, 4> Offsets; 4628 const Value *SrcV = I.getOperand(0); 4629 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4630 SrcV->getType(), ValueVTs, &Offsets, 0); 4631 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4632 "expect a single EVT for swifterror"); 4633 4634 SDValue Src = getValue(SrcV); 4635 // Create a virtual register, then update the virtual register. 4636 Register VReg = 4637 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4638 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4639 // Chain can be getRoot or getControlRoot. 4640 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4641 SDValue(Src.getNode(), Src.getResNo())); 4642 DAG.setRoot(CopyNode); 4643 } 4644 4645 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4646 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4647 "call visitLoadFromSwiftError when backend supports swifterror"); 4648 4649 assert(!I.isVolatile() && 4650 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4651 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4652 "Support volatile, non temporal, invariant for load_from_swift_error"); 4653 4654 const Value *SV = I.getOperand(0); 4655 Type *Ty = I.getType(); 4656 assert( 4657 (!AA || 4658 !AA->pointsToConstantMemory(MemoryLocation( 4659 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4660 I.getAAMetadata()))) && 4661 "load_from_swift_error should not be constant memory"); 4662 4663 SmallVector<EVT, 4> ValueVTs; 4664 SmallVector<uint64_t, 4> Offsets; 4665 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4666 ValueVTs, &Offsets, 0); 4667 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4668 "expect a single EVT for swifterror"); 4669 4670 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4671 SDValue L = DAG.getCopyFromReg( 4672 getRoot(), getCurSDLoc(), 4673 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4674 4675 setValue(&I, L); 4676 } 4677 4678 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4679 if (I.isAtomic()) 4680 return visitAtomicStore(I); 4681 4682 const Value *SrcV = I.getOperand(0); 4683 const Value *PtrV = I.getOperand(1); 4684 4685 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4686 if (TLI.supportSwiftError()) { 4687 // Swifterror values can come from either a function parameter with 4688 // swifterror attribute or an alloca with swifterror attribute. 4689 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4690 if (Arg->hasSwiftErrorAttr()) 4691 return visitStoreToSwiftError(I); 4692 } 4693 4694 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4695 if (Alloca->isSwiftError()) 4696 return visitStoreToSwiftError(I); 4697 } 4698 } 4699 4700 SmallVector<EVT, 4> ValueVTs, MemVTs; 4701 SmallVector<TypeSize, 4> Offsets; 4702 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4703 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4704 unsigned NumValues = ValueVTs.size(); 4705 if (NumValues == 0) 4706 return; 4707 4708 // Get the lowered operands. Note that we do this after 4709 // checking if NumResults is zero, because with zero results 4710 // the operands won't have values in the map. 4711 SDValue Src = getValue(SrcV); 4712 SDValue Ptr = getValue(PtrV); 4713 4714 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4715 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4716 SDLoc dl = getCurSDLoc(); 4717 Align Alignment = I.getAlign(); 4718 AAMDNodes AAInfo = I.getAAMetadata(); 4719 4720 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4721 4722 unsigned ChainI = 0; 4723 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4724 // See visitLoad comments. 4725 if (ChainI == MaxParallelChains) { 4726 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4727 ArrayRef(Chains.data(), ChainI)); 4728 Root = Chain; 4729 ChainI = 0; 4730 } 4731 4732 // TODO: MachinePointerInfo only supports a fixed length offset. 4733 MachinePointerInfo PtrInfo = 4734 !Offsets[i].isScalable() || Offsets[i].isZero() 4735 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue()) 4736 : MachinePointerInfo(); 4737 4738 SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4739 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4740 if (MemVTs[i] != ValueVTs[i]) 4741 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4742 SDValue St = 4743 DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo); 4744 Chains[ChainI] = St; 4745 } 4746 4747 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4748 ArrayRef(Chains.data(), ChainI)); 4749 setValue(&I, StoreNode); 4750 DAG.setRoot(StoreNode); 4751 } 4752 4753 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4754 bool IsCompressing) { 4755 SDLoc sdl = getCurSDLoc(); 4756 4757 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4758 Align &Alignment) { 4759 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4760 Src0 = I.getArgOperand(0); 4761 Ptr = I.getArgOperand(1); 4762 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getAlignValue(); 4763 Mask = I.getArgOperand(3); 4764 }; 4765 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4766 Align &Alignment) { 4767 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4768 Src0 = I.getArgOperand(0); 4769 Ptr = I.getArgOperand(1); 4770 Mask = I.getArgOperand(2); 4771 Alignment = I.getParamAlign(1).valueOrOne(); 4772 }; 4773 4774 Value *PtrOperand, *MaskOperand, *Src0Operand; 4775 Align Alignment; 4776 if (IsCompressing) 4777 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4778 else 4779 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4780 4781 SDValue Ptr = getValue(PtrOperand); 4782 SDValue Src0 = getValue(Src0Operand); 4783 SDValue Mask = getValue(MaskOperand); 4784 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4785 4786 EVT VT = Src0.getValueType(); 4787 4788 auto MMOFlags = MachineMemOperand::MOStore; 4789 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 4790 MMOFlags |= MachineMemOperand::MONonTemporal; 4791 4792 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4793 MachinePointerInfo(PtrOperand), MMOFlags, 4794 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata()); 4795 4796 const auto &TLI = DAG.getTargetLoweringInfo(); 4797 const auto &TTI = 4798 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 4799 SDValue StoreNode = 4800 !IsCompressing && TTI.hasConditionalLoadStoreForType( 4801 I.getArgOperand(0)->getType()->getScalarType()) 4802 ? TLI.visitMaskedStore(DAG, sdl, getMemoryRoot(), MMO, Ptr, Src0, 4803 Mask) 4804 : DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, 4805 VT, MMO, ISD::UNINDEXED, /*Truncating=*/false, 4806 IsCompressing); 4807 DAG.setRoot(StoreNode); 4808 setValue(&I, StoreNode); 4809 } 4810 4811 // Get a uniform base for the Gather/Scatter intrinsic. 4812 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4813 // We try to represent it as a base pointer + vector of indices. 4814 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4815 // The first operand of the GEP may be a single pointer or a vector of pointers 4816 // Example: 4817 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4818 // or 4819 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4820 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4821 // 4822 // When the first GEP operand is a single pointer - it is the uniform base we 4823 // are looking for. If first operand of the GEP is a splat vector - we 4824 // extract the splat value and use it as a uniform base. 4825 // In all other cases the function returns 'false'. 4826 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4827 ISD::MemIndexType &IndexType, SDValue &Scale, 4828 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4829 uint64_t ElemSize) { 4830 SelectionDAG& DAG = SDB->DAG; 4831 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4832 const DataLayout &DL = DAG.getDataLayout(); 4833 4834 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4835 4836 // Handle splat constant pointer. 4837 if (auto *C = dyn_cast<Constant>(Ptr)) { 4838 C = C->getSplatValue(); 4839 if (!C) 4840 return false; 4841 4842 Base = SDB->getValue(C); 4843 4844 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4845 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4846 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4847 IndexType = ISD::SIGNED_SCALED; 4848 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4849 return true; 4850 } 4851 4852 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4853 if (!GEP || GEP->getParent() != CurBB) 4854 return false; 4855 4856 if (GEP->getNumOperands() != 2) 4857 return false; 4858 4859 const Value *BasePtr = GEP->getPointerOperand(); 4860 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4861 4862 // Make sure the base is scalar and the index is a vector. 4863 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4864 return false; 4865 4866 TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4867 if (ScaleVal.isScalable()) 4868 return false; 4869 4870 // Target may not support the required addressing mode. 4871 if (ScaleVal != 1 && 4872 !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize)) 4873 return false; 4874 4875 Base = SDB->getValue(BasePtr); 4876 Index = SDB->getValue(IndexVal); 4877 IndexType = ISD::SIGNED_SCALED; 4878 4879 Scale = 4880 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4881 return true; 4882 } 4883 4884 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4885 SDLoc sdl = getCurSDLoc(); 4886 4887 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4888 const Value *Ptr = I.getArgOperand(1); 4889 SDValue Src0 = getValue(I.getArgOperand(0)); 4890 SDValue Mask = getValue(I.getArgOperand(3)); 4891 EVT VT = Src0.getValueType(); 4892 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4893 ->getMaybeAlignValue() 4894 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4895 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4896 4897 SDValue Base; 4898 SDValue Index; 4899 ISD::MemIndexType IndexType; 4900 SDValue Scale; 4901 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4902 I.getParent(), VT.getScalarStoreSize()); 4903 4904 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4905 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4906 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4907 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata()); 4908 if (!UniformBase) { 4909 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4910 Index = getValue(Ptr); 4911 IndexType = ISD::SIGNED_SCALED; 4912 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4913 } 4914 4915 EVT IdxVT = Index.getValueType(); 4916 EVT EltTy = IdxVT.getVectorElementType(); 4917 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4918 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4919 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4920 } 4921 4922 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4923 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4924 Ops, MMO, IndexType, false); 4925 DAG.setRoot(Scatter); 4926 setValue(&I, Scatter); 4927 } 4928 4929 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4930 SDLoc sdl = getCurSDLoc(); 4931 4932 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4933 Align &Alignment) { 4934 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4935 Ptr = I.getArgOperand(0); 4936 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getAlignValue(); 4937 Mask = I.getArgOperand(2); 4938 Src0 = I.getArgOperand(3); 4939 }; 4940 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4941 Align &Alignment) { 4942 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4943 Ptr = I.getArgOperand(0); 4944 Alignment = I.getParamAlign(0).valueOrOne(); 4945 Mask = I.getArgOperand(1); 4946 Src0 = I.getArgOperand(2); 4947 }; 4948 4949 Value *PtrOperand, *MaskOperand, *Src0Operand; 4950 Align Alignment; 4951 if (IsExpanding) 4952 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4953 else 4954 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4955 4956 SDValue Ptr = getValue(PtrOperand); 4957 SDValue Src0 = getValue(Src0Operand); 4958 SDValue Mask = getValue(MaskOperand); 4959 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4960 4961 EVT VT = Src0.getValueType(); 4962 AAMDNodes AAInfo = I.getAAMetadata(); 4963 const MDNode *Ranges = getRangeMetadata(I); 4964 4965 // Do not serialize masked loads of constant memory with anything. 4966 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4967 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4968 4969 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4970 4971 auto MMOFlags = MachineMemOperand::MOLoad; 4972 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 4973 MMOFlags |= MachineMemOperand::MONonTemporal; 4974 4975 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4976 MachinePointerInfo(PtrOperand), MMOFlags, 4977 LocationSize::beforeOrAfterPointer(), Alignment, AAInfo, Ranges); 4978 4979 const auto &TLI = DAG.getTargetLoweringInfo(); 4980 const auto &TTI = 4981 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 4982 // The Load/Res may point to different values and both of them are output 4983 // variables. 4984 SDValue Load; 4985 SDValue Res; 4986 if (!IsExpanding && TTI.hasConditionalLoadStoreForType( 4987 Src0Operand->getType()->getScalarType())) 4988 Res = TLI.visitMaskedLoad(DAG, sdl, InChain, MMO, Load, Ptr, Src0, Mask); 4989 else 4990 Res = Load = 4991 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4992 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4993 if (AddToChain) 4994 PendingLoads.push_back(Load.getValue(1)); 4995 setValue(&I, Res); 4996 } 4997 4998 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4999 SDLoc sdl = getCurSDLoc(); 5000 5001 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 5002 const Value *Ptr = I.getArgOperand(0); 5003 SDValue Src0 = getValue(I.getArgOperand(3)); 5004 SDValue Mask = getValue(I.getArgOperand(2)); 5005 5006 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5007 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5008 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 5009 ->getMaybeAlignValue() 5010 .value_or(DAG.getEVTAlign(VT.getScalarType())); 5011 5012 const MDNode *Ranges = getRangeMetadata(I); 5013 5014 SDValue Root = DAG.getRoot(); 5015 SDValue Base; 5016 SDValue Index; 5017 ISD::MemIndexType IndexType; 5018 SDValue Scale; 5019 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 5020 I.getParent(), VT.getScalarStoreSize()); 5021 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 5022 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 5023 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 5024 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata(), 5025 Ranges); 5026 5027 if (!UniformBase) { 5028 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 5029 Index = getValue(Ptr); 5030 IndexType = ISD::SIGNED_SCALED; 5031 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 5032 } 5033 5034 EVT IdxVT = Index.getValueType(); 5035 EVT EltTy = IdxVT.getVectorElementType(); 5036 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 5037 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 5038 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 5039 } 5040 5041 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 5042 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 5043 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 5044 5045 PendingLoads.push_back(Gather.getValue(1)); 5046 setValue(&I, Gather); 5047 } 5048 5049 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 5050 SDLoc dl = getCurSDLoc(); 5051 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 5052 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 5053 SyncScope::ID SSID = I.getSyncScopeID(); 5054 5055 SDValue InChain = getRoot(); 5056 5057 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 5058 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 5059 5060 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5061 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 5062 5063 MachineFunction &MF = DAG.getMachineFunction(); 5064 MachineMemOperand *MMO = MF.getMachineMemOperand( 5065 MachinePointerInfo(I.getPointerOperand()), Flags, 5066 LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT), 5067 AAMDNodes(), nullptr, SSID, SuccessOrdering, FailureOrdering); 5068 5069 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 5070 dl, MemVT, VTs, InChain, 5071 getValue(I.getPointerOperand()), 5072 getValue(I.getCompareOperand()), 5073 getValue(I.getNewValOperand()), MMO); 5074 5075 SDValue OutChain = L.getValue(2); 5076 5077 setValue(&I, L); 5078 DAG.setRoot(OutChain); 5079 } 5080 5081 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 5082 SDLoc dl = getCurSDLoc(); 5083 ISD::NodeType NT; 5084 switch (I.getOperation()) { 5085 default: llvm_unreachable("Unknown atomicrmw operation"); 5086 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 5087 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 5088 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 5089 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 5090 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 5091 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 5092 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 5093 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 5094 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 5095 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 5096 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 5097 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 5098 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 5099 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 5100 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 5101 case AtomicRMWInst::UIncWrap: 5102 NT = ISD::ATOMIC_LOAD_UINC_WRAP; 5103 break; 5104 case AtomicRMWInst::UDecWrap: 5105 NT = ISD::ATOMIC_LOAD_UDEC_WRAP; 5106 break; 5107 } 5108 AtomicOrdering Ordering = I.getOrdering(); 5109 SyncScope::ID SSID = I.getSyncScopeID(); 5110 5111 SDValue InChain = getRoot(); 5112 5113 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 5114 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5115 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 5116 5117 MachineFunction &MF = DAG.getMachineFunction(); 5118 MachineMemOperand *MMO = MF.getMachineMemOperand( 5119 MachinePointerInfo(I.getPointerOperand()), Flags, 5120 LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT), 5121 AAMDNodes(), nullptr, SSID, Ordering); 5122 5123 SDValue L = 5124 DAG.getAtomic(NT, dl, MemVT, InChain, 5125 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 5126 MMO); 5127 5128 SDValue OutChain = L.getValue(1); 5129 5130 setValue(&I, L); 5131 DAG.setRoot(OutChain); 5132 } 5133 5134 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 5135 SDLoc dl = getCurSDLoc(); 5136 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5137 SDValue Ops[3]; 5138 Ops[0] = getRoot(); 5139 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 5140 TLI.getFenceOperandTy(DAG.getDataLayout())); 5141 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 5142 TLI.getFenceOperandTy(DAG.getDataLayout())); 5143 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 5144 setValue(&I, N); 5145 DAG.setRoot(N); 5146 } 5147 5148 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 5149 SDLoc dl = getCurSDLoc(); 5150 AtomicOrdering Order = I.getOrdering(); 5151 SyncScope::ID SSID = I.getSyncScopeID(); 5152 5153 SDValue InChain = getRoot(); 5154 5155 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5156 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5157 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 5158 5159 if (!TLI.supportsUnalignedAtomics() && 5160 I.getAlign().value() < MemVT.getSizeInBits() / 8) 5161 report_fatal_error("Cannot generate unaligned atomic load"); 5162 5163 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 5164 5165 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 5166 MachinePointerInfo(I.getPointerOperand()), Flags, 5167 LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(), 5168 nullptr, SSID, Order); 5169 5170 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 5171 5172 SDValue Ptr = getValue(I.getPointerOperand()); 5173 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 5174 Ptr, MMO); 5175 5176 SDValue OutChain = L.getValue(1); 5177 if (MemVT != VT) 5178 L = DAG.getPtrExtOrTrunc(L, dl, VT); 5179 5180 setValue(&I, L); 5181 DAG.setRoot(OutChain); 5182 } 5183 5184 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 5185 SDLoc dl = getCurSDLoc(); 5186 5187 AtomicOrdering Ordering = I.getOrdering(); 5188 SyncScope::ID SSID = I.getSyncScopeID(); 5189 5190 SDValue InChain = getRoot(); 5191 5192 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5193 EVT MemVT = 5194 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 5195 5196 if (!TLI.supportsUnalignedAtomics() && 5197 I.getAlign().value() < MemVT.getSizeInBits() / 8) 5198 report_fatal_error("Cannot generate unaligned atomic store"); 5199 5200 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 5201 5202 MachineFunction &MF = DAG.getMachineFunction(); 5203 MachineMemOperand *MMO = MF.getMachineMemOperand( 5204 MachinePointerInfo(I.getPointerOperand()), Flags, 5205 LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(), 5206 nullptr, SSID, Ordering); 5207 5208 SDValue Val = getValue(I.getValueOperand()); 5209 if (Val.getValueType() != MemVT) 5210 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 5211 SDValue Ptr = getValue(I.getPointerOperand()); 5212 5213 SDValue OutChain = 5214 DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO); 5215 5216 setValue(&I, OutChain); 5217 DAG.setRoot(OutChain); 5218 } 5219 5220 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 5221 /// node. 5222 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 5223 unsigned Intrinsic) { 5224 // Ignore the callsite's attributes. A specific call site may be marked with 5225 // readnone, but the lowering code will expect the chain based on the 5226 // definition. 5227 const Function *F = I.getCalledFunction(); 5228 bool HasChain = !F->doesNotAccessMemory(); 5229 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 5230 5231 // Build the operand list. 5232 SmallVector<SDValue, 8> Ops; 5233 if (HasChain) { // If this intrinsic has side-effects, chainify it. 5234 if (OnlyLoad) { 5235 // We don't need to serialize loads against other loads. 5236 Ops.push_back(DAG.getRoot()); 5237 } else { 5238 Ops.push_back(getRoot()); 5239 } 5240 } 5241 5242 // Info is set by getTgtMemIntrinsic 5243 TargetLowering::IntrinsicInfo Info; 5244 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5245 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 5246 DAG.getMachineFunction(), 5247 Intrinsic); 5248 5249 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 5250 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 5251 Info.opc == ISD::INTRINSIC_W_CHAIN) 5252 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 5253 TLI.getPointerTy(DAG.getDataLayout()))); 5254 5255 // Add all operands of the call to the operand list. 5256 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 5257 const Value *Arg = I.getArgOperand(i); 5258 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 5259 Ops.push_back(getValue(Arg)); 5260 continue; 5261 } 5262 5263 // Use TargetConstant instead of a regular constant for immarg. 5264 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 5265 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 5266 assert(CI->getBitWidth() <= 64 && 5267 "large intrinsic immediates not handled"); 5268 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 5269 } else { 5270 Ops.push_back( 5271 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 5272 } 5273 } 5274 5275 SmallVector<EVT, 4> ValueVTs; 5276 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 5277 5278 if (HasChain) 5279 ValueVTs.push_back(MVT::Other); 5280 5281 SDVTList VTs = DAG.getVTList(ValueVTs); 5282 5283 // Propagate fast-math-flags from IR to node(s). 5284 SDNodeFlags Flags; 5285 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 5286 Flags.copyFMF(*FPMO); 5287 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 5288 5289 // Create the node. 5290 SDValue Result; 5291 5292 if (auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl)) { 5293 auto *Token = Bundle->Inputs[0].get(); 5294 SDValue ConvControlToken = getValue(Token); 5295 assert(Ops.back().getValueType() != MVT::Glue && 5296 "Did not expected another glue node here."); 5297 ConvControlToken = 5298 DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken); 5299 Ops.push_back(ConvControlToken); 5300 } 5301 5302 // In some cases, custom collection of operands from CallInst I may be needed. 5303 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 5304 if (IsTgtIntrinsic) { 5305 // This is target intrinsic that touches memory 5306 // 5307 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 5308 // didn't yield anything useful. 5309 MachinePointerInfo MPI; 5310 if (Info.ptrVal) 5311 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 5312 else if (Info.fallbackAddressSpace) 5313 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 5314 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, 5315 Info.memVT, MPI, Info.align, Info.flags, 5316 Info.size, I.getAAMetadata()); 5317 } else if (!HasChain) { 5318 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 5319 } else if (!I.getType()->isVoidTy()) { 5320 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 5321 } else { 5322 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 5323 } 5324 5325 if (HasChain) { 5326 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 5327 if (OnlyLoad) 5328 PendingLoads.push_back(Chain); 5329 else 5330 DAG.setRoot(Chain); 5331 } 5332 5333 if (!I.getType()->isVoidTy()) { 5334 if (!isa<VectorType>(I.getType())) 5335 Result = lowerRangeToAssertZExt(DAG, I, Result); 5336 5337 MaybeAlign Alignment = I.getRetAlign(); 5338 5339 // Insert `assertalign` node if there's an alignment. 5340 if (InsertAssertAlign && Alignment) { 5341 Result = 5342 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 5343 } 5344 } 5345 5346 setValue(&I, Result); 5347 } 5348 5349 /// GetSignificand - Get the significand and build it into a floating-point 5350 /// number with exponent of 1: 5351 /// 5352 /// Op = (Op & 0x007fffff) | 0x3f800000; 5353 /// 5354 /// where Op is the hexadecimal representation of floating point value. 5355 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 5356 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5357 DAG.getConstant(0x007fffff, dl, MVT::i32)); 5358 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 5359 DAG.getConstant(0x3f800000, dl, MVT::i32)); 5360 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 5361 } 5362 5363 /// GetExponent - Get the exponent: 5364 /// 5365 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 5366 /// 5367 /// where Op is the hexadecimal representation of floating point value. 5368 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 5369 const TargetLowering &TLI, const SDLoc &dl) { 5370 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5371 DAG.getConstant(0x7f800000, dl, MVT::i32)); 5372 SDValue t1 = DAG.getNode( 5373 ISD::SRL, dl, MVT::i32, t0, 5374 DAG.getConstant(23, dl, 5375 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 5376 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 5377 DAG.getConstant(127, dl, MVT::i32)); 5378 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 5379 } 5380 5381 /// getF32Constant - Get 32-bit floating point constant. 5382 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 5383 const SDLoc &dl) { 5384 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 5385 MVT::f32); 5386 } 5387 5388 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 5389 SelectionDAG &DAG) { 5390 // TODO: What fast-math-flags should be set on the floating-point nodes? 5391 5392 // IntegerPartOfX = ((int32_t)(t0); 5393 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 5394 5395 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 5396 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 5397 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 5398 5399 // IntegerPartOfX <<= 23; 5400 IntegerPartOfX = 5401 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 5402 DAG.getConstant(23, dl, 5403 DAG.getTargetLoweringInfo().getShiftAmountTy( 5404 MVT::i32, DAG.getDataLayout()))); 5405 5406 SDValue TwoToFractionalPartOfX; 5407 if (LimitFloatPrecision <= 6) { 5408 // For floating-point precision of 6: 5409 // 5410 // TwoToFractionalPartOfX = 5411 // 0.997535578f + 5412 // (0.735607626f + 0.252464424f * x) * x; 5413 // 5414 // error 0.0144103317, which is 6 bits 5415 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5416 getF32Constant(DAG, 0x3e814304, dl)); 5417 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5418 getF32Constant(DAG, 0x3f3c50c8, dl)); 5419 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5420 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5421 getF32Constant(DAG, 0x3f7f5e7e, dl)); 5422 } else if (LimitFloatPrecision <= 12) { 5423 // For floating-point precision of 12: 5424 // 5425 // TwoToFractionalPartOfX = 5426 // 0.999892986f + 5427 // (0.696457318f + 5428 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 5429 // 5430 // error 0.000107046256, which is 13 to 14 bits 5431 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5432 getF32Constant(DAG, 0x3da235e3, dl)); 5433 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5434 getF32Constant(DAG, 0x3e65b8f3, dl)); 5435 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5436 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5437 getF32Constant(DAG, 0x3f324b07, dl)); 5438 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5439 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5440 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5441 } else { // LimitFloatPrecision <= 18 5442 // For floating-point precision of 18: 5443 // 5444 // TwoToFractionalPartOfX = 5445 // 0.999999982f + 5446 // (0.693148872f + 5447 // (0.240227044f + 5448 // (0.554906021e-1f + 5449 // (0.961591928e-2f + 5450 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5451 // error 2.47208000*10^(-7), which is better than 18 bits 5452 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5453 getF32Constant(DAG, 0x3924b03e, dl)); 5454 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5455 getF32Constant(DAG, 0x3ab24b87, dl)); 5456 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5457 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5458 getF32Constant(DAG, 0x3c1d8c17, dl)); 5459 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5460 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5461 getF32Constant(DAG, 0x3d634a1d, dl)); 5462 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5463 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5464 getF32Constant(DAG, 0x3e75fe14, dl)); 5465 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5466 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5467 getF32Constant(DAG, 0x3f317234, dl)); 5468 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5469 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5470 getF32Constant(DAG, 0x3f800000, dl)); 5471 } 5472 5473 // Add the exponent into the result in integer domain. 5474 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5475 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5476 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5477 } 5478 5479 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5480 /// limited-precision mode. 5481 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5482 const TargetLowering &TLI, SDNodeFlags Flags) { 5483 if (Op.getValueType() == MVT::f32 && 5484 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5485 5486 // Put the exponent in the right bit position for later addition to the 5487 // final result: 5488 // 5489 // t0 = Op * log2(e) 5490 5491 // TODO: What fast-math-flags should be set here? 5492 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5493 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5494 return getLimitedPrecisionExp2(t0, dl, DAG); 5495 } 5496 5497 // No special expansion. 5498 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5499 } 5500 5501 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5502 /// limited-precision mode. 5503 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5504 const TargetLowering &TLI, SDNodeFlags Flags) { 5505 // TODO: What fast-math-flags should be set on the floating-point nodes? 5506 5507 if (Op.getValueType() == MVT::f32 && 5508 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5509 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5510 5511 // Scale the exponent by log(2). 5512 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5513 SDValue LogOfExponent = 5514 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5515 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5516 5517 // Get the significand and build it into a floating-point number with 5518 // exponent of 1. 5519 SDValue X = GetSignificand(DAG, Op1, dl); 5520 5521 SDValue LogOfMantissa; 5522 if (LimitFloatPrecision <= 6) { 5523 // For floating-point precision of 6: 5524 // 5525 // LogofMantissa = 5526 // -1.1609546f + 5527 // (1.4034025f - 0.23903021f * x) * x; 5528 // 5529 // error 0.0034276066, which is better than 8 bits 5530 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5531 getF32Constant(DAG, 0xbe74c456, dl)); 5532 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5533 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5534 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5535 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5536 getF32Constant(DAG, 0x3f949a29, dl)); 5537 } else if (LimitFloatPrecision <= 12) { 5538 // For floating-point precision of 12: 5539 // 5540 // LogOfMantissa = 5541 // -1.7417939f + 5542 // (2.8212026f + 5543 // (-1.4699568f + 5544 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5545 // 5546 // error 0.000061011436, which is 14 bits 5547 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5548 getF32Constant(DAG, 0xbd67b6d6, dl)); 5549 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5550 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5551 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5552 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5553 getF32Constant(DAG, 0x3fbc278b, dl)); 5554 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5555 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5556 getF32Constant(DAG, 0x40348e95, dl)); 5557 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5558 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5559 getF32Constant(DAG, 0x3fdef31a, dl)); 5560 } else { // LimitFloatPrecision <= 18 5561 // For floating-point precision of 18: 5562 // 5563 // LogOfMantissa = 5564 // -2.1072184f + 5565 // (4.2372794f + 5566 // (-3.7029485f + 5567 // (2.2781945f + 5568 // (-0.87823314f + 5569 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5570 // 5571 // error 0.0000023660568, which is better than 18 bits 5572 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5573 getF32Constant(DAG, 0xbc91e5ac, dl)); 5574 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5575 getF32Constant(DAG, 0x3e4350aa, dl)); 5576 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5577 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5578 getF32Constant(DAG, 0x3f60d3e3, dl)); 5579 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5580 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5581 getF32Constant(DAG, 0x4011cdf0, dl)); 5582 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5583 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5584 getF32Constant(DAG, 0x406cfd1c, dl)); 5585 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5586 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5587 getF32Constant(DAG, 0x408797cb, dl)); 5588 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5589 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5590 getF32Constant(DAG, 0x4006dcab, dl)); 5591 } 5592 5593 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5594 } 5595 5596 // No special expansion. 5597 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5598 } 5599 5600 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5601 /// limited-precision mode. 5602 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5603 const TargetLowering &TLI, SDNodeFlags Flags) { 5604 // TODO: What fast-math-flags should be set on the floating-point nodes? 5605 5606 if (Op.getValueType() == MVT::f32 && 5607 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5608 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5609 5610 // Get the exponent. 5611 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5612 5613 // Get the significand and build it into a floating-point number with 5614 // exponent of 1. 5615 SDValue X = GetSignificand(DAG, Op1, dl); 5616 5617 // Different possible minimax approximations of significand in 5618 // floating-point for various degrees of accuracy over [1,2]. 5619 SDValue Log2ofMantissa; 5620 if (LimitFloatPrecision <= 6) { 5621 // For floating-point precision of 6: 5622 // 5623 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5624 // 5625 // error 0.0049451742, which is more than 7 bits 5626 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5627 getF32Constant(DAG, 0xbeb08fe0, dl)); 5628 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5629 getF32Constant(DAG, 0x40019463, dl)); 5630 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5631 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5632 getF32Constant(DAG, 0x3fd6633d, dl)); 5633 } else if (LimitFloatPrecision <= 12) { 5634 // For floating-point precision of 12: 5635 // 5636 // Log2ofMantissa = 5637 // -2.51285454f + 5638 // (4.07009056f + 5639 // (-2.12067489f + 5640 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5641 // 5642 // error 0.0000876136000, which is better than 13 bits 5643 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5644 getF32Constant(DAG, 0xbda7262e, dl)); 5645 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5646 getF32Constant(DAG, 0x3f25280b, dl)); 5647 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5648 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5649 getF32Constant(DAG, 0x4007b923, dl)); 5650 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5651 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5652 getF32Constant(DAG, 0x40823e2f, dl)); 5653 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5654 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5655 getF32Constant(DAG, 0x4020d29c, dl)); 5656 } else { // LimitFloatPrecision <= 18 5657 // For floating-point precision of 18: 5658 // 5659 // Log2ofMantissa = 5660 // -3.0400495f + 5661 // (6.1129976f + 5662 // (-5.3420409f + 5663 // (3.2865683f + 5664 // (-1.2669343f + 5665 // (0.27515199f - 5666 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5667 // 5668 // error 0.0000018516, which is better than 18 bits 5669 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5670 getF32Constant(DAG, 0xbcd2769e, dl)); 5671 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5672 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5673 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5674 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5675 getF32Constant(DAG, 0x3fa22ae7, dl)); 5676 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5677 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5678 getF32Constant(DAG, 0x40525723, dl)); 5679 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5680 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5681 getF32Constant(DAG, 0x40aaf200, dl)); 5682 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5683 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5684 getF32Constant(DAG, 0x40c39dad, dl)); 5685 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5686 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5687 getF32Constant(DAG, 0x4042902c, dl)); 5688 } 5689 5690 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5691 } 5692 5693 // No special expansion. 5694 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5695 } 5696 5697 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5698 /// limited-precision mode. 5699 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5700 const TargetLowering &TLI, SDNodeFlags Flags) { 5701 // TODO: What fast-math-flags should be set on the floating-point nodes? 5702 5703 if (Op.getValueType() == MVT::f32 && 5704 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5705 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5706 5707 // Scale the exponent by log10(2) [0.30102999f]. 5708 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5709 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5710 getF32Constant(DAG, 0x3e9a209a, dl)); 5711 5712 // Get the significand and build it into a floating-point number with 5713 // exponent of 1. 5714 SDValue X = GetSignificand(DAG, Op1, dl); 5715 5716 SDValue Log10ofMantissa; 5717 if (LimitFloatPrecision <= 6) { 5718 // For floating-point precision of 6: 5719 // 5720 // Log10ofMantissa = 5721 // -0.50419619f + 5722 // (0.60948995f - 0.10380950f * x) * x; 5723 // 5724 // error 0.0014886165, which is 6 bits 5725 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5726 getF32Constant(DAG, 0xbdd49a13, dl)); 5727 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5728 getF32Constant(DAG, 0x3f1c0789, dl)); 5729 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5730 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5731 getF32Constant(DAG, 0x3f011300, dl)); 5732 } else if (LimitFloatPrecision <= 12) { 5733 // For floating-point precision of 12: 5734 // 5735 // Log10ofMantissa = 5736 // -0.64831180f + 5737 // (0.91751397f + 5738 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5739 // 5740 // error 0.00019228036, which is better than 12 bits 5741 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5742 getF32Constant(DAG, 0x3d431f31, dl)); 5743 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5744 getF32Constant(DAG, 0x3ea21fb2, dl)); 5745 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5746 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5747 getF32Constant(DAG, 0x3f6ae232, dl)); 5748 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5749 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5750 getF32Constant(DAG, 0x3f25f7c3, dl)); 5751 } else { // LimitFloatPrecision <= 18 5752 // For floating-point precision of 18: 5753 // 5754 // Log10ofMantissa = 5755 // -0.84299375f + 5756 // (1.5327582f + 5757 // (-1.0688956f + 5758 // (0.49102474f + 5759 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5760 // 5761 // error 0.0000037995730, which is better than 18 bits 5762 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5763 getF32Constant(DAG, 0x3c5d51ce, dl)); 5764 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5765 getF32Constant(DAG, 0x3e00685a, dl)); 5766 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5767 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5768 getF32Constant(DAG, 0x3efb6798, dl)); 5769 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5770 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5771 getF32Constant(DAG, 0x3f88d192, dl)); 5772 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5773 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5774 getF32Constant(DAG, 0x3fc4316c, dl)); 5775 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5776 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5777 getF32Constant(DAG, 0x3f57ce70, dl)); 5778 } 5779 5780 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5781 } 5782 5783 // No special expansion. 5784 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5785 } 5786 5787 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5788 /// limited-precision mode. 5789 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5790 const TargetLowering &TLI, SDNodeFlags Flags) { 5791 if (Op.getValueType() == MVT::f32 && 5792 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5793 return getLimitedPrecisionExp2(Op, dl, DAG); 5794 5795 // No special expansion. 5796 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5797 } 5798 5799 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5800 /// limited-precision mode with x == 10.0f. 5801 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5802 SelectionDAG &DAG, const TargetLowering &TLI, 5803 SDNodeFlags Flags) { 5804 bool IsExp10 = false; 5805 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5806 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5807 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5808 APFloat Ten(10.0f); 5809 IsExp10 = LHSC->isExactlyValue(Ten); 5810 } 5811 } 5812 5813 // TODO: What fast-math-flags should be set on the FMUL node? 5814 if (IsExp10) { 5815 // Put the exponent in the right bit position for later addition to the 5816 // final result: 5817 // 5818 // #define LOG2OF10 3.3219281f 5819 // t0 = Op * LOG2OF10; 5820 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5821 getF32Constant(DAG, 0x40549a78, dl)); 5822 return getLimitedPrecisionExp2(t0, dl, DAG); 5823 } 5824 5825 // No special expansion. 5826 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5827 } 5828 5829 /// ExpandPowI - Expand a llvm.powi intrinsic. 5830 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5831 SelectionDAG &DAG) { 5832 // If RHS is a constant, we can expand this out to a multiplication tree if 5833 // it's beneficial on the target, otherwise we end up lowering to a call to 5834 // __powidf2 (for example). 5835 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5836 unsigned Val = RHSC->getSExtValue(); 5837 5838 // powi(x, 0) -> 1.0 5839 if (Val == 0) 5840 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5841 5842 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5843 Val, DAG.shouldOptForSize())) { 5844 // Get the exponent as a positive value. 5845 if ((int)Val < 0) 5846 Val = -Val; 5847 // We use the simple binary decomposition method to generate the multiply 5848 // sequence. There are more optimal ways to do this (for example, 5849 // powi(x,15) generates one more multiply than it should), but this has 5850 // the benefit of being both really simple and much better than a libcall. 5851 SDValue Res; // Logically starts equal to 1.0 5852 SDValue CurSquare = LHS; 5853 // TODO: Intrinsics should have fast-math-flags that propagate to these 5854 // nodes. 5855 while (Val) { 5856 if (Val & 1) { 5857 if (Res.getNode()) 5858 Res = 5859 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5860 else 5861 Res = CurSquare; // 1.0*CurSquare. 5862 } 5863 5864 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5865 CurSquare, CurSquare); 5866 Val >>= 1; 5867 } 5868 5869 // If the original was negative, invert the result, producing 1/(x*x*x). 5870 if (RHSC->getSExtValue() < 0) 5871 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5872 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5873 return Res; 5874 } 5875 } 5876 5877 // Otherwise, expand to a libcall. 5878 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5879 } 5880 5881 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5882 SDValue LHS, SDValue RHS, SDValue Scale, 5883 SelectionDAG &DAG, const TargetLowering &TLI) { 5884 EVT VT = LHS.getValueType(); 5885 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5886 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5887 LLVMContext &Ctx = *DAG.getContext(); 5888 5889 // If the type is legal but the operation isn't, this node might survive all 5890 // the way to operation legalization. If we end up there and we do not have 5891 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5892 // node. 5893 5894 // Coax the legalizer into expanding the node during type legalization instead 5895 // by bumping the size by one bit. This will force it to Promote, enabling the 5896 // early expansion and avoiding the need to expand later. 5897 5898 // We don't have to do this if Scale is 0; that can always be expanded, unless 5899 // it's a saturating signed operation. Those can experience true integer 5900 // division overflow, a case which we must avoid. 5901 5902 // FIXME: We wouldn't have to do this (or any of the early 5903 // expansion/promotion) if it was possible to expand a libcall of an 5904 // illegal type during operation legalization. But it's not, so things 5905 // get a bit hacky. 5906 unsigned ScaleInt = Scale->getAsZExtVal(); 5907 if ((ScaleInt > 0 || (Saturating && Signed)) && 5908 (TLI.isTypeLegal(VT) || 5909 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5910 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5911 Opcode, VT, ScaleInt); 5912 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5913 EVT PromVT; 5914 if (VT.isScalarInteger()) 5915 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5916 else if (VT.isVector()) { 5917 PromVT = VT.getVectorElementType(); 5918 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5919 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5920 } else 5921 llvm_unreachable("Wrong VT for DIVFIX?"); 5922 LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT); 5923 RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT); 5924 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5925 // For saturating operations, we need to shift up the LHS to get the 5926 // proper saturation width, and then shift down again afterwards. 5927 if (Saturating) 5928 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5929 DAG.getConstant(1, DL, ShiftTy)); 5930 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5931 if (Saturating) 5932 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5933 DAG.getConstant(1, DL, ShiftTy)); 5934 return DAG.getZExtOrTrunc(Res, DL, VT); 5935 } 5936 } 5937 5938 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5939 } 5940 5941 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5942 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5943 static void 5944 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5945 const SDValue &N) { 5946 switch (N.getOpcode()) { 5947 case ISD::CopyFromReg: { 5948 SDValue Op = N.getOperand(1); 5949 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5950 Op.getValueType().getSizeInBits()); 5951 return; 5952 } 5953 case ISD::BITCAST: 5954 case ISD::AssertZext: 5955 case ISD::AssertSext: 5956 case ISD::TRUNCATE: 5957 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5958 return; 5959 case ISD::BUILD_PAIR: 5960 case ISD::BUILD_VECTOR: 5961 case ISD::CONCAT_VECTORS: 5962 for (SDValue Op : N->op_values()) 5963 getUnderlyingArgRegs(Regs, Op); 5964 return; 5965 default: 5966 return; 5967 } 5968 } 5969 5970 /// If the DbgValueInst is a dbg_value of a function argument, create the 5971 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5972 /// instruction selection, they will be inserted to the entry BB. 5973 /// We don't currently support this for variadic dbg_values, as they shouldn't 5974 /// appear for function arguments or in the prologue. 5975 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5976 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5977 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5978 const Argument *Arg = dyn_cast<Argument>(V); 5979 if (!Arg) 5980 return false; 5981 5982 MachineFunction &MF = DAG.getMachineFunction(); 5983 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5984 5985 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5986 // we've been asked to pursue. 5987 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5988 bool Indirect) { 5989 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5990 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5991 // pointing at the VReg, which will be patched up later. 5992 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5993 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( 5994 /* Reg */ Reg, /* isDef */ false, /* isImp */ false, 5995 /* isKill */ false, /* isDead */ false, 5996 /* isUndef */ false, /* isEarlyClobber */ false, 5997 /* SubReg */ 0, /* isDebug */ true)}); 5998 5999 auto *NewDIExpr = FragExpr; 6000 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 6001 // the DIExpression. 6002 if (Indirect) 6003 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 6004 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); 6005 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops); 6006 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr); 6007 } else { 6008 // Create a completely standard DBG_VALUE. 6009 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 6010 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 6011 } 6012 }; 6013 6014 if (Kind == FuncArgumentDbgValueKind::Value) { 6015 // ArgDbgValues are hoisted to the beginning of the entry block. So we 6016 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 6017 // the entry block. 6018 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 6019 if (!IsInEntryBlock) 6020 return false; 6021 6022 // ArgDbgValues are hoisted to the beginning of the entry block. So we 6023 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 6024 // variable that also is a param. 6025 // 6026 // Although, if we are at the top of the entry block already, we can still 6027 // emit using ArgDbgValue. This might catch some situations when the 6028 // dbg.value refers to an argument that isn't used in the entry block, so 6029 // any CopyToReg node would be optimized out and the only way to express 6030 // this DBG_VALUE is by using the physical reg (or FI) as done in this 6031 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 6032 // we should only emit as ArgDbgValue if the Variable is an argument to the 6033 // current function, and the dbg.value intrinsic is found in the entry 6034 // block. 6035 bool VariableIsFunctionInputArg = Variable->isParameter() && 6036 !DL->getInlinedAt(); 6037 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 6038 if (!IsInPrologue && !VariableIsFunctionInputArg) 6039 return false; 6040 6041 // Here we assume that a function argument on IR level only can be used to 6042 // describe one input parameter on source level. If we for example have 6043 // source code like this 6044 // 6045 // struct A { long x, y; }; 6046 // void foo(struct A a, long b) { 6047 // ... 6048 // b = a.x; 6049 // ... 6050 // } 6051 // 6052 // and IR like this 6053 // 6054 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 6055 // entry: 6056 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 6057 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 6058 // call void @llvm.dbg.value(metadata i32 %b, "b", 6059 // ... 6060 // call void @llvm.dbg.value(metadata i32 %a1, "b" 6061 // ... 6062 // 6063 // then the last dbg.value is describing a parameter "b" using a value that 6064 // is an argument. But since we already has used %a1 to describe a parameter 6065 // we should not handle that last dbg.value here (that would result in an 6066 // incorrect hoisting of the DBG_VALUE to the function entry). 6067 // Notice that we allow one dbg.value per IR level argument, to accommodate 6068 // for the situation with fragments above. 6069 // If there is no node for the value being handled, we return true to skip 6070 // the normal generation of debug info, as it would kill existing debug 6071 // info for the parameter in case of duplicates. 6072 if (VariableIsFunctionInputArg) { 6073 unsigned ArgNo = Arg->getArgNo(); 6074 if (ArgNo >= FuncInfo.DescribedArgs.size()) 6075 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 6076 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 6077 return !NodeMap[V].getNode(); 6078 FuncInfo.DescribedArgs.set(ArgNo); 6079 } 6080 } 6081 6082 bool IsIndirect = false; 6083 std::optional<MachineOperand> Op; 6084 // Some arguments' frame index is recorded during argument lowering. 6085 int FI = FuncInfo.getArgumentFrameIndex(Arg); 6086 if (FI != std::numeric_limits<int>::max()) 6087 Op = MachineOperand::CreateFI(FI); 6088 6089 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 6090 if (!Op && N.getNode()) { 6091 getUnderlyingArgRegs(ArgRegsAndSizes, N); 6092 Register Reg; 6093 if (ArgRegsAndSizes.size() == 1) 6094 Reg = ArgRegsAndSizes.front().first; 6095 6096 if (Reg && Reg.isVirtual()) { 6097 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6098 Register PR = RegInfo.getLiveInPhysReg(Reg); 6099 if (PR) 6100 Reg = PR; 6101 } 6102 if (Reg) { 6103 Op = MachineOperand::CreateReg(Reg, false); 6104 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 6105 } 6106 } 6107 6108 if (!Op && N.getNode()) { 6109 // Check if frame index is available. 6110 SDValue LCandidate = peekThroughBitcasts(N); 6111 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 6112 if (FrameIndexSDNode *FINode = 6113 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 6114 Op = MachineOperand::CreateFI(FINode->getIndex()); 6115 } 6116 6117 if (!Op) { 6118 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 6119 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 6120 SplitRegs) { 6121 unsigned Offset = 0; 6122 for (const auto &RegAndSize : SplitRegs) { 6123 // If the expression is already a fragment, the current register 6124 // offset+size might extend beyond the fragment. In this case, only 6125 // the register bits that are inside the fragment are relevant. 6126 int RegFragmentSizeInBits = RegAndSize.second; 6127 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 6128 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 6129 // The register is entirely outside the expression fragment, 6130 // so is irrelevant for debug info. 6131 if (Offset >= ExprFragmentSizeInBits) 6132 break; 6133 // The register is partially outside the expression fragment, only 6134 // the low bits within the fragment are relevant for debug info. 6135 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 6136 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 6137 } 6138 } 6139 6140 auto FragmentExpr = DIExpression::createFragmentExpression( 6141 Expr, Offset, RegFragmentSizeInBits); 6142 Offset += RegAndSize.second; 6143 // If a valid fragment expression cannot be created, the variable's 6144 // correct value cannot be determined and so it is set as Undef. 6145 if (!FragmentExpr) { 6146 SDDbgValue *SDV = DAG.getConstantDbgValue( 6147 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 6148 DAG.AddDbgValue(SDV, false); 6149 continue; 6150 } 6151 MachineInstr *NewMI = 6152 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 6153 Kind != FuncArgumentDbgValueKind::Value); 6154 FuncInfo.ArgDbgValues.push_back(NewMI); 6155 } 6156 }; 6157 6158 // Check if ValueMap has reg number. 6159 DenseMap<const Value *, Register>::const_iterator 6160 VMI = FuncInfo.ValueMap.find(V); 6161 if (VMI != FuncInfo.ValueMap.end()) { 6162 const auto &TLI = DAG.getTargetLoweringInfo(); 6163 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 6164 V->getType(), std::nullopt); 6165 if (RFV.occupiesMultipleRegs()) { 6166 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 6167 return true; 6168 } 6169 6170 Op = MachineOperand::CreateReg(VMI->second, false); 6171 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 6172 } else if (ArgRegsAndSizes.size() > 1) { 6173 // This was split due to the calling convention, and no virtual register 6174 // mapping exists for the value. 6175 splitMultiRegDbgValue(ArgRegsAndSizes); 6176 return true; 6177 } 6178 } 6179 6180 if (!Op) 6181 return false; 6182 6183 assert(Variable->isValidLocationForIntrinsic(DL) && 6184 "Expected inlined-at fields to agree"); 6185 MachineInstr *NewMI = nullptr; 6186 6187 if (Op->isReg()) 6188 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 6189 else 6190 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 6191 Variable, Expr); 6192 6193 // Otherwise, use ArgDbgValues. 6194 FuncInfo.ArgDbgValues.push_back(NewMI); 6195 return true; 6196 } 6197 6198 /// Return the appropriate SDDbgValue based on N. 6199 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 6200 DILocalVariable *Variable, 6201 DIExpression *Expr, 6202 const DebugLoc &dl, 6203 unsigned DbgSDNodeOrder) { 6204 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 6205 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 6206 // stack slot locations. 6207 // 6208 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 6209 // debug values here after optimization: 6210 // 6211 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 6212 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 6213 // 6214 // Both describe the direct values of their associated variables. 6215 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 6216 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 6217 } 6218 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 6219 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 6220 } 6221 6222 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 6223 switch (Intrinsic) { 6224 case Intrinsic::smul_fix: 6225 return ISD::SMULFIX; 6226 case Intrinsic::umul_fix: 6227 return ISD::UMULFIX; 6228 case Intrinsic::smul_fix_sat: 6229 return ISD::SMULFIXSAT; 6230 case Intrinsic::umul_fix_sat: 6231 return ISD::UMULFIXSAT; 6232 case Intrinsic::sdiv_fix: 6233 return ISD::SDIVFIX; 6234 case Intrinsic::udiv_fix: 6235 return ISD::UDIVFIX; 6236 case Intrinsic::sdiv_fix_sat: 6237 return ISD::SDIVFIXSAT; 6238 case Intrinsic::udiv_fix_sat: 6239 return ISD::UDIVFIXSAT; 6240 default: 6241 llvm_unreachable("Unhandled fixed point intrinsic"); 6242 } 6243 } 6244 6245 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 6246 const char *FunctionName) { 6247 assert(FunctionName && "FunctionName must not be nullptr"); 6248 SDValue Callee = DAG.getExternalSymbol( 6249 FunctionName, 6250 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6251 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 6252 } 6253 6254 /// Given a @llvm.call.preallocated.setup, return the corresponding 6255 /// preallocated call. 6256 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 6257 assert(cast<CallBase>(PreallocatedSetup) 6258 ->getCalledFunction() 6259 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 6260 "expected call_preallocated_setup Value"); 6261 for (const auto *U : PreallocatedSetup->users()) { 6262 auto *UseCall = cast<CallBase>(U); 6263 const Function *Fn = UseCall->getCalledFunction(); 6264 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 6265 return UseCall; 6266 } 6267 } 6268 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 6269 } 6270 6271 /// If DI is a debug value with an EntryValue expression, lower it using the 6272 /// corresponding physical register of the associated Argument value 6273 /// (guaranteed to exist by the verifier). 6274 bool SelectionDAGBuilder::visitEntryValueDbgValue( 6275 ArrayRef<const Value *> Values, DILocalVariable *Variable, 6276 DIExpression *Expr, DebugLoc DbgLoc) { 6277 if (!Expr->isEntryValue() || !hasSingleElement(Values)) 6278 return false; 6279 6280 // These properties are guaranteed by the verifier. 6281 const Argument *Arg = cast<Argument>(Values[0]); 6282 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync)); 6283 6284 auto ArgIt = FuncInfo.ValueMap.find(Arg); 6285 if (ArgIt == FuncInfo.ValueMap.end()) { 6286 LLVM_DEBUG( 6287 dbgs() << "Dropping dbg.value: expression is entry_value but " 6288 "couldn't find an associated register for the Argument\n"); 6289 return true; 6290 } 6291 Register ArgVReg = ArgIt->getSecond(); 6292 6293 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) 6294 if (ArgVReg == VirtReg || ArgVReg == PhysReg) { 6295 SDDbgValue *SDV = DAG.getVRegDbgValue( 6296 Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder); 6297 DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/); 6298 return true; 6299 } 6300 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but " 6301 "couldn't find a physical register\n"); 6302 return true; 6303 } 6304 6305 /// Lower the call to the specified intrinsic function. 6306 void SelectionDAGBuilder::visitConvergenceControl(const CallInst &I, 6307 unsigned Intrinsic) { 6308 SDLoc sdl = getCurSDLoc(); 6309 switch (Intrinsic) { 6310 case Intrinsic::experimental_convergence_anchor: 6311 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped)); 6312 break; 6313 case Intrinsic::experimental_convergence_entry: 6314 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped)); 6315 break; 6316 case Intrinsic::experimental_convergence_loop: { 6317 auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl); 6318 auto *Token = Bundle->Inputs[0].get(); 6319 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped, 6320 getValue(Token))); 6321 break; 6322 } 6323 } 6324 } 6325 6326 void SelectionDAGBuilder::visitVectorHistogram(const CallInst &I, 6327 unsigned IntrinsicID) { 6328 // For now, we're only lowering an 'add' histogram. 6329 // We can add others later, e.g. saturating adds, min/max. 6330 assert(IntrinsicID == Intrinsic::experimental_vector_histogram_add && 6331 "Tried to lower unsupported histogram type"); 6332 SDLoc sdl = getCurSDLoc(); 6333 Value *Ptr = I.getOperand(0); 6334 SDValue Inc = getValue(I.getOperand(1)); 6335 SDValue Mask = getValue(I.getOperand(2)); 6336 6337 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6338 DataLayout TargetDL = DAG.getDataLayout(); 6339 EVT VT = Inc.getValueType(); 6340 Align Alignment = DAG.getEVTAlign(VT); 6341 6342 const MDNode *Ranges = getRangeMetadata(I); 6343 6344 SDValue Root = DAG.getRoot(); 6345 SDValue Base; 6346 SDValue Index; 6347 ISD::MemIndexType IndexType; 6348 SDValue Scale; 6349 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 6350 I.getParent(), VT.getScalarStoreSize()); 6351 6352 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 6353 6354 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6355 MachinePointerInfo(AS), 6356 MachineMemOperand::MOLoad | MachineMemOperand::MOStore, 6357 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 6358 6359 if (!UniformBase) { 6360 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 6361 Index = getValue(Ptr); 6362 IndexType = ISD::SIGNED_SCALED; 6363 Scale = 6364 DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 6365 } 6366 6367 EVT IdxVT = Index.getValueType(); 6368 EVT EltTy = IdxVT.getVectorElementType(); 6369 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 6370 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 6371 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 6372 } 6373 6374 SDValue ID = DAG.getTargetConstant(IntrinsicID, sdl, MVT::i32); 6375 6376 SDValue Ops[] = {Root, Inc, Mask, Base, Index, Scale, ID}; 6377 SDValue Histogram = DAG.getMaskedHistogram(DAG.getVTList(MVT::Other), VT, sdl, 6378 Ops, MMO, IndexType); 6379 6380 setValue(&I, Histogram); 6381 DAG.setRoot(Histogram); 6382 } 6383 6384 /// Lower the call to the specified intrinsic function. 6385 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 6386 unsigned Intrinsic) { 6387 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6388 SDLoc sdl = getCurSDLoc(); 6389 DebugLoc dl = getCurDebugLoc(); 6390 SDValue Res; 6391 6392 SDNodeFlags Flags; 6393 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 6394 Flags.copyFMF(*FPOp); 6395 6396 switch (Intrinsic) { 6397 default: 6398 // By default, turn this into a target intrinsic node. 6399 visitTargetIntrinsic(I, Intrinsic); 6400 return; 6401 case Intrinsic::vscale: { 6402 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6403 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 6404 return; 6405 } 6406 case Intrinsic::vastart: visitVAStart(I); return; 6407 case Intrinsic::vaend: visitVAEnd(I); return; 6408 case Intrinsic::vacopy: visitVACopy(I); return; 6409 case Intrinsic::returnaddress: 6410 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 6411 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6412 getValue(I.getArgOperand(0)))); 6413 return; 6414 case Intrinsic::addressofreturnaddress: 6415 setValue(&I, 6416 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 6417 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6418 return; 6419 case Intrinsic::sponentry: 6420 setValue(&I, 6421 DAG.getNode(ISD::SPONENTRY, sdl, 6422 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6423 return; 6424 case Intrinsic::frameaddress: 6425 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 6426 TLI.getFrameIndexTy(DAG.getDataLayout()), 6427 getValue(I.getArgOperand(0)))); 6428 return; 6429 case Intrinsic::read_volatile_register: 6430 case Intrinsic::read_register: { 6431 Value *Reg = I.getArgOperand(0); 6432 SDValue Chain = getRoot(); 6433 SDValue RegName = 6434 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6435 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6436 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 6437 DAG.getVTList(VT, MVT::Other), Chain, RegName); 6438 setValue(&I, Res); 6439 DAG.setRoot(Res.getValue(1)); 6440 return; 6441 } 6442 case Intrinsic::write_register: { 6443 Value *Reg = I.getArgOperand(0); 6444 Value *RegValue = I.getArgOperand(1); 6445 SDValue Chain = getRoot(); 6446 SDValue RegName = 6447 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6448 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 6449 RegName, getValue(RegValue))); 6450 return; 6451 } 6452 case Intrinsic::memcpy: { 6453 const auto &MCI = cast<MemCpyInst>(I); 6454 SDValue Op1 = getValue(I.getArgOperand(0)); 6455 SDValue Op2 = getValue(I.getArgOperand(1)); 6456 SDValue Op3 = getValue(I.getArgOperand(2)); 6457 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 6458 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6459 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6460 Align Alignment = std::min(DstAlign, SrcAlign); 6461 bool isVol = MCI.isVolatile(); 6462 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6463 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6464 // node. 6465 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6466 SDValue MC = DAG.getMemcpy( 6467 Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6468 /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)), 6469 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6470 updateDAGForMaybeTailCall(MC); 6471 return; 6472 } 6473 case Intrinsic::memcpy_inline: { 6474 const auto &MCI = cast<MemCpyInlineInst>(I); 6475 SDValue Dst = getValue(I.getArgOperand(0)); 6476 SDValue Src = getValue(I.getArgOperand(1)); 6477 SDValue Size = getValue(I.getArgOperand(2)); 6478 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 6479 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 6480 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6481 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6482 Align Alignment = std::min(DstAlign, SrcAlign); 6483 bool isVol = MCI.isVolatile(); 6484 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6485 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6486 // node. 6487 SDValue MC = DAG.getMemcpy( 6488 getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 6489 /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)), 6490 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6491 updateDAGForMaybeTailCall(MC); 6492 return; 6493 } 6494 case Intrinsic::memset: { 6495 const auto &MSI = cast<MemSetInst>(I); 6496 SDValue Op1 = getValue(I.getArgOperand(0)); 6497 SDValue Op2 = getValue(I.getArgOperand(1)); 6498 SDValue Op3 = getValue(I.getArgOperand(2)); 6499 // @llvm.memset defines 0 and 1 to both mean no alignment. 6500 Align Alignment = MSI.getDestAlign().valueOrOne(); 6501 bool isVol = MSI.isVolatile(); 6502 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6503 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6504 SDValue MS = DAG.getMemset( 6505 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 6506 isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 6507 updateDAGForMaybeTailCall(MS); 6508 return; 6509 } 6510 case Intrinsic::memset_inline: { 6511 const auto &MSII = cast<MemSetInlineInst>(I); 6512 SDValue Dst = getValue(I.getArgOperand(0)); 6513 SDValue Value = getValue(I.getArgOperand(1)); 6514 SDValue Size = getValue(I.getArgOperand(2)); 6515 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 6516 // @llvm.memset defines 0 and 1 to both mean no alignment. 6517 Align DstAlign = MSII.getDestAlign().valueOrOne(); 6518 bool isVol = MSII.isVolatile(); 6519 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6520 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6521 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 6522 /* AlwaysInline */ true, isTC, 6523 MachinePointerInfo(I.getArgOperand(0)), 6524 I.getAAMetadata()); 6525 updateDAGForMaybeTailCall(MC); 6526 return; 6527 } 6528 case Intrinsic::memmove: { 6529 const auto &MMI = cast<MemMoveInst>(I); 6530 SDValue Op1 = getValue(I.getArgOperand(0)); 6531 SDValue Op2 = getValue(I.getArgOperand(1)); 6532 SDValue Op3 = getValue(I.getArgOperand(2)); 6533 // @llvm.memmove defines 0 and 1 to both mean no alignment. 6534 Align DstAlign = MMI.getDestAlign().valueOrOne(); 6535 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 6536 Align Alignment = std::min(DstAlign, SrcAlign); 6537 bool isVol = MMI.isVolatile(); 6538 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6539 // FIXME: Support passing different dest/src alignments to the memmove DAG 6540 // node. 6541 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6542 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6543 isTC, MachinePointerInfo(I.getArgOperand(0)), 6544 MachinePointerInfo(I.getArgOperand(1)), 6545 I.getAAMetadata(), AA); 6546 updateDAGForMaybeTailCall(MM); 6547 return; 6548 } 6549 case Intrinsic::memcpy_element_unordered_atomic: { 6550 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 6551 SDValue Dst = getValue(MI.getRawDest()); 6552 SDValue Src = getValue(MI.getRawSource()); 6553 SDValue Length = getValue(MI.getLength()); 6554 6555 Type *LengthTy = MI.getLength()->getType(); 6556 unsigned ElemSz = MI.getElementSizeInBytes(); 6557 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6558 SDValue MC = 6559 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6560 isTC, MachinePointerInfo(MI.getRawDest()), 6561 MachinePointerInfo(MI.getRawSource())); 6562 updateDAGForMaybeTailCall(MC); 6563 return; 6564 } 6565 case Intrinsic::memmove_element_unordered_atomic: { 6566 auto &MI = cast<AtomicMemMoveInst>(I); 6567 SDValue Dst = getValue(MI.getRawDest()); 6568 SDValue Src = getValue(MI.getRawSource()); 6569 SDValue Length = getValue(MI.getLength()); 6570 6571 Type *LengthTy = MI.getLength()->getType(); 6572 unsigned ElemSz = MI.getElementSizeInBytes(); 6573 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6574 SDValue MC = 6575 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6576 isTC, MachinePointerInfo(MI.getRawDest()), 6577 MachinePointerInfo(MI.getRawSource())); 6578 updateDAGForMaybeTailCall(MC); 6579 return; 6580 } 6581 case Intrinsic::memset_element_unordered_atomic: { 6582 auto &MI = cast<AtomicMemSetInst>(I); 6583 SDValue Dst = getValue(MI.getRawDest()); 6584 SDValue Val = getValue(MI.getValue()); 6585 SDValue Length = getValue(MI.getLength()); 6586 6587 Type *LengthTy = MI.getLength()->getType(); 6588 unsigned ElemSz = MI.getElementSizeInBytes(); 6589 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6590 SDValue MC = 6591 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6592 isTC, MachinePointerInfo(MI.getRawDest())); 6593 updateDAGForMaybeTailCall(MC); 6594 return; 6595 } 6596 case Intrinsic::call_preallocated_setup: { 6597 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6598 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6599 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6600 getRoot(), SrcValue); 6601 setValue(&I, Res); 6602 DAG.setRoot(Res); 6603 return; 6604 } 6605 case Intrinsic::call_preallocated_arg: { 6606 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6607 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6608 SDValue Ops[3]; 6609 Ops[0] = getRoot(); 6610 Ops[1] = SrcValue; 6611 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6612 MVT::i32); // arg index 6613 SDValue Res = DAG.getNode( 6614 ISD::PREALLOCATED_ARG, sdl, 6615 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6616 setValue(&I, Res); 6617 DAG.setRoot(Res.getValue(1)); 6618 return; 6619 } 6620 case Intrinsic::dbg_declare: { 6621 const auto &DI = cast<DbgDeclareInst>(I); 6622 // Debug intrinsics are handled separately in assignment tracking mode. 6623 // Some intrinsics are handled right after Argument lowering. 6624 if (AssignmentTrackingEnabled || 6625 FuncInfo.PreprocessedDbgDeclares.count(&DI)) 6626 return; 6627 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n"); 6628 DILocalVariable *Variable = DI.getVariable(); 6629 DIExpression *Expression = DI.getExpression(); 6630 dropDanglingDebugInfo(Variable, Expression); 6631 // Assume dbg.declare can not currently use DIArgList, i.e. 6632 // it is non-variadic. 6633 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6634 handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression, 6635 DI.getDebugLoc()); 6636 return; 6637 } 6638 case Intrinsic::dbg_label: { 6639 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6640 DILabel *Label = DI.getLabel(); 6641 assert(Label && "Missing label"); 6642 6643 SDDbgLabel *SDV; 6644 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6645 DAG.AddDbgLabel(SDV); 6646 return; 6647 } 6648 case Intrinsic::dbg_assign: { 6649 // Debug intrinsics are handled separately in assignment tracking mode. 6650 if (AssignmentTrackingEnabled) 6651 return; 6652 // If assignment tracking hasn't been enabled then fall through and treat 6653 // the dbg.assign as a dbg.value. 6654 [[fallthrough]]; 6655 } 6656 case Intrinsic::dbg_value: { 6657 // Debug intrinsics are handled separately in assignment tracking mode. 6658 if (AssignmentTrackingEnabled) 6659 return; 6660 const DbgValueInst &DI = cast<DbgValueInst>(I); 6661 assert(DI.getVariable() && "Missing variable"); 6662 6663 DILocalVariable *Variable = DI.getVariable(); 6664 DIExpression *Expression = DI.getExpression(); 6665 dropDanglingDebugInfo(Variable, Expression); 6666 6667 if (DI.isKillLocation()) { 6668 handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder); 6669 return; 6670 } 6671 6672 SmallVector<Value *, 4> Values(DI.getValues()); 6673 if (Values.empty()) 6674 return; 6675 6676 bool IsVariadic = DI.hasArgList(); 6677 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(), 6678 SDNodeOrder, IsVariadic)) 6679 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 6680 DI.getDebugLoc(), SDNodeOrder); 6681 return; 6682 } 6683 6684 case Intrinsic::eh_typeid_for: { 6685 // Find the type id for the given typeinfo. 6686 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6687 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6688 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6689 setValue(&I, Res); 6690 return; 6691 } 6692 6693 case Intrinsic::eh_return_i32: 6694 case Intrinsic::eh_return_i64: 6695 DAG.getMachineFunction().setCallsEHReturn(true); 6696 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6697 MVT::Other, 6698 getControlRoot(), 6699 getValue(I.getArgOperand(0)), 6700 getValue(I.getArgOperand(1)))); 6701 return; 6702 case Intrinsic::eh_unwind_init: 6703 DAG.getMachineFunction().setCallsUnwindInit(true); 6704 return; 6705 case Intrinsic::eh_dwarf_cfa: 6706 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6707 TLI.getPointerTy(DAG.getDataLayout()), 6708 getValue(I.getArgOperand(0)))); 6709 return; 6710 case Intrinsic::eh_sjlj_callsite: { 6711 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6712 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6713 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6714 6715 MMI.setCurrentCallSite(CI->getZExtValue()); 6716 return; 6717 } 6718 case Intrinsic::eh_sjlj_functioncontext: { 6719 // Get and store the index of the function context. 6720 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6721 AllocaInst *FnCtx = 6722 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6723 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6724 MFI.setFunctionContextIndex(FI); 6725 return; 6726 } 6727 case Intrinsic::eh_sjlj_setjmp: { 6728 SDValue Ops[2]; 6729 Ops[0] = getRoot(); 6730 Ops[1] = getValue(I.getArgOperand(0)); 6731 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6732 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6733 setValue(&I, Op.getValue(0)); 6734 DAG.setRoot(Op.getValue(1)); 6735 return; 6736 } 6737 case Intrinsic::eh_sjlj_longjmp: 6738 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6739 getRoot(), getValue(I.getArgOperand(0)))); 6740 return; 6741 case Intrinsic::eh_sjlj_setup_dispatch: 6742 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6743 getRoot())); 6744 return; 6745 case Intrinsic::masked_gather: 6746 visitMaskedGather(I); 6747 return; 6748 case Intrinsic::masked_load: 6749 visitMaskedLoad(I); 6750 return; 6751 case Intrinsic::masked_scatter: 6752 visitMaskedScatter(I); 6753 return; 6754 case Intrinsic::masked_store: 6755 visitMaskedStore(I); 6756 return; 6757 case Intrinsic::masked_expandload: 6758 visitMaskedLoad(I, true /* IsExpanding */); 6759 return; 6760 case Intrinsic::masked_compressstore: 6761 visitMaskedStore(I, true /* IsCompressing */); 6762 return; 6763 case Intrinsic::powi: 6764 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6765 getValue(I.getArgOperand(1)), DAG)); 6766 return; 6767 case Intrinsic::log: 6768 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6769 return; 6770 case Intrinsic::log2: 6771 setValue(&I, 6772 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6773 return; 6774 case Intrinsic::log10: 6775 setValue(&I, 6776 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6777 return; 6778 case Intrinsic::exp: 6779 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6780 return; 6781 case Intrinsic::exp2: 6782 setValue(&I, 6783 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6784 return; 6785 case Intrinsic::pow: 6786 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6787 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6788 return; 6789 case Intrinsic::sqrt: 6790 case Intrinsic::fabs: 6791 case Intrinsic::sin: 6792 case Intrinsic::cos: 6793 case Intrinsic::tan: 6794 case Intrinsic::exp10: 6795 case Intrinsic::floor: 6796 case Intrinsic::ceil: 6797 case Intrinsic::trunc: 6798 case Intrinsic::rint: 6799 case Intrinsic::nearbyint: 6800 case Intrinsic::round: 6801 case Intrinsic::roundeven: 6802 case Intrinsic::canonicalize: { 6803 unsigned Opcode; 6804 // clang-format off 6805 switch (Intrinsic) { 6806 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6807 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6808 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6809 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6810 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6811 case Intrinsic::tan: Opcode = ISD::FTAN; break; 6812 case Intrinsic::exp10: Opcode = ISD::FEXP10; break; 6813 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6814 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6815 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6816 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6817 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6818 case Intrinsic::round: Opcode = ISD::FROUND; break; 6819 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6820 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6821 } 6822 // clang-format on 6823 6824 setValue(&I, DAG.getNode(Opcode, sdl, 6825 getValue(I.getArgOperand(0)).getValueType(), 6826 getValue(I.getArgOperand(0)), Flags)); 6827 return; 6828 } 6829 case Intrinsic::lround: 6830 case Intrinsic::llround: 6831 case Intrinsic::lrint: 6832 case Intrinsic::llrint: { 6833 unsigned Opcode; 6834 // clang-format off 6835 switch (Intrinsic) { 6836 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6837 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6838 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6839 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6840 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6841 } 6842 // clang-format on 6843 6844 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6845 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6846 getValue(I.getArgOperand(0)))); 6847 return; 6848 } 6849 case Intrinsic::minnum: 6850 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6851 getValue(I.getArgOperand(0)).getValueType(), 6852 getValue(I.getArgOperand(0)), 6853 getValue(I.getArgOperand(1)), Flags)); 6854 return; 6855 case Intrinsic::maxnum: 6856 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6857 getValue(I.getArgOperand(0)).getValueType(), 6858 getValue(I.getArgOperand(0)), 6859 getValue(I.getArgOperand(1)), Flags)); 6860 return; 6861 case Intrinsic::minimum: 6862 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6863 getValue(I.getArgOperand(0)).getValueType(), 6864 getValue(I.getArgOperand(0)), 6865 getValue(I.getArgOperand(1)), Flags)); 6866 return; 6867 case Intrinsic::maximum: 6868 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6869 getValue(I.getArgOperand(0)).getValueType(), 6870 getValue(I.getArgOperand(0)), 6871 getValue(I.getArgOperand(1)), Flags)); 6872 return; 6873 case Intrinsic::copysign: 6874 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6875 getValue(I.getArgOperand(0)).getValueType(), 6876 getValue(I.getArgOperand(0)), 6877 getValue(I.getArgOperand(1)), Flags)); 6878 return; 6879 case Intrinsic::ldexp: 6880 setValue(&I, DAG.getNode(ISD::FLDEXP, sdl, 6881 getValue(I.getArgOperand(0)).getValueType(), 6882 getValue(I.getArgOperand(0)), 6883 getValue(I.getArgOperand(1)), Flags)); 6884 return; 6885 case Intrinsic::frexp: { 6886 SmallVector<EVT, 2> ValueVTs; 6887 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 6888 SDVTList VTs = DAG.getVTList(ValueVTs); 6889 setValue(&I, 6890 DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0)))); 6891 return; 6892 } 6893 case Intrinsic::arithmetic_fence: { 6894 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6895 getValue(I.getArgOperand(0)).getValueType(), 6896 getValue(I.getArgOperand(0)), Flags)); 6897 return; 6898 } 6899 case Intrinsic::fma: 6900 setValue(&I, DAG.getNode( 6901 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6902 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6903 getValue(I.getArgOperand(2)), Flags)); 6904 return; 6905 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6906 case Intrinsic::INTRINSIC: 6907 #include "llvm/IR/ConstrainedOps.def" 6908 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6909 return; 6910 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6911 #include "llvm/IR/VPIntrinsics.def" 6912 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6913 return; 6914 case Intrinsic::fptrunc_round: { 6915 // Get the last argument, the metadata and convert it to an integer in the 6916 // call 6917 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6918 std::optional<RoundingMode> RoundMode = 6919 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6920 6921 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6922 6923 // Propagate fast-math-flags from IR to node(s). 6924 SDNodeFlags Flags; 6925 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6926 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6927 6928 SDValue Result; 6929 Result = DAG.getNode( 6930 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6931 DAG.getTargetConstant((int)*RoundMode, sdl, 6932 TLI.getPointerTy(DAG.getDataLayout()))); 6933 setValue(&I, Result); 6934 6935 return; 6936 } 6937 case Intrinsic::fmuladd: { 6938 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6939 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6940 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6941 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6942 getValue(I.getArgOperand(0)).getValueType(), 6943 getValue(I.getArgOperand(0)), 6944 getValue(I.getArgOperand(1)), 6945 getValue(I.getArgOperand(2)), Flags)); 6946 } else { 6947 // TODO: Intrinsic calls should have fast-math-flags. 6948 SDValue Mul = DAG.getNode( 6949 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6950 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6951 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6952 getValue(I.getArgOperand(0)).getValueType(), 6953 Mul, getValue(I.getArgOperand(2)), Flags); 6954 setValue(&I, Add); 6955 } 6956 return; 6957 } 6958 case Intrinsic::convert_to_fp16: 6959 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6960 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6961 getValue(I.getArgOperand(0)), 6962 DAG.getTargetConstant(0, sdl, 6963 MVT::i32)))); 6964 return; 6965 case Intrinsic::convert_from_fp16: 6966 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6967 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6968 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6969 getValue(I.getArgOperand(0))))); 6970 return; 6971 case Intrinsic::fptosi_sat: { 6972 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6973 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6974 getValue(I.getArgOperand(0)), 6975 DAG.getValueType(VT.getScalarType()))); 6976 return; 6977 } 6978 case Intrinsic::fptoui_sat: { 6979 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6980 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6981 getValue(I.getArgOperand(0)), 6982 DAG.getValueType(VT.getScalarType()))); 6983 return; 6984 } 6985 case Intrinsic::set_rounding: 6986 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6987 {getRoot(), getValue(I.getArgOperand(0))}); 6988 setValue(&I, Res); 6989 DAG.setRoot(Res.getValue(0)); 6990 return; 6991 case Intrinsic::is_fpclass: { 6992 const DataLayout DLayout = DAG.getDataLayout(); 6993 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 6994 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 6995 FPClassTest Test = static_cast<FPClassTest>( 6996 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 6997 MachineFunction &MF = DAG.getMachineFunction(); 6998 const Function &F = MF.getFunction(); 6999 SDValue Op = getValue(I.getArgOperand(0)); 7000 SDNodeFlags Flags; 7001 Flags.setNoFPExcept( 7002 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 7003 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 7004 // expansion can use illegal types. Making expansion early allows 7005 // legalizing these types prior to selection. 7006 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { 7007 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 7008 setValue(&I, Result); 7009 return; 7010 } 7011 7012 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 7013 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 7014 setValue(&I, V); 7015 return; 7016 } 7017 case Intrinsic::get_fpenv: { 7018 const DataLayout DLayout = DAG.getDataLayout(); 7019 EVT EnvVT = TLI.getValueType(DLayout, I.getType()); 7020 Align TempAlign = DAG.getEVTAlign(EnvVT); 7021 SDValue Chain = getRoot(); 7022 // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node 7023 // and temporary storage in stack. 7024 if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) { 7025 Res = DAG.getNode( 7026 ISD::GET_FPENV, sdl, 7027 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7028 MVT::Other), 7029 Chain); 7030 } else { 7031 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 7032 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 7033 auto MPI = 7034 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 7035 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7036 MPI, MachineMemOperand::MOStore, LocationSize::beforeOrAfterPointer(), 7037 TempAlign); 7038 Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 7039 Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI); 7040 } 7041 setValue(&I, Res); 7042 DAG.setRoot(Res.getValue(1)); 7043 return; 7044 } 7045 case Intrinsic::set_fpenv: { 7046 const DataLayout DLayout = DAG.getDataLayout(); 7047 SDValue Env = getValue(I.getArgOperand(0)); 7048 EVT EnvVT = Env.getValueType(); 7049 Align TempAlign = DAG.getEVTAlign(EnvVT); 7050 SDValue Chain = getRoot(); 7051 // If SET_FPENV is custom or legal, use it. Otherwise use loading 7052 // environment from memory. 7053 if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) { 7054 Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env); 7055 } else { 7056 // Allocate space in stack, copy environment bits into it and use this 7057 // memory in SET_FPENV_MEM. 7058 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 7059 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 7060 auto MPI = 7061 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 7062 Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign, 7063 MachineMemOperand::MOStore); 7064 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7065 MPI, MachineMemOperand::MOLoad, LocationSize::beforeOrAfterPointer(), 7066 TempAlign); 7067 Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 7068 } 7069 DAG.setRoot(Chain); 7070 return; 7071 } 7072 case Intrinsic::reset_fpenv: 7073 DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot())); 7074 return; 7075 case Intrinsic::get_fpmode: 7076 Res = DAG.getNode( 7077 ISD::GET_FPMODE, sdl, 7078 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7079 MVT::Other), 7080 DAG.getRoot()); 7081 setValue(&I, Res); 7082 DAG.setRoot(Res.getValue(1)); 7083 return; 7084 case Intrinsic::set_fpmode: 7085 Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()}, 7086 getValue(I.getArgOperand(0))); 7087 DAG.setRoot(Res); 7088 return; 7089 case Intrinsic::reset_fpmode: { 7090 Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot()); 7091 DAG.setRoot(Res); 7092 return; 7093 } 7094 case Intrinsic::pcmarker: { 7095 SDValue Tmp = getValue(I.getArgOperand(0)); 7096 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 7097 return; 7098 } 7099 case Intrinsic::readcyclecounter: { 7100 SDValue Op = getRoot(); 7101 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 7102 DAG.getVTList(MVT::i64, MVT::Other), Op); 7103 setValue(&I, Res); 7104 DAG.setRoot(Res.getValue(1)); 7105 return; 7106 } 7107 case Intrinsic::readsteadycounter: { 7108 SDValue Op = getRoot(); 7109 Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl, 7110 DAG.getVTList(MVT::i64, MVT::Other), Op); 7111 setValue(&I, Res); 7112 DAG.setRoot(Res.getValue(1)); 7113 return; 7114 } 7115 case Intrinsic::bitreverse: 7116 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 7117 getValue(I.getArgOperand(0)).getValueType(), 7118 getValue(I.getArgOperand(0)))); 7119 return; 7120 case Intrinsic::bswap: 7121 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 7122 getValue(I.getArgOperand(0)).getValueType(), 7123 getValue(I.getArgOperand(0)))); 7124 return; 7125 case Intrinsic::cttz: { 7126 SDValue Arg = getValue(I.getArgOperand(0)); 7127 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 7128 EVT Ty = Arg.getValueType(); 7129 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 7130 sdl, Ty, Arg)); 7131 return; 7132 } 7133 case Intrinsic::ctlz: { 7134 SDValue Arg = getValue(I.getArgOperand(0)); 7135 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 7136 EVT Ty = Arg.getValueType(); 7137 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 7138 sdl, Ty, Arg)); 7139 return; 7140 } 7141 case Intrinsic::ctpop: { 7142 SDValue Arg = getValue(I.getArgOperand(0)); 7143 EVT Ty = Arg.getValueType(); 7144 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 7145 return; 7146 } 7147 case Intrinsic::fshl: 7148 case Intrinsic::fshr: { 7149 bool IsFSHL = Intrinsic == Intrinsic::fshl; 7150 SDValue X = getValue(I.getArgOperand(0)); 7151 SDValue Y = getValue(I.getArgOperand(1)); 7152 SDValue Z = getValue(I.getArgOperand(2)); 7153 EVT VT = X.getValueType(); 7154 7155 if (X == Y) { 7156 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 7157 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 7158 } else { 7159 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 7160 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 7161 } 7162 return; 7163 } 7164 case Intrinsic::sadd_sat: { 7165 SDValue Op1 = getValue(I.getArgOperand(0)); 7166 SDValue Op2 = getValue(I.getArgOperand(1)); 7167 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 7168 return; 7169 } 7170 case Intrinsic::uadd_sat: { 7171 SDValue Op1 = getValue(I.getArgOperand(0)); 7172 SDValue Op2 = getValue(I.getArgOperand(1)); 7173 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 7174 return; 7175 } 7176 case Intrinsic::ssub_sat: { 7177 SDValue Op1 = getValue(I.getArgOperand(0)); 7178 SDValue Op2 = getValue(I.getArgOperand(1)); 7179 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 7180 return; 7181 } 7182 case Intrinsic::usub_sat: { 7183 SDValue Op1 = getValue(I.getArgOperand(0)); 7184 SDValue Op2 = getValue(I.getArgOperand(1)); 7185 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 7186 return; 7187 } 7188 case Intrinsic::sshl_sat: { 7189 SDValue Op1 = getValue(I.getArgOperand(0)); 7190 SDValue Op2 = getValue(I.getArgOperand(1)); 7191 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 7192 return; 7193 } 7194 case Intrinsic::ushl_sat: { 7195 SDValue Op1 = getValue(I.getArgOperand(0)); 7196 SDValue Op2 = getValue(I.getArgOperand(1)); 7197 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 7198 return; 7199 } 7200 case Intrinsic::smul_fix: 7201 case Intrinsic::umul_fix: 7202 case Intrinsic::smul_fix_sat: 7203 case Intrinsic::umul_fix_sat: { 7204 SDValue Op1 = getValue(I.getArgOperand(0)); 7205 SDValue Op2 = getValue(I.getArgOperand(1)); 7206 SDValue Op3 = getValue(I.getArgOperand(2)); 7207 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 7208 Op1.getValueType(), Op1, Op2, Op3)); 7209 return; 7210 } 7211 case Intrinsic::sdiv_fix: 7212 case Intrinsic::udiv_fix: 7213 case Intrinsic::sdiv_fix_sat: 7214 case Intrinsic::udiv_fix_sat: { 7215 SDValue Op1 = getValue(I.getArgOperand(0)); 7216 SDValue Op2 = getValue(I.getArgOperand(1)); 7217 SDValue Op3 = getValue(I.getArgOperand(2)); 7218 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 7219 Op1, Op2, Op3, DAG, TLI)); 7220 return; 7221 } 7222 case Intrinsic::smax: { 7223 SDValue Op1 = getValue(I.getArgOperand(0)); 7224 SDValue Op2 = getValue(I.getArgOperand(1)); 7225 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 7226 return; 7227 } 7228 case Intrinsic::smin: { 7229 SDValue Op1 = getValue(I.getArgOperand(0)); 7230 SDValue Op2 = getValue(I.getArgOperand(1)); 7231 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 7232 return; 7233 } 7234 case Intrinsic::umax: { 7235 SDValue Op1 = getValue(I.getArgOperand(0)); 7236 SDValue Op2 = getValue(I.getArgOperand(1)); 7237 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 7238 return; 7239 } 7240 case Intrinsic::umin: { 7241 SDValue Op1 = getValue(I.getArgOperand(0)); 7242 SDValue Op2 = getValue(I.getArgOperand(1)); 7243 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 7244 return; 7245 } 7246 case Intrinsic::abs: { 7247 // TODO: Preserve "int min is poison" arg in SDAG? 7248 SDValue Op1 = getValue(I.getArgOperand(0)); 7249 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 7250 return; 7251 } 7252 case Intrinsic::scmp: { 7253 SDValue Op1 = getValue(I.getArgOperand(0)); 7254 SDValue Op2 = getValue(I.getArgOperand(1)); 7255 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7256 setValue(&I, DAG.getNode(ISD::SCMP, sdl, DestVT, Op1, Op2)); 7257 break; 7258 } 7259 case Intrinsic::ucmp: { 7260 SDValue Op1 = getValue(I.getArgOperand(0)); 7261 SDValue Op2 = getValue(I.getArgOperand(1)); 7262 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7263 setValue(&I, DAG.getNode(ISD::UCMP, sdl, DestVT, Op1, Op2)); 7264 break; 7265 } 7266 case Intrinsic::stacksave: { 7267 SDValue Op = getRoot(); 7268 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7269 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 7270 setValue(&I, Res); 7271 DAG.setRoot(Res.getValue(1)); 7272 return; 7273 } 7274 case Intrinsic::stackrestore: 7275 Res = getValue(I.getArgOperand(0)); 7276 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 7277 return; 7278 case Intrinsic::get_dynamic_area_offset: { 7279 SDValue Op = getRoot(); 7280 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 7281 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7282 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 7283 // target. 7284 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 7285 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 7286 " intrinsic!"); 7287 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 7288 Op); 7289 DAG.setRoot(Op); 7290 setValue(&I, Res); 7291 return; 7292 } 7293 case Intrinsic::stackguard: { 7294 MachineFunction &MF = DAG.getMachineFunction(); 7295 const Module &M = *MF.getFunction().getParent(); 7296 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7297 SDValue Chain = getRoot(); 7298 if (TLI.useLoadStackGuardNode()) { 7299 Res = getLoadStackGuard(DAG, sdl, Chain); 7300 Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy); 7301 } else { 7302 const Value *Global = TLI.getSDagStackGuard(M); 7303 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 7304 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 7305 MachinePointerInfo(Global, 0), Align, 7306 MachineMemOperand::MOVolatile); 7307 } 7308 if (TLI.useStackGuardXorFP()) 7309 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 7310 DAG.setRoot(Chain); 7311 setValue(&I, Res); 7312 return; 7313 } 7314 case Intrinsic::stackprotector: { 7315 // Emit code into the DAG to store the stack guard onto the stack. 7316 MachineFunction &MF = DAG.getMachineFunction(); 7317 MachineFrameInfo &MFI = MF.getFrameInfo(); 7318 SDValue Src, Chain = getRoot(); 7319 7320 if (TLI.useLoadStackGuardNode()) 7321 Src = getLoadStackGuard(DAG, sdl, Chain); 7322 else 7323 Src = getValue(I.getArgOperand(0)); // The guard's value. 7324 7325 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 7326 7327 int FI = FuncInfo.StaticAllocaMap[Slot]; 7328 MFI.setStackProtectorIndex(FI); 7329 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 7330 7331 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 7332 7333 // Store the stack protector onto the stack. 7334 Res = DAG.getStore( 7335 Chain, sdl, Src, FIN, 7336 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 7337 MaybeAlign(), MachineMemOperand::MOVolatile); 7338 setValue(&I, Res); 7339 DAG.setRoot(Res); 7340 return; 7341 } 7342 case Intrinsic::objectsize: 7343 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 7344 7345 case Intrinsic::is_constant: 7346 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 7347 7348 case Intrinsic::annotation: 7349 case Intrinsic::ptr_annotation: 7350 case Intrinsic::launder_invariant_group: 7351 case Intrinsic::strip_invariant_group: 7352 // Drop the intrinsic, but forward the value 7353 setValue(&I, getValue(I.getOperand(0))); 7354 return; 7355 7356 case Intrinsic::assume: 7357 case Intrinsic::experimental_noalias_scope_decl: 7358 case Intrinsic::var_annotation: 7359 case Intrinsic::sideeffect: 7360 // Discard annotate attributes, noalias scope declarations, assumptions, and 7361 // artificial side-effects. 7362 return; 7363 7364 case Intrinsic::codeview_annotation: { 7365 // Emit a label associated with this metadata. 7366 MachineFunction &MF = DAG.getMachineFunction(); 7367 MCSymbol *Label = 7368 MF.getMMI().getContext().createTempSymbol("annotation", true); 7369 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 7370 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 7371 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 7372 DAG.setRoot(Res); 7373 return; 7374 } 7375 7376 case Intrinsic::init_trampoline: { 7377 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 7378 7379 SDValue Ops[6]; 7380 Ops[0] = getRoot(); 7381 Ops[1] = getValue(I.getArgOperand(0)); 7382 Ops[2] = getValue(I.getArgOperand(1)); 7383 Ops[3] = getValue(I.getArgOperand(2)); 7384 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 7385 Ops[5] = DAG.getSrcValue(F); 7386 7387 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 7388 7389 DAG.setRoot(Res); 7390 return; 7391 } 7392 case Intrinsic::adjust_trampoline: 7393 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 7394 TLI.getPointerTy(DAG.getDataLayout()), 7395 getValue(I.getArgOperand(0)))); 7396 return; 7397 case Intrinsic::gcroot: { 7398 assert(DAG.getMachineFunction().getFunction().hasGC() && 7399 "only valid in functions with gc specified, enforced by Verifier"); 7400 assert(GFI && "implied by previous"); 7401 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 7402 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 7403 7404 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 7405 GFI->addStackRoot(FI->getIndex(), TypeMap); 7406 return; 7407 } 7408 case Intrinsic::gcread: 7409 case Intrinsic::gcwrite: 7410 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 7411 case Intrinsic::get_rounding: 7412 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot()); 7413 setValue(&I, Res); 7414 DAG.setRoot(Res.getValue(1)); 7415 return; 7416 7417 case Intrinsic::expect: 7418 // Just replace __builtin_expect(exp, c) with EXP. 7419 setValue(&I, getValue(I.getArgOperand(0))); 7420 return; 7421 7422 case Intrinsic::ubsantrap: 7423 case Intrinsic::debugtrap: 7424 case Intrinsic::trap: { 7425 StringRef TrapFuncName = 7426 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 7427 if (TrapFuncName.empty()) { 7428 switch (Intrinsic) { 7429 case Intrinsic::trap: 7430 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 7431 break; 7432 case Intrinsic::debugtrap: 7433 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 7434 break; 7435 case Intrinsic::ubsantrap: 7436 DAG.setRoot(DAG.getNode( 7437 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 7438 DAG.getTargetConstant( 7439 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 7440 MVT::i32))); 7441 break; 7442 default: llvm_unreachable("unknown trap intrinsic"); 7443 } 7444 return; 7445 } 7446 TargetLowering::ArgListTy Args; 7447 if (Intrinsic == Intrinsic::ubsantrap) { 7448 Args.push_back(TargetLoweringBase::ArgListEntry()); 7449 Args[0].Val = I.getArgOperand(0); 7450 Args[0].Node = getValue(Args[0].Val); 7451 Args[0].Ty = Args[0].Val->getType(); 7452 } 7453 7454 TargetLowering::CallLoweringInfo CLI(DAG); 7455 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 7456 CallingConv::C, I.getType(), 7457 DAG.getExternalSymbol(TrapFuncName.data(), 7458 TLI.getPointerTy(DAG.getDataLayout())), 7459 std::move(Args)); 7460 7461 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7462 DAG.setRoot(Result.second); 7463 return; 7464 } 7465 7466 case Intrinsic::allow_runtime_check: 7467 case Intrinsic::allow_ubsan_check: 7468 setValue(&I, getValue(ConstantInt::getTrue(I.getType()))); 7469 return; 7470 7471 case Intrinsic::uadd_with_overflow: 7472 case Intrinsic::sadd_with_overflow: 7473 case Intrinsic::usub_with_overflow: 7474 case Intrinsic::ssub_with_overflow: 7475 case Intrinsic::umul_with_overflow: 7476 case Intrinsic::smul_with_overflow: { 7477 ISD::NodeType Op; 7478 switch (Intrinsic) { 7479 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7480 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 7481 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 7482 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 7483 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 7484 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 7485 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 7486 } 7487 SDValue Op1 = getValue(I.getArgOperand(0)); 7488 SDValue Op2 = getValue(I.getArgOperand(1)); 7489 7490 EVT ResultVT = Op1.getValueType(); 7491 EVT OverflowVT = MVT::i1; 7492 if (ResultVT.isVector()) 7493 OverflowVT = EVT::getVectorVT( 7494 *Context, OverflowVT, ResultVT.getVectorElementCount()); 7495 7496 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 7497 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 7498 return; 7499 } 7500 case Intrinsic::prefetch: { 7501 SDValue Ops[5]; 7502 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7503 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 7504 Ops[0] = DAG.getRoot(); 7505 Ops[1] = getValue(I.getArgOperand(0)); 7506 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 7507 MVT::i32); 7508 Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl, 7509 MVT::i32); 7510 Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl, 7511 MVT::i32); 7512 SDValue Result = DAG.getMemIntrinsicNode( 7513 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 7514 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 7515 /* align */ std::nullopt, Flags); 7516 7517 // Chain the prefetch in parallel with any pending loads, to stay out of 7518 // the way of later optimizations. 7519 PendingLoads.push_back(Result); 7520 Result = getRoot(); 7521 DAG.setRoot(Result); 7522 return; 7523 } 7524 case Intrinsic::lifetime_start: 7525 case Intrinsic::lifetime_end: { 7526 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 7527 // Stack coloring is not enabled in O0, discard region information. 7528 if (TM.getOptLevel() == CodeGenOptLevel::None) 7529 return; 7530 7531 const int64_t ObjectSize = 7532 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 7533 Value *const ObjectPtr = I.getArgOperand(1); 7534 SmallVector<const Value *, 4> Allocas; 7535 getUnderlyingObjects(ObjectPtr, Allocas); 7536 7537 for (const Value *Alloca : Allocas) { 7538 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 7539 7540 // Could not find an Alloca. 7541 if (!LifetimeObject) 7542 continue; 7543 7544 // First check that the Alloca is static, otherwise it won't have a 7545 // valid frame index. 7546 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 7547 if (SI == FuncInfo.StaticAllocaMap.end()) 7548 return; 7549 7550 const int FrameIndex = SI->second; 7551 int64_t Offset; 7552 if (GetPointerBaseWithConstantOffset( 7553 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 7554 Offset = -1; // Cannot determine offset from alloca to lifetime object. 7555 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 7556 Offset); 7557 DAG.setRoot(Res); 7558 } 7559 return; 7560 } 7561 case Intrinsic::pseudoprobe: { 7562 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 7563 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7564 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 7565 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 7566 DAG.setRoot(Res); 7567 return; 7568 } 7569 case Intrinsic::invariant_start: 7570 // Discard region information. 7571 setValue(&I, 7572 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 7573 return; 7574 case Intrinsic::invariant_end: 7575 // Discard region information. 7576 return; 7577 case Intrinsic::clear_cache: { 7578 SDValue InputChain = DAG.getRoot(); 7579 SDValue StartVal = getValue(I.getArgOperand(0)); 7580 SDValue EndVal = getValue(I.getArgOperand(1)); 7581 Res = DAG.getNode(ISD::CLEAR_CACHE, sdl, DAG.getVTList(MVT::Other), 7582 {InputChain, StartVal, EndVal}); 7583 setValue(&I, Res); 7584 DAG.setRoot(Res); 7585 return; 7586 } 7587 case Intrinsic::donothing: 7588 case Intrinsic::seh_try_begin: 7589 case Intrinsic::seh_scope_begin: 7590 case Intrinsic::seh_try_end: 7591 case Intrinsic::seh_scope_end: 7592 // ignore 7593 return; 7594 case Intrinsic::experimental_stackmap: 7595 visitStackmap(I); 7596 return; 7597 case Intrinsic::experimental_patchpoint_void: 7598 case Intrinsic::experimental_patchpoint: 7599 visitPatchpoint(I); 7600 return; 7601 case Intrinsic::experimental_gc_statepoint: 7602 LowerStatepoint(cast<GCStatepointInst>(I)); 7603 return; 7604 case Intrinsic::experimental_gc_result: 7605 visitGCResult(cast<GCResultInst>(I)); 7606 return; 7607 case Intrinsic::experimental_gc_relocate: 7608 visitGCRelocate(cast<GCRelocateInst>(I)); 7609 return; 7610 case Intrinsic::instrprof_cover: 7611 llvm_unreachable("instrprof failed to lower a cover"); 7612 case Intrinsic::instrprof_increment: 7613 llvm_unreachable("instrprof failed to lower an increment"); 7614 case Intrinsic::instrprof_timestamp: 7615 llvm_unreachable("instrprof failed to lower a timestamp"); 7616 case Intrinsic::instrprof_value_profile: 7617 llvm_unreachable("instrprof failed to lower a value profiling call"); 7618 case Intrinsic::instrprof_mcdc_parameters: 7619 llvm_unreachable("instrprof failed to lower mcdc parameters"); 7620 case Intrinsic::instrprof_mcdc_tvbitmap_update: 7621 llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update"); 7622 case Intrinsic::localescape: { 7623 MachineFunction &MF = DAG.getMachineFunction(); 7624 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 7625 7626 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 7627 // is the same on all targets. 7628 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 7629 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 7630 if (isa<ConstantPointerNull>(Arg)) 7631 continue; // Skip null pointers. They represent a hole in index space. 7632 AllocaInst *Slot = cast<AllocaInst>(Arg); 7633 assert(FuncInfo.StaticAllocaMap.count(Slot) && 7634 "can only escape static allocas"); 7635 int FI = FuncInfo.StaticAllocaMap[Slot]; 7636 MCSymbol *FrameAllocSym = 7637 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7638 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7639 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7640 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7641 .addSym(FrameAllocSym) 7642 .addFrameIndex(FI); 7643 } 7644 7645 return; 7646 } 7647 7648 case Intrinsic::localrecover: { 7649 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7650 MachineFunction &MF = DAG.getMachineFunction(); 7651 7652 // Get the symbol that defines the frame offset. 7653 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7654 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7655 unsigned IdxVal = 7656 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7657 MCSymbol *FrameAllocSym = 7658 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7659 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7660 7661 Value *FP = I.getArgOperand(1); 7662 SDValue FPVal = getValue(FP); 7663 EVT PtrVT = FPVal.getValueType(); 7664 7665 // Create a MCSymbol for the label to avoid any target lowering 7666 // that would make this PC relative. 7667 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7668 SDValue OffsetVal = 7669 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7670 7671 // Add the offset to the FP. 7672 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7673 setValue(&I, Add); 7674 7675 return; 7676 } 7677 7678 case Intrinsic::eh_exceptionpointer: 7679 case Intrinsic::eh_exceptioncode: { 7680 // Get the exception pointer vreg, copy from it, and resize it to fit. 7681 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7682 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7683 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7684 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7685 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7686 if (Intrinsic == Intrinsic::eh_exceptioncode) 7687 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7688 setValue(&I, N); 7689 return; 7690 } 7691 case Intrinsic::xray_customevent: { 7692 // Here we want to make sure that the intrinsic behaves as if it has a 7693 // specific calling convention. 7694 const auto &Triple = DAG.getTarget().getTargetTriple(); 7695 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7696 return; 7697 7698 SmallVector<SDValue, 8> Ops; 7699 7700 // We want to say that we always want the arguments in registers. 7701 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7702 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7703 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7704 SDValue Chain = getRoot(); 7705 Ops.push_back(LogEntryVal); 7706 Ops.push_back(StrSizeVal); 7707 Ops.push_back(Chain); 7708 7709 // We need to enforce the calling convention for the callsite, so that 7710 // argument ordering is enforced correctly, and that register allocation can 7711 // see that some registers may be assumed clobbered and have to preserve 7712 // them across calls to the intrinsic. 7713 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7714 sdl, NodeTys, Ops); 7715 SDValue patchableNode = SDValue(MN, 0); 7716 DAG.setRoot(patchableNode); 7717 setValue(&I, patchableNode); 7718 return; 7719 } 7720 case Intrinsic::xray_typedevent: { 7721 // Here we want to make sure that the intrinsic behaves as if it has a 7722 // specific calling convention. 7723 const auto &Triple = DAG.getTarget().getTargetTriple(); 7724 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7725 return; 7726 7727 SmallVector<SDValue, 8> Ops; 7728 7729 // We want to say that we always want the arguments in registers. 7730 // It's unclear to me how manipulating the selection DAG here forces callers 7731 // to provide arguments in registers instead of on the stack. 7732 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7733 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7734 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7735 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7736 SDValue Chain = getRoot(); 7737 Ops.push_back(LogTypeId); 7738 Ops.push_back(LogEntryVal); 7739 Ops.push_back(StrSizeVal); 7740 Ops.push_back(Chain); 7741 7742 // We need to enforce the calling convention for the callsite, so that 7743 // argument ordering is enforced correctly, and that register allocation can 7744 // see that some registers may be assumed clobbered and have to preserve 7745 // them across calls to the intrinsic. 7746 MachineSDNode *MN = DAG.getMachineNode( 7747 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7748 SDValue patchableNode = SDValue(MN, 0); 7749 DAG.setRoot(patchableNode); 7750 setValue(&I, patchableNode); 7751 return; 7752 } 7753 case Intrinsic::experimental_deoptimize: 7754 LowerDeoptimizeCall(&I); 7755 return; 7756 case Intrinsic::experimental_stepvector: 7757 visitStepVector(I); 7758 return; 7759 case Intrinsic::vector_reduce_fadd: 7760 case Intrinsic::vector_reduce_fmul: 7761 case Intrinsic::vector_reduce_add: 7762 case Intrinsic::vector_reduce_mul: 7763 case Intrinsic::vector_reduce_and: 7764 case Intrinsic::vector_reduce_or: 7765 case Intrinsic::vector_reduce_xor: 7766 case Intrinsic::vector_reduce_smax: 7767 case Intrinsic::vector_reduce_smin: 7768 case Intrinsic::vector_reduce_umax: 7769 case Intrinsic::vector_reduce_umin: 7770 case Intrinsic::vector_reduce_fmax: 7771 case Intrinsic::vector_reduce_fmin: 7772 case Intrinsic::vector_reduce_fmaximum: 7773 case Intrinsic::vector_reduce_fminimum: 7774 visitVectorReduce(I, Intrinsic); 7775 return; 7776 7777 case Intrinsic::icall_branch_funnel: { 7778 SmallVector<SDValue, 16> Ops; 7779 Ops.push_back(getValue(I.getArgOperand(0))); 7780 7781 int64_t Offset; 7782 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7783 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7784 if (!Base) 7785 report_fatal_error( 7786 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7787 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7788 7789 struct BranchFunnelTarget { 7790 int64_t Offset; 7791 SDValue Target; 7792 }; 7793 SmallVector<BranchFunnelTarget, 8> Targets; 7794 7795 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7796 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7797 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7798 if (ElemBase != Base) 7799 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7800 "to the same GlobalValue"); 7801 7802 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7803 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7804 if (!GA) 7805 report_fatal_error( 7806 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7807 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7808 GA->getGlobal(), sdl, Val.getValueType(), 7809 GA->getOffset())}); 7810 } 7811 llvm::sort(Targets, 7812 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7813 return T1.Offset < T2.Offset; 7814 }); 7815 7816 for (auto &T : Targets) { 7817 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7818 Ops.push_back(T.Target); 7819 } 7820 7821 Ops.push_back(DAG.getRoot()); // Chain 7822 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7823 MVT::Other, Ops), 7824 0); 7825 DAG.setRoot(N); 7826 setValue(&I, N); 7827 HasTailCall = true; 7828 return; 7829 } 7830 7831 case Intrinsic::wasm_landingpad_index: 7832 // Information this intrinsic contained has been transferred to 7833 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7834 // delete it now. 7835 return; 7836 7837 case Intrinsic::aarch64_settag: 7838 case Intrinsic::aarch64_settag_zero: { 7839 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7840 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7841 SDValue Val = TSI.EmitTargetCodeForSetTag( 7842 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7843 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7844 ZeroMemory); 7845 DAG.setRoot(Val); 7846 setValue(&I, Val); 7847 return; 7848 } 7849 case Intrinsic::amdgcn_cs_chain: { 7850 assert(I.arg_size() == 5 && "Additional args not supported yet"); 7851 assert(cast<ConstantInt>(I.getOperand(4))->isZero() && 7852 "Non-zero flags not supported yet"); 7853 7854 // At this point we don't care if it's amdgpu_cs_chain or 7855 // amdgpu_cs_chain_preserve. 7856 CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain; 7857 7858 Type *RetTy = I.getType(); 7859 assert(RetTy->isVoidTy() && "Should not return"); 7860 7861 SDValue Callee = getValue(I.getOperand(0)); 7862 7863 // We only have 2 actual args: one for the SGPRs and one for the VGPRs. 7864 // We'll also tack the value of the EXEC mask at the end. 7865 TargetLowering::ArgListTy Args; 7866 Args.reserve(3); 7867 7868 for (unsigned Idx : {2, 3, 1}) { 7869 TargetLowering::ArgListEntry Arg; 7870 Arg.Node = getValue(I.getOperand(Idx)); 7871 Arg.Ty = I.getOperand(Idx)->getType(); 7872 Arg.setAttributes(&I, Idx); 7873 Args.push_back(Arg); 7874 } 7875 7876 assert(Args[0].IsInReg && "SGPR args should be marked inreg"); 7877 assert(!Args[1].IsInReg && "VGPR args should not be marked inreg"); 7878 Args[2].IsInReg = true; // EXEC should be inreg 7879 7880 TargetLowering::CallLoweringInfo CLI(DAG); 7881 CLI.setDebugLoc(getCurSDLoc()) 7882 .setChain(getRoot()) 7883 .setCallee(CC, RetTy, Callee, std::move(Args)) 7884 .setNoReturn(true) 7885 .setTailCall(true) 7886 .setConvergent(I.isConvergent()); 7887 CLI.CB = &I; 7888 std::pair<SDValue, SDValue> Result = 7889 lowerInvokable(CLI, /*EHPadBB*/ nullptr); 7890 (void)Result; 7891 assert(!Result.first.getNode() && !Result.second.getNode() && 7892 "Should've lowered as tail call"); 7893 7894 HasTailCall = true; 7895 return; 7896 } 7897 case Intrinsic::ptrmask: { 7898 SDValue Ptr = getValue(I.getOperand(0)); 7899 SDValue Mask = getValue(I.getOperand(1)); 7900 7901 // On arm64_32, pointers are 32 bits when stored in memory, but 7902 // zero-extended to 64 bits when in registers. Thus the mask is 32 bits to 7903 // match the index type, but the pointer is 64 bits, so the the mask must be 7904 // zero-extended up to 64 bits to match the pointer. 7905 EVT PtrVT = 7906 TLI.getValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 7907 EVT MemVT = 7908 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 7909 assert(PtrVT == Ptr.getValueType()); 7910 assert(MemVT == Mask.getValueType()); 7911 if (MemVT != PtrVT) 7912 Mask = DAG.getPtrExtOrTrunc(Mask, sdl, PtrVT); 7913 7914 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask)); 7915 return; 7916 } 7917 case Intrinsic::threadlocal_address: { 7918 setValue(&I, getValue(I.getOperand(0))); 7919 return; 7920 } 7921 case Intrinsic::get_active_lane_mask: { 7922 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7923 SDValue Index = getValue(I.getOperand(0)); 7924 EVT ElementVT = Index.getValueType(); 7925 7926 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7927 visitTargetIntrinsic(I, Intrinsic); 7928 return; 7929 } 7930 7931 SDValue TripCount = getValue(I.getOperand(1)); 7932 EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT, 7933 CCVT.getVectorElementCount()); 7934 7935 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index); 7936 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount); 7937 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7938 SDValue VectorInduction = DAG.getNode( 7939 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7940 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7941 VectorTripCount, ISD::CondCode::SETULT); 7942 setValue(&I, SetCC); 7943 return; 7944 } 7945 case Intrinsic::experimental_get_vector_length: { 7946 assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 && 7947 "Expected positive VF"); 7948 unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue(); 7949 bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne(); 7950 7951 SDValue Count = getValue(I.getOperand(0)); 7952 EVT CountVT = Count.getValueType(); 7953 7954 if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) { 7955 visitTargetIntrinsic(I, Intrinsic); 7956 return; 7957 } 7958 7959 // Expand to a umin between the trip count and the maximum elements the type 7960 // can hold. 7961 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7962 7963 // Extend the trip count to at least the result VT. 7964 if (CountVT.bitsLT(VT)) { 7965 Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count); 7966 CountVT = VT; 7967 } 7968 7969 SDValue MaxEVL = DAG.getElementCount(sdl, CountVT, 7970 ElementCount::get(VF, IsScalable)); 7971 7972 SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL); 7973 // Clip to the result type if needed. 7974 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin); 7975 7976 setValue(&I, Trunc); 7977 return; 7978 } 7979 case Intrinsic::experimental_cttz_elts: { 7980 auto DL = getCurSDLoc(); 7981 SDValue Op = getValue(I.getOperand(0)); 7982 EVT OpVT = Op.getValueType(); 7983 7984 if (!TLI.shouldExpandCttzElements(OpVT)) { 7985 visitTargetIntrinsic(I, Intrinsic); 7986 return; 7987 } 7988 7989 if (OpVT.getScalarType() != MVT::i1) { 7990 // Compare the input vector elements to zero & use to count trailing zeros 7991 SDValue AllZero = DAG.getConstant(0, DL, OpVT); 7992 OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 7993 OpVT.getVectorElementCount()); 7994 Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE); 7995 } 7996 7997 // If the zero-is-poison flag is set, we can assume the upper limit 7998 // of the result is VF-1. 7999 bool ZeroIsPoison = 8000 !cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero(); 8001 ConstantRange VScaleRange(1, true); // Dummy value. 8002 if (isa<ScalableVectorType>(I.getOperand(0)->getType())) 8003 VScaleRange = getVScaleRange(I.getCaller(), 64); 8004 unsigned EltWidth = TLI.getBitWidthForCttzElements( 8005 I.getType(), OpVT.getVectorElementCount(), ZeroIsPoison, &VScaleRange); 8006 8007 MVT NewEltTy = MVT::getIntegerVT(EltWidth); 8008 8009 // Create the new vector type & get the vector length 8010 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy, 8011 OpVT.getVectorElementCount()); 8012 8013 SDValue VL = 8014 DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount()); 8015 8016 SDValue StepVec = DAG.getStepVector(DL, NewVT); 8017 SDValue SplatVL = DAG.getSplat(NewVT, DL, VL); 8018 SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec); 8019 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op); 8020 SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext); 8021 SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And); 8022 SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max); 8023 8024 EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8025 SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy); 8026 8027 setValue(&I, Ret); 8028 return; 8029 } 8030 case Intrinsic::vector_insert: { 8031 SDValue Vec = getValue(I.getOperand(0)); 8032 SDValue SubVec = getValue(I.getOperand(1)); 8033 SDValue Index = getValue(I.getOperand(2)); 8034 8035 // The intrinsic's index type is i64, but the SDNode requires an index type 8036 // suitable for the target. Convert the index as required. 8037 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 8038 if (Index.getValueType() != VectorIdxTy) 8039 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 8040 8041 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8042 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 8043 Index)); 8044 return; 8045 } 8046 case Intrinsic::vector_extract: { 8047 SDValue Vec = getValue(I.getOperand(0)); 8048 SDValue Index = getValue(I.getOperand(1)); 8049 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8050 8051 // The intrinsic's index type is i64, but the SDNode requires an index type 8052 // suitable for the target. Convert the index as required. 8053 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 8054 if (Index.getValueType() != VectorIdxTy) 8055 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 8056 8057 setValue(&I, 8058 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 8059 return; 8060 } 8061 case Intrinsic::vector_reverse: 8062 visitVectorReverse(I); 8063 return; 8064 case Intrinsic::vector_splice: 8065 visitVectorSplice(I); 8066 return; 8067 case Intrinsic::callbr_landingpad: 8068 visitCallBrLandingPad(I); 8069 return; 8070 case Intrinsic::vector_interleave2: 8071 visitVectorInterleave(I); 8072 return; 8073 case Intrinsic::vector_deinterleave2: 8074 visitVectorDeinterleave(I); 8075 return; 8076 case Intrinsic::experimental_convergence_anchor: 8077 case Intrinsic::experimental_convergence_entry: 8078 case Intrinsic::experimental_convergence_loop: 8079 visitConvergenceControl(I, Intrinsic); 8080 return; 8081 case Intrinsic::experimental_vector_histogram_add: { 8082 visitVectorHistogram(I, Intrinsic); 8083 return; 8084 } 8085 } 8086 } 8087 8088 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 8089 const ConstrainedFPIntrinsic &FPI) { 8090 SDLoc sdl = getCurSDLoc(); 8091 8092 // We do not need to serialize constrained FP intrinsics against 8093 // each other or against (nonvolatile) loads, so they can be 8094 // chained like loads. 8095 SDValue Chain = DAG.getRoot(); 8096 SmallVector<SDValue, 4> Opers; 8097 Opers.push_back(Chain); 8098 for (unsigned I = 0, E = FPI.getNonMetadataArgCount(); I != E; ++I) 8099 Opers.push_back(getValue(FPI.getArgOperand(I))); 8100 8101 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 8102 assert(Result.getNode()->getNumValues() == 2); 8103 8104 // Push node to the appropriate list so that future instructions can be 8105 // chained up correctly. 8106 SDValue OutChain = Result.getValue(1); 8107 switch (EB) { 8108 case fp::ExceptionBehavior::ebIgnore: 8109 // The only reason why ebIgnore nodes still need to be chained is that 8110 // they might depend on the current rounding mode, and therefore must 8111 // not be moved across instruction that may change that mode. 8112 [[fallthrough]]; 8113 case fp::ExceptionBehavior::ebMayTrap: 8114 // These must not be moved across calls or instructions that may change 8115 // floating-point exception masks. 8116 PendingConstrainedFP.push_back(OutChain); 8117 break; 8118 case fp::ExceptionBehavior::ebStrict: 8119 // These must not be moved across calls or instructions that may change 8120 // floating-point exception masks or read floating-point exception flags. 8121 // In addition, they cannot be optimized out even if unused. 8122 PendingConstrainedFPStrict.push_back(OutChain); 8123 break; 8124 } 8125 }; 8126 8127 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8128 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 8129 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 8130 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 8131 8132 SDNodeFlags Flags; 8133 if (EB == fp::ExceptionBehavior::ebIgnore) 8134 Flags.setNoFPExcept(true); 8135 8136 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 8137 Flags.copyFMF(*FPOp); 8138 8139 unsigned Opcode; 8140 switch (FPI.getIntrinsicID()) { 8141 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 8142 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8143 case Intrinsic::INTRINSIC: \ 8144 Opcode = ISD::STRICT_##DAGN; \ 8145 break; 8146 #include "llvm/IR/ConstrainedOps.def" 8147 case Intrinsic::experimental_constrained_fmuladd: { 8148 Opcode = ISD::STRICT_FMA; 8149 // Break fmuladd into fmul and fadd. 8150 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 8151 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 8152 Opers.pop_back(); 8153 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 8154 pushOutChain(Mul, EB); 8155 Opcode = ISD::STRICT_FADD; 8156 Opers.clear(); 8157 Opers.push_back(Mul.getValue(1)); 8158 Opers.push_back(Mul.getValue(0)); 8159 Opers.push_back(getValue(FPI.getArgOperand(2))); 8160 } 8161 break; 8162 } 8163 } 8164 8165 // A few strict DAG nodes carry additional operands that are not 8166 // set up by the default code above. 8167 switch (Opcode) { 8168 default: break; 8169 case ISD::STRICT_FP_ROUND: 8170 Opers.push_back( 8171 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 8172 break; 8173 case ISD::STRICT_FSETCC: 8174 case ISD::STRICT_FSETCCS: { 8175 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 8176 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 8177 if (TM.Options.NoNaNsFPMath) 8178 Condition = getFCmpCodeWithoutNaN(Condition); 8179 Opers.push_back(DAG.getCondCode(Condition)); 8180 break; 8181 } 8182 } 8183 8184 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 8185 pushOutChain(Result, EB); 8186 8187 SDValue FPResult = Result.getValue(0); 8188 setValue(&FPI, FPResult); 8189 } 8190 8191 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 8192 std::optional<unsigned> ResOPC; 8193 switch (VPIntrin.getIntrinsicID()) { 8194 case Intrinsic::vp_ctlz: { 8195 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8196 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ; 8197 break; 8198 } 8199 case Intrinsic::vp_cttz: { 8200 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8201 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ; 8202 break; 8203 } 8204 case Intrinsic::vp_cttz_elts: { 8205 bool IsZeroPoison = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8206 ResOPC = IsZeroPoison ? ISD::VP_CTTZ_ELTS_ZERO_UNDEF : ISD::VP_CTTZ_ELTS; 8207 break; 8208 } 8209 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 8210 case Intrinsic::VPID: \ 8211 ResOPC = ISD::VPSD; \ 8212 break; 8213 #include "llvm/IR/VPIntrinsics.def" 8214 } 8215 8216 if (!ResOPC) 8217 llvm_unreachable( 8218 "Inconsistency: no SDNode available for this VPIntrinsic!"); 8219 8220 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 8221 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 8222 if (VPIntrin.getFastMathFlags().allowReassoc()) 8223 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 8224 : ISD::VP_REDUCE_FMUL; 8225 } 8226 8227 return *ResOPC; 8228 } 8229 8230 void SelectionDAGBuilder::visitVPLoad( 8231 const VPIntrinsic &VPIntrin, EVT VT, 8232 const SmallVectorImpl<SDValue> &OpValues) { 8233 SDLoc DL = getCurSDLoc(); 8234 Value *PtrOperand = VPIntrin.getArgOperand(0); 8235 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8236 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8237 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8238 SDValue LD; 8239 // Do not serialize variable-length loads of constant memory with 8240 // anything. 8241 if (!Alignment) 8242 Alignment = DAG.getEVTAlign(VT); 8243 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 8244 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 8245 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 8246 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8247 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 8248 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8249 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 8250 MMO, false /*IsExpanding */); 8251 if (AddToChain) 8252 PendingLoads.push_back(LD.getValue(1)); 8253 setValue(&VPIntrin, LD); 8254 } 8255 8256 void SelectionDAGBuilder::visitVPGather( 8257 const VPIntrinsic &VPIntrin, EVT VT, 8258 const SmallVectorImpl<SDValue> &OpValues) { 8259 SDLoc DL = getCurSDLoc(); 8260 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8261 Value *PtrOperand = VPIntrin.getArgOperand(0); 8262 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8263 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8264 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8265 SDValue LD; 8266 if (!Alignment) 8267 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8268 unsigned AS = 8269 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 8270 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8271 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 8272 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8273 SDValue Base, Index, Scale; 8274 ISD::MemIndexType IndexType; 8275 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 8276 this, VPIntrin.getParent(), 8277 VT.getScalarStoreSize()); 8278 if (!UniformBase) { 8279 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 8280 Index = getValue(PtrOperand); 8281 IndexType = ISD::SIGNED_SCALED; 8282 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 8283 } 8284 EVT IdxVT = Index.getValueType(); 8285 EVT EltTy = IdxVT.getVectorElementType(); 8286 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 8287 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 8288 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 8289 } 8290 LD = DAG.getGatherVP( 8291 DAG.getVTList(VT, MVT::Other), VT, DL, 8292 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 8293 IndexType); 8294 PendingLoads.push_back(LD.getValue(1)); 8295 setValue(&VPIntrin, LD); 8296 } 8297 8298 void SelectionDAGBuilder::visitVPStore( 8299 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8300 SDLoc DL = getCurSDLoc(); 8301 Value *PtrOperand = VPIntrin.getArgOperand(1); 8302 EVT VT = OpValues[0].getValueType(); 8303 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8304 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8305 SDValue ST; 8306 if (!Alignment) 8307 Alignment = DAG.getEVTAlign(VT); 8308 SDValue Ptr = OpValues[1]; 8309 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 8310 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8311 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 8312 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8313 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 8314 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 8315 /* IsTruncating */ false, /*IsCompressing*/ false); 8316 DAG.setRoot(ST); 8317 setValue(&VPIntrin, ST); 8318 } 8319 8320 void SelectionDAGBuilder::visitVPScatter( 8321 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8322 SDLoc DL = getCurSDLoc(); 8323 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8324 Value *PtrOperand = VPIntrin.getArgOperand(1); 8325 EVT VT = OpValues[0].getValueType(); 8326 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8327 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8328 SDValue ST; 8329 if (!Alignment) 8330 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8331 unsigned AS = 8332 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 8333 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8334 MachinePointerInfo(AS), MachineMemOperand::MOStore, 8335 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8336 SDValue Base, Index, Scale; 8337 ISD::MemIndexType IndexType; 8338 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 8339 this, VPIntrin.getParent(), 8340 VT.getScalarStoreSize()); 8341 if (!UniformBase) { 8342 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 8343 Index = getValue(PtrOperand); 8344 IndexType = ISD::SIGNED_SCALED; 8345 Scale = 8346 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 8347 } 8348 EVT IdxVT = Index.getValueType(); 8349 EVT EltTy = IdxVT.getVectorElementType(); 8350 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 8351 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 8352 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 8353 } 8354 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 8355 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 8356 OpValues[2], OpValues[3]}, 8357 MMO, IndexType); 8358 DAG.setRoot(ST); 8359 setValue(&VPIntrin, ST); 8360 } 8361 8362 void SelectionDAGBuilder::visitVPStridedLoad( 8363 const VPIntrinsic &VPIntrin, EVT VT, 8364 const SmallVectorImpl<SDValue> &OpValues) { 8365 SDLoc DL = getCurSDLoc(); 8366 Value *PtrOperand = VPIntrin.getArgOperand(0); 8367 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8368 if (!Alignment) 8369 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8370 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8371 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8372 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 8373 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 8374 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 8375 unsigned AS = PtrOperand->getType()->getPointerAddressSpace(); 8376 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8377 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 8378 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8379 8380 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 8381 OpValues[2], OpValues[3], MMO, 8382 false /*IsExpanding*/); 8383 8384 if (AddToChain) 8385 PendingLoads.push_back(LD.getValue(1)); 8386 setValue(&VPIntrin, LD); 8387 } 8388 8389 void SelectionDAGBuilder::visitVPStridedStore( 8390 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8391 SDLoc DL = getCurSDLoc(); 8392 Value *PtrOperand = VPIntrin.getArgOperand(1); 8393 EVT VT = OpValues[0].getValueType(); 8394 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8395 if (!Alignment) 8396 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8397 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8398 unsigned AS = PtrOperand->getType()->getPointerAddressSpace(); 8399 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8400 MachinePointerInfo(AS), MachineMemOperand::MOStore, 8401 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8402 8403 SDValue ST = DAG.getStridedStoreVP( 8404 getMemoryRoot(), DL, OpValues[0], OpValues[1], 8405 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 8406 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 8407 /*IsCompressing*/ false); 8408 8409 DAG.setRoot(ST); 8410 setValue(&VPIntrin, ST); 8411 } 8412 8413 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 8414 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8415 SDLoc DL = getCurSDLoc(); 8416 8417 ISD::CondCode Condition; 8418 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 8419 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 8420 if (IsFP) { 8421 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 8422 // flags, but calls that don't return floating-point types can't be 8423 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 8424 Condition = getFCmpCondCode(CondCode); 8425 if (TM.Options.NoNaNsFPMath) 8426 Condition = getFCmpCodeWithoutNaN(Condition); 8427 } else { 8428 Condition = getICmpCondCode(CondCode); 8429 } 8430 8431 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 8432 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 8433 // #2 is the condition code 8434 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 8435 SDValue EVL = getValue(VPIntrin.getOperand(4)); 8436 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8437 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8438 "Unexpected target EVL type"); 8439 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 8440 8441 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8442 VPIntrin.getType()); 8443 setValue(&VPIntrin, 8444 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 8445 } 8446 8447 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 8448 const VPIntrinsic &VPIntrin) { 8449 SDLoc DL = getCurSDLoc(); 8450 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 8451 8452 auto IID = VPIntrin.getIntrinsicID(); 8453 8454 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 8455 return visitVPCmp(*CmpI); 8456 8457 SmallVector<EVT, 4> ValueVTs; 8458 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8459 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 8460 SDVTList VTs = DAG.getVTList(ValueVTs); 8461 8462 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 8463 8464 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8465 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8466 "Unexpected target EVL type"); 8467 8468 // Request operands. 8469 SmallVector<SDValue, 7> OpValues; 8470 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 8471 auto Op = getValue(VPIntrin.getArgOperand(I)); 8472 if (I == EVLParamPos) 8473 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 8474 OpValues.push_back(Op); 8475 } 8476 8477 switch (Opcode) { 8478 default: { 8479 SDNodeFlags SDFlags; 8480 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8481 SDFlags.copyFMF(*FPMO); 8482 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 8483 setValue(&VPIntrin, Result); 8484 break; 8485 } 8486 case ISD::VP_LOAD: 8487 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 8488 break; 8489 case ISD::VP_GATHER: 8490 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 8491 break; 8492 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 8493 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 8494 break; 8495 case ISD::VP_STORE: 8496 visitVPStore(VPIntrin, OpValues); 8497 break; 8498 case ISD::VP_SCATTER: 8499 visitVPScatter(VPIntrin, OpValues); 8500 break; 8501 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 8502 visitVPStridedStore(VPIntrin, OpValues); 8503 break; 8504 case ISD::VP_FMULADD: { 8505 assert(OpValues.size() == 5 && "Unexpected number of operands"); 8506 SDNodeFlags SDFlags; 8507 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8508 SDFlags.copyFMF(*FPMO); 8509 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 8510 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 8511 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 8512 } else { 8513 SDValue Mul = DAG.getNode( 8514 ISD::VP_FMUL, DL, VTs, 8515 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 8516 SDValue Add = 8517 DAG.getNode(ISD::VP_FADD, DL, VTs, 8518 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 8519 setValue(&VPIntrin, Add); 8520 } 8521 break; 8522 } 8523 case ISD::VP_IS_FPCLASS: { 8524 const DataLayout DLayout = DAG.getDataLayout(); 8525 EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType()); 8526 auto Constant = OpValues[1]->getAsZExtVal(); 8527 SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32); 8528 SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT, 8529 {OpValues[0], Check, OpValues[2], OpValues[3]}); 8530 setValue(&VPIntrin, V); 8531 return; 8532 } 8533 case ISD::VP_INTTOPTR: { 8534 SDValue N = OpValues[0]; 8535 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType()); 8536 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType()); 8537 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8538 OpValues[2]); 8539 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8540 OpValues[2]); 8541 setValue(&VPIntrin, N); 8542 break; 8543 } 8544 case ISD::VP_PTRTOINT: { 8545 SDValue N = OpValues[0]; 8546 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8547 VPIntrin.getType()); 8548 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), 8549 VPIntrin.getOperand(0)->getType()); 8550 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8551 OpValues[2]); 8552 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8553 OpValues[2]); 8554 setValue(&VPIntrin, N); 8555 break; 8556 } 8557 case ISD::VP_ABS: 8558 case ISD::VP_CTLZ: 8559 case ISD::VP_CTLZ_ZERO_UNDEF: 8560 case ISD::VP_CTTZ: 8561 case ISD::VP_CTTZ_ZERO_UNDEF: 8562 case ISD::VP_CTTZ_ELTS_ZERO_UNDEF: 8563 case ISD::VP_CTTZ_ELTS: { 8564 SDValue Result = 8565 DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]}); 8566 setValue(&VPIntrin, Result); 8567 break; 8568 } 8569 } 8570 } 8571 8572 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 8573 const BasicBlock *EHPadBB, 8574 MCSymbol *&BeginLabel) { 8575 MachineFunction &MF = DAG.getMachineFunction(); 8576 MachineModuleInfo &MMI = MF.getMMI(); 8577 8578 // Insert a label before the invoke call to mark the try range. This can be 8579 // used to detect deletion of the invoke via the MachineModuleInfo. 8580 BeginLabel = MMI.getContext().createTempSymbol(); 8581 8582 // For SjLj, keep track of which landing pads go with which invokes 8583 // so as to maintain the ordering of pads in the LSDA. 8584 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 8585 if (CallSiteIndex) { 8586 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 8587 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 8588 8589 // Now that the call site is handled, stop tracking it. 8590 MMI.setCurrentCallSite(0); 8591 } 8592 8593 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 8594 } 8595 8596 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 8597 const BasicBlock *EHPadBB, 8598 MCSymbol *BeginLabel) { 8599 assert(BeginLabel && "BeginLabel should've been set"); 8600 8601 MachineFunction &MF = DAG.getMachineFunction(); 8602 MachineModuleInfo &MMI = MF.getMMI(); 8603 8604 // Insert a label at the end of the invoke call to mark the try range. This 8605 // can be used to detect deletion of the invoke via the MachineModuleInfo. 8606 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 8607 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 8608 8609 // Inform MachineModuleInfo of range. 8610 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 8611 // There is a platform (e.g. wasm) that uses funclet style IR but does not 8612 // actually use outlined funclets and their LSDA info style. 8613 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 8614 assert(II && "II should've been set"); 8615 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 8616 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 8617 } else if (!isScopedEHPersonality(Pers)) { 8618 assert(EHPadBB); 8619 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 8620 } 8621 8622 return Chain; 8623 } 8624 8625 std::pair<SDValue, SDValue> 8626 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 8627 const BasicBlock *EHPadBB) { 8628 MCSymbol *BeginLabel = nullptr; 8629 8630 if (EHPadBB) { 8631 // Both PendingLoads and PendingExports must be flushed here; 8632 // this call might not return. 8633 (void)getRoot(); 8634 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 8635 CLI.setChain(getRoot()); 8636 } 8637 8638 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8639 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 8640 8641 assert((CLI.IsTailCall || Result.second.getNode()) && 8642 "Non-null chain expected with non-tail call!"); 8643 assert((Result.second.getNode() || !Result.first.getNode()) && 8644 "Null value expected with tail call!"); 8645 8646 if (!Result.second.getNode()) { 8647 // As a special case, a null chain means that a tail call has been emitted 8648 // and the DAG root is already updated. 8649 HasTailCall = true; 8650 8651 // Since there's no actual continuation from this block, nothing can be 8652 // relying on us setting vregs for them. 8653 PendingExports.clear(); 8654 } else { 8655 DAG.setRoot(Result.second); 8656 } 8657 8658 if (EHPadBB) { 8659 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 8660 BeginLabel)); 8661 Result.second = getRoot(); 8662 } 8663 8664 return Result; 8665 } 8666 8667 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 8668 bool isTailCall, bool isMustTailCall, 8669 const BasicBlock *EHPadBB, 8670 const TargetLowering::PtrAuthInfo *PAI) { 8671 auto &DL = DAG.getDataLayout(); 8672 FunctionType *FTy = CB.getFunctionType(); 8673 Type *RetTy = CB.getType(); 8674 8675 TargetLowering::ArgListTy Args; 8676 Args.reserve(CB.arg_size()); 8677 8678 const Value *SwiftErrorVal = nullptr; 8679 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8680 8681 if (isTailCall) { 8682 // Avoid emitting tail calls in functions with the disable-tail-calls 8683 // attribute. 8684 auto *Caller = CB.getParent()->getParent(); 8685 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 8686 "true" && !isMustTailCall) 8687 isTailCall = false; 8688 8689 // We can't tail call inside a function with a swifterror argument. Lowering 8690 // does not support this yet. It would have to move into the swifterror 8691 // register before the call. 8692 if (TLI.supportSwiftError() && 8693 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 8694 isTailCall = false; 8695 } 8696 8697 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 8698 TargetLowering::ArgListEntry Entry; 8699 const Value *V = *I; 8700 8701 // Skip empty types 8702 if (V->getType()->isEmptyTy()) 8703 continue; 8704 8705 SDValue ArgNode = getValue(V); 8706 Entry.Node = ArgNode; Entry.Ty = V->getType(); 8707 8708 Entry.setAttributes(&CB, I - CB.arg_begin()); 8709 8710 // Use swifterror virtual register as input to the call. 8711 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 8712 SwiftErrorVal = V; 8713 // We find the virtual register for the actual swifterror argument. 8714 // Instead of using the Value, we use the virtual register instead. 8715 Entry.Node = 8716 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 8717 EVT(TLI.getPointerTy(DL))); 8718 } 8719 8720 Args.push_back(Entry); 8721 8722 // If we have an explicit sret argument that is an Instruction, (i.e., it 8723 // might point to function-local memory), we can't meaningfully tail-call. 8724 if (Entry.IsSRet && isa<Instruction>(V)) 8725 isTailCall = false; 8726 } 8727 8728 // If call site has a cfguardtarget operand bundle, create and add an 8729 // additional ArgListEntry. 8730 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 8731 TargetLowering::ArgListEntry Entry; 8732 Value *V = Bundle->Inputs[0]; 8733 SDValue ArgNode = getValue(V); 8734 Entry.Node = ArgNode; 8735 Entry.Ty = V->getType(); 8736 Entry.IsCFGuardTarget = true; 8737 Args.push_back(Entry); 8738 } 8739 8740 // Check if target-independent constraints permit a tail call here. 8741 // Target-dependent constraints are checked within TLI->LowerCallTo. 8742 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 8743 isTailCall = false; 8744 8745 // Disable tail calls if there is an swifterror argument. Targets have not 8746 // been updated to support tail calls. 8747 if (TLI.supportSwiftError() && SwiftErrorVal) 8748 isTailCall = false; 8749 8750 ConstantInt *CFIType = nullptr; 8751 if (CB.isIndirectCall()) { 8752 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 8753 if (!TLI.supportKCFIBundles()) 8754 report_fatal_error( 8755 "Target doesn't support calls with kcfi operand bundles."); 8756 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 8757 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 8758 } 8759 } 8760 8761 SDValue ConvControlToken; 8762 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) { 8763 auto *Token = Bundle->Inputs[0].get(); 8764 ConvControlToken = getValue(Token); 8765 } 8766 8767 TargetLowering::CallLoweringInfo CLI(DAG); 8768 CLI.setDebugLoc(getCurSDLoc()) 8769 .setChain(getRoot()) 8770 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 8771 .setTailCall(isTailCall) 8772 .setConvergent(CB.isConvergent()) 8773 .setIsPreallocated( 8774 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 8775 .setCFIType(CFIType) 8776 .setConvergenceControlToken(ConvControlToken); 8777 8778 // Set the pointer authentication info if we have it. 8779 if (PAI) { 8780 if (!TLI.supportPtrAuthBundles()) 8781 report_fatal_error( 8782 "This target doesn't support calls with ptrauth operand bundles."); 8783 CLI.setPtrAuth(*PAI); 8784 } 8785 8786 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8787 8788 if (Result.first.getNode()) { 8789 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 8790 setValue(&CB, Result.first); 8791 } 8792 8793 // The last element of CLI.InVals has the SDValue for swifterror return. 8794 // Here we copy it to a virtual register and update SwiftErrorMap for 8795 // book-keeping. 8796 if (SwiftErrorVal && TLI.supportSwiftError()) { 8797 // Get the last element of InVals. 8798 SDValue Src = CLI.InVals.back(); 8799 Register VReg = 8800 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 8801 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 8802 DAG.setRoot(CopyNode); 8803 } 8804 } 8805 8806 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 8807 SelectionDAGBuilder &Builder) { 8808 // Check to see if this load can be trivially constant folded, e.g. if the 8809 // input is from a string literal. 8810 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 8811 // Cast pointer to the type we really want to load. 8812 Type *LoadTy = 8813 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 8814 if (LoadVT.isVector()) 8815 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 8816 8817 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 8818 PointerType::getUnqual(LoadTy)); 8819 8820 if (const Constant *LoadCst = 8821 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 8822 LoadTy, Builder.DAG.getDataLayout())) 8823 return Builder.getValue(LoadCst); 8824 } 8825 8826 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 8827 // still constant memory, the input chain can be the entry node. 8828 SDValue Root; 8829 bool ConstantMemory = false; 8830 8831 // Do not serialize (non-volatile) loads of constant memory with anything. 8832 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 8833 Root = Builder.DAG.getEntryNode(); 8834 ConstantMemory = true; 8835 } else { 8836 // Do not serialize non-volatile loads against each other. 8837 Root = Builder.DAG.getRoot(); 8838 } 8839 8840 SDValue Ptr = Builder.getValue(PtrVal); 8841 SDValue LoadVal = 8842 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 8843 MachinePointerInfo(PtrVal), Align(1)); 8844 8845 if (!ConstantMemory) 8846 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 8847 return LoadVal; 8848 } 8849 8850 /// Record the value for an instruction that produces an integer result, 8851 /// converting the type where necessary. 8852 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 8853 SDValue Value, 8854 bool IsSigned) { 8855 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8856 I.getType(), true); 8857 Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT); 8858 setValue(&I, Value); 8859 } 8860 8861 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 8862 /// true and lower it. Otherwise return false, and it will be lowered like a 8863 /// normal call. 8864 /// The caller already checked that \p I calls the appropriate LibFunc with a 8865 /// correct prototype. 8866 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 8867 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 8868 const Value *Size = I.getArgOperand(2); 8869 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 8870 if (CSize && CSize->getZExtValue() == 0) { 8871 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8872 I.getType(), true); 8873 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 8874 return true; 8875 } 8876 8877 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8878 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 8879 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 8880 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 8881 if (Res.first.getNode()) { 8882 processIntegerCallValue(I, Res.first, true); 8883 PendingLoads.push_back(Res.second); 8884 return true; 8885 } 8886 8887 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 8888 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 8889 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 8890 return false; 8891 8892 // If the target has a fast compare for the given size, it will return a 8893 // preferred load type for that size. Require that the load VT is legal and 8894 // that the target supports unaligned loads of that type. Otherwise, return 8895 // INVALID. 8896 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 8897 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8898 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 8899 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 8900 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 8901 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 8902 // TODO: Check alignment of src and dest ptrs. 8903 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 8904 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 8905 if (!TLI.isTypeLegal(LVT) || 8906 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 8907 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 8908 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 8909 } 8910 8911 return LVT; 8912 }; 8913 8914 // This turns into unaligned loads. We only do this if the target natively 8915 // supports the MVT we'll be loading or if it is small enough (<= 4) that 8916 // we'll only produce a small number of byte loads. 8917 MVT LoadVT; 8918 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 8919 switch (NumBitsToCompare) { 8920 default: 8921 return false; 8922 case 16: 8923 LoadVT = MVT::i16; 8924 break; 8925 case 32: 8926 LoadVT = MVT::i32; 8927 break; 8928 case 64: 8929 case 128: 8930 case 256: 8931 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 8932 break; 8933 } 8934 8935 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 8936 return false; 8937 8938 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 8939 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 8940 8941 // Bitcast to a wide integer type if the loads are vectors. 8942 if (LoadVT.isVector()) { 8943 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 8944 LoadL = DAG.getBitcast(CmpVT, LoadL); 8945 LoadR = DAG.getBitcast(CmpVT, LoadR); 8946 } 8947 8948 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 8949 processIntegerCallValue(I, Cmp, false); 8950 return true; 8951 } 8952 8953 /// See if we can lower a memchr call into an optimized form. If so, return 8954 /// true and lower it. Otherwise return false, and it will be lowered like a 8955 /// normal call. 8956 /// The caller already checked that \p I calls the appropriate LibFunc with a 8957 /// correct prototype. 8958 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 8959 const Value *Src = I.getArgOperand(0); 8960 const Value *Char = I.getArgOperand(1); 8961 const Value *Length = I.getArgOperand(2); 8962 8963 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8964 std::pair<SDValue, SDValue> Res = 8965 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 8966 getValue(Src), getValue(Char), getValue(Length), 8967 MachinePointerInfo(Src)); 8968 if (Res.first.getNode()) { 8969 setValue(&I, Res.first); 8970 PendingLoads.push_back(Res.second); 8971 return true; 8972 } 8973 8974 return false; 8975 } 8976 8977 /// See if we can lower a mempcpy call into an optimized form. If so, return 8978 /// true and lower it. Otherwise return false, and it will be lowered like a 8979 /// normal call. 8980 /// The caller already checked that \p I calls the appropriate LibFunc with a 8981 /// correct prototype. 8982 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 8983 SDValue Dst = getValue(I.getArgOperand(0)); 8984 SDValue Src = getValue(I.getArgOperand(1)); 8985 SDValue Size = getValue(I.getArgOperand(2)); 8986 8987 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 8988 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 8989 // DAG::getMemcpy needs Alignment to be defined. 8990 Align Alignment = std::min(DstAlign, SrcAlign); 8991 8992 SDLoc sdl = getCurSDLoc(); 8993 8994 // In the mempcpy context we need to pass in a false value for isTailCall 8995 // because the return pointer needs to be adjusted by the size of 8996 // the copied memory. 8997 SDValue Root = getMemoryRoot(); 8998 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false, 8999 /*isTailCall=*/false, 9000 MachinePointerInfo(I.getArgOperand(0)), 9001 MachinePointerInfo(I.getArgOperand(1)), 9002 I.getAAMetadata()); 9003 assert(MC.getNode() != nullptr && 9004 "** memcpy should not be lowered as TailCall in mempcpy context **"); 9005 DAG.setRoot(MC); 9006 9007 // Check if Size needs to be truncated or extended. 9008 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 9009 9010 // Adjust return pointer to point just past the last dst byte. 9011 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 9012 Dst, Size); 9013 setValue(&I, DstPlusSize); 9014 return true; 9015 } 9016 9017 /// See if we can lower a strcpy call into an optimized form. If so, return 9018 /// true and lower it, otherwise return false and it will be lowered like a 9019 /// normal call. 9020 /// The caller already checked that \p I calls the appropriate LibFunc with a 9021 /// correct prototype. 9022 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 9023 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9024 9025 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9026 std::pair<SDValue, SDValue> Res = 9027 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 9028 getValue(Arg0), getValue(Arg1), 9029 MachinePointerInfo(Arg0), 9030 MachinePointerInfo(Arg1), isStpcpy); 9031 if (Res.first.getNode()) { 9032 setValue(&I, Res.first); 9033 DAG.setRoot(Res.second); 9034 return true; 9035 } 9036 9037 return false; 9038 } 9039 9040 /// See if we can lower a strcmp call into an optimized form. If so, return 9041 /// true and lower it, otherwise return false and it will be lowered like a 9042 /// normal call. 9043 /// The caller already checked that \p I calls the appropriate LibFunc with a 9044 /// correct prototype. 9045 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 9046 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9047 9048 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9049 std::pair<SDValue, SDValue> Res = 9050 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 9051 getValue(Arg0), getValue(Arg1), 9052 MachinePointerInfo(Arg0), 9053 MachinePointerInfo(Arg1)); 9054 if (Res.first.getNode()) { 9055 processIntegerCallValue(I, Res.first, true); 9056 PendingLoads.push_back(Res.second); 9057 return true; 9058 } 9059 9060 return false; 9061 } 9062 9063 /// See if we can lower a strlen call into an optimized form. If so, return 9064 /// true and lower it, otherwise return false and it will be lowered like a 9065 /// normal call. 9066 /// The caller already checked that \p I calls the appropriate LibFunc with a 9067 /// correct prototype. 9068 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 9069 const Value *Arg0 = I.getArgOperand(0); 9070 9071 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9072 std::pair<SDValue, SDValue> Res = 9073 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 9074 getValue(Arg0), MachinePointerInfo(Arg0)); 9075 if (Res.first.getNode()) { 9076 processIntegerCallValue(I, Res.first, false); 9077 PendingLoads.push_back(Res.second); 9078 return true; 9079 } 9080 9081 return false; 9082 } 9083 9084 /// See if we can lower a strnlen call into an optimized form. If so, return 9085 /// true and lower it, otherwise return false and it will be lowered like a 9086 /// normal call. 9087 /// The caller already checked that \p I calls the appropriate LibFunc with a 9088 /// correct prototype. 9089 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 9090 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9091 9092 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9093 std::pair<SDValue, SDValue> Res = 9094 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 9095 getValue(Arg0), getValue(Arg1), 9096 MachinePointerInfo(Arg0)); 9097 if (Res.first.getNode()) { 9098 processIntegerCallValue(I, Res.first, false); 9099 PendingLoads.push_back(Res.second); 9100 return true; 9101 } 9102 9103 return false; 9104 } 9105 9106 /// See if we can lower a unary floating-point operation into an SDNode with 9107 /// the specified Opcode. If so, return true and lower it, otherwise return 9108 /// false and it will be lowered like a normal call. 9109 /// The caller already checked that \p I calls the appropriate LibFunc with a 9110 /// correct prototype. 9111 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 9112 unsigned Opcode) { 9113 // We already checked this call's prototype; verify it doesn't modify errno. 9114 if (!I.onlyReadsMemory()) 9115 return false; 9116 9117 SDNodeFlags Flags; 9118 Flags.copyFMF(cast<FPMathOperator>(I)); 9119 9120 SDValue Tmp = getValue(I.getArgOperand(0)); 9121 setValue(&I, 9122 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 9123 return true; 9124 } 9125 9126 /// See if we can lower a binary floating-point operation into an SDNode with 9127 /// the specified Opcode. If so, return true and lower it. Otherwise return 9128 /// false, and it will be lowered like a normal call. 9129 /// The caller already checked that \p I calls the appropriate LibFunc with a 9130 /// correct prototype. 9131 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 9132 unsigned Opcode) { 9133 // We already checked this call's prototype; verify it doesn't modify errno. 9134 if (!I.onlyReadsMemory()) 9135 return false; 9136 9137 SDNodeFlags Flags; 9138 Flags.copyFMF(cast<FPMathOperator>(I)); 9139 9140 SDValue Tmp0 = getValue(I.getArgOperand(0)); 9141 SDValue Tmp1 = getValue(I.getArgOperand(1)); 9142 EVT VT = Tmp0.getValueType(); 9143 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 9144 return true; 9145 } 9146 9147 void SelectionDAGBuilder::visitCall(const CallInst &I) { 9148 // Handle inline assembly differently. 9149 if (I.isInlineAsm()) { 9150 visitInlineAsm(I); 9151 return; 9152 } 9153 9154 diagnoseDontCall(I); 9155 9156 if (Function *F = I.getCalledFunction()) { 9157 if (F->isDeclaration()) { 9158 // Is this an LLVM intrinsic or a target-specific intrinsic? 9159 unsigned IID = F->getIntrinsicID(); 9160 if (!IID) 9161 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 9162 IID = II->getIntrinsicID(F); 9163 9164 if (IID) { 9165 visitIntrinsicCall(I, IID); 9166 return; 9167 } 9168 } 9169 9170 // Check for well-known libc/libm calls. If the function is internal, it 9171 // can't be a library call. Don't do the check if marked as nobuiltin for 9172 // some reason or the call site requires strict floating point semantics. 9173 LibFunc Func; 9174 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 9175 F->hasName() && LibInfo->getLibFunc(*F, Func) && 9176 LibInfo->hasOptimizedCodeGen(Func)) { 9177 switch (Func) { 9178 default: break; 9179 case LibFunc_bcmp: 9180 if (visitMemCmpBCmpCall(I)) 9181 return; 9182 break; 9183 case LibFunc_copysign: 9184 case LibFunc_copysignf: 9185 case LibFunc_copysignl: 9186 // We already checked this call's prototype; verify it doesn't modify 9187 // errno. 9188 if (I.onlyReadsMemory()) { 9189 SDValue LHS = getValue(I.getArgOperand(0)); 9190 SDValue RHS = getValue(I.getArgOperand(1)); 9191 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 9192 LHS.getValueType(), LHS, RHS)); 9193 return; 9194 } 9195 break; 9196 case LibFunc_fabs: 9197 case LibFunc_fabsf: 9198 case LibFunc_fabsl: 9199 if (visitUnaryFloatCall(I, ISD::FABS)) 9200 return; 9201 break; 9202 case LibFunc_fmin: 9203 case LibFunc_fminf: 9204 case LibFunc_fminl: 9205 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 9206 return; 9207 break; 9208 case LibFunc_fmax: 9209 case LibFunc_fmaxf: 9210 case LibFunc_fmaxl: 9211 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 9212 return; 9213 break; 9214 case LibFunc_sin: 9215 case LibFunc_sinf: 9216 case LibFunc_sinl: 9217 if (visitUnaryFloatCall(I, ISD::FSIN)) 9218 return; 9219 break; 9220 case LibFunc_cos: 9221 case LibFunc_cosf: 9222 case LibFunc_cosl: 9223 if (visitUnaryFloatCall(I, ISD::FCOS)) 9224 return; 9225 break; 9226 case LibFunc_tan: 9227 case LibFunc_tanf: 9228 case LibFunc_tanl: 9229 if (visitUnaryFloatCall(I, ISD::FTAN)) 9230 return; 9231 break; 9232 case LibFunc_sqrt: 9233 case LibFunc_sqrtf: 9234 case LibFunc_sqrtl: 9235 case LibFunc_sqrt_finite: 9236 case LibFunc_sqrtf_finite: 9237 case LibFunc_sqrtl_finite: 9238 if (visitUnaryFloatCall(I, ISD::FSQRT)) 9239 return; 9240 break; 9241 case LibFunc_floor: 9242 case LibFunc_floorf: 9243 case LibFunc_floorl: 9244 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 9245 return; 9246 break; 9247 case LibFunc_nearbyint: 9248 case LibFunc_nearbyintf: 9249 case LibFunc_nearbyintl: 9250 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 9251 return; 9252 break; 9253 case LibFunc_ceil: 9254 case LibFunc_ceilf: 9255 case LibFunc_ceill: 9256 if (visitUnaryFloatCall(I, ISD::FCEIL)) 9257 return; 9258 break; 9259 case LibFunc_rint: 9260 case LibFunc_rintf: 9261 case LibFunc_rintl: 9262 if (visitUnaryFloatCall(I, ISD::FRINT)) 9263 return; 9264 break; 9265 case LibFunc_round: 9266 case LibFunc_roundf: 9267 case LibFunc_roundl: 9268 if (visitUnaryFloatCall(I, ISD::FROUND)) 9269 return; 9270 break; 9271 case LibFunc_trunc: 9272 case LibFunc_truncf: 9273 case LibFunc_truncl: 9274 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 9275 return; 9276 break; 9277 case LibFunc_log2: 9278 case LibFunc_log2f: 9279 case LibFunc_log2l: 9280 if (visitUnaryFloatCall(I, ISD::FLOG2)) 9281 return; 9282 break; 9283 case LibFunc_exp2: 9284 case LibFunc_exp2f: 9285 case LibFunc_exp2l: 9286 if (visitUnaryFloatCall(I, ISD::FEXP2)) 9287 return; 9288 break; 9289 case LibFunc_exp10: 9290 case LibFunc_exp10f: 9291 case LibFunc_exp10l: 9292 if (visitUnaryFloatCall(I, ISD::FEXP10)) 9293 return; 9294 break; 9295 case LibFunc_ldexp: 9296 case LibFunc_ldexpf: 9297 case LibFunc_ldexpl: 9298 if (visitBinaryFloatCall(I, ISD::FLDEXP)) 9299 return; 9300 break; 9301 case LibFunc_memcmp: 9302 if (visitMemCmpBCmpCall(I)) 9303 return; 9304 break; 9305 case LibFunc_mempcpy: 9306 if (visitMemPCpyCall(I)) 9307 return; 9308 break; 9309 case LibFunc_memchr: 9310 if (visitMemChrCall(I)) 9311 return; 9312 break; 9313 case LibFunc_strcpy: 9314 if (visitStrCpyCall(I, false)) 9315 return; 9316 break; 9317 case LibFunc_stpcpy: 9318 if (visitStrCpyCall(I, true)) 9319 return; 9320 break; 9321 case LibFunc_strcmp: 9322 if (visitStrCmpCall(I)) 9323 return; 9324 break; 9325 case LibFunc_strlen: 9326 if (visitStrLenCall(I)) 9327 return; 9328 break; 9329 case LibFunc_strnlen: 9330 if (visitStrNLenCall(I)) 9331 return; 9332 break; 9333 } 9334 } 9335 } 9336 9337 if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) { 9338 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), /*EHPadBB=*/nullptr); 9339 return; 9340 } 9341 9342 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 9343 // have to do anything here to lower funclet bundles. 9344 // CFGuardTarget bundles are lowered in LowerCallTo. 9345 assert(!I.hasOperandBundlesOtherThan( 9346 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 9347 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 9348 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi, 9349 LLVMContext::OB_convergencectrl}) && 9350 "Cannot lower calls with arbitrary operand bundles!"); 9351 9352 SDValue Callee = getValue(I.getCalledOperand()); 9353 9354 if (I.hasDeoptState()) 9355 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 9356 else 9357 // Check if we can potentially perform a tail call. More detailed checking 9358 // is be done within LowerCallTo, after more information about the call is 9359 // known. 9360 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 9361 } 9362 9363 void SelectionDAGBuilder::LowerCallSiteWithPtrAuthBundle( 9364 const CallBase &CB, const BasicBlock *EHPadBB) { 9365 auto PAB = CB.getOperandBundle("ptrauth"); 9366 const Value *CalleeV = CB.getCalledOperand(); 9367 9368 // Gather the call ptrauth data from the operand bundle: 9369 // [ i32 <key>, i64 <discriminator> ] 9370 const auto *Key = cast<ConstantInt>(PAB->Inputs[0]); 9371 const Value *Discriminator = PAB->Inputs[1]; 9372 9373 assert(Key->getType()->isIntegerTy(32) && "Invalid ptrauth key"); 9374 assert(Discriminator->getType()->isIntegerTy(64) && 9375 "Invalid ptrauth discriminator"); 9376 9377 // Functions should never be ptrauth-called directly. 9378 assert(!isa<Function>(CalleeV) && "invalid direct ptrauth call"); 9379 9380 // Otherwise, do an authenticated indirect call. 9381 TargetLowering::PtrAuthInfo PAI = {Key->getZExtValue(), 9382 getValue(Discriminator)}; 9383 9384 LowerCallTo(CB, getValue(CalleeV), CB.isTailCall(), CB.isMustTailCall(), 9385 EHPadBB, &PAI); 9386 } 9387 9388 namespace { 9389 9390 /// AsmOperandInfo - This contains information for each constraint that we are 9391 /// lowering. 9392 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 9393 public: 9394 /// CallOperand - If this is the result output operand or a clobber 9395 /// this is null, otherwise it is the incoming operand to the CallInst. 9396 /// This gets modified as the asm is processed. 9397 SDValue CallOperand; 9398 9399 /// AssignedRegs - If this is a register or register class operand, this 9400 /// contains the set of register corresponding to the operand. 9401 RegsForValue AssignedRegs; 9402 9403 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 9404 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 9405 } 9406 9407 /// Whether or not this operand accesses memory 9408 bool hasMemory(const TargetLowering &TLI) const { 9409 // Indirect operand accesses access memory. 9410 if (isIndirect) 9411 return true; 9412 9413 for (const auto &Code : Codes) 9414 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 9415 return true; 9416 9417 return false; 9418 } 9419 }; 9420 9421 9422 } // end anonymous namespace 9423 9424 /// Make sure that the output operand \p OpInfo and its corresponding input 9425 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 9426 /// out). 9427 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 9428 SDISelAsmOperandInfo &MatchingOpInfo, 9429 SelectionDAG &DAG) { 9430 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 9431 return; 9432 9433 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 9434 const auto &TLI = DAG.getTargetLoweringInfo(); 9435 9436 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 9437 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 9438 OpInfo.ConstraintVT); 9439 std::pair<unsigned, const TargetRegisterClass *> InputRC = 9440 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 9441 MatchingOpInfo.ConstraintVT); 9442 if ((OpInfo.ConstraintVT.isInteger() != 9443 MatchingOpInfo.ConstraintVT.isInteger()) || 9444 (MatchRC.second != InputRC.second)) { 9445 // FIXME: error out in a more elegant fashion 9446 report_fatal_error("Unsupported asm: input constraint" 9447 " with a matching output constraint of" 9448 " incompatible type!"); 9449 } 9450 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 9451 } 9452 9453 /// Get a direct memory input to behave well as an indirect operand. 9454 /// This may introduce stores, hence the need for a \p Chain. 9455 /// \return The (possibly updated) chain. 9456 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 9457 SDISelAsmOperandInfo &OpInfo, 9458 SelectionDAG &DAG) { 9459 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9460 9461 // If we don't have an indirect input, put it in the constpool if we can, 9462 // otherwise spill it to a stack slot. 9463 // TODO: This isn't quite right. We need to handle these according to 9464 // the addressing mode that the constraint wants. Also, this may take 9465 // an additional register for the computation and we don't want that 9466 // either. 9467 9468 // If the operand is a float, integer, or vector constant, spill to a 9469 // constant pool entry to get its address. 9470 const Value *OpVal = OpInfo.CallOperandVal; 9471 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 9472 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 9473 OpInfo.CallOperand = DAG.getConstantPool( 9474 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 9475 return Chain; 9476 } 9477 9478 // Otherwise, create a stack slot and emit a store to it before the asm. 9479 Type *Ty = OpVal->getType(); 9480 auto &DL = DAG.getDataLayout(); 9481 uint64_t TySize = DL.getTypeAllocSize(Ty); 9482 MachineFunction &MF = DAG.getMachineFunction(); 9483 int SSFI = MF.getFrameInfo().CreateStackObject( 9484 TySize, DL.getPrefTypeAlign(Ty), false); 9485 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 9486 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 9487 MachinePointerInfo::getFixedStack(MF, SSFI), 9488 TLI.getMemValueType(DL, Ty)); 9489 OpInfo.CallOperand = StackSlot; 9490 9491 return Chain; 9492 } 9493 9494 /// GetRegistersForValue - Assign registers (virtual or physical) for the 9495 /// specified operand. We prefer to assign virtual registers, to allow the 9496 /// register allocator to handle the assignment process. However, if the asm 9497 /// uses features that we can't model on machineinstrs, we have SDISel do the 9498 /// allocation. This produces generally horrible, but correct, code. 9499 /// 9500 /// OpInfo describes the operand 9501 /// RefOpInfo describes the matching operand if any, the operand otherwise 9502 static std::optional<unsigned> 9503 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 9504 SDISelAsmOperandInfo &OpInfo, 9505 SDISelAsmOperandInfo &RefOpInfo) { 9506 LLVMContext &Context = *DAG.getContext(); 9507 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9508 9509 MachineFunction &MF = DAG.getMachineFunction(); 9510 SmallVector<unsigned, 4> Regs; 9511 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9512 9513 // No work to do for memory/address operands. 9514 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9515 OpInfo.ConstraintType == TargetLowering::C_Address) 9516 return std::nullopt; 9517 9518 // If this is a constraint for a single physreg, or a constraint for a 9519 // register class, find it. 9520 unsigned AssignedReg; 9521 const TargetRegisterClass *RC; 9522 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 9523 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 9524 // RC is unset only on failure. Return immediately. 9525 if (!RC) 9526 return std::nullopt; 9527 9528 // Get the actual register value type. This is important, because the user 9529 // may have asked for (e.g.) the AX register in i32 type. We need to 9530 // remember that AX is actually i16 to get the right extension. 9531 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 9532 9533 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 9534 // If this is an FP operand in an integer register (or visa versa), or more 9535 // generally if the operand value disagrees with the register class we plan 9536 // to stick it in, fix the operand type. 9537 // 9538 // If this is an input value, the bitcast to the new type is done now. 9539 // Bitcast for output value is done at the end of visitInlineAsm(). 9540 if ((OpInfo.Type == InlineAsm::isOutput || 9541 OpInfo.Type == InlineAsm::isInput) && 9542 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 9543 // Try to convert to the first EVT that the reg class contains. If the 9544 // types are identical size, use a bitcast to convert (e.g. two differing 9545 // vector types). Note: output bitcast is done at the end of 9546 // visitInlineAsm(). 9547 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 9548 // Exclude indirect inputs while they are unsupported because the code 9549 // to perform the load is missing and thus OpInfo.CallOperand still 9550 // refers to the input address rather than the pointed-to value. 9551 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 9552 OpInfo.CallOperand = 9553 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 9554 OpInfo.ConstraintVT = RegVT; 9555 // If the operand is an FP value and we want it in integer registers, 9556 // use the corresponding integer type. This turns an f64 value into 9557 // i64, which can be passed with two i32 values on a 32-bit machine. 9558 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 9559 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 9560 if (OpInfo.Type == InlineAsm::isInput) 9561 OpInfo.CallOperand = 9562 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 9563 OpInfo.ConstraintVT = VT; 9564 } 9565 } 9566 } 9567 9568 // No need to allocate a matching input constraint since the constraint it's 9569 // matching to has already been allocated. 9570 if (OpInfo.isMatchingInputConstraint()) 9571 return std::nullopt; 9572 9573 EVT ValueVT = OpInfo.ConstraintVT; 9574 if (OpInfo.ConstraintVT == MVT::Other) 9575 ValueVT = RegVT; 9576 9577 // Initialize NumRegs. 9578 unsigned NumRegs = 1; 9579 if (OpInfo.ConstraintVT != MVT::Other) 9580 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 9581 9582 // If this is a constraint for a specific physical register, like {r17}, 9583 // assign it now. 9584 9585 // If this associated to a specific register, initialize iterator to correct 9586 // place. If virtual, make sure we have enough registers 9587 9588 // Initialize iterator if necessary 9589 TargetRegisterClass::iterator I = RC->begin(); 9590 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9591 9592 // Do not check for single registers. 9593 if (AssignedReg) { 9594 I = std::find(I, RC->end(), AssignedReg); 9595 if (I == RC->end()) { 9596 // RC does not contain the selected register, which indicates a 9597 // mismatch between the register and the required type/bitwidth. 9598 return {AssignedReg}; 9599 } 9600 } 9601 9602 for (; NumRegs; --NumRegs, ++I) { 9603 assert(I != RC->end() && "Ran out of registers to allocate!"); 9604 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 9605 Regs.push_back(R); 9606 } 9607 9608 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 9609 return std::nullopt; 9610 } 9611 9612 static unsigned 9613 findMatchingInlineAsmOperand(unsigned OperandNo, 9614 const std::vector<SDValue> &AsmNodeOperands) { 9615 // Scan until we find the definition we already emitted of this operand. 9616 unsigned CurOp = InlineAsm::Op_FirstOperand; 9617 for (; OperandNo; --OperandNo) { 9618 // Advance to the next operand. 9619 unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal(); 9620 const InlineAsm::Flag F(OpFlag); 9621 assert( 9622 (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) && 9623 "Skipped past definitions?"); 9624 CurOp += F.getNumOperandRegisters() + 1; 9625 } 9626 return CurOp; 9627 } 9628 9629 namespace { 9630 9631 class ExtraFlags { 9632 unsigned Flags = 0; 9633 9634 public: 9635 explicit ExtraFlags(const CallBase &Call) { 9636 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9637 if (IA->hasSideEffects()) 9638 Flags |= InlineAsm::Extra_HasSideEffects; 9639 if (IA->isAlignStack()) 9640 Flags |= InlineAsm::Extra_IsAlignStack; 9641 if (Call.isConvergent()) 9642 Flags |= InlineAsm::Extra_IsConvergent; 9643 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 9644 } 9645 9646 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 9647 // Ideally, we would only check against memory constraints. However, the 9648 // meaning of an Other constraint can be target-specific and we can't easily 9649 // reason about it. Therefore, be conservative and set MayLoad/MayStore 9650 // for Other constraints as well. 9651 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9652 OpInfo.ConstraintType == TargetLowering::C_Other) { 9653 if (OpInfo.Type == InlineAsm::isInput) 9654 Flags |= InlineAsm::Extra_MayLoad; 9655 else if (OpInfo.Type == InlineAsm::isOutput) 9656 Flags |= InlineAsm::Extra_MayStore; 9657 else if (OpInfo.Type == InlineAsm::isClobber) 9658 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 9659 } 9660 } 9661 9662 unsigned get() const { return Flags; } 9663 }; 9664 9665 } // end anonymous namespace 9666 9667 static bool isFunction(SDValue Op) { 9668 if (Op && Op.getOpcode() == ISD::GlobalAddress) { 9669 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9670 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal()); 9671 9672 // In normal "call dllimport func" instruction (non-inlineasm) it force 9673 // indirect access by specifing call opcode. And usually specially print 9674 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can 9675 // not do in this way now. (In fact, this is similar with "Data Access" 9676 // action). So here we ignore dllimport function. 9677 if (Fn && !Fn->hasDLLImportStorageClass()) 9678 return true; 9679 } 9680 } 9681 return false; 9682 } 9683 9684 /// visitInlineAsm - Handle a call to an InlineAsm object. 9685 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 9686 const BasicBlock *EHPadBB) { 9687 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9688 9689 /// ConstraintOperands - Information about all of the constraints. 9690 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 9691 9692 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9693 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 9694 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 9695 9696 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 9697 // AsmDialect, MayLoad, MayStore). 9698 bool HasSideEffect = IA->hasSideEffects(); 9699 ExtraFlags ExtraInfo(Call); 9700 9701 for (auto &T : TargetConstraints) { 9702 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 9703 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 9704 9705 if (OpInfo.CallOperandVal) 9706 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 9707 9708 if (!HasSideEffect) 9709 HasSideEffect = OpInfo.hasMemory(TLI); 9710 9711 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 9712 // FIXME: Could we compute this on OpInfo rather than T? 9713 9714 // Compute the constraint code and ConstraintType to use. 9715 TLI.ComputeConstraintToUse(T, SDValue()); 9716 9717 if (T.ConstraintType == TargetLowering::C_Immediate && 9718 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 9719 // We've delayed emitting a diagnostic like the "n" constraint because 9720 // inlining could cause an integer showing up. 9721 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 9722 "' expects an integer constant " 9723 "expression"); 9724 9725 ExtraInfo.update(T); 9726 } 9727 9728 // We won't need to flush pending loads if this asm doesn't touch 9729 // memory and is nonvolatile. 9730 SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 9731 9732 bool EmitEHLabels = isa<InvokeInst>(Call); 9733 if (EmitEHLabels) { 9734 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 9735 } 9736 bool IsCallBr = isa<CallBrInst>(Call); 9737 9738 if (IsCallBr || EmitEHLabels) { 9739 // If this is a callbr or invoke we need to flush pending exports since 9740 // inlineasm_br and invoke are terminators. 9741 // We need to do this before nodes are glued to the inlineasm_br node. 9742 Chain = getControlRoot(); 9743 } 9744 9745 MCSymbol *BeginLabel = nullptr; 9746 if (EmitEHLabels) { 9747 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 9748 } 9749 9750 int OpNo = -1; 9751 SmallVector<StringRef> AsmStrs; 9752 IA->collectAsmStrs(AsmStrs); 9753 9754 // Second pass over the constraints: compute which constraint option to use. 9755 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9756 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput) 9757 OpNo++; 9758 9759 // If this is an output operand with a matching input operand, look up the 9760 // matching input. If their types mismatch, e.g. one is an integer, the 9761 // other is floating point, or their sizes are different, flag it as an 9762 // error. 9763 if (OpInfo.hasMatchingInput()) { 9764 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 9765 patchMatchingInput(OpInfo, Input, DAG); 9766 } 9767 9768 // Compute the constraint code and ConstraintType to use. 9769 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 9770 9771 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 9772 OpInfo.Type == InlineAsm::isClobber) || 9773 OpInfo.ConstraintType == TargetLowering::C_Address) 9774 continue; 9775 9776 // In Linux PIC model, there are 4 cases about value/label addressing: 9777 // 9778 // 1: Function call or Label jmp inside the module. 9779 // 2: Data access (such as global variable, static variable) inside module. 9780 // 3: Function call or Label jmp outside the module. 9781 // 4: Data access (such as global variable) outside the module. 9782 // 9783 // Due to current llvm inline asm architecture designed to not "recognize" 9784 // the asm code, there are quite troubles for us to treat mem addressing 9785 // differently for same value/adress used in different instuctions. 9786 // For example, in pic model, call a func may in plt way or direclty 9787 // pc-related, but lea/mov a function adress may use got. 9788 // 9789 // Here we try to "recognize" function call for the case 1 and case 3 in 9790 // inline asm. And try to adjust the constraint for them. 9791 // 9792 // TODO: Due to current inline asm didn't encourage to jmp to the outsider 9793 // label, so here we don't handle jmp function label now, but we need to 9794 // enhance it (especilly in PIC model) if we meet meaningful requirements. 9795 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) && 9796 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) && 9797 TM.getCodeModel() != CodeModel::Large) { 9798 OpInfo.isIndirect = false; 9799 OpInfo.ConstraintType = TargetLowering::C_Address; 9800 } 9801 9802 // If this is a memory input, and if the operand is not indirect, do what we 9803 // need to provide an address for the memory input. 9804 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 9805 !OpInfo.isIndirect) { 9806 assert((OpInfo.isMultipleAlternative || 9807 (OpInfo.Type == InlineAsm::isInput)) && 9808 "Can only indirectify direct input operands!"); 9809 9810 // Memory operands really want the address of the value. 9811 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 9812 9813 // There is no longer a Value* corresponding to this operand. 9814 OpInfo.CallOperandVal = nullptr; 9815 9816 // It is now an indirect operand. 9817 OpInfo.isIndirect = true; 9818 } 9819 9820 } 9821 9822 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 9823 std::vector<SDValue> AsmNodeOperands; 9824 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 9825 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 9826 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 9827 9828 // If we have a !srcloc metadata node associated with it, we want to attach 9829 // this to the ultimately generated inline asm machineinstr. To do this, we 9830 // pass in the third operand as this (potentially null) inline asm MDNode. 9831 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 9832 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 9833 9834 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 9835 // bits as operand 3. 9836 AsmNodeOperands.push_back(DAG.getTargetConstant( 9837 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9838 9839 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 9840 // this, assign virtual and physical registers for inputs and otput. 9841 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9842 // Assign Registers. 9843 SDISelAsmOperandInfo &RefOpInfo = 9844 OpInfo.isMatchingInputConstraint() 9845 ? ConstraintOperands[OpInfo.getMatchedOperand()] 9846 : OpInfo; 9847 const auto RegError = 9848 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 9849 if (RegError) { 9850 const MachineFunction &MF = DAG.getMachineFunction(); 9851 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9852 const char *RegName = TRI.getName(*RegError); 9853 emitInlineAsmError(Call, "register '" + Twine(RegName) + 9854 "' allocated for constraint '" + 9855 Twine(OpInfo.ConstraintCode) + 9856 "' does not match required type"); 9857 return; 9858 } 9859 9860 auto DetectWriteToReservedRegister = [&]() { 9861 const MachineFunction &MF = DAG.getMachineFunction(); 9862 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9863 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 9864 if (Register::isPhysicalRegister(Reg) && 9865 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 9866 const char *RegName = TRI.getName(Reg); 9867 emitInlineAsmError(Call, "write to reserved register '" + 9868 Twine(RegName) + "'"); 9869 return true; 9870 } 9871 } 9872 return false; 9873 }; 9874 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 9875 (OpInfo.Type == InlineAsm::isInput && 9876 !OpInfo.isMatchingInputConstraint())) && 9877 "Only address as input operand is allowed."); 9878 9879 switch (OpInfo.Type) { 9880 case InlineAsm::isOutput: 9881 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9882 const InlineAsm::ConstraintCode ConstraintID = 9883 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9884 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9885 "Failed to convert memory constraint code to constraint id."); 9886 9887 // Add information to the INLINEASM node to know about this output. 9888 InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1); 9889 OpFlags.setMemConstraint(ConstraintID); 9890 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 9891 MVT::i32)); 9892 AsmNodeOperands.push_back(OpInfo.CallOperand); 9893 } else { 9894 // Otherwise, this outputs to a register (directly for C_Register / 9895 // C_RegisterClass, and a target-defined fashion for 9896 // C_Immediate/C_Other). Find a register that we can use. 9897 if (OpInfo.AssignedRegs.Regs.empty()) { 9898 emitInlineAsmError( 9899 Call, "couldn't allocate output register for constraint '" + 9900 Twine(OpInfo.ConstraintCode) + "'"); 9901 return; 9902 } 9903 9904 if (DetectWriteToReservedRegister()) 9905 return; 9906 9907 // Add information to the INLINEASM node to know that this register is 9908 // set. 9909 OpInfo.AssignedRegs.AddInlineAsmOperands( 9910 OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber 9911 : InlineAsm::Kind::RegDef, 9912 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 9913 } 9914 break; 9915 9916 case InlineAsm::isInput: 9917 case InlineAsm::isLabel: { 9918 SDValue InOperandVal = OpInfo.CallOperand; 9919 9920 if (OpInfo.isMatchingInputConstraint()) { 9921 // If this is required to match an output register we have already set, 9922 // just use its register. 9923 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 9924 AsmNodeOperands); 9925 InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal()); 9926 if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) { 9927 if (OpInfo.isIndirect) { 9928 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 9929 emitInlineAsmError(Call, "inline asm not supported yet: " 9930 "don't know how to handle tied " 9931 "indirect register inputs"); 9932 return; 9933 } 9934 9935 SmallVector<unsigned, 4> Regs; 9936 MachineFunction &MF = DAG.getMachineFunction(); 9937 MachineRegisterInfo &MRI = MF.getRegInfo(); 9938 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9939 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 9940 Register TiedReg = R->getReg(); 9941 MVT RegVT = R->getSimpleValueType(0); 9942 const TargetRegisterClass *RC = 9943 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 9944 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 9945 : TRI.getMinimalPhysRegClass(TiedReg); 9946 for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i) 9947 Regs.push_back(MRI.createVirtualRegister(RC)); 9948 9949 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 9950 9951 SDLoc dl = getCurSDLoc(); 9952 // Use the produced MatchedRegs object to 9953 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call); 9954 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true, 9955 OpInfo.getMatchedOperand(), dl, DAG, 9956 AsmNodeOperands); 9957 break; 9958 } 9959 9960 assert(Flag.isMemKind() && "Unknown matching constraint!"); 9961 assert(Flag.getNumOperandRegisters() == 1 && 9962 "Unexpected number of operands"); 9963 // Add information to the INLINEASM node to know about this input. 9964 // See InlineAsm.h isUseOperandTiedToDef. 9965 Flag.clearMemConstraint(); 9966 Flag.setMatchingOp(OpInfo.getMatchedOperand()); 9967 AsmNodeOperands.push_back(DAG.getTargetConstant( 9968 Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9969 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 9970 break; 9971 } 9972 9973 // Treat indirect 'X' constraint as memory. 9974 if (OpInfo.ConstraintType == TargetLowering::C_Other && 9975 OpInfo.isIndirect) 9976 OpInfo.ConstraintType = TargetLowering::C_Memory; 9977 9978 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 9979 OpInfo.ConstraintType == TargetLowering::C_Other) { 9980 std::vector<SDValue> Ops; 9981 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 9982 Ops, DAG); 9983 if (Ops.empty()) { 9984 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 9985 if (isa<ConstantSDNode>(InOperandVal)) { 9986 emitInlineAsmError(Call, "value out of range for constraint '" + 9987 Twine(OpInfo.ConstraintCode) + "'"); 9988 return; 9989 } 9990 9991 emitInlineAsmError(Call, 9992 "invalid operand for inline asm constraint '" + 9993 Twine(OpInfo.ConstraintCode) + "'"); 9994 return; 9995 } 9996 9997 // Add information to the INLINEASM node to know about this input. 9998 InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size()); 9999 AsmNodeOperands.push_back(DAG.getTargetConstant( 10000 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 10001 llvm::append_range(AsmNodeOperands, Ops); 10002 break; 10003 } 10004 10005 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 10006 assert((OpInfo.isIndirect || 10007 OpInfo.ConstraintType != TargetLowering::C_Memory) && 10008 "Operand must be indirect to be a mem!"); 10009 assert(InOperandVal.getValueType() == 10010 TLI.getPointerTy(DAG.getDataLayout()) && 10011 "Memory operands expect pointer values"); 10012 10013 const InlineAsm::ConstraintCode ConstraintID = 10014 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 10015 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 10016 "Failed to convert memory constraint code to constraint id."); 10017 10018 // Add information to the INLINEASM node to know about this input. 10019 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 10020 ResOpType.setMemConstraint(ConstraintID); 10021 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 10022 getCurSDLoc(), 10023 MVT::i32)); 10024 AsmNodeOperands.push_back(InOperandVal); 10025 break; 10026 } 10027 10028 if (OpInfo.ConstraintType == TargetLowering::C_Address) { 10029 const InlineAsm::ConstraintCode ConstraintID = 10030 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 10031 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 10032 "Failed to convert memory constraint code to constraint id."); 10033 10034 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 10035 10036 SDValue AsmOp = InOperandVal; 10037 if (isFunction(InOperandVal)) { 10038 auto *GA = cast<GlobalAddressSDNode>(InOperandVal); 10039 ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1); 10040 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(), 10041 InOperandVal.getValueType(), 10042 GA->getOffset()); 10043 } 10044 10045 // Add information to the INLINEASM node to know about this input. 10046 ResOpType.setMemConstraint(ConstraintID); 10047 10048 AsmNodeOperands.push_back( 10049 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); 10050 10051 AsmNodeOperands.push_back(AsmOp); 10052 break; 10053 } 10054 10055 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 10056 OpInfo.ConstraintType != TargetLowering::C_Register) { 10057 emitInlineAsmError(Call, "unknown asm constraint '" + 10058 Twine(OpInfo.ConstraintCode) + "'"); 10059 return; 10060 } 10061 10062 // TODO: Support this. 10063 if (OpInfo.isIndirect) { 10064 emitInlineAsmError( 10065 Call, "Don't know how to handle indirect register inputs yet " 10066 "for constraint '" + 10067 Twine(OpInfo.ConstraintCode) + "'"); 10068 return; 10069 } 10070 10071 // Copy the input into the appropriate registers. 10072 if (OpInfo.AssignedRegs.Regs.empty()) { 10073 emitInlineAsmError(Call, 10074 "couldn't allocate input reg for constraint '" + 10075 Twine(OpInfo.ConstraintCode) + "'"); 10076 return; 10077 } 10078 10079 if (DetectWriteToReservedRegister()) 10080 return; 10081 10082 SDLoc dl = getCurSDLoc(); 10083 10084 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, 10085 &Call); 10086 10087 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false, 10088 0, dl, DAG, AsmNodeOperands); 10089 break; 10090 } 10091 case InlineAsm::isClobber: 10092 // Add the clobbered value to the operand list, so that the register 10093 // allocator is aware that the physreg got clobbered. 10094 if (!OpInfo.AssignedRegs.Regs.empty()) 10095 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber, 10096 false, 0, getCurSDLoc(), DAG, 10097 AsmNodeOperands); 10098 break; 10099 } 10100 } 10101 10102 // Finish up input operands. Set the input chain and add the flag last. 10103 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 10104 if (Glue.getNode()) AsmNodeOperands.push_back(Glue); 10105 10106 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 10107 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 10108 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 10109 Glue = Chain.getValue(1); 10110 10111 // Do additional work to generate outputs. 10112 10113 SmallVector<EVT, 1> ResultVTs; 10114 SmallVector<SDValue, 1> ResultValues; 10115 SmallVector<SDValue, 8> OutChains; 10116 10117 llvm::Type *CallResultType = Call.getType(); 10118 ArrayRef<Type *> ResultTypes; 10119 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 10120 ResultTypes = StructResult->elements(); 10121 else if (!CallResultType->isVoidTy()) 10122 ResultTypes = ArrayRef(CallResultType); 10123 10124 auto CurResultType = ResultTypes.begin(); 10125 auto handleRegAssign = [&](SDValue V) { 10126 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 10127 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 10128 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 10129 ++CurResultType; 10130 // If the type of the inline asm call site return value is different but has 10131 // same size as the type of the asm output bitcast it. One example of this 10132 // is for vectors with different width / number of elements. This can 10133 // happen for register classes that can contain multiple different value 10134 // types. The preg or vreg allocated may not have the same VT as was 10135 // expected. 10136 // 10137 // This can also happen for a return value that disagrees with the register 10138 // class it is put in, eg. a double in a general-purpose register on a 10139 // 32-bit machine. 10140 if (ResultVT != V.getValueType() && 10141 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 10142 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 10143 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 10144 V.getValueType().isInteger()) { 10145 // If a result value was tied to an input value, the computed result 10146 // may have a wider width than the expected result. Extract the 10147 // relevant portion. 10148 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 10149 } 10150 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 10151 ResultVTs.push_back(ResultVT); 10152 ResultValues.push_back(V); 10153 }; 10154 10155 // Deal with output operands. 10156 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 10157 if (OpInfo.Type == InlineAsm::isOutput) { 10158 SDValue Val; 10159 // Skip trivial output operands. 10160 if (OpInfo.AssignedRegs.Regs.empty()) 10161 continue; 10162 10163 switch (OpInfo.ConstraintType) { 10164 case TargetLowering::C_Register: 10165 case TargetLowering::C_RegisterClass: 10166 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 10167 Chain, &Glue, &Call); 10168 break; 10169 case TargetLowering::C_Immediate: 10170 case TargetLowering::C_Other: 10171 Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(), 10172 OpInfo, DAG); 10173 break; 10174 case TargetLowering::C_Memory: 10175 break; // Already handled. 10176 case TargetLowering::C_Address: 10177 break; // Silence warning. 10178 case TargetLowering::C_Unknown: 10179 assert(false && "Unexpected unknown constraint"); 10180 } 10181 10182 // Indirect output manifest as stores. Record output chains. 10183 if (OpInfo.isIndirect) { 10184 const Value *Ptr = OpInfo.CallOperandVal; 10185 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 10186 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 10187 MachinePointerInfo(Ptr)); 10188 OutChains.push_back(Store); 10189 } else { 10190 // generate CopyFromRegs to associated registers. 10191 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 10192 if (Val.getOpcode() == ISD::MERGE_VALUES) { 10193 for (const SDValue &V : Val->op_values()) 10194 handleRegAssign(V); 10195 } else 10196 handleRegAssign(Val); 10197 } 10198 } 10199 } 10200 10201 // Set results. 10202 if (!ResultValues.empty()) { 10203 assert(CurResultType == ResultTypes.end() && 10204 "Mismatch in number of ResultTypes"); 10205 assert(ResultValues.size() == ResultTypes.size() && 10206 "Mismatch in number of output operands in asm result"); 10207 10208 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 10209 DAG.getVTList(ResultVTs), ResultValues); 10210 setValue(&Call, V); 10211 } 10212 10213 // Collect store chains. 10214 if (!OutChains.empty()) 10215 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 10216 10217 if (EmitEHLabels) { 10218 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 10219 } 10220 10221 // Only Update Root if inline assembly has a memory effect. 10222 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 10223 EmitEHLabels) 10224 DAG.setRoot(Chain); 10225 } 10226 10227 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 10228 const Twine &Message) { 10229 LLVMContext &Ctx = *DAG.getContext(); 10230 Ctx.emitError(&Call, Message); 10231 10232 // Make sure we leave the DAG in a valid state 10233 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10234 SmallVector<EVT, 1> ValueVTs; 10235 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 10236 10237 if (ValueVTs.empty()) 10238 return; 10239 10240 SmallVector<SDValue, 1> Ops; 10241 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 10242 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 10243 10244 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 10245 } 10246 10247 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 10248 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 10249 MVT::Other, getRoot(), 10250 getValue(I.getArgOperand(0)), 10251 DAG.getSrcValue(I.getArgOperand(0)))); 10252 } 10253 10254 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 10255 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10256 const DataLayout &DL = DAG.getDataLayout(); 10257 SDValue V = DAG.getVAArg( 10258 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 10259 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 10260 DL.getABITypeAlign(I.getType()).value()); 10261 DAG.setRoot(V.getValue(1)); 10262 10263 if (I.getType()->isPointerTy()) 10264 V = DAG.getPtrExtOrTrunc( 10265 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 10266 setValue(&I, V); 10267 } 10268 10269 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 10270 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 10271 MVT::Other, getRoot(), 10272 getValue(I.getArgOperand(0)), 10273 DAG.getSrcValue(I.getArgOperand(0)))); 10274 } 10275 10276 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 10277 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 10278 MVT::Other, getRoot(), 10279 getValue(I.getArgOperand(0)), 10280 getValue(I.getArgOperand(1)), 10281 DAG.getSrcValue(I.getArgOperand(0)), 10282 DAG.getSrcValue(I.getArgOperand(1)))); 10283 } 10284 10285 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 10286 const Instruction &I, 10287 SDValue Op) { 10288 std::optional<ConstantRange> CR = getRange(I); 10289 10290 if (!CR || CR->isFullSet() || CR->isEmptySet() || CR->isUpperWrapped()) 10291 return Op; 10292 10293 APInt Lo = CR->getUnsignedMin(); 10294 if (!Lo.isMinValue()) 10295 return Op; 10296 10297 APInt Hi = CR->getUnsignedMax(); 10298 unsigned Bits = std::max(Hi.getActiveBits(), 10299 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 10300 10301 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 10302 10303 SDLoc SL = getCurSDLoc(); 10304 10305 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 10306 DAG.getValueType(SmallVT)); 10307 unsigned NumVals = Op.getNode()->getNumValues(); 10308 if (NumVals == 1) 10309 return ZExt; 10310 10311 SmallVector<SDValue, 4> Ops; 10312 10313 Ops.push_back(ZExt); 10314 for (unsigned I = 1; I != NumVals; ++I) 10315 Ops.push_back(Op.getValue(I)); 10316 10317 return DAG.getMergeValues(Ops, SL); 10318 } 10319 10320 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 10321 /// the call being lowered. 10322 /// 10323 /// This is a helper for lowering intrinsics that follow a target calling 10324 /// convention or require stack pointer adjustment. Only a subset of the 10325 /// intrinsic's operands need to participate in the calling convention. 10326 void SelectionDAGBuilder::populateCallLoweringInfo( 10327 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 10328 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 10329 AttributeSet RetAttrs, bool IsPatchPoint) { 10330 TargetLowering::ArgListTy Args; 10331 Args.reserve(NumArgs); 10332 10333 // Populate the argument list. 10334 // Attributes for args start at offset 1, after the return attribute. 10335 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 10336 ArgI != ArgE; ++ArgI) { 10337 const Value *V = Call->getOperand(ArgI); 10338 10339 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 10340 10341 TargetLowering::ArgListEntry Entry; 10342 Entry.Node = getValue(V); 10343 Entry.Ty = V->getType(); 10344 Entry.setAttributes(Call, ArgI); 10345 Args.push_back(Entry); 10346 } 10347 10348 CLI.setDebugLoc(getCurSDLoc()) 10349 .setChain(getRoot()) 10350 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args), 10351 RetAttrs) 10352 .setDiscardResult(Call->use_empty()) 10353 .setIsPatchPoint(IsPatchPoint) 10354 .setIsPreallocated( 10355 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 10356 } 10357 10358 /// Add a stack map intrinsic call's live variable operands to a stackmap 10359 /// or patchpoint target node's operand list. 10360 /// 10361 /// Constants are converted to TargetConstants purely as an optimization to 10362 /// avoid constant materialization and register allocation. 10363 /// 10364 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 10365 /// generate addess computation nodes, and so FinalizeISel can convert the 10366 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 10367 /// address materialization and register allocation, but may also be required 10368 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 10369 /// alloca in the entry block, then the runtime may assume that the alloca's 10370 /// StackMap location can be read immediately after compilation and that the 10371 /// location is valid at any point during execution (this is similar to the 10372 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 10373 /// only available in a register, then the runtime would need to trap when 10374 /// execution reaches the StackMap in order to read the alloca's location. 10375 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 10376 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 10377 SelectionDAGBuilder &Builder) { 10378 SelectionDAG &DAG = Builder.DAG; 10379 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 10380 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 10381 10382 // Things on the stack are pointer-typed, meaning that they are already 10383 // legal and can be emitted directly to target nodes. 10384 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 10385 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 10386 } else { 10387 // Otherwise emit a target independent node to be legalised. 10388 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 10389 } 10390 } 10391 } 10392 10393 /// Lower llvm.experimental.stackmap. 10394 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 10395 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 10396 // [live variables...]) 10397 10398 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 10399 10400 SDValue Chain, InGlue, Callee; 10401 SmallVector<SDValue, 32> Ops; 10402 10403 SDLoc DL = getCurSDLoc(); 10404 Callee = getValue(CI.getCalledOperand()); 10405 10406 // The stackmap intrinsic only records the live variables (the arguments 10407 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 10408 // intrinsic, this won't be lowered to a function call. This means we don't 10409 // have to worry about calling conventions and target specific lowering code. 10410 // Instead we perform the call lowering right here. 10411 // 10412 // chain, flag = CALLSEQ_START(chain, 0, 0) 10413 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 10414 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 10415 // 10416 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 10417 InGlue = Chain.getValue(1); 10418 10419 // Add the STACKMAP operands, starting with DAG house-keeping. 10420 Ops.push_back(Chain); 10421 Ops.push_back(InGlue); 10422 10423 // Add the <id>, <numShadowBytes> operands. 10424 // 10425 // These do not require legalisation, and can be emitted directly to target 10426 // constant nodes. 10427 SDValue ID = getValue(CI.getArgOperand(0)); 10428 assert(ID.getValueType() == MVT::i64); 10429 SDValue IDConst = 10430 DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType()); 10431 Ops.push_back(IDConst); 10432 10433 SDValue Shad = getValue(CI.getArgOperand(1)); 10434 assert(Shad.getValueType() == MVT::i32); 10435 SDValue ShadConst = 10436 DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType()); 10437 Ops.push_back(ShadConst); 10438 10439 // Add the live variables. 10440 addStackMapLiveVars(CI, 2, DL, Ops, *this); 10441 10442 // Create the STACKMAP node. 10443 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10444 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 10445 InGlue = Chain.getValue(1); 10446 10447 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL); 10448 10449 // Stackmaps don't generate values, so nothing goes into the NodeMap. 10450 10451 // Set the root to the target-lowered call chain. 10452 DAG.setRoot(Chain); 10453 10454 // Inform the Frame Information that we have a stackmap in this function. 10455 FuncInfo.MF->getFrameInfo().setHasStackMap(); 10456 } 10457 10458 /// Lower llvm.experimental.patchpoint directly to its target opcode. 10459 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 10460 const BasicBlock *EHPadBB) { 10461 // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>, 10462 // i32 <numBytes>, 10463 // i8* <target>, 10464 // i32 <numArgs>, 10465 // [Args...], 10466 // [live variables...]) 10467 10468 CallingConv::ID CC = CB.getCallingConv(); 10469 bool IsAnyRegCC = CC == CallingConv::AnyReg; 10470 bool HasDef = !CB.getType()->isVoidTy(); 10471 SDLoc dl = getCurSDLoc(); 10472 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 10473 10474 // Handle immediate and symbolic callees. 10475 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 10476 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 10477 /*isTarget=*/true); 10478 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 10479 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 10480 SDLoc(SymbolicCallee), 10481 SymbolicCallee->getValueType(0)); 10482 10483 // Get the real number of arguments participating in the call <numArgs> 10484 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 10485 unsigned NumArgs = NArgVal->getAsZExtVal(); 10486 10487 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 10488 // Intrinsics include all meta-operands up to but not including CC. 10489 unsigned NumMetaOpers = PatchPointOpers::CCPos; 10490 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 10491 "Not enough arguments provided to the patchpoint intrinsic"); 10492 10493 // For AnyRegCC the arguments are lowered later on manually. 10494 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 10495 Type *ReturnTy = 10496 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 10497 10498 TargetLowering::CallLoweringInfo CLI(DAG); 10499 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 10500 ReturnTy, CB.getAttributes().getRetAttrs(), true); 10501 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 10502 10503 SDNode *CallEnd = Result.second.getNode(); 10504 if (CallEnd->getOpcode() == ISD::EH_LABEL) 10505 CallEnd = CallEnd->getOperand(0).getNode(); 10506 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 10507 CallEnd = CallEnd->getOperand(0).getNode(); 10508 10509 /// Get a call instruction from the call sequence chain. 10510 /// Tail calls are not allowed. 10511 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 10512 "Expected a callseq node."); 10513 SDNode *Call = CallEnd->getOperand(0).getNode(); 10514 bool HasGlue = Call->getGluedNode(); 10515 10516 // Replace the target specific call node with the patchable intrinsic. 10517 SmallVector<SDValue, 8> Ops; 10518 10519 // Push the chain. 10520 Ops.push_back(*(Call->op_begin())); 10521 10522 // Optionally, push the glue (if any). 10523 if (HasGlue) 10524 Ops.push_back(*(Call->op_end() - 1)); 10525 10526 // Push the register mask info. 10527 if (HasGlue) 10528 Ops.push_back(*(Call->op_end() - 2)); 10529 else 10530 Ops.push_back(*(Call->op_end() - 1)); 10531 10532 // Add the <id> and <numBytes> constants. 10533 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 10534 Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64)); 10535 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 10536 Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32)); 10537 10538 // Add the callee. 10539 Ops.push_back(Callee); 10540 10541 // Adjust <numArgs> to account for any arguments that have been passed on the 10542 // stack instead. 10543 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 10544 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 10545 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 10546 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 10547 10548 // Add the calling convention 10549 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 10550 10551 // Add the arguments we omitted previously. The register allocator should 10552 // place these in any free register. 10553 if (IsAnyRegCC) 10554 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 10555 Ops.push_back(getValue(CB.getArgOperand(i))); 10556 10557 // Push the arguments from the call instruction. 10558 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 10559 Ops.append(Call->op_begin() + 2, e); 10560 10561 // Push live variables for the stack map. 10562 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 10563 10564 SDVTList NodeTys; 10565 if (IsAnyRegCC && HasDef) { 10566 // Create the return types based on the intrinsic definition 10567 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10568 SmallVector<EVT, 3> ValueVTs; 10569 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 10570 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 10571 10572 // There is always a chain and a glue type at the end 10573 ValueVTs.push_back(MVT::Other); 10574 ValueVTs.push_back(MVT::Glue); 10575 NodeTys = DAG.getVTList(ValueVTs); 10576 } else 10577 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10578 10579 // Replace the target specific call node with a PATCHPOINT node. 10580 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 10581 10582 // Update the NodeMap. 10583 if (HasDef) { 10584 if (IsAnyRegCC) 10585 setValue(&CB, SDValue(PPV.getNode(), 0)); 10586 else 10587 setValue(&CB, Result.first); 10588 } 10589 10590 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 10591 // call sequence. Furthermore the location of the chain and glue can change 10592 // when the AnyReg calling convention is used and the intrinsic returns a 10593 // value. 10594 if (IsAnyRegCC && HasDef) { 10595 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 10596 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 10597 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 10598 } else 10599 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 10600 DAG.DeleteNode(Call); 10601 10602 // Inform the Frame Information that we have a patchpoint in this function. 10603 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 10604 } 10605 10606 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 10607 unsigned Intrinsic) { 10608 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10609 SDValue Op1 = getValue(I.getArgOperand(0)); 10610 SDValue Op2; 10611 if (I.arg_size() > 1) 10612 Op2 = getValue(I.getArgOperand(1)); 10613 SDLoc dl = getCurSDLoc(); 10614 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 10615 SDValue Res; 10616 SDNodeFlags SDFlags; 10617 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 10618 SDFlags.copyFMF(*FPMO); 10619 10620 switch (Intrinsic) { 10621 case Intrinsic::vector_reduce_fadd: 10622 if (SDFlags.hasAllowReassociation()) 10623 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 10624 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 10625 SDFlags); 10626 else 10627 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 10628 break; 10629 case Intrinsic::vector_reduce_fmul: 10630 if (SDFlags.hasAllowReassociation()) 10631 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 10632 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 10633 SDFlags); 10634 else 10635 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 10636 break; 10637 case Intrinsic::vector_reduce_add: 10638 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 10639 break; 10640 case Intrinsic::vector_reduce_mul: 10641 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 10642 break; 10643 case Intrinsic::vector_reduce_and: 10644 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 10645 break; 10646 case Intrinsic::vector_reduce_or: 10647 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 10648 break; 10649 case Intrinsic::vector_reduce_xor: 10650 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 10651 break; 10652 case Intrinsic::vector_reduce_smax: 10653 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 10654 break; 10655 case Intrinsic::vector_reduce_smin: 10656 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 10657 break; 10658 case Intrinsic::vector_reduce_umax: 10659 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 10660 break; 10661 case Intrinsic::vector_reduce_umin: 10662 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 10663 break; 10664 case Intrinsic::vector_reduce_fmax: 10665 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 10666 break; 10667 case Intrinsic::vector_reduce_fmin: 10668 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 10669 break; 10670 case Intrinsic::vector_reduce_fmaximum: 10671 Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags); 10672 break; 10673 case Intrinsic::vector_reduce_fminimum: 10674 Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags); 10675 break; 10676 default: 10677 llvm_unreachable("Unhandled vector reduce intrinsic"); 10678 } 10679 setValue(&I, Res); 10680 } 10681 10682 /// Returns an AttributeList representing the attributes applied to the return 10683 /// value of the given call. 10684 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 10685 SmallVector<Attribute::AttrKind, 2> Attrs; 10686 if (CLI.RetSExt) 10687 Attrs.push_back(Attribute::SExt); 10688 if (CLI.RetZExt) 10689 Attrs.push_back(Attribute::ZExt); 10690 if (CLI.IsInReg) 10691 Attrs.push_back(Attribute::InReg); 10692 10693 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 10694 Attrs); 10695 } 10696 10697 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 10698 /// implementation, which just calls LowerCall. 10699 /// FIXME: When all targets are 10700 /// migrated to using LowerCall, this hook should be integrated into SDISel. 10701 std::pair<SDValue, SDValue> 10702 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 10703 // Handle the incoming return values from the call. 10704 CLI.Ins.clear(); 10705 Type *OrigRetTy = CLI.RetTy; 10706 SmallVector<EVT, 4> RetTys; 10707 SmallVector<TypeSize, 4> Offsets; 10708 auto &DL = CLI.DAG.getDataLayout(); 10709 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 10710 10711 if (CLI.IsPostTypeLegalization) { 10712 // If we are lowering a libcall after legalization, split the return type. 10713 SmallVector<EVT, 4> OldRetTys; 10714 SmallVector<TypeSize, 4> OldOffsets; 10715 RetTys.swap(OldRetTys); 10716 Offsets.swap(OldOffsets); 10717 10718 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 10719 EVT RetVT = OldRetTys[i]; 10720 uint64_t Offset = OldOffsets[i]; 10721 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 10722 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 10723 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 10724 RetTys.append(NumRegs, RegisterVT); 10725 for (unsigned j = 0; j != NumRegs; ++j) 10726 Offsets.push_back(TypeSize::getFixed(Offset + j * RegisterVTByteSZ)); 10727 } 10728 } 10729 10730 SmallVector<ISD::OutputArg, 4> Outs; 10731 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 10732 10733 bool CanLowerReturn = 10734 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 10735 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 10736 10737 SDValue DemoteStackSlot; 10738 int DemoteStackIdx = -100; 10739 if (!CanLowerReturn) { 10740 // FIXME: equivalent assert? 10741 // assert(!CS.hasInAllocaArgument() && 10742 // "sret demotion is incompatible with inalloca"); 10743 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 10744 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 10745 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10746 DemoteStackIdx = 10747 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 10748 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 10749 DL.getAllocaAddrSpace()); 10750 10751 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 10752 ArgListEntry Entry; 10753 Entry.Node = DemoteStackSlot; 10754 Entry.Ty = StackSlotPtrType; 10755 Entry.IsSExt = false; 10756 Entry.IsZExt = false; 10757 Entry.IsInReg = false; 10758 Entry.IsSRet = true; 10759 Entry.IsNest = false; 10760 Entry.IsByVal = false; 10761 Entry.IsByRef = false; 10762 Entry.IsReturned = false; 10763 Entry.IsSwiftSelf = false; 10764 Entry.IsSwiftAsync = false; 10765 Entry.IsSwiftError = false; 10766 Entry.IsCFGuardTarget = false; 10767 Entry.Alignment = Alignment; 10768 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 10769 CLI.NumFixedArgs += 1; 10770 CLI.getArgs()[0].IndirectType = CLI.RetTy; 10771 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 10772 10773 // sret demotion isn't compatible with tail-calls, since the sret argument 10774 // points into the callers stack frame. 10775 CLI.IsTailCall = false; 10776 } else { 10777 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10778 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 10779 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10780 ISD::ArgFlagsTy Flags; 10781 if (NeedsRegBlock) { 10782 Flags.setInConsecutiveRegs(); 10783 if (I == RetTys.size() - 1) 10784 Flags.setInConsecutiveRegsLast(); 10785 } 10786 EVT VT = RetTys[I]; 10787 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10788 CLI.CallConv, VT); 10789 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10790 CLI.CallConv, VT); 10791 for (unsigned i = 0; i != NumRegs; ++i) { 10792 ISD::InputArg MyFlags; 10793 MyFlags.Flags = Flags; 10794 MyFlags.VT = RegisterVT; 10795 MyFlags.ArgVT = VT; 10796 MyFlags.Used = CLI.IsReturnValueUsed; 10797 if (CLI.RetTy->isPointerTy()) { 10798 MyFlags.Flags.setPointer(); 10799 MyFlags.Flags.setPointerAddrSpace( 10800 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 10801 } 10802 if (CLI.RetSExt) 10803 MyFlags.Flags.setSExt(); 10804 if (CLI.RetZExt) 10805 MyFlags.Flags.setZExt(); 10806 if (CLI.IsInReg) 10807 MyFlags.Flags.setInReg(); 10808 CLI.Ins.push_back(MyFlags); 10809 } 10810 } 10811 } 10812 10813 // We push in swifterror return as the last element of CLI.Ins. 10814 ArgListTy &Args = CLI.getArgs(); 10815 if (supportSwiftError()) { 10816 for (const ArgListEntry &Arg : Args) { 10817 if (Arg.IsSwiftError) { 10818 ISD::InputArg MyFlags; 10819 MyFlags.VT = getPointerTy(DL); 10820 MyFlags.ArgVT = EVT(getPointerTy(DL)); 10821 MyFlags.Flags.setSwiftError(); 10822 CLI.Ins.push_back(MyFlags); 10823 } 10824 } 10825 } 10826 10827 // Handle all of the outgoing arguments. 10828 CLI.Outs.clear(); 10829 CLI.OutVals.clear(); 10830 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 10831 SmallVector<EVT, 4> ValueVTs; 10832 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 10833 // FIXME: Split arguments if CLI.IsPostTypeLegalization 10834 Type *FinalType = Args[i].Ty; 10835 if (Args[i].IsByVal) 10836 FinalType = Args[i].IndirectType; 10837 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10838 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 10839 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 10840 ++Value) { 10841 EVT VT = ValueVTs[Value]; 10842 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 10843 SDValue Op = SDValue(Args[i].Node.getNode(), 10844 Args[i].Node.getResNo() + Value); 10845 ISD::ArgFlagsTy Flags; 10846 10847 // Certain targets (such as MIPS), may have a different ABI alignment 10848 // for a type depending on the context. Give the target a chance to 10849 // specify the alignment it wants. 10850 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 10851 Flags.setOrigAlign(OriginalAlignment); 10852 10853 if (Args[i].Ty->isPointerTy()) { 10854 Flags.setPointer(); 10855 Flags.setPointerAddrSpace( 10856 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 10857 } 10858 if (Args[i].IsZExt) 10859 Flags.setZExt(); 10860 if (Args[i].IsSExt) 10861 Flags.setSExt(); 10862 if (Args[i].IsInReg) { 10863 // If we are using vectorcall calling convention, a structure that is 10864 // passed InReg - is surely an HVA 10865 if (CLI.CallConv == CallingConv::X86_VectorCall && 10866 isa<StructType>(FinalType)) { 10867 // The first value of a structure is marked 10868 if (0 == Value) 10869 Flags.setHvaStart(); 10870 Flags.setHva(); 10871 } 10872 // Set InReg Flag 10873 Flags.setInReg(); 10874 } 10875 if (Args[i].IsSRet) 10876 Flags.setSRet(); 10877 if (Args[i].IsSwiftSelf) 10878 Flags.setSwiftSelf(); 10879 if (Args[i].IsSwiftAsync) 10880 Flags.setSwiftAsync(); 10881 if (Args[i].IsSwiftError) 10882 Flags.setSwiftError(); 10883 if (Args[i].IsCFGuardTarget) 10884 Flags.setCFGuardTarget(); 10885 if (Args[i].IsByVal) 10886 Flags.setByVal(); 10887 if (Args[i].IsByRef) 10888 Flags.setByRef(); 10889 if (Args[i].IsPreallocated) { 10890 Flags.setPreallocated(); 10891 // Set the byval flag for CCAssignFn callbacks that don't know about 10892 // preallocated. This way we can know how many bytes we should've 10893 // allocated and how many bytes a callee cleanup function will pop. If 10894 // we port preallocated to more targets, we'll have to add custom 10895 // preallocated handling in the various CC lowering callbacks. 10896 Flags.setByVal(); 10897 } 10898 if (Args[i].IsInAlloca) { 10899 Flags.setInAlloca(); 10900 // Set the byval flag for CCAssignFn callbacks that don't know about 10901 // inalloca. This way we can know how many bytes we should've allocated 10902 // and how many bytes a callee cleanup function will pop. If we port 10903 // inalloca to more targets, we'll have to add custom inalloca handling 10904 // in the various CC lowering callbacks. 10905 Flags.setByVal(); 10906 } 10907 Align MemAlign; 10908 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 10909 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 10910 Flags.setByValSize(FrameSize); 10911 10912 // info is not there but there are cases it cannot get right. 10913 if (auto MA = Args[i].Alignment) 10914 MemAlign = *MA; 10915 else 10916 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 10917 } else if (auto MA = Args[i].Alignment) { 10918 MemAlign = *MA; 10919 } else { 10920 MemAlign = OriginalAlignment; 10921 } 10922 Flags.setMemAlign(MemAlign); 10923 if (Args[i].IsNest) 10924 Flags.setNest(); 10925 if (NeedsRegBlock) 10926 Flags.setInConsecutiveRegs(); 10927 10928 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10929 CLI.CallConv, VT); 10930 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10931 CLI.CallConv, VT); 10932 SmallVector<SDValue, 4> Parts(NumParts); 10933 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 10934 10935 if (Args[i].IsSExt) 10936 ExtendKind = ISD::SIGN_EXTEND; 10937 else if (Args[i].IsZExt) 10938 ExtendKind = ISD::ZERO_EXTEND; 10939 10940 // Conservatively only handle 'returned' on non-vectors that can be lowered, 10941 // for now. 10942 if (Args[i].IsReturned && !Op.getValueType().isVector() && 10943 CanLowerReturn) { 10944 assert((CLI.RetTy == Args[i].Ty || 10945 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 10946 CLI.RetTy->getPointerAddressSpace() == 10947 Args[i].Ty->getPointerAddressSpace())) && 10948 RetTys.size() == NumValues && "unexpected use of 'returned'"); 10949 // Before passing 'returned' to the target lowering code, ensure that 10950 // either the register MVT and the actual EVT are the same size or that 10951 // the return value and argument are extended in the same way; in these 10952 // cases it's safe to pass the argument register value unchanged as the 10953 // return register value (although it's at the target's option whether 10954 // to do so) 10955 // TODO: allow code generation to take advantage of partially preserved 10956 // registers rather than clobbering the entire register when the 10957 // parameter extension method is not compatible with the return 10958 // extension method 10959 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 10960 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 10961 CLI.RetZExt == Args[i].IsZExt)) 10962 Flags.setReturned(); 10963 } 10964 10965 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 10966 CLI.CallConv, ExtendKind); 10967 10968 for (unsigned j = 0; j != NumParts; ++j) { 10969 // if it isn't first piece, alignment must be 1 10970 // For scalable vectors the scalable part is currently handled 10971 // by individual targets, so we just use the known minimum size here. 10972 ISD::OutputArg MyFlags( 10973 Flags, Parts[j].getValueType().getSimpleVT(), VT, 10974 i < CLI.NumFixedArgs, i, 10975 j * Parts[j].getValueType().getStoreSize().getKnownMinValue()); 10976 if (NumParts > 1 && j == 0) 10977 MyFlags.Flags.setSplit(); 10978 else if (j != 0) { 10979 MyFlags.Flags.setOrigAlign(Align(1)); 10980 if (j == NumParts - 1) 10981 MyFlags.Flags.setSplitEnd(); 10982 } 10983 10984 CLI.Outs.push_back(MyFlags); 10985 CLI.OutVals.push_back(Parts[j]); 10986 } 10987 10988 if (NeedsRegBlock && Value == NumValues - 1) 10989 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 10990 } 10991 } 10992 10993 SmallVector<SDValue, 4> InVals; 10994 CLI.Chain = LowerCall(CLI, InVals); 10995 10996 // Update CLI.InVals to use outside of this function. 10997 CLI.InVals = InVals; 10998 10999 // Verify that the target's LowerCall behaved as expected. 11000 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 11001 "LowerCall didn't return a valid chain!"); 11002 assert((!CLI.IsTailCall || InVals.empty()) && 11003 "LowerCall emitted a return value for a tail call!"); 11004 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 11005 "LowerCall didn't emit the correct number of values!"); 11006 11007 // For a tail call, the return value is merely live-out and there aren't 11008 // any nodes in the DAG representing it. Return a special value to 11009 // indicate that a tail call has been emitted and no more Instructions 11010 // should be processed in the current block. 11011 if (CLI.IsTailCall) { 11012 CLI.DAG.setRoot(CLI.Chain); 11013 return std::make_pair(SDValue(), SDValue()); 11014 } 11015 11016 #ifndef NDEBUG 11017 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 11018 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 11019 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 11020 "LowerCall emitted a value with the wrong type!"); 11021 } 11022 #endif 11023 11024 SmallVector<SDValue, 4> ReturnValues; 11025 if (!CanLowerReturn) { 11026 // The instruction result is the result of loading from the 11027 // hidden sret parameter. 11028 SmallVector<EVT, 1> PVTs; 11029 Type *PtrRetTy = 11030 PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace()); 11031 11032 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 11033 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 11034 EVT PtrVT = PVTs[0]; 11035 11036 unsigned NumValues = RetTys.size(); 11037 ReturnValues.resize(NumValues); 11038 SmallVector<SDValue, 4> Chains(NumValues); 11039 11040 // An aggregate return value cannot wrap around the address space, so 11041 // offsets to its parts don't wrap either. 11042 SDNodeFlags Flags; 11043 Flags.setNoUnsignedWrap(true); 11044 11045 MachineFunction &MF = CLI.DAG.getMachineFunction(); 11046 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 11047 for (unsigned i = 0; i < NumValues; ++i) { 11048 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 11049 CLI.DAG.getConstant(Offsets[i], CLI.DL, 11050 PtrVT), Flags); 11051 SDValue L = CLI.DAG.getLoad( 11052 RetTys[i], CLI.DL, CLI.Chain, Add, 11053 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 11054 DemoteStackIdx, Offsets[i]), 11055 HiddenSRetAlign); 11056 ReturnValues[i] = L; 11057 Chains[i] = L.getValue(1); 11058 } 11059 11060 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 11061 } else { 11062 // Collect the legal value parts into potentially illegal values 11063 // that correspond to the original function's return values. 11064 std::optional<ISD::NodeType> AssertOp; 11065 if (CLI.RetSExt) 11066 AssertOp = ISD::AssertSext; 11067 else if (CLI.RetZExt) 11068 AssertOp = ISD::AssertZext; 11069 unsigned CurReg = 0; 11070 for (EVT VT : RetTys) { 11071 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 11072 CLI.CallConv, VT); 11073 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 11074 CLI.CallConv, VT); 11075 11076 ReturnValues.push_back(getCopyFromParts( 11077 CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr, 11078 CLI.Chain, CLI.CallConv, AssertOp)); 11079 CurReg += NumRegs; 11080 } 11081 11082 // For a function returning void, there is no return value. We can't create 11083 // such a node, so we just return a null return value in that case. In 11084 // that case, nothing will actually look at the value. 11085 if (ReturnValues.empty()) 11086 return std::make_pair(SDValue(), CLI.Chain); 11087 } 11088 11089 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 11090 CLI.DAG.getVTList(RetTys), ReturnValues); 11091 return std::make_pair(Res, CLI.Chain); 11092 } 11093 11094 /// Places new result values for the node in Results (their number 11095 /// and types must exactly match those of the original return values of 11096 /// the node), or leaves Results empty, which indicates that the node is not 11097 /// to be custom lowered after all. 11098 void TargetLowering::LowerOperationWrapper(SDNode *N, 11099 SmallVectorImpl<SDValue> &Results, 11100 SelectionDAG &DAG) const { 11101 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 11102 11103 if (!Res.getNode()) 11104 return; 11105 11106 // If the original node has one result, take the return value from 11107 // LowerOperation as is. It might not be result number 0. 11108 if (N->getNumValues() == 1) { 11109 Results.push_back(Res); 11110 return; 11111 } 11112 11113 // If the original node has multiple results, then the return node should 11114 // have the same number of results. 11115 assert((N->getNumValues() == Res->getNumValues()) && 11116 "Lowering returned the wrong number of results!"); 11117 11118 // Places new result values base on N result number. 11119 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 11120 Results.push_back(Res.getValue(I)); 11121 } 11122 11123 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 11124 llvm_unreachable("LowerOperation not implemented for this target!"); 11125 } 11126 11127 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 11128 unsigned Reg, 11129 ISD::NodeType ExtendType) { 11130 SDValue Op = getNonRegisterValue(V); 11131 assert((Op.getOpcode() != ISD::CopyFromReg || 11132 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 11133 "Copy from a reg to the same reg!"); 11134 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 11135 11136 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11137 // If this is an InlineAsm we have to match the registers required, not the 11138 // notional registers required by the type. 11139 11140 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 11141 std::nullopt); // This is not an ABI copy. 11142 SDValue Chain = DAG.getEntryNode(); 11143 11144 if (ExtendType == ISD::ANY_EXTEND) { 11145 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 11146 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 11147 ExtendType = PreferredExtendIt->second; 11148 } 11149 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 11150 PendingExports.push_back(Chain); 11151 } 11152 11153 #include "llvm/CodeGen/SelectionDAGISel.h" 11154 11155 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 11156 /// entry block, return true. This includes arguments used by switches, since 11157 /// the switch may expand into multiple basic blocks. 11158 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 11159 // With FastISel active, we may be splitting blocks, so force creation 11160 // of virtual registers for all non-dead arguments. 11161 if (FastISel) 11162 return A->use_empty(); 11163 11164 const BasicBlock &Entry = A->getParent()->front(); 11165 for (const User *U : A->users()) 11166 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 11167 return false; // Use not in entry block. 11168 11169 return true; 11170 } 11171 11172 using ArgCopyElisionMapTy = 11173 DenseMap<const Argument *, 11174 std::pair<const AllocaInst *, const StoreInst *>>; 11175 11176 /// Scan the entry block of the function in FuncInfo for arguments that look 11177 /// like copies into a local alloca. Record any copied arguments in 11178 /// ArgCopyElisionCandidates. 11179 static void 11180 findArgumentCopyElisionCandidates(const DataLayout &DL, 11181 FunctionLoweringInfo *FuncInfo, 11182 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 11183 // Record the state of every static alloca used in the entry block. Argument 11184 // allocas are all used in the entry block, so we need approximately as many 11185 // entries as we have arguments. 11186 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 11187 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 11188 unsigned NumArgs = FuncInfo->Fn->arg_size(); 11189 StaticAllocas.reserve(NumArgs * 2); 11190 11191 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 11192 if (!V) 11193 return nullptr; 11194 V = V->stripPointerCasts(); 11195 const auto *AI = dyn_cast<AllocaInst>(V); 11196 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 11197 return nullptr; 11198 auto Iter = StaticAllocas.insert({AI, Unknown}); 11199 return &Iter.first->second; 11200 }; 11201 11202 // Look for stores of arguments to static allocas. Look through bitcasts and 11203 // GEPs to handle type coercions, as long as the alloca is fully initialized 11204 // by the store. Any non-store use of an alloca escapes it and any subsequent 11205 // unanalyzed store might write it. 11206 // FIXME: Handle structs initialized with multiple stores. 11207 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 11208 // Look for stores, and handle non-store uses conservatively. 11209 const auto *SI = dyn_cast<StoreInst>(&I); 11210 if (!SI) { 11211 // We will look through cast uses, so ignore them completely. 11212 if (I.isCast()) 11213 continue; 11214 // Ignore debug info and pseudo op intrinsics, they don't escape or store 11215 // to allocas. 11216 if (I.isDebugOrPseudoInst()) 11217 continue; 11218 // This is an unknown instruction. Assume it escapes or writes to all 11219 // static alloca operands. 11220 for (const Use &U : I.operands()) { 11221 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 11222 *Info = StaticAllocaInfo::Clobbered; 11223 } 11224 continue; 11225 } 11226 11227 // If the stored value is a static alloca, mark it as escaped. 11228 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 11229 *Info = StaticAllocaInfo::Clobbered; 11230 11231 // Check if the destination is a static alloca. 11232 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 11233 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 11234 if (!Info) 11235 continue; 11236 const AllocaInst *AI = cast<AllocaInst>(Dst); 11237 11238 // Skip allocas that have been initialized or clobbered. 11239 if (*Info != StaticAllocaInfo::Unknown) 11240 continue; 11241 11242 // Check if the stored value is an argument, and that this store fully 11243 // initializes the alloca. 11244 // If the argument type has padding bits we can't directly forward a pointer 11245 // as the upper bits may contain garbage. 11246 // Don't elide copies from the same argument twice. 11247 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 11248 const auto *Arg = dyn_cast<Argument>(Val); 11249 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 11250 Arg->getType()->isEmptyTy() || 11251 DL.getTypeStoreSize(Arg->getType()) != 11252 DL.getTypeAllocSize(AI->getAllocatedType()) || 11253 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 11254 ArgCopyElisionCandidates.count(Arg)) { 11255 *Info = StaticAllocaInfo::Clobbered; 11256 continue; 11257 } 11258 11259 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 11260 << '\n'); 11261 11262 // Mark this alloca and store for argument copy elision. 11263 *Info = StaticAllocaInfo::Elidable; 11264 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 11265 11266 // Stop scanning if we've seen all arguments. This will happen early in -O0 11267 // builds, which is useful, because -O0 builds have large entry blocks and 11268 // many allocas. 11269 if (ArgCopyElisionCandidates.size() == NumArgs) 11270 break; 11271 } 11272 } 11273 11274 /// Try to elide argument copies from memory into a local alloca. Succeeds if 11275 /// ArgVal is a load from a suitable fixed stack object. 11276 static void tryToElideArgumentCopy( 11277 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 11278 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 11279 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 11280 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 11281 ArrayRef<SDValue> ArgVals, bool &ArgHasUses) { 11282 // Check if this is a load from a fixed stack object. 11283 auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]); 11284 if (!LNode) 11285 return; 11286 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 11287 if (!FINode) 11288 return; 11289 11290 // Check that the fixed stack object is the right size and alignment. 11291 // Look at the alignment that the user wrote on the alloca instead of looking 11292 // at the stack object. 11293 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 11294 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 11295 const AllocaInst *AI = ArgCopyIter->second.first; 11296 int FixedIndex = FINode->getIndex(); 11297 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 11298 int OldIndex = AllocaIndex; 11299 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 11300 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 11301 LLVM_DEBUG( 11302 dbgs() << " argument copy elision failed due to bad fixed stack " 11303 "object size\n"); 11304 return; 11305 } 11306 Align RequiredAlignment = AI->getAlign(); 11307 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 11308 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 11309 "greater than stack argument alignment (" 11310 << DebugStr(RequiredAlignment) << " vs " 11311 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 11312 return; 11313 } 11314 11315 // Perform the elision. Delete the old stack object and replace its only use 11316 // in the variable info map. Mark the stack object as mutable and aliased. 11317 LLVM_DEBUG({ 11318 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 11319 << " Replacing frame index " << OldIndex << " with " << FixedIndex 11320 << '\n'; 11321 }); 11322 MFI.RemoveStackObject(OldIndex); 11323 MFI.setIsImmutableObjectIndex(FixedIndex, false); 11324 MFI.setIsAliasedObjectIndex(FixedIndex, true); 11325 AllocaIndex = FixedIndex; 11326 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 11327 for (SDValue ArgVal : ArgVals) 11328 Chains.push_back(ArgVal.getValue(1)); 11329 11330 // Avoid emitting code for the store implementing the copy. 11331 const StoreInst *SI = ArgCopyIter->second.second; 11332 ElidedArgCopyInstrs.insert(SI); 11333 11334 // Check for uses of the argument again so that we can avoid exporting ArgVal 11335 // if it is't used by anything other than the store. 11336 for (const Value *U : Arg.users()) { 11337 if (U != SI) { 11338 ArgHasUses = true; 11339 break; 11340 } 11341 } 11342 } 11343 11344 void SelectionDAGISel::LowerArguments(const Function &F) { 11345 SelectionDAG &DAG = SDB->DAG; 11346 SDLoc dl = SDB->getCurSDLoc(); 11347 const DataLayout &DL = DAG.getDataLayout(); 11348 SmallVector<ISD::InputArg, 16> Ins; 11349 11350 // In Naked functions we aren't going to save any registers. 11351 if (F.hasFnAttribute(Attribute::Naked)) 11352 return; 11353 11354 if (!FuncInfo->CanLowerReturn) { 11355 // Put in an sret pointer parameter before all the other parameters. 11356 SmallVector<EVT, 1> ValueVTs; 11357 ComputeValueVTs(*TLI, DAG.getDataLayout(), 11358 PointerType::get(F.getContext(), 11359 DAG.getDataLayout().getAllocaAddrSpace()), 11360 ValueVTs); 11361 11362 // NOTE: Assuming that a pointer will never break down to more than one VT 11363 // or one register. 11364 ISD::ArgFlagsTy Flags; 11365 Flags.setSRet(); 11366 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 11367 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 11368 ISD::InputArg::NoArgIndex, 0); 11369 Ins.push_back(RetArg); 11370 } 11371 11372 // Look for stores of arguments to static allocas. Mark such arguments with a 11373 // flag to ask the target to give us the memory location of that argument if 11374 // available. 11375 ArgCopyElisionMapTy ArgCopyElisionCandidates; 11376 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 11377 ArgCopyElisionCandidates); 11378 11379 // Set up the incoming argument description vector. 11380 for (const Argument &Arg : F.args()) { 11381 unsigned ArgNo = Arg.getArgNo(); 11382 SmallVector<EVT, 4> ValueVTs; 11383 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11384 bool isArgValueUsed = !Arg.use_empty(); 11385 unsigned PartBase = 0; 11386 Type *FinalType = Arg.getType(); 11387 if (Arg.hasAttribute(Attribute::ByVal)) 11388 FinalType = Arg.getParamByValType(); 11389 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 11390 FinalType, F.getCallingConv(), F.isVarArg(), DL); 11391 for (unsigned Value = 0, NumValues = ValueVTs.size(); 11392 Value != NumValues; ++Value) { 11393 EVT VT = ValueVTs[Value]; 11394 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 11395 ISD::ArgFlagsTy Flags; 11396 11397 11398 if (Arg.getType()->isPointerTy()) { 11399 Flags.setPointer(); 11400 Flags.setPointerAddrSpace( 11401 cast<PointerType>(Arg.getType())->getAddressSpace()); 11402 } 11403 if (Arg.hasAttribute(Attribute::ZExt)) 11404 Flags.setZExt(); 11405 if (Arg.hasAttribute(Attribute::SExt)) 11406 Flags.setSExt(); 11407 if (Arg.hasAttribute(Attribute::InReg)) { 11408 // If we are using vectorcall calling convention, a structure that is 11409 // passed InReg - is surely an HVA 11410 if (F.getCallingConv() == CallingConv::X86_VectorCall && 11411 isa<StructType>(Arg.getType())) { 11412 // The first value of a structure is marked 11413 if (0 == Value) 11414 Flags.setHvaStart(); 11415 Flags.setHva(); 11416 } 11417 // Set InReg Flag 11418 Flags.setInReg(); 11419 } 11420 if (Arg.hasAttribute(Attribute::StructRet)) 11421 Flags.setSRet(); 11422 if (Arg.hasAttribute(Attribute::SwiftSelf)) 11423 Flags.setSwiftSelf(); 11424 if (Arg.hasAttribute(Attribute::SwiftAsync)) 11425 Flags.setSwiftAsync(); 11426 if (Arg.hasAttribute(Attribute::SwiftError)) 11427 Flags.setSwiftError(); 11428 if (Arg.hasAttribute(Attribute::ByVal)) 11429 Flags.setByVal(); 11430 if (Arg.hasAttribute(Attribute::ByRef)) 11431 Flags.setByRef(); 11432 if (Arg.hasAttribute(Attribute::InAlloca)) { 11433 Flags.setInAlloca(); 11434 // Set the byval flag for CCAssignFn callbacks that don't know about 11435 // inalloca. This way we can know how many bytes we should've allocated 11436 // and how many bytes a callee cleanup function will pop. If we port 11437 // inalloca to more targets, we'll have to add custom inalloca handling 11438 // in the various CC lowering callbacks. 11439 Flags.setByVal(); 11440 } 11441 if (Arg.hasAttribute(Attribute::Preallocated)) { 11442 Flags.setPreallocated(); 11443 // Set the byval flag for CCAssignFn callbacks that don't know about 11444 // preallocated. This way we can know how many bytes we should've 11445 // allocated and how many bytes a callee cleanup function will pop. If 11446 // we port preallocated to more targets, we'll have to add custom 11447 // preallocated handling in the various CC lowering callbacks. 11448 Flags.setByVal(); 11449 } 11450 11451 // Certain targets (such as MIPS), may have a different ABI alignment 11452 // for a type depending on the context. Give the target a chance to 11453 // specify the alignment it wants. 11454 const Align OriginalAlignment( 11455 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 11456 Flags.setOrigAlign(OriginalAlignment); 11457 11458 Align MemAlign; 11459 Type *ArgMemTy = nullptr; 11460 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 11461 Flags.isByRef()) { 11462 if (!ArgMemTy) 11463 ArgMemTy = Arg.getPointeeInMemoryValueType(); 11464 11465 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 11466 11467 // For in-memory arguments, size and alignment should be passed from FE. 11468 // BE will guess if this info is not there but there are cases it cannot 11469 // get right. 11470 if (auto ParamAlign = Arg.getParamStackAlign()) 11471 MemAlign = *ParamAlign; 11472 else if ((ParamAlign = Arg.getParamAlign())) 11473 MemAlign = *ParamAlign; 11474 else 11475 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 11476 if (Flags.isByRef()) 11477 Flags.setByRefSize(MemSize); 11478 else 11479 Flags.setByValSize(MemSize); 11480 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 11481 MemAlign = *ParamAlign; 11482 } else { 11483 MemAlign = OriginalAlignment; 11484 } 11485 Flags.setMemAlign(MemAlign); 11486 11487 if (Arg.hasAttribute(Attribute::Nest)) 11488 Flags.setNest(); 11489 if (NeedsRegBlock) 11490 Flags.setInConsecutiveRegs(); 11491 if (ArgCopyElisionCandidates.count(&Arg)) 11492 Flags.setCopyElisionCandidate(); 11493 if (Arg.hasAttribute(Attribute::Returned)) 11494 Flags.setReturned(); 11495 11496 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 11497 *CurDAG->getContext(), F.getCallingConv(), VT); 11498 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 11499 *CurDAG->getContext(), F.getCallingConv(), VT); 11500 for (unsigned i = 0; i != NumRegs; ++i) { 11501 // For scalable vectors, use the minimum size; individual targets 11502 // are responsible for handling scalable vector arguments and 11503 // return values. 11504 ISD::InputArg MyFlags( 11505 Flags, RegisterVT, VT, isArgValueUsed, ArgNo, 11506 PartBase + i * RegisterVT.getStoreSize().getKnownMinValue()); 11507 if (NumRegs > 1 && i == 0) 11508 MyFlags.Flags.setSplit(); 11509 // if it isn't first piece, alignment must be 1 11510 else if (i > 0) { 11511 MyFlags.Flags.setOrigAlign(Align(1)); 11512 if (i == NumRegs - 1) 11513 MyFlags.Flags.setSplitEnd(); 11514 } 11515 Ins.push_back(MyFlags); 11516 } 11517 if (NeedsRegBlock && Value == NumValues - 1) 11518 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 11519 PartBase += VT.getStoreSize().getKnownMinValue(); 11520 } 11521 } 11522 11523 // Call the target to set up the argument values. 11524 SmallVector<SDValue, 8> InVals; 11525 SDValue NewRoot = TLI->LowerFormalArguments( 11526 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 11527 11528 // Verify that the target's LowerFormalArguments behaved as expected. 11529 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 11530 "LowerFormalArguments didn't return a valid chain!"); 11531 assert(InVals.size() == Ins.size() && 11532 "LowerFormalArguments didn't emit the correct number of values!"); 11533 LLVM_DEBUG({ 11534 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 11535 assert(InVals[i].getNode() && 11536 "LowerFormalArguments emitted a null value!"); 11537 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 11538 "LowerFormalArguments emitted a value with the wrong type!"); 11539 } 11540 }); 11541 11542 // Update the DAG with the new chain value resulting from argument lowering. 11543 DAG.setRoot(NewRoot); 11544 11545 // Set up the argument values. 11546 unsigned i = 0; 11547 if (!FuncInfo->CanLowerReturn) { 11548 // Create a virtual register for the sret pointer, and put in a copy 11549 // from the sret argument into it. 11550 SmallVector<EVT, 1> ValueVTs; 11551 ComputeValueVTs(*TLI, DAG.getDataLayout(), 11552 PointerType::get(F.getContext(), 11553 DAG.getDataLayout().getAllocaAddrSpace()), 11554 ValueVTs); 11555 MVT VT = ValueVTs[0].getSimpleVT(); 11556 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 11557 std::optional<ISD::NodeType> AssertOp; 11558 SDValue ArgValue = 11559 getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot, 11560 F.getCallingConv(), AssertOp); 11561 11562 MachineFunction& MF = SDB->DAG.getMachineFunction(); 11563 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 11564 Register SRetReg = 11565 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 11566 FuncInfo->DemoteRegister = SRetReg; 11567 NewRoot = 11568 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 11569 DAG.setRoot(NewRoot); 11570 11571 // i indexes lowered arguments. Bump it past the hidden sret argument. 11572 ++i; 11573 } 11574 11575 SmallVector<SDValue, 4> Chains; 11576 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 11577 for (const Argument &Arg : F.args()) { 11578 SmallVector<SDValue, 4> ArgValues; 11579 SmallVector<EVT, 4> ValueVTs; 11580 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11581 unsigned NumValues = ValueVTs.size(); 11582 if (NumValues == 0) 11583 continue; 11584 11585 bool ArgHasUses = !Arg.use_empty(); 11586 11587 // Elide the copying store if the target loaded this argument from a 11588 // suitable fixed stack object. 11589 if (Ins[i].Flags.isCopyElisionCandidate()) { 11590 unsigned NumParts = 0; 11591 for (EVT VT : ValueVTs) 11592 NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), 11593 F.getCallingConv(), VT); 11594 11595 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 11596 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 11597 ArrayRef(&InVals[i], NumParts), ArgHasUses); 11598 } 11599 11600 // If this argument is unused then remember its value. It is used to generate 11601 // debugging information. 11602 bool isSwiftErrorArg = 11603 TLI->supportSwiftError() && 11604 Arg.hasAttribute(Attribute::SwiftError); 11605 if (!ArgHasUses && !isSwiftErrorArg) { 11606 SDB->setUnusedArgValue(&Arg, InVals[i]); 11607 11608 // Also remember any frame index for use in FastISel. 11609 if (FrameIndexSDNode *FI = 11610 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 11611 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11612 } 11613 11614 for (unsigned Val = 0; Val != NumValues; ++Val) { 11615 EVT VT = ValueVTs[Val]; 11616 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 11617 F.getCallingConv(), VT); 11618 unsigned NumParts = TLI->getNumRegistersForCallingConv( 11619 *CurDAG->getContext(), F.getCallingConv(), VT); 11620 11621 // Even an apparent 'unused' swifterror argument needs to be returned. So 11622 // we do generate a copy for it that can be used on return from the 11623 // function. 11624 if (ArgHasUses || isSwiftErrorArg) { 11625 std::optional<ISD::NodeType> AssertOp; 11626 if (Arg.hasAttribute(Attribute::SExt)) 11627 AssertOp = ISD::AssertSext; 11628 else if (Arg.hasAttribute(Attribute::ZExt)) 11629 AssertOp = ISD::AssertZext; 11630 11631 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 11632 PartVT, VT, nullptr, NewRoot, 11633 F.getCallingConv(), AssertOp)); 11634 } 11635 11636 i += NumParts; 11637 } 11638 11639 // We don't need to do anything else for unused arguments. 11640 if (ArgValues.empty()) 11641 continue; 11642 11643 // Note down frame index. 11644 if (FrameIndexSDNode *FI = 11645 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 11646 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11647 11648 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues), 11649 SDB->getCurSDLoc()); 11650 11651 SDB->setValue(&Arg, Res); 11652 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 11653 // We want to associate the argument with the frame index, among 11654 // involved operands, that correspond to the lowest address. The 11655 // getCopyFromParts function, called earlier, is swapping the order of 11656 // the operands to BUILD_PAIR depending on endianness. The result of 11657 // that swapping is that the least significant bits of the argument will 11658 // be in the first operand of the BUILD_PAIR node, and the most 11659 // significant bits will be in the second operand. 11660 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 11661 if (LoadSDNode *LNode = 11662 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 11663 if (FrameIndexSDNode *FI = 11664 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 11665 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11666 } 11667 11668 // Analyses past this point are naive and don't expect an assertion. 11669 if (Res.getOpcode() == ISD::AssertZext) 11670 Res = Res.getOperand(0); 11671 11672 // Update the SwiftErrorVRegDefMap. 11673 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 11674 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11675 if (Register::isVirtualRegister(Reg)) 11676 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 11677 Reg); 11678 } 11679 11680 // If this argument is live outside of the entry block, insert a copy from 11681 // wherever we got it to the vreg that other BB's will reference it as. 11682 if (Res.getOpcode() == ISD::CopyFromReg) { 11683 // If we can, though, try to skip creating an unnecessary vreg. 11684 // FIXME: This isn't very clean... it would be nice to make this more 11685 // general. 11686 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11687 if (Register::isVirtualRegister(Reg)) { 11688 FuncInfo->ValueMap[&Arg] = Reg; 11689 continue; 11690 } 11691 } 11692 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 11693 FuncInfo->InitializeRegForValue(&Arg); 11694 SDB->CopyToExportRegsIfNeeded(&Arg); 11695 } 11696 } 11697 11698 if (!Chains.empty()) { 11699 Chains.push_back(NewRoot); 11700 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 11701 } 11702 11703 DAG.setRoot(NewRoot); 11704 11705 assert(i == InVals.size() && "Argument register count mismatch!"); 11706 11707 // If any argument copy elisions occurred and we have debug info, update the 11708 // stale frame indices used in the dbg.declare variable info table. 11709 if (!ArgCopyElisionFrameIndexMap.empty()) { 11710 for (MachineFunction::VariableDbgInfo &VI : 11711 MF->getInStackSlotVariableDbgInfo()) { 11712 auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot()); 11713 if (I != ArgCopyElisionFrameIndexMap.end()) 11714 VI.updateStackSlot(I->second); 11715 } 11716 } 11717 11718 // Finally, if the target has anything special to do, allow it to do so. 11719 emitFunctionEntryCode(); 11720 } 11721 11722 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 11723 /// ensure constants are generated when needed. Remember the virtual registers 11724 /// that need to be added to the Machine PHI nodes as input. We cannot just 11725 /// directly add them, because expansion might result in multiple MBB's for one 11726 /// BB. As such, the start of the BB might correspond to a different MBB than 11727 /// the end. 11728 void 11729 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 11730 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11731 11732 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 11733 11734 // Check PHI nodes in successors that expect a value to be available from this 11735 // block. 11736 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) { 11737 if (!isa<PHINode>(SuccBB->begin())) continue; 11738 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 11739 11740 // If this terminator has multiple identical successors (common for 11741 // switches), only handle each succ once. 11742 if (!SuccsHandled.insert(SuccMBB).second) 11743 continue; 11744 11745 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 11746 11747 // At this point we know that there is a 1-1 correspondence between LLVM PHI 11748 // nodes and Machine PHI nodes, but the incoming operands have not been 11749 // emitted yet. 11750 for (const PHINode &PN : SuccBB->phis()) { 11751 // Ignore dead phi's. 11752 if (PN.use_empty()) 11753 continue; 11754 11755 // Skip empty types 11756 if (PN.getType()->isEmptyTy()) 11757 continue; 11758 11759 unsigned Reg; 11760 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 11761 11762 if (const auto *C = dyn_cast<Constant>(PHIOp)) { 11763 unsigned &RegOut = ConstantsOut[C]; 11764 if (RegOut == 0) { 11765 RegOut = FuncInfo.CreateRegs(C); 11766 // We need to zero/sign extend ConstantInt phi operands to match 11767 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 11768 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 11769 if (auto *CI = dyn_cast<ConstantInt>(C)) 11770 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 11771 : ISD::ZERO_EXTEND; 11772 CopyValueToVirtualRegister(C, RegOut, ExtendType); 11773 } 11774 Reg = RegOut; 11775 } else { 11776 DenseMap<const Value *, Register>::iterator I = 11777 FuncInfo.ValueMap.find(PHIOp); 11778 if (I != FuncInfo.ValueMap.end()) 11779 Reg = I->second; 11780 else { 11781 assert(isa<AllocaInst>(PHIOp) && 11782 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 11783 "Didn't codegen value into a register!??"); 11784 Reg = FuncInfo.CreateRegs(PHIOp); 11785 CopyValueToVirtualRegister(PHIOp, Reg); 11786 } 11787 } 11788 11789 // Remember that this register needs to added to the machine PHI node as 11790 // the input for this MBB. 11791 SmallVector<EVT, 4> ValueVTs; 11792 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 11793 for (EVT VT : ValueVTs) { 11794 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 11795 for (unsigned i = 0; i != NumRegisters; ++i) 11796 FuncInfo.PHINodesToUpdate.push_back( 11797 std::make_pair(&*MBBI++, Reg + i)); 11798 Reg += NumRegisters; 11799 } 11800 } 11801 } 11802 11803 ConstantsOut.clear(); 11804 } 11805 11806 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 11807 MachineFunction::iterator I(MBB); 11808 if (++I == FuncInfo.MF->end()) 11809 return nullptr; 11810 return &*I; 11811 } 11812 11813 /// During lowering new call nodes can be created (such as memset, etc.). 11814 /// Those will become new roots of the current DAG, but complications arise 11815 /// when they are tail calls. In such cases, the call lowering will update 11816 /// the root, but the builder still needs to know that a tail call has been 11817 /// lowered in order to avoid generating an additional return. 11818 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 11819 // If the node is null, we do have a tail call. 11820 if (MaybeTC.getNode() != nullptr) 11821 DAG.setRoot(MaybeTC); 11822 else 11823 HasTailCall = true; 11824 } 11825 11826 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 11827 MachineBasicBlock *SwitchMBB, 11828 MachineBasicBlock *DefaultMBB) { 11829 MachineFunction *CurMF = FuncInfo.MF; 11830 MachineBasicBlock *NextMBB = nullptr; 11831 MachineFunction::iterator BBI(W.MBB); 11832 if (++BBI != FuncInfo.MF->end()) 11833 NextMBB = &*BBI; 11834 11835 unsigned Size = W.LastCluster - W.FirstCluster + 1; 11836 11837 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11838 11839 if (Size == 2 && W.MBB == SwitchMBB) { 11840 // If any two of the cases has the same destination, and if one value 11841 // is the same as the other, but has one bit unset that the other has set, 11842 // use bit manipulation to do two compares at once. For example: 11843 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 11844 // TODO: This could be extended to merge any 2 cases in switches with 3 11845 // cases. 11846 // TODO: Handle cases where W.CaseBB != SwitchBB. 11847 CaseCluster &Small = *W.FirstCluster; 11848 CaseCluster &Big = *W.LastCluster; 11849 11850 if (Small.Low == Small.High && Big.Low == Big.High && 11851 Small.MBB == Big.MBB) { 11852 const APInt &SmallValue = Small.Low->getValue(); 11853 const APInt &BigValue = Big.Low->getValue(); 11854 11855 // Check that there is only one bit different. 11856 APInt CommonBit = BigValue ^ SmallValue; 11857 if (CommonBit.isPowerOf2()) { 11858 SDValue CondLHS = getValue(Cond); 11859 EVT VT = CondLHS.getValueType(); 11860 SDLoc DL = getCurSDLoc(); 11861 11862 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 11863 DAG.getConstant(CommonBit, DL, VT)); 11864 SDValue Cond = DAG.getSetCC( 11865 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 11866 ISD::SETEQ); 11867 11868 // Update successor info. 11869 // Both Small and Big will jump to Small.BB, so we sum up the 11870 // probabilities. 11871 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 11872 if (BPI) 11873 addSuccessorWithProb( 11874 SwitchMBB, DefaultMBB, 11875 // The default destination is the first successor in IR. 11876 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 11877 else 11878 addSuccessorWithProb(SwitchMBB, DefaultMBB); 11879 11880 // Insert the true branch. 11881 SDValue BrCond = 11882 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 11883 DAG.getBasicBlock(Small.MBB)); 11884 // Insert the false branch. 11885 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 11886 DAG.getBasicBlock(DefaultMBB)); 11887 11888 DAG.setRoot(BrCond); 11889 return; 11890 } 11891 } 11892 } 11893 11894 if (TM.getOptLevel() != CodeGenOptLevel::None) { 11895 // Here, we order cases by probability so the most likely case will be 11896 // checked first. However, two clusters can have the same probability in 11897 // which case their relative ordering is non-deterministic. So we use Low 11898 // as a tie-breaker as clusters are guaranteed to never overlap. 11899 llvm::sort(W.FirstCluster, W.LastCluster + 1, 11900 [](const CaseCluster &a, const CaseCluster &b) { 11901 return a.Prob != b.Prob ? 11902 a.Prob > b.Prob : 11903 a.Low->getValue().slt(b.Low->getValue()); 11904 }); 11905 11906 // Rearrange the case blocks so that the last one falls through if possible 11907 // without changing the order of probabilities. 11908 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 11909 --I; 11910 if (I->Prob > W.LastCluster->Prob) 11911 break; 11912 if (I->Kind == CC_Range && I->MBB == NextMBB) { 11913 std::swap(*I, *W.LastCluster); 11914 break; 11915 } 11916 } 11917 } 11918 11919 // Compute total probability. 11920 BranchProbability DefaultProb = W.DefaultProb; 11921 BranchProbability UnhandledProbs = DefaultProb; 11922 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 11923 UnhandledProbs += I->Prob; 11924 11925 MachineBasicBlock *CurMBB = W.MBB; 11926 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 11927 bool FallthroughUnreachable = false; 11928 MachineBasicBlock *Fallthrough; 11929 if (I == W.LastCluster) { 11930 // For the last cluster, fall through to the default destination. 11931 Fallthrough = DefaultMBB; 11932 FallthroughUnreachable = isa<UnreachableInst>( 11933 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 11934 } else { 11935 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 11936 CurMF->insert(BBI, Fallthrough); 11937 // Put Cond in a virtual register to make it available from the new blocks. 11938 ExportFromCurrentBlock(Cond); 11939 } 11940 UnhandledProbs -= I->Prob; 11941 11942 switch (I->Kind) { 11943 case CC_JumpTable: { 11944 // FIXME: Optimize away range check based on pivot comparisons. 11945 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 11946 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 11947 11948 // The jump block hasn't been inserted yet; insert it here. 11949 MachineBasicBlock *JumpMBB = JT->MBB; 11950 CurMF->insert(BBI, JumpMBB); 11951 11952 auto JumpProb = I->Prob; 11953 auto FallthroughProb = UnhandledProbs; 11954 11955 // If the default statement is a target of the jump table, we evenly 11956 // distribute the default probability to successors of CurMBB. Also 11957 // update the probability on the edge from JumpMBB to Fallthrough. 11958 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 11959 SE = JumpMBB->succ_end(); 11960 SI != SE; ++SI) { 11961 if (*SI == DefaultMBB) { 11962 JumpProb += DefaultProb / 2; 11963 FallthroughProb -= DefaultProb / 2; 11964 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 11965 JumpMBB->normalizeSuccProbs(); 11966 break; 11967 } 11968 } 11969 11970 // If the default clause is unreachable, propagate that knowledge into 11971 // JTH->FallthroughUnreachable which will use it to suppress the range 11972 // check. 11973 // 11974 // However, don't do this if we're doing branch target enforcement, 11975 // because a table branch _without_ a range check can be a tempting JOP 11976 // gadget - out-of-bounds inputs that are impossible in correct 11977 // execution become possible again if an attacker can influence the 11978 // control flow. So if an attacker doesn't already have a BTI bypass 11979 // available, we don't want them to be able to get one out of this 11980 // table branch. 11981 if (FallthroughUnreachable) { 11982 Function &CurFunc = CurMF->getFunction(); 11983 bool HasBranchTargetEnforcement = false; 11984 if (CurFunc.hasFnAttribute("branch-target-enforcement")) { 11985 HasBranchTargetEnforcement = 11986 CurFunc.getFnAttribute("branch-target-enforcement") 11987 .getValueAsBool(); 11988 } else { 11989 HasBranchTargetEnforcement = 11990 CurMF->getMMI().getModule()->getModuleFlag( 11991 "branch-target-enforcement"); 11992 } 11993 if (!HasBranchTargetEnforcement) 11994 JTH->FallthroughUnreachable = true; 11995 } 11996 11997 if (!JTH->FallthroughUnreachable) 11998 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 11999 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 12000 CurMBB->normalizeSuccProbs(); 12001 12002 // The jump table header will be inserted in our current block, do the 12003 // range check, and fall through to our fallthrough block. 12004 JTH->HeaderBB = CurMBB; 12005 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 12006 12007 // If we're in the right place, emit the jump table header right now. 12008 if (CurMBB == SwitchMBB) { 12009 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 12010 JTH->Emitted = true; 12011 } 12012 break; 12013 } 12014 case CC_BitTests: { 12015 // FIXME: Optimize away range check based on pivot comparisons. 12016 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 12017 12018 // The bit test blocks haven't been inserted yet; insert them here. 12019 for (BitTestCase &BTC : BTB->Cases) 12020 CurMF->insert(BBI, BTC.ThisBB); 12021 12022 // Fill in fields of the BitTestBlock. 12023 BTB->Parent = CurMBB; 12024 BTB->Default = Fallthrough; 12025 12026 BTB->DefaultProb = UnhandledProbs; 12027 // If the cases in bit test don't form a contiguous range, we evenly 12028 // distribute the probability on the edge to Fallthrough to two 12029 // successors of CurMBB. 12030 if (!BTB->ContiguousRange) { 12031 BTB->Prob += DefaultProb / 2; 12032 BTB->DefaultProb -= DefaultProb / 2; 12033 } 12034 12035 if (FallthroughUnreachable) 12036 BTB->FallthroughUnreachable = true; 12037 12038 // If we're in the right place, emit the bit test header right now. 12039 if (CurMBB == SwitchMBB) { 12040 visitBitTestHeader(*BTB, SwitchMBB); 12041 BTB->Emitted = true; 12042 } 12043 break; 12044 } 12045 case CC_Range: { 12046 const Value *RHS, *LHS, *MHS; 12047 ISD::CondCode CC; 12048 if (I->Low == I->High) { 12049 // Check Cond == I->Low. 12050 CC = ISD::SETEQ; 12051 LHS = Cond; 12052 RHS=I->Low; 12053 MHS = nullptr; 12054 } else { 12055 // Check I->Low <= Cond <= I->High. 12056 CC = ISD::SETLE; 12057 LHS = I->Low; 12058 MHS = Cond; 12059 RHS = I->High; 12060 } 12061 12062 // If Fallthrough is unreachable, fold away the comparison. 12063 if (FallthroughUnreachable) 12064 CC = ISD::SETTRUE; 12065 12066 // The false probability is the sum of all unhandled cases. 12067 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 12068 getCurSDLoc(), I->Prob, UnhandledProbs); 12069 12070 if (CurMBB == SwitchMBB) 12071 visitSwitchCase(CB, SwitchMBB); 12072 else 12073 SL->SwitchCases.push_back(CB); 12074 12075 break; 12076 } 12077 } 12078 CurMBB = Fallthrough; 12079 } 12080 } 12081 12082 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 12083 const SwitchWorkListItem &W, 12084 Value *Cond, 12085 MachineBasicBlock *SwitchMBB) { 12086 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 12087 "Clusters not sorted?"); 12088 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 12089 12090 auto [LastLeft, FirstRight, LeftProb, RightProb] = 12091 SL->computeSplitWorkItemInfo(W); 12092 12093 // Use the first element on the right as pivot since we will make less-than 12094 // comparisons against it. 12095 CaseClusterIt PivotCluster = FirstRight; 12096 assert(PivotCluster > W.FirstCluster); 12097 assert(PivotCluster <= W.LastCluster); 12098 12099 CaseClusterIt FirstLeft = W.FirstCluster; 12100 CaseClusterIt LastRight = W.LastCluster; 12101 12102 const ConstantInt *Pivot = PivotCluster->Low; 12103 12104 // New blocks will be inserted immediately after the current one. 12105 MachineFunction::iterator BBI(W.MBB); 12106 ++BBI; 12107 12108 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 12109 // we can branch to its destination directly if it's squeezed exactly in 12110 // between the known lower bound and Pivot - 1. 12111 MachineBasicBlock *LeftMBB; 12112 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 12113 FirstLeft->Low == W.GE && 12114 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 12115 LeftMBB = FirstLeft->MBB; 12116 } else { 12117 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 12118 FuncInfo.MF->insert(BBI, LeftMBB); 12119 WorkList.push_back( 12120 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 12121 // Put Cond in a virtual register to make it available from the new blocks. 12122 ExportFromCurrentBlock(Cond); 12123 } 12124 12125 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 12126 // single cluster, RHS.Low == Pivot, and we can branch to its destination 12127 // directly if RHS.High equals the current upper bound. 12128 MachineBasicBlock *RightMBB; 12129 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 12130 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 12131 RightMBB = FirstRight->MBB; 12132 } else { 12133 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 12134 FuncInfo.MF->insert(BBI, RightMBB); 12135 WorkList.push_back( 12136 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 12137 // Put Cond in a virtual register to make it available from the new blocks. 12138 ExportFromCurrentBlock(Cond); 12139 } 12140 12141 // Create the CaseBlock record that will be used to lower the branch. 12142 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 12143 getCurSDLoc(), LeftProb, RightProb); 12144 12145 if (W.MBB == SwitchMBB) 12146 visitSwitchCase(CB, SwitchMBB); 12147 else 12148 SL->SwitchCases.push_back(CB); 12149 } 12150 12151 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 12152 // from the swith statement. 12153 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 12154 BranchProbability PeeledCaseProb) { 12155 if (PeeledCaseProb == BranchProbability::getOne()) 12156 return BranchProbability::getZero(); 12157 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 12158 12159 uint32_t Numerator = CaseProb.getNumerator(); 12160 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 12161 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 12162 } 12163 12164 // Try to peel the top probability case if it exceeds the threshold. 12165 // Return current MachineBasicBlock for the switch statement if the peeling 12166 // does not occur. 12167 // If the peeling is performed, return the newly created MachineBasicBlock 12168 // for the peeled switch statement. Also update Clusters to remove the peeled 12169 // case. PeeledCaseProb is the BranchProbability for the peeled case. 12170 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 12171 const SwitchInst &SI, CaseClusterVector &Clusters, 12172 BranchProbability &PeeledCaseProb) { 12173 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 12174 // Don't perform if there is only one cluster or optimizing for size. 12175 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 12176 TM.getOptLevel() == CodeGenOptLevel::None || 12177 SwitchMBB->getParent()->getFunction().hasMinSize()) 12178 return SwitchMBB; 12179 12180 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 12181 unsigned PeeledCaseIndex = 0; 12182 bool SwitchPeeled = false; 12183 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 12184 CaseCluster &CC = Clusters[Index]; 12185 if (CC.Prob < TopCaseProb) 12186 continue; 12187 TopCaseProb = CC.Prob; 12188 PeeledCaseIndex = Index; 12189 SwitchPeeled = true; 12190 } 12191 if (!SwitchPeeled) 12192 return SwitchMBB; 12193 12194 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 12195 << TopCaseProb << "\n"); 12196 12197 // Record the MBB for the peeled switch statement. 12198 MachineFunction::iterator BBI(SwitchMBB); 12199 ++BBI; 12200 MachineBasicBlock *PeeledSwitchMBB = 12201 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 12202 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 12203 12204 ExportFromCurrentBlock(SI.getCondition()); 12205 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 12206 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 12207 nullptr, nullptr, TopCaseProb.getCompl()}; 12208 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 12209 12210 Clusters.erase(PeeledCaseIt); 12211 for (CaseCluster &CC : Clusters) { 12212 LLVM_DEBUG( 12213 dbgs() << "Scale the probablity for one cluster, before scaling: " 12214 << CC.Prob << "\n"); 12215 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 12216 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 12217 } 12218 PeeledCaseProb = TopCaseProb; 12219 return PeeledSwitchMBB; 12220 } 12221 12222 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 12223 // Extract cases from the switch. 12224 BranchProbabilityInfo *BPI = FuncInfo.BPI; 12225 CaseClusterVector Clusters; 12226 Clusters.reserve(SI.getNumCases()); 12227 for (auto I : SI.cases()) { 12228 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 12229 const ConstantInt *CaseVal = I.getCaseValue(); 12230 BranchProbability Prob = 12231 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 12232 : BranchProbability(1, SI.getNumCases() + 1); 12233 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 12234 } 12235 12236 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 12237 12238 // Cluster adjacent cases with the same destination. We do this at all 12239 // optimization levels because it's cheap to do and will make codegen faster 12240 // if there are many clusters. 12241 sortAndRangeify(Clusters); 12242 12243 // The branch probablity of the peeled case. 12244 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 12245 MachineBasicBlock *PeeledSwitchMBB = 12246 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 12247 12248 // If there is only the default destination, jump there directly. 12249 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 12250 if (Clusters.empty()) { 12251 assert(PeeledSwitchMBB == SwitchMBB); 12252 SwitchMBB->addSuccessor(DefaultMBB); 12253 if (DefaultMBB != NextBlock(SwitchMBB)) { 12254 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 12255 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 12256 } 12257 return; 12258 } 12259 12260 SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(), 12261 DAG.getBFI()); 12262 SL->findBitTestClusters(Clusters, &SI); 12263 12264 LLVM_DEBUG({ 12265 dbgs() << "Case clusters: "; 12266 for (const CaseCluster &C : Clusters) { 12267 if (C.Kind == CC_JumpTable) 12268 dbgs() << "JT:"; 12269 if (C.Kind == CC_BitTests) 12270 dbgs() << "BT:"; 12271 12272 C.Low->getValue().print(dbgs(), true); 12273 if (C.Low != C.High) { 12274 dbgs() << '-'; 12275 C.High->getValue().print(dbgs(), true); 12276 } 12277 dbgs() << ' '; 12278 } 12279 dbgs() << '\n'; 12280 }); 12281 12282 assert(!Clusters.empty()); 12283 SwitchWorkList WorkList; 12284 CaseClusterIt First = Clusters.begin(); 12285 CaseClusterIt Last = Clusters.end() - 1; 12286 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 12287 // Scale the branchprobability for DefaultMBB if the peel occurs and 12288 // DefaultMBB is not replaced. 12289 if (PeeledCaseProb != BranchProbability::getZero() && 12290 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 12291 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 12292 WorkList.push_back( 12293 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 12294 12295 while (!WorkList.empty()) { 12296 SwitchWorkListItem W = WorkList.pop_back_val(); 12297 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 12298 12299 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None && 12300 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 12301 // For optimized builds, lower large range as a balanced binary tree. 12302 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 12303 continue; 12304 } 12305 12306 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 12307 } 12308 } 12309 12310 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 12311 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12312 auto DL = getCurSDLoc(); 12313 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12314 setValue(&I, DAG.getStepVector(DL, ResultVT)); 12315 } 12316 12317 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 12318 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12319 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12320 12321 SDLoc DL = getCurSDLoc(); 12322 SDValue V = getValue(I.getOperand(0)); 12323 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 12324 12325 if (VT.isScalableVector()) { 12326 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 12327 return; 12328 } 12329 12330 // Use VECTOR_SHUFFLE for the fixed-length vector 12331 // to maintain existing behavior. 12332 SmallVector<int, 8> Mask; 12333 unsigned NumElts = VT.getVectorMinNumElements(); 12334 for (unsigned i = 0; i != NumElts; ++i) 12335 Mask.push_back(NumElts - 1 - i); 12336 12337 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 12338 } 12339 12340 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) { 12341 auto DL = getCurSDLoc(); 12342 SDValue InVec = getValue(I.getOperand(0)); 12343 EVT OutVT = 12344 InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 12345 12346 unsigned OutNumElts = OutVT.getVectorMinNumElements(); 12347 12348 // ISD Node needs the input vectors split into two equal parts 12349 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 12350 DAG.getVectorIdxConstant(0, DL)); 12351 SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 12352 DAG.getVectorIdxConstant(OutNumElts, DL)); 12353 12354 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 12355 // legalisation and combines. 12356 if (OutVT.isFixedLengthVector()) { 12357 SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 12358 createStrideMask(0, 2, OutNumElts)); 12359 SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 12360 createStrideMask(1, 2, OutNumElts)); 12361 SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc()); 12362 setValue(&I, Res); 12363 return; 12364 } 12365 12366 SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL, 12367 DAG.getVTList(OutVT, OutVT), Lo, Hi); 12368 setValue(&I, Res); 12369 } 12370 12371 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) { 12372 auto DL = getCurSDLoc(); 12373 EVT InVT = getValue(I.getOperand(0)).getValueType(); 12374 SDValue InVec0 = getValue(I.getOperand(0)); 12375 SDValue InVec1 = getValue(I.getOperand(1)); 12376 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12377 EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12378 12379 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 12380 // legalisation and combines. 12381 if (OutVT.isFixedLengthVector()) { 12382 unsigned NumElts = InVT.getVectorMinNumElements(); 12383 SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1); 12384 setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT), 12385 createInterleaveMask(NumElts, 2))); 12386 return; 12387 } 12388 12389 SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, 12390 DAG.getVTList(InVT, InVT), InVec0, InVec1); 12391 Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0), 12392 Res.getValue(1)); 12393 setValue(&I, Res); 12394 } 12395 12396 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 12397 SmallVector<EVT, 4> ValueVTs; 12398 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 12399 ValueVTs); 12400 unsigned NumValues = ValueVTs.size(); 12401 if (NumValues == 0) return; 12402 12403 SmallVector<SDValue, 4> Values(NumValues); 12404 SDValue Op = getValue(I.getOperand(0)); 12405 12406 for (unsigned i = 0; i != NumValues; ++i) 12407 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 12408 SDValue(Op.getNode(), Op.getResNo() + i)); 12409 12410 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12411 DAG.getVTList(ValueVTs), Values)); 12412 } 12413 12414 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 12415 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12416 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12417 12418 SDLoc DL = getCurSDLoc(); 12419 SDValue V1 = getValue(I.getOperand(0)); 12420 SDValue V2 = getValue(I.getOperand(1)); 12421 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 12422 12423 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 12424 if (VT.isScalableVector()) { 12425 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 12426 DAG.getVectorIdxConstant(Imm, DL))); 12427 return; 12428 } 12429 12430 unsigned NumElts = VT.getVectorNumElements(); 12431 12432 uint64_t Idx = (NumElts + Imm) % NumElts; 12433 12434 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 12435 SmallVector<int, 8> Mask; 12436 for (unsigned i = 0; i < NumElts; ++i) 12437 Mask.push_back(Idx + i); 12438 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 12439 } 12440 12441 // Consider the following MIR after SelectionDAG, which produces output in 12442 // phyregs in the first case or virtregs in the second case. 12443 // 12444 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx 12445 // %5:gr32 = COPY $ebx 12446 // %6:gr32 = COPY $edx 12447 // %1:gr32 = COPY %6:gr32 12448 // %0:gr32 = COPY %5:gr32 12449 // 12450 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32 12451 // %1:gr32 = COPY %6:gr32 12452 // %0:gr32 = COPY %5:gr32 12453 // 12454 // Given %0, we'd like to return $ebx in the first case and %5 in the second. 12455 // Given %1, we'd like to return $edx in the first case and %6 in the second. 12456 // 12457 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap 12458 // to a single virtreg (such as %0). The remaining outputs monotonically 12459 // increase in virtreg number from there. If a callbr has no outputs, then it 12460 // should not have a corresponding callbr landingpad; in fact, the callbr 12461 // landingpad would not even be able to refer to such a callbr. 12462 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) { 12463 MachineInstr *MI = MRI.def_begin(Reg)->getParent(); 12464 // There is definitely at least one copy. 12465 assert(MI->getOpcode() == TargetOpcode::COPY && 12466 "start of copy chain MUST be COPY"); 12467 Reg = MI->getOperand(1).getReg(); 12468 MI = MRI.def_begin(Reg)->getParent(); 12469 // There may be an optional second copy. 12470 if (MI->getOpcode() == TargetOpcode::COPY) { 12471 assert(Reg.isVirtual() && "expected COPY of virtual register"); 12472 Reg = MI->getOperand(1).getReg(); 12473 assert(Reg.isPhysical() && "expected COPY of physical register"); 12474 MI = MRI.def_begin(Reg)->getParent(); 12475 } 12476 // The start of the chain must be an INLINEASM_BR. 12477 assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR && 12478 "end of copy chain MUST be INLINEASM_BR"); 12479 return Reg; 12480 } 12481 12482 // We must do this walk rather than the simpler 12483 // setValue(&I, getCopyFromRegs(CBR, CBR->getType())); 12484 // otherwise we will end up with copies of virtregs only valid along direct 12485 // edges. 12486 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) { 12487 SmallVector<EVT, 8> ResultVTs; 12488 SmallVector<SDValue, 8> ResultValues; 12489 const auto *CBR = 12490 cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator()); 12491 12492 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12493 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 12494 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 12495 12496 unsigned InitialDef = FuncInfo.ValueMap[CBR]; 12497 SDValue Chain = DAG.getRoot(); 12498 12499 // Re-parse the asm constraints string. 12500 TargetLowering::AsmOperandInfoVector TargetConstraints = 12501 TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR); 12502 for (auto &T : TargetConstraints) { 12503 SDISelAsmOperandInfo OpInfo(T); 12504 if (OpInfo.Type != InlineAsm::isOutput) 12505 continue; 12506 12507 // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the 12508 // individual constraint. 12509 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 12510 12511 switch (OpInfo.ConstraintType) { 12512 case TargetLowering::C_Register: 12513 case TargetLowering::C_RegisterClass: { 12514 // Fill in OpInfo.AssignedRegs.Regs. 12515 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo); 12516 12517 // getRegistersForValue may produce 1 to many registers based on whether 12518 // the OpInfo.ConstraintVT is legal on the target or not. 12519 for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) { 12520 Register OriginalDef = FollowCopyChain(MRI, InitialDef++); 12521 if (Register::isPhysicalRegister(OriginalDef)) 12522 FuncInfo.MBB->addLiveIn(OriginalDef); 12523 // Update the assigned registers to use the original defs. 12524 OpInfo.AssignedRegs.Regs[i] = OriginalDef; 12525 } 12526 12527 SDValue V = OpInfo.AssignedRegs.getCopyFromRegs( 12528 DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR); 12529 ResultValues.push_back(V); 12530 ResultVTs.push_back(OpInfo.ConstraintVT); 12531 break; 12532 } 12533 case TargetLowering::C_Other: { 12534 SDValue Flag; 12535 SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 12536 OpInfo, DAG); 12537 ++InitialDef; 12538 ResultValues.push_back(V); 12539 ResultVTs.push_back(OpInfo.ConstraintVT); 12540 break; 12541 } 12542 default: 12543 break; 12544 } 12545 } 12546 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12547 DAG.getVTList(ResultVTs), ResultValues); 12548 setValue(&I, V); 12549 } 12550